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On the In�uene of Loal Inhomogeneitieson Cosmologial ObservablesFrom Galaxies to the Mirowave Bakground
This thesis is based upon the following publiations:
◮ Mirowave Sky and the Loal Rees-Siama E�etAleksandar Raki¢, Syksy Räsänen and Dominik J. Shwarz; Mon. Not. Roy. Astron. So. Lett. 369:L27�L31, 2006; astro-ph/0601445
◮ Correlating Anomalies of the Mirowave Sky: The Good, the Evil and the AxisAleksandar Raki¢ and Dominik J. Shwarz; Phys. Rev. D 75: 103002, 2007; astro-ph/0703266
◮ Can Extragalati Foregrounds Explain the Large-Angle CMB Anomalies?Aleksandar Raki¢, Syksy Räsänen and Dominik J. Shwarz; astro-ph/0609188; to appear in the pro-eedings of the 11th Marel Grossmann Meeting on general relativityPubliations in preparation:
◮ General Relativisti Galati Dynamis and the Newtonian Limit of Lewis-Papapetrou Spae-TimesAleksandar Raki¢ and Dominik J. Shwarz
◮ Bakreation E�ets on the Observer's Past Light ConeThomas Buhert, Aleksandar Raki¢ and Dominik J. Shwarz
The work ontained in this thesis is part of the researh done within the International Researh TrainingGroup (GRK 881) entitled as Quantum Fields and Strongly Interating Matter: From Vauum toExtreme Density and Temperature Conditions. This graduate shool is a joint projet of the Universityof Bielefeld and the Université Paris-Sud XI (Paris VI, Paris VII, Salay); it is funded by the germanresearh foundation (DFG) and so was the author. GRK 881

PhD thesis in theoretial physisAuthor: Aleksandar Raki¢E-mail address: araki�web.deTypefae: Computer Modern Roman 8pt, 9pt, 10pt, 11pt, 12ptDistribution: LATEX2εusing AMSLATEX and hyperrefCompiled on February 25, 2008 as a native dvi doument



iii





ContentsNotation 1Prefae 3Part I. Exat Solutions as Toy Models 11Chapter 1. The Cosmologial Problem of Dark Energy 131.1. Faets of the Problem 141.2. Dark Energy and the Standard Cosmologial Model 151.3. An Inhomogeneous Alternative? 27Chapter 2. The Cosmologial Problem of Dark Matter 452.1. Diret Evidene and Lensing 452.2. Classial Evidene from Dynamis 512.3. Modelling Galaxies with General Relativity 55Part II. Axisymmetri E�ets in the CMB 75Chapter 3. On the Cosmi Mirowave Bakground 773.1. Overview of Soures of CMB Anisotropy 773.2. Reombination 803.3. Observables of the CMB 85Chapter 4. Extrinsi Alignments in the CMB 954.1. The Alignment Anomalies 964.2. Loal Rees-Siama E�et 974.3. Angular Power Analysis 1014.4. Extrinsi Alignment Analysis 1034.5. Conlusion 106Chapter 5. Intrinsi Alignments in the CMB 1095.1. Introdution 1105.2. Choie of Statisti 1125.3. Standard Model Preditions 1135.4. Inlusion of a Preferred Axis 1175.5. Conlusion 119Summary and Outlook 121Aknowledgements 123Part III. Appendies 125Appendix A. Critial Values of Ωm and ΩΛ in the FRW Model 127Appendix B. Details of the Lemaître-Tolman-Bondi Model 131v



vi CONTENTSB.1. General Spherially Symmetri Spaetime with Zero Vortiity 131B.2. Einstein Equations of the Lemaître-Tolman-Bondi Model 132Appendix C. Rotating Post-Newtonian Metris 135C.1. Full Di�erential Rotation 135C.2. Spatial Curvature Terms 135Appendix D. Aspets of Struture Formation 137D.1. Gravitational Instabilities and Peuliar Veloities 137D.2. Statistial Properties of the Density Field 138D.3. Silk Damping and Hierarhy 139Appendix E. Thermal History in a Nutshell 143E.1. Neutrino Deoupling 143E.2. Eletron-Positron Annihilation 144E.3. Nuleosynthesis 145Appendix F. Additional Plots and Results 147Bibliography 159



NotationThroughout this work we will use the following metri signature,
(−,+,+,+) .By small latin indies, running from 1 to 3 , we denote spatial omponents of tensors, e.g. Kij .Using small greek indies, running from 0 to 3 , we denote four-dimensional omponents of ten-sors, e.g. Kµν . We make use of the Einstein summation onvention.Partial derivatives are indiated by a omma,

Kµν,λ ≡ ∂

∂xλ
Kµνand ovariant derivatives by a semiolon

Kµν;λ ≡ ∂

∂xλ
Kµν − Γρ

λµKρν − Γρ
λνKρµ .The sign onventions whih we use for the osmologial onstant, for the de�nition of the Rie-mann urvature tensor as well as for the other relevant quantities in the Einstein equationsare given in app. B. The spatial Rii salar is written aligraphially throughout the text,

R ≡ (3)Ri
i .Vetors and vetor �elds are written in boldfae, e.g. ξ, Lσ . Normal vetors are denoted by ahat, e.g. x̂ .We denote the symmetrisation and antisymmetrisation of tensors by

K{µν} ≡ 1

2
(Kµν +Kνµ) , K[µν] ≡

1

2
(Kµν −Kνµ) .In hap. 2 we will deal with axisymmetri systems, and therefore the operators ∆(3) and ∆(2)denote the three-dimensional and two-dimensional Laplae operators in ylindrial oordinates.The use of artesian oordinates is expliitly indiated, e.g. ∆

(3)
cart .
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PrefaeThe most fundamental osmologial observation one an think of is the darkness of our nightsky. At �rst glane, this might appear trivial, but the appropriate question is, how is it possiblethat our sky is dark at night? The proper answer to it has ruial impliations for osmology. Inthe early days of astronomy, the ommon osmologial paradigm stated that the Universe waseternal, in�nite and of Eulidean geometry. Following this paradigm, in 1826 Heinrih Olbersalulated the total radiation energy density of stars that would be present in suh a Universe.The stars were taken as point soures with onstant luminosity and their number density wasalso onstant. The result of the alulation is astonishingly absurd: there would be an in�niteradiation density oming from starlight. Interpreted within a stati, in�nite and Eulidean worldmodel, the ommon fat that our night sky is dark beomes suddenly a mystery. This lak ofoptial bakground light is usually referred to as Olbers' paradox, but it should be mentionedthat the problem was disussed already muh earlier, for instane by de Cheseaux in 1744.Within the modern standard model of osmology, a ommon way of resolving Olbers' para-dox lies in assuming a Big Bang and taking the osmologial expansion of spaetime into aount.In a Universe that has existed for an �nite amount of time, the extension of the observable partof the Universe � the horizon � is also �nite, and therefore only a limited number of stars ispotentially observable. In this formulation of Olbers' paradox we assumed a distribution ofpoint soures. We ould go one step further and onsider the extended surfaes of the emittingstars. Then it turns out that every line of sight toward us must start at some �nite surfaeand � within the old world view � we would inevitably be led to a sky that is, due to projetedoverlap, fully overed by the luminous surfaes of the stars. The brightness temperature of starsis independent of distane in the Eulidean piture, and so this formulation of Olbers' paradoxstates that the whole sky should be as hot as the surfae of a typial star. Now the resolution ofOlbers' paradox within modern osmology beomes somewhat di�erent. Assuming a Big Bangand ontinuous osmi expansion, one an extrapolate that there indeed must have existed aommon hot emission surfae, namely the surfae of last sattering at whih the Universe beametransparent for photons. This instant marks the birth of the Cosmi Mirowave Bakground(CMB) radiation. Now, sine last sattering ourred a long time ago � when the temperatureof the Universe was around 3000K � and the Universe has expanded ever sine, one an �ndthat the CMB photons have undergone a redshifting by a fator of roughly 1100 up to day. Thisresults in a present-day bakground temperature of 2.73K. In this sense, the existene of theCMB represents the resolution of Olbers' paradox: we annot observe a 3000K hot sky, beausethe osmi expansion has ooled down the primordial radiation.Today, measurements of the tiny anisotropies in the mirowave bakground radiation providea osmologial probe of utmost relevane. With satellite measurements of the CMB � like theWilkinson Mirowave Anisotropy Probe (WMAP) � a onsiderable preision in osmologialdata has been reahed.Due to its very good aordane with CMB measurements, as well as with other data setsfrom the observation of the large-sale struture at lower redshifts, a osmologial standardmodel has emerged, the in�ationary Λ Cold Dark Matter model. Among the energy densityingredients of that model are the ontributions of Dark Energy (76%), Dark Matter (20%) andbaryoni matter (4%). Although they represent dominant ontributions, the standard model isnot explanatory with respet to the nature and origin of the dark omponents of the Universe.3



4 PREFACEAlthough a lot of e�ort is invested, and although numerous attempts to attak the problem anbe found, there exists no settled explanation for the dark omponents of the standard model;they remain poorely understood up to day. Moreover, the urrent osmologial standard modelis based upon a relatively simple, homogeneous and isotropi solution of the underlying generalrelativisti �eld equations, the Friedmann-Robertson-Walker spaetime. Within this model,both CMB and other data require the Universe to be spatially �at.In hap. 1 we review the phenomenology of the urrent standard model of osmology aswell as its theoretial framework. We fous on the osmologial problem of Dark Energy and weexplain its basi experimental evidene. The validity of the rude standard model assumptionsof homogeneity and isotropy on large sales an be questioned. It is subjet to urrent debate inhow far inhomogeneous models an �t the available data that indiates an aelerated expansionof the Universe. The ruial di�erene is that inhomogeneous models are potentially able toahieve this without Dark Energy. In partiular we analyse the spherially symmetri Lemaître-Tolman-Bondi model and disuss how it may hange the interpretation of supernova and CMBdata. In order to use the inhomogeneous model for the CMB analysis in the later hapters, we�nally present analyti alulations of the integrated Sahs-Wolfe e�et in that model.Chap. 2 deals with the osmologial problem of Dark Matter. We review present evidenefor Dark Matter and fous espeially on the �at galati rotation urves. We omit disussionsof partile andidates for Dark Matter and fous on an unusual approah, namely the generalrelativisti modelling of galaxies. Regarding rotation urves, the omparison from whih DarkMatter follows in the standard piture, is always a omparison between Newtonian physis andthe data. It an be questioned whether general relativisti terms really an be fully negleted.In fat, reently a general relativisti model of a galaxy has been presented (the Cooperstok-Tieu model) in whih it is laimed that Dark Matter is made super�uous. Partly, hap. 2is very tehnial; we arry out various analytial analyses in order to better understand theCooperstok-Tieu model and espeially its Newtonian limit.A ruial omponent of the standard model is the in�ationary senario. In�ation pre-dits an early epoh of dramati global expansion of spaetime and so provides the seeds forthe formation of large-sale struture through a freeze-out of primordial quantum �utuationson marosopi sales. As a onsequene, the simplest in�ationary theories, predit a nearlysale-invariant power spetrum of statistially isotropi, adiabati and gaussianly distributedprimordial �utuations.Despite the remarkable ahievements of the standard model, there are also some problemswith it. When analysing WMAP data from the largest angular separation sales, several anom-alies are found, whih are in on�it with the predition of statistial isotropy of the CMB.After reviewing the basi physial mehanisms that ontribute to the CMB, and disussingthe underlying theoretial framework in hap. 3, we approah the problem of the large-sale CMBanomalies in hap. 4 and hap. 5. In hap. 4 our ansatz is a loal Rees-Siama e�et � the non-linear analogue of the integrated Sahs-Wolfe e�et. We state that the loal Rees-Siama e�etof vast, yet non-virialised strutures indues signi�ant ontributions to the large-sale CMB. Weompute its in�uene on the phase anomalies with the help of a statistial analysis and �nd thatan Rees-Siama e�et � modelled by a simply spherial overdensity � an be exluded at highon�dene. In ontrast to hap. 4, hap. 5 opes only with intrinsi alignments among the lowestCMB multipoles. There are two lasses of anomalies, phase (diretional) anomalies and angularpower anomalies. We ask to what extent anomalies of the two lasses are orrelated with eahother, beause this is of importane for model building. We perform an exhaustive statistialanalysis and demonstrate the absene of suh orrelations with high signi�ane. Further, we�nd stringent onstraints on any models, trying to explain the anomalies, that exhibit axialsymmetry (`Axis of Evil').







Der wahre Weg geht über ein Seil, dasniht in der Höhe gespannt ist,sondern knapp über dem Boden.Es sheint mehr bestimmt stolpern zumahen, als begangen zu werden.Franz Kafka (1883 � 1924)Aphorismen � Betrahtungen über Sünde, Leid,Ho�nung und den wahren Weg, 1931





[...℄ What is the signi�ane of the vastproesses it portrays? What is the meaning,if any there be whih is intelligible to us, ofthe vast aumulations of matter whihappear, on our present interpretations ofspae and time, to have been reated only inorder that they may destroy themselves?What is the relation of life to that Universeof whih, if we are right, it an oupy onlyso small a orner? What if any is ourrelation to the remote nebulae, for surelythere must be some more diret ontat thanthat light an travel between them and us in ahundred million years? Do their olossalinomprehending masses ome nearer torepresenting the main ultimate reality of theUniverse, or do we? Are we merely part ofthe same piture as they, or is it possible thatwe are part of the artist? Are they perhaneonly a dream, while we are brain ells in themind of the dreamer? Or is our importanemeasured solely by the frations of spae andtime we oupy � spae in�nitely less than aspek of dust in a large ity, and time lessthan one tik of a lok whih has endured forages and will tik on for ages yet to ome?Sir James Jeans (1877 � 1946)Astronomy and Cosmogony, 1928





Part IExat Solutions as Toy Models





CHAPTER 1The Cosmologial Problem of Dark EnergyWhy does Dark Energy seem to dominate the energy budget of the osmos? What does thismajor ontributor onsist of at all? Why is the absolute value of the Dark Energy density sotiny as ompared to the expetation from quantum theory? Undoubtedly, the hallenge posedby Dark Energy is the most far-reahing of the grand open questions in modern osmology. Itis tightly related to the question of how far there is ruial physis missing in the underlyingtheories at the moment; an example thereof would be a uni�ed theory of gravity and quantum�elds. There is a generi relation to the very fundamental question of how the absolute zero-point energies of quanta gravitate. The notion of Dark Energy goes hand in hand with Einstein'sosmologial onstant Λ . On the other hand, also dynamial salar �elds � that would ontributeto Λ in a time-dependent way � are onsidered, like for instane quintessene or moduli �elds.

Figure 1.1. The in�uene of Dark Energy reahes from the smallest to the largeststrutures in the Universe. Left: mirosopi image of a tiny ball (d ≃ 10−1mm) thatis mounted at a small distane upon a smooth plate in order to measure the ourring(eletromagneti) Casimir e�et. The minute Casimir fore pulls the ball toward theplate beause the number of vauum �utuation modes in the small spae betweenball and plate is limited, whereas the wavelengths of vauum �utuations ourringin the `free spae' on the opposite side of the plate an take arbitrary values. Vauum�utuations similar to those from the Casimir e�et are assoiated with Dark Energybut in this ase are generated by spae itself. The nowadays dominant Dark Energyats as a repulsive fore on the largest sales, eventually ausing the Universe toexpand forever. Right: an image of the luster of galaxies named SDSS J1004 + 4112after its detetion within the Sloan Digital Sky Survey. The luster is around sevenbillion light years away (z = 0.68), loated in the onstellation of Leo Minor, andrepresents a beautiful sample of Large-Sale Struture. Also, due to gravitationallensing o� the huge lensing mass of the luster, ar images of more distant galaxiesin the bakground an be seen in the image. Aording to observations of distantsupernovae (z & 0.2) the reession of galaxies is urrently speeding up as due to theatual density ontribution from Dark Energy. Pitures are taken from [APO℄.13



14 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGY1.1. Faets of the ProblemThe famous mismath of ∼ 120 orders of magnitude that results from trying to estimate Λfrom quantum �eld theory illustrates well the amount of our ignorane regarding the fundamentalphysis that may be involved. Likewise the Dark Energy whih is so poorly understood doesin fat onstitute a whole ∼ 70% of the energy density ontent of the Universe, whih readilyindiates the weight of the problem. Still, it is always adequate to arefully reonsider allassumptions that are made in order to get a physial result, espeially if it is suh a weightyone. In fat, the above situation results from a omparison of a large variety of astronomialtests with the osmologial standard model. Additionally, the omparison of Λ with the absolutezero-point energy takes plae within quantum �eld theory whih is at the basis of the atualstandard model of elementary partile physis. We want to emphasise that the empirial basis ofthe osmologial standard model is far less substantial than that of the standard model of partilephysis. One of the main di�erenes is of ourse the inherent impossibility to do astronomialmeasurements in suh a repeatable and ontrolled way as it is done in a laboratory. Thatis, mostly astronomers are lever spetators, waiting for the right moment of observation, butallways being inapable of touhing or turning the soure in order to repeat their measurement.As we will see below, one of the most weighty evidene for Λ omes from suh an astronomialmeasurement, namely the observation of distant supernovae.Within the standard osmologial model the energy-matter ontent of the Universe is har-aterised by four dimensionless density parameters with the following normalisation:(1.1) Ωm + Ωr + ΩΛ + Ωk = 1 .Here, Ωm is the density of matter involving all kinds of matter present whether dark or luminous,baryoni or non-baryoni; Ωr ∼ 10−4 stands for the energy present in the osmi mirowave aswell as in the primordial low-mass neutrino bakground radiation; Ωk stands for the energy-matter ontribution assoiated with the urvature of spae due to General Relativity and �nally
ΩΛ is the ontribution of Dark Energy. From measurements of e.g. the CMB it is known thatthe three-geometry of spae is �at to a high degree of auray suh that Ωk an be set to zero.Also negleting the minor ontribution from Ωr , a ouple of di�erent lasses of astronomialobservations suggest the so alled osmi onordane:(1.2) Ωb ≃ 0.04 , ΩDM ≃ 0.20 , ΩΛ ≃ 0.76 ,where, aording to usual notation, we split the matter density parameter Ωm into a baryoniontribution and a ontribution from Dark Matter. The issue of Dark Matter is disussed inmore detail in hapter 2. But whatever the partiular omposition of the numerial values of thedi�erent energy-matter omponents, as inferred in the framework of the osmologial standardmodel may try to tell us, one result is partiularly striking: only 4% of the whole is due towell-understood physis, i.e. to baryons. Another surprising feature of Dark Energy is knownas the oinidene problem. It refers to the fat that the ontribution of the time-independent
Λ parameter, if we would measure it together with the other osmologial density parametersin the past when the universe had only around one tenth of its present size, would be only
ΩΛ ≃ 0.003 . That is, the in�uene of Λ, ausing the expansion of the Universe to aelerate,appears to beome signi�ant at just around at the present time. It is unlari�ed in how farthese `oinidenes' are re�eting some deep physial ontiguity. However, it is oneivable thatthe osmologial onstant might be a running and would approah some natural value at latetimes [PR03℄.We onsider the possibility of Λ itself being a superposition of di�erent physial e�ets:(1.3) ΩΛ = ΩΛ,Einstein + ΩΛ,QF + ΩΛ,unknown .The term ΩΛ,Einstein is nothing else than the original osmologial onstant as introdued byEinstein in order to maintain stati osmologial solutions of his �eld equations; ΩΛ,QF is aontribution from virtual partile-antipartile �utuations in the quantum vauum; ΩΛ,unknownwould desribe ontributions from yet unknown physis like new �elds or interations. The fat



1.2. DARK ENERGY AND THE STANDARD COSMOLOGICAL MODEL 15that quantum �utuations ΩΛ,QF really do exist is impressively demonstrated by measurementsof the (eletromagneti) Casimir e�et, see �g. 1.1. The Casimir e�et an be measured betweenmirosopi objets, for example small onduting plates, that are positioned at a tiny distaneto eah other. Whereas the quantum �utuations of the vauum, as predited within quantum�eld theory, an populate arbitrary modes in empty spae, the number of possible modes inbetween the mirosopi objets is limited and so the energy of the system is suppressed. Thisresults in an attrative fore that is of measurable strength for e.g. the eletromagneti �eld andis purely due to subtle quantum e�ets.The problem one naturally enounters with the ontribution of Λ may be demonstratedby using the CMB as an example [PR03℄. The CMB has a monopole temperature of ≃ 2.7Kand energy density ΩCMB ∼ 10−5 reahing its maximum at the Wien peak λ ∼ 2mm. Herethe photon oupation number is ∼ 1/15 . Given a ertain frequeny, the zero-point energyamounts to half the energy of the photon. Therefore the zero-point energy of the eletromagneti�eld at the Wien peak translates into a ontribution of δΩΛ,CMB ∼ 10−4 to the Dark Energydensity parameter. As it will beome lear from equation (1.32) the sum over wavelengths salesaording to λ−4 and thus we would have δΩΛ,CMB ∼ 1010 at visible wavelengths! This naiveextrapolation already yields suh an absurd �gure. However, as was already mentioned above,it may be hypothesised [PR03℄ that the Dark Energy density assoiated with Λ is running andhas reahed nowadays � beause Dark Energy had almost 13.4 billion years time for running bynow � lose to a value that would be somewhat natural, namely zero.1.2. Dark Energy and the Standard Cosmologial ModelBefore we are going to disuss rather diret evidene for a reent aeleration of the osmiexpansion, we will onisely review the urrent standard model of osmology. This omprises theunderlying symmetries of the Friedmann-Robertson-Walker spaetime as well as the resultinggeneral relativisti dynamis of the model. Also the basi onepts and the onsequenes of thestandard in�ationary senario are reviewed.In osmology there exist several de�nitions of what may be attributed as an observabledistane to an astronomial objet. The non-trivial point is that the various distane measuresgive approximately the same result only for nearby objets and moreover that their measurementfor distant objets is sensitive to the partiular dynamis of the underlying theory. There existsreent evidene that supports the presene of Dark Energy provided by the analysis of distantsupernovae. Under the assumption that supernovae of type Ia form a lass of standard andlestheir measured brightness an be used to diretly test the distane-redshift relation withindi�erent dynamial realisations of the standard model.1.2.1. The Standard Model in a Nutshell. A very ruial statement that is made rightfrom the beginning is that the Universe appears isotropi to us in a global sense when observedfrom earth. Seond, following the Copernian standpoint it is assumed that an observation ofthe Universe made from any other galaxy should also look isotropi for the observers there.One we aept this, the Universe must also be homogeneous beause of its isotropy aroundany point. Of ourse, observations of our near neighbourhood do neither look homogeneous norisotropi at �rst glane. In the standard model it is assumed that there is a transition from alumpy to an approximately smooth piture at a sale of roughly 100Mp. This implies, thatwhen we plae balls of radius 100Mp in the Universe at random loations and we measure themass pro�le within an ensemble of balls then the root mean square �utuation of the valuestaken at 100Mp is roughly equal to the mean value, suh that we an regard the �utuationsat large sales as perturbations on top of the homogeneous model. On the other hand, thesmaller the sale, the more non-linear are the departures of �utuations from homogeneity. Inthe following we review the nie overview paper by Peebles and Ratra on Dark Energy and thestandard model [PR03℄.Within the framework of General Relativity, homogeneity and isotropy lead quite naturallyto the expansion of the Universe. Expansion of the Universe means that the proper physial



16 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYdistane DP between two well-separated galaxies as a funtion of osmi time t is(1.4) DP(t) ∝ a(t) ,where a is the sale fator. But a is de�ned suh that it is independent of the hoie of galaxieswe make for the omparison. Thus the expansion (1.4) preserves homogeneity and isotropy. Thederivative of (1.4) gives us the proper speed(1.5) vP(t) =
dDP

dt
= H(t)DP , H(t) ≡ ȧ(t)

a(t)
,introduing the Hubble parameter H and denoting derivatives with respet to osmi time witha dot. The value of the Hubble parameter as measured today is a entral parameter and so wegive here its urrent measure (2007) aording to [Y+06℄(1.6) H0 = 100 h kms−1 Mpc−1 = h (9.78 Gyr)−1 with h = 0.73+0.04

−0.03 .The atual expansion of the Universe was �rst observed in 1929 and it is referred to as theHubble expansion due to its disoverer [Hub29℄.A law similar to (1.4) also holds for the wavelengths of light signals that are exhangedbetween two galaxies. The hange in wavelength that a signal � a given feature in the spetrum� undergoes that has been emitted from a distant soure amounts to(1.7) λob

λem
=
a(tob)

a(tem)
≡ 1 + z ,and z is alled the osmologial redshift. The redshift provides the most onvenient harater-isti to label observations of the Universe that reah into the very far past. For example, thedeoupling of matter and radiation in the young Universe whih is the origin of the CMB radi-ation, ourred at around z = 1088 . The Universe is ionised today; from CMB measurementsone infers that reionisation took plae at redshifts of around z ≃ 10 . The galaxy luster SDSSJ1004 + 4112 shown in �g. 1.1 is observed at a redshift of around z ≃ 0.68 . How in general theredshift is translated into distanes, or vie versa, is generially depending on the parameters ofthe underlying general relativisti model. However, given a small redshift z < 1 , equation (1.7)beomes Hubble's law, whih then reads to lowest order: cz = HDC .The results so far have been obtained by using homogeneity and isotropy only, and representthe low-redshift limit of the standard model. However, for extrapolation to higher redshifts

z > 1 , the general relativisti formulation of the theory is to be used. The ruial assumptions ofhomogeneity and isotropy are re�eted by the well-known Friedmann-Robertson-Walker (FRW)spaetime(1.8) ds2 = −dt2 + a2(t)

[
1

1 − kr2
dr2 + r2

(
dθ2 + sin2θdϕ2

)
]

.Through remapping of the radial oordinate one usually normalises the spatial urvature pa-rameter k suh that it takes the values k = 1, 0,−1 , whih stand for a losed, �at or open spatialgeometry of the model. The metri an be rewritten as(1.9) ds2 = −dt2 + a2(t)
[
dχ2 + S2

k(χ)
(
dθ2 + sin2θdϕ2

)]
,by introduing the funtion Sk(χ) with(1.10) Sk(χ) =







sinχ for k = 1
χ for k = 0

sinhχ for k = −1
.Employing the Friedmann-Robertson-Walker metri and the assumption that on large sales thegalaxies behave like the onstituents of a perfet �uid, one an solve the �eld equations(1.11) Gµν ≡ Rµν − 1

2
Rgµν = 8πG [(ρ+ p)uµuν + pgµν ] + Λgµν ,



1.2. DARK ENERGY AND THE STANDARD COSMOLOGICAL MODEL 17and, denoting osmi time derivatives with a dot, obtain the result:(1.12) ä

a
= −4

3
πG (ρ+ 3p) +

Λ

3
.The ovariant onservation of energy and momentum T µν

;µ = 0 implies then additionally(1.13) ρ̇ = −3H (ρ+ p) .Integrating the equations (1.12) and (1.13) yields the important Friedmann equation(1.14) H2 =
8

3
πGρ− k

a2
+

Λ

3
,and the integration onstant k is related to the present value of the spatial urvature via(1.15) Ωk = − k

H2
0a

2
0

.If Λ is onstant, a useful way of writing the Friedmann equation is(1.16) H2(z) = H2
0

[
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ + Ωk(1 + z)2

]
,and similarly one rewrites the equation (1.12)(1.17) ä

a
= −H2

0

(

Ωm
(1 + z)3

2
+ Ωr(1 + z)4 − ΩΛ

)

,whereby the remaining density parameters of the standard model Ωi are given by(1.18) Ωm,r =
ρm,r

ρcrit
, ρcrit ≡

3H2
0

8πG
, ΩΛ =

Λ

H2
0

.The use of (1.16) lies in the fat that one an immediately read o� the redshift dependene ofthe respetive omponents of the Friedmann model. Therein, Ωm stands for all non-relativistimatter whose pressure we neglet (pm ≪ ρm). We see that the mass density is diluted bythe expansion of the Universe as ρm ∝ a−3 ∝ (1 + z)3 . Further, Ωr stands for radiation(e.g. the CMB) as well as relativisti matter with equation of statea w = 1/3 , and behaves like
ρr ∝ a−4 ∝ (1 + z)4 under expansion. By onstrution, Λ is onstant for the moment, andfurther the density orresponding to spatial urvature (1.15) is diluted as ρk ∝ a−2 ∝ (1 + z)2 .eq. of state density saling Hubble

w ρ ∝ a−3(1+w) a(t) ∝ t
2

3(1+w) H(t) = 2
3(1+w)

1
tradiation, w = 1

3 ρa−4 a(t) ∝ t1/2 H(t) = 1
2tmatter, w = 0 ρa−3 a(t) ∝ t2/3 H(t) = 2
3tTable 1.1. Standard solutions to the Friedmann equation for a radiation dominatedand a matter dominated Universe. The FRW expressions for density, sale fator andHubble parameter assuming a ontribution with equation of state w are given in the�rst line. Regarding a Dark Energy ontribution with w = −1 the density is onstantand integration of the Friedmann equation yields the exponential behaviour (1.25).Next, we want to onsider the properties of Λ in further detail. As inspired by speialrelativity, we an make the assumption that every inertial observer should measure the samevauum. An inertial observer is an observer who lives loally in a Minkowskian frame, that ishis metri is haraterised by ηµν = diag(−1,1) . Now, the form of the metri is left invariantby Lorentz transformation to some other inertial observer's frame. Beause we assumed that allinertial observers should see the same vauum, the energy-momentum tensor is(1.19) TΛ

µν = ρΛgµν ,aIn the osmologial ontext the term equation of state refers to the ratio w = p/ρ .



18 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYwith a onstant vauum energy density ρΛ . Thus the �eld equations an be written in the form(1.20) Gµν = 8πG (Tµν + ρΛgµν) ,whih re�ets Einstein's original ideab of modifying the energy-matter ontent of the Universeby adding a onstant Λ . We see that Dark Energy behaves like an ideal �uid with negativepressure aording to the equation of state(1.21) pΛ = −ρΛ .At the time Einstein thought about this modi�ation, the Hubble reession of nebulae wasnot yet established; quite the ontrary, a stati osmos was the state of the art, whih was anextrapolation of the �nding that nearby stars moved at low veloities. In order to obtain astati solution with ä = 0 Einstein introdued an ΩΛ � in modern language � to neutralise the(positive) ontributions of the other ingredients of matter and radiation, .f. (1.17). However,the balane ä = 0 is not a stable one beause already small perturbations to either the meanmass density or the distribution of mass will ause the Universe to ontrat or expand. Notethat, if the density ρΛ is not onstant in time � whih is the ase in many modern Dark Energysenarios � also the Dark Energy momentum tensor would have a form that di�ers from (1.19),suh that in the end the harateristis of the vauum do depend on the observer's veloity.In the ontext of gravitational �uid dynamis one usually distinguishes between the ativeand passive gravitational mass density. The ative mass density (ρ + 3p) stands for the gravi-tational �eld that is generated by the �uid, the passive gravitational mass density (ρ + p) is ameasure of how the �uid streaming veloity is a�eted by a gravitational soure. Thus, in theDark Energy model haraterised by (1.19) and (1.21), the ative gravitational mass density isnegative (assuming a positive ρΛ) and if this dark omponent dominates the energy-momentumtensor then ä will be positive. This re�ets the fat that the expansion of the Universe ael-erates. Thus one an summarise the e�et of Λ in physial terms as follows: the aeleratedexpansion is not the result of some new fore, rather it is due to the negative ative gravitationalmass density that we an assoiate with the Dark Energy. Then, onsidering non-relativistimovement, the relative aeleration g of free falling test bodies is modi�ed by a homogeneousative mass density due to the presene of Λ to(1.22) d2r

dt2
= g +H2

0ΩΛr .We an already guess that the magnitude of this e�et is probably small. We an estimate thesize of the ratio of aelerations gΛ/g . Let us assume that the Solar System moves in a irularorbit around the entre of the Milky Way with a irular speed of v ≃ 220km/s at a radius ofbTo be exat, this is not stritly true. Though mathematially the same, Einstein [Ein17℄ added the newterm to the left hand side of the �eld equations, that is to the `geometri side': Gµν − Λgµν = 8πGTµν . Notethat Einstein further motivated this modi�ation by an analogy to Newton Gravity. Interestingly, in NewtonGravity one enounters a serious problem with a world model that is homogeneous and in�nite. It was alreadyseen by Newton himself that the gravitational potential energy of suh a system diverges: the volume of a shellat distane r to r + δr from an observer is δV = 4πr2δr and with the assumption of homogeneous mass density
ρ , the mass within δV amounts to δM = 4πρr2δr . Thus the gravitational potential energy aording to thismass beomes δU = GδM/r = 4πGρrδr . Integrating δU we see that U diverges like r2 when r beomes verylarge [Pee93℄. Einstein and after him others, .f. [PR03℄, suggested a ure for this situation by a modi�ation ofthe Poisson equation aording to ∆(3)φ−λφ = 4πGρ , whih gives the potential of a point mass a Yukawa form
φ ∝ e−

√
λr (these solutions are also alled Seeliger-Neumann solutions). Now, the modi�ed Poisson equationallows for a homogeneous stati solution φ = −4πGρ/λ . But the analogy should not be taken too seriously:note that the modi�ed Poisson equation does not ome out as a Newtonian limit from the general relativistiequation with osmologial onstant. That is, Λ does not at like a long-range uto� in gravitation, it is rathera repulsive form of energy that is in opposition to the mean gravitational attration of matter.Also, the instability of the stati Einstein solution an be seen from equation (1.22). A mass distributionan be assigned suh that the right hand side of equation (1.22) vanishes but this equilibrium an then be easilydestroyed by just redistributing the mass again.
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r ≃ 8kp. The ratio of gΛ to the total gravitational aeleration g = v2/r is then estimated by(1.23) gΛ

g
=
H2

0ΩΛr
2

v2
∼ 10−5 .This is already a small number but it beomes muh smaller when the radius is redued. Sine theSun is already loated at the very outskirts of the luminous dis of the Milky Way, the possibilityof deteting this e�et by measuring deviations from the ordinary internal dynamis in othergalaxies is not very promising. The auray of preision tests of gravitation on the level of ourSolar System is muh better. But on these sales the ratio (1.23) is of the order gΛ/g ∼ 10−22 .Next we want to onsider a ompliation, namely a working model for a dynamial ρΛ .The aforementioned mehanism of oupling Λ to a negative ative gravitational mass den-sity is losely related to the onept of osmologial in�ation. There exists a problem that isenountered if we assume that the Universe was evolving due to a FRW solution within its entirehistory. Let us reall the expression for the partile horizon(1.24) x =

∫
dt

a(t)
,where we assumed spatial �atness. It is a measure of the integrated oordinate displaement asa light ray moves the proper distane dl = a(t)dx during the time dt . Now the point is that forvanishing ΩΛ the integral (1.24) does onverge in the past (ax is the proper radius of the partilehorizon), that is our view should fall on several ausally disonneted parts of the Universe. Inorder to make the Universe homogeneous, signals must travel between the regions that are inontat with at most the speed of light. Thus, no regions that are more than 2ax apart ouldhave ever been in ausal ontat. Let us try an estimate: assuming that the temperature of theyoung Universe was T ≃ 1014GeV at some initial time tinit , we an then imagine a orrespondingausally onneted ball with radius 2ax that has expanded and today should form the borderof the urrently observable Universe. In our simple estimate, the temperature of the Universehas evolved from that initial epoh at T ≃ 1014GeV to T0 ≃ 2.7K ≃ 2.4 × 104eV today, thusgiving a fator of expansion of the Universe of T/T0 ≃ 4 × 1026 . Moreover, at the temperature

T ≃ 1014GeV, the horizon size has been 2ax ≃ 6×10−25m at a time of tinit ≃ 10−35s. Thereforethe primordial ausal ball would have expanded to a size of 2.4m today whih is rather smallfor the urrent size of the Universe. And how an then galaxies as observed today in di�erentdiretions on the sky look so similard to eah other? The answer is provided by the statementthat the expansion history of the Universe was not FRW-like for a ertain time period in theyoung Universe. Instead one assumes a DeSitter solution with Λ > 0 and Tµν = 0 and the salefator behaviour(1.25) a(t) ∝ eHΛt ,with HΛ being onstant. That is, in the DeSitter model, the Universe undergoes a phase ofexponential blowup and Λ beomes essential.In the in�ationary view the early universe is dominated by a large Dark Energy density ρΛ .Then the Dark Energy an be modelled with the help of an approximately homogeneous salar�eld Φ in analogy to models known from quantum �eld theory. The ation takes the form(1.26) S =

∫ √−g
(

1

2
gµν∂µΦ∂νΦ − V (Φ)

)

d4x ,dOne an give another very instrutive illustration of the horizon problem regarding the CMB. Using theonept of the angular diameter distane (1.38) (whih is a measurable quantity) one an ompute that up to thetime of last sattering of the CMB photons, regions that ould have had ausal ontat to eah other, today havethe size of approximately one degree on the sky. That means an image of the CMB should ontain many pathesof size one degree that are rather anisotropi as a whole beause they never had the hane to ommuniate.Maps of the CMB however, show a totally di�erent situation: the CMB appears overall isotropi to a high degree.



20 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYwhere g is the determinant of the metri g = det(gµν) and we used ~ = 1 . The funtion V (Φ)is the potential energy density and with vanishing spatial urvature we get the �eld equation(1.27) Φ̈ + 3
ȧ

a
Φ̇ +

dV (Φ)

dΦ
= 0 .We an de�ne the rest frame of an observer who is moving suh that the Universe looks isotropi;then the energy-momentum tensor of the homogeneous �eld Φ is diagonal with(1.28) ρΦ =

1

2
Φ̇2 + V (Φ) and pΦ =

1

2
Φ̇2 − V (Φ) .From these equations it is lear that if the salar �eld varies slowly with time Φ̇2 ≪ V , thenthe equation of state of the osmologial onstant an be reovered: pΦ ≃ −ρΦ.Normally it is assumed in in�ationary theory that the exponential phase (1.25) lasts solong that all regions in the observable Universe have reahed ausal ontat with eah other.Eventually Φ an start to vary rapidly thus produing entropy for the Universe. This is beauseafter a rollover phase the �eld falls into the potential well of the real vauum and starts toosillate due to its kineti energy. The large initial vauum energy is transformed into oherentosillations of the �eld Φ and these �utuations are damped � besides the Hubble frition

3HΦ̇ � by partile prodution or the interation of Φ with other �elds, whih is equivalent toa thermalisation of the �eld energy and entropy prodution. Through this so alled reheating,e.g. baryons an be produed and in the end ρΦ remains small or zero. However, it is oneivablethat ρΦ ould have a very slow late-time behaviour, possibly slower than the evolution of thematter density. Then ρΦ will be dominant again, after a ertain time and this ould provide ananswer to the oinidene problem. A onrete ansatz that leads to suh a late time evolutionof ρΦ is Vκ = κ/Φα with a onstant κ that has the dimension of massα+4 [PR03℄. We anonstrain the form of the sale fator by assuming that after the in�ationary phase the Universeis dominated by matter or by radiation whih leads to a power law expansion behaviour of
a ∝ tn , .f. tab. 1.1. With this form of the sale fator we an solve the �eld equation (1.27)and obtain Φ ∝ t2/(2+α) . The mass density assoiated with the salar �eld Φ behaves like
ρφ/ρ ∝ t4/(2+α) with respet to the matter or radiation density. Thus we an reover Einstein'sosmologial onstant Λ from this model in the limit of α→ 0 whih orresponds to a onstant
ρΦ . In the ase α > 0 the �eld Φ an grow very large and due to Vκ = κ/Φα the aordingdensity will go to zero, ρΦ → 0 , whih implies that the Universe approahes a Minkowskianstate. Suh a power law model with α > 0 has two important harateristis [PR03℄. First,the energy density of matter and radiation dereases more rapidly than that of the salar �eldsolution. This implies that it is possible to have a ρΦ that is small right after in�ation (butstill at high redshift) and thus does not interfere with the standard prodution senario of thelight elements. However, after some time ρΦ an dominate again, mimiking a osmologialonstant. Seond, it has been shown by Ratra and Peebles that the lass of solutions α > 0 hasthe attrator harateristi, that is a vast range of initial onditions eventually end up with thissolution.The in�ationary senario explains the large-sale homogeneity of the Universe today by pos-tulating a DeSitter-like phase of exponential growth of the Universe at very early times. More-over it provides the initial onditions for struture formation by the vast freezing of zero-pointquantum �eld �utuations to osmologial sales. Thus the seeds for the observed strutures onosmologial sales today have originated from quantum �utuations of the early Universe. Thepower spetrum of the lassial density �utuations that have been frozen out from quantum�utuations is(1.29) P (k) = 〈|δ(k, t)|2〉 = AknT 2(k) ,where δ(k, t) is the Fourier transform of the density ontrast, δ(x, t) = ρ(x, t)/ρ̄(t) − 1 atwavenumber k , with the mass density ρ and its mean ρ̄ . A is a onstant that omes out fromthe onrete form of the potential V one hooses within a given in�ationary model. The transferfuntion T (k) governs how the density ontrast δ(k, t) evolves under the in�uene of radiation



1.2. DARK ENERGY AND THE STANDARD COSMOLOGICAL MODEL 21pressure and the dynamis of matter at redshifts z . 104 . Now, for an in�ationary expansionfollowing an approximate DeSitter solution (1.25), the spetral index n will be lose to unitye. Aspetrum with exatly n = 1 is alled Harrison-Zel'dovih power spetrum. The striking featureof suh a spetrum is that it would have equal power (amplitude) in all its modes at the time itenters Hubble horizon and is this also named sale invariant. Antiipating results for the Sahs-Wolfe e�et from se. 1.3.3 we an understand the notion of sale invariane alternatively bythe following result [Lon98℄ for the angular sale dependene of CMB temperature �utuationsoriginating from an initial power spetrum proportional to kn ,(1.30) ∆T

T
≃ ∆φ

c2
∝ θ(1−n)/2 ,with ∆T/T being sale-free in the Harrison-Zel'dovih ase n = 1 . Note that more ompliatedsalar �eld potentials an be imagined (e.g. exponential form potentials) under whih the spe-tral index is tilted n 6= 1 and an be used as an additional free parameter of the model. However,reent CMB measurements indiate that n = 1 is very lose to the best �tf. The initial on-ditions for the mass distribution in these in�ationary models are provided by a single funtion

δ(x, t) , whih is a realisation of a spatially random Gaussian proess sine the marosopi per-turbations are frozen out from almost free and pure quantum �utuations. This is also referredto as adiabatiity beause suh �utuations an be understood as the result of purely adiabatiompressions and deompressions of regions of an homogeneous (post-in�ationary) Universe.A onsequene of the fat that the simplest in�ationary models obey the above onditions isthat the initial ondition as desribed by a single funtion of position δ(x, t) is statistially fullyharaterised by its power spetrum (1.29). More ompliated models of in�ation for instaneprodue �utuations that are not exatly Gaussian or have power spetra that annot be broughtinto a power law form.Before we ome to the osmologial tests of the standard model let us return to the prob-lem of the smallness of the vauum energy density. The zero-point energy of quantum �eldsontributes to the Dark Energy density. A relativisti �eld an be understood as a olletion ofquantum mehanial harmoni osillators with all possible frequenies ω . The zero-point energywill be non-vanishing and amounts, by superposition of frequenies, to E0 =
∑

i ωi/2 , where ilabels osillators and ~ = 1 . We an think of the system as loked in a box of length L and wethen onsider the limit L→ ∞ under appropriate periodi boundary onditions. We then have(1.31) E0 =
L3

2

∫
ωk

(2π)3
d3k ,with the wavenumber k = 2π/λ . We are onsidering a massive bosoni �eld Φ̃. By employingthe dispersion relation ω2

k = k2 +m2 and introduing a uto� frequeny kmax ≫ m in order tomake physial senseg, we arrive at [KKZ97℄(1.32) ρΦ̃ = lim
L→∞

E0

L3
=

∫ kmax

0

4πk2

(2π)3

√
k2 +m2

2
dk =

k4
max

16π2
.eLet us add a small note on the approximation of n = 1 in in�ationary models. In general, it depends onthe partiular underlying salar �eld dynamis of the model in how far sale invariane is realised. In slow rollin�ation the �eld is initially rolling down the in�ationary potential slowly and its movement is sizeably dampedby the Hubble frition term 3HΦ̇ . Imagine a limit where the damping is extremely intense and the rolloverbeomes in�nitely slow, then this would orrespond to exat sale invariane n = 1 . Consequently, a genuinein�ationary predition is n = 1 ± ε with some small ε . The (small) deviations of a partiular model of in�ationform exat sale invariane quantify how slow the �eld atually has rolled and how strongly it was dampedmeanwhile, see also [DS02℄.fAtually, from WMAP(3yr) data alone a value of n = 0.958 ± 0.016 is obtained [S+07℄. Nevertheless, arunning spetral index, that is an n that varies a bit with the wavenumber k of the perturbation modes, is slightlypreferred by the WMAP(3yr) data.gNote that, as we introdue a uto� wavenumber kmax , we at the same time have to speify in what framethe uto� is de�ned, thus invoking a preferred frame. This violation of Lorentz invariane poses a problem of theargument and there seems not to be a satisfatory resolution by now. In [Akh02, PR03℄ one an �nd a disussionof possible interpretations of the ourring ambiguity.



22 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYIf we assume General Relativity to be valid up to, say the Plank sale and set LPlanck =
(8πG)−1/2 = kmax we obtain a value for the vauum energy density of(1.33) ρΦ̃ ∼ 1092gcm−3 ,whih is 121 orders of magnitude o� the observed value of ∼ 10−30 . Reduing the uto� saleto the eletroweak sale of ∼ 200GeV still produes a disrepany of 54 orders of magnitude;inserting the QCD sale ΛQCD as uto� results in a mismath of 42 orders of magnitude. Thesedisrepanies ould indiate a massive inompleteness of the urrent underlying physis; it isthinkable that there might be some onnetion between the di�erent omponents in (1.3) omingfrom yet undisovered physis that auses the almost omplete anellation of the seeminglyunorrelated terms in (1.3), .f. [KKZ97℄.1.2.2. Distane Measures and Dark Energy Evidene. In order to desribe the ur-rent phenomenology of the standard model we �rst should reall the ommon distane measuresin osmology. We have already introdued the proper distane DP through (1.4). Anothernatural distane is that assoiated with the urrent Hubble volume, the Hubble distane(1.34) DH ≡ c

H0
.Assuming ontinuous FRW evolution, an objet that would be seen at a distane of roughlythe Hubble distane is seen as it was around a Hubble time in the past. The Hubble distanerepresents a measure of the observable Universe, .f. �g. 1.2.The de�nition of the Hubble parameter as a funtion of redshift (1.16) will be very usefulin the following. The onstant of proportionality of the proper distane saling (1.4) an beexpressed by the omoving distane. The omoving distane along the line of sight is de�ned by(1.35) DC ≡ DHH0

∫ z

0

dz′

H(z′)
.The omoving distane between two points that were lose in redshift in the past is the distanewe would measure today between the points if they were glued to the expanding bakground,.f. [Hog00℄. See �g. 1.2 for an illustration of proper and omoving distanes and their relationto important osmologial sales like the partile horizon and the Hubble distane.Going further, one an de�ne a omoving distane in a lateral sense. If we measure twoobjets at the same redshift that are separated by an angle θ on the sky then their omovingdistane is DTCθ with transverse omoving distane denoted by DTC and de�ned by(1.36) DTC ≡







DHΩ
−1/2
k sinh(Ω

1/2
k DC/DH) for Ωk > 0

DC for Ωk = 0

DHΩ
−1/2
k sin(Ω

1/2
k DC/DH) for Ωk < 0

.If the osmologial onstant vanishes there exists a losed solution(1.37) DTC = 2DH
2 − (1 − z)Ωm − (2 − Ωm)(1 + zΩm)1/2

(1 + z)Ω2
m

for ΩΛ = 0 .It an be shown that there is a orrespondene between transverse omoving distane and the soalled proper motion distane. The proper motion distane is de�ned as the ratio of transverseveloity to proper motion of an objet and is measured in radians per time, .f. [Wei72℄.The ratio of the lateral physial size of an objet to its angular size is an expliit observablealled the angular diameter distane. It is very useful for osmologial measurements. Espeiallywhen onsidering the CMB whih an be mapped onto a sphere at z = 1088 , it is ruial toonvert angular separations measured by an instrument to proper separations in the soureplane. The angular diameter distane is given by(1.38) DA ≡ DTC

1 + z
.
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Figure 1.2. Spaetime diagrams of osmologial time versus proper distane (upper�gure; DP in our notation) and versus omoving distane (lower �gure; DC in ournotation) within a �duial FRW model with (Ωm, ΩΛ) = (0.3, 0.7) and H0 = 70 kms−1 Mp−1 . Therein the dotted lines, that are labelled by values of redshift, representthe worldlines of omoving objets. The past light one (belonging to the observer withentral worldline at zero distane) enfolds all events that we are urrently (t =now)observing. Further, there are three kinds of horizons in the �gures: the partilehorizon names the distane that light an prinipally have travelled from t = 0 untilsome given t , .f. (1.24), and the redshift of objets at partile horizon beomesin�nite; the event horizon represents the distane that light an have travelled froma given time t until t = ∞ ; the Hubble sphere enfolds the set of spaetime eventsbeyond whih omoving objets are reeding faster than light � the Hubble sphere isnot really a horizon beause z 6= ∞ for objets at Hubble distane and moreover it ispossible to see beyond it in osmologial models with q < −1 . As an be seen fromthe slope of the light one, the speed of photons relative to the observer vrec − c isnot onstant. Photons from the region of superluminal reession (hathed) an onlyreah us when oming to the region of subluminal reession (no shading). As an beseen in the �gure, initially objets beyond the Hubble sphere have been reeding fromus � note the bulge of the light one at t . 5Gyr. Note that the light one does nothit the line t = 0 asymptotially; rather it reahes a �nite distane of ∼ 46Glyr at
t = 0 whih is exatly the urrent distane to the partile horizon. Thus, the light ofany objets that are urrently observable to us, whose light has propagated toward ussine t = 0 , has been emitted from omoving positions around 46Glyr (14Gp) awayfrom us. Note that the aspet ratio of the �gures ∼ 3/1 re�ets the ratio of the sizeof observable Universe to its age ∼ 46/14 . The pitures are taken from [DL03℄.In ontrast to several other distane measures, the angular diameter distane does not divergefor z → ∞ , in fat it is not a monotoni funtion of z ; it reahes a maximum at around z ∼ 1 .At high redshifts one an say, as a rule of thumb, that the angular diameter distane relates anangular separation of one arseond to a size of ∼ 5kp [Hog00℄.The luminosity distane measures the ratio of total bolometri (i.e. integrated over allfrequeny bands) luminosity L to the apparent luminosity LA . The apparent luminosity orbolometri �ux LA is the power reeived per unit mirror area. The apparent luminosity of anon-moving soure at some distane l in Eulidean spae would be L/(4πl) . Therefore it makessense to generalise this and de�ne the luminosity distane as [Wei72℄(1.39) DL ≡

(
L

4πLA

)1/2

.



24 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYHowever, in astronomy what is really measured is the apparent magnitude m . After �tting forthe alibration fatorM (absolute magnitude) one usually uses the di�erene of these magnitudesfor analysis: the distane modulus m −M . The distane modulus is related to the luminositydistane through m −M = 5 log(DL/1 Mpc) + 25 , with the number 25 oming from the fatthat the distane modulus is de�ned to vanish at 10p. Note that due to a fundamental result �the reiproity theorem, .f [EvE98℄ � the angular diameter distane and the luminosity distanean be related diretly by(1.40) DL = (1 + z)2DA = (1 + z)DTC .Based on the onept of the luminosity distane, in 1998 the �rst diret evidene for anapparent aelerated expansion of the Universe was published [R+98, P+99℄. This was madepossible by measurements of the redshift and the (luminosity) distane of supernovae. Theappearane of this kind of evidene was dubbed a osmologial revolution, for it provided the�rst diret evidene that the Universe may reently have beome dominated by some mysteriousform of energy. After this disovery, measurements of the CMB and statistial analyses ofgalaxy-redshift surveys have on�rmed the supernova �ndings, albeit in a more indiret way.However, the supernova measurements remain up to today the most diret means of probing apresent large-sale aeleration of the Universe. What one neessarily needs in order to makereliable measurements with the help of the luminosity distane (1.39) is a standard andle.A standard andle would be � in a muh simpli�ed sense � something like a onstant 100Wlight bulb. That means, if we an rely on the fat that the light bulb is standardised, i.e. itallways will emit a power of 100W, then we an infer the distane to the bulb by measuringits apparent luminosity. Now, in osmology it appeared at �rst not promising to think ofsupernovae as standard andles beause their observation yields a very heterogeneous lass oflight urves. Originally, the lassi�ation sheme for supernovae was suh that the type SNIwas haraterised by the lak of hydrogen features in the supernova spetrum. From 1980 onthe astronomers divided the type I supernovae into two sublasses: Ia and Ib. The distintionwas made due to the presene or absene of a ertain silion absorption feature at 6150Å. Inthe light of this relassi�ation a remarkable uniformity in the light urves of supernovae Iasuddenly beame apparent.But, are SNIa really standard andles in a strit sense? One speulates that SNIa originatefrom exploding white dwarfs. But why should the white dwarfs explode and why should thisthen happen at a uniform threshhold? Normally, white dwarfs are produed as remnants of Sun-like stars that have used up their nulear fuel for fusion. The only thing that saves the dwarffrom further ollapse is the e�etive pressure upheld by eletron degeneray. Now, if it happensthat the white dwarf is provided with some steady stream of matter areting onto its surfae, itwould aumulate mass until a ommon physial threshold � whih is near the Chandrasekharmass of ≃ 1.4M⊙ � and then suddenly erupt within a massive thermonulear explosion. Ifthis senario is true then essentially always the same physial proess triggers SNIa explosions,whih then would bak the assumption of regarding SNIa as standard andles. Still, takingan aurate look, the unorreted light urves of SNIa do show some o�set. Their maximalluminosities exhibit a slight but obvious dispersion of roughly 0.4 magnitudes as measured inthe blue band [Sh06℄. One �nds a strong orrelation between intrinsi brightness and theshape of the respetive light urves: the supernovae that have a higher maximal brightness alsoderease slower (as measured from their maximum) than those with smaller maximal brightness.Moreover it turned out that supernovae that were fainter also appeared redder or were observedin highly inlined host galaxies. This e�et an be attributed to an extintion in the hostgalaxy additional to the extintion in the Milky Way. Altogether it is possible to quantifythese systematis with a phenomenologial realibration that takes are of both the maximalbrightness-duration orrelation and the extintion. The fundamental alibration is gauged toa sample of supernovae that were loated in host galaxies to whih the distanes are very wellknown. One the above explained orretion to SNIa is applied they appear to be appropriatestandard andles. The olletion of a su�ient number of SNIa observations requires very areful
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Figure 1.3. Supernovae of type Ia provide standard andles and measurements offar-away SNIa are sensitive to the osmologial parameters of the standard model.Left: an image of supernova 1994D that took plae in the outer regions of its hostgalaxy NGC 4526. The supernova is of type Ia whih implies that its light urve isvery similar to any other supernova of the same type, irrespetive of its distane orloation. Combining a measurement of its luminosity distane with a measurementof the redshift of the host galaxy one an use suh events to probe the Hubble law(1.41). Right: a Hubble diagram (distane modulus vs. redshift) of the 2006 Riess etal. sample [R+06℄. The outer diagram shows the good �t of a ΩΛ ≃ 0.71, Ωm ≃ 0.29standard model parametrisation. The inset is a binned residual Hubble diagram of 47hosen (Gold Sample) SN with respet to an empty Universe Ωm = 0 = ΩΛ, being inaordane with a reent aeleration of the Universe. Note that supernovae at veryhigh redshifts beome again brighter than expeted in the �duial model, indiatingthe matter domination of the Universe at very early times. The pitures are takenfrom [APO℄ and [R+06℄.logistis and searh strategy: at new moon a large set of images of ertain pathes of the sky ismade, then just at the next new moon exatly the same regions are imaged again and eventuallyfound andidates are fastly assigned to follow-up spetrosopy.Let us disuss how the supernova evidene an be quanti�ed. The Hubble law orrespondsto the following formula for the luminosity distane [SW07℄(1.41) DL = DH

[
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(
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,to third order in z . One introdues the deeleration parameter and the jerk parameter(1.42) q = − ä
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and j =
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1

H3
.Note that this osmologial test is highly model-dependent. Within the standard model thedeeleration parameter provides a measure for aeleration or deeleration of the osmi expan-sion and the jerk parameter measures the rate of hange of the latter. Thus, at high redshiftpotential deviations from the linear part in the Hubble law (1.41) should provide a measure ofthe parameters of the underlying osmology. The preditions of di�erent osmologial models(i.e. di�erent parameter sets within the standard model) start to diverge at redshifts of around

z ∼ 0.2 . The result of a reent measurement is shown in �g. 1.3. It is found that supernovaeforh z . 1 are even fainter than one would expet in an empty Universe model (Ωm = 0 = ΩΛ).The �duial empty Universe model expands at a onstant rate [q = 0 = j in (1.41)℄; in no otherhNote that the Hubble law does not hold for measurements at very low redshift beause here the Universeis evidently not homogeneous, see for instane �g. 1.5.



26 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYparametrisation with ΩΛ = 0 is the luminosity distane higher than in the empty Universe. Is ispossible to inrease the luminosity distane only if the Universe has expanded slower in the pastthan it does today, thus the osmi expansion must have aelerated. Looking at the Einsteinequation (1.12) this implies an ΩΛ > 0 , if we believe in the very foundations of the standardmodel.Moreover, supernovae at very high redshift z & 1 provide additional evidene: they hereappear brighter than expeted in an empty Universe beause at suh early times the Universe wasstill matter dominated whih is onsistent with the above explained interpretation of supernovaeat z . 1 . Summarising the supernova results one an say that a reent aelerated expansionof the Universe with standard model parametrisation ΩΛ ≃ 0.71 and Ωm ≃ 0.29 provides anexellent �t to the available data sets.As is indiated in �g. 1.3, nowadays the sope of experiments is not only to on�rm thepresene of Λ domination in reent times within the standard model, but moreover to try tomeasure the properties of Dark Energy for instane through its equation of state. Results ofthe ESSENCE supernova survey have reently been analysed espeially under this viewpoint[D+07℄. The study is done with the help of Bayesian analysis whih is a statistial frameworkin whih models are e�etively penalised for not being eonomi with their parameters. Theanalysis enfolds tests with: Dark Energy models with variable equation of state, (�at) DGPbraneworld models, Cardassian models and models of the Chaplygin gas. The result of theompetition is that the most simple spatially �at ΩΛ dominated model represents the best �tto the ESSENCE sample.Besides the �ndings from supernova surveys other important osmologial probes onvergeto very similar results. For instane the shape of the CMB angular power spetrum is highlysensitive to the parameters of the standard osmologial model, .f. se. 3.3.2. Moreover, thestatistial analysis of galaxy redshift surveys as well as measurements of the number density ofmassive galaxy lusters provide onsistent results. The omposition of density parameters (1.2)haraterised by the domination of Dark Energy today and measured by di�erent lasses ofexperiments has been attributed the notion of a osmi onordane. The evidene is depitedin a ombined plot in �g. 1.4. Summarising, we an say that the standard model failitatespreision osmology and that in turn the measurements a posteriori bak the standard model.Realling the main results of this setion we an summarise the ornerstones of the standardmodel as follows:
• validity of General Relativity as the basi framework; a homogeneous and isotropi aswell as spatially �at FRW solution models the large-sale dynamis of the Universe; atrivial topology of the Universe, that is the atual size of the Universe is muh biggerthan the observable horizon;
• standard in�ation solves the horizon problem and it produes spatial �atness; moreoverit predits a nearly sale-invariant spetrum of statistially isotropi, adiabati andGaussian random primeval density perturbations;
• the energy ontent of the Universe as measured today is dominated by Dark Energy;a subdominant fration is due to Dark Matter and only a marginal ontribution isdue to baryoni matter [see eqs. (1.2)℄; as a onsequene, the osmologial expansionundergoes a reent aeleration.Note that (Cold) Dark Matter, to whih the next hapter is devoted, is also needed in models ofstruture formation in order to maintain the growth of the in�ationary seeds of struture withinan aeptable amount of time; read app. D for more details on this issue. Of ourse, the standardmodel also enfolds a lot of physis that takes are of the prodution of the today observedpartiles in the early Universe. A detailed disussion of the model of Big Bang Nuleosynthesisand senarios of baryogenesis as well as leptogenesis are not within the sope of this work. Inthe following we are going to use the terms Lambda Cold Dark Matter (ΛCDM) model or justonordane model for the urrent osmologial standard model desribed above.
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Figure 1.4. The osmi onordane: roughly three thirds of the total energy-matter ontent of the Universe as measured today is made up of Dark Energy, therest is mainly provided by the similarly mysterious Dark Matter. The most diretevidene for Dark Energy omes from aurate measurements of supernova Ia Hub-ble diagrams. Moreover, the shape of the angular power spetrum of the CMB ishighly sensitive to the parameters of the osmologial standard model, and so arealso analyses of the redshift evolution of the number density of galaxy lusters as wellas number ounts provided by galaxy redshift surveys. Due to their very di�erent(partly orthogonal) systematis the ombination of these observations onstrains theosmologial parameters muh better than the single experiments. The onvergene ofthe di�erent measurements impressively indiates self-onsisteny of the osmologialstandard model. The piture is taken from [Lid04℄; the shaded regions as well as theother ritial lines are explained in more detail in app. A.1.3. An Inhomogeneous Alternative?The standard model predition that the Universe is homogeneous on large sales today is avery bold one, likewise problemati to prove as a matter of priniple. Yet, measurements of theCMB yield isotropy to a degree of 10−5 , albeit at a very early epoh. It requires measurementsat high distanes and at the same time with high statistis in order to map the Large-SaleStruture of the Universe. As observations of far-away regions show objets as they were anenormous amount of time ago in the past, it is not possible to stritly distinguish e�ets ofevolution from spatial variations of the matter density. In other words, a probe that wouldstritly prove the homogeneity of our urrent Large-Sale neighbourhood, would ideally onsistof a deep galaxy survey taken at very low redshifts. Of ourse, suh a probe is not viable as amatter of priniple beause of the enormous size of the Universe. Leaving this prinipal objetionapart, it is possible to demonstrate the approximate homogeneity of the Large-Sale Struturefor instane with the luminous red galaxy atalogue (z ∼ 0.3) of the Sloan Digital Sky Survey[HEB+05℄.Nevertheless, homogeneity is obviously broken at small sales: atalogues within ∼ 100Mpdraw a ompliated piture with large voids, lots of onentrated lusters of galaxies and even



28 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGY

Figure 1.5. An SDSS image of the large-sale struture of our osmologial neigh-bourhood. The Sloan Digital Sky Survey is a wide-angle spetrosopi galaxy redshiftsurvey. Shown are wedges of already onsiderable depth, that is up to roughly 900Mpin omoving distane. The survey has a wedge-like struture beause the optial lightfrom far-away soures annot penetrate through the material in the diretion of ourMilky Way's dis (Zone of Avoidane). All of the displayed points are galaxies takenfrom the main galaxy sample as well as from the bright red galaxy sample of theSDSS. Here a onformal projetion is used that is shape preserving. The image un-overs an impressively sharp look on the surrounding large-sale osmologial stru-ture. Clearly, the �lament-like distribution of matter, strutured like a honeyomb,is seen. As learly, large voids in struture that often approximate spherial shapeare resolved throughout the map. In the upper wedge, the largest ohesive strutureever observed by now, the Sloan Great Wall is learly displayed. In equatorial oor-dinates this branhing objet strethes from 8.7h to 14h in R.A. at a median distaneof around 310Mp. The piture is taken from [G+05℄.large aumulations thereof forming vast strutures like the great wall, see �g. 1.5. Given thatbasi assumptions of the ΛCDM model do not hold at low redshift, naturally the all for a moreompliated model arises. Interestingly, the general relativisti dynamis of even the simplestinhomogeneous models arry the possibility to eventually make Dark Energy super�uous.



1.3. AN INHOMOGENEOUS ALTERNATIVE? 291.3.1. The Lemaître-Tolman-Bondi Model. This spherially symmetri model is oneof the most important known inhomogeneous working models; we follow here partly the reviewgiven in [PK06℄. For general spherial oordinates, the assumption of a perfet �uid automat-ially implies a vanishing rotation ωαβ = 0 , .f. (1.50). Under this restrition, oordinates anbe used that are omoving and in whih there are no spae-time mixing terms, and onsequentlythe most general four-dimensional spherially symmetri spaetime an be written as(1.43) ds2 = −eCdt2 + eAdr2 +R2
(
dθ2 + sin2θdϕ2

)
,where C,A and R are funtions of (t, r) only and the veloity �eld is given by uα = e−C/2δα

0 .The parameter R is sometimes alled the areal radiusi. As a further simpli�ation we onsiderthe dynamis under purely gravitational interation (p = 0). Zero pressure implies that themovement of the �uid ours along timelike geodesis, whih then leads to C,r = 0 . We anthen make a oordinate transformation t 7→ ∫
eC/2dt and ahieve C = 0 . The 1

0 �eld equation(see app. B) then gives(1.44) ∂

∂t

(

e−A(t,r)/2R,r

)

= 0 .The solution with R,r = 0 is not of interest here; however it leads to a physial solution (Datt-Ruban solution) of the Einstein-Maxwell equations assoiated with dust in an eletromagneti�eld, .f. [PK06℄. Taking R,r 6= 0 we an diretly integrate (1.44) to obtain(1.45) eA(t,r) =
R2

,r

1 + E(r)
.We introdue the arbitrary funtion E(r) whih will be important in the following. In orderto maintain the used signature we require E ≥ −1 for all r . Note that E = −1 is not stritlyexluded; if R,r = 0 at the same point, this leads to the ourrene of a wormhole, .f. [PK06℄.The spherially symmetri dust solution is due to Lemaître [Lem33℄ and was redisovered andredisussed by Tolman [Tol34℄ and Bondi [Bon47℄ (LTB), it takes the �nal form(1.46) ds2 = −dt2 +

R2
,r

1 + E
dr2 +R2(dθ2 + sin2θdϕ2) .where the funtions R(t, r) and E(r) are related to eah other and to the energy density ρ(t, r)and the osmologial onstant Λ as follows

R2
,t(t, r) =

2m(r)

R(t, r)
+ E(r) +

1

3
ΛR2(t, r) ,(1.47)

4πGρ(t, r) =
m(r),r

R2(t, r)R(t, r),r
.(1.48)Therein m(r) is a funtion that desribes how muh energy is present within the radius r asan be seen by integrating (1.48).We an utilise the framework of the 3+1 split of spaetime (see 2.3.4 for an expliit disussionof the formalism) in order to dedue the interpretation of the mass funtionm(r) and understandwhere it stems from. Let us note that for the given LTB metri (1.46) the shift vanishes andthe lapse is equal to unity, suh that the extrinsi urvature here is given by the time evolutionof the three-metri Kij = − 1

2
∂
∂tgij , yielding expliitly(1.49) K11 = −R,rR,t,r

1 + E
, K22 = −RR,t , K33 = −RR,t sin2θ , K ≡ Ki

i = −R,t,r

R,r
− 2

R,t

R
.For the following it is onvenient to reall the standard kinematial deomposition of athree-veloity vetor �eld. First onsidering Newtonian theory, the veloity gradient vi,j is ameasure of the relative veloity of two neighbouring partiles in the �uid, and an be deomposediThis is beause R plays the role of a radius in the Eulidean spherial area equation S = 4πR2 , where Sstands for the area of surfaes at onstant t and onstant r [PK06℄.



30 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYinto two parts: its symmetri part v(i,j) = 1/2(vi,j + vj,i) ≡ θij (the expansion salar) and itsantisymmetri part v[i,j] = 1/2(vi,j − vj,i) ≡ ωij (the vortiity or rotation tensor) suh that(1.50) vi,j = v(i,j) + v[i,j] ≡ θij + ωij ≡ 1

3
θδij + σij + ωij ,where we additionally deomposed the symmetri part into a traeless ontribution (the sheartensor σij) and a trae part θ ≡ vi,i (the expansion salar or rate of expansion). This result fromNewton Gravity an be transported one-to-one to General Relativity. In General Relativity �for vanishing shift and a lapse equal to unity, see se. 2.3.4 � the expansion tensor is de�nedthrough Θij ≡ 1

2
∂
∂tgij and is deomposed in an analogous way(1.51) Θij =

1

3
θgij + σij + ωij .Reall that we work in a gauge with vanishing rotation. Next, we have omputed the shear inthe LTB model and get(1.52)
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.Furthermore, the shear salar reads(1.53) σ2 ≡ 1
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.As a hek, one sees diretly from (1.52) that the shear is indeed traeless as it must be byonstrution. Now, beause of the orrespondene(1.54) Kij = −Θij ,we an use the deomposition (1.51) for further alulation.Our aim was to derive the mass funtion m(r), and for this we have to ompute the �eldequations. In order to keep the derivation simple, we an alulate the 3 + 1 splitted �eldequations; to be exat only one of them, the Hamiltonian or energy onstraint(1.55) R −KijK
ij +K2 = R +
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3
θ2 − 2σ2 = 16πGρ+ 2Λ ,.f. subsetion 2.3.4. Here R denotes the spatial Rii salar for whih we have, in ase of theLTB model,(1.56) R = −2
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.Now the above introdued results turn useful and the energy onstraint beomes
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or, with R,R,r 6= 0 , (ER),r +
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= (8πGρ+ Λ)R2R,r .(1.57)We an integrate the last equation in (1.57) over r and thereby de�ne(1.58) m(r) ≡ 4πG

∫ r
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ρR2R,r′dr′ ,where we let R vanish at r0 . Using this mass term, the last equation in (1.57) beomes(1.59) R
(
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,t − E
)

= 2m+
1

3
R3Λ ,whih is just our equation (1.47). For this we have used the de�nition of the mass m(r) (1.58),whih measures how muh mass there is within a radius r and is self-onsistent with the density
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Figure 1.6. An LTB inspired solution to the osmologial horizon problem,.f. [CS98, PK06℄. The LTB light one is here expressed via radial null geodesis
θ = 0, ϕ = 0 in (1.46). The �gure shows the past light ones k1 and k2 of an observerO as well as the Big Bang (BB) and a shell rossing (SC) funtion of a ertain lassof LTB models. A shell rossing ours where R,r = 0 and when geodesis ross SCthey must have a horizontal tangent at intersetion and the LTB density beomesin�nite. Below shell rossing pathologies our � like a negative LTB density (1.48)� and thus to keep the model physial we exlude the spaetime set below SC. Fromthe Last Sattering Surfae at p2 , whih is de�ned as the two-sphere at temperature
T ∼ 4000K, photons an propagate toward the observer O at (r = 0, t0) . The horizonproblem is solved if one an show that the two-sphere of last satter (r2, t2) is on-tained inside the future light one of any point on the t-axis.Assume an inreasing LTB bang funtion tB(r) with loal minimum at r = 0 suhthat there exists a shell rossing at some t > tB . This urve is labelled (BB) in the�gure and has in this example the form tB ∝ r2 . Note that here the shell rossingurve is tangent to the bang funtion at r = 0 . The observer sits at O and sendsa radial null geodesi k1 � with stritly negative derivative wherever tk1(r) > tSC(r)� bakwards in time, and it intersets with the shell rossing at a point pis , havingthere a horizontal tangent to k1 . We do not follow the geodesi through shell ross-ing beause the model might beome problemati there. On its way toward SC thegeodesi will enounter suessive surfaes of onstant temperature whih an alsobe parameterised as funtions t(r) . Then at around T ∼ 4000K, let us denote thelast sattering by the event (r2, t2) , from the point p2 on k1 that is after tis , so that
t2 > tis and r2 < ris , a seond radial null geodesi k2 is being sent bakwards in time,this time towards the entre of symmetry at r = 0 . The geodesi tk2(r) will have astritly positive derivative wherever tk2(r) > tSC(r) . One an now show that k2 mustreah the line of r = 0 at a later time than the Big Bang, beause of monotony. Bythis mehanism all regions of sky that are observable to O at present have had thepossibility to ausally interat with a ommon soure in the past. As long as O ansee the shell rossing set tSC(r) with ∂rtSC > 0 this mehanism resolves his horizonproblem. Moreover if ∂rtSC > 0 for all r then this solution is a permanent one. Thepiture is taken from [PK06℄.equation (1.48) stated before. The full Einstein equations of both the general metri (1.43) andthe LTB spaetime (1.46) are given in app. B.In the ourse of the derivation of (1.57) we have seen that the ases R = 0 and R,r = 0 arespeial. As an be read o� the de�nition (1.48), the LTB density beomes in�nite at two points;



32 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYthat happens just where R = 0 and m,r 6= 0 as well as at R,r = 0 and m,r 6= 0 . The R = 0singularity is just the Big Bang whih is ompulsory for models with vanishing osmologialonstant. The seond singularity at R,r = 0 is assoiated with a shell rossing singularity. Con-sider two points in the LTB spaetime with the same angular and time oordinates but di�erentradial oordinates r and r+ dr , then at a shell rossing singularity the radial geodesi distane
|g11|1/2dr between those points vanishes. This is odd beause it means that two distint shellswith di�erent spatial oordinates r oinide. Inserting the ondition R,r = 0 into omponents ofthe Riemann urvature tensor produes in�nities and thus it an be shown that shell rossingsare urvature singularities. Shell rossing singularities are onsidered less problemati than BigBang singularities beause a bundle of geodesis that is sent into a shell rossing singularitydoes not beome degenerated (in a Big Bang singularity the bundle beomes foused onto a lineor a surfae), and thus physial objets are not destroyed at a shell rossing [PK06℄. However,LTB shell rossings an be exluded by either requiring R to be monotoni with respet to r ,or requiring that when R,r vanishes, m,r also has to vanish. On the other hand, shell rossingsin LTB models pose an exellent working example of how very interesting, yet non-intuitive,uriosities an our in general relativisti models. In the in�ationary model the horizon prob-lem was solved by imposing a phase of near exponential growth (1.25) in the early Universej.As is pointed out by Célérier and Shneider [CS98℄ an LTB model with shell rossing an beonstruted to solve the horizon problem; the mehanism is skethed in �g. 1.6.Beause equation (1.47) with Λ = 0 is equivalent to the Newtonian equation of motion forobjets in a Coulomb potential, we an interpret the mass mc2/G that we de�ned in (1.58) asthe ative gravitational mass. This mass is the generating mass of the e�etive gravitational�eld and it is in general di�erent from the mass one obtains by summing up all the onstituentmasses. In a di�erent ontext we already enountered this distintion in se. 1.2.1. In fat theative gravitational mass of a bound objet ould e.g. be smaller than the sum of its onstituents;this is the gravitational version of the mass defet known from nulear physis. In this ase themass defet equals the energy that would be needed to drag the onstituents of the gravitatingbody apart. For the LTB model we an expliitly ompare the two mass terms. Imagine an LTBsphere with radius r1 and entre of symmetry at r0 , then the sum of masses of the omponentswithin the sphere amounts to(1.60) m(r1)sum = G

∫

V

ρ
√−g d3V = 4πG

∫ r1

r0

ρR2R,r

(1 + E)
1/2

dr ,whereas the ative gravitational mass was given by (1.58) and is in this example(1.61) m(r1) ≡ 4πG

∫ r1

r0

ρR2R,rdr .Now, the funtion Ec2/G plays the role of the total energy within a shell of given radius andgoverns the relationship of ative and summed mass in the LTB model. If E < 0 the system isa bound one and msum −m > 0 is the gravitational mass defet that was already mentioned,whereas for E > 0 the gravitational system must be unbound. In the ase of E = 0 the LTBsystem is said to be marginally bound.On top of its interpretation as a total energy funtion, the parameter E(r) an also beunderstood by means of di�erential geometry. Taking sheets of onstant time oordinate, onean attribute an orthonormal three-tetrad to the spatial hypersurfaes. The tetrad now providesan orthonormal basis of the three-dimensional subspaes at t = const. by the forms e1 =
dR/(1+E)1/2, e2 = Rdθ and e3 = R sinθ dϕ . In this basis the omponents of the three-Riemannurvature read [PK06℄(1.62) R1212 = R1313 = −E,r

2R
and R2323 = − E

R2
.jIt is outlined in [CS02℄ that the in�ationary senario rather postpones the horizon problem than solvingit in a permanent manner. This is beause if an observer only waits for long enough he will be able to observeregions that have not been ausally onneted in the early Universe.



1.3. AN INHOMOGENEOUS ALTERNATIVE? 33Now the interpretation of the funtion E as a measure of spatial urvature beomes intuitive:looking at (1.62), the urvature of the three-spae beomes onstant when E/R2 is also onstantwith respet to r . On the other hand, if E = 0 all the hypersurfaes with t = const. then are�at. Therefore we an view −E as a measure of the loal urvature of spatial hypersurfaes atonstant times. Loal means that the LTB urvature is allowed to swith sign from one spatialregion to the other. In this light, the FRW model with its global urvature parameter k an beregarded as a very simplifying one, for a loally varying urvature appears as a natural thing inLTB models and so a urvature harateristi as simple as k is only a peuliarity of the FRWmodels and not a generi expetation from the physial world.It remains to disuss the Newtonian-like equation of motion (1.47) and give a solution to it.The equation an be formally integrated and the solution reads(1.63) ∫ R

0

(
2m(r)

R′(t, r)
+ E(r) +

1

3
ΛR′2(t, r)

)−1/2

dR′ = t− tB(r) ,where we introdue another arbitrary funtion tB whih is alled the bang time funtion. Inthe ase of vanishing osmologial onstant the bang time haraterises the time at whih theBig Bang singularity ourred. Unlike in the FRW model, the Big Bang is not a unique eventanymore but in the LTB model appears to have ourred at di�erent times for di�erent distanesfrom the entre of symmetry. We now assume Λ = 0 beause for Λ 6= 0 one has to ope withellipti integrals. With this simpli�ation (1.63) an be solved parametrially as follows:
• regarding a negative E (ellipti ase),(1.64) R = −m

E
(1 − cosξ) and ξ − sinξ =

(−E)3/2

m
.For 0 < ξ < π the LTB model is in the expanding phase and for π < ξ < 2π it is inthe reollapsing phase. Assuming the former one an eliminate ξ and write [BKH05℄(1.65) t− tB =

m

(−E)3/2






arccos

(

1 +
ER

m

)

−
[

1 −
(

1 +
ER

m

)2
]1/2






.

• Regarding a vanishing E (paraboli ase),(1.66) R =

[
9

2
m (t− tB)

2

]1/3

,

• and regarding a positive E (hyperboli ase),(1.67) R =
m

E
(coshξ − 1) and sinhξ − ξ =

E3/2

m
(t− tB) ,or in a losed form(1.68) t− tB =

m

E3/2







[(

1 +
ER

m

)2

− 1

]1/2

− arcosh

(

1 +
ER

m

)





.Finally, we onsider the FRW limit of the LTB model. As an be derived from the abovesolutions (1.64)-(1.68), the FRW ase an be obtained from the LTB solution by setting(1.69) R = ar , m = m0r

3 , E = −kr2 , tB = const. ,wherein a denotes the FRW sale fator. Inserting these onditions into e.g. the LTB metri(1.46) immediately returns the FRW spaetime (1.8). Also, inserting the onditions (1.69) intothe last line of the alulation in (1.57) readlily returns the Friedmann equation (1.14). However,the limit de�ned through the onditions (1.69) is oordinate dependent [PK06℄. An invarianttransfer ondition is given by the requirement ρ,r = 0 or equivalently by(1.70) E

m2/3
= const. and tB = const.



34 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGY1.3.2. Some Appliations of the LTB Model. From modern galaxy surveys it is nowa-days evident that voids are basi omponents of the loal Universe. These ubiquitous underdenseregions of the Universe often approximate spherial shape. Their �rst predition was indepen-dently made by Tolman [Tol34℄ and Sen [Sen34℄ in 1934. The basi statement is that FRW (andalso Einstein) models show instability against proesses of struture growth. The basi e�etan be understood with the help of the LTB model [PK06℄. Di�erentiating the logarithm of(1.48) with respet to time we have(1.71) [
∂2

∂t2
ln ρ

]

LTB

(t1) =

[

−2
R,t,t

R
+ 2

R2
,t

R2
− R,t,t,r

R,r
+
R2

,t,r

R2
,r

]

LTB

(t1) ,where an initial time t1 is introdued at whih the radial oordinates of the LTB model andof a �duial FRW model � we want to ompare with � are synhronised suh that the iden-tity RLTB(t1, r) = rRFRW(t1) de�nes the relation between the two oordinate systems of LTBand FRW model, and we additionally let RLTB,t(t1, r) = rRFRW,t(t1) . Note that this is notyet su�ient in order to uniquely �x the LTB evolution. Beause of this R,t,t is arbitraryand thus the densities at time t1 are allowed to di�er. What we assumed so far implies that
(R,t,r/R,r)LTB(t1) = (R,r/R)FRW(t1) . The interpretation of these initial onditions is the fol-lowing: we assume a perturbation in the initial FRW density but, sine R,t is a measure of theexpansion veloity, an unperturbed initial veloity.Applying �rst (1.47) to get the derivatives R,t,t and R,t,t,r and then reapplying (1.48) yields(1.72) [

∂2

∂t2
ln ρ

]

LTB

(t1) =

[

4πGρ− Λ + 2
R2

,t

R2
+
R2

,t,r

R2
,r

]

LTB

(t1) .The analogue of this within the FRW model is given by(1.73) [
∂2

∂t2
ln ρ

]

FRW

(t1) =

[

4πGρ− Λ + 3
R2

,t

R2

]

FRW

(t1) .The diret omparison an be made(1.74) (ln ρLTB − ln ρFRW),t,t = 4πG (ρLTB − ρFRW) ,and it beomes lear that whenever there is a di�erene between the densities of the LTB and theFRW model, irrespetive of whether they orrespond to under- or overdensities, the di�erenewould be inreasing in time. In other words, an LTB model with mathed initial onditions asdisussed above must be �ne-tuned in order not to alienate from the bakground model duringits evolution with time.Consequently, LTB models have been extensively studied in order to understand the detailsof general relativisti struture growth or formation of voids. A remarkably extensive reviewof suh studies that is exhaustive up to 1994 , has been ompiled by Krasi«ski [Kra97℄. Forinstane, it was demonstrated by Mészáros [M�91℄, with the help of a partiular realisation ofan LTB model, that there exist initial onditions that allow for a homogeneous model in thebeginning whih develops a void of realisti size 10-100Mp, surrounded by a shell rossingwith an evolution time similar to the age of our Universe. Moreover, in this work it is expliitlydemonstrated that perturbation theory on an LTB model is safe if the onsidered inhomogeneityis small enough.Due to the standard model, the tiny CMB temperature anisotropies of order 10−5 thathave been boosted by in�ation provide the initial seeds for the growth of struture. Hellabyand Krasi«ski argue that density �utuations alone are not su�ient to properly trigger theformation of struture, rather the distribution of initial veloities has to be inorporated into thetheory [KH04b℄. In an extended series of works the same authors have developed sophistiatedalgorithms whih ope with the question of how an evolution between given initial and �naldensity pro�les (or veloity pro�les) that are astrophysially relevant, an be ahieved within anLTB model. As already mentioned, the interesting result is that models are muh more sensitive



1.3. AN INHOMOGENEOUS ALTERNATIVE? 35to the initial veloity pro�les than to the initial density pro�les regarding their evolution towardrealisti present-day density pro�les. A non-exhaustive list of studies following that line is givenby [KH02, KH04b, KH04a, KH05, BKH05, KH06℄.Usually, Blak Holes are studied in the ontext of vauum solutions like the Kerr spaetime(2.46) or stati solutions like Shwarzshild's (2.40). In any ase, suh Blak Holes must have ex-isted sine ever and are observed from far away (we do not onsider Hawking-Penrose radiation).It has been �rst noted by Bondi [Bon47℄ that the formation of a Blak Hole an be desribed bymeans of the LTB model; the ondition is that the ollapse veloity of matter must be very high.It turns out that the LTB framework is useful for gaining detailed insight into the formationproess of a Blak Hole; albeit it is very non-trivial to loate the event horizon beause of thelak of Penrose-like null oordinates in the LTB ase, .f. [PK06℄. See also [ES79, Chr84℄.As was outlined in se. 1.2.2, when interpreting the supernova Ia �ndings within the stan-dard model, a present-day aeleration of the osmi expansion involving Dark Energy is theonsequene. This is not neessarily true when working in inhomogeneous osmologies: inho-mogeneous models often easily reprodue good �ts to the standard osmologial observations.Nevertheless, this alone is not su�ient to supersede a working standard model; it is not un-expeted that highly ompliated models that involve quite a number of parameters provide agood �t. The point is that the physis of the inhomogeneous models should be understood atleast as good as in the standard model and that a new model must of ourse provide universality.Hene, it is worthy and neessary to analyse models like the LTB solution as inhomogeneoustoy-models in order to develop a feeling for non-standard model physis that might well be ne-essary. Therefore the urrent literature on inhomogeneous osmologies and appliations thereofre�ets the huge amount of e�ort that is invested in order to test the viability of models andbetter understand their sometimes unusual physis. The urrent situation of these subjets isfar from settled, the �eld is evolving rapidly. Thus we like to give a short overview and fouson appliations of the LTB model on SNIa data and CMB data.In order to ope with observational osmology we need a distane measure as we have workedout in se. 1.2.2. Aording to Partovi and Mashhoon [PM84℄ it turns out that the luminositydistane in an LTB spaetime takes the form(1.75) DLTB
L = (1 + z)2R ,thus being a funtion of the redshift and via R(t, r) also of the LTB model parameters m(r),

E(r) and tB(r) . Note that equation (1.75) is to be taken [PM84℄ at the observer's time. Thatthe result (1.75) makes sense an be seen easily: as we have seen the LTB funtion R is nothingelse than the angular diameter distane between an observer at arbitrary position and the LTBorigin at R = 0 ; then, by use of the reiproity theorem we readily end up with (1.75) for theLTB luminosity distane.But how is the redshift funtion properly de�ned within the LTB model? From the LTBmetri (1.46) we read o� the de�ning di�erential equation of a radial null geodesi heading inthe diretion of the observer(1.76) dt

dr
= − R(t, r),r

√

1 + E(r)
.To redue the possible solutions to (1.76), we onsider two light rays being emitted and headingin the same diretion, but with a small time delay τ in between. Following [Bon47℄ we think ofthe �rst light ray as parametrised through t = T (r) and the seond through t = T (r) + τ(r) .Sine both light rays must obey the ommon geodesi equation (1.76), we have(1.77) dT

dr
= −R[T (r), r],r

√

1 + E(r)
and

d(T + τ)

dr
= −R[T (r) + τ(r), r],r

√

1 + E(r)
.For we allowed only very little time in between the two signals τ(r) ≪ T (r) , we an write toleading order(1.78) R,r[T (r) + τ(r), r] ≃ R,r[T (r), r] + τ(r)R,t,r [T (r), r] ,



36 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYand insert this together with the left equation of (1.77) into the right equation of (1.77), yielding(1.79) dτ

dr
= −τ(r)R[T (r), r],t,r

√

1 + E(r)
.We an aess the redshift by omparing the period of the light wave at emission with its periodat observation(1.80) τ(rob)

τ(rem)
≡ 1 + z(rem) .If we now move the soures to slightly di�erent distanes rem and rem + dr and use this inequation (1.80) we get by di�erentiation(1.81) 1

τ

dτ

dr
= − 1

1 + z

dz

dr
.Inserting this in (1.79) �nally gives(1.82) 1

1 + z

dz

dr
=
R[T (r), r],t,r
√

1 + E(r)
.And with this the initial geodesi equation (1.76) beomes(1.83) dt

dz
= − 1

1 + z

R[T (r), r],r
R[T (r), r],t,r

.Now, we have redued the problem to the solution of the two equations (1.82) and (1.83). Bothof them are solved by radial null geodesis that span from z(rem) to z = 0 .In [C�00℄, the above equations for the luminosity distane have been solved using perturbativemethods. It was found that the inhomogeneous LTB model is able to reprodue the SNIa dataat least up to z ∼ 1 , without the need for Dark Energy. The issue of �nding the right model toompare with the osmologial data is far from settled; rather it is the objet of an inreasingnumber of studies. From the sizeable amount of work that has been published � disussingosmologial phenomenology with the LTB model, espeially with regard to supernova Ia andCMB observations � we want to give a few examples that indiate reent progress in the �eld. Ina reent review [Enq07℄, Enqvist on�rms the ability of LTB models to yield good �ts to SNIadata and simultaneously give reasonable values for osmologial parameters. He also disussesthe potential of LTB models to beome more realisti ompetitor models, espeially with regardto other (ombined) datasets from CMB and Large-Sale Struture; see also [EM07℄. In [MH07℄MClure and Hellaby push forward the non-trivial program of extrating metri informationof the Universe diretly from osmologial observations. Homogeneity is not a priori assumed,so that a desription is approahed within the framework of an LTB model, and a numerialgroundwork for detailed analysis of future ombined datasets is set up. Tanimoto and Nambu[TN07℄ present a novel, non-parametri form of solving for the LTB areal radius. Therewith theLTB luminosity distane is alulated perturbatively, and it is laimed that dust FRW modelsand LTB models are indistinguishable up to seond order, under a ertain regularity requirementat the entre of the LTB model. For LTB relations that inorporate the perspetive of o�-entreobservers we refer e.g. to [BMN06, HMM97℄. Other useful reading on the LTB model might be[Gar06a, Bol05, INN02, Tom01℄.An arrangement of several LTB spheres within one model is alled an LTB Swiss-CheeseUniverse [Kan69℄ and therein inhomogeneity is realised loally while the Swiss-Cheese remainsglobally homogeneous. As it is found by Biswas and Notari [BN07℄, the integrated e�et on lightpropagation in LTB Swiss-Cheese models � that is, the averaged e�et over several LTB pathesobserved from outside a path � is small, and only within a loal setup � that is, within a singleLTB path � the e�et on the photon paths an be large. Further reommended reading on theLTB Swiss-Cheese model omprises [MKMR07, BTT07a, BTT07b, KKN+07℄.If he LTB model is to be taken serious it should also be able to explain CMB data. This hasbeen tested for by Alnes and Amarzguioui for an o�-entred observer in an LTB underdensity
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Figure 1.7. Main results from a qualitative CMB analysis of an LTB underdensitywith o�-entre observer [AA06℄. Upper row: (r, θ)-geodesis (blue lines) within aertain LTB model as they onverge toward an observer that is displaed a little(left: d = 20Mp), and a lot (right: d = 200Mp) from the origin (red ross). Thered irles indiate equidistant shells that are, in terms of osmi time, 1Gyr apartrespetively. In ase of the very large displaement (right) one learly resolves thestrong distortion of geodesis. This distortion is due to a strong density gradientat the transition from LTB model to a homogeneous bakground. Lower row: fromleft to right, the CMB dipole, quadrupole and otopole plotted as funtions of theobserver's distane to the LTB entre. Evidently, quadrupole and otopole are severalorders of magnitude smaller than the dipole. An experimental bound for the dipoleis 10−3 whih immediately puts an upper limit of around 15Mp on the alloweddisplaement of the observer. At suh distanes, the model then predits a quadrupoleand otopole that are far too small, namely of the orders 10−7 and 10−9 . Moreover,anisotropy indued by suh a displaement is per onstrution axially symmetri andthus must be subjet to the general onstraints that we develop in part II. In prinipleit would be possible to ompensate a large dipole that is due to displaement with aontrary ontribution from Doppler veloity, but this movement toward the entre ofthe underdensity had to be put in just by hand. Pitures are taken from [AA06℄.[AA07℄. The authors �nd that, even though an LTB model is found that �ts well a sample of SNIadata and an reprodue the loation of the �rst peak in the CMB power spetrum, the inlusionof SNIa data does not yield ompelling evidene for an LTB o�-entre observation nor is it ableto tightly onstrain the degree of displaement with respet to the LTB entre. In [AA06℄ thesame authors apply an o�-entre analysis on CMB data alone and �nd the important result, thatthe observed CMB dipole onstrains a potential o�-entre displaement to be at most 15Mp.Moreover it is found that, one the dipole is mathed to data, the quadrupole and otopoleresulting from the displaement are too low to be in aordane with the observed multipoles,.f. �g. 1.7. On the other hand, Sarkar and Hunt disuss distortions in the measured CMB powerspetrum known as `glithes' [HS04℄. A non-standard primordial spetrum is used, oming forma so-alled multiple in�ation senario, to mimi the glithes and it is found that the LTB modelis suessful in �tting the new CMB spetrum as well as the found baryon osillations in thegalaxy two-point orrelation funtion [.f. app. D℄, and also SNIa data [HS07℄.



38 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYIshak and others have reently investigated the possibility to �t SNIa data in a more om-pliated model, the inhomogeneous Szekeres model [Sze75℄. This solution needs not to have anysymmetry and an therefore be used for instane for modelling of double or triple strutures.The advantage of the model lies in the fat that it is � like LTB � an exat solution from Gen-eral Relativity and therefore it is not neessary to onstrain the model to ases of small densityontrast. The disadvantage is that the Szekeres model is very omplex due to the lak of expliitsymmetry. In turn, this makes the solution appear very interesting beause of its potential tomodel the true lumpy struture of the Universe. In the oordinates used in [Bol07℄, the Szekeresmetri takes the form(1.84) ds2 = −dt2 +

(
Υ,r − ΥE,rE

−1
)2

(ε− k)
dr2 +

Υ2

E2

(
dp2 + dq2

)
,where Υ = Υ(r, t) , ε = 1, 0,−1 and the arbitrary funtion k = k(r) ≤ ε plays a similar role likethe energy funtion E in the LTB model. The arbitrary funtion E = E(r, p, q) is onstrainedby(1.85) E(r, p, q) =

1

2S

(
p2 + q2

)
− P

S
p− Q

S
q + C with C =

P

2S
+
Q2

2S
+
S

2
ε ,with S, P,Q and C being funtions of r only. The ase ε = 1 is a speial one: it allows themodel to have the FRW urvature ases as an be seen from the metri (1.84). This hoie isalled quasispherial Szekeres model and is physially most interesting, for it is possible to havea homogeneous FRW limit at large distanes from the origin. Now, Ishak et al. [IRWG07℄ havefound that the Szekeres model �ts SNIa data as good as the ΛCDM model, and moreover, thatthe found best-�t model yields spatial �atness at CMB-relevant sales.There is a tight oupling of the above listed work on inhomogeneous models and the issue ofosmologial bakreation. The bakreation � or averaging, or �tting � problem referres to thefat that, in general, the evolution of a homogeneous general relativisti model (like FRW) doesnot math with the averaged evolution of an inhomogeneous model (like LTB). This is a pureGeneral Relativity problem, for the mentioned di�erene stems from the inherent non-linearity ofthe underlying theory. There are serious tehnial di�ulties with the bakreation alulations,sine: (a) in the non-perturbative ase it is not lear in how far one an properly de�ne averagesof tensor quantities, albeit this seems to be under ontrol for salars; and (b) in the perturbativease the alulations beome arbitrarily tedious with higher orders. See [Bu07℄ for a reentoverview on non-perturbative as well as perturbative studies in bakreation. Nevertheless, seefor instane [Zal04, Zal93, Par07, Beh03℄ for approahes toward fully ovariant averaging.1.3.3. The Integrated Sahs-Wolfe E�et in LTB Models. Here, we develop thegeneral relativisti framework on whih the analysis of the large-sale CMB anomalies in thenext part of the thesis is based. Our aim is to model the e�et of a loal overdense strutureon the CMB sky. Taking an overdensity is well motivated by loal galaxy surveys that indiatethe presene of very massive, non-linear strutures at distanes of around 100Mp; note thatthe motivation will be disussed in more detail in part II. As was mentioned in se. 1.3.2, theLTB model an desribe the ollapse of an overdensity or the formation of a void in an expand-ing universe. Moreover it has also been used to parametrise nearby inhomogeneous struture[FSSB01, HTET01℄. In ontrast to voids, overdense strutures do not generally approximate aspherial shape, but we will use the LTB model as a �rst approximation to desribe the loalneighbourhood within approximately 100Mp. Our piture of the loal struture is therefore aspherial density onentration, with our Loal Group of galaxies falling toward the entre. Thesetup that shall be analysed here is that of a moderate LTB perturbation on a �at FRW bak-ground. Note that this is di�erent from models, like e.g. in [Mof05℄, in whih it is speulatedthat the entire universe is spherially symmetri. Instead, we are onsidering the e�et of loalinhomogeneities that are known to exist, .f. �g. 1.5.The observational situation with regard to the Loal Group falling towards a density on-entration, known as the Great Attrator, is somewhat unlear [HSLB04, LRSH04℄. Moreover,



1.3. AN INHOMOGENEOUS ALTERNATIVE? 39the expeted infall towards us from lusters on the other side of the entre has not been on-�rmed. Apparently a model with two mass onentrations provides a more satisfatory �t tothe data [Mas05℄. Here we will treat the overdensity as linear, so additional attrators ouldthen be taken into aount simply by adding their e�et on top of the one we �nd. However, itis evident that linearly adding a new soure of anisotropy will in general add multipole power,not redue it, whih will turn out to be a peuliar onstraint to suh models.Tully points out that surveys of the loal peuliar veloity �eld give rise to a loal veloityanomaly [Tul88℄. The anomaly manifests itself as an unexplained disontinuity in measuredpeuliar veloities when going from objets belonging to our loal �lament (Coma-SulptorCloud) to galaxies belonging to the adjaent struture (Leo Spur). The evauation of the soalled loal void provides an important ontribution to our loal veloity �eld. The `observation'of the loal void is made di�ult by the fat that most of it is hidden in the line of sight throughthe galati dis of our Milky Way (Zone of Avoidane); and thus atalogues inluding thatregion annot be made in the optial band. As further reading we strongly reommend [T+07℄and [Tul07℄.As we assume that the loal overdensity is moderate, it is possible to linearise aroundthe FRW model, to whih the LTB model should redue at large distanes from the entre ofsymmetry. The transfer onditions are listed in (1.69). Assuming that the universe be spatially�at far away from the overdensity as well as Λ = 0 , we have R(t, r) = a(t)r and E = 0 , with
a being the FRW sale fator. We use the standard normalisation a(t0) = 1 today. In order todo the perturbation theory we an introdue a perturbation funtion f(t, r) that parameterisessmall deviations from the FRW ase. It makes sense to de�ne the perturbation funtion as thedeviation of physial distanes in the LTB and the FRW model:(1.86) f(t, r) ≡ R(t, r) −RFRW(t)

RFRW(t)
.The onstraint of smallness of perturbations an then be expressed by the requirements(1.87) |f(t, r)| ≪ 1 ,

f,t(t, r)

H
≪ 1 , |rf,r(t, r)| ≪ 1 ,and so the linearised LTB metri funtions take the form(1.88) R(t, r) = ar [1 + f(t, r)] and E(r) = (aHr)2

[
3f(t, r) + 2H−1f,t(t, r)

]
,where we obtained the seond equation from inserting the �rst equation into (1.47) and makingan ansatz m(r) ∝ r3 . Aording to (1.48) the linearised density parameter beomes(1.89) ρ(t, r) = ρF(t) [1 − 3f(t, r) − rf,r(t, r)] ,with ρF denoting the FRW density that sales as ρF ∝ a−3 . Inverting (1.89) we likewise obtainfor the perturbation funtion(1.90) f(t, r) = − 1

r3

∫ r

0

r′2δ(t, r′)E(r′)dr = −1

3
〈δ(t, r)〉r ,where δ ≡ (ρ − ρF)/ρF stands for the density ontrast and 〈δ〉r denotes its spatial average asmeasured from the symmetry entre up to r . Employing these results, the perturbed LTBmetri an be written in terms of the onformal time dt = adη as(1.91) ds2 = a2(η)

[
−dη2 + (1 + 2f + 2rf,r − E)dr2 + (1 + 2f)r2dΩ2

]
,with the angular element dΩ2 ≡ dθ2 + sin2θdϕ2 .For an o�-entre observer, CMB photons oming from di�erent diretions have travelleddi�erent routes through the loal overdensity, hene produing additional anisotropy. Sine thee�et vanishes for an observer at the entre beause of the spherial symmetry, its amplitudedepends on the distane from the entre; more spei�ally on the ratio ε ≡ r0/d, where d isthe distane to the surfae of last sattering. The line from the observer to the entre de�nes apreferred diretion, so the situation beomes axially symmetri, and we an restrit our attentionto the plane ϕ = 0. The geometry of the situation is skethed in �g. 1.8.



40 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYA ommonly used tool of the standard model is osmologial perturbation theory. Consid-ering linear perturbations around a spatially �at FRW model, the aording metri takes thegeneral form [MFB92℄
ds2 = a2(η) ×(1.92)
{
−(1 + 2Φ)dη2 + 2(B;i − Si)dx

idη + [(1 − 2Ψ)gij + 2E;i;j + Fi;j + Fj;i + hij ] dx
idxj

}with the potentials Φ, B, Ψ and E being the soures of salar perturbations and Si, Fi representvetor perturbations that satisfy S ;i
i = 0 = F ;i

i . Furthermore, tensor perturbations (gravita-tional waves) are haraterised by hij with h i
i = 0 = h ;j

ij . As long as only Latin indies areinvolved the semiolon stands for ovariant di�erentiation with respet to the three-metri gij .Sine the LTB model has vanishing vortiity, as explained in se. 1.3.1, we an set the vetormodes to zero Fi = 0 = Si . Moreover, the spherial symmetry together with the requirementthat perturbations do not diverge anywhere also rules out the tensor perturbations, so that
hij = 0 . Adopting spherial oordinates and omparing the remaining omponents of (1.91)with (1.92) enables us to solve for the metri funtions (up to integration onstants):

Φ(t, r) = 0 = B(t, r) , Ψ(r) = −1

2

∫ r

0

E(r′)

r′
dr′ ,(1.93)

E;i
;j(t, r) = δi

j

[

f(t, r) − 1

2

∫ r

0

E(r′)

r′
dr′
]

+ δi
rδjr

[

rf,r(t, r) −
1

2
E(r)

]

.(1.94)Note that the �rst identity in (1.93) is a result that is equivalent to the appliation of thesynhronous gauge, whih is justi�ed beause of the zero vortiity harateristi of the LTBmodel. In order to obtain a formula for the CMB anisotropy, we should further follow the analogyto osmologial perturbation theory. There exists a framework whih returns the temperatureanisotropies for general perturbations as haraterised by (1.92) that we disuss next.A omplete general relativisti treatment that desribes the full evolution of CMB radiationundergoing e�ets of metri perturbations was �rst given by Sahs and Wolfe [SW67℄. Thehereafter named Sahs-Wolfe formula desribes the transfer of the e�ets of a three-dimensionalgravitational potential pattern on CMB photons to the two-dimensional temperature anisotropy�eld ∆T/T whih is, in the end, the observable today.Imagine Pob to be the position of an CMB observer today and let n be a unit vetor thatpoints from the observer's position to the last sattering surfae. Further, let Pem denote theposition of the primeval photon emission. With Eob standing for the CMB photon energyreeived by the observer and Eem being the initial energy of the CMB photon emitted at someloation Pem , we are ready to formulate the ratio Eob/Eem as indued by the Sahs-Wolfee�et. In the unperturbed ase one has the ommon result E(0)
ob /E

(0)
em = a(ηem)/a(ηob) ; forgeneral metri perturbations (1.92) the aording relation extends to [MS98℄(1.95) Eob

Eem
=
a(ηem)

a(ηob)

{

1 +
[
Φ + ni(vi +B;i − Si)

]
(Pob) −

[
Φ + ni(vi +B;i − Si)

]
(Pem)

−
∫ ηob

ηem

[

Φ,η − Ψ,η − 2niΦ;i + ninj(E,η − B);i;j + ninj(Si + Fi,η);j +
1

2
hij,ηn

inj

]

dη

}

,taken in the frame of the three-veloities. Negleting the vetor and tensor ontributions andemploying the synhronous gauge, Φ = 0 = B , the above relation simpli�es to(1.96) Eob

Eem
=
a(ηem)

a(ηob)

[

1 + nivi(Pob) − nivi(Pem) −
∫ ηob

ηem

(
−Ψ,η + ninjE;i;j,η

)
dη

]

.Therein vi denotes the respetive peuliar veloities that enter the setup; we will disuss thepeuliar veloities in more detail below. The n dependene enters in Eob/Eem and is �xed bythe requirement that Pob denotes `here and now' whih is expressed as P0(η0,x0) , and henewe everywhere replae Pem(ηem,xem) with Pls[ηls,x0−n(ηls−η0)] , where `ls' indiates emission



1.3. AN INHOMOGENEOUS ALTERNATIVE? 41from last sattering. Note that ηls is �xed by the requirement that zls = 1088 . Sine the lastsattering surfae is a surfae of onstant radiation energy density, the density ontrast of thephoton �uid omponent δγ obeys the saling [MS98℄(1.97) a(ηem) ≃ a(ηls) +
1

4
δγ(n) a(ηls) ,and we further assume a foliation suh that, as seen from the hypersurfae of the observer, thebaryoni energy density is onstant, leading to the following saling of the density ontrast ofbaryons(1.98) a(ηob) ≃ a(η0) −

1

3
δb(P0)a(η0) .Thus we an insert into the Sahs-Wolfe formula (1.96) and have

E0

Els
=
a(ηls)

a(η0)
×(1.99)

×
[

1 +
1

4
δγ(n) − 1

3
δb(P0) + nivi(P0) − nivi(Pls) −

∫ η0

ηls

(
−Ψ,η + ninjE;i;j,η

)
dη

]

.This is readily rewritten in terms of the temperature anisotropy:(1.100) ∆T

T
(P0) =

∆T

T
(Pls) + nivi(P0) − nivi(Pls) −

∫ η0

ηls

ninjE;i;j,ηdη ,note that the Ψ term vanishes beause it is a funtion of only r (1.93). It has to be takeninto aount that the overdensity is loal, that is its e�ets vanish at the surfae of emission;moreover, we transform bak to osmi time and thus �nally obtain for the Sahs-Wolfe term(1.101) ∆T

T
(P0) = nivi(P0) −

∫ t0

tls

ninjE;i;j,tdt .The integral is over the CMB photon path along the line of sight to the last sattering surfae(i.e. rays of onstant θ̃ in �g. 1.8). The diretional dependene is due to the unit vetor ni whihpoints from the observer to the emission surfae and hene quanti�es anisotropy deviations.Therefore we should next onsider the geometry of the model setup in more detail.The geometri situation of our LTB model is shown in �g. 1.8. There are two relevant setsof unit vetors, those denoted with n are pointing from the loation of the observer towards thelast sattering surfae, whereas the vetors e de�ne the oordinate system and have their originat the entre of the LTB overdensity. From �g. 1.8 we read o� that ∆θ = θ̃ − θ ; applying thelaw of osines gives(1.102) r2L = d2

[

sin2 θ̃ +
(r0
d

+ cosθ̃
)2
]

.Our aim is to ompute the omponents of n , thus we an start with e.g. n · er = cos∆θ . Inorder to ompute cos∆θ we an use the projetion law for inlined triangles and get, .f. �g. 1.8
d = rL cos∆θ + r0 cos(π − θ̃) ,

cos∆θ = − r0
rL

cos(π − θ̃) +
d

rL
=

ε cosθ̃ + 1
√

sin2 θ̃ + (ε+ cosθ̃)2
= n · er .(1.103)Reall the de�nition of the ratio ε ≡ r0/d . We an utilise the fat that n = n1er + n2eθ + 0and thus obtain the remaining omponent of n(1.104) ni = (nr, nθ, nϕ) = (1 + 2ε cos θ̃ + ε2)−1/2 ( 1 + ε cos θ̃, r−1ε sin θ̃, 0 ) .Obviously θ̃ � the angle in the observer-entred system � is the relevant angle for the CMB. Thereis no dependene on ϕ̃ due to the axial symmetry. Before we proeed and �nally insert these�ndings into the Sahs-Wolfe formula (1.101), we will disuss an appropriate general relativistitreatment of the ourring peuliar veloities.
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rL is the distane from the LTB entre to the emission surfae. The unit vetors ofthe oordinate system ei point from the entre of the overdensity, the unit vetors nipoint from our position to the LSS. Note that the �gure lies in the x-z plane.Regarding the peuliar veloity, there are three main omponents ontributing to the ob-server's motion: the overall expansion, the radial infall veloity due to the spherial overdensityand random motion assoiated with smaller strutures. In the omoving oordinate system(1.46), the �uid veloity equals the bakground veloity uµ = δµ

0, so that the vi appearing inthe temperature anisotropy (1.101) pik up a ontribution only from the random omponent.This is due to oordinate artefats and, as is emphasised in [HPLN02, HN99℄, the individualterms in the temperature anisotropy are di�ult to identify by physial means.By de�nition, the peuliar veloity is the extra motion on top of the overall expansion of theUniverse. In the present ontext the solution is exat, so in order to �nd the peuliar veloity weshall follow an unambiguous proedure presented in [Maa98, EvEM01℄: we onstrut a physialfour-veloity suh that the orresponding �ow is shear-free, and obtain the peuliar veloity asthe di�erene between the omoving four-veloity and this (physial) shear-free �ow. We startwith the omoving four-veloity uµ = δµ
0 and the orresponding non-zero shear(1.105) σµν = u〈µ;ν〉 with B〈µν〉 =

(

qα
(µq

β
ν) −

1

3
qαβqµν

)

Bαβ ,where the last equation de�nes the operation 〈·〉 of taking the spatially projeted, symmetriand traeless part of some tensor Bαβ with the help of the aording spatial projetion tensor
qµν ≡ gµν + uµuν . Working to linear order in vµ , we now de�ne a new veloity ũµ suh that(1.106) uµ = ũµ + vµ , ũµvµ = 0 , σ̃µν = 0 .Now we introdue the peuliar veloity vµ and by σ̃µν we denote the shear assoiated with ũµ ,(1.107) σ̃µν = σµν − v〈µ;ν〉 = 0 .Given (1.105) and the linearly perturbed LTB metri (1.91) we an solve (1.107) for the peuliarveloity and obtain(1.108) vµ = δµ

r rf,t ,



1.3. AN INHOMOGENEOUS ALTERNATIVE? 43so that v2 = gαβv
αvβ = a2f2

,tr
2 and the orresponding, properly normalised spatial peuliarveloity vetor beomes(1.109) vi = δi

r arf,t .This �nding is in aordane with the naive de�nition vr = R,t−HR , whereH is the bakgroundHubble parameter; note that using the physial expansion rate 1
3θ = 1

3u
α
α instead of H wouldyield a di�erent result. As an be read o� from �g. 1.8, the observer is loated on the z-axis, thusgiving n ·v(P0) = n ·ezv

r(P0) = arf,t cos θ̃ . Finally, we an write the Sahs-Wolfe ontributionof the linear LTB model as
∆T

T
(θ̃, ϕ̃) = r0f0,t cosθ̃ − f0 − r0f0,r

(1 + ε cosθ̃)2

1 + 2ε cosθ̃ + ε2

≃ −
[

f0 +

(

1 − 2

3
ε2
)

r0f0,r

]

+

(

r0f0,t −
4

5
ε3r0f0,r

)

P1(cosθ̃) − 2

3
ε2r0f0,rP2(cosθ̃)

+
4

5
ε3r0f0,rP3(cosθ̃) + · · · ,(1.110)and where we have expanded the temperature anisotropy in terms of the Legendre polynomials

Pℓ , as is onvenient for CMB analysis. Therein f0 stands for the perturbation funtion asmeasured today f0 ≡ f(t0, r0) at our position as the o�-entre observers in the LTB piture.The power series struture in the parameter ε re�ets the fat that here the anisotropy is dueto the observer's deviation from the entre, and thus the amplitude of multipoles sales as εℓ .In priniple it is possible to obtain the perturbation funtion f from a �t to observationdata. This an be done by extending the general relativisti analysis of the peuliar veloity(1.109) in order to take into aount also the e�ets of overall osmi expansion as well as radialLTB infall. This an be taken are of by using a ommon phenomenologial parametrisation ofthe loal peuliar veloity �eld as measured today, see e.g. [Pan92, HSLB04℄(1.111) vi = δi
rv0

r

r0

(
r20 + c2r20
r2 + c2r20

)n+1
2

,where r0 is again the distane from observer to the entre of the overdensity, v0 stands for theinfall veloity at the position of the observer, cr0 parameterises the ore size of the struture(the veloity peaks at cr0/n1/2), and the exponent n determines how fast the veloity �eld fallso� with inreasing r. Then the perturbation funtion f(t, r) an be parametrised by means ofthe loal veloity �eld using (1.109) and this an be inserted into the Sahs-Wolfe formula.Now we an try to estimate the multipole's amplitudes from the Sahs-Wolfe expansion(1.110) as due to some very massive struture in our osmi neighbourhood. After estimating
f,t ≃ Hf � whih is exat with a vanishing osmologial onstant � we then get f ≃ v/(arH) .As we read o� from equation (1.110), the quadrupole and the higher multipoles are proportionalto the term rf,r . Beause of (1.89) we an write rf,r = 〈δ〉r − δ and thus arrive at rf,r =
−3f − δ ≃ 3v/(arH) − δ . The magnitude of the quadrupole is ε2rf,r . Let the observer beplaed at r0 = 60Mp from the origin, yielding ǫ ≃ 10−2 , and further assume an infall veloityof around 500km/s [KME04℄, we end up with (0.25 − δ) × 10−4 for the quadrupole. With
δ = 0.1 the ontribution to the quadrupole is of the same order as the intrinsi anisotropies,
10−5 . The ontribution to the otopole is −6ǫ/5 times the one to the quadrupole, and thereforewe annot get a signi�ant ontribution to the otopole (or higher multipoles). The reasonwhy our numerial estimate fails is rather simple: the Sahs-Wolfe theory that we developed islinear, but in order to go for a signi�ant CMB e�et we are fored to to apply it to highly non-linear strutures. One an see this also from the following argument. Remember the linearityonditions (1.87) and espeially the time evolution onstraint f,t/H ≪ 1 . Now, from thede�nition of the perturbation funtion (1.86) we an readily see that, for an objet like the hereassumed superluster � for instane the Great Attrator �, R is nearly onstant, whereas RFRWevolves at the time sale of the Hubble rate. This implies then an f,t/H of order unity.



44 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYBeause the linearised Sahs-Wolfe alulation in our model is too naïve, we will, insteadof �tting the model parameters to a loal veloity input and trying to predit the temperatureanisotropy, rather be interested in the general struture of the obtained solution (1.110). Wewill keep the oe�ients in the multipole expansion open as free parameters of the partiularLTB model and are going to use them in a statistial multipole analysis with regard to theexellent CMB data available. This and similar analyses are the subjet of part II of thiswork. Summarising, let us note the main harateristi of the Sahs-Wolfe result (1.110): thetemperature anisotropies due to the LTB perturbation only ontribute to the m = 0 omponentsof the multipole expansion as a onsequene of the axial symmetry of the loal model. In turn,any other axially symmetri struture, like e.g. a planar density �eld, would also be pereptibleonly within the m = 0 modes. Moreover, in the standard model the dipole is hidden in a strongsignal due to peuliar motion with respet to the CMB rest frame and the quadrupole is (upto a small kineti orretion) of osmologial origin. In the LTB model a natural orrelationbetween dipole and quadrupole arises, for they both originate from the same physial e�et,thus making quadrupole-dipole alignment potentially explainable.



CHAPTER 2The Cosmologial Problem of Dark MatterDiverse physial observations support the postulation of an additional matter omponent,non-luminous and only interating through gravity. The e�ets aording to whih Dark Mattermight be postulated, manifest themselves on multiple physial sales. From the preise mea-surement of the �rst aousti peaks in the CMB power spetrum, a sale of up to one degree onthe mirowave sky (zdec = 1088) an be aessed. Interpreting the WMAP data within ΛCDM,it is well known that the universe appears to be spatially �at (Ωk ≃ 0) and that the matter andDark Energy density form the osmi onordane: Ωm ≃ 0.24 and ΩΛ ≃ 0.76 , .f. se. 1.2.1.At the same time the fration of the matter density due to baryons as inferred from primor-dial nuleosynthesis and the deuterium abundane from Lyman-α systems is in good aordanewith the value of Ωb ≃ 0.04 obtained from WMAP; see e.g. [PRFJ07℄, [WMAa℄. It is notewor-thy to say that these results, besides their model and prior dependenies, partiularly dependon the value of the Hubble onstant as measured today. Counting soures within `low' redshifts(z < 2) yields a luminous baryon density that is only [NEFM05℄ ∼ 50% of the osmologiallyinferred value above. In the literature this is referred to as the `missing baryon problem'. Thuswe enounter a twofold problem when trying to ombine osmi matter yields on di�erent sales.First, the matter needed to lose the universe obviously annot be in form of baryons as theinferred value for baryons from di�erent methods is one order of magnitude to small. Seond,the upper limit for the density parameter from luminous matter as inferred from all-sky surveysreveals that at least 50% of the baryoni matter must also be dark.Being in a somewhat more diret form, there is more evidene for Dark Matter espeiallyon smaller sales. This we want to review in the next two setions and partiular emphasis willbe given to the galati rotation urves. Herulean e�orts are being made in order to �nd anexplanation for the aforementioned Dark Matter problem(s). These range from modi�ationsof the Einsteinian, and therewith of Newtonian gravity to extensions of the standard model ofpartile physis that involve new, yet undeteted partiles that ould do the job. However, itis important to stress that there is no a priori reason to believe that all of the missing matterproblems on all of the di�erent physial sales do have a ommon explanation.2.1. Diret Evidene and LensingA powerful tool for attempts of ataloguing the matter distribution of large-sale struturesor intermediate-sale strutures in the universe is provided by the priniple of gravitationallensing. The fat that the gravitational de�etion of light only depends on the e�etive gravita-tional �elds deployed by the lens, and not on the partiular state of the lensing matter, makesthe method universal.The phenomena of gravitational lensing split naturally into two lasses: (A) strong lensing,involving rather pronouned e�ets like the formation of ars, Einstein rings or multiple imagesof a single soure as well as time delays � see for instane �g. 1.1; (B) weak lensing, not observableby eye sine it is a statistial e�et involving a large number of bakground soures that appeardistorted due to large-sale foreground tidal �elds.In the following we shall disuss shortly the two di�erent branhes of gravitational lensingand then give examples of strong reent evidene for Dark Matter, where the results of weakand strong lensing are going hand in hand. 45
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Figure 2.1. Geometry of strong (left) and weak (right) gravitational lensing. Left:without luminous and/or Dark Matter in the lens plane an observer sees the soureunder an angle β; the presene of lensing matter hanges that diretion to α̂. Right:physial interpretation of the shear γi and elliptiity χ and ǫ. The elliptiities ǫ1,2in the �gure orrespond to the notation χ,ǫ in the text. The shear omponent γ1 isresponsible for elongation (ompression) along the x-axis, whereas γ2 auses the same,just along the x = y axis. Per de�nition, an objet with vanishing elliptiity is irular(entre). The omponents of elliptiity χ and ǫ, de�ned with the help of the seondbrightness moments tensor, ause ompressions and elongations similar to those forthe shear omponents. Pitures are taken from [Sh03℄ and [Ref03℄.2.1.1. Strong Gravitational Lensing. Following [Sh03℄ and [Sh06℄, we review on-isely the strong lensing framework without deriving the equations. Utilising the Shwarzshildsolution, the Einstein angle for a de�etion o� the exterior of a spherially symmetri mass Mreads(2.1) α̂ =
2RS

ξ
=

4GM

c2ξ
,where 2RS is the Shwarzshild diameter and ξ is the impat parameter of the light ray measuredin the plane of the lens, f. �g. 2.1. This formula for `point mass' de�etion is valid in the weak�eld limit RS/ξ ≪ 1, or equivalently φ/c2 ≪ 1 for the Newtonian gravitational potential.In this limit, the lensing e�ets an be linearised, that is the (two-dimensional) Einsteinangle of a omplex lens an be superimposed from the de�etion angles of the individual de-�etors: α̂ =

∑

i α̂i . Within the Born approximation it is moreover assumed that the `lens isgeometrially thin', that is the distanes between soure, de�etor and observer are muh largerthan the extent of the lensing system. This assumption is well satis�ed for typial astrophysiallenses like galaxies or galaxy lusters but is not ful�lled in the ase of lensing by the large-salestruture. For omposed `thin lenses' the de�etion angle beomes(2.2) α̂(ξ) =
4G

c2

∫

d2ξ′
∫

dr′ρ(ξ, r′)
ξ − ξ

′

|ξ − ξ′|2 =
4G

c2

∫

d2ξ′ Σ(ξ′)
ξ − ξ

′

|ξ − ξ′|2 .The Einstein angle only depends on the surfae mass density Σ(ξ′) whih is the volume densityafter integrating out the line of sight dependene Σ(ξ′) ≡
∫

dr3ρ(ξ, r3) . As a rule of thumb,



2.1. DIRECT EVIDENCE AND LENSING 47typial magnitudes of de�etions for galaxies are α̂ . 1′′ and α̂ . 30′′ for galaxy lusters. Foran illustrative example of ars, see �g. 1.1.Looking at �g. 2.1, we see that η = Dsβ and ξ = Ddθ , and the lens equation an be writtenas:(2.3) β = θ − Dds

Ds
α̂(Ddθ) ≡ θ − α(θ) ,with α(θ) denoting the saled de�etion angle. Note that (2.3) in general an have more thanone solution orresponding to multiple imaging of the soure. The dimensionless surfae massdensity is de�ned by(2.4) κ(θ) ≡ Σ(Ddθ)

Σcrit
, Σcrit ≡

c2

4πG

Ds

DdDds
≃ 0.35

(
DdDds

Ds 1Gpc

)−1

g cm−2 .The quantity κ(θ) is also referred to as the onvergene. The onvergene may be used to inferthe strength of a gravitational lens; with κ ∼ 1 we haraterise strong lensing and by κ≪ 1 theweak lensing regime is enountered.The simplest models for gravitational lenses show axial symmetry, i.e. Σ(ξ) = Σ(ξ) with
ξ = |ξ| being the distane to the entre of the lens. Even without detailed modelling of massdistributions it is possible to obtain a robust mass estimate for strong lensing. Beause the meansurfae mass density inside the Einstein radius θE just equals the ritial surfae mass densityof the lens, it is(2.5) M(θE) = πΣcrit(DdθE)2 .Analysing a piture of gravitational lensing that shows multiple images, the Einstein radius θEan be estimated from the radius of the irle that is traed by the di�erent images. The moreaxisymmetri the lens system is, the better the estimate (2.5) beomes.A ommon isotropi galaxy model is that of a singular isothermal sphere (SIS), .f. [BT94℄.The density pro�le is given by: ρ(r) = σ2

v/2πGr
2 , with σv being the one-dimensional veloitydispersion of stars in suh a potential. Note that this model is very rude and an only beapplied in a ertain range of radii r: for small r the density diverges as r−2 and for large rthe mass M(r) diverges proportional to r. By integration the surfae mass density is obtained:

Σ(ξ) = σ2
v/2Gξ . Finally, we arrive at a harateristi equation for the de�etion angle of agalaxy-like SIS objet:(2.6) θE = 4π

(σv

c

)2
(
Dds

Ds

)

≃ 1′′.15

(
σv

200 km/s

)2(
Dds

Ds

)

.Sine the separation of images is ∆θ = 2θE , massive elliptial galaxies an generate separationsof up to ∼ 3′′ and lighter ones as well as spiral galaxies reah ∼ 1′′.Regarding lusters of galaxies the most simple approximative lens model is again providedby the SIS ansatz. The harateristi sale is also given by the aording Einstein angle(2.7) θE ≃ 28′′.8

(
σv

1000 km/s

)2(
Dds

Ds

)

.The analyses of galaxies and of lusters of galaxies with the help of strong gravitationallensing show that the masses of these lenses annot be provided by the observable luminousmatter from stars and intergalati dust only. These �ndings strongly suggest that galaxies andgalaxy lusters are dominated by Dark Matter.2.1.2. Weak Gravitational Lensing. While the e�ets of strong gravitational lensingare rather strong and resolvable by eye, the e�ets of weak lensing an only be deteted in astatistial sense. Due to weak lensing by dark and luminous matter in the line of sight, smalldistortions to the shape and orientation of bakground galaxies should always be present indeep astronomial images. Assuming that the intrinsi orientations (elliptiities) of the lensed



48 2. THE COSMOLOGICAL PROBLEM OF DARK MATTERbakground galaxies are random, it is possible to reonstrut a map of the lensing matter inbetween by statistially analysing the elliptiities of an ensemble of bakground galaxies.Following [Sh03℄, shape distortions are enfolded in the proper mapping of the lens from theplane of the soure to the plane of the lens by the aording Jaobi matrix(2.8) A(θ) ≡ ∂β

∂θ
= (1 − κ)

(
1 − g1 −g2
−g2 1 + g1

)

.Therein the ruial quantity is the shear γ = γ1 + iγ2, or similarly the redued shear g = g1 + ig2with gi = γi/(1 − κ). The physial meaning of shear and onvergene κ is depited in �g. 2.1.The mentioned mapping that desribes the shape distortions of distant soures is desribed bythe loally linearised lens equation(2.9) β − β0 = A(θ0) · (θ − θ0) ,with θ0 being the entre of image and β0 ≡ β(θ0) . The next step is to formally de�ne what ismeant by the notion of elliptiity for arbitrary faint soures. Sine the least bakground souresare intrinsially round, their observed elliptiity with a telesope will be an admixture of weaklensing indued shear and some initial elliptiity. In order to formally de�ne a morphology ofgalaxies, one utilises the seond brightness moments, whih are omponents of a seond-ranktensor that is de�ned upon the brightness distribution I(θ) of the image. For oniseness wedo not give the expliit expressions here, the full formalism is expliitly developed for examplein [Sh03℄. The important point is that from the seond brightness moments, two omplexelliptiities χ and ǫ of the lensed soure an be derived. Analogously, the elliptiities χ(s) and ǫ(s)an be omputed from the aording seond brightness moments of the unlensed soure. Withinthe standard model we make the assumption that the intrinsi orientations of the bakgroundgalaxies are ompletely random, that is their expetation values vanish:(2.10) E[χ(s)] = 0 = E[ǫ(s)] .As a onsequene one gets for the expetation value of ǫ after averaging(2.11) E[ǫ] =

{
g for |g| ≤ 1

1/g∗ for |g| > 1
.This means that a measurement of image elliptiities diretly yields an unbiased estimate ofthe loal shear. But the estimate su�ers from high noise due to the dispersion of the intrinsielliptiities. Therefore obtaining a large enough ensemble of soures is ruial for suh a shearmeasurement. Fortunately, this is realisti and viable: e.g. the Hubble Ultra Deep Field [HST℄shows a very deep image of the sky, only 3′ × 3′ in area, ontaining an impressive total numberof 104 faint galaxies.By the statistial e�et of weak lensing it is possible to measure the oherent distortions offaint bakground elliptiities. The observed distortions will preferably streth the soure imagesin diretions tangential with respet to the entre of lensing matter. Beause the elliptiity thatis indued by weak lensing is generially at most of the order of the initial elliptiity a highstatistis is required for detetion. Above it is disussed how a measurement of elliptiities anbe used to get the redued shear (2.11); but how does this translate into a matter distributionof the lensing matter in whih we are �nally interested? The onvergene κ quanti�es theinrease in size of a bakground galaxy, independent of its shape. Within Newtonian theory theonvergene plays the role of a soure in the two-dimensional Poisson equation(2.12) ∆(2)Ψ(θ) = 2κ(θ) ,where the de�etion potential Ψ(θ) denotes the two-dimensional ounterpart of the Newtonianpotential. Thus, in Newtonian theory the onvergene κ is proportional to the surfae massdensity of the gravitating lens, and hene produing a ontour map of κ from the measuredshear will trae the e�etive two-dimensional matter distribution. In fat, it is(2.13) ∇ ln(1 − κ) =

−1

1 − g2
1 − g2

2

(
1 − g1 −g2
−g2 1 + g1

)(
∂g1/∂θ1 + ∂g2/∂θ2
∂g2/∂θ1 − ∂g1/∂θ2

)

.



2.1. DIRECT EVIDENCE AND LENSING 49These equations an be integrated upon the two-dimensional data �eld and yield the �nalonvergene map. Going a step further, in non-Newtonian gravity theories the onvergeneis not in a linear relation to the surfae mass density anymore. However, even though withinsuh theories an obtained κ map annot be diretly translated into a map of the two-dimensionalmatter distribution, the loation of κ peaks will still orrespond to the peak-values of the e�etivesurfae mass density, .f. [C+06a℄. This result is ruial for the disussion in the next subsetion.The onept of weak gravitational lensing will also be used for tomography of the largesale struture of the universe. This is a non-trivial task; there does not exist a single lensplane anymore but the omplete inhomogeneous three-dimensional and very extended matterstruture in the line of sight an be made responsible for distortions of faint soures. However,the method opens up a new window on a wide range of global osmologial parameters whihwill be aessible through ompletely di�erent systematis and in a muh lower redshift regimethan through CMB measurements.

Figure 2.2. The `bullet luster', 3.4 billion light-years away, in optial (left) andX-ray (right) light. Left: on top of the optial image taken by the Magellan telesopethe peaks in surfae mass density κ [.f. (2.13)℄ as reonstruted from weak lensingare shown (green ontours). White ontours quantify the error within the position of
κ peaks: 68.3%,95.5% and 99.7% C.L. The white bar measures a distane of 200Mpin the luster plane. Right: an X-ray image taken by the Chandra spae telesope,together with the same weak lensing reonstrution of matter density. Pitures aretaken from [C+06a℄.2.1.3. Reent Diret Evidene. Usually, lensing evidene for Dark Matter is providedby the neessity of exess gravitational potential on top of the baryoni one, in order to explainthe observed phenomena. For isolated and relaxed systems, the entre of the Dark Matterpotential oinides with the entre of the gravitational potential indued by the luminous matter;the luminous matter is believed to trae the (stronger) Dark Matter potential. Observing aonstellation of matter, where the dark and luminous entres of mass are spatially separated,would provide eideti and weighty evidene for Dark Matter on the sale observed. Suh anobservation would seriously hallenge theories that invoke no Dark Matter but modi�ations ofNewton or Einstein gravity.Interestingly, a snapshot of the above mentioned situation might reently have been made[C+06a℄. The objet 1E0657-558 is a high-energy merger of two galaxy lusters at z = 0.296. Inthe ourse of the ollision, the onstituents of the lusters, the galaxies, behave like ollisionlesspartiles but in addition the system is interfused with intraluster relativisti plasma. Thisplasma behaves not ollisionless at all, but undergoes massive ram pressure and this an beobserved in the X-ray band. Due to the shape of the high energeti tail of one of the lusters(see �g. 2.2) the system was dubbed `bullet luster'. The entral regions of the two lustersoinided approximately 100 Myr ago but today the veloity of the lusters relative to eahother is still ∼ 4700 km/s.



50 2. THE COSMOLOGICAL PROBLEM OF DARK MATTERCompared to the ollisionless stars, the hot intraluster gas represents the dominant part ofbaryoni matter within the lusters. Therefore, if Dark Matter was not present in the luster, theentre of mass of the X-ray luminous hot gas should trae the mass density of the whole system,as inferred e.g. by lensing methods. This is not in aordane with the physial observations asan be learly seen from �g. 2.2. Imaging with optial telesopes has been used to determine amap of the surfae mass density (2.13) with the help of weak gravitational lensing. At the sametime images from the Chandra X-ray telesope have been made from exatly the same region ofsky, showing the distribution of the hot gas only. Superimposing the images (�g. 2.2) shows thatthe peaks in matter density have moved in advane of the X-ray plasma whih was deeleratedby ram pressure. The displaement learly indiates the presene of some form of Dark Matterwhih does not behave like a �uid. Constraints on the e�etive ross setion of self-interationof the Dark Matter an be diretly obtained from this data [M+04℄. Sine the κ method onlymeasures a two-dimensional distribution a loophole remains: in priniple, it is thinkable that yetunidenti�ed soures along the line of sight orrespond to the density peaks that are deteted.Nevertheless, the authors [C+06a℄ onstrain the redshift interval wherein lensing soures ouldontribute to 0.18 . z . 0.39 . It is noteworthy to say that the data �eld of the bullet lusterallows for a ombined analysis of weak and strong lensing methods, see [B+06b℄.MOdi�ed Newtonian Dynamis (MOND) as invoked by Milgrom [Mil83℄ is based on theidea that the lassial Newton fore law is experimentally well tested only within Solar Systemsales, and hene ould be modi�ed for large sales. The TeVeS theory by Bekenstein [Bek04℄omes to the same result in the weak �eld limit, but modi�es gravity already at the level ofEinstein theory by adding new vetor and salar degrees of freedom. By the observations of thebullet luster the simplest of suh models an be ruled out. However, more ompliated versionsof modi�ed gravity ould still be in aordane with the data, see e.g. [AFZ06℄ or [BM07℄.Reently, a similarly impressive snapshot of Dark Matter was made using the Hubble SpaeTelesope (HST). The rih luster of galaxies CL 0024+17 at z = 0.4 shows a ringlike strutureof Dark Matter, obtained using ombined strong and weak lensing methods [J+07b℄. Fig. 2.3shows the reonstrution of the ring of Dark Matter. The struture is thought to be the resultof a high-speed ollision similar to 1E0657-558, in this ase ourring along the line of sight.

Figure 2.3. A ringlike struture of Dark Matter in the rih luster CL 0024+17.Left: a reonstrution from lensing data of the Dark Matter ring is superimposed indi�use blue upon an optial HST image. The size of the ring is ∼ 75′′ or approximately�ve million light-years. The ring probably originates from a massive galaxy lusterollision along the line of sight around 1-2 Gyr ago. Right: distribution of Dark Matterreonstruted from the CL 0024+17 image. A simulation of the onsequenes ofgravitational lensing by the Dark Matter on orthogonal graph paper in the bakgroundis shown. Pitures are taken from [HST℄ and [LSS℄.



2.2. CLASSICAL EVIDENCE FROM DYNAMICS 512.2. Classial Evidene from DynamisHistorially, the �rst indiations of Dark Matter have been observed on the sale of galaxiesand galaxy lusters. In 1933 Fritz Zwiky analysed dynamial data from the Coma Cluster[Zwi33℄. He found several galaxies with individual veloities that exeed the mean luster ve-loities by far. His interpretation was that these veloities provide a measure of the kinetienergy per unit mass in the luster. After estimating the radius of the luster he ould omputethe total mass of the luster with the help of the virial theorem. Zwiky then independentlyestimated the mass of the luster by ounting the galaxies and using the total brightness of thegalaxy luster and found a disrepany by a fator of 400. The observed veloities of galaxieswere far too high to be bound solely by the luminous matter present. The onsequene was thatlarge, yet undeteted amounts of matter had to be present in the Coma Cluster. Zwiky wasthe �rst to note this. His estimates were rather rude, but the subsequent analyses of lustersof galaxies and also of galati systems themselves widely on�rm his �ndings.2.2.1. Evidene on Galati Sales. We should begin with our galaxy, the Milky Way.Using the 21m emission line of hydrogen HI, it is no problem to look through the interstellargas in the diretion of the entre of the Milky Way. Similarly, one makes use of the emissionof the 12CO gas that is present in the galati dis. With these methods it is a straightforwardmeasurement to obtain the irular veloities of objets that lie within the solar radius of Rsun ≃
8 kp using the Doppler e�et. Note that our loal standard of rest, the sun, is moving with aveloity of vsun ≃ 200 km/s around the galati entre. The result of the rotation measurementis shown in �g. 2.4. As an be seen learly, the rotation urve shows no pronouned derease ofveloity for large radii. But the error bars are large in that region.

Figure 2.4. The rotation urve of the Milky Way. Observations make use of HI and
12CO emission lines and are obtained from diret Doppler measurements of objetsthat lie within the solar orbit Rsun ≃ 8 kp around the galati entre. Orbits thathave radii larger than that annot be looked on tangentially; therefore additionaldistane yields are needed, leading to huge error bars in the outer regions of theurve. Piture is taken from [Cle85℄.Rotation urve measurements for spirals other than the Milky Way are easier to obtain. Itis possible to observe orbits tangentially and measure the Doppler e�et of the rotating objets.However, orreting for the inlination of the dis is of ourse neessary. The rotation urves ofa large number of spiral galaxies have been measured by now (�g. 2.5). Again the HI line proves
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Figure 2.5. Left: galati rotation urves of twenty-two spirals as inferred from Hαand [NII℄ emission lines plotted in one �gure. All the measured galaxies have eitherrising or �at rotation urves, whih annot be explained by luminous matter only.Right: rotation urve of the spiral galaxy NGC 6503 in Drao. The rotation velo-ity is deomposed into its ontributions from the (luminous) galati dis, luminousinterstellar gas and the dark halo. Pitures are taken from [STT+98℄ and [BBS91℄.its usefulness beause one an ollet the radio data within muh larger radii. The �nding ofmostly �at rotation urves is on�rmed for the di�erent observed spirals.A very simple alulation shows why these �ndings are so dramati. We approximate theorbits of the onstituents of a typial spiral galaxy as irles and get the rotation urve fromthe equilibrium of entripetal and gravitational fore:(2.14) v2(r) =
GM(r)

r
,where M(r) is the mass within r. Further approximating the galati bulge as a sphere withonstant density, we have M(r) = ρ 4

3πr
3. Thus in the innermost part of the galaxy, the urveshould rise linearly with r and when leaving the galaxy the urve should derease as V (r) ∝ 1/

√
r(Keplerian fall o�). Despite the rude simpli�ations in this toy alulation the disagreementwith experiment is dramati.As an be seen from �g. 2.5, in reality, rotation urves beome approximately onstant forlarge radii, whih then implies M(r) ∝ r ! Thus, enormous amounts of non-luminous mattermust be made responsible for the observed urves, if Einstein gravity and therewith NewtonGravity is orret. Aording to (2.14) the rotation urve we expet from the luminous matteris v2

lum(r) = GMlum(r)/r and hene the Dark Matter amounts to(2.15) Mdark =
r

G

[
v2(r) − v2

lum(r)
]
.The onsequene is that a halo of Dark Matter must be assumed whose mass grows linearlywith radius sine the density pro�le of the halo drops only as 1/r2 for large radii. As �g. 2.5shows, measured rotation urves show no signs of derease out to the maximally aessibleradii measured with the help of 21m emission. As a onsequene the total mass of galaxiesare herewith left undetermined, only a bound on the extension of a typial halo an be given:

rhalo & 30 kp, .f. [Sh06℄. But the situation is even more disillusioning: sine already the useof HI is a trik to expand the range of aessible radii, one must use something totally di�erentin order to probe even larger sales of the halo. Satellite galaxies ould be used as test bodies.However, their orbits are ompliated and an only be interpreted in a statistial sense. Satelliteanalyses extend the typial size of halos to even rhalo & 100 kp, .f. [Sh06℄.
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Figure 2.6. The rare Polar Ring Galaxies an be used to study the three-dimensional shape of Dark Matter halos. A omparison of the rotation veloitieswithin the host galaxy and the polar ring is sensitive to the geometry of the halo. Re-ent measurements ombined with simulations suggest a �attened halo that is alignedwith the polar ring [IAB+03℄. Left: NGC 4650A, distane: 130 million light-years.Right: NGC 660, distane: 24 million light-years. Pitures are taken from [HST℄ and[SDS℄.There are also other arguments in favour of the onept of a halo. As outlined in [BT94℄,stability of dis galaxiesa is a ruial issue. Normally, the evolution of dis galaxy models ishighly unstable towards the formation of a dominant large bar. Although suh galaxies exist,the presene of a Dark Matter halo of muh larger extent than the dis is able to remove the barinstability. It is hypothesised that halos of Dark Matter ould be neessary for the formationand stability of dis-like galaxies.Polar Ring Galaxies (PRGs) are very exoti, likewise beautiful phenomena. Suh non-typialgalaxies are very rare ourrenes; only around 150 objets have been reorded by now. Theirorigin is not well understood. It is hypothesised that Polar Rings develop after a merger oftwo galaxies, and in simulations suh a behaviour ould already be reprodued. PRGs oftenonsist of a dis galaxy (host) plus a ring of interstellar gas and stars being in some inlinationto the host galaxy, hene polar ring. But there are exeptions: e.g. the irregular galaxy knownas Hoag's objet is a PRG but its host galaxy is spherial and surrounded by an almost perfetring. However, onerning dark halos suh galaxies are important laboratories. Normally, themovement of stars via rotation urves an only be aptured in one plane, as per de�nition onlyspirals an be analysed in suh a way. PRGs o�er the opportunity to probe the three-dimensionalmatter distribution of galaxies. The omparison of the perpendiular rotation urves in therespetive outer regions shows that the rotation veloities in the polar plane are higher thanthose in the equatorial plane. By omparison with simulations, this an only be understoodif the shape of the dark halo is �attened towards the polar ring [IAB+03℄. Only if the twoperpendiular rotation veloities approahed equal values at large radii, the shape of the darkhalo would be spherial.Also in elliptial galaxies, a major ontribution to the total mass is inferred to be dark due todynamial onsiderations [KKZ97℄. Rotation urves in the sense desribed above annot be usedfor ellipitials, for the movement of stars is muh more ompliated. They an be haraterisedthrough an anisotropi veloity �eld. Assuming hydrostati equilibrium and letting the galaxyaAording to the Hubble Sequene of galaxies, dis galaxies enfold spirals as well as lentiular S0 galaxies.



54 2. THE COSMOLOGICAL PROBLEM OF DARK MATTERbe spherial [BT94℄ yields the Euler equation(2.16) dp(r)

dr
= −GMellip(r)ρ(r)

r2
.Therein the ideal gas law an be inserted, suh that(2.17) M(r)ellip =

kBT (r)r

Gµmp

(

−dlnρ(r)

dln r
− dlnT (r)

dln r

)desribes the mass interior of r for an elliptial galaxy under the above assumptions. Herein
µ denotes the mean moleular weight and mp the proton mass. Thus, from a measurement ofthe temperature pro�le T (r) and the density pro�le ρ(r) of an elliptial galaxy, the mass withinradius r an prinipally be obtained through (2.17), .f. [KKZ97℄. Assuming a fully ionised,optially thin medium one obtains the density pro�le from the luminosity pro�le via L(r) ∝
ρ2(r) . The temperature gradient is harder to get but an be obtained e.g. from CHANDRAmeasurements. Reent measurements on�rm the presene of dark halos in elliptial galaxies,see e.g. [FBNP+06℄. Moreover, the halo density pro�les are found to approximate the Navarro-Frenk-White distribution(2.18) ρ(r)dark =

ρ0

r
r0

(

1 + r
r0

) .Here, ρ0 and r0 are parameters that haraterise a given halo.2.2.2. Galaxy Clusters and the Virial Theorem. We start with the virial theorem inits tensor form(2.19) 1

2

d2Iij
dt2

= 2Kij +Wij .The theorem relates the moment of inertia to the kineti and potential energy of an isolatedsystem. Although the original version of the virial theorem is dedued from the ollisionlessontinuum Boltzmann equation, the identity an also be proven to hold for a disrete system ofsay N partiles; let the partiles be either stars or galaxies, see e.g. [BT94℄. Then Iij denotesthe moment of inertia tensor of the system and it reads(2.20) Iij ≡
N∑

α=1

mαx
α
i x

α
j ,where mα is the mass of the objet with label α . By expliitly performing the derivatives withrespet to time on (2.20), one �nds the expressions for the kineti energy tensor and the potentialenergy tensor, i.e.(2.21) Kij =

1

2
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i ẋ

α
j and Wij = −1
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j )

|xα − xβ |3
.Taking the trae of (2.19), gives the important salar virial theorem:(2.22) 1

2

d2I

dt2
= 2K +W .Under the assumption that the system is relaxed, that is the moment of inertia has beomeindependent of time, we have 2K +W = 0 with the traes(2.23) K ≡ 1

2

N∑

α=1

mαv
2
α and W ≡ −1

2

N∑

α,β=1∧α6=β

Gmαmβ

|xα − xβ| .When the number of onstituents N is not very large, the virial theorem(2.24) 2K +W = 0will hold only for the respetive time averages [BT94℄.



2.3. MODELLING GALAXIES WITH GENERAL RELATIVITY 55Our aim is to exploit the orrelation between veloity distribution and total mass in lustersof galaxies. If we like to use the virial theorem in the form of (2.24), the galaxy luster mustbe relaxed (Ï = 0). Therefore the question of appliability of the virial theorem (2.24) reduesto the question whether the onstituents of the onsidered galaxy luster did have enough timeto arrive at mehanial equilibrium. The time that a typial galaxy needs in order to rossthe luster an be estimated [Sh06℄ from the one-dimensional veloity dispersion of the luster
σcluster

v and its typial extension by tcross ∼ RA/σ
cluster
v . For the typial extension one insertsthe Abell radius of lusters RA ≃ 1.5h−1Mp as well as a rough value of σcluster

v ≃ 1000km/swhih �nally yields tcross ∼ 1.5h−1×109yr. Sine this is smaller than the Hubble time, the virialtheorem (2.24) for the time-averaged quantities K and W an be applied.Following [Sh06℄, we proeed with de�ning the mass-weighted veloity dispersion and thegravitational radius(2.25) 〈v2〉 ≡ 1
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,with the total mass of the luster M ≡
∑N

α=1mα . Potential and kineti energy are thenrewritten as K = M〈v2〉/2 and W = −GM2/rG , and with the help of the virial theorem, aformula for the luster mass is obtained:(2.26) M =
rG〈v2〉
G

.The above mass estimate is based on the gravitational radius that involves the true distanes
dαβ ≡

∣
∣xα − xβ

∣
∣ in three-dimensional spae. But this is not an observable, sine only projetionsof this distane are aessible. We assume a spherial geometry and letDαβ denote the projeteddistane of two objets on the plane of the sky, then it is(2.27) RG ≡M2




1

2

N∑

α,β=1∧α6=β

Gmαmβ

Dαβ





−1

and rG =
π

2
RG .The fator of π/2 omes from the angular averaging of the projeted distane. Further, it isassumed that the veloity dispersion of galaxies be isotropi: 〈v2〉 = 3σ2

v . Then, �nally theluster mass estimate amounts to(2.28) M =
3πRGσ

2
v

2G
≃ 1.1 × 1015M⊙

(
σv

1000 km/s

)2

.By simply taking the average mgal ≡ M/N , we estimate the individual mass of a onstituentgalaxy by mgal ∼ 1013M⊙ whih is very large. This estimate represents the main result of thevirial theorem ansatz for lusters and supports the early �ndings using mass-to-light ratios byZwiky.Using the virial theorem ansatz, the matter ontribution of galaxies to a typial galaxyluster only amounts to ∼ 5%. Beause the predominant fration of matter of a luster is dark,it should be questioned whether the above alulation is justi�ed. The validity of the virialestimate an be maintained if the luminous galaxies do trae the distribution of overall matter.If the isotropy of the onstituent veloity distribution is broken, or if the approximation of thesystem in being spherial is not valid, the above estimate beomes invalid [Sh06℄. Therefore theDark Matter evidene suggested by the virial theorem should always be taken with a pinh of salt.Moreover, observations of the hot intraluster gas yield varying frations of this ontribution tothe total mass, but also here bulk Dark Matter remains neessary.2.3. Modelling Galaxies with General RelativityThe usual framework in whih we model a galati system is Newton Gravity. This limit isommonly used for N -body simulations of galaxies but also for lusters of galaxies or even larger



56 2. THE COSMOLOGICAL PROBLEM OF DARK MATTERstrutures. While General Relativity is widely aepted as the orret theory for osmology, theDark Matter problem has led to attempts to modify General Relativity and therewith NewtonGravity through MOND or TeVeS as skethed in se. 2.1. Beause modi�ed gravity theories aredeliberately designed to solve the Dark Matter problem raised by the observed non-Keplerianfall-o� of galati rotation urves, they pose a highly �ne-tuned and a posteriori attempt. Inany ase, it appears adequate to modify urrent fundamental theories, or invent new theories, ifand only if nothing else would work out. Among other outstanding problems, the need for DarkMatter has impelled the phenomenology of new fundamental theories also in partile physis.But up to day none of the andidate partiles that ould onstitute Dark Matter has beenobserved diretly in an experiment.The evidene in favour of Dark Matter is manifold and appears on a vast range of physialsales. It is yet unlari�ed whether these e�ets all have the same origin. Arguably, one of themost weighty and most puzzling evidenes is that of �at galati rotation urves. In a reentwork by Cooperstok and Tieu (CT) the question has been raised whether one uses the orret�duial theory to ompare with the data. Regarding a galati system, the use of NewtonGravity appears well warranted sine the �elds involved are weak (φ⊙/c2 . 10−5) and thetypial rotation veloities are small (V⊙ ≃ 220 km/s). Nevertheless, the use of the full theory ofGeneral Relativity might bring important new insights. The �elds and veloities involved in aplanetary two-body problem are also small but lead to the qualitatively new and peuliar e�etof a di�erent perihelion preession than that given by Newton Gravity. Also, as pointed outin [CT05a℄, the e�ets a system undergoes that is solely bound by gravity an be intrinsiallynon-linear, already in a stationary setup, and are thus not neessarily aptured within the weak�eld limit.It should be noted that the onrete model as proposed in [CT05a℄ has been shown to su�erfrom ertain pathologies like singularities in the energy momentum tensor. Before we disuss thismodel in more detail we reall attempts of modelling a stationary and axisymmetri gravitationalsystem within general relativity whih exist sine the nineteenth entury. It is astonishing to notethat a simple and physially appliable answer, moreover without pathologies, to the problemof a stationary rotating and axisymmetri matter system in general relativity does not exist bynow. We onlude the setion with an analysis of the Newton limit of the CT model and statethat indeed a post-Newtonian model has to be invoked in order to make sense.2.3.1. General Relativisti, Axisymmetri Systems in Equilibrium. A very impor-tant branh of exat solutions in General Relativity belong to the axisymmetri and stationaryself-gravitating systems. Lots of astrophysial objets an prinipally be modelled with theseassumptions. These ould be stars, blak-holes, aretion diss or galaxies; we will be espeiallyinterested in the latter. Before we an write down a general relativisti model of a galaxy, theruial attributes of axisymmetry and stationarity should �rst be de�ned properly.In a formal sense [Wal84℄, the existene of two ommuting one-parameter groups of isome-tries that possess timelike and losed spaelike orbits respetively, is su�ient to all a spaetimestationary and axisymmetri. More expliitly, this notion an be expressed with the help of theaording Killing vetor �elds. Killing vetors are the generators of the mentioned isometrieson a manifold and an be used to haraterise the symmetries of a spaetime. Consequently,the axisymmetri and stationary spaetimes will have two independent Killing �elds; e.g. inMinkowski spaetime there exist ten Killing vetors (due to translation, rotation and boost).In the following we use at least c ≡ 1. We will mainly follow the exellent presentation inIslam's book on rotating �elds in General Relativity [Isl85℄. If there exists a Killing vetor �eld
ξ, assoiated with a given spaetime, that is timelike everywhere, then the spaetime is alledstationary. If, in turn, a manifold additionally admits a Killing vetor �eld η that is spaelikeeverywhere and whose orbits are losed, then the spaetime is understood to be stationary andaxisymmetri. Equivalently, using Killing's equations(2.29) ξµ;ν + ξν;µ = Lξ gµν = 0 and ηµ;ν + ην;µ = Lη gµν = 0 ,



2.3. MODELLING GALAXIES WITH GENERAL RELATIVITY 57one an verify that the two Killing vetor �elds ommute everywhere on the spaetime:(2.30) [ξ,η] = 0 .With a semiolon we denote ovariant di�erentiation and Lσ stands for the Lie derivative alongsome vetor �eld σ � we return to the Lie derivative in se. 2.3.4. From the requirement ofasymptoti �atness one an dedue the expliit form of the vetors: ξµ = δµ
0, ηµ = δµ

2 . One
ξ and η do ommute everywhere, it is possible to de�ne oordinates t and ϕ aording to(2.31) ξ = ξµ ∂

∂xµ
=

∂

∂t
and η = ηµ ∂

∂xµ
=

∂

∂ϕ
,where we use the omponent-free notation due the expliit form of Killing vetors. Then fromKilling's equation (2.29) it follows that(2.32) ∂gµν

∂t
= 0 ,

∂gµν

∂ϕ
= 0 .The remaining oordinates are alled r and z and their aording vetor �elds ζ = ∂/∂r and

χ = ∂/∂z are eah orthogonal to both ξ and η due to orthogonal transitivity [Car69℄. Theseorthogonalities imply for instane that gµνξ
µζν = 0 ; with ξµ = δµ

0 and ζν = δν
1 , this in turnimplies g01 = 0. Analogously, from gµνξ

µχν = 0 it follows g03 = 0 and so on, suh that we arriveat the general form of the metri (2.35). This derivation of the general form of axisymmetriand stationary spaetimes is rather formal. Interestingly, it is possible to dedue the result bymuh simpler means.Can we interpret the above formalism in physial terms? First, let us write down the four-veloity that haraterises objets undergoing stationary and purely angular movement,(2.33)
u0 =

dt

dτ
= u0(r, z) , u1 =

dr

dτ
= 0 , u2 =

dϕ

dτ
=

dϕ

dt

dt

dτ
≡ Ω(r, z)u0 , u3 =

dz

dτ
= 0 ,(2.34) where (x0, x1, x2, x3) = (t, r, ϕ, z)is the oordinate notation already introdued above and whih we also use in the following.Further, τ denotes the proper time and Ω(r, z) is the (di�erential) angular veloity. Notably,the gravitational �eld produed by a rotating body aording to (2.33) is neither invariant totime reversal t → −t nor is it invariant under ϕ → −ϕ , for both operations are invertingthe rotational sense of the objet. Now, a simultaneous transformation of both t → −t and

ϕ → −ϕ leaves the movement of the body unhanged. From this we an already dedue whatmetri omponents must vanish: if e.g. g01 6= 0, then g01dtdr would hange signb under thetransformation (t, ϕ) → −(t, ϕ) and thus destroy invariane of the metri. Analogously, we seethat any mixing terms g03, g12, g23 must vanish. Therefore the metri takes the form:(2.35) ds2 = −g00dt2 + 2g02dtdϕ+ g22dϕ
2 + gMNdxMdxN ,where the indies M,N take the values 1 or 3 . Finally, after some oordinate transformations,we arrive at the general axially symmetri and stationary spaetime as due to Lewis [Lew32℄and Papapetrou [Pap66℄(2.36) ds2 = e−2U

[
gMNdxMdxN +W 2dϕ2

]
− e2U (dt+Adϕ)2 ,see also [SKM+03℄. The metri funtions U, gMN ,W and A are free funtions of r and z only,re�eting axisymmetry and stationarity. This is the spaetime that is most general under theabove symmetry assumptions. Note that, with the help of ξµ = ∂xµ/∂t and ηµ = ∂xµ/∂ϕ , it ispossible to write all the metri funtions from (2.36) as salar produts of the Killing �elds(2.37) −e2U = ξαξα , e−2UW 2 − e2UA2 = ηαηα , −e2UA = ξαηα , W 2 = 2 ξ[αηβ] ξ

αηβ .In the following we will disuss to whih extent it is possible to further simplify the generalmetri (2.36), and also what solutions to this ansatz there might exist in General Relativity.bFor an axisymmetri and stationary setup all metri oe�ients will be funtions of r, z only, .f. (2.32).



58 2. THE COSMOLOGICAL PROBLEM OF DARK MATTERWhat we have onsidered so far is the geometry of axially symmetri and stationary systems,that is the left hand side of Einstein's �eld equations of gravity(2.38) Rµν − 1

2
Rgµν = 8πGTµν ,with the Rii tensor Rµν and its trae R ≡ gµνRµν . The remaining input should ome throughthe energy-momentum tensor T µν , that in ase of a perfet �uid takes the form(2.39) T µν = (ρ+ p)uµuν + pgµν with uµu

µ = −1 .However, onstruting solutions to the �eld equations is a very hard task, espeially whenpeuliar a priori assumptions on the symmetries are imposed. The reason for this is that the�eld equations (2.38) are tehnially very ompliated, they represent a oupled system of tenellipti-hyperboli partial di�erential equations.Consequently, what is done �rst, is to try and �nd exterior (vauum) solutions to the Einsteinequations, given by Rµν = 0 . In this ase it is always possible to replae the metri funtion
W (r, z) in (2.36) by r [Isl85℄; we will disuss this simpli�ation, the isotropi gauge, in muhdetail in se. 2.3.3.The �rst solution found is a very famous one, the Shwarzshild solution(2.40) ds2 = −

(

1 − 2GM

r

)

dt2 +

(

1 − 2GM

r

)−1

dr2 + r2dΩ2 ,with the angular element dΩ2 = dθ2 + sin2θdϕ2 . As is well known, this solution desribes the�eld exterior to a spherially symmetri (ollapsed) star with mass M . Further, the systemmust be stati, whih is no assumption but follows from Birkho�'s theorem. The interiorShwarzshild solution also exists. It an be shown that the interior Shwarzshild solution isthe only axisymmetri and stati spaetime that is onformally �at [SKM+03℄.Weyl was then the �rst to �nd a solution involving the general axisymmetri geometry.However, the Weyl solution [Wey17℄ is of limited physial appliability, sine it desribes theexterior solution of a system without rotation, that is an axisymmetri and stati system. Inthis ase, the general spaetime (2.36) an be simpli�ed to(2.41) ds2 = e−2U
[
e2k(dr2 + dz2) + r2dϕ2

]
− e2Udt2 .Another set of solutions that is physially not ompelling, is the Papapetrou lass [Pap53℄.Yet this lass of exterior solutions does not ontain any solution that is asymptotially �atand ontains a non-zero mass. Asymptoti �atness is an important physial requirement, for itenables us to hek the properties of the rotating soure by plaing an observer who is in statiMinkowski spae at some asymptoti distane. We de�ne asymptoti �atness by demanding that,at large distanes from the rotating gravitational system, the spaetime shall look Minkowskian(2.42) ds2 = −dt2 + dr2 + r2dϕ2 + dz2 .This ondition an be ast into one for the metri funtions e2U and A at spatial in�nity,.f. [Isl85℄ and hapt. 19 of [MTW73℄(2.43) e2U = 1 +

2GM√
r2 + z2

+ · · · and e2UA = − 2GSr2

(r2 + z2)3
+ · · · ,where S is the total angular momentum of the soure and the dots stand for higher terms thatvanish towards in�nity faster than the other terms. Unfortunately, the Papapetrou solutions,whih would desribe the exterior of an axisymmetri and stationary rotating system, alwayslead to a zero mass in the �at asymptoti limit.Similarly, the lass of solutions due to Lewis [Lew32℄ and Van Stokum [vS37℄ does notontain any asymptotially �at solutions. The metri here takes the form(2.44) ds2 = r−1/2

(
dr2 + dz2

)
− 2rdϕdt+ rΞdt2 ,Nevertheless, higher dimensional extensions of the Weyl solution are disussed as models of osmi stringsor other exotis, .f. [ER02℄



2.3. MODELLING GALAXIES WITH GENERAL RELATIVITY 59where Ξ obeys ∆(3)Ξ = 0 . If solutions with �at limits exist, these would desribe the �eldof a rotating body that is in�nitely long and axisymmetri around the z-axis. The body doesnot need not to be ylindrially symmetri (this would imply additional translational invarianealong z) but may have a varying shape along the symmetry axis z. Cylindrially symmetri andstationary solutions represent a sublass of the Lewis and Van Stokum lass [SKM+03℄.While the Papapetrou lass of solutions is rotating and has a well-de�ned �at limit, themass assoiated must be zero. Ten years after the disovery of the Papapetrou solution, anothervery famous exterior solution has been found. Using Boyer-Lindquist oordinates (r̂, ϑ)(2.45) r =
(
r̂2 − 2GMr̂ + a2

)1/2
sinϑ , z = (r̂ −GM) cosϑ ,the Kerr solution [Ker63℄ takes the form

ds2 =

(

1 − 2GMr̂

r̂2 + a2 cos2ϑ

)−1
[

(
r̂2 − 2GMr̂ + a2

)
sin2ϑdϕ2 +

(
r̂2 − 2GMr̂ + a2 cos2ϑ

)

×
(

dϑ2 +
dr̂2

r̂2 − 2GMr̂ + a2

)]

−
(

1 − 2GMr̂

r̂2 + a2 cos2ϑ

)(

dt+
2GMar̂ sin2ϑ dϕ

r̂2 − 2GMr̂ + a2 cos2ϑ

)2

.(2.46)Therein a arries the interpretation of an angular momentum per unit mass and M is thetotal mass of the rotating objet. The limiting ases in the above parameterisation range from
a = GM (extreme Kerr limit) and a = 0 (Shwarzshild limit). At very large radii the Kerrmetri is simpli�ed to(2.47)

ds2 ≃ −
(

1 − 2GM

r̂

)

dt2 +

(

1 − 2GM

r̂

)−1

dr̂2 + r̂2
(
dϑ2 + sin2ϑdϕ2

)
− 4Gma sin2ϑ

r̂
dϕdt .Though it is �at, with non-zero mass in the asymptoti limit, the problem is that this solutionis only valid in the vauum ase too. Thus, it ould still be used to model the exterior of arotating blak hole or galaxy. Up to day, no interior solution has been found that mathes theabove exterior Kerr solution and makes physial sense.In the 1970s a similar lass of solutions has been found by Tomimatsu and Sato [TS72℄. Animportant harateristi of the Kerr solution is that it returns to the Shwarzshild form as soonas the rotation stops, a = 0 . This makes sense, for deformations of a spherial rotating bodyare normally due to its rotation and should disappear in the stati limit. However, the maindi�erene of the Tomimatsu-Sato solution to the Kerr solution is that it does not possess suh anie stati limit. Instead, the stati limit oinides with the axisymmetri Weyl solution whihmakes the model unphysial [Isl85℄.As we have seen, already the known exterior solutions are not very numerous. Furthermore,a lot of them are anyway of mathematial importane only, like e.g. the Papapetrou lass ofsolutions. It remains to onsider the right hand side of the Einstein equations (2.38) and whetherthere exist appropriate soures when axisymmetry and stationarity is assumed. Merging exteriorand interior solutions in a proper way poses a highly non-trivial program and there do not existmany suh global models. By now, the situation ould be desribed like this: to vauum solutionsthat are be physially tempting, always very exoti and sometimes unphysial soures must beassigned. In other words, quoting Hermann Bondi [BL93℄:[...℄ the soures suggested so far for the [Kerr℄ metri are not the easiestmaterials to buy in shops.One of the very rare exeptions is the global Van Stokum solution [vS37℄. In this solution asetup of an in�nitely long, sti�y rotating dust ylinder is realised. Van Stokum was able tomath smoothly the original exterior solution we disussed above, to an interior solution thathe found independently. In [VW77℄ the ompliation of a non-rigid rotation within the VanStokum lass has been inorporated. Aording to [SKM+03℄ there does not exist any solution



60 2. THE COSMOLOGICAL PROBLEM OF DARK MATTERat all to the problem of an axially symmetri and di�erentially rotating perfet �uid systemwith non-zero pressure up to day.It should be noted that also the Van Stokum lass of solutions is not free from shortomings.First, as pointed out by Bonnor [Bon80℄, in the Van Stokum solution the matter density isgrowing exponentially with radial distane to the axis of symmetry as ρ = α2eα2r2

/(2π) where
α is an arbitrary positive onstant. Seond, the Van Stokum lass implies the existene oflosed timelike urves, similar to those ourring in the Gödel solution. Notably, the losedtimelike urves do not lie on geodesis, i.e. observers that undergo these orbits are neessarilyaelerating. The existene of suh urves is hard to reonile with ausality.All of the above approahes are based on the philosophy that the geometri part, the metri,of a given problem is �xed �rst and then the solutions for the matter �elds (usually a perfet�uid) are derived by solving Einstein's equations; this is the lassial method. There are severalgroups that attak the problem the other way round. As a representative thereof, we mentionhere the Neugebauer and Meinel solution [NM95℄ where the so-alled inverse (sattering) methodis applied. It an be shown that the Einstein equations for the problem of an axially symmetriand stationary gravitating system are formally equivalent to the assoiated Ernst equation(2.48) Re(E )∆(3)

E = ∆(2)
E .In [NM95℄ and sueeding works an in�nitesimally thin dis of dust is presumed and expliitsolutions for the omplex Ernst potentials E and thus to the Einstein equation are derived interms of ultraellipti funtions as well as related theta funtions. For the mathematial notionssee e.g. [AS72℄. Being immensely ompliated, this appears to be the �rst formally ompletesolution to the problem of an axisymmetri and stationary rotating thin dis of dust withinGeneral Relativity.2.3.2. The Cooperstok and Tieu Solution. In a reent series of works, Cooperstokand Tieu suggest a new approah to the Dark Matter problem, namely via General Relativity,see [CT05a℄, [CT05b℄ and [CT06℄. Rewritten in our signature, the metri of the CT model is(2.49) ds2 = eν−w

(
dr2 + udz2

)
+ r2e−wdϕ2 − ew (dt+Ndϕ)2 .The authors immediately set u ≡ 1 suh that there remain only three harateristi funtionsto the metri ν, w and N , all being funtions of only r and z .The matter model that is used is that of uniformly rotating dust. Further, omoving oordi-nates are used in whih an observer measures the four veloity as uµ = δµ

0 . From the invariantondition uµuµ = gµνu
µuν = −1 we immediately get w = 0 . Di�erential rotation is establishedthrough the transformation ϕ′ 7−→ ϕ+ω(r, z)t whih diagonalises the metri (2.49) loally. Notethe di�erene between w and ω . The angular veloity and the observable tangential veloitybeome(2.50) ω =

New

r2e−w −N2ew
≃ N

r2
and v = ωrfor weak �elds. Writing the �eld equations to order G1 yields(2.51) N2

,r +N2
,z

r2
= 8πGρ and N,r,r +N,z,z −

N,r

r
= 0 .We see that the �rst �eld equation is a non-linear one. Note that, although the �eld equationsare expanded to order G1 , the harateristi funtion N is obviously of order G1/2 whih will beimportant later. It is emphasised in [CT06℄ that the metri funtion N , unlike w whih vanishesdue to the hoie of omoving oordinates, annot be eliminated onsistently. Therefore the non-linearity between N and ρ in (2.51) is understood to be harateristi to this problem. However,

w would not be onstant if the pressure was non-zero. On the other hand, when performing thelimit of vanishing ω , N vanishes also, but sine the system must remain stati there will be anon-zero pressure in that ase. In this ase, w is not onstant, quite the ontrary, it would thenserve the Poisson equation.



2.3. MODELLING GALAXIES WITH GENERAL RELATIVITY 61Further, CT de�ne a quasi-potential by(2.52) ΦCT =

∫
N

r
dr ,suh that we have v = ∂ΦCT/∂r , whih together with (2.50) returns a Newtonian-like de�nitionof the tangential veloity, .f. [BT94℄. The potential equation then beomes(2.53) ∆(3)ΦCT = ΦCT

,r,r + ΦCT
,z,z +

ΦCT
,r

r
=
N,r

r
+

∫
N,z,z

r
dr .Inserting the �eld equation N,z,z = N,r/r −N,r,r then yields(2.54) ∆(3)ΦCT = 0 .Hene there is a diret orrespondene between the Laplae equation ∆(3)ΦCT = 0 and theseond equation in (2.51) after de�ning the tangential veloity in the usual way v = ∂ΦCT/∂r .Looking at (2.51) it beomes lear that it is better to �rst solve for the generating potential

ΦCT and then, after obtaining N , to ompute the density pro�le. This is simply beause the�eld equation for ρ is non-linear, whereas the potential equation is linear. Thus the CT strategyis to model galati rotation urves with the help of the potential ΦCT , then readily obtain Nfrom the �t and �nally alulate the density.The separation of variables ansatz yields a general solution to the Laplae equation in termsof Bessel funtions of the �rst kind(2.55) ΦCT =
∑

n

Cne
−kn|z|J0(knr) and v = −

∑

n

knCne
−kn|z|J1(knr) ,where the kn are onstants that are hosen so that orthogonality of the J0 funtions is main-tained; see for instane the appendix of [BT94℄ for useful details on the Bessel funtions.The �nal results applied to the Milky Way, NGC 3031, NGC 3198 and NGC 7331, �t therotation veloities remarkably well [CT06℄. The total dis mass produing the non-Keplerianbehaviour is quoted to be one order of magnitude smaller [CT06℄ than the one suggested bytypial dark halo models. It is ruial to note that a suessful �t of e.g. only the rotation urveswould not be surprising alone; the fat that both the rotation urve and the density pro�le anbe reprodued realistially makes the model interesting.In several works that ritiise the CT model, it has been shown that there exist pathologieswithin the energy-momentum tensor or various other imponderableness. Korzy«ski [Kor05℄argues that (A) a proper asymptotial �at limit is not ontained in the CT model beause of theonsidered gauge; and that (B) the CT model must be unrealisti beause unexpeted additionalmatter soures at z = 0 an be found.To (A): Korzy«ski derives a general perturbative form of the �eld equations for dust, ex-panded in G1/2 and onludes that no asymptotially �at solutions exist if the lowest expansionoe�ient of the metri is G1/2. Reall, that both N and ΦCT are of order G1/2 . However, theshemati Korzy«ski equations look rather di�erent to the CT equations, for Korzy«ski works ona Minkowskian bakground and spends the remaining gauge freedom to simplify the equationswithin the De Donder gauged.To (B): While the Bondi mass and ADMe mass an be de�ned for asymptotially �atexterior solutions, the Komar mass is an invariant that an be de�ned for any spaetime that isstationary. In that ase, due to Noether's theorem, time-translation symmetry ensures that thetotal energy of the system is a onserved quantity. Beause a well-de�ned zero-momentum frameis present, the invariant an be de�ned as the system's mass, the Komar integral [Kom58℄. TheKomar integral an be de�ned onsidering an analogy to the gravitational mass from Gauss' law,.f. [Wal84℄. In the presene of a timelike Killing vetor �eld we an de�ne the di�erential formdA frame of harmoni oordinates or De Donder gauge is reahed by the requirements gαβΓγ

αβ = 0 , orequivalently �2xγ = 0 .eNamed after Arnowitt, Deser and Misner. For an overview on energy-momentum in General Relativity see[Sza04℄.



62 2. THE COSMOLOGICAL PROBLEM OF DARK MATTER
dξ and denote the assoiated Hodge dual by ⋆dξ . Assuming that ∇αξβ = ∇[αξβ], whih holdsbeause of Killing's equation (2.29), we an write the di�erential of the dual form as [Kor05℄(2.56) d ⋆ dξ =

1

3
Rµαξαεµνρσ dxν ∧ dxρ ∧ dxσ ,where εµνρσ is the spaetime volume form. Inserting for the Rii tensor and integrating overan arbitrary three-dimensional volume V yields(2.57) ∫

∂V

⋆dξ =

∫

V

d ⋆ dξ =
4πG

3

∫

V

(2Tαµξα − Tξµ) εµνρσ dxν ∧ dxρ ∧ dxσ .The ruial point is that, if there was only dust matter, the limit of shrinking the integrationvolume to zero must also yield a zero Komar integral, that is of ourse beause the mass inside azero volume is zero. If, on the other hand the Komar integral (2.57) gave a non-zero value in theshrinking volume limit, we must onlude that singularities in the energy momentum tensor arepresent. That is exatly what happens in the ase of the CT model. To see that, one an hoosefor the integration volume a three-dimensional �nite ylinder with r ∈ [0, R] and z ∈ [−a, a]with a and R taking positive real values. The Komar integral an be split into three parts: top(z = a) and bottom (z = −a) irular surfae parts It, Ib and a side surfae part Is(2.58) It + Ib + Is =

∫ 2π

0

dϕ

∫ R

0

N

r

∂N

∂z
dr

∣
∣
∣
∣
∣
z=a

−
∫ 2π

0

dϕ

∫ R

0

N

r

∂N

∂z
dr

∣
∣
∣
∣
∣
z=−a

+ Is .Now, we insert N from (2.52) aording to the CT model and let the volume of the ylinder goto zero by shrinking it in the z-diretion. The side surfae integral indeed vanishes but the tworemaining integrals neither vanish nor anel eah other:(2.59) r - lim
a→0

(It + Ib) = r - lim
a→0

4π

∫ R

0

N

r

∂N

∂z
dr

∣
∣
∣
∣
∣
z=a

= 4πk5

∫ R

0

rJ2
1 (kr)dr 6= 0 .Therefore there must exist an additional soure of matter at z = 0 in the CT model and thisorresponds to a singular behaviour of the energy-momentum tensor at the disontinuity.Further ritiism has been raised in the years after the publishing of the CT model. In[VL05℄ the properties of the CT energy-momentum have been analysed. The result reveals thatthe additional omponent in the z = 0 plane is due to matter with negative energy density.On the other hand, in [Gar06b℄ it is argued that post-Newtonian orretions should alreadyenfold non-linear e�ets if they are present and that at the same time the post-Newtonian orre-tions to the Newtonian equations are understood to be small in the limit of small veloities andweak �elds. Therefore the author laims that there should be no di�erene between Newtonianand general relativisti analyses onsidering Dark Matter.In [Cro06℄ the following inonsisteny is revealed: the ovariant vanishing of shear in theCT model is demonstrated and it is pointed out that this re�ets rigid rotationf whih is inontradition with the initial CT assumption of di�erential rotation. Further, the author of[Cro06℄ notes that the �at rotation urve from the CT model would imply a large transferof inertia from the inner rotating parts of a galaxy onto the outer parts, hene �attening therotation urve in the outer regions. Sine this is unexpeted from General Relativity the authorspeulates that the CT model might be a manifestation of an alternative theory of gravity,one that follows the Mahian philosophy where large indution of inertia e�ets are ertainlythinkable.But there also exist laims that are supporting the model of CT. Using an exat solutionand somewhat di�erent tehniques, the authors of [BG06℄ derive a solution similar to that ofCT. They �nd the unexpeted result that in their model the amount of neessary Dark Matteris redued by ∼ 30% .fA result already found by Bonnor in his analysis of an in�nitely long and axisymmetri dust loud [Bon77℄.



2.3. MODELLING GALAXIES WITH GENERAL RELATIVITY 632.3.3. Finding the Newtonian Counterpart to the CT Model � Part I. Our basiidea is the following: if there are valid e�ets from the CT model, a diret omparison with theNewtonian equations would be very intersting. To do so, we shall �nd the orret Newtonianlimit of the CT model. But before we turn to the issue of the Newtonian limit, we shouldreonsider the general spaetime(2.60) ds2 = e−2U
[
gMNdxMdxN +W 2dϕ2

]
− e2U (dt+Adϕ)2 .Reall that M,N take values 1 or 3 . But it is always possible to go to isotropi oordinates(2.61) gMN = e2kδMN ,without touhing the generality of (2.60), .f. [SKM+03℄. Therefore we note a entral result:the �nal form of the most general axisymmetri and stationary spaetime due to Lewis andPapapetrou (LP) is(2.62) ds2 = e−2U

[
e2k(dr2 + dz2) +W 2dϕ2

]
− e2U (dt+Adϕ)2 .We reall that the free metri funtions U, k,W,A are all funtions of only r, z .It is possible to simplify (2.62) a bit more, but only under ruial assumptions. We will showthat, if and only if the metri funtion W is harmoni, it an be transformed tog W = r . Letus onsider a omplex oordinate transformation f(r+ iz) = W + iV introduing an additionalpotential V . Then we have from ρ ≡W (r, z) and h ≡ V (r, z) the di�erentials(2.63) dρ =

∂W

∂r
dr +

∂W

∂z
dz and dh =

∂V

∂r
dr +

∂V

∂z
dz .The oordinates ρ, h are only dummies that we introdue for bookkeeping reasons. Thereforewe insert into (2.62), written in terms of ρ, h , and have

ds2 = e−2U
[

e2k̃(dρ2 + dh2) + ρ2dϕ2
]

− e2U (dt+Adϕ)2 7−→ ds2 = e−2U

{

e2k̃ ×

×
[(

∂W

∂r

)2

dr2 +

(
∂W

∂z

)2

dz2 + 2
∂W

∂r

∂W

∂z
drdz +

(
∂V

∂r

)2

dr2 +

(
∂V

∂z

)2

dz2

+ 2
∂V

∂r

∂V

∂z
drdz

]

+W 2dϕ2

}

− e2U (dt+Adϕ)2 .(2.64)Requiring formal invariane as ompared to the original metri, we see that the mixing termsshould vanish. That is exatly provided by the Cauhy-Riemann equations for W and V(2.65) ∂W

∂r
=
∂V

∂z
and

∂W

∂z
= −∂V

∂r
.Moreover, with the help of the Cauhy-Riemann equations, we see that the oe�ients of dr2and dz2 an be ombined to a positive de�nite quantity(2.66) (

∂W

∂r

)2

+

(
∂V

∂r

)2

=

(
∂W

∂z

)2

+

(
∂V

∂z

)2

≡ K̃ ≥ 0 ,suh that we an ombine e2k̃K̃ ≡ e2k and so obtain (2.62) via (2.64). Thus we have shown thatit is possible to simplify the general LP form (2.64) by allowing W = r , whih is only possibleif the transformation f is analyti, that is W (and also V ) must be a harmoni funtionh,
∆(2)W = 0 . Then, we an write down the LP metri in isotropi oordinates (or Weyl gauge)(2.67) ds2 = e−2U

[
e2k(dr2 + dz2) + r2dϕ2

]
− e2U (dt+Adϕ)2 .gAlso W = 1 is possible then, but this ase is of no interest as we will see later.hNote that, this ondition for W holds for exterior solutions that are stationary and axisymmetri [Isl85℄.



64 2. THE COSMOLOGICAL PROBLEM OF DARK MATTERFor omparison let us repeat the CT metri (u = 1),(2.68) ds2 = eν−w
(
dr2 + dz2

)
+ r2e−wdϕ2 − ew (dt+Ndϕ)

2 .Obviously, the CT metri does not belong to the lass of the most general stationary andaxisymmetri spaetimes; it belongs to the sublass of LP solutions in the Weyl gauge, and istherefore less general.Now, let us try to approah the problem of �nding a Newtonian ounterpart to the CT model(2.68). If there are really advantages in a ertain general relativisti approah then eventuallywe an pin the di�erenes down by omparison to the well-known Newtonian physis.The `Newton metri', that is the metri that reprodues Newtonian physis, is given by(2.69) ds2 = −(1 + 2φ)dt2 + dr2 + r2dϕ2 + dz2 ,where φ(r, z) is the Newtonian gravitational potential. For simpliity, we start with only rigidrotation, that is(2.70) ϕ = ϕ′ − ω t .Then the rigidly rotated Newton metri (2.69) is exatly(2.71) ds2 = (dr2+dz2)+
1 + 2φ

(1 + 2φ− ω2r2)
r2dϕ2−(1+2φ−ω2r2)

[

dt+
r2ω

(1 + 2φ− ω2r2)
dϕ

]2

.In this form we an diretly ompare the metri with the LP metri in Weyl gauge (2.67), andwe notie a disrepany at linear order in φ , looking at the dϕ2 term. Interestingly, the rigidlyrotated Newton metri (2.71) is not in aord with the isotropi form of the LP lass (2.67) � asit should be for onsisteny � but it is in perfet aordane with the general form of the latter(2.62).Now, one ould speulate whether the situation might be easily ured with the help of aoordinate transformation. Above we have derived the exat onditions under whih the generaland the isotropi LP metri an be transformed into eah other: the funtion W must be aharmoni funtion with respet to the two-dimensional Laplaian ∆(2)W = 0 .In the present ase, of the rigidly rotating Newton metri, W is given by(2.72) W = r
√

1 + 2φ ,expanding and applying the Laplaian yields(2.73) ∆(2)W = r∆(3)φ+ φ,r = 4πGρr + φ,r .Note that we an use the Poisson equation beause the potential is Newtonian. After repeatingsome fats from potential theory we will show that ∆(2)W in fat does not vanish in general.Given the general problem of solving the Laplae equation with the appropriate boundaryonditions for a dis-like distribution of matter, the solution for the potential an be obtainedvia separation of variables, .f. [BT94℄(2.74) φ(r, z) =

∫ ∞

0

S(k)J0(kr)e
−k|z|dk .A given surfae mass density Σ(r) is then haraterised by the aording Hankel transform(2.75) S(k) = −2πG

∫ ∞

0

J0(kr)Σ(r)rdr .Now we an use these expressions for the evaluation of (2.73).
� Case (A) z 6= 0 � Outside the dis the Newtonian potential ful�ls the Laplae equation,suh that the expression (2.73) takes the form(2.76) ∆(2)W = −

∫ ∞

0

S(k)J1(kr)ke
−k|z|dk at z 6= 0 ,



2.3. MODELLING GALAXIES WITH GENERAL RELATIVITY 65whih will not vanish in general. As a simple example we onsider the Mestel dis model ofa galaxy [Mes63℄. In the Newtonian Mestel model a �at rotation urve an be reahedi. TheMestel model is haraterised by a surfae mass density that falls o� inversely with the distane(2.77) Σ(r) =
Σ0r0
r

.In a Mestel galaxy the surfae density Hankel-transforms as S(k) = −2πGΣ0r0/k. Using thiswe an integrate diretly and obtain(2.78) ∆(2)W = 2πGΣ0r0

(
1

r
− |z|
r
√
r2 + z2

)

at z 6= 0 .

� Case (B) z = 0 � We want to show that (2.73) is non-zero also here. Let us assume theontrary and see what happens. If we assume that ∆(2)W = 0 was true then equation (2.73)gives an identity. We integrate this identity over z for some ε > 0 and then revoke the operationby performing the appropriate limit(2.79) −4πGr lim
ε→0

∫ ε

−ε

δ(z)Σ(r)dz = lim
ε→0

∫ ε

−ε

∫ ∞

0

S(k)J1(kr)ke
−k|z|dkdz .Sine the exponential term on the right hand side serves as a damping fator, the modulus ofthe integrand will reah its maximum at z = 0. Thus, as an upper estimate, we an set theintegrand of the right hand side to be onstant in z and therefore the integration and limitproedure give zero. Then, for all other z the expression will be zero more than ever and weobtain(2.80) 4πGΣ(r)r = 0 .This will not hold generally for any realisti model, hene produing a ontradition, and there-fore ∆(2)W (r, z) = 0 is not true at the surfae z = 0 either.Interestingly, the pure Newton metri (2.69) annot be made ompatible with the LP metriin Weyl form and thus is also not ompatible with the CT model. We should go one step furtherand onsider the Post-Newtonian (PN) metri(2.81) ds2 = −(1 + 2φ)dt2 + (1 − 2ψ)(dr2 + r2dϕ2 + dz2) ,with some additional PN potential ψ . Sometimes, this metri (with ψ = φ) is referred to as the`Newton metri' in the literature. The reason for this nomenlature might be that the order ofmagnitude of the oe�ient of the spatial part dx2 and the order of the Newtonian orretionare the same. Nevertheless, oneptually this makes an enormous di�erene. In lassial NewtonGravity there exists no urvature of spae, the three-spae is always eulidian. This is exatlyre�eted in the Newton metri (2.69) and therefore we refer to (2.81) as the PN metri; for anextensive disussion see hapt. 39 in [MTW73℄.Let us again perform the sti� rotation (2.70) on the PN metri. The result (inluding higherorders) is

ds2 = (1 − 2ψ)(dr2 + dz2) +
1

(1 + 2φ− (1 − 2ψ)ω2r2)
r2dϕ2

− (1 + 2φ− (1 − 2ψ)ω2r2)

[

dt+
(1 − 2ψ)ωr2

(1 + 2φ− (1 − 2ψ)ω2r2)
dϕ

]2

.(2.82)The omparison shows that this metri is in perfet aordane with (2.67) via
e2k = (1 − 2ψ)(1 + 2φ− (1 − 2ψ)ω2r2) , e2U = (1 + 2φ− (1 − 2ψ)ω2r2)

W 2 = r2 , A = − (1 − 2ψ)ωr2

(1 + 2φ− (1 − 2ψ)ω2r2)
.(2.83)iThe �at rotation urve in the Mestel model an easily be obtained from the Hankel transform of (2.77),inserted into the formula for the rotation urve: v2(r) = r(∂φ/∂r)z=0 = 2πGΣ0r0 .



66 2. THE COSMOLOGICAL PROBLEM OF DARK MATTERThus the PN metri (2.81) belongs to the lass of isotropi (Weyl) axisymmetri and stationarysolutions whereas the Newton metri (2.69) does not allow for that simpli�ation.Our aim is to approah the CT model from the side of Newton gravity. The next step isto allow for di�erential rotations ω = ω(r) in order to try to make the model stepwise morerealisti. So we relax the ondition of rigid rotation and onsider transformations(2.84) ϕ = ϕ′ − ω(r) t ,whih we apply to the PN metri and arrive at a lengthy expression:
ds2 = (1 − 2ψ)dz2 + (1 − 2ψ)(1 + r2ω2

,rt
2)dr2 +

1

(1 + 2φ− (1 − 2ψ)ω2r2)
r2dϕ2

− (1 + 2φ− (1 − 2ψ)ω2r2)

[

dt+
(1 − 2ψ)ωr2

(1 + 2φ− (1 − 2ψ)ω2r2)
dϕ

]2

+ (1 − 2ψ)2r2ωω,rtdrdt − (1 − 2ψ)2r2ω,rtdrdϕ .(2.85)Unfortunately, this metri exhibits diret time dependene in some oe�ients � whih is aoordinate artefat. Beause of the stationarity onstraint (2.32), the di�erentially rotated PNmetri (2.85) only makes sense in a stritly loal sense, that is within small time intervals(r2ω,rt≪ 1). In other words, the oordinate transformation (2.84) is not a good transformationbeause it holds only as long as ω(r)t < 2π . But there might be another problem: obviously, therotated PN metri (2.85) is not of the same form as the LP spaetime. Fortunately, it turns out� after a somewhat tedious alulation � that it is possible to �nd a oordinate transformationin r using a ertain funtion r = g(r′, ϕ, t) . Therefore we perform the following translationaltransformation on the metri (2.85)(2.86) dr = g,r′dr′ + g,ϕdϕ+ g,tdt .We solve for the transformation parameters � letting primes away � using the LP onstraintsand get
g,r =

√

1 − 2ψ

B
, g,t =

(1 − 2ψ)ωω,rr
2t

B
, g,ϕ =

(1 − 2ψ)ω,rr
2t

B
,

B = 1 − 2ψ + (1 − 2ψ)r2ω2
,rt

2 .(2.87)The fully rotated PN metri (2.85) with the most general angular veloity ω = ω(t, r, z) is ahorrendous expression that is written down in omponents in equations (C.3) in the app. C.Before we now ontinue on the level of dynamial equations to pin down the di�erene of thetwo Newtonian metris (2.69) and (2.81), of whih one is ompatible with the LP model andone is not, we shall reall a few fats on the 3 + 1 split of spaetime.2.3.4. The Arnowitt-Deser-Misner split. In order to gain physial insight into ompli-ated problems in General Relativity it is often very useful to return to a familiar foliation intoseparate dimensions. There exists a well-de�ned way how to split spaetime into spae and timeparts (manifolds). This formalism has been developed by Arnowitt, Deser and Misner [Arn62℄and is heneforth alled ADM split, see also paragraph 21.4 in [MTW73℄ or [Yor79℄. It an bederived from the appliation of the proper boundary onditions on the problem of onstrutinga rigid `sandwih' struture of a one-parameter sequene of spaelike hypersurfaes, see �g. 2.7.The appliation of Pythagoras' theorem in the four-dimensional setup then diretly yields theform that the metri has to attain with regard to the rigidity of suh a onstrution:(2.88) ds2 = −N2dt2+gij(dx
i+N idt)(dxj+N jdt) = −(N2−NiN

i)dt2+2Nidtdx
i+gijdx

idxj .Here gij haraterises the metri of the spatial hypersurfaes.Depending on the hoie of oordinates given by (2.88) we de�ne the `normal vetors'(2.89) nµ = N(−1,0) and nµ =
1

N
(1,−N i) ,



2.3. MODELLING GALAXIES WITH GENERAL RELATIVITY 67whereby we introdue the lapse funtion N and the shift vetor N i . For onrete alulation itis important to be aware of the fat that only the indies of nµ are raised or lowered with thefour-metri gµν , and that to do so with the Ni one may only use the spatial metri gij . Further,it will be useful to de�ne the following projetor(2.90) hµ
ν = δµ

ν + nµnν ,whih indues the three-metri into the hypersurfaes. Next we want to take advantage of thefat that we ahieved a dimensional redution of the hypersurfaes.

Figure 2.7. Illustrating the ADM split: the general relativisti spaetime is de-omposed into spaelike hypersurfaes labelled with time oordinate. Two three-dimensional spaelike hypersurfaes, say at t and t+dt , are onneted in a rigid way,by inserting perpendiular onnetors between the slies, with tailor-made lengths andshifts, suh that a sti� `sandwih struture' is maintained. The onnetors are givenby the lapse funtion N (whih orresponds to the hoie of sliing) and the shift ve-tor N i (whih orresponds to the hoie of spatial oordinates xi on hypersurfaes).The requirement of rigidity leads diretly to the ADM metri (2.88). The piture istaken from [MTW73℄.Often, the entral question of general relativisti problems is that of spaetime urvature.Usually, it makes no sense to onsider extrinsi urvature beause it is not obvious how to assign aphysial meaning to a �ve-dimensional manifold in whih the urvature of our four-dimensionaluniverse is measured. Therefore General Relativity is a theory of the intrinsi gravitationalurvature of spaetime. When using the ADM framework it suddenly makes sense to onsiderextrinsi urvature, i.e. the spatial urvature of the foliated hypersurfaes with respet to theusual four-dimensional general relativisti spaetime. The extrinsi urvature is de�ned as(2.91) Kij ≡ −hµ
ih

ν
jni;j ,whih, in ase of time-independene of the metri gij , an be written in the ommon form(2.92) Kij ≡ 1

2N

(
Ni,j +Nj,i − 2Γℓ

ijNℓ

)
.The de�nition ofKij an be understood more deeply when trying to derive it from a fundamentalpriniple, namely the Lie derivative. Loosely spoken, the Lie derivative is something like ageneralised diretional derivative. The extrinsi urvature an be interpreted as the di�erenethat ours during a parallel transport of a normal vetor on the spatial hypersurfae withrespet to the embedding (four-dimensional) spae(2.93) −2Kij = Lngij .The extrinsi urvature is nothing else than the Lie derivative of the three-metri gij in thediretion of the four-vetor nµ . Interestingly, the original de�nition of the Lie derivative for



68 2. THE COSMOLOGICAL PROBLEM OF DARK MATTERfour-dimensional quantities is formulated only by applying partial derivatives(2.94) Lagµν ≡ gµν,λa
λ + gµρa

ρ
,ν + gκνa

κ
,µ ,with respet to some four-diretion a . This is the Lie derivative as it is de�ned. It representsa derivative of a four-tensor (gµν) in diretion of a four-vetor �eld aµ . We have to apply thisto the problem (2.93) where we are looking for the Lie derivative of a three-tensor gij along thefour-vetor �eld nµ . The ansatz gives

Lngij = gij,0n
0 + gij,kn

k + giℓn
ℓ
,j + gsjn

s
,i

=
1

N

(
gij,0 −Ni,j −Nj,i + giℓ,jN

ℓ + gsj,iN
s − gij,kN

k
)

=
1

N

{

gij,0 −Ni,j −Nj,i + 2

[
1

2
gℓp (gip,j + gpj,i − gij,p)Nℓ

]}

=
1

N

[
∂tgij −

(
Ni;j +Nj;i
︸ ︷︷ ︸

LN gij

)]
= −2Kij ,(2.95)and thus we have derived the evolution equation of the spatial metri (2.92).Now we are prepared to write down the full set of ADM equations [Bu01℄ that govern thedynamis of the 3+1 system � assuming a vanishing osmologial onstant �[Hamiltonian or Energy Constraint℄(2.96) R −Ki

jK
j
i +K2 = 16πGE with E ≡ Tµνn

µnν ,[Momentum Constraints℄(2.97) Kj
i;j −K;i = 8πGJi with Ji ≡ −Tµνn

µhν
i ,[Evolution Equation for the Metri℄(2.98) 1

N
gij,0 = −2Kij +

1

N

(
Ni;j +Nj;i

)
,[Evolution Equation for the Extrinsi Curvature℄(2.99)

1

N
Ki

j,0 = R
i
j+KK

i
j−

1

N
N ;i

;j+
1

N
(Ki

kN
k
;j−Kk

jN
i
;kN

kKi
j;k)−8πG

[

Si
j +

1

2
δi

j(E − S)

]

,with Sij ≡ Tµνh
µ
ih

ν
j , and the aording trae equations,[Evolution Equation for the Extrinsi Curvature (Trae)℄(2.100) 1

N
K,0 = R +K2 − 4πG(3E − S) − 1

N
N ;k

;k +
1

N
NkK;k ,[Evolution Equation for the Metri (Trae)℄(2.101) 1

N
g,0 = 2g

(

−K +
1

N
Nk

;k

)

with g ≡ det(gij) .2.3.5. Finding the Newtonian Counterpart to the CT Model � Part II. Applyingthe ADM split to the rotating Newton metri should yield the equations of movement, and onthis level the di�erenes between Newtonian and CT model might beome transparent. Let usapproah the problem in steps and thus �rst start with the stati post-Newtonian metri beforewe inlude more and more ompliations.
� Setup (1) stati Newton model � In what follows we will always use the linearisedNewtonian metris and further approximations will be stated expliitly. We use the more generalPN metris and speialise to the Newton metri by setting ψ = 0 where it is apposite. Thewarm-up exerise is going to be the simple stati PN metri in artesian oordinates(2.102) ds2 = −(1 + 2φ)dt2 + (1 − 2ψ)(dx2 + dy2 + dz2) ,



2.3. MODELLING GALAXIES WITH GENERAL RELATIVITY 69with φ = φ(x, y, z) and ψ = ψ(x, y, z) . We read o� the ADM-relevant expressions and note(2.103) N i = 0 = Ni , N2 = (1 + 2φ) , gij = (1 − 2ψ)δij , gij =
1

1 − 2ψ
δij .In three dimensions there are 15 non-vanishing omponents of the Christo�el symbol, they arelisted in app. C under equations (C.5). Sine the shift vanishes ompletely and the induedmetri does not depend on time, then the extrinsi urvature also vanishes due to (2.92),(2.104) Kik = 0 , K = 0 ,and the trae being denoted with K ≡ Ki

i . Further, the non-vanishing omponents of thethree-dimensional Rii tensor are omputed and listed in the app. C under (C.6). The �nalresult for the three-Rii salar is(2.105) R =
4

(1 − 2ψ)2
∆

(3)
cartψ +

6

(1 − 2ψ)3
(∇(3)

cartψ)2 ≃ 4∆
(3)
cartψ ,where Dcart stands for the aording operators in artesian oordinates. This result is onsistentwith the one resulting from the well known �rst-order formula in the Newtonian ase [Sh85℄(2.106) Rijkl = δikψ,j,l + δjlψ,i,k − δilψ,j,k − δjkψ,i,l .As a matter model of the galaxy we hoose dust, implying that the energy-momentum tensoris that of a perfet �uid with vanishing pressure, Tµν = ρuµuν where uµ is the four-veloity ofa omoving observer. Note that in this setup it is not possible to simply set uµ = nµ , like itis done usually � beause that would exlude to treat rotation. In ase of the stati Newtonmetri, the normals are nµ = N(−1,0) and nµ = 1/N(1,0) . Therefore the E funtion � whihis the energy density seen by the �duial ADM observer � in the ADM formalism beomes(2.107) E = Tµνn

µnν = ρN2(u0)2 = ρ
1

N2
(u0)

2 .Similarly, we an evaluate the Poynting vetor Ji in this ase(2.108) Ji = −Tµνn
µhν

i = ρNu0ui .The alulation of the full divergene of the lapse funtion yields
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≃ ∆
(3)
cartφ ,(2.109)as well as N ;i

;j ≃ φ,i,j for i 6= j . In the end the ADM equations beome
R = 16πGE , E = ρN2(u0)2 , (Hamilton constraint)

Ji = ρNu0ui = 0 , (momentum constraint)
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;j − 8πG
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Si
j +

1

2
δi

j(E − S)

]

, (evolution, non-trace)

0 = R − 1

N
N ;k

;k − 4πG(3E − S) , (evolution, trace)(2.110)with the stress tensor Sij = ρuiuj . Next we analyse the two ases of the lassial Newton metriand the PN metri.
� Case (A) ψ = 0 and φ 6= 0 (lassial Newton metri) � Sine ψ vanishes, it follows diretlythat R = 0 , and thus from the Hamilton onstraint with vanishing E , we have ρ = 0 ∨ u0 = 0whih is equally absurd. If we assume ρ 6= 0 , the momentum onstraint is satis�ed and ui 6= 0is possible. So by now we have(2.111) u0 = 0 , ui 6= 0 , ρ 6= 0 .The trae of the evolution equation yields a Poisson-like equation(2.112) ∆

(3)
cartφ = 4πGS = 4πGρuiui



70 2. THE COSMOLOGICAL PROBLEM OF DARK MATTERand the non-trae part of the evolution equation yields(2.113) φ,i,j = −8πGSi
j = −8πGρuiuj .On the other hand, we ould hoose ρ = 0 whih implies u0 6= 0 , and this leads to ∆

(3)
cartφ = 0and φ,i,j = 0 whih is the ase of a test partile � onsistent but not very useful.Astonishingly, the lassial Newton solution does not make sense in the ADM split. Either

u0 = 0 or ρ = 0 must be aepted but both results are unphysial. We assume that here the PNterms are neessary in order to make sense out of the ADM split and therefore proeed with thefollowing ase.
� Case (B) ψ = φ 6= 0 (simplest PN metri) � Note that, taking ψ = φ 6= 0 right fromthe beginning is justi�ed beause the ansatz φ 6= 0 , ψ 6= 0 but φ 6= ψ , will require φ = ψfor onsisteny, as we will see now. The Hamilton onstraint returns us a reasonable Poissonequation right away,(2.114) ∆

(3)
cartψ = 4πGρN2(u0)2But with u0 6= 0 and ρ 6= 0 the momentum onstraint gives ui = 0 and therewith a vanishingstress tensor. Consisteny is indiated by the trae part of the evolution equation, it returnsthe same Poisson equation (2.114), only with the requirement ψ = φ. The non-trae equationsgive only trivial identities with the same requirement. Therefore it is onluded that in orderto make sense out of the ADM split, already at the level of a stati setup (in ombination withdust matter), the lassial Newton metri makes no sense whereas the PN metri does.

� Setup (2) rigidly rotated Newton model � A rigid rotation aording to (2.70) with anonstant angular veloity ω an be desribed with the following exat PN spaetime(2.115)
ds2 = [(1− 2ψ)ω2r2 − (1 + 2φ)]dt2 + (1− 2ψ)(dr2 + dz2) + (1− 2ψ)r2dϕ2 − (1− 2ψ)2r2ωdϕdt .Now a non-vanishing shift is present. Interestingly, also here the extrinsi urvature vanishesexatly,(2.116) Kik = 0 , K = 0 .The non-vanishing quantities, relevant for the ADM split, are to exat order:

Nϕ = −(1 − 2ψ)ωr2 , Nϕ = −ω , N2 = (1 + 2φ) , g11 = g33 = (1 − 2ψ) ,

g22 = (1 − 2ψ)r2 , g11 = g33 = 1/(1 − 2ψ) , g22 = 1/[(1 − 2ψ)r2] .(2.117)Note that, beause we use the exat metri (2.115), the quantity N2 is exat as it stands; theadditional ontribution in the time-time part of the metri anels out in the alulation of thelapse funtion. The omputations of the onnetion and the Riemann tensor are tedious andhave been arried out partly with help of the omputer. We give the expliit expressions inapp. C. We are able to reprodue the result (2.105) in ylindrial oordinates(2.118) R =
4
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(1 − 2ψ)3
(ψ2

,r + ψ2
,z) ≃ 4∆(3)ψ .The form of Hamilton and momentum onstraint as well as of the trae evolution equation arethe same as in (2.110). Only the forms of the non-trae parts are di�erent and they read
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j , (evolution, i 6= j)
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2 = ρu1u2 = 0 ,

≡C
︷ ︸︸ ︷

R1
3 −

1

N
N ;1

;2 = 8πGS1
3 ,

S2
3 = ρu2u3 = 0 .(2.119)

� Case (A) ψ = 0 and φ 6= 0 (lassial Newton metri) � The same hain of onlusionsas in the ase of the stati setup above, leads via R = 0, E = 0 to ρ = 0 ∨ u0 = 0 whih is



2.3. MODELLING GALAXIES WITH GENERAL RELATIVITY 71unphysial. We still hoose ρ 6= 0 to see what happens. The momentum onstraint is ful�lledand leaves ui 6= 0 possible. To leading order, the trae of the evolution equation gives a Poisson-like equation similar to (2.112). Looking at the non-trae parts of the evolution equation, thethird equation in (2.119) depends on the ombination C . Within the lassial Newton limit Cbeomes equal to −φ,1,3 , as we have alulated. Thus we have
S1

2 = ρu1u2 = 0 ,

−φ,1,3 = 8πGS1
3 = 8πGρu1u3 ,

S2
3 = ρu2u3 = 0 .(2.120)Apart from ui = 0 two other solutions are also possible: (1) u2 = 0 but u1, u3 6= 0 and hene

S 6= 0 , and (2) u1, u3 = 0 leading to φ,1,3 = 0 but u2 6= 0 as well as S 6= 0 are possible. Ofourse, also other solutions are thinkable, e.g. suh with no matter (ρ = 0) but none of thesemakes muh physial sense, just as in the stati ase above.
� Case (B) ψ = φ 6= 0 (simplest PN metri) � In analogy to the stati ase, the momentumand Hamilton onstraints together require ui = 0 , in order not to have an empty Poissonequation (ρ, u0 6= 0 ). Therewith the stress tensor and its trae vanish. From the trae of theevolution equation, the Poisson equation an be reobtained like before. The non-trae equationsdo not give new information sine C = 0 in the linearised ase and this is then just onsistentwith the vanishing of ui . Altogether, although ρ 6= 0 and u0 6= 0 are possible, the equations donot allow any motion.
� Setup (3) di�erentially rotated Newton model � Finally, in this model we an hope for anon-vanishing extrinsi urvature and some non-trivial properties. The linearised di�erentiallyrotating post-Newtonian metri takes the form(2.121) ds2 = −(1 + 2φ)dt2 + (1 − 2ψ)(dr2 + dz2) + (1 − 2ψ)r2dϕ2 − (1 − 2ψ)2r2Ωdϕdt ,with the potentials being funtions of r and z only: φ = φ(r, z) , ψ = ψ(r, z) , Ω = Ω(r, z) .Reall that the metri is only valid in a stritly loal sense. Shift and lapse funtion beome(2.122) Nϕ = −(1 − 2ψ)Ωr2 , Nϕ = −Ω , N2 = (1 + 2φ) + (1 − 2ψ)Ω2r2 .The spatial metri stays the same as before. The extrinsi urvature has vanishing diagonalomponents, suh that K = 0 , and we have the following non-vanishing and exat o�-diagonalomponents(2.123) K1

2 = − 1

2N
Ω,rr

2 , K2
1 = − 1

2N
Ω,r , K2

3 = − 1

2N
Ω,z , K3

2 = − 1

2N
Ω,zr

2 .We employ dust, that is p = 0 and Tµν = ρuµuν , and so we also have the following, like above,(2.124) E = ρ(Nu0)2 , Sij = ρuiuj , Ji = −Tµνn
µhν

i .Then, the ADM equations beome, for the di�erentially rotating ase up to all orders,(Hamiltonian onstraint) R −Ki
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;k ,with the relevant derivatives of the lapse funtion being
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]} LO≃ φ,z .(2.128)And the full divergene of the lapse funtion is given by
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LO≃ ∆(3)φ .(2.129)For the sake of larity the linear order terms are underlined in the above expressions. We anlearn from the (1 3)-equation of (2.127) that φ = ψ is only allowed if Ω,r = 0 or Ω,z = 0 . Wenow attempt to solve the ADM equations for the �rst-order ase.
� Case (A) ψ = 0 and φ 6= 0 (lassial Newton metri) � Let us approximate the abovesolutions by just taking the linear orders and for onveniene let us assume that Ω = Ω(r) only.Then, in ase we want to have ρ 6= 0 , the Hamilton onstraint requires the unphysial equation

u0 = 0 . The momentum onstraint yields the equation(2.130) 3rΩ,r + r2Ω,r,r = 0 .The evolution equation for i = j gives a Poisson-like equation ∆(3)φ = 4πGS and the i 6= jequations read
S1

2 = ρu1u2 = 0 , S2
3 = ρu2u3 = 0 , −φ,1,3 = 8πGρu1u3 .(2.131)



2.3. MODELLING GALAXIES WITH GENERAL RELATIVITY 73The equations are exatly the same as in the rigidly rotating ase above, with one exeptionthe di�erential equation for Ω that ame out of the momentum onstraint (2.130). Here we areagain left with unphysial requirements like ρ = 0 ∨ u0 = 0 that make the right hand side of(2.130) zero, and we an say that at most the test partile senario with u0 6= 0 and ρ = 0 isviable.
� Case (B) ψ = φ 6= 0 (simplest PN metri) � Here the setting appears at �rst also verysimilar to the rigidly rotated ase. But there is the subtle feature in that we have non-vanishingmixing omponents g02 and g02 , whih has the onsequene that for instane u2 an vanishbut u2 an be non-zero, as we will see in the following. First, we note that we an have anappropriate Poisson equation,(2.132) ∆(3)φ = 4πGE = 4πGρ(Nu0)2 ,with both ρ 6= 0 and u0 6= 0 . The momentum onstraint requires both u1 = 0 and u3 = 0 whihdoes imply u1 = 0 and u3 = 0 , but also the novel relation(2.133) −1

2
r2∆(3)Ω(r) − rΩ,r(r) = ρNu0u2 .Inserting the Poisson equation into the i = j-part of the evolution equation returns S = 0 foronsisteny with the Poisson equation. The i 6= j evolution equation gives to linear order

S1
2 = ρu1u2 = 0 , S2

3 = ρu2u3 = 0 , S1
3 = ρu1u3 = 0 .(2.134)This, together with S = 0, implies that u2u2 = 0 . But this alone is no problem beause of thementioned non-diagonality of the four-metri. To linear order we an ompute(2.135) u2 = gµ2u

µ = g02u
0 + g22u

2 = −(1 − 2φ)Ωr2u0 + (1 − 2φ)r2u2 ≃ −Ωr2u0 + r2u2 .So the requirement u2u2 = 0 allows for a solution u2 = 0 ∧ u2 = Ωu0 whih is onsistent withour initial assumptions on rotating axisymmetri and stationary systems (2.33). Further, fromthe momentum onstraint (2.133) we obtain a homogeneous di�erential equation for Ω , that is(2.136) r2Ω,r,r + 3rΩ,r = 0 .Note that this is the same equation that we have already seen in the preeding ase (A), namely(2.130); but there we had the unwanted additional onstraints ρ = 0 or u0 = 0 . Now, (2.136) isreadily solved, yielding(2.137) Ω(r) =
1

r2
C1 + C2 ,with arbitrary real onstants C1, C2 . If C1 = 0 then we obtain the limit of rigid rotation

Ω(r) = C2 = ω . If C2 = 0 we obtain the rotation urve of the problem(2.138) C1 = r rΩ(r)
︸ ︷︷ ︸

=v(r)

= v(r)r ≡ L0 ,and so C1 an be identi�ed as the total angular momentum of the system. However, there isa problem with this equation beause the obtained rotation urve falls of as 1/r and not as
1/

√
r whih is the lassial Newtonian result. Therefore the linear approximations must be tonaïve. In deriving the approximate results for the di�erentially rotating ase we made an linearansatz for the metri (2.121). The atual orresponding ADM equations are given to exatorder but due to their omplexity we made linear approximations while evaluating them. Wetherefore onjeture that the orret evaluation should enfold the full di�erentially rotated PNmetri (C.3), inluding quadrati orders, as an ansatz. This introdues numerous additionalomponents to the extrinsi urvature, beause additional mixing terms have to be inluded atseond order.Let us summarise some basi points in brief:

• Up to day, there does not exist an appliable general relativisti solution whih ouldhelp to realistially model a galati system.



74 2. THE COSMOLOGICAL PROBLEM OF DARK MATTER
• Cooperstok and Tieu have reently proposed suh a solution, but it has been arguedfrom various diretions that their solution inorporates unphysial features. It remainsan open point whether the CT solution ould provide an e�etive or approximate modelin restrited ases, and to whih extent the breakdown of its Newtonian limit mightindiate its usefulness or its di�ulties.
• We have shown that the CT solution does not belong to the lass of the most generalaxially symmetri and stationary solutions, the Lewis-Papapetrou lass. Therefore theCT solution is less general and this restrition might be a reason for the problems ofthe model.
• In the same line we found the surprising fat that the Newtonian metri is not appro-priate for a weak �eld limit of the CT theory; the inorporation of a post-Newtonianpotential is neessary to make physial sense.
• We applied the full mahinery of the ADM formalism to the problem and we derivedthe exat 3+1-equations of motion for the stati and for the rigidly rotated PN metrias well as approximate results for the di�erentially rotated ase. We found that it isneessary to go to full quadrati order in the potentials of the di�erentially rotated PNmetri to obtain a viable Newtonian limit, whih is not presented here due to `�nitetime e�ets'.



Part IIAxisymmetri E�ets in the CMB





CHAPTER 3On the Cosmi Mirowave BakgroundCurrently, measurements of the CMB provide one of the most important means towardhigh-preision evaluation of osmologial models, partiularly the standard ΛCDM model. Inthis hapter we attempt to give a ompilation of the main physial mehanisms that ontributeto the CMB radiation. In some detail, we will outline the deoupling of the CMB photons frommatter in the early Universe, as triggered by the proess of reombination. Furthermore, wereview and partly derive the standard statistial framework whose equations form the languagein whih modern CMB surveys are analysed and disussed. In partiular, the CMB angularpower spetrum poses a entral observable of the �eld and we disuss measurements of it, aswell as the expliit assumptions that go into the analysis.3.1. Overview of Soures of CMB AnisotropyA remarkable feature of the CMB is that is overall isotropi to a �rst approximation. Thisis only surpassed by the even more remarkable feature that tiny, yet preditable anisotropiesexist. The onditions of the early Universe as well as muh of the global physis that hastaken plae before deoupling are mirrored in these anisotropies. Physially, it is onvenientto divide anisotropies into two lasses: (a) primary ones, whih enfold all possible soures ofinitial anisotropy imposed on the photon �eld at around the time of last sattering, triggeredby gravitational or plasma physis; (b) seondary ones, these omprise a onglomeration of allsigni�ant e�ets the CMB photon an undergo on its long travel towards us along the line ofsight. Basi primary anisotropies [Sh06℄ an our as a onsequene of the following physiale�ets:
• Due to in�ation there are inhomogeneities in the primordial density �eld, and thesefore the photons on the surfae of last sattering to work against deeper potentialwells here and less deep ones there. In addition to the resulting redshift, there oursa gravitative time delay for the photons. This means that, e.g. the energy loss ofa photon limbing out of a deep potential well will be partly ompensated by thee�et that it also undergoes its last sattering a bit earlier beause of a gravitationaltime shift. Within a full general relativisti treatment these two e�ets always ourtogether naturally and are overed by the theory of the Sahs-Wolfe e�et.
• The initial inhomogeneities in the primordial density �eld would translate into pertur-bations in the aording peuliar veloity �eld, .f. app. D. Therefore, the eletronsthat are mainly responsible for photon sattering, do not solely follow the global ex-pansion of spaetime but they are also subjet to the indued peuliar veloities. Thisis the soure for a frequeny-shifting e�et on the primeval photons: as the peuliarveloity �eld arises, the eletrons that trae the �eld are subjeted to a Doppler mo-tion at the moment the primordial photons undergo last sattering o� them. If, forinstane, the Doppler motion in a ertain region of the deoupling plasma happens tobe direted away from the future observers position, then the Doppler e�et will takea bit of the photon's energy away, resulting in additional redshifting in that diretion.
• Before reombination, the primordial plasma is a tightly oupled baryon-photon �uid.The oupling is due to the free eletrons that e�etively glue the two �elds throughThomson sattering with the photons and Coulomb sattering with the baryons. Dark77



78 3. ON THE COSMIC MICROWAVE BACKGROUNDMatter (.f. hap. 2) is attributed a ruial role also at the early epohs of the Uni-verse. In regions where there is a ondensation of Dark Matter, the density of baryonswould also be higher. More exatly, before reombination and on super-Hubble sales,the distribution of Dark Matter is well traed by the distribution of the baryons. Buton sub-Hubble sales the e�etive pressure that is produed by the baryon-photon�uid beomes sensible and important. With the gravitational pull from Dark Matteras the driving fore, and the pressure of the baryon-photon plasma as the restoringfore, the baryons undergo aousti osillationsa. The baryon osillations orrespondto elongations and ompressions in the baryon �uid whih, in the adiabati ase, ausethe osillating region to beome older during elongation and hotter during ompres-sion. Now, before reombination, photons are tightly oupled to the baryons, forming abaryon-photon �uid and therefore the adiabati perturbations are imposed on the pho-tons too; this makes the photons aordingly hotter if they last-satter from a regionof adiabati ompression and ooler if last-sattered from a region of adiabati elon-gation. At reombination this e�et of the baryon environment on the photons in thepre-reombination phase suddenly freezes, beomes visible and ontributes additionalCMB anisotropy.
• But the oupling of photons and baryons is not exat. Rather, the photons do havea �nite mean free path whih leads to photon dissipation on small sales. On thesesales the restoring fore, whih was provided by the pressure support, on the baryonosillations disappears and the �utuations are e�etively washed-out. This dampingmehanism, due to photon dissipation beause of the �nite shear visosity and heatondutivity of the �uid, is referred to as Silk damping. Due to Silk damping, on allsales smaller than roughly ∼ 5′ , there remain only tiny �utuations. A more detailedestimate on the e�etive sale of Silk damping an be found in app. D.3.Let us shortly summarise. As primary CMB anisotropies we so far have: the Sahs-Wolfe e�et;frozen Doppler veloities and adiabati baryon osillations. But also damping of �utuations o-urs, namely through the proess of Silk damping. Of ourse, the �rst three of these mehanismsare not independent of eah other.Let us add a omment explaining why the osillations in the baryon-photon plasma arepossible. After matter-radiation equality � whih is at around zeq ≃ 23900Ωmh

2 � the overallenergy density of matter exeeds that of radiation. But when looking only at the baryon-photon �uid, the radiation energy density is the dominant omponent in this �uid and so wean treat it as a relativisti �uid. That implies that the sound speed is around cs ≃
√

p/ρ ≃
c/
√

3 and so the large pressure in the �uid makes osillations possible. As mentioned, thegravitative fore due to the Dark Matter provides the driving fore and the baryon-photonpressure gives rise to a restoring fore in the osillator. The adiabati osillations translateinto temperature anisotropies whih are observable on the mirowave sky today. But there isa natural size limit for the osillations. Sine the speed of sound is around cs ≃ c/
√

3 , thereexists a maximal wavelength, the sound horizon, whih possibly ould have been overed by anaousti perturbation up to the time of last sattering:(3.1) λSH ≃ treccs = rH(trec)/
√

3 ∼ 1◦.aLet us omment on the growth of the baryon perturbations. Still during the radiation dominated epoh,there would be a moment when the baryoni and Dark Matter perturbations enter the horizon. Then, onthe smaller (ausal) sales the pressure support stops the baryon perturbations from growing further, so thatthe Dark Matter perturbations an go ahead of the baryoni ones. That is, for subhorizon modes the growthof perturbations is in ompetition with the e�etive pressure from the baryon-photon �uid and is eventuallyompensated. At the same time, Dark Matter is not strongly oupled to photons and grows untroubled frommatter-radiation equality, aeq , on. One an estimate [Pad02℄ that the Dark Matter perturbations have thehane to grow by a fator of & 20 in the period aeq < a < adec while the baryoni perturbations are tamedduring that phase. However, after reombination the photons are no longer strongly oupled to the baryons andbeome free-streaming. This, after some time, unloks the growth of baryon �utuations, being driven by theDark Matter perturbations, and eventually athing up with the latter.



3.1. OVERVIEW OF SOURCES OF CMB ANISOTROPY 79As we will see, this sale orresponds to the �rst aousti peak in the angular power spetrumof the CMB and is a diretly measurable osmologial observable.Next we ontinue with a list of soures [Sh06℄ that are important for seondary CMBanisotropies:
• Due to the lak of an absorption threshold in the Lyman-α spetra of very distantquasars up to z ≃ 6 � together with onstraints on the baryon abundane from primor-dial nuleosynthesis � it is onluded that the intergalati medium in the Universetoday is highly ionised. Reent CMB analyses set reionisation at around z ∼ 10and so from this epoh on, there must be free eletrons present in the extragalatimediumb. Then CMB photons an again satter o� these eletrons via Thomson sat-tering. Beause the CMB is isotropi around any sattering entre, the resatteredCMB radiation that we would measure, does not ontain information on the primor-dial temperature anisotropies anymore. Rather these photons represent an additionalomponent with random diretional origin, i.e. an isotropi bakground to the CMBwith a mean temperature that equals the CMB mean temperature. The result is aderease in the temperature anisotropies by the fration of photons that undergo suhlate Thomson sattering.
• While the photons are on their long travel through the Universe, toward the measur-ing instrument today, the surrounding large-sale struture is in a proess of dramatigravitative evolution. This evolution is due to the vast proesses of struture forma-tion, .f. app. D. As a onsequene, the gravitational potentials that the photons aretraversing are not stationary. This environment will indue a net e�et on the photonsbeause of the large sale of the gravitative e�ets. Let us explain this in more de-tail. Imagine two CMB photons, oming from two di�erent diretions to us. The �rstphoton, say from diretion n1 , would travel through a gravitational potential, and theseond one, say from diretion n2 would travel undisturbedly. Now, assume that thepotential wells in the line of sight were stationary, then there would be no di�erene infrequeny of the two photons. That is beause the net e�et of the potential is zero forthe �rst photon, for it looses exatly the same energy while limbing up the potentialwell it has gained before while falling into it. This is not true anymore in ase of apotential that varies at time sales omparable to the traversing time of the photon.Exatly suh a setup is realised during struture formation � and as we will see belowthis is also likely to happen at low redshifts � and so additional anisotropy is induedto the CMB. This is alled the Rees-Siama e�et. In the ase of an Einstein-DeSitterUniverse, one an show that the peuliar gravitational potentials are onstant withtime and no Rees-Siama e�et ours. Notably, in other osmologial models thise�et exists and annot be negleted. Often, the onglomeration of any linear gravi-tative e�ets a CMB photon an undergo after reombination on the line of sight, aresummed under the notion integrated Sahs-Wolfe e�et.
• Due to the gravitational lensing of CMB photons from the osmologial �eld of densityperturbations, there will be a diretional distortion in the line of sight to the lastbFrom observations we know that the gas in the intergalati medium is highly ionised at low redshifts. Letus explain this �nding in further detail. Assume this was not so, assume the intergalati hydrogen would beneutral. Then we ould never observe ultraviolet radiation from far-away soures; this is beause due to ontinuousredshifting, at least somewhere in the line of sight, the photons would reah a wavelength of λLyα ≃ 1216Å andwould be absorbed by the neutral hydrogen with a high probability. The probability is high beause the rosssetion for photoionisation of neutral hydrogen is signi�antly high for photons with wavelengths near the Lyman-

α line. This is alled the Gunn-Peterson test. In fat there exist soures (quasars) at z & 6 from whih we aneven see light from the blue side of the spetrum with respet to the Lyman-α line. Therefore the Universemust have beome reionised somewhere between z ∼ 1100 and z ∼ 6 . The times between last sattering andreionisation are sometimes alled the `Dark Ages' and it is speulated that reionisation was made possible bythe very �rst generation of stars or ative galati nulei. Diret measurements of the Gunn-Peterson trough forobjets z > 6 are subjet to urrent debate. However, reent WMAP measurements [S+07℄ of the CMB suggestthat reionisation ourred at a redshift of zreion = 11.3 .



80 3. ON THE COSMIC MICROWAVE BACKGROUNDsattering surfae. Without that e�et, an angular separation of θ would orrespond� due to the angular diameter distane (1.38) � to a distane of DA(zrec)θ at thesurfae of last sattering. Taking the lensing distortion into aount, this angulardistane will be slightly di�erent. This e�et results in an e�etive smearing of thetemperature �utuations, observable on small sales in the orrelation funtion of theCMB anisotropies.
• If CMB photons happen to go through a galaxy luster in the line of sight, in whihthere is a very hot (ultrarelativisti) intra-luster medium, they an undergo inverseCompton sattering. This is the Sunyaev-Zel'dovih e�et. In suh diretions therewill be a distortion in the frequeny of the CMB photons in so far as they would gainsome energy on average through the sattering o� the very energeti eletrons in thegalaxy luster medium. In fat, the CMB intensity shows a derease in the low energypart and an inrease on the higher energy side of the spetrum. Therefore, whenobserved at a frequeny interval that is large enough, the Sunyaev-Zel'dovih e�et iswell distinguishable in the CMB data.3.2. ReombinationReombination is a somewhat misleading term. At reombination the primordial plasma hasooled down so far that neutral atoms ould be formed. In the Big Bang piture the temperatureof the Universe goes as T (z) ∝ (1 + z) , and so, before the time of reombination there was nopossibility for stable neutral atoms to be present; the Universe was fully ionised ever before. Theterm `reombination' an be understood merely in a historial sense: it refers to the proess ofreombination in HII regions, .f. [Pea99℄. HII regions are high-temperature regions ontaininghydrogen � and also helium � and an be found in the viinity of stars. In a ontinuous proess,the hydrogen �rst beomes fully ionised by the ultraviolet radiation from the stars, after whihthe eletrons and the ions �nd eah other again, emitting reombination radiation, before theybeome photoionised one more and so on. Below we present a desription following Shneider[Sh06℄ and Peaok [Pea99℄.Beause of the very hot and dense environment, the formation of nulei is possible withinstars. Similarly, there should be a period in the early Universe where nulei were formed for the�rst time; this is desribed within the model of Big Bang Nuleosynthesis (BBN). BBN ends ata temperature of around T ∼ 8 × 108K, or approximately after three minutes. After BBN thepartile ontent of the Universe is basially given by eletrons, protons, helium nulei and traesof other light elements, neutrinos, photons and possibly the partiles that form Dark Matter, theWeakly Interating Massive Partiles (WIMPs). Apart from the WIMPs and the neutrinos, allpartiles have roughly the same temperature; this is beause of the relatively strong interationof the photons with the harged partiles, and so a kind of thermal bath is realised.Before the instant of equality at zeq ≃ 23900Ωmh

2 , the energy density and therewith therate of expansion of the Universe are dominated by the radiation, that is by the photons andthe neutrinos. After equality, the matter � we approximate it as dust � starts to dominatethe energy density and the expansion rate of the Universe. In the Friedmann equation (1.16),this implies that the �rst term beomes dominant and we an make the rude simpli�ation
H2 ≃ H2

0Ωma
−3 . From tab. 1.1 we already know the solution to this di�erential equation; formatter domination the saling is(3.2) a(t) =

(
3

2
Ω1/2

m H0t

)2/3

within aeq ≪ a≪ 1 .This sale behaviour is valid as long as either the urvature term or the osmologial onstantis dominant.As the Universe expands further, after equality there will be a period when the free eletronsan ombine with the ions to form neutral atoms. But, of ourse, there is a ompeting proessto this, namely the photoionisation of neutral atoms through high-energy photons. Also, there
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Figure 3.1. Shemati depition of matter and radiation deoupling. The deou-pling is no instantaneous proess. Before reombination, baryons and photons forma tightly oupled �uid in whih aousti osillations take plae. Some time after theradiation and matter equality at around zeq ≃ 3000 , the reombination of eletronsand ions � as desribed in detail in the text � sets in. At around zrec ≃ 1088 thebaryon-photon �uid beomes transparent for the �rst time. This gives rise to a lastsattering surfae from whih on photons are free-streaming, and we are able to ob-serve a snapshot of this primeval deoupling today � whih itself has a �nite thiknessof around z ≃ 60 . The piture is taken from [Les04℄.is another ompeting ionisation proess due to ollisions. But this an be negleted beause theratio of baryons to photons η is very small, namely only of the order 10−8 , see also app. E onBBN. Note that the temperature of the Universe has to drop to a value well below the ionisationtemperature if neutral atoms are to be formed e�iently. The reason for this is that, yet atthe ionisation temperature there are photons in the Wien tail of the Plank spetrum that areenergeti enough to break the formed atoms via photoionisation. Sine there are so many morephotons than baryons the Wien tail is still populated densely, making the e�et signi�ant. Asis well known, the energy needed for ionisation of hydrogen is χ ≃ 13.6eV, orresponding to atemperature of ∼ 105K (reall, 1eV≃ 1.161×104kBK). Now, the frational ionisation is the ratio(3.3) x ≡ number density of free electrons

total number density of protons
.Beause of the above mentioned stubborn photoionisation from photons in the tail of the Plankdistribution, the temperature of the Universe has to drop to a value of T ∼ 3000K before thefrational ionisation signi�antly drops below one. For instane, at temperatures T > 104K, thefrational ionisation is still roughly equal to one, implying that nearly all eletrons are free. Ata redshift of around z ∼ 1300 , a signi�ant deviation of x from unity an develop.It would be good to have a robust, quantitative estimate on when reombination has begun.As a �rst step we onsider Saha theory, from whih the following ionisation formula stems(3.4) 1 − x

x2
≃ 3.84η

(
kBT

mec2

)3/2

eχ/(kBT ) .The Saha equation is a thermodynami equilibrium equation and it desribes the behaviourof the ionisation fration as a funtion of temperature. Plotting the funtion reveals that theionisation shows a rather sharp derease, going from unity to nearly zero in a temperature



82 3. ON THE COSMIC MICROWAVE BACKGROUNDinterval of around 2500K- 5000K [Nar02℄. That is, if the Saha theory is all we need to desribethe reombination, the osmos would beome transparent at these temperatures, sine the mainsattering partners, the free eletrons, are `removed' from the primordial plasma.However, there is a loophole in the above argument. As we will see, one the proess ofreombination has started, the assumption of thermodynami equilibrium beomes invalid ratherfast. Consider a reombination diretly to the ground state of the hydrogen, then a photon withenergy hν > χ is emitted. Suh photons are of ourse problemati for the reombination sinethey an reionise other hydrogen atoms. In fat, they do reionise other atoms with a highprobability beause of the large ross setion of the photoionisation proess. Hene, for everyreombination there is a reionisation, suh that the net e�et is zero. Reombination shallhappen stepwise: �rst a reombination into an exited state, whereupon the atom undergoessuessive radiative proesses and eventually arrives at its ground state. But there is a problemalso with this piture. For every suh stepwise reombination there will be an emission of aLyman-α photon from the last step of the proess, the transition from the �rst exited state tothe ground state 2P→ 1S with λ = 1216Å. The resulting Lyman-α photon would immediatelylift an atom in its ground state to its �rst exited state. Sine for this atom the ionisation energyis not χ but only χ/4 and beause there are muh more photons with energies of χ/4 than thereare with χ , suh atoms an be reionised even easier, whih atually also happens. One an saythat reombination radiation leads to small distortions in the Plank spetrum whih in turnmakes the reombination more di�ult; the reombination suppresses itself through the aboveproesses. Nevertheless, in gas louds or HII regions, reombination an still happen in thisway, sine the unwanted Lyman-α photons dissipate beause of the �nite extent of the regions.Reombination in an in�nite Universe seems muh more problemati.So it seems that reombination might not be possible at all! How an we irumvent thisabsurd �nding? There is only one way out: in the end it turns out that reombination an indeedour, namely via the sare proess of two-photon emission. Although the two-photon deayhappens 108 times rarer than the diret Lyman-α transition, this proess �nally sueeds intransferring the ionisation energy into photons with wavelengths λ > λLyα, and so the produedradiation does not have enough energy to eventually exite an atom from the ground state.In fat, the transition 2S→ 1S is stritly forbidden at �rst order in perturbation theory. Butwith the emission of a pair of photons, angular momentum and energy an be onserved. Beingof seond order, the proess is very slow � with a lifetime of around ≃ 0.1s � so that thereombination is also slowed down as it has to pass this bottlenek. Therefore the atual rateat whih reombination happens is ompletely di�erent from the predition of the equilibrium(Saha) theory.Let us onsider a muh simpli�ed model, a world where the hydrogen atom has only thetwo levels 1S and 2S. We an just ignore any hain of reombination that reahes the groundstate beause the produed photons will ause reionisation elsewhere and the net e�et is zero.Beause of the above, we shall fous on reombinations into the 2S state. Some of the atoms inthat state would undergo two-photon deay before they beome exited again. Then the rate ofhange of the ionisation fration follows(3.5) d(npx)

dt
= −R(npx)

2 Γ2γ

Γ2γ + Γup(T )
,with np being the number density of protons, R ≃ 3 × 10−17T−1/2m3s−1 the so alled reom-bination oe�ient, the two-photon deay rate Γ2γ and the `upward transition rate' Γup(T )of transitions from the 2S level upwards due to stimulated emission. In our simpli�ed piturereombination is a two-body proess after whih exited states remain, whih subsequently un-dergo a deay asade until the 2S level is reahed. Then, starting from the 2S level, there willnot only be downward deay but also stimulated upward transition. These two transitions arein a ompetition whose outome will �x the e�etive number of downward transitions whih isthe relevant one for reombination. Peebles [Pee93℄ o�ers a more detailed treatment in whihthe depopulation of ground states by inverse two-photon absorption or the redshifting of the
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Figure 3.2. Spetral distribution of the CMB plotted as intensity vs. wavelength.The data points lie perfetly on a blak body spetrum peaking at around 160GHz.Besides data from the COBE mission [MCC+94℄, there is also data shown from aroket experiment (UBC Roket) [GHW90℄, ground based experiments (LBL/Italy)[SBL91℄, (Prineton) [SJWW95℄ as well as spetrosopy of the rotational exitationof yanogen [RM95℄. Piture is taken from [Smo97℄.Lyman-α radiation by osmi expansion is also taken into aount. However, as long as welook at relevant redshifts of 10-1000 , these e�ets shall not signi�antly a�et the basi resultsof our simpli�ed onsideration. Note that the rate equation (3.5) obeys a simple saling. Theright hand side involves Γup and R, both are funtions of only temperature (redshift). Hene,parameter dependene is only arried by n2
p whih sales as (Ωbh

2)2 on the right hand side,and aordingly the saling is proportional to Ωbh
2 on the right hand side. It is onvenientto express things in terms of redshift, and so we an use the following transformation valid formatter domination and at large redshifts:(3.6) dt

dz
≃ −3.09× 1017(Ωmh

2)−1/2z−5/2s ,Combining this with the aforementioned, we obtain a saling law for the frational ionisation:(3.7) x(z) ∝ (Ωmh
2)1/2

Ωbh2
.Note that this saling is ompletely di�erent as the one obtained from Saha theory.In order to solve the rate equation we onsider late times; that is we restrit to times whenthe Universe has ooled so far that we an neglet exited transition of the 2S states. The rateequation then beomes(3.8) dlnx

dln z
≃ 60xz

Ωbh
2

(Ωmh2)1/2
.Reall that for this equation we have negleted the osmi expansion and so the equation is notvalid anymore when the left hand side beomes less than unity.Now, one an inlude all relevant e�ets and solve for the ionisation fration in the redshiftinterval interesting for reombination, 800 . z . 1200 . It is found that the ionisation fration



84 3. ON THE COSMIC MICROWAVE BACKGROUNDmay be well approximated by the riterion [JW85℄(3.9) x(z) ≃ 2.4 × 10−3 (Ωmh
2)1/2

Ωbh2

( z

1000

)12.75

.From (3.9) we an learn that the ionisation fration has a very strong redshift dependene; that is,the redshift hanges over a rather small interval while the ionisation fration hanges drastially:from x = 1 (omplete ionisation) down to x ∼ 10−4 (nearly omplete reombination). The fatthat the ionisation does not go to exatly zero re�ets the in�uene of osmi expansion thatwe negleted before. At small values of the ionisation fration the rate of reombination dropsbelow the rate of expansion of the Universe: then it happens that some ions do not have enoughtime to �nd themselves a partner eletron to reombine with before the density of the Universebeomes too muh diluted. Plugging (3.9) into the formula for the optial depth as due toThomson sattering, one obtains the important result(3.10) τ(z) ≡
∫

nexσTdl ≃ 0.37
( z

1000

)14.25

,where we integrated over the proper distane l along the line of sight. The remarkable pointis that in the expression for the optial depth, the osmologial parameter dependene anelsout. The reason for that is the saling of the frational ionisation (3.9) that ame out of therate equation. Again, τ is very sensitive to hanges in z and so the last sattering shell is arather sharp transition. The distribution funtion e−τdτ/dz for the last sattering redshift anbe expressed by a Gaussian with mean z ≃ 1088 and a standard deviation z ≃ 60 . This is thereason why we observe a very uniform primordial radiation from an almost synhronous emissionsurfae (`snapshot') in the early Universe: the last sattering surfae. The redshifting duringthe billions of years the photons have travelled sine then has brought the CMB radiation intothe mirowave band, where it was �rst observed by Penzias and Wilson in 1965 [PW65℄.The spetrum of the CMB radiation is a Plank spetrum. In fat, its spetrum was �rstaurately measured by the Far Infrared Absolute Spetrophotometer (FIRAS) mounted on theCosmi Bakground Explorer COBE satellite [MCC+94℄, and is the best blak body spetrumever obtained from a real measurement, see �g. 3.2. Let us shortly derive how an initial Plankspetrum for the primordial radiation keeps its form during the evolution of the Universe. Con-sider a Plank spetrum of photons at an initial temperature T0 at time t0 , then the funtion(3.11) Bν(T0) =
2hν3

c2
1

ehν/(kBT0) − 1measures the blak body surfae brightness; here h is of ourse the Plank onstant, not to beonfused with the normalised Hubble parameter. The surfae brightness is the luminosity thatgoes through a unit area during a unit time interval, per unit solid angle and unit frequenyinterval. Then the number density of photons in a frequeny range between ν and ν + dν isgiven by(3.12) dNν

dν
=

4π

hc

Bν

ν
=

8πν2

c3
1

ehν/(kBT0) − 1
.Now let us onsider an instant t1 > t0 , in whih the Universe would have expanded by the fator

a(t1)/a(t0) and an observer sees the initial photon redshifted by the fator 1 + z = a(t1)/a(t0) .Aordingly, an initial frequeny interval dν is being redshifted to dν′ = dν/(1 + z) . Sine weare within matter domination, the number density of photons is diluted with a−3 (.f. tab. 1.1)and so dN ′
ν′ = dNν/(1 + z)3 . Therefore, the number density of photons in the frequeny rangebetween ν′ and ν′ + dν′ beomes(3.13) dN ′

ν′

dν′
=

dNν/(1 + z)3

dν/(1 + z)
=

8π

c3
1

(1 + z)2
(1 + z)2ν′2

ehν′(1+z)/(kBT0) − 1
=

8πν′2

c3
1

ehν′/(kBT1) − 1
,and so the form of the Plank distribution is left invariant under global expansion; only thetemperature T0 is replaed by the redshifted temperature T1 = T0(1 + z) . Thus, sine we



3.3. OBSERVABLES OF THE CMB 85observe the spetrum of the CMB to be the one of a blak body today, we an extrapolate thatit has had this form � up to distortions due to additional physis � ever sine last sattering.Note that, although there is a very small o�set between the instant of reombination andthe eventual e�etive deoupling of the primordial photons, we are using zrec throughout thiswork to denote the instant of last sattering.3.3. Observables of the CMBIn the ourse of se. 3.1 we got to know the basi mehanisms that are responsible for theCMB anisotropy. The next question is, how the main physial e�ets translate into quanti�ableobservables. In se. 1.3.3, we have antiipated a basi part of the answer: the (integrated)Sahs-Wolfe e�et. The Sahs-Wolfe formula parameterises the in�uene of the most importantprimary and seondary soures of the CMB temperature anisotropy ∆T/T , whih is a physialobservable aessible through di�erential measurements. What remains to be done is to �nda statistial framework of the temperature anisotropies that is onvenient and suitable for theomparison of theory and experiment. In order to do this aurately, one must ope with thefat that the approximation of the matter-photon medium as a perfet �uid breaks down afterreombination. An adequate treatment then involves the solution of the orresponding kinetiequation, the full Boltzmann equation for the photon distribution funtion. Seljak and Zaldar-riaga [SZ96℄ have developed a publily available FORTRAN ode, alled CMBFAST [CMB℄, that anbe used for state-of-the-art omputation. Here we restrit ourselves to a basi understanding ofthe CMB power spetrum and its use for phenomenology. However, see for instane [HS95℄ foran exhaustive disussion.3.3.1. Fourier Analysis of the Temperature Power Spetrum. How an we relatethe three-dimensional density perturbations from in�ation to the two-dimensional temperature�eld that we observe in the CMB? The density perturbations � see also app. D � are haraterisedby their power spetrum P (k) from equation (1.29). Sometimes the power spetrum is expressedas [Pea99℄(3.14) ∆2(k) ≡ V

(2π)3
4πk3P (k) ,for a given volume V . The quantity ∆2(k) is dimensionless and has the interpretation of thevariane of perturbations per interval of ln k ; that is, ∆2(k) = 〈δ2〉,lnk ∝ k3P (k) . For instaneif we had ∆2(k) = 1 this would mean that, per logarithmi k interval, there are density pertur-bations of order unity. Here, we onsider a simpli�ed Fourier analysis following [Pea99℄. Thesimpli�ation is provided by the assumption of loal thermodynami equilibrium of the primevalphotons as well as the assumption of spatial �atness � this will be a good approximation forintermediate sales.Given an observed intensity Iν , the brightness temperature is the temperature a blak bodywould need to have in order to radiate that intensity. Therefore one an invert the Rayleigh-Jeans law to de�ne the brightness temperature as(3.15) TB ≡ Iνc

2

2kBν2
.Now, we an think of the measured CMB as a two-dimensional random �eld of anisotropies inthe brightness temperature. Consider a path of the two-dimensional CMB sky of side L , butbeing small enough to be �at. It is useful to introdue the Fourier transform of the frationaltemperature di�erenes,(3.16) ∆T

T
(X) =

L2

(2π)2

∫

TKe
−iK·Xd2K and TK(K) =

1

L2

∫
∆T

T
(X)eiK·Xd2X .Here, by K and X we denote two-dimensional vetors of position and wavenumber respetively,and moreover the temperature anisotropy ∆T/T is a entral quantity of CMB analysis, beingde�ned as ∆T/T ≡ (T (θ, φ) − T0)/T0 with the monopole bakground temperature T0 .



86 3. ON THE COSMIC MICROWAVE BACKGROUNDIn analogy to the treatment of the three-dimensional density perturbations, we an writedown a dimensionless power spetrum of the temperature �utuations in two dimensions(3.17) T
2
2D ≡ L2

(2π)2
2πK2|TK |2 .Similar to (3.14), but now in two-dimensions, this is a measure of the variane in the frationaltemperature di�erenes of the CMB, oming from modes of unit length in lnK . In fat, theFourier transform of the temperature power spetrum yields the two-point orrelation funtion(3.18) C(θ)2D ≡

∫

T
2
2D(K)

J0(Kθ)

K
dK ,whih is the observable we were looking for. J0 denotes the Bessel funtion; it enters the formulavia the angular part of the Fourier integration.We an reonstrut the two-dimensional temperature �utuation �eld from the atual three-dimensional one by integrating over the optial depth at last sattering and over the wavenumber,(3.19) ∆T

T
=

V

(2π)3

∫ ∫

T 3D
k e−ik·rd3k e−τdτ .The optial depth expression an be approximated by a Gaussian with(3.20) e−τdτ ∝ e−(r−rrec)/(2σ2

r) dr ,and r being the omoving radius. This means that the entral distane to the last satteringshell is given by rrec , whih in turn an be approximated by the Hubble radius beause of thehigh redshift of the last sattering shell. Above, we already used an estimate for the thiknessof the last sattering shell of z ≃ 70 . In fat one an show [Pea99℄ that the thikness an beexpressed as(3.21) σr ≃ 7Mpc

(Ωh2)1/2
.Applying an analogous de�nition to the spatial temperature power spetrum as in the two-dimensional ase, we an write(3.22) T

2
3D ≡ V

(2π)3
K2|TK |2 .By equating the respetive two-dimensional and three-dimensional two-point funtions, oneobtains the �nal projetion formula [Pea99℄(3.23) T

2
2D = K2

∫ ∞

0

T
2
3D[(K2 + w2)1/2] e−w2σ2

r
dw

(K2 + w2)3/2
.This projetion formula �nally represents the relation between the two-dimensional and three-dimensional temperature power spetra. The two-dimensional power spetrum reeives ontri-butions from all the three-dimensional modes with wavenumbers smaller than K , the othermodes are integrated out. Therefore, what the projetion e�etively does is smearing. Throughsmearing one gets the two-dimensional temperature spetrum from the three-dimensional one.Any feature present at a ertain sale in the spatial �eld an be found at the very same salein the projeted spetrum. Also note that, as long as T2

3D is not a very strongly inreasingfuntion, the damping term will ause the integral to be dominated by the ontribution around
w = 0 . If this is not the ase, the �nite thikness σr beomes relevant.In se. 3.1 we disussed various soures of CMB anisotropy. Now we need some quantitativeexpressions for the anisotropy ontributions. We onsider only some of them in order to obtaina �rst piture of the standard interpretation within synhronous and omoving gauge.

• Sahs-Wolfe soure � Perturbations in the primordial density �eld ause anisotropyvia: (a) additional redshifting of the photons that are limbing out of potential wells,(b) time dilation of photons beause of the gravitative perturbations. The full general
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Figure 3.3. A Mollweide map of the intrinsi CMB temperature anisotropies[O(10−5)℄ as derived from three years of WMAP mission data. Here, red oloursindiate warmer spots and blue olours indiate older regions. A superposition teh-nique � the Internal Linear Combination (ILC) � has been applied to the raw datain order to subtrat astrophysial foregrounds. The ILC method introdues free o-e�ients that are �tted in order to �nd a maximally lean map, with the onstraintsthat the variane of the resulting map is minimised and, at the same time, the am-plitude of the signal is preserved. Other (more obvious) leaning has to be done inaddition: removing the dipole ontribution �g. 3.4 and the large Milky Way ontam-ination, .f. �g. 4.4 � a slie of ∼ 30◦ is ut away to both sides of the equator and isto be reonstruted properly. Provided the leaning tehniques work at the requiredauray, the residual tiny anisotropies are of osmologial origin; they represent asnapshot of the primeval quantum �utuations frozen out in the early Universe. Thepiture is taken from [WMAa℄.relativisti perturbation alulation reveals that the net result is exatly one third ofthe Newtonian expression, that is(3.24) (
∆T

T

)SW

=
∆φ

3c2
.The fator of 1/3 is non-intuitive; it an be shown [HPLN02℄ that it is a peuliarpredition from GR, and annot be obtained from any kind of Newtonian reasoning.Moreover, the fator is unique also onerning the physial setting (standard modelplus adiabati perturbations). In partiular, taking an isourvature setting, the result-ing Sahs Wolfe ontribution is ∆T/T = 2∆φ . The orresponding Fourier-expandedexpression is(3.25) T SW

k = −Ω(1 + zrec)

2

(
H0

c

)2
δk(zrec)

k2
.

• Doppler veloity � The eletrons, o� whih the photons last satter, are subjet toindued peuliar veloity, whih results in an additional frequeny-shift. The resultinganisotropy is given by(3.26) (
∆T

T

)DV

=
δv · r̂
c

,and the aording result in Fourier spae is(3.27) TDV
k = −i[Ω(1 + zrec)]

1/2

(
H0

c

)
δk(zrec)

k
k̂ · r̂ .
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Figure 3.4. The unorreted dipole as measured with COBE shown in Mollweideprojetion. This distribution is interpreted as being the result of the Doppler e�etindued by our loal motion against the CMB rest frame. Our veloity vetor is theend result of a superposition of various peuliar veloities up to the last satteringsurfae; its magnitude is ≃ 370km/s. The temperature exess arising from the dipoleis ≃ 3.3mK and an be used for alibration. The piture is taken from [WMAb℄.
• Adiabati soure � Beause of their tight oupling before reombination, any adiabatiperturbations in the matter-radiation density are likewise imprinted on the photonstoo, resulting in additional anisotropy. The respetive formulae read(3.28) (

∆T

T

)AS

= − δz

1 + z
=
δρ

ρ
and TAS

k =
δk(zrec)

3
.

• Isourvature soure � As opposed to the adiabati perturbations, the isourvatureperturbations allow the entropy to vary. In the adiabati senario all the di�erentenergy speies undergo a ommon density perturbation. Isourvature perturbationsare de�ned as an initial ondition, whih states that there do not exist any deviations intotal energy density from the bakground at the initial time. Therefore the urvatureis spatially onstant and so the name beomes lear. A formal means to de�ne anisourvature setting is given by Φ̃ → 0 while t → 0 [MFB92℄. Here Φ̃ is the gaugeinvariant version of the metri perturbation in (1.92). The gauge invariant Bardeenpotentials Φ̃ and Ψ̃ are onstruted from (1.92) as follows(3.29) Φ̃ ≡ Φ +
1

a
[(B − E,η)a],η , Ψ̃ ≡ Ψ − a,η

a
(B − E,η) ,where η denotes onformal time as usual. An example of an isourvature setting wouldbe to initially distribute di�erent speies � like baryons and photons � inhomogeneouslybut adjust the total energy density in a homogeneous way. As it is pointed out in[MFB92℄, isourvature modes are predited by some axion models, models with topo-logial defets (e.g. osmi strings) or some exoti in�ationary models. Experimentally,isourvature modes annot be exluded fully, but stringent bounds on suh admixturesan be given, espeially onerning the ross-orrelation of CMB and large-sale stru-ture, as well as from the CMB alone, as is shown in [KS07℄ or [Tro07℄. However, wewill omit this omponent in our disussion.



3.3. OBSERVABLES OF THE CMB 89Inluding these soures of anisotropy, the three-dimensional temperature power spetrum isgiven by [Pea99℄(3.30) T
2
3D =

[

(fAS + fSW)2(k) + f2
DV(k)(k̂ · r̂)2

]

∆2
k(zrec) ,with the dimensionless fators f parameterising the di�erent soures as(3.31) fSW ≡ − 2

(kDrec
H )2

, fDV ≡ 2

kDrec
H

, fAS ≡ 1

3
.Here Drec

H denotes the Hubble horizon sale at last sattering(3.32) Drec
H ≡ 2c

Ω
1/2
m H0

(1 + zrec)
−1/2 ≃ 184(Ωh2)−1/2Mpc .Equation (3.30) provides the �nal answer to the question of this subsetion. It relates the three-dimensional temperature power spetrum to the three-dimensional matter power spetrum. Thetwo-dimensional temperature power spetrum is onneted to the three-dimensional one viathe projetion (3.23). The analysis is done in Fourier spae. The three basi soures of CMBanisotropy we onsidered here beome signi�ant on di�erent sales. Sine the omoving Hubblesale amounts roughly to ∼ 300Mp at last sattering, we an learn from (3.30) that the Sahs-Wolfe term is vital at wavelengths larger than ∼ 300Mp. Going to smaller sales, �rst theDoppler term beomes dominant, and eventually the adiabati �utuations take over at smallsales.3.3.2. The CMB Angular Power Spetrum. The preeding formalism relies on theassumption of �atness; both �atness of the three-spae of the Universe and �atness of the on-sidered pathes of the CMB. For several reasons, the simpli�ed treatment breaks down, as beingtoo naïve, both on the smallest and the largest CMB sales. Here, we want to shortly reviewthe modern standard toolkit for an adequate statistial omparison of CMB measurements withtheory, following [Lon98℄ and [CHSS07℄.The information we reeive in form of CMB photons from the epoh of deoupling, is atemperature �eld distributed on the inner surfae of our last sattering sphere. From quantummehanis, it is known that the appropriate mahinery for expanding physial funtions thatlive on a sphere is provided by the analysis of spherial harmonis. The spherial harmonisprovide the orret basis in whih we an attempt to expand temperature anisotropy reordedover the whole CMB sky. We an write(3.33) ∆T

T
(θ, φ) =

∞∑

ℓ=0

m=ℓ∑

m=−ℓ

aℓmYℓm(θ, φ) ,with expansion oe�ients aℓm , ontaining all the physis, and the spherial harmonis Yℓm(θ, φ).For the latter, we note the following normalisation involving the assoiated Legendre polynomials(3.34) Yℓm(θ, φ) =

[
2ℓ+ 1

4π

(ℓ− |m|)!
(ℓ+ |m|)!

]1/2

Pℓm(cosθ) eimφ ×
{

(−1)m for m ≥ 0
1 for m < 0

.The (assoiated) Legendre polynomials an be found tabulated, for instane in [AS72℄. A-ording to this normalisation, the spherial harmonis are a set of orthonormal basis elementswith(3.35) ∫

Y ∗
ℓm Yℓ′m′ dΩ = δℓℓ′ δmm′ ,where the δℓm is just the Kroneker delta and dΩ stands for the full element of solid angle.Hene it is possible to reonstrut the oe�ients aℓm by inversion,(3.36) aℓm =

∫
∆T

T
(θ, φ)Y ∗

ℓmdΩ .



90 3. ON THE COSMIC MICROWAVE BACKGROUNDIt is very useful to understand how the multipole power in a spherial harmoni of multipole
ℓ relates to the aording portion of angular power at a sale θ . Longair [Lon98℄ argues thatthe roots of Re(Yℓm) and Im(Yℓm) provide a lattie struture on the sky that divides the �eldinto approximately retangular pathes. When looking at that sky from low latitude (θ), theminimal sides of the pathes are well approximated by π/ℓ . On the other hand, when departingfrom low latitude � moving to the poles � the roots of the azimuthal parts sinmφ and cosmφluster more and more lose to eah other. But this is ompensated by the assoiated LegendrePolynomials, sine they approah zero in these regions. Together, this leads to the remarkablefat that to every spherial harmoni a unique angular resolution an be attributed(3.37) θ ≃ π

ℓ
.Now we ome to the issue of Gaussianity. We disussed above, that the standard in�ationarymodel predits �utuations that are � among other requirements � purely Gaussian. This isbeause, in the in�ationary view, the initial perturbations in the density of the early Universe areprovided by pure quantum �utuations whih are frozen out. With Gaussianity, it is meant thatthe phases of the waves that onstitute the harmoni deomposition (3.33), are purely random.The assumption of Gaussianity leads to a ouple of appealing simpli�ations. Nevertheless,there are models that predit non-Gaussian features in the CMB. Suh are for instane modelswith topologial defets like osmi strings or osmi textures as well as ompliated in�ationmodels.Assuming Gaussianity of the CMB �utuations implies that �utuations are superimposedfrom waves with random phases. Therefore eah of the expansion oe�ients in (3.33) providesan estimate of the amplitude ontained in the onsidered �utuation mode. Beause there are

(2ℓ+ 1) oe�ients aℓm per multipole ℓ , one obtains an ensemble of amplitude estimates overwhih we an simply average, if we further assume the statistial isotropy of the temperatureanisotropy �eld. Statistial isotropy implies that the power spetrum is irular symmetriaround any point on the sky and onsequently we an onstrut a well-de�ned estimator for thepower of a multipole by taking the mean of aℓma
∗
ℓm and performing an all-sky average,(3.38) Cℓ =

1

2ℓ+ 1

∑

m

aℓma
∗
ℓm .The bulk of urrent CMB analyses is well onsistent with Gaussian temperature anisotropies;the quantities that are found suitable for probing non-Gaussianity, as predited by some non-standard models, are the bispetrum (three-point orrelation funtion of the aℓm), trispetrum,analyses of the Minkowski funtionals as well as other mahinery, see e.g. [S+07, C+06b℄ as somerepresentative studies. From the side of model-building, non-Gaussian features appear rathernaturally in the preditions of more involved models, like multi-�eld in�ation. It is speulatedthat non-Gaussianity may be detetable with future experiments that reah higher auray.The aording theoretial tools for analysis do exist already, see e.g. [FS07℄. However, it shouldbe noted that there are studies that laim to have deteted departure from Gaussianity [BTV07℄.Moreover, we note that � only in ase of statistial isotropy of the mirowave sky � we an writethe ensemble average over the produt of spherial harmoni oe�ients as [CHSS07℄(3.39) 〈a∗ℓm aℓ′m′〉 = Cℓ δℓℓ′δmm′ .As for the point with statistial isotropy, the whole next two hapters of this thesis will beonerned with the analysis of existing evidene � the so alled low-ℓ CMB anomalies � indiatingviolation of statistial isotropy on the largest angular sales in the CMB.Let us proeed further with the standard statistial framework of temperature anisotropies.The approah we pursued above was to �rst de�ne the angular power spetrum of �utuations(3.38), whih represents, in ase of Gaussianity and statistial isotropy, a omplete statistialdesription of CMB anisotropy [Lon98℄. An equivalent approah is to start with the de�nition
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Figure 3.5. The temperature power spetrum of the CMB (3.38) against angularsale from two di�erent experiments. Left: the binend measurement of the angularpower spetrum from three years of WMAP data. The red urve is the ΛCDM best�t and the bluish region indiates osmi variane. Right: power spetrum fromArheops, a balloon borne experiment that took data at around 40km in altitude.The data points have been resaled (×1.07) for omparison with the WMAP(1yr)standard model �t. We hoose to show the Arheops data beause of its di�erentsystematis; also, by omparing the error bars, one gets a feeling for the high qualityof the WMAP data. The angular power spetrum is the main observable from theCMB; it is very sensitive to the parameters of the osmologial model one ompareswith. Figures are taken from [WMAa℄ and [T+05℄.of the two-point orrelation funtion or autoorrelation funtion,(3.40) C(θ) =

〈
∆T

T
(ê1)

∆T

T
(ê2)

〉

.Here, êi are unit vetors and 〈·〉 denotes an ensemble average performed over all pairs of dire-tions that have an angular separation of θ . Making use of the addition theorem for the spherialharmonis(3.41) ∑

ℓ,m

Y ∗
ℓm(ê1)Yℓm(ê2) =

∑

ℓ

2ℓ+ 1

4π
Pℓ(cosθ) ,introduing the Legendre polynomials Pℓ(cosθ) , we �nd that the autoorrelation funtion anbe written as an Legendre expansion in terms of the angular power spetrum(3.42) C(θ) =

1

4π

∑

ℓ

(2ℓ+ 1)CℓPℓ(cosθ) .Conversely, we an write the angular power spetrum in terms of the two-point funtion(3.43) Cℓ = 2π

∫ 1

−1

C(θ)Pℓ(cosθ) dcosθ .Usually, it is said [Lon98℄ that it is a matter of taste whether to use the two-point funtion(3.40) or the angular power spetrum (3.38) for analysis. Although the angular power spetrumis the most popular way of presenting the CMB results in the literature, we will see in hap. 5that, when trying to detet potential deviations from statistial isotropy, an analysis of theautoorrelation funtion may provide additional insights. Moreover, it is outlined in [CHSS07℄that, in the ase of statistial anisotropy, both C(θ) and Cℓ turn to be inappropriate oneptsfor a proper statistial desription of temperature anisotropies measured. More ompliatedstatistis � undemanding with respet to statistial isotropy � are then torpedoed by the fat



92 3. ON THE COSMIC MICROWAVE BACKGROUNDthat we an only observe one single realisation of the CMB, namely our sky. We proeed witha disussion of measurement of the power spetrum and their relation to the standard model.The measurement of the angular power spetrum allows preision tests of the standardmodel of osmology. We show the measured as well as the best �t angular power spetra oftwo experiments, WMAP and the balloon borne experiment Arheops, in �g. 3.5. The CMBangular power spetrum an be roughly divided into three regions in angular sale: (a) for
ℓ . 100 the spetrum is �at (Sahs-Wolfe plateau) and the Sahs-Wolfe e�et is dominant, aresult we already antiipated in the ourse of the Fourier analysis in se. 3.3.1, represented byequation (3.31); within 100 . ℓ . 2000 one learly sees the aousti osillations of the primordialplasma ball; at small angular sales ℓ & 2000 the Silk damping makes the urve derease steeply.The power spetrum is very sensitive to the density parameters of the osmologial model. Ahange in urvature, i.e. in the total density parameter Ω, strongly a�ets the power spetrumon all three sale regions. Tuning of the osmologial onstant � at a �xed urvature parameter� only a�ets the large sales; this is beause in the standard model it is believed that theintegrated Sahs-Wolfe e�et vanishes when Λ is zero. A hange in baryon or matter densitywill shift the amplitudes as well as the positions of the aousti peaks.Let us note some tehnial points. In the plots for the angular power spetrum �g. 3.5,there is a quantity ∝ ℓ(ℓ + 1)Cℓ on the y-axis. This rises the question of the normalisation ofthe power spetrum. One an work out [Lon98℄ the angular power spetrum that results froma general power law input for the density power spetrum P (k) = Akn , .f. equation (1.29),(3.44) Cℓ ∝ A2nπ2 Γ(3 − n)Γ(ℓ+ n−1

2 )

Γ2(4−n
2 )Γ(ℓ+ 5−n

2 )
,where we neglet the transfer funtion for the moment, for larity. Here Γ denotes the ommongamma funtion. Now, when we plug in the ondition for a Harrison-Zel'dovih spetrum (n = 1)� whih is suggested by many models � we get(3.45) Cℓ ∝

A

ℓ(ℓ+ 1)
,and so in the ombination ℓ(ℓ + 1)Cℓ the angular dependene is anelled out. Another pointis that of the osmi variane whih is plotted as the blue region in the WMAP angular powerspetrum in �g. 3.5. From the �gure it appears that this unertainty beomes most importantfor the largest angular sales. This an be understood by the following onsideration. Eahmeasurement of Cℓ is distributed like a χ2 having (2ℓ + 1) degrees of freedom respetively.Therefore at largest angular sales one has only very few independent estimates of a sample of

Cℓ . Let N be the number of independent estimates of Cℓ then the preision of the measuredvalue for Cℓ is limited by N−1/2 . Thus we an write the osmi variane as(3.46) σ2
CV =

2

2ℓ+ 1
Cℓ .What is atually measured by an di�erential CMB experiment like WMAP, is a time-ordereddata stream of the oe�ients aℓm . Beause the CMB signal we observe is an admixture ofosmologial ontributions and various e�ets that photons undergo on the line of sight � likesattering o� foreground soures and many others � there are a lot of ompliated leaningalgorithms applied to the raw data, see [H+07, J+07a℄ for details. For instane, the strongdipole signal, whose origin is thought of being due to our superimposed peuliar motion withrespet to the CMB rest frame, has to be subtrated. See �g. 3.4 for a map of the WMAP dipolesignal. After the appliation of various �ltering methods the primordial CMB anisotropies anbe made visible at good auray, see �g. 3.3. This piture is a result of the superposition ofmany higher multipoles. Let us �nally note the main harateristis of the lowest multipoles(largest angular sales):
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• The otopole (ℓ = 3) � As omputed from the three-year WMAP ILC map using aMaximum Likelihood Estimate (MLE), the otopole amounts to (∆T/T )3 ≃ 32.4µK;the errors are largely osmi variane dominated and an be found in [H+07℄.
• The quadrupole (ℓ = 2) � Aording to one-year WMAP data, the quadrupole asextrated from the ILC map amounts to (∆T/T )2 ≃ 14µK, with errors found in[H+03℄. Aording to three-year data, the quadrupole amounts to (∆T/T )2 ≃ 15.4µK.The inrease from one to three-year data is mainly do to a new ILC bias orretion; fordetails and errors see [H+07℄. Our motion with respet to the CMB rest frame doesnot only a�et the dipole, but also the quadrupole. The e�et is of seond order in
β ≡ v/c ∼ 10−3 and gives rise to a kineti quadrupole orretion of around 1.2µK.

• The dipole (ℓ = 1) � The dipole signal is the strongest anisotropi CMB signal. Itsamplitude is measured by WMAP(3yr) as (∆T/T )1 ≃ (3.358 ± 0.017)mK. It is inter-preted as the result of the observer's motion with respet to the CMB last satteringsurfae. The resulting veloity vetor points to (l ≃ 263.86◦±0.04◦ , b ≃ 48.24◦±0.10◦)in galati oordinates. As a referene we quote here the preprint of [H+07℄. For aMollweide map of the COBE dipole see �g. 3.4.
• The monopole (ℓ = 0) � The monopole is not a temperature anisotropy and is thusnot aessible to di�erential measurements like the WMAP. Therefore the best urrentvalue of the monopole bakground temperature omes from the FIRAS instrumentof the COBE satellite, being T0 ≃ (2.725 ± 0.001)K. The spetrum of the monopoleradiation follows almost perfetly that of a blak body radiator, .f. �g. 3.2.





CHAPTER 4Extrinsi Alignments in the CMBAlthough the osmologial standard model is in good aordane with the data, there havebeen found a ouple of issues onerning the CMB that annot be explained by the standard
ΛCDM paradigm. In partiular, the mirowave sky shows unexpeted features at the largestangular sales, and among them are strange alignments of the dipole, quadrupole and otopole.Here, we pursue the idea that proesses of struture formation ould be responsible for thelarge-sale anomalies via a loal Rees-Siama e�et. The appliation of this mehanism to theCMB anomalies is a novel idea, for usually only the (linear) integrated Sahs-Wolfe e�et istaken into aount in the ourse of standard model CMB analysis. Motivated by reent X-rayluster studies, we investigate the possibility that loal strutures at the 100h−1Mp sale ouldbe responsible for the observed orrelations. These strutures give rise to a loal Rees-Siamaontribution to the mirowave sky that may amount to ∆T/T ∼ 10−5 at the largest angularsales. We model the loal struture by a spherial overdensity (Lemaître-Tolman-Bondi model)and assume that the Loal Group is falling toward the entre. We superimpose the loal Rees�Siama e�et on a statistially isotropi, gaussian sky. Indeed, we �nd alignments among thelow multipoles, but a loser look reveals that they do not agree with the type of orrelationsrevealed by the WMAP data.

Figure 4.1. A Mollweide projetion of the superimposed (ℓ = 2 + 3) map fromWMAP(3yr) ILC. The quadrupole vetors are shown as solid red triangles and theotopole vetors are plotted as solid magenta triangles. The aording normal vetors(ross produts) are shown as open triangles with the respetive olour. The solidline indiates the elipti, the dashed line is the supergalati plane and the dottedlines are the great irles onneting multipole vetors. The magenta star indiatesthe diretion of maximal angular momentum dispersion for ℓ = 3 . One sees e.g. thatthe multipole normals are aligned with the elipti, or that the elipti plane arefullyfollows a zero of the temperature map. The various found alignments are desribedin the text, their signi�ane is given in tab. 4.1. The �gure is taken from [CHSS07℄.95



96 4. EXTRINSIC ALIGNMENTS IN THE CMBTable 4.1. The signi�ane of alignments of quadrupole and otopole with givendiretions as ompared to WMAP(1yr) (upper row) and WMAP(3yr) (lower row),.f. [CHSS06℄ and [CHSS07℄. The omparison is made with respet to a sample of 105�duial standard model Monte Carlos respetively. The values have been obtainedby omparison to di�erent foreground-leaned maps, like the ILC and others, andthe most onservative �gure is always quoted. Exept for the ase with the elipti,the anomalous alignments remain unhanged from one-year to three-year data. Thealignment with the supergalati plane remains in any way inonlusive.dipole elipti galati poles equinox supergalati ℓ = 2 with ℓ = 3

> 99.7 C.L. > 98 C.L. > 99 C.L. > 99.8 C.L. > 85 C.L. 99.4 − 99.6 C.L.
> 99.7 C.L. > 96 C.L. > 99 C.L. > 99.8 C.L. > 85 C.L. 99.6 C.L.4.1. The Alignment AnomaliesThe mirowave sky has presented some surprises at the largest angular sales. The Wilkin-son Mirowave Anisotropy Probe on�rmed the vanishing of the angular two-point orrelationfuntion above 60◦ [B+03b℄, a result �rst obtained by the Cosmi Bakground Explorer's Dif-ferential Mirowave Radiometer (COBE-DMR) experiment [HBB+96℄, and not expeted withinthe standard model. In terms of the angular power spetrum this implies that the quadrupoleand otopole are below the theoretial expetation. We will analyse and disuss the issue of theanomalous lak of two-point angular orrelation in more detail in CHAP.Moreover, the analysis of foreground-leaned full-sky maps [B+03a, TdOCH03, EBGL04℄has revealed further surprises. There are a ouple of surprising anomalies onerning the phasesthe low multipoles. It was pointed out by [dOCTZH04℄ that the otopole seems to be planar �all minima and maxima are lose to a great irle on the sky � and the planes of the otopole andthe quadrupole are losely aligned. Eriksen et al. [EHB+04℄ showed that the northern galatihemisphere laks power ompared with the southern hemisphere.In order to be able to make distint statements with respet to a phase analysis of multipoleswe make use of the multipole vetor formalism [CHS04℄. With the help of the multipole vetorswe ahieve a demixing of the diretional (phase) information and the amplitude of a multipole,as ompared to the lassial approah via spherial harmonis. By means of multipole vetors,Shwarz et al. [SSHC04℄ showed that the quadrupole and otopole are orrelated with eah otheras well as with the orientation and motion of the Solar system. The latter is highly surprisingbeause the CMB signal is of osmologial origin. In partiular, the four ross produts of thequadrupole and otopole vetors are unexpetedly lose to the elipti [> 98% Con�dene Level(C.L.)℄ as well as to the equinox and mirowave dipole (both > 99.7% C.L.) with respet toan analysis of one-year WMAP data [CHSS06℄. Moreover, from the ombined full sky map of

ℓ = 2 + 3 one infers that the otopole is quite planar and that the elipti strongly follows azero line of the map, leaving the two strongest extrema in the southern hemisphere and thetwo weakest in the northern hemisphere, see �g. 4.1. Based on the additional alignment ofa nodal line with the elipti and the elipti north-south asymmetry of the quadrupole plusotopole map, Copi et al. [CHSS06℄ argued that the orrelation with the elipti is unlikely atthe > 99.9% C.L. The signi�anes of the above alignments are summarised in tab. 4.1; we seethat the signi�ane of the anomalies stays the same with respet to one-year and three-yearWMAP data � with the exeption of the elipti alignment. In this hapter we will be interestedmainly in the alignments of quadrupole and otopole with external astrophysial diretions,heneforth extrinsi alignments.The apparent orrelation with the Solar system is not understood by now. It is possible thatsome yet unknown dust loud or other absorbing objet in our viinity disturbs the osmologialCMB signal. In fat, Dikarev et al. [DPS+07℄ reently studied the in�uene of known dustobjets in our viinity on the CMB anomalies and ould exlude suh an explanation of the



4.2. LOCAL REES-SCIAMA EFFECT 97phenomenon. In ontrast to an unknown Solar system e�et, it also seems possible that the large-sale anomalies are due to a physial orrelation with the dipole, in whih ase the orrelationwith the elipti and the equinox would be due to the aidental loseness of the dipole and theequinox.
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Figure 4.2. Left: a sketh of the Rees-Siama e�et from an overdensity that isstill forming. Consider a photon rossing suh a vast superluster. If its traversingtime is, at least, of the order of the evolution time sale of the superluster, then thephoton does not gain exatly the same energy when falling downhill in the potentialas it looses when esaping from it; there will be a net e�et in redshift for the photonin the end. Also it is possible that the luster itself, or the bulk of (dark) matter inthe luster, shows a signi�ant motion aross the line of sight, whih also produes atime-varying gravitational potential along the photon's path. This e�et is alled themoving luster of galaxies e�et or moving halo e�et, .f. [BG83℄, [TL95℄. Right: ashemati depition of the geometry of our model. The loal overdensity is modelledby an LTB solution. We are loated o�-entre in this setup and sine the struture isevolving, due to the Rees-Siama e�et, there will be additional CMB anisotropy.4.2. Loal Rees-Siama E�etThe Rees-Siama e�et belongs to the lass of seondary CMB anisotropies disussed inse. 3.1. It originates from the fat that the CMB photons an pass through vast proessesof struture growth on their way to the observer. Considering a stati gravitational potential,the net e�et on CMB photons passing through it would be zero. This is, beause the energythat photons gain by their infall into the struture's potential is exatly ompensated when theyesape from it. But in the ase of an evolving gravitational potential the net e�et is non-zero, ifthe photon's traversing time is at least of omparable duration as the overall evolving time of thegravitational potential. This is atually the ase for vast extragalati superlusters that are inthe non-linear regime of evolution. This e�et applied to evolving voids produes a net blueshift,and when applied to still-forming overdensities it yields a net redshift. Ourring within theregime of linear struture growth this e�et known as the integrated Sahs-Wolfe e�et and whenourring in the epoh of non-linear struture formation it is alled the Rees-Siama e�et. See�g. 4.2 for an rude illustration. In se. 1.3.3 we have derived the mathematial mahinery ofthe Rees-Siama e�et, whih formally omes out from the integrated Sahs-Wolfe formula. Inthis hapter we are going to make use of these results and apply further analysis.Here we will explore the possibility that the e�et of loal non-linear strutures on theCMB, the loal Rees-Siama e�et [RS68℄, ould indue a orrelation between the dipole andhigher multipoles. In the non-linear regime of struture formation the gravitational potentialhanges with time, and photons limb out of a potential well slightly di�erent from the one theyfell into. As the CMB dipole is onsidered to be due to our motion with respet to the CMBrest frame, and this motion is due to the gravitational pull of loal strutures, these strutures



98 4. EXTRINSIC ALIGNMENTS IN THE CMBTable 4.2. Diretions of loal motion with respet to the CMB rest frame. Theestimated error for the orreted loal group's diretion of [PK98℄(PK) is 14◦, and is5% for their veloities.Diretion Galati oordinates v [km/s℄WMAP(1yr) dipole veloity l = 263◦.85 ± 0◦.10 (368±2)[B+03b℄ b = 48◦.25 ± 0◦.04loal group veloity l = 276◦ ± 3◦ (627±22)[KLS+93℄ b = 30◦ ± 3◦Virgo infall of loal group l = 283◦.92 170[PK98℄ b = 74◦.51Virgo orreted loal group veloity l = 276◦ 510[PK98℄ b = 16◦Shapley onentration l = 306◦.44 -[ETJ+97℄ b = 29◦.71

are a natural andidate for ontributions to the higher multipoles orrelated with the dipole.For earlier work on onnetion of loal strutures with the low-multipole anomalies, see forinstane [Tom05a, Val05, Tom05b, CS05, Man05℄. The Rees-Siama e�et of distant lusterswas estimated to be at most 10−6 in a matter-dominated Universe by Seljak [Sel96℄, one orderof magnitude below the intrinsi CMB anisotropy. The e�et of loal large strutures has beenestimated to be at most 10−6 using the Swiss Cheese model [MS90℄ and, more reliably, using theLTB model, whih is the general spherially symmetri dust solution of the Einstein equation[Pan92, AFMS93, FSA94℄. For an overview and further referenes we reommend [Kra97℄.At the time these studies were made, it was generally thought that the dipole is mostly due tothe infall of the loal group of galaxies towards the Great Attrator [LFB+88, Dre88℄, a densityonentration loated 40-60h−1Mp from us, with a subdominant omponent due to the nearbyVirgo luster, about 10h−1Mp away. Reent observations of X-ray lusters suggest insteadthat there is a major ontribution to the dipole from the Shapley superluster and other densityonentrations at a distane of around 130-180h−1 Mp [KME04, HSLB04, LRSH04, KE06℄.The Shapley superluster, .f. �g. 4.2, is a massive onentration entred around the objetA3558 . It alone has a density ontrast of ≈ 5 over a 30h−1Mp region [PQC+06℄, whih is 2-3times the size of the ore (of similar density) in the Great Attrator models.The further away and the more extended the soure is, the bigger is the impat on thequadrupole and otopole � for a �xed e�et on the dipole � so it is plausible that the Shapleyonentration would indue anisotropies at the 10−5 level. This would be onsistent with theearly estimate for an Shapley Superluster-like objet in [MS90℄ and the approximate salingsuggested by Panek [Pan92℄, whih we disuss next.The CMB anisotropy produed by a spherial superstruture an be estimated by the inte-gral of the gravitational potential perturbation φ ≃ δM/d along the path of the photon, thatis(4.1) (
∆T (θ, ϕ)

T

)

RS

≃ φ vc ,where d is the physial size of the struture, δM is the mass exess and vc the evolution veloity.Sine we are interested in an overdensity we take a ollapsing struture. Further following Panek[Pan92℄, we approximate the evolution time of the struture tc by the matter rossing time d/vc ,note c = 1 = G . Moreover, we estimate the typial ollapse veloity from the energy balane
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Figure 4.3. Left: A projetion of the intermediate-sale struture in our neigh-bourhood to the supergalati x − y plane. The ontours indiate density aordingto (1, 3, 0.5) × 10−3 lusters Mp−2 respetively. The Shapley onentration repre-sents the most massive struture in the shown distane range. One an learly seethe zone of avoidane, from whih optial data annot be taken. Right: dipole pro�leas derived from reent X-ray galaxy surveys. The Shapley superluster dominantlyontributes to the dipole between ∼ 100Mp and ∼ 200Mp. The pitures are takenfrom [TSVZ92℄ and [KME04℄.ondition and have v2
c ≃ φ , whih leads us to(4.2) (

∆T (θ, ϕ)

T

)

RS

∼ φ3/2 ∼
(
δM

d

)3/2

.We are going to model the non-linear struture by a spherially symmetri LTB model embeddedin a �at (Ω = 1) Friedmann-Robertson-Walker Universe. Substituting the expression for themass exess within this model [Pan92℄ we obtain the Panek saling(4.3) (
∆T (θ, ϕ)

T

)

RS

∼
(
δρ

ρ

)3/2(
d

t

)3

.We repeat, t is the osmi time at whih the CMB photons rossed the struture, d is its physialsize and δρ/ρ its density ontrast. Inserting the harateristis of the Shapley superluster, wesee that indeed a CMB anisotropy of 10−5 due to a loal Rees-Siama e�et is reasonable.For a large angular sale of the soure � loal and nearby strutures � this indues ontri-butions to the low-ℓ multipoles, espeially the dipole, quadrupole and otopole. This, in turn,ould inlude a non-Doppler ontribution to the dipole. This would imply a hange of a fewperent in the inferred dipole veloity, whih might also explain some of the CMB anomalies[FGM+06℄. The Shapley onentration is a non-linear struture, and the amplitude of the in-dued anisotropies annot be reliably alulated in linear perturbation theory. Aording to aomparison of linear and exat alulations for Great Attrator-like objets with the LTB modelin [FSA94℄, linear theory is reliable at distanes omparable to the Hubble sale, but fails forstrutures within 1000h−1Mp or so.The advantage of the spherial symmetry of the LTB model is that it allows exat al-ulations for non-linear objets; the drawbak is that the observed non-linear objets suh asthe Great Attrator and the Shapley onentration do not appear to be spherially symmetri.However, we an expet the result to be orret within an order of magnitude, and the ore of
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Figure 4.4. AMollweide map showing the foregrounds whih the WMAP ollabora-tion takes into aount for map leaning. The only extended foreground is representedby the galati region. The regions shown in pink and beige indiate the so alledKp0 and Kp2 di�use emission masks used by the WMAP ollaboration to obtain os-mologial maps. For details of the map-making proess see [J+07a℄ and [H+07℄. Allof the remaining foregrounds that have been taken into aount are point soures. Inthis work we are onsidering the (Rees-Siama) e�et of extended loal foregrounds,see �g. 4.8. The piture is taken from [WMAa℄.the Shapley onentration does seem to be roughly spherial [PQC+06℄. Also, if the preferreddiretion indiated by the low-ℓ anomalies is due to loal strutures, this implies that thereindeed is a degree of symmetry in the loal mass distribution.In addition, there is a seond motivation for studying a spherially symmetri inhomoge-neous model, namely dark energy. If interpreted in the framework of isotropi and homoge-neous osmology, observations of SNIa imply that the expansion of the Universe is aelerating,.f. se. 1.2.2. However, in an inhomogeneous spaetime the observations are not neessarilyinonsistent with deeleration, see se. 1.3. In partiular, in the LTB model the parameter q0de�ned with the luminosity distane is no longer a diret measure of aeleration [HMM97℄. Ithas been suggested by several groups that a spherially symmetri inhomogeneity ould be usedto explain the SNIa data, see se. 1.3, though it is not lear whether suh a model ould beonsistent with what is known about strutures in the loal Universe [Bol05℄ or the observationof baryon osillations in the matter power spetrum. Here we will onern only the CMB.The piture of the loal Universe that we adopt is a spherially symmetri density distribu-tion, with the loal group falling towards the ore of the overdensity at the entre, .f. �g. 4.2.The line between our loation and the entre de�nes a preferred diretion ẑ, whih in the presentase orresponds to the diretion of the dipole after subtrating our motion with respet to theloal group and the loal group's infall towards the nearby Virgo luster � assuming the primor-dial omponent of the dipole to be negligible. The diretions on the sky that are important forour analysis are given in tab. 4.2. This setup exhibits rotational symmetry with respet to theaxis ẑ � negleting transverse omponents of our motion. Consequently, only zonal harmonis(m = 0 in the ẑ-frame) are generated. We have already antiipated this result, it is onsistentwith our predition that ame out from the analytial treatment of the Rees-Siama e�et usingan LTB model in se. 1.3.3. Note that any other e�et with axial symmetry would also indueanisotropy only in the zonal harmonis.The density �eld has two e�ets on the CMB seen by an o�-entre observer. First, photonsoming from di�erent diretions travel di�erent routes through the loal overdensity, and thisreates anisotropy � even with a perfetly homogeneous distribution of photons. In a stationarysetup, for instane for virialised strutures, this e�et vanishes and there is no imprint on the
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Figure 4.5. Left: the galati oordinate system. The galati oordinate systemis de�ned as being parallel with the plane of the Milky Way and entred on the sun.So the equator in galati oordinates (red irle, 0◦ galati latitude) lies in the planeof our galaxy. The galati latitude b is the angle above or below this plane (yellowangle) and the galati longitude l (green angle) is measured from 0◦ to 360◦, ounterlokwise with respet to the north galati pole. 0◦ of galati longitude is arbitrarilyde�ned as the diretion pointing to the galati entre (Sagittarius). Sometimes, inastronomy the equatorial oordinate system is used. Right: the relation of the galatioordinate system to the equatorial oordinate system. The latter is de�ned throughthe plane of the Earth's equator. Important referene diretions on the sky that weuse here are, in galati oordinates: the north elipti pole (l, b) ≃ (96.4◦, 29.8◦) , theequinox (l, b) ≃ (276.3◦, 60.2◦) and the north galati pole (l, b) = (0◦, 90◦) . Pituresare taken from [Ast℄ and [Org℄.CMB. Seond, the environment will a�et the evolution of the intrinsi anisotropies � as thehomogeneous bakground spae does, by hanging the angular diameter distane. The ompletealulation taking into aount both of these e�ets would be to study the evolution of theCMB anisotropies as they travel aross the density �eld using perturbation theory on the LTBbakground. As in earlier treatments, we neglet the seond e�et and simply add the anisotropygenerated by the LTB model on top of the intrinsi ontribution. It is possible that this treatmentmisses some e�ets of proessing the anisotropies already present. In partiular, simply linearlyadding a new soure of anisotropy will in general add multipole power, not redue it, whilea proper analysis of the proessing of the intrinsi anisotropies ould lead to a multipliativemodi�ation of the amplitudes of the low multipoles, as mentioned in [GHHC05℄.It has been suggested that spherially symmetri inhomogeneities of the order of horizonsize or larger would ontribute to the low CMB multipoles [DZS78, RT81, PP90, LP96℄; it waslaimed in [Mof05℄ that this ould explain the observed preferred axis. Leaving aside the issuethat assuming spherial symmetry for the entire Universe seems questionable, the observationalsignature on the low multipoles is idential to that from the LTB model used to desribe loalstrutures, possibly apart from the amplitude.4.3. Angular Power AnalysisFirst we address the question how the osmi mirowave sky is a�eted by the loal Rees-Siama e�et. We are going to study how maps of the CMB are a�eted by the anisotropyindued by additional axisymmetri ontributions aaxial
ℓ0 on the largest angular sales by usingMonte Carlo methods.
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Figure 4.6. Likelihood of quadrupole and otopole power for inreased axialontributions. Vertial lines denote experimental data: WMAP(1yr) ut-sky andWMAP(3yr) maximum likelihood estimate. Considering the quadrupole adding anymultipole power was exluded at > 99% C.L. with respet to WMAP(1yr) but itis possible to add up to 60µK within the same exlusion level with respet to theWMAP(3yr) value. Adding 80µK (100µK) to the quadrupole leads to an exlusion of
99.7% C.L. (99.9% C.L.). The otopole is more resistant against axial ontaminationsas it is possible to add a whole 100µK before reahing the same exlusion level withrespet to the updated WMAP data.We saw in se. 3.3.2 that the angular power spetrum in terms of the oe�ients aℓm anbe expressed as(4.4) Cℓ =

1

2ℓ+ 1

ℓ∑

m=−ℓ

|aℓm|2 .As predited by the standard pereption of in�ationary osmology, the primordial perturbationsare believed to follow a gaussian statisti. Deviations from this would be hard to reonile withthe standard in�ationary paradigm. Therefore, the omplex oe�ients aℓm = aRe
ℓm + i aIm

ℓm areexpeted to be gaussianly distributed with zero mean and variane given by the angular power
Cℓ , aording to(4.5) f(aℓ0) =

1√
2πCℓ

exp

(

− (aRe
ℓ0 )2

2Cℓ

)

and f(aRe,Im
ℓm ) =

1√
πCℓ

exp

(

− (aRe,Im
ℓm )2

Cℓ

)

.Therefore, in the standard model, the oe�ients aℓm are fully haraterised by their angularpower, for whih we use the values from the best �t ΛCDM temperature spetrum to the WMAPdata. In our axisymmetri model, we parameterise the e�et of a loal struture by adding axialontributions aaxial
ℓ0 to the quadrupole and otopole. It is obvious that the additive mehanismannot make the power de�it anomaly disappear. For the statistial analysis we generate 105Monte Carlo realisations of the quadrupole and the otopole. In the following we desribe theresults of our Monte Carlo analysis for the angular power (4.4) with respet to one-year as wellas three-year WMAP data.4.3.1. WMAP(1yr) Angular Power. Considering one-year data, the values of C2 and

C3 determined from the WMAP ut-sky [H+03℄, the so alled TOH map [TdOCH03℄, the La-grange ILC map [EBGL04℄ and the ILC map [B+03a℄ are listed in tab. 4.3. The extratedquadrupoles have been Doppler-orreted as desribed in [SSHC04℄, exept for the ut-sky value.The values of C2 and C3 from the full-sky maps are signi�antly larger than the ut-sky values.In �g. F.1 we show how the C2 and C3 histograms ompare with the one-year data as
aaxial

ℓ0 is inreased. For aaxial
ℓ0 = 40µK, the number of Monte Carlo hits that are onsistentwith the WMAP ut-sky data is smaller by a fator of ∼ 2 for both C2 and C3 as ompared
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Figure 4.7. WMAP one- and three-year ILC maps ompared to the likelihood ofan alignment (4.7) of quadrupole and otopole normals with astrophysial diretions[north elipti pole (NEP), equinox (EQX) and north galati pole (NGP) in olumns℄,for two orthogonal realisations of the preferred diretion ẑ (WMAP dipole, NEP inrows). The bold histograms represent statistially isotropi and gaussian skies aspredited by the ΛCDM model. Inreasing the axial ontribution makes the anomaliesworse for ẑ being aligned with the WMAP dipole, but with the exlusions being lesssigni�ant for the ILC(3yr) than for the ILC(1yr). At the same time a Solar systeme�et is preferred by the data. The number of Monte Carlo realisations per test isalways 105 .with the �duial CMB sky. For aaxial
ℓ0 = 70 µK, the number of onsistent Monte Carlo hitsfor C2(C3) is redued by a fator of ∼ 5(15) ompared with the standard CMB sky. Notethat adding any power to the theoretially expeted quadrupole is exluded at the > 99%C.L.level from the ut-sky analysis, but for the otopole the same exlusion level is not reaheduntil aaxial

30 = 80µK. Further, adding 50µK (100µK) to the quadrupole leads to an exlusion of
99.6%C.L. (99.9%C.L.). In �g. 4.6 we show a omparison of one- and three-year data.4.3.2. WMAP(3yr) Angular Power. In �g. 4.6 we show how the histograms for thequadrupole and otopole power ompare with the measured values from WMAP(1yr,3yr). Con-sidering the WMAP(1yr) ut-sky, adding any power to the quadrupole was already exluded at
> 99% C.L. whereas the WMAP(3yr) data allows for adding up to aaxial

20 = 60µK in order toreah the same exlusion level. The otopole is quite robust against axial ontaminations as itlies better on the �t: in order to reah the same exlusion level of > 99% C.L. it is neessary toadd aaxial
30 = 80µK with respet to the WMAP(1yr) ut-sky and a whole aaxial

30 = 100µK with re-spet to the WMAP(3yr) value. Adding a moderate axial ontribution of aaxial
ℓ0 = 40µK leads toan approximate bisetion of the number of onsistent Monte Carlo hits regarding WMAP(1yr)data (exluded at 99.5% C.L for C2 and 91.5% C.L for C3), where for the updated ut-sky aontribution of aaxial

ℓ0 = 40µK an be exluded at > 98% C.L. for C2 and only at ∼ 71% C.L forthe otopole. 4.4. Extrinsi Alignment AnalysisNow we ask what kind what kind of diretional patterns the ontribution aaxial
ℓ0 indues onthe CMB sky. In the multipole vetor representation [CHS04℄ any real multipole Tℓ on a sphere



104 4. EXTRINSIC ALIGNMENTS IN THE CMBan be expressed with ℓ unit vetors v̂
(ℓ,i) and one salar A(ℓ) as(4.6) Tℓ(θ, ϕ) =

ℓ∑

m=−ℓ

aℓmYℓm(θ, ϕ) ≃ A(ℓ)
ℓ∏

i=1

v̂
(ℓ,i) · ê(θ, ϕ) ,where ê(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ) is a radial unit vetor. Note that the right hand sideof equation (4.6) ontains ontributions with `angular momentum' ℓ−2, ℓ−4,. . . The uniquenessof the multipole vetors is ensured by removing these terms by taking the appropriate traelesssymmetri ombination; for details see [CHS04℄. Beause the signs of all the multipole vetorsan be absorbed into the quantity A(ℓ) , their signs are unphysial and so one is free to hoosethe hemisphere of eah vetor. Also note that the multipole vetors are independent of theangular power. With the deomposition (4.6) we ahieved a unique fatorisation of a multipoleinto a salar part A(ℓ) , whih measures its total power, and ℓ unit vetors v̂

(ℓ,i) that ontain allthe phase information.Now it is neessary to de�ne a suitable statisti to ope with the information from themultipole vetors. Introduing the ℓ(ℓ−1)/2 oriented areas n(ℓ;i,j) ≡ v̂
(ℓ,i)×v̂

(ℓ,j)/|v̂(ℓ,i)×v̂
(ℓ,j)| ,we are ready to de�ne a statisti in order to probe alignment of the normals n(ℓ;i,j) with a givenphysial diretion x̂ [SSHC04℄,(4.7) Snx ≡ 1

4

∑

ℓ=2,3

∑

i<j

∣
∣
∣n

(ℓ;i,j) · x̂
∣
∣
∣ .This statisti is a sum over all dot produts for a given x̂, so it does not imply any orderingbetween the terms and is a unique and ompat quantity. For omputing the multipole vetorswe use the method introdued by [CHS04℄. For mathematial details of the multipole vetorformalism we refer to e.g. [Fis07℄.As the ontribution of the struture desribed by the LTB model, we add to the quadrupoleand the otopole a omponent, denoted by aaxial

ℓ0 , whih is a pure m = 0 mode with respet toa given physial diretion ẑ . For the diretion x̂ wee want to insert the relevant astrophysialdiretions whih give rise to alignment, like the diretion of the elipti plane, the equinox et.But there is a ath. One we rotate the ẑ axis of our initial oordinate system into the diretionof the preferred axis of our model, the diretions on the sky, like north elipti pole et., have tobe realulated in that frame. This an be done in terms of Wigner rotation matries [CHSS06℄.Written as vetors, the oe�ients a′
ℓ transform under rotations as a′

ℓ = D†aℓ , where the vetornotation means that aℓ is a vetor of the ℓ-th multipole oe�ient with (2ℓ+ 1) entries and Ddenoting the rotation. The rotations an be parameterised in terms of the so alled Euler angles
α, β, γ and are given in matrix form by [CHSS06℄
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2

)2ℓ−2k−m′−m

.(4.8)We have arried out the rotations with the help of a MATHEMATICA routine. Next, let us review ourresults of the Monte Carlo analysis for the alignment statisti (4.7) with respet to astrophysialdiretions.4.4.1. WMAP(1yr) Alignment. We look for alignment with three di�erent diretions
x̂: the north elipti pole, the equinox and the north galati pole. The �rst two are preferreddiretions in the Solar system and the last de�nes the plane of the dominant foreground. Theobserved S-values from the di�erent CMB maps are given in tab. 4.3. The results of the orre-lation analysis are shown in the appendix as �g. F.2, �g. F.3 and �g. F.4. By hane the CMB



4.4. EXTRINSIC ALIGNMENT ANALYSIS 105dipole and equinox lie very lose to eah other, so an alignment test with the dipole will giveresults very similar to the one with the equinox.In �g. F.2 the preferred axis ẑ is hosen to be the measured WMAP(1yr) dipole [B+03b℄.We perform alignment tests (4.7) with respet to the three test diretions x̂ . For all three teststhe anomaly gets learly worse, that is the axial mehanism drives the histograms away fromthe data. Next, instead of using the motion of the loal group with respet to the CMB restframe [KLS+93℄ as the test diretion, we take the veloity of the loal group when orretedfor Virgoentri motion [PK98℄, sine this di�ers more from the WMAP dipole. The results areshown in �g. F.3. The situation for the alignment with the equinox is again worse, but thereis not muh e�et on the elipti alignment. For the alignment with the galati plane, theaxial ontribution makes an apparent galati orrelation more probable, i.e. there is a ertainprobability of overestimating the galati foreground. For both test diretions by now, thealignment with the equinox gets worse. For example, in the diretion of the Virgo-orretedloal group motion an exlusion of ∼ 99.9% C.L. for aaxial
l0 = 50µK an be given with respetto all three leaned maps. Note that adding any multipole power in this test an already beexluded at the ≥ 99.4% C.L.As a omplementary test we show the alignment likelihood with regard to an orthogonal testdiretion, namely the north elipti pole, in �g. F.4. An elipti extra ontribution in the CMBwould indeed indue an alignment of normal vetors similar to the observed one. In partiular,for aaxial

ℓ0 = 50µK, the probability of �nding an alignment with the north elipti pole itselfbeomes roughly 5%, and the probability for the equinox alignment rises to 1%.Table 4.3. Tests applied to various leaned maps, as de�ned in equation (4.7), forone- and three-year data, as well as the values for angular power (4.4). Foreground-leaned maps: TOH(1yr) is due to [TdOCH03℄, LILC (1yr) to [EBGL04℄, the ILCmaps to [H+03, H+07℄ and the Maximum Likelihood Estimate (MLE) for low multi-poles to [H+07℄. All one-year quadrupoles exept the ut-sky value have been Doppler-orreted.ut sky (1yr) TOH(1yr) LILC(1yr) ILC(1yr) ILC(3yr) MLE(3yr)
C2 129µK2 203µK2 352µK2 196µK2 261µK2 221µK2

C3 320µK2 454µK2 571µK2 552µK2 550µK2 545µK2

SnNEP - 0.194 0.193 0.210 0.252 -
SnEQX - 0.886 0.866 0.870 0.846 -
SnNGP - 0.803 0.803 0.810 0.794 -4.4.2. WMAP(3yr) Alignment. Similarly, we test for alignment with the three generidiretions x̂: north elipti pole, equinox and north galati pole. The results of the orrelationanalysis are shown in �g. 4.7: in the �rst row the preferred diretion ẑ oinides with thediretion of loal motion, the dipole. Here the anomaly beomes worse when inreasing theamplitude of the axial ontribution. But for x̂ = NEP the exlusion beomes somewhat mildergoing from one-year to three-year data; e.g. aaxial

ℓ0 = 40µK leads to an exlusion of 99.2%C.L. forILC(1yr) but only 98.2% C.L. for the updated ILC map. Finding an alignment with the equinoxthough is strongly exluded at > 99.2%C.L., even with an vanishing axial ontribution for bothone- and three-year data. For instane, for x̂ = EQX adding a ontribution of aaxial
ℓ0 = 20µK(aaxial

ℓ0 = 70µK) leads to an exlusion level of 99.4%C.L. (99.9%C.L.) with respet to three-year data. Similarly to above, a Solar system e�et is preferred by the data. For example, analignment with the elipti itself (x̂ = NEP) may only be exluded at the level of 92.3%C.L. afteradding an axial ontribution of aaxial
ℓ0 = 40µK. For the same axial ontribution, the alignmentwith the equinox beomes less anomalous as 99.2%C.L.→ 98.2%C.L.



106 4. EXTRINSIC ALIGNMENTS IN THE CMB4.5. ConlusionBesides the anomalous intrinsi alignment of the CMB quadrupole and otopole with eahother and the lak two-point angular orrelation on the largest angular sales, there are a numberof mysterious alignments with astrophysial diretions onerning the lowest multipoles in theWMAP data. These anomalies are present both in the one-year and in the three-year WMAPdata, .f. tab. 4.1, and ould not be satisfatory explained by now.Here we presented an analysis that seeks to take the in�uene of non-linear struture for-mation on the CMB photons into aount. Suh an e�et is well motivated by present dataon the large-sale struture. Reent astrophysial data ataloguing our neighbourhood in theX-ray band [KME04, KE06, HSLB04, LRSH04℄ point us to the existene of massive non-linearstrutures, like the Shapley onentration, at distanes of around 100h−1Mp. Besides its sig-ni�ant ontribution to the dipole veloity pro�le, .f. �g. 4.3 , suh a struture is able to indueanisotropies of order 10−5 via its Rees-Siama e�et.Regarding CMB modes, the spherial symmetry of the LTB model, whih we use to ap-proximate the loal superstruture, redues to an axial symmetry along the line onnetingour position and the entre of the overdensity, where we loate for instane the Shapley super-luster, .f �g. 4.2 (right �gure). Consequently, under this assumption we should observe anaxisymmetri e�et on the mirowave sky. The preferred axis ẑ has been taken to point in thediretion of the CMB dipole, .f. �g. 4.7 and �g. F.2 and the Virgo-orreted loal group's �owvetor, see �g. F.3. Thereby we have added the axisymmetri ontribution to a statistiallyisotropi gaussian random map (ΛCDM standard model predition) and ompared it by meansof the S-statisti with WMAP measurements. The additional zonal harmonis have been addedwith inreasing strength, see �g. 4.8 or �gs. F.5-F.7 for full-sky maps of the Rees-Siama e�et.When gauging the preferred axis to the diretion of loal motion (WMAP dipole), the onsis-teny of the data with theory beomes even worse, albeit with slightly less signi�ane withrespet to three-year WMAP data. In partiular, in ase of ẑ =dipole, an axial ontributionof aaxial
ℓ0 = 60µK led to an exlusion level of 99.4%C.L. with respet to one-year data, but an`only' be exluded at 98.7%C.L. within the updated maps. However, in ase of the alignmenttest with the equinox, the signi�ane of the anomalous alignment remains nearly unhangedwhen omparing with one- and three-year data. On the other hand an orthogonally direted(Solar system) e�et would largely inrease the onsisteny with the data for both one-year andthree-year data sets: for instane, 97%C.L.→ 83%C.L. with respet to WMAP(3yr) data afteradding an axial ontribution of aaxial

ℓ0 = 70µK.Here we studied additive axial e�ets beause they are well motivated. However, from ouranalysis it is not exluded that there ould be a multipliative axisymmetri e�et, oming fromsome unknown non-linear soure. Note that our analysis applies likewise to any other e�etwhih gives an axisymmetri addition to the statistially isotropi and gaussian random sky.4.5.1. Alternative Proposals. The existene of the CMB anomalies support the onlu-sion that either the Universe as seen by WMAP is not statistially isotropi on largest sales, orthat the observed features are due to unexpeted foregrounds, hidden systematis or new physishallenging the standard osmologial model. Diverse attempts for explanation an be foundin the literature: onsidering anisotropi or inhomogeneous models [Bianhi family or (LTB)models℄ [GHS07, JBE+06, AA06, Mof05, Tom05b, RRS06b℄, Solar system foreground [Fri05,DPS+07℄, lensing of the CMB [Val05℄ and moving foregrounds[CS05℄, Sunyaev-Zel'dovih e�et[AS03, AJW06, HBM+05℄ and Rees-Siama e�et [IS07, IS06, MDW+07, RRS06b, RRS06a℄,onsidering a non-trivial topology of the Universe [LWR+03, SKCSS07, ALST07℄, onsideringmodi�ations and re�nements of the standard simplest senario of in�ation [BdVS06, CCT06,CPKL03, FRV04, GH04, WNL+07℄ and even onsidering possible phenomenology of loop quan-tum gravity [HW04, TSM04℄.This list is not meant to be exhaustive. Let us pik two models out that appear partiularlyinteresting from our point of view. First, also onsidering extended loal foregrounds Abramo
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Figure 4.8. Full-sky Mollweide maps (ℓ = 2 + 3) of the Rees-Siama e�et onthe quadrupole and otopole. Upper map: a random realisation of an statistiallyisotropi and Gaussian quadrupole plus otopole. Lower left map: an axial e�et �whih ould e.g. be due to the loal Rees-Siama e�et of an spherial overdensity � ofmagnitude aaxial
20 = aaxial

30 = 70µK is imposed on the random map, with the preferredaxis of the model ẑ pointing in the diretion of the dipole (upper right quadrant);for this model diretion the alignment anomalies beome worse when adding an axiale�et, .f. �g. 4.7. For an illustration of galati oordinates and relevant diretions see�g. 4.5. Lower right map: adding the same ontribution, now with the preferred axisbeing in diretion of the north elipti pole, in whih ase the Monte Carlo analysisshowed that alignments beome less anomalous, .f. �g. 4.7. The olour legends are inunits of 0.1mK. For map-making we made use of the publily available GLESP pakage[D+03℄. Additional maps are given in app. F.et al. proposed [AS03, AJW06℄ that a old spot in the diretion of the loal Superluster ouldaount for the ross alignments of quadrupole and otopole. The old spot would be realisedby the (thermal) Sunyaev Zel'doviha e�et of CMB photons sattering o� the hot intralus-ter gas. However, the values for the harateristis of the Sunyaev-Zel'dovih foreground (gastemperature, density) that are required to explain the ross-alignment are at most marginallyonsistent with astrophysial X-ray data.Seond, Silk and Inoue [IS06℄ suggested a ertain geometrial pattern of two idential voidsto aount for the ross alignment as well as for the otopole planarity via the Rees-Siamae�et of this underdense struture. But extrinsi alignments remain unexplained in this model.aIn se. 3.1 we have already mentioned this astrophysial e�et. Let us shortly give some details here. CMBphotons an undergo inverse Compton sattering o� hot gas eletrons in galaxy lusters and so get shifted tothe Wien regime of the spetrum. Therefore, when looking at the CMB sky in the Rayleigh-Jeans band, thereappears a lak of mirowave photons at the position of the hot intraluster gas. The spetral distortion is givenby [SZ70℄(4.9) „
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σT dl ,where y is the integrated gas pressure along the line of sight, Te is the temperature of the hot luster eletronsand σT is the Thomson ross setion. Beause the e�et is independent of redshift, it an be used to detet hotgalaxy lusters up to very high redshifts z ∼ 2 within future CMB surveys [B+06a℄, as well as for an independentyield of the Hubble onstant, for the basi priniple see [KKZ97℄. For a review see e.g. [CHR02℄.



108 4. EXTRINSIC ALIGNMENTS IN THE CMBHowever, this approah requires a high degree of �ne-tuning in the geometrial setup of thevoids that are plaed on the sky. The atual data on the large-sale struture of the Universedo not support suh a setup.Eah of the latter approahes alone is not fully satisfatory. A more realisti approahonerning extragalati foregrounds should take both the Rees-Siama e�et and the Sunyaev-Zel'dovih e�et into aount. Moreover, sine the loal Rees-Siama e�et an ontribute up to
10−5 to the temperature anisotropies on large angular sales, a detailed study is important forross-orrelating CMB data (inluding upoming Plank data) with astrophysial observationson the loal large-sale struture.



CHAPTER 5Intrinsi Alignments in the CMBNow we want to fous on the intrinsi quadrupole-otopole alignment, whih is independentof external diretions, as well as its relation to the anomalous features in the measured CMBtemperature autoorrelation funtion. As was mentioned, at the largest angular sales � orre-sponding to the multipole moments ℓ = 2 and ℓ = 3 � the presene of a number of unexpetedfeatures has been on�rmed by the latest CMB measurements. Among these are the anomalousalignment of the quadrupole and otopole with eah other as well as the stubborn lak of angularorrelation on sales > 60◦. Here we searh for orrelations between these two phenomena anddemonstrate their absene. A Monte Carlo likelihood analysis on�rms previous studies in theliterature and shows that the joint likelihood of both anomalies is inompatible with the best-�t
ΛCDM model at > 99.95%C.L. Extending also to some higher multipoles, a ommon speialdiretion has been identi�ed and has been dubbed in the literature the `Axis of Evil'. In theseek for an explanation of the anomalies, several studies invoke e�ets that exhibit an axial sym-metry. We �nd that this interpretation of the `Axis of Evil' is inonsistent with three-year datafrom the WMAP. More preisely, the data require a preferred plane, whereupon the axis is justthe normal diretion. Rotational symmetry within that plane is ruled out at high on�dene.
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Figure 5.1. The temperature autoorrelation (3.40) versus angular separation sale,from WMAP(1yr) (left) and WMAP(3yr) (right) data. Kp0-masked maps from threedi�erent frequeny bands Q (41GHz), V (61GHz) and W (94GHz) are shown, aswell as the ut and unut ILC maps, and the Maximum Likelihood Estimate forthe smallest multipoles. None of the almost vanishing (60◦ . θ . 170◦) ut-skywavebands mathes the reonstruted full-sky and neither one of the latter mathesthe predition of the best-�t model. The anomaly appears even more pronouned inthe three-year data than in the one-year data. Figures are taken from [CHSS07℄.109



110 5. INTRINSIC ALIGNMENTS IN THE CMB5.1. IntrodutionWith the emergene of more and more preise and detailed osmologial observations, thein�ationary ΛCDM model remains to provide a surprisingly good �t to the bulk of osmologialdata. Thereby, the most preise and distinguished lever arm is provided by measurements ofthe mirowave bakground radiation. The standard in�ationary model predits approximatelysale-invariant, statistially isotropi and Gaussian temperature �utuations on the surfae oflast sattering and is fully onsistent with the data, .f. se. 1.2.2. But after the release of threeyears of mission data from the WMAP satellite [J+07a, H+07, P+07, WMAa℄ there remainat least open questions and at most serious hallenges upon the in�ationary ΛCDM model ofosmology.Based on the high preision measurements of WMAP, a ouple of anomalies on the mi-rowave sky have been identi�ed. These anomalies manifest themselves at the largest angularsales, mainly among the quadrupole and otopole � the dipole is overwhelmingly dominated byour loal motion with respet to the CMB � but also extending to somewhat higher multipoles.The orresponding anomalies may be divided into two types:
• First, and already seen by the COBE-DMR instrument [HBB+96℄ and on�rmed bythe �rst-year analysis of the WMAP team [S+03℄, there is a lak of angular two-pointorrelation on sales between 60◦ and 170◦ in all wavebands. In [CHSS07℄ the angu-lar two-point orrelation funtion of the three-year WMAP measurements has beenomputed. Going form COBE-DMR to WMAP(3yr) the lak of orrelation persistsand moreover it has been outlined [CHSS07℄ that among the two-point angular orre-lation funtions none of the almost vanishing ut-sky wavebands mathes the reon-struted full sky and neither one of the latter mathes the predition of the best-�t

ΛCDM model. This disagreement has been shown to be even more distintive in theWMAP(3yr) data than in the WMAP(1yr) data and is found to be unexpeted at
99%C.L. with respet to the three-year Internal Linear Combination [ILC(3yr)℄ ut-sky. Reently, it has been shown [Haj07℄ that indeed quadrupole and otopole areresponsible for the lak of orrelation and that most of the large-sale angular poweromes from two distint regions within the galati plane (only 9% of the sky).

• Seond, there exist anomalies onerning the phase relationships of the quadrupole andotopole. As we have disussed in the previous hapter, there are a number of remark-able alignment anomalies found [dOCT06, SSHC04℄, e.g. an unexpeted alignment ofthe quadrupole and otopole with the dipole and with the equinox at 99.7%C.L. and
99.8%C.L., respetively [CHSS07℄. In ontrast to suh extrinsi alignments, that isalignments of the low multipoles with some physial diretion or plane, like the dipoleor the elipti (disussed in the previous hapter), the intrinsi alignment betweenquadrupole and otopole does not know about external diretions. In this hapter,we address the intrinsi alignment of quadrupole and otopole with eah other, whihfrom the ILC(3yr) map is found to be anomalous at the 99.6%C.L. with respet to theexpetation for an statistially isotropi and Gaussian sky [CHSS07℄.Both types of CMB phenomena hallenge the statement of statistial isotropy of the CMBsky at largest angular sales. Here we want to study the relation between the lak of angularorrelation and the intrinsi alignment of quadrupole and otopole.In [LM05℄ it has been shown that intrinsi alignments among multipole moments extend alsoto higher moments and it has been proposed that the strange alignments at large angular salesinvolve a preferred diretion, alled the `Axis of Evil'. This axis points approximately towards

(l, b) ≃ (−100◦, 60◦) and is identi�ed as the diretion where several low multipoles (ℓ = 2 − 5)are dominated by one m-mode when the multipole frame is rotated into the diretion of theaxis. Reently, in [LM07℄ the analysis of the `Axis of Evil' has been redone in the light of theWMAP(3yr) with the use of Bayesian tehniques [MS07℄. It was argued [dOCT06℄ that the`Axis of Evil' is rather robust against foreground ontaminations and galati uts. A reent



5.1. INTRODUCTION 111
Random Axial + Random

Figure 5.2. Mollweide projetion of the sky with quadrupole (upper row) and o-topole (lower row) multipole vetors [equation (5.5)℄. The mesh onsists of steps in
30◦. Displayed are ten pairs of quadrupole vetors (small dots) and their ten area ve-tors [equation (5.6) (big dots)℄ as well as ten triples of otopole vetors (small dots)and their area vetors (big dots); togetherness is indiated by olour. The arbitrarysign of the vetors has been used to gauge them all to the northern hemisphere. Thestatistially isotropi and Gaussian ase (left olumn) is broken by the imprint of astrong axial e�et aℓ0 = 1000µK (right olumn) whereupon multipole vetors move tothe pole and area vetors move to the equatorial plane. The onset of the shown sep-aration of multipole vetors and ross produts an already be observed at moderateaxial ontributions of aℓ0 ∼ 100µK, .f. �g. F.11.[RLLA07℄ ross-orrelation analysis of CMB data and galaxy survey data shows no evidene foran `Axis of Evil' in the observed large-sale struture. In ontrast, reently an opposite laimhas been put forward [Lon07℄, where it was laimed that an analysis of SDSS data gives rise toa preferred axis in the Universe.Motivated by these observed CMB anomalies, several mehanisms based on some axisym-metri e�et have been proposed, although the operational de�nition of the `Axis of Evil'[LM05, LM07℄ does not neessarily imply the existene of suh a strong symmetry. Amongthe various e�ets that have been suggested to possibly introdue a preferred axis into osmol-ogy are: a spontaneous breaking of statistial isotropy [GHHC05℄, parity violation in generalrelativity [Ale06℄, anisotropi perturbations of dark energy [KM06, BM06℄, residual large-saleanisotropies after in�ation [CCT06, GCP06℄, or a primordial preferred diretion [ACW07℄. Atthe same time, it has been studied [RRS06b, IS06℄ how the loal Rees-Siama e�et of an ex-tended foreground, non-linear in density ontrast, a�ets the low multipole moments of the CMBvia its time-varying gravitational potential, see the previous hapter. In a senario with a singleoverdensity the oe�ients of the spherial harmoni deomposition, the aℓm, beome modi�edby only zonal harmonis, i.e. m = 0 modes. This is equivalent to an axial e�et along the lineonneting our position with the entre of the soure.In fat, the observed pattern in the CMB for quadrupole and otopole is a nearly pure aℓℓmode respetively; as seen in a frame where the z-axis equals the normal of the plane de�nedby the two quadrupole multipole vetors [CHSS06℄. In [CHSS07℄ it has already been argued,that foreground mehanisms originating from a relatively small path of the sky would mainlyexite zonal modes. Moreover all additive e�ets where extra ontributions are added on top of



112 5. INTRINSIC ALIGNMENTS IN THE CMBthe primordial �utuations would have di�ulties explaining the low multipole power at largesales without a hane anellation.It is important to study how the inlusion of a preferred axis ompares with the intrinsimultipole anomalies at largest sales. Our analysis is restrited to axisymmetri e�ets on topof the primordial �utuations from standard in�ation, thus seondary or systemati e�ets. Weare going to quantify how poorly an axisymmetri e�et at low multipoles of whatever originmathes the three year-data of WMAP. Further, we will demonstrate that there is no orrelationbetween the two types of intrinsi low-ℓ anomalies: the two-point orrelation de�it and intrinsialignment; and that there remains none even when a preferred axis is introdued to the problem.5.2. Choie of StatistiA ommon observable is the multipole power. Aording to the standard pereption ofin�ationary osmology, the CMB �utuations are believed to follow a Gaussian statisti andto be distributed in a statistially isotropi way. The notion of statistial isotropy means thatthe expetation value of pairs of oe�ients 〈a∗ℓ′m′aℓm〉 is proportional to δℓ′ℓ δm′m , .f. (3.39).The proportionality onstant measuring the expetation value of the multipole on the full skyis ommonly estimated by Cℓ , .f. se. 3.3.2. The angular power an also be written as(5.1) Cℓ ≡
1

2ℓ+ 1

ℓ∑

m=−ℓ

|aℓm|2 =
1

2ℓ+ 1

∫

dΩ T 2
ℓ (θ, ϕ) ,with Tℓ being the ℓ-th multipole of the CMB temperature anisotropy. It an be expanded withthe help of spherial harmonis as: Tℓ =

∑

m aℓmYℓm . Note that, sine we onsider multipolemoments that are real, the aℓm must ful�l the additional ondition: a∗ℓm = (−1)maℓ−m . Usingthe estimator (5.1)) the angular two-point orrelation funtion is given by(5.2) C(θ) =
1

4π

∞∑

ℓ=0

(2ℓ+ 1)CℓPℓ(cos θ) ,where the Pℓ are the Legendre Polynomials of ℓ-th order.Besides of the multipole power itself, it is useful to introdue an all-sky quantity thatembraes all sales. As inspired by the S1/2 statisti, presented in [S+03℄ for measuring the lakof angular power at sales larger than 60◦, we use here an analogous all-sky statisti [CHSS07℄(5.3) Sfull ≡
∫ 1

−1

C2(θ) d(cosθ) .It is a measure of the total power squared on the full-sky. In ontrast to the S1/2 statisti[S+03℄, the Sfull statisti does not ontain any a priori knowledge on the variation of the twopoint angular orrelation (5.2) for angles > 60◦ . Here we are onsidering espeially the largeangular sales but we are not interested in the monopole and dipole and thus arrive at(5.4) Strunc
full =

1

8π2

(
5C2

2 + 7C2
3

)
.Of ourse, all multipoles have to be onsidered for the full-sky statisti (5.3) but we an use thetrunated part (5.4), beause here the anomalies are most pronouned and we want to hekfor the interplay of this part of the full-sky power statisti with the other (phase) anomalieswithin quadrupole and otopole. This part is then simply to be added to the rest of the sum of(squared) multipole power in (5.3), reovering the expression for the full-sky.Next we turn to the statistis involving the phase relationships of multipoles. We use theonept of Maxwell's multipole vetors [Max79℄ in order to probe statistial isotropy, sine thisrepresentation proved to be useful for analyses of geometri alignments and speial diretionson the CMB sky. Normally the CMB data is deomposed into spherial harmonis and the
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ℓ∑

m=−ℓ

aℓmYℓm(θ, ϕ) = A(ℓ)

[
ℓ∏

i=1

(

v̂
(ℓ,i) · ê(θ, ϕ)

)

− Lℓ(θ, ϕ)

]

,and ê is a radial unit vetor, just like in (4.6). The `angular momentum' residuals are subtratedwith the help of the term Lℓ(θ, ϕ). We hoose the sign of the multipole vetors so that they allpoint to the northern hemisphere.In order to dislose orrelations among the multipole vetors we �rst onsider for eah ℓ the
ℓ(ℓ− 1)/2 independent oriented areas built from the ross produts(5.6) w(ℓ;i,j) ≡ ± v̂

(ℓ,i) × v̂
(ℓ,j) ,whereof we will also use the normalised vetors n(ℓ;i,j) ≡ w(ℓ;i,j)/|w(ℓ;i,j)|. Now, in [SSHC04℄and subsequent works, the dot produts of the area vetors have proven to be a handy expressionin order to quantify alignments of the multipole vetors among eah other and also with externaldiretions (whih we do not onsider here). The following measure, as stated in [Wee04℄, andused in [SSHC04, CHSS06, CHSS07℄ serves as a natural hoie of a statisti in order to quantifythe intrinsi alignment of quadrupole and otopole oriented areas:(5.7) Sww ≡ 1

3

∑

i<j

∣
∣
∣w

(2;1,2) · w(3;i,j)
∣
∣
∣ .Note that we onsider only the very largest sales, i.e. we use the statisti only for ℓ = 2, 3.Analogously, a statisti involving the normalised area vetors is given by:(5.8) Snn ≡ 1

3

∑

i<j

∣
∣
∣n

(2;1,2) · n(3;i,j)
∣
∣
∣ .5.3. Standard Model PreditionsStandard in�ationary ΛCDM osmology requires the CMB anisotropies to be Gaussian andstatistially isotropi. For the subsequent analysis we have produed Monte Carlo realisationsof the harmoni oe�ients aℓm following the underlying ΛCDM theory. From [CHS04℄ analgorithm is available whih we use to obtain Monte Carlo multipole vetors from the oe�ients.
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aℓm must be non-Gaussian. In fat, this restrition leads to a negative kurtosis for the aℓmdistribution (the skewness vanishes). Having that in mind, it appears suddenly unlear whetherthe naive expetation of vanishing orrelation of power with intrinsi alignment will hold. Belowwe substantiate the absene of orrelations by means of a Monte Carlo analysis.Let us �rst look at the alignment anomalies. In �g. 5.3 the likelihood of the quadrupoleand otopole alignment statistis Sww and Snn is shown. The preditions of the standardin�ationary ΛCDM model are shown as the bold histograms respetively (= vanishing axialontamination). Aording to the three-year ILC map from WMAP [WMAa℄ we get the follow-ing measured values for the alignment statistis:

SILC(3yr)
nn = 0.8682 and SILC(3yr)

ww = 0.7604 ,when [CHSS07℄ orreted for the Doppler-quadrupole. The total number of Monte Carlos weprodued per sample is N = 105. We infer that the unmodi�ed in�ationary ΛCDM preditionis unexpeted at 98.3% C.L. with the Snn statisti and unexpeted at 99.5% C.L.a with respetto the Sww statisti.Next we onsider the ross-orrelation between the intrinsi phase anomalies and the mul-tipole power (5.1) within the low-ℓ. For this we hose those aℓm that allow for say the lowestpossible 5% in the left tail of the distributions for C2 and C3 that follow from statistial isotropy,Gaussianity and the ΛCDM best-�t to the WMAP data. Then we ompute the expression Swwfor the seleted aℓm and ompare it to the aording ILC(3yr) value. As expeted, no orrelationaThe value quoted above was [CHSS07℄ 99.6% C.L. The small di�erene is due to the inorporation of theWMAP pixel noise in the Monte Carlo analysis in [CHSS07℄.
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ww . The distribution of the multipole powerfor C2 and C3 made of these aℓm remains unhanged. The latter �nding on�rms that multipolepower and the shape of multipoles (phases) are unorrelated.Using Equation (5.4), the [WMAa℄ Maximum Likelihood Estimate (MLE) from the WMAPILC(3yr) map for the angular power spetrum yields Strunc,MLE
full = 29431µK4. Compared tothe value of 136670µK4 from the ΛCDM best-�t to WMAP(3yr) data, this is not signi�antlyunexpeted, with an exlusion level of only 92.1%C.L.Now we want to hek for orrelations between the all-sky multipole power and the multipolealignment. As for reasons explained in the next setion we prefer the Sww statisti to Snn in thefollowing orrelation analysis. In Figure 5.5 the satter plot of Sww against Strunc

full is shown. Theform of the ontour an be understood as just the folding of the χ2-like form of the distributionfor Strunc
full with the gaussian-like form of the Sww distribution. At �rst glane we see from Figure5.5 that the MLE from WMAP(3yr) Strunc,MLE

full = 29431µK4 requires the alignment statisti tobe of middle values (around 0.4), whih is inonsistent with the respetive measured anomalousvalue from ILC(3yr). Moreover the lak of any linear behaviour in the ontour suggests thatthere is no orrelation between the two statistis.Given that no orrelation is present between Sww and Strunc
full , we would expet that the jointprobability that both power and alignment are in aordane with data fatorises aording to:(5.9) p

(
Strunc

full ≤ data ∧ Sww ≥ data
)

= p1

(
Strunc

full ≤ data
)
p2 (Sww ≥ data) .



116 5. INTRINSIC ALIGNMENTS IN THE CMBBut in reality we an only aess �nite statistial samples of these quantities and the fa-torisation will not be exat. However, we want to will hek the validity of (5.9) within ourstatistial ensemble. When using the full sample with N = 105 respetively we obtain a jointlikelihood of p ≃ 0.05%. The error ∆ of the fatorisation, whih we de�ne as the di�erenebetween the left hand side in (5.9) and the right hand side, is of the order O(10−5), that is of theorder of the Monte Carlo noise. In order to trak the evolution of the error ∆ we also omputethe joint likelihood (5.9) for smaller subsamples; see tab. 5.3. Reduing N to N = 104 we obtainan even smaller joint likelihood of p = 0.02% but with an error that is of the same magnitude.With N = 103 we do not have a single hit for the joint Monte Carlos leading to p = 0% withthe same error as in the N = 104 ase of ∆ = 0.02%. Note that just one Monte Carlo hit infavour of the joint ase would raise the error here to ∆ = 0.08%. In the end, the onvergene ofthe joint likelihood appears to be very slow with respet to the sample size N .Furthermore we are interested in the stability of the results for ∆ with respet to hangesin the measured data. For this we hoose the WMAP(1yr) values:(5.10) Strunc,pseudo-Cℓ

full = 10154µK4 and SILC(1yr)
ww = 0.7731 .We use a sample of the full size N = 105 and obtain a joint likelihood with respet to theone-year data of p = 0.001% with an error ∆ = 0.002%. That is, with respet to one-year databoth the joint likelihood and its error are of the order of the Monte Carlo noise. From theWMAP(1yr) data alone we ould exlude the joint ase (5.9) rather onservatively at 99.99%C.L. This appears to be a stronger exlusion than the one from three-year data. But we do notbother muh about the di�erene beause of the di�erent estimators that have been used by theWMAP team for the angular power spetrum (pseudo-Cℓ vs. MLE) [WMAa℄.sample size N joint p error ∆100000 0.048% 0.008%100000b 0.001% 0.002%10000 0.02% 0.02%1000 0% 0.02%Table 5.1. Joint likelihoods (5.9) for Strunc

full and Sww being in aordane with datasimultaneously. The experimental values refer to WMAP's ILC(3yr) map [WMAa℄exept for the seond row. The error ∆ of the fatorisation in equation (5.9) is thedi�erene between left hand side and right hand side in that equation.We quote here the most onservative result, namely the full sample joint likelihood ase for
Sww and Strunc

full with respet to the WMAP(3yr) data. Therefore we an exlude that ase at
> 99.95% C.L. with an error in the third digit after the omma lying within the Monte Carloerror of the used sample (N = 105).Finally we attempt to analyse the orrelation of the all-sky power statisti Strunc

full and theintrinsi multipole alignment Sww by quantitative means. It is well known from statistis, thatwhen heking a �nite two-dimensional sample for orrelations, the empiri ovariane(5.11) cov[Strunc
full , Sww ] ≡ 1

N − 1

N∑

i=1

(
Strunc

full, i − S̄trunc
full

) (
Sww, i − S̄ww

)is a ruial quantity. The bar stands for the mean of a variable. As the ovariane is a saledependent measure, i.e. depending on the magnitudes of the sample values Sww, i and Sww, i,the dimensionless Bravais-Pearson oe�ient or empirial orrelation oe�ient is the betterexpression to use:(5.12) ρStrunc
full , Sww

≡ cov[ Strunc
full , Sww ]

√
cov[Strunc

full , Strunc
full ] cov[Sww , Sww ]

.
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full [0.1mK]4Figure 5.6. Satter ontour of pairs of Sww and Strunc

full after an axial modi�ation of
aℓ0 = 70µK has been applied; this is the ontribution involving maximal improvementin Sww (see �g. 5.3). The total number of Monte Carlo pairs is N = 105. Note thatthe horizontal axis now runs from zero to 1.4 × 10−6mK4, whereas in �g. 5.5 themaximal displayed value is 4 × 10−7mK4. The inlusion of a preferred axis leavesall-sky multipole power and intrinsi alignment totally unorrelated and inonsistentwith the WMAP(3yr) data. Contour lines are de�ned as in �g. 5.5.Finally, employing the WMAP(3yr) data we obtain an empirial orrelation oe�ient of

ρStrunc
full ,Sww

= −0.0027 ,with respet to the full sample N = 105, whih indeed indiates only marginal orrelation.5.4. Inlusion of a Preferred AxisNow we ask what happens when introduing axial ontributions on top of a statistiallyisotropi and gaussian mirowave sky. The presene of a preferred diretion with axisymmetryin the CMB will exlusively exite the zonal modes in ase the axis is ollinear to the z-axis.Here we do not bother about external diretions sine the internal alignments are independentof these. Therefore suh an axis will manifest itself through additional ontributions aℓ0. Weare onsidering the quadrupole and the otopole and the question arises, in how far the sign ofthe axial ontributions ±aℓ0 plays a role. The oe�ients aℓm an be reonstruted from(5.13) aℓm =

∫
∆T

T
(θ, ϕ) Y ∗

ℓm dΩ .Obviously, within the quadrupole the sign of ±a20 is irrelevant beause of the symmetry ofthe Legendre Polynomial P2 with respet to θ = 90◦. The Legendre Polynomial P3 howeveris antisymmetri with respet to θ = 90◦. Therefore the relevane of the sign of the otopoleontributions a30 has to be lari�ed. Consequently we have hosen a �xed value for the axialquadrupole ontribution a20 and have then varied the aording otopole ontribution in signand in magnitude. The results are displayed in �g. 5.4. Apparently the Snn and Sww statististhat are important here, do not distinguish between the sign of the applied axial e�et. Thereforewe need not to bother about the signs of the aℓ0 and let them heneforth be positive.In Figure 5.3 the evolution of the Sww and Snn statistis with respet to inreasing axialontributions is displayed in terms of likelihood histograms:



118 5. INTRINSIC ALIGNMENTS IN THE CMBLet us �rst look at the evolution of the Snn statisti. This expression measures the average
| cos | of the angles between the quadrupole oriented area and the otopole areas. The pureMonte Carlo peaks at 0.5 re�eting the fat that the average distane of four isotropiallydistributed vetors on a half-sphere from eah other is 60◦ in the ase of statistial isotropy. Itis a half-sphere beause the signs of the multipole vetors are arbitrary and so we hoose themall to point to the northern hemisphere. When inreasing the ontribution of the axial e�et themultipoles beome inreasingly zonal and arrive at being purely zonal in a good approximationat values of aℓ0 = 1000µK. On the level of the multipole vetors this means that their rossproduts all move to the equatorial plane (see �g. 5.2). That is the reason why the histogram in�g. 5.3 (left) moves to the right when we inrease the axial e�et, beause now isotropy is brokenfrom the half-sphere to the half-irle making the Snn histogram peak sharper at higher values.The measured value from the ILC(3yr) map of SILC(3yr)

nn = 0.868 is anomalous at 98.3%C.L. withrespet to the pure Monte Carlo (bold histogram in �g. 5.3 whih stands for the statistiallyisotropi and gaussian model. By adding axial ontribution the maximal improvement is reahedat aℓ0 = 100µK where the ILC(3yr) beomes unexpeted at 96.7% C.L. Further enhanementof the axial e�et makes the Snn statisti more and more narrow around an expetation value
< 0.7. This makes it impossible to remove the anomaly in the Snn ross-alignment with respetto the ILC(3yr) experimental value only by inreasing the axial ontribution to high enoughvalues.On the other hand the Sww statisti additionally measures the modulus of the sin of theangles between the multipole vetors themselves. As an be seen from �g. 5.2 multipole vetorsare all moving toward the north pole lustering more and more as the axial ontribution isenhaned. The Sww statisti measures the average of the modulus of the produts of the sinof angles between quadrupole vetors, otopole vetors and the os of the angle between thearea vetors. Therefore on top of the information already ontained in Snn the Sww statistiis able to go to zero for highest zonal ontamination as the loseness of the multipole vetorsin that ase dampens the produt of sines and osines quadratially to arbitrary small values.Thus we �nd that Sww is the more onvenient statisti for further analyses, as it does ontainmore information than the Snn statisti and additionally shows a simple and lear asymptotibehaviour. In the ase of this statisti the anomaly is signi�ant at 99.5%C.L. with respetto SILC(3yr)

ww = 0.7604. Similarly to before the maximal improvement is reahed with an axialontribution of aℓ0 = 70µK, whih degrades the anomaly in Sww to 99.2%C.L.Now we return to the orrelation analysis of the alignment with the pure multipole power
Cℓ. When introduing an axial e�et, say aℓ0 = 100µK, we improve the �t to the Sww statisti,but interestingly the multipole power anomaly beomes muh more pronouned. This behaviouris expeted [RRS06b, RRS06a℄ for the Cℓ-distribution (being a modi�ed χ2-distribution) whenthe axial ontribution is enhaned, but it is unexpeted that exatly the same happens for amultipole power distribution `that knows of the intrinsi alignment of quadrupole and otopole'.This indiates that there is no orrelation at all between multipole power and the phase alignmenteven when they are tuned to eah other.Proeeding with the analysis of orrelations between alignment and the full-sky power statis-ti, again we try to provoke orrelation with the help of axial symmetry in the CMB. In fatwe apply an axial e�et of the ideal magnitude (aℓ0 = 70µK) in order ahieve larger values in
Sww. The negative result is shown in �g. 5.6: as Strunc

full is a linear ombination of squared Cℓdistributions it is a sharply peaked χ2-like distribution being very sensitive to axial ontribu-tions. Therefore the ontour in �g. 5.7 is fairly shifted to the right (to higher values in Strunc
full )and broadened with respet to the axially unmodi�ed ase, obviating any orrelation with theintrinsi alignment. The shape of the overall ontour is roughly left invariant by the sale shiftin Strunc

full .The �g. 5.7 illustrates the pure zonal ase. Here a whole aℓ0 = 1000µK has been indued intothe multipole vetors. Again, due to the sensitivity of Strunc
full to axial ontamination this pushesthe allowed region in the satter plot to very high values in full-sky power squared, degenerating
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full ) after a strong axialontingent of aℓ0 = 1000µK is indued to the multipole vetors (see also �g. 5.2 and�g. 5.3). The total number of Monte Carlo pairs is N = 105. The all-sky powerstatisti reats heavily as the sale on the Strunc
full -axis is shifted by four orders ofmagnitude with respet to the ase of aℓ0 = 70µK (�g. 5.6). The likelihood maximumdeparts very artiulately from the WMAP(3yr) data. The ontour lines are de�nedlike in �g. 5.5.the ontour to a `small' area far away from the measured three-year WMAP values. No hangein orrelation is observable.Obviously, no oupling of the multipole power statisti and the intrinsi alignment an bedriven in favour of the anomalous experimental CMB data by an additional axisymmetri e�eton top of the primordial �utuations. 5.5. ConlusionWe have shown that a literal interpretation of the `Axis of Evil' as an axisymmetri e�etis highly inompatible with the observed mirowave sky at the largest angular sales. Theformalism of multipole vetors was used to separate diretional information from the absolutepower of multipoles on the CMB sky. Considered were two hoies of statisti, measuring theintrinsi ross-alignment between the quadrupole and otopole: the Snn and the Sww statisti.We on�rm that the Sww statisti ontains more information on the multipoles and that it hasmore disriminative power as an axial e�et is inluded. The presene of an axial symmetry in theCMB would exite zonal modes whih are, in the frame of the axis, additional aℓ0 ontributionsin the language of the harmoni deomposition. Both statistis (Snn and Sww) reah slightlybetter agreement with the measured values from the ILC(3yr) map at amplitudes of roughly

aℓ0 = 100µK. Further enhanement of the axial e�et only redues onsisteny with WMAP(3yr)data.Espeially we have assayed in what way the alignment anomaly between quadrupole andotopole an a�et the respetive multipole power. We made several tests where we identi�edand seleted the `anomalous aℓm ' that are still onsistent with data and heked whether theresulting distribution from these aℓm for either power or alignment shows any hange with respetto the unbiased ase. For the all-sky multipole power we make use of the statisti Strunc
full . Wedemonstrated that the orrelation between Strunc

full and intrinsi alignment is at most marginal �



120 5. INTRINSIC ALIGNMENTS IN THE CMBorrelation oe�ient of −0.0027 . Thus a fatorisation of the probability for the joint ase intoa produt of the respetive probabilities is allowed, .f. (5.9).We argued that the ombined ase of the measured all-sky power and the quadrupole-otopole alignment is anomalous at > 99.95%C.L. with respet to the WMAP three-year data.The orrelation piture leaves no spae for an axisymmetri e�et in the large-angle CMB.These �ndings omplement our previous studies from hap. 4 of the interplay of an axisym-metri e�et and the extrinsi CMB anomalies (orrelation with the motion and orientation ofthe Solar system [SSHC04℄). In that work it was suggested that an axisymmetri e�et mighthelp to explain a Solar system alignment. Finally, this study rules out that possibility.But there is a loophole. Here and in hap. 4 we only onsidered additive modi�ations ofthe aℓm. Still, a preferred axis ould also indue multipliative modi�ations in all aℓm , seee.g. [GHHC05℄. This ould avoid the problem of additional multipole power. However, multi-pliative e�ets ould only be ahieved by non-linear physis, like systematis of the measurementor the map making proess.A modelling that would be able to onsistently remove both the power and the intrinsialignment problem for low-ℓ must mobilise a more omplex pattern of modi�ations than theone indued by an axisymmetri e�et. As already indiated by e.g. the odd extrinsi alignmentwith the elipti, .f. tab. 4.1, the CMB anomalies do rather require a speial plane than apreferred axis. The so alled `Axis of Evil' appears as just the normal vetor of that plane, butno axial symmetry is present within that plane.



Summary and OutlookIn this thesis I have addressed urrent open questions of the osmologial standard model.I would like to lose the sienti� part of this work with a onise summary of the main issuesthat have been overed here, as well as some remarks with regard to future interesting work.The Issue of Dark Energy. In hap. 1 we have disussed the main observational evidenein favour of the osmologial onstant Λ . In partiular, we have seen that observations ofdistant supernovae of type Ia support an aelerated expansion of the Universe. Additionally,the supernova data shows that this aeleration has set in at redshifts of order unity, that isin osmologial terms `reently'. This is referred to as the oinidene problem. Together withthe CMB measurements and galaxy redshift surveys, the experimental �ndings form the osmionordane.In hap. 1 we have also seen that the supernova data an potentially be explained withininhomogeneous models (LTB model, Szekeres model) without invoking Dark Energy. Also,the additional inlusion of CMB data has been arried out suessfully by some groups. Themethods we have used in hap. 1 to arry out analyti alulations in the LTB model an also beused in the ontext of osmologial bakreation. Cosmologial bakreation is an onservativeattempt to solve the Dark Energy problem, for it does not invoke any new �elds or interations.It is known that bakreation is indeed able to mimi Λ , but the atual magnitude of the e�etis yet undetermined and subjet to urrent debate. On the one hand the non-perturbativeapproah via the Buhert equations shows a lak of suitable observables, and on the otherhand the perturbative approah, whih deals with observables, beomes tehnially immenselyompliated with higher orders. However, see [LS07℄ for an attempt of synthesis.Addresssing these problems, Thomas Buhert (Université Lyon 1), Dominik Shwarz and Ihave begun a projet in whih we are examining the e�ets of general relativisti averaging �arried out on the bakward light one of the observer � on the ommon osmologial distanemeasures, whih are, the angular diameter distane and the luminosity distane. This is anongoing work and its results are too preliminary to be written down in this thesis yet.The Issue of Dark Matter. We have seen in hap. 2 that the evidene for Dark Matteris manifold. However, it should be reemphasised that there is no a priori reason to believe thatall of the missing matter problems on all of the di�erent physial sales must have a ommonexplanation.The most important evidene omes from a simple astrophysial test, the galati rotationurve. A fully general relativisti galaxy model has been proposed by Cooperstok and Tieureently, and it was shown that this model an explain the observed �at rotation urves withoutany Dark Matter. It is laimed by CT that Newtonian models annot reprodue ertain intrin-sially non-linear terms within the CT model, whih shall appear already in the stationary andaxisymmetri setup.Nevertheless, it has been argued from various diretions that the CT model gives rise tounphysial features. It is an open question whether the CT solution ould provide an e�etivemodel, and to whih extent the breakdown of its Newtonian limit might indiate its usefulnessor its di�ulties. 121



122 SUMMARY AND OUTLOOKIn hap. 2 we have shown that the CT solution does not belong to the lass of the mostgeneral axisymmetri and stationary solutions. Therefore the CT solution is less general andthis restrition might be a reason for the problems of the model.Moreover, we found the surprising fat that the lassial Newtonian metri is not appropriatefor a weak �eld limit of the CT theory, beause the inorporation of a post-Newtonian potentialis neessary to make physial sense.We then onerned ourselves with the analysis of rotating (Post-) Newtonian spaetimes inorder to �nd a simpli�ed model. We applied the full mahinery of the ADM formalism to theproblem and we derived the exat 3 + 1-equations of motion for the stati and for the rigidlyrotated Post-Newtonian metri as well as approximate results for the di�erentially rotated ase.We found that it is neessary to go to full quadrati order in the potentials of the di�erentiallyrotated PN metri to obtain a viable Newtonian limit, whih will be done in the near future.The Issue of the CMB Anomalies. The one-year CMB data taken by the WMAP ex-hibits several unantiipated features, espeially within the smallest multipole moments (quad-rupole and otopole). These �ndings have been widely on�rmed after the WMAP three-yeardata release. The features are referred to as `anomalous' beause they ontradit the predi-tions made by the standard in�ationary ΛCDM model � espeially the statistial isotropy. Inhap. 4 and hap. 5 we have presented the various shapings of the anomalies in muh detail.The odd features are present both in the CMB autoorrelation funtion C(θ) and in the phaserelationships of the quadrupole and otopole.In hap. 4 we foused on the anomalous alignments of the lowest multipoles with external(astrophysial) diretions, like the CMB dipole or the harateristi diretions of our Solar sys-tem. Inspired by the orrelation with the dipole, we ask how extended extragalati foregroundswould in�uene the CMB sky via the Rees-Siama e�et. The overdense struture responsiblefor the e�et was modelled by a spherially symmetri LTB solution. We then made use of theanalyti alulation of the Rees-Siama e�et � presented in hap. 1 � indiating that only thezonal CMB modes are modi�ed by the e�et (axisymmetry).We have found that massive non-linear strutures like the Shapley onentration (roughly
100Mp away) are able to produe CMB ontributions of up to 10−5 . For the axially symmetrisetup we have shown that this e�et does indue alignments, albeit not of the same form asextrated from WMAP, and that still rather a Solar system e�et is preferred by the data.The intrinsi alignment of the quadrupole and otopole, as well its relation to the anomalouslak of angular two-point orrelation in the WMAP data was the subjet of hap. 5. Afterarrying out a Monte Carlo ross-orrelation analysis we ould demonstrate the absene oforrelations between the two sorts of anomalies. Based on this we were able to show thatthe ombined ase of the measured autoorrelation and the quadrupole-otopole alignment isanomalous at > 99.95%C.L. with respet to the WMAP three-year data.The orrelation piture leaves no spae for an literal interpretation of the `Axis of Evil' asan axisymmetri e�et. As we pointed out in hap. 5 there are several models with a preferredaxis in the literature whih seek to provide an explanation for some of the anomalies. Our resultenables us to put stringent onstraints on any model that exhibits an axial symmetry.But there is still a loophole for axial models. In this work we have onsidered additivemodi�ations of the aℓm. Still, a preferred axis ould also indue multipliative modi�ations inall aℓm , see [GHHC05℄. This ould avoid the problem of additional multipole power. However,multipliative e�ets ould only be ahieved by non-linear physis. In priniple it is possible toget suh a non-linear e�et from the spetral distortion arising from the possible interation ofthe CMB photons with small objets in the Kuiper Belt, the so alled Trans-Neptunian objets,.f. [BBS07℄. This is a promising idea to pursue in the near future.Moreover, I think that it is fruitful to arry out a similar Rees-Siama analysis within themore ompliated Szekeres model, .f. se. 1.3.2, beause muh more non-trivial symmetries anbe expeted there.



AknowledgementsI ome to a part that is easily written � for it re�ets my very gratefulness. Dealing with themanifold physis that osmology is ready to o�er to the interested mind was not allways easyand in the least ases pereption ourred quikly. Still, the feeling, the evergrowing onstrutof knowledge gives to us, the view on its inreasing elegane and purity as it seems to miminature, an only be shared by those who were ready to walk that path for a time. It would nothave been possible to spend the enormous amount of time and e�ort for studying the physisthat I admire so muh without a number of people, whom to address here is a pleasure for me.I hardly an imagine a better advisor than Dominik Shwarz. I hope that I sueed in writinga few lines of aknowledgement that are neither arbitrary nor standard. Finding an PhD advisormore willing to help, more o�ering guidane and being more motivating than Dominik, wouldbe, to my opinion, very hard. For very numerous oasions I had the opportunity to absorbthe remarkable �ow of knowledge as well as the important subtle insights that he was alwaysready to o�er without ompromise. Besides being a mentor, he is a most pleasant researholleague from whom I ould not only learn a whole lot of physis, but also how to approahit and how to take another perspetive. I am grateful to him, for always �nding some time formy questions, despite of his inreasingly full time-table; and if it was only a few minutes in theelevator, larifying my requests. And, what is most important to me, I want to thank Dominkfor giving me a hane.Meinen Eltern gebührt mehr Dank als ih hier zum Ausdruk bringen könnte. Nihts vondem hier wäre möglih gewesen ohne den Zuspruh und die moralishe Unterstützung, die siemir jederzeit haben zuteil werden lassen.I am grateful to Thomas Buhert and Syksy Räsänen for ollaborating with me and sharingtheir ideas. Also, I thank them very muh for supporting my job appliations.I want to thank Prof. Dietrih Bödeker for being a referee of this thesis. Also, I like tothank Prof. Reinhart Kögerler for being `Prüfungsvorsitzender', and I am likewise grateful toProf. Andreas Hütten for joining the group of referees.I very muh thank Florian Kühnel, Marina Seikel and Maik Stuke for proofreading parts ofthis thesis. Also, I am thankful to Benjamin Jurke for providing me a template of the underlyingLatex. I am deeply indebted to Jan van der Heide for his heroi e�orts in proofreading and hisattempts to improve my English.It is a pleasure to thank the members of the Bielefeld osmology group for the nie workingatmosphere we have shared and for always being open to lively and fruitful disussion.I am grateful to the members of the Bielefeld theory department for the fantasti timein Bielefeld. To my experiene, the soial bonds within the Bielefeld group are unparallelled.Espeially, I want to thank the people that (almost all) have already left the Bielefeld group sometime ago, but with whom I shared a marvellous time, e.g. within our `extraordinary seminars',and for many other oasions. In partiular, it is a pleasure for me to mention: Matthias Döring,the razy and ingenious Jörg Erdmann, André Fisher, Lars Fromme, Jan van der Heide, KayHübner, Jak Liddle, Kai Matzutt, Mihael Seniuh, Stanislav Shheredin, Wolfgang Söldner,Tim Stokamp, Christian Torrero and Sönke Wissel.Finally, I want to thank the members of our football group for the many hot and intensebattles that we fought and for the great time we shared. Espeially, I like to mention HansPollpeter and Jan Shmalhorst who helped me with the organisation.123
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APPENDIX ACritial Values of Ωm and ΩΛ in the FRW ModelHere we give a disussion of the various, partly exoti, solutions that are possible within anFRW model with non-vanishing osmologial onstant. The presentation partly refers to [FI86℄.

Figure A.1. Left: the osmi onordane plot from �g. 1.4 has ritial lines. Forinstane, there is a borderline formed by the oasting (sometimes also alled loiteringor hesitating) osmologies that separates FRW models with a Big Bang from suhwithout Big Bang in the upper left orner of the �gure. Moreover there is an `expan-sion/reollapse' borderline in the middle of the diagram. The derivation of the ritialurves is given in the text. In the lower right orner of the �gure there is anothershaded region. This parameter region is falsi�ed for it implies solutions where theUniverse is younger than the oldest stars t0 . 9.6 Gyr (with any H0 & 50 km s−1Mp−1 [P+98℄). Right: an alternative way of plotting the onordane results in theform of a `osmi triangle'. Pitures are taken from [Lid04℄ and [Gfr℄.First, the line of geometrially losed, open or �at in the above �g. A.1 simply refers to therespetive hoie of k . The dynamis of the FRW model is governed by the Friedmann equation(1.14). Writing the Friedmann equation today, when the radiation is no more dominant, wehave(A.1) k

H2
0a

2
0

= Ωm + ΩΛ − 1 ,127



128 A. CRITICAL VALUES OF Ωm AND ΩΛ IN THE FRW MODELsuh that we an read o� the urvature lines in �g. A.1 by
Ωm + ΩΛ > 1 → k > 0 , spatially closed

Ωm + ΩΛ = 1 → k = 0 , spatially flat

Ωm + ΩΛ < 1 → k < 0 , spatially open .(A.2)Next we onsider the line of `aeleration/deeleration' (see the osmi triangle). Usingdimensionless variables R = a/a0 and τ = H0t we an write the Friedmann equation, after a bitof algebra, as follows(A.3) R2
,τ = 1 + Ωm

(
R−1 − 1

)
+ ΩΛ

(
R2 − 1

)
.The deeleration parameter was de�ned in (1.42) and takes today the value(A.4) q0 = −

(
aä

ȧ2

)
∣
∣
∣
∣
∣
0

,where dots indiate di�erentiation with respet to osmi time. Di�erentiation of equation (A.3)further gives(A.5) 1

H2

(

2
ȧä

a2
0

)

= −Ωm

(
a0ȧ

a2

)

+ ΩΛ

(

2
aȧ

a2
0

)

,so that taking the equation today yields(A.6) q0 =
1

2
Ωm − ΩΛ .Thus, with q0 = 0 we just get the dividing line 2ΩΛ = Ωm as indiated in the �gure.The ritial lines of Λ are more interesting. For very high and positive values of Λ theUniverse would lose its Big Bang in the past. The borderline for this is given by the lass ofEddington-Lemaître models; in these models one employs a value for Λ that is slightly higherthan Λstat whih is in turn de�ned by the stati (Einstein) limit: Λstat ≡ 1/a2

stat. In theEddington-Lemaître model the Universe rapidly expands from a = 0 (Big Bang) on and reahesa turning point near a = astat , where it mimis the Einstein model for an arbitrarily long timebefore it erupts again, now expanding to in�nity; at the time of invention of the Eddington-Lemaître model it was hoped that the quasistati feature in the model may provide time forstruture formation, .f. [Nar02℄. The `Big Bang/no Big Bang' borderline models are thusasymptoti to the Einstein model in their (in�nite) past. Then models with Λ < Λstat do have aBig Bang in the past, whereas models with Λ > Λstat are ollapsing from some in�nite radius toa �nite minimal sale where they turn around and reexpand again to in�nity � this behaviouris also referred to as atenary or boune. Analyti formulas for the aording ritial lines of
Λ are readily obtainable. Besides the ritial line of `Big Bang/no Big Bang' we will also geta solution for models that are quasistati in their in�nite future and they form the `reollapseeventually/expand forever' borderline in the �gure. Models that are to be asymptotially equalto a stati Einstein solution must obey the equation(A.7) K0

R2
stat

= Λstat =
3

2

( 8πG

3
ρ

︸ ︷︷ ︸

≡C

) 1

R3
stat

with Rstat ≡
astat

a0
,where K0 is the Gauss urvature K0 ≡ k/a2

0 and we used the resaling R ≡ a/a0 so that R0 = 1today. In fat, the stati model onditions (A.7) are two separate equations so that we aneliminate Rstat and solve for the ritial Lambda value(A.8) Λstat =
4

9
K3

0C
−2 and C = ΩmH

2
0 .On the other hand we have from the Friedmann equation, as evaluated today,(A.9) K0 = H2

0 (Ωm + ΩΛ − 1) .



A. CRITICAL VALUES OF Ωm AND ΩΛ IN THE FRW MODEL 129We now an insert this into (A.8) and bring the result to a form onvenient for the followingsteps,(A.10) Λstat

12 ΩmH2
0

=
1

27
(Ωm + ΩΛ − 1)

3 1

Ω3
m

.It is useful to de�ne the following funtion(A.11) x ≡
(

Λstat

12 ΩmH2
0

)1/3

=

(
ΩΛ

4 Ωm

)1/3

,suh that we an rewrite equation (A.10)(A.12) x3 =

[
1

3

(
1 − Ω−1

m + 4x3
)
]3

.Now, taking the three-root is unique and we get(A.13) x3 − 3

4
x+

1

4

Ωm − 1

Ωm
= 0 ,a dimensionless inhomogeneous ubi equation. One possibility of solving (A.13) is to use themethod by Cardano and Tartaglia: �rst, the `disriminant' is given by(A.14) ∆ ≡ α−2

(
β2 + 4γ3

)
=

1

16
(1 − 2Ωm)

1

Ω2
m

,and moreover we de�ne(A.15) p ≡ 1

2

[

−β +
(
β2 + 4γ3

)1/3
]

=
1

2

[
1

4
(1 − Ωm)Ω−1

m + ∆1/2

]

,with the identities α = 1 , −β = 1/4(1 − Ωm)Ω−1
m and γ = −1/4 . The solutions are formulatedfor x , but our aim was to onvert these to solutions for Ωm and ΩΛ . Consequently we are hereinterested only in the positive and real roots of the ubi equation and with these onstraints thetrigonometri form of solution [Tur52℄ is more onvenient than the above form. The borderlineof models that expand to in�nity to those that reollapse is given by the solutions that arequasistati in the in�nite future. For universes that are to expand to in�nity we get the followingtrigonometri solution(A.16) ΩΛ ≥

{
0 for 0 ≤ Ωm ≤ 1

4Ωm

{

cos
[

1
3 arccos

(
1−Ωm

Ωm

)

+ 4π
3

]}3

for Ωm > 1
.The ritial line of Big Bang/no Big Bang is haraterised by those models that have beenquasistati in the in�nite past. Models without an initial singularity are haraterised by(A.17) ΩΛ ≥







4Ωm

{

cos
[

1
3 arccos

(
1−Ωm

Ωm

)]}3

for Ωm > 1
2

4Ωm

{

cosh
[

1
3arccosh

(
1−Ωm

Ωm

)]}3

for Ωm < 1
2

.Note that the join at Ωm = 1
2 is perfetly analyti. The need for two formulas to represent asingle funtion is an artefat of solving ubi equations as it is disussed by [Tur52℄: `From a realubi, three real roots annot be extrated by Cardano's formula without a iruitous passageinto, and out of, the domain of omplex numbers'.





APPENDIX BDetails of the Lemaître-Tolman-Bondi ModelHere the �eld equations for the LTB model and for its more general progenitor model are given.First let us reall the Einstein �eld equations of gravity with osmologial onstant (c ≡ 1)(B.1) Rαβ − 1

2
Rgαβ + Λgαβ = 8πGTαβ .The de�nition that is used throughout this work for the energy momentum tensor is the onefrom (2.39)(B.2) Tαβ = (ρ+ p)uαuβ + pgαβ with uαuα = −1 ,The used metri signature is (−,+,+,+) whih here orresponds to Tαβ = diag(ρ, p, p, p) but

Tα
β = diag(−ρ, p, p, p) . The ombination Gαβ ≡ Rαβ − 1

2Rgαβ is referred to as the Einsteintensor. Given a spaetime representation gµν the Christo�el symbols are alulated via(B.3) Γα
βγ ≡ 1

2
gαδ (gβδ,γ + gγδ,β − gβγ,δ) .The Riemann urvature tensor an be expressed in oordinate notation as(B.4) Rα

βγδ ≡ Γα
βδ,γ − Γα

βγ,δ + Γε
βδ Γα

εγ − Γζ
βγ Γα

ζδ .The Rii tensor is de�ned as the trae of the Riemann tensor(B.5) Rβδ ≡ Rα
βαδ ,and taking the trae of the Rii tensor we de�ne the Rii salar(B.6) R ≡ Rδ
δ .The respetive quantities in their three-dimensional versions are de�ned analogously; in theabove relations one only hanges greek to latin indies. The spatial Rii salar is written inaligraphis (3)R ≡ R . The following results refer to [PK06℄ and [Bon47℄ as well as to my ownalulations.B.1. General Spherially Symmetri Spaetime with Zero VortiityWe �rst disuss a more general ase than the LTB solution from whih the LTB model originates.When the matter model is that of a perfet �uid, the vortiity vanishes for spherially symmetrispaetimes. The synhronous gauge is then justi�ed and the metri takes the general form (1.43)(B.7) ds2 = −eCdt2 + eAdr2 +R2
(
dθ2 + sin2θdϕ2

)
.Note that there may be an ambiguity with the term `synhronous gauge' whih is sometimesused di�erently in the literature. What we mean here (following [PK06℄), is that there are nomixing terms in the metri. Further, the metri oe�ients C,A and R are funtions of (r, t)only. The four-veloity �eld takes the form(B.8) uα = e−C/2 .131



132 B. DETAILS OF THE LEMAÎTRE-TOLMAN-BONDI MODELThen the �eld equations read
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(
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+
A,tR,t
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− e−A
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)

= 8πGρ+ Λ ,(B.9)
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(
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+
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)

= −8πGp+ Λ ,(B.10)
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= −8πGp+ Λ ,(B.11)
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0 = e−A
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2
R,t,r

R
− A,tR,r

R
− R,tC,r

R

]

= 0 .(B.12)In this general ase also a mass term an be assigned. Multiplying (B.9) by R2R,r and applying(B.12) we end up with(B.13) ∂

∂r

(

R+ e−CRR2
,t − e−ARR2

,r −
1

3
ΛR3

)

= 8πGρR2R,r .Analogously, we an multiply (B.10) by R2R,t and get(B.14) ∂

∂t

(

R+ e−CRR2
,t − e−ARR2

,r −
1

3
ΛR3

)

= −8πGpR2R,t .Now, a look at (B.13) suggests that it makes sense to de�ne the term in the brakets as a mass(B.15) m(r) ≡ 1

2

(

R+ e−CRR2
,t − e−ARR2

,r −
1

3
ΛR3

)

,suh that (B.13) upon integration yields(B.16) m(r) = 4πG

∫ r

r0

ρR2R,r′dr′ .Therein we take the r0 suh that it oinides with R = 0 . The seond equation (B.14) anthen be interpreted as an energy onservation, where the work done by volume hange equalsthe rate of hange of mass. As a simple example one ould onsider a spherial body, e.g. astar modelled with the above equations. At the surfae of the star the pressure is zero and thusthe onservation equation (B.14) says m,t = 0 , i.e. the total stellar mass remains onstant withtime for a star that is surrounded by vauum.B.2. Einstein Equations of the Lemaître-Tolman-Bondi ModelUnder the assumption of zero pressure (i.e. dust) C an be transformed away C = 0 andsolving the o�-diagonal Einstein equation (B.12) whih an be written also in the form of (1.44)determines the form of eA (1.45) up to an arbitrary funtion E(r) . Thus the metri takes theLTB form(B.17) ds2 = −dt2 +
R2

,r

1 + E
dr2 +R2(dθ2 + sin2θdϕ2) .



B.2. EINSTEIN EQUATIONS OF THE LEMAÎTRE-TOLMAN-BONDI MODEL 133The aording non-vanishing Christo�el symbols read
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23 = cotθ .(B.18)The Riemann urvature tensor takes the form(B.19) R = 2
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,and the non-vanishing omponents of the Rii tensor are
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.(B.20)The Einstein equations of the LTB model read

G0
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,t − E
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2R,t,rR,t − E,r

RR,r
= 8πGρ+ Λ ,(B.21)

G1
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R2
= −8πGp+ Λ ,(B.22)
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+

1

2

2R,t,rR,t − E,r

RR,r
= −8πGp+ Λ .(B.23)When using these results, please take are of the sign onvention for the Einstein equations,energy momentum tensor, Riemann tensor and so forth that has been used here. The onsistenyof the signs an be heked by performing the FRW limit on the LTB equations.





APPENDIX CRotating Post-Newtonian MetrisC.1. Full Di�erential RotationWe apply the following transformation involving full di�erential rotation,(C.1) ϕ = ϕ′ − ω(t, r, z)ton the following Post-Newtonian metri(C.2) ds2 = −(1 + 2φ)dt2 + (1 − 2ψ)(dr2 + r2dϕ2 + dz2) .In omponent notation the transformed spaetime then reads
gtt = −(1 + 2φ) + (1 − 2ψ)(ω + ω,tt)

2r2 , gtr = (1 − 2ψ)2tr2(ω + ω,tt)ω,rt ,

gtϕ = −(1 − 2ψ)2r2(ω + ω,tt) , gtz = (1 − 2ψ)2r2(ω + ω,tt)ω,zt ,

grr = (1 − 2ψ)(1 + r2ω2
,rt

2) , grϕ = −(1 − 2ψ)2r2ω,rt ,

grz = (1 − 2ψ)2r2ω,rω,zt
2 , gϕϕ = (1 − 2ψ)r2 ,

gϕz = −(1 − 2ψ)2r2ω,zt , gzz = (1 − 2ψ)(1 + r2ω2
,zt

2) .(C.3) C.2. Spatial Curvature TermsC.2.1. Stati Newton Metri. From the non-rotating PN metri in artesian oordinates(C.4) ds2 = −(1 + 2φ)dt2 + (1 − 2ψ)(dx2 + dy2 + dz2) ,we have omputed � using the notation (1, 2, 3) =̂(x, y, z) � the following non-zero omponentsof the spatial Christo�el symbols
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, Γ1
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33 =
ψ,x
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, Γ3

31 = − ψ,x
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.(C.5)For the three-dimensional Rii tensor we get the following non-vanishing omponents
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+
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+
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+
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+
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+
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+
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+
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Ri
k =

ψ,i,k

(1 + 2ψ)2
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ψ,iψ,k

(1 + 2ψ)3
≃ ψ,i,k for i 6= k .(C.6) 135



136 C. ROTATING POST-NEWTONIAN METRICSTherefore the spatial Rii salar beomes(C.7) R =
4

(1 − 2ψ)2
∆

(3)
cartψ +

6

(1 − 2ψ)3
(∇(3)

cartψ)2 ≃ 4∆
(3)
cartψ .C.2.2. Rotating PN Metris. Let us onsider the onstantly rotating (ω =onst. ) Post-Newtonian metri to exat order,(C.8) ds2 = [(1−2ψ)ω2r2−(1+2φ)]dt2+(1−2ψ)(dr2+dz2)+(1−2ψ)r2dϕ2−(1−2ψ)2r2ωdϕdt ,where we swith to the ylindrial oordinate notation (1, 2, 3) =̂(r, ϕ, z) . In this ase the non-vanishing omponents of the a�ne onnetion read
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.(C.9)The spatial Rii salar in ylindrial oordinates then reads(C.10) R =

4

(1 − 2ψ)2
∆(3)ψ +

6

(1 − 2ψ)3
(ψ2

r + ψ2
z) ≃ 4∆(3)ψ .When onsidering di�erentially rotating PN metris with Ω = Ω(r) or Ω = Ω(r, z) , in thelinearised ase, there are no mixing terms in the purely spatial metri; there is only time-spaemixing. Note that the ase Ω = Ω(r) is not written down in se. 2.3.5, but we have done thealulation. Moreover, the spatial metri is independent of the angular veloity in the linearase, and therefore the above non-vanishing omponents of the a�ne onnetion (C.9) an beused for alulation in both the two rotating ases Ω = Ω(r) and Ω = Ω(r, z) with linear metriansatz, as well as in the ase of rigid rotation ω =onst.In the ase of the simple di�erentially rotating (Ω = Ω(r)) linear PN metri,(C.11) ds2 = −(1 + 2φ)dt2 + (1 − 2ψ)(dr2 + dz2) + (1 − 2ψ)r2dϕ2 − (1 − 2ψ)2r2Ω(r)dϕdtwe have alulated also the four-dimensional onnetion omponents. They read:
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.(C.12)The aording inverse four-dimensional metri has the linearised omponents:(C.13)
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.



APPENDIX DAspets of Struture FormationHere we onisely review the basi onepts of struture growth within linear Newtonian the-ory. We want to emphasise the limits of the below outlined onepts: the Newtonian linearperturbation theory breaks down at latest for non-linear strutures, that is for strutures withdensity ontrast of order unity as well as for �utuations at length sales that ome lose to thehorizon sale. First, we review the theory of peuliar veloities and the underlying (Newtonian)hydrodynamial equations. We also attah a onise treatment of dissipative (Silk) damping ofbaryoni osillations before reombination. In the following we losely relate to the desriptiongiven in [Sh06℄ and [Lon98℄.D.1. Gravitational Instabilities and Peuliar VeloitiesLet us denote the peuliar veloity with u , it is per onstrution the veloity on top of theHubble �ow(D.1) v(r, t) = H(a)r + u (r/a, t) .The initial density inhomogeneities are small � they orrespond to CMB anisotropies O(10−5) �and so are the resulting initial peuliar veloities. However, the inhomogeneities in density todayare not small, their evolution enfolds a growing mode. This an be physially understood bysimple means: through self-gravitation the initial density seeds have ondensated more and morethroughout the ages ever sine in�ation. The linearised treatment of gravitational instabilitywithin a Newtonian hydrodynami framework implies the solution of the ontinuity equation,the Euler equation and the Poisson equation. When looked at in a omoving frame (r = ax),these equations read in order of appearane
∂ρ

∂t
+ 3H(a)ρ+

1

a
∇ · (ρu) = 0(D.2)

∂u

∂t
+

1

a
(u · ∇)u +H(a)u = − 1

aρ
∇p− 1

a
∇φ ,(D.3)

∆φ(x, t) = 4πGa2(t)ρ(t)δ(x, t) .(D.4)The density ontrast is a ruial quantity we have already enountered in se. 1.3.3, here givenby(D.5) δ(x, t) ≡ ρ(x, t) − ρ(t)

ρ(t)
.Being interested in small deviations from the homogeneous evolution δ = 0 = ui one an linearisethe above set of hydrodynamial equations and, after eliminating φ and u among the equations,one ends up with a seond-order equation for the density ontrast(D.6) ∂2δ

∂t2
+ 2H(a)

∂δ

∂t
= 4πGρδ ,whih an be solved and upon negleting the deaying mode, and we end up with the fatorisationsolution(D.7) δ(x, t) = δ0(x)D+(t) ,137



138 D. ASPECTS OF STRUCTURE FORMATIONwhere D+(t) denotes the growing mode. Within this linear solution the spatial ontributionto the density ontrast is time-onstant and so the peuliar veloity u has a onstant diretionwhih is moreover ollinear to the diretion of the peuliar gravitational aeleration u(x) ∼
∫

g(x, t)dt . As measured today the peuliar veloity �eld an be expressed by its aeleration�eld via(D.8) u(x) =
2

3H0Ωm
f(Ωm)g(x) .For the funtion f(Ωm) ≡ (a/D+)dD+/da one �nds phenomenologially f(Ωm) ≃ Ω0.6

m whihremains a good �t even when Λ is swithed on in addition. Eliminating g with the help ofPoisson's equation and letting u evolve within linear theory one obtains in the end [Sh06℄(D.9) u(x, t) =
Ω0.6

m

4π
aH(a)

∫

δ(y, t)
y − x

|y − x|3 d3y .This result gives a prinipal possibility to obtain Ωm by observation of the peuliar veloity �eldas well as the aording density ontrast.D.2. Statistial Properties of the Density FieldThe growing mode solution (D.7) is a entral result of the linear theory applied above. We seethat the spatial shape of the density �utuations is frozen when followed in the omoving frameand solely its amplitude is growing. The growth fator D+(t) an be omputed for an arbitraryomposition of osmologial density parameters through(D.10) D+(a) ∝ H(t)

H0

∫ a

0

da′

[Ωma′−1 + ΩΛa′2 − (Ωm + ΩΛ − 1)]
3/2

.The fator of proportionality is �xed by the normalisation given by D+(t0) = 1 and thus δ0(x)would be the density distribution as observable today if the evolution was linear all the time.However, we know of vast strutures today like for instane the Shapley Conentration SECfor whih the density ontrast is of the order of ∼ 1 suh that the linear perturbation analysisbeomes invalid.Taking as an example the Einstein-de Sitter model with ΩΛ = 0 , Ωm = 1 and saling
a(t) = (t/t0)

2/3 for the Hubble funtion and mean density it is(D.11) H(t) =
2

3

1

t
and ρ̄(t) = a−3ρcrit =

3H2
0

8πG

(
t0
t

)2

.With an ansatz D ∝ tn we readily solve (D.6). We skip the deaying mode and keep the growingmode whih is(D.12) D+(t) =

(
t

t0

)2/3

= a(t) ,and thus the growth fator is equal to the sale fator in the speial ase of an Einstein-de Sittersolution.In order to desribe the atually observed density �eld today by physial means, usually twoonepts are used: the two-point orrelation funtion and the power spetrum whih we haveintrodued in se. 1.2.1. The statistial nature of the desription means that we are looking fora physial means that an be attributed to an observed density distribution so that we onsidermodels (universes) with equal suh statistial properties as equivalent. In other words one animagine a whole statistial ensemble of Universes to be desribable through a statistial quantitywhere, of ourse, the details of δ(x) may be di�erent in all those Universes.First, the two-point orrelation funtion ξ(x,y) of a density �eld is de�ned through(D.13) 〈ρ(x)ρ(y)〉 = ρ̄2〈[1 + δ(x)] [1 + δ(y)]〉 = ρ̄2 [1 + 〈δ(x)δ(y)〉] ≡ ρ̄2 [1 + ξ(x,y)] ,where 〈·〉 is an ensemble average and the expetation value 〈δ(x)〉 = 0 at all loations x . Thestandard model assumption of large-sale homogeneity implies that ξ only depends on x−y and



D.3. SILK DAMPING AND HIERARCHY 139not on x or y individually. The standard requirement of isotropy also removes any orientationaldependene of ξ suh that the two-point orrelation will be a funtion of only r = |x − y|when regarded in the standard osmologial model. Beause of ergodiity, we an replae theensemble average by the spatial average, that is due to (D.13) one an measure the two-pointorrelation funtion by olleting many produts of densities for all pairs of points at a distane
r . This has been done for example for the luminous red galaxy atalogue (z ∼ 0.3) of the SDSS[HEB+05℄, on�rming the large-sale homogeneity of the Universe. When analysing suh galaxyatalogues the luminosity distribution is a ruial quantity. A quite general approximation forgalaxy luminosities is given by the Press-Shehter law [PS74℄(D.14) f(L) =

f∗

L∗

(
L

L∗

)α

e−L/L∗

,wherein f∗ is responsible for the normalisation, α ontrols the slope of the funtion at small
L and L∗ is a speial value beyond whih the luminosity distribution undergoes the exponen-tial derease. Now, among galaxies that have luminosities of the order of L∗ , the followingapproximate relation for the two-point orrelation funtion an be found from galaxy surveys:
ξ(r) = (r/r0)

−γ . With this relation being a good approximation within 2 Mp . r . 30 Mp,the orrelation length is found to be roughly r0 ≃ 5 Mp and the slope is γ ≃ 1.8 . Prinipallyone an proeed in writing down higher orrelations up to the n point orrelation funtion, butthese are muh harder to aess observationally.Besides the two-point orrelation one an utilise the power spetrum P (k) in order to de-sribe a density �eld statistially. We an expand a given density �eld in terms of Fourier modesas δ(x) =
∑
Ak cos(x · k) with amplitudes Ak . The power spetrum now desribes the distri-bution of amplitudes with a ommon wavenumber k . Two point orrelation funtion and powerspetrum are Fourier transforms of eah other(D.15) P (k) = 2π

∫ ∞

0

ξ(r)r2
sin(kr)

kr
dr .The fatorisation (D.7) implies the following for the time evolution of the power spetrum(D.16) P (k, t) = D2

+(t)P (k, t0) ≡ D2
+(t)P0(k) ,and k is the wavenumber in omoving oordinates. As mentioned in se. 1.3.3 the initial on-ditions for P (k) are provided by the used underlying in�ationary model and yield a nearlysale-invariant Harrison-Zel'dovih spetrum with a random Gaussian initial density �eld. Fur-thermore, beause we negleted pressure terms and only onsidered matter domination therehave to be orretions inluded for the power spetrum bringing it to its �nal form (1.29). Theseorretions are enoded in the transfer funtion T (k) whih re�ets the parameters of the un-derlying osmologial model as well as the temperature of the used Dark Matter. In ase ofHot Dark Matter (HDM) the dark onstituents are relativisti, therefore do not remain boundin the potential well of a gravitative perturbation but rather do free-stream and thus tend tosmooth out any initial density perturbations on small sales. In suh a senario the power spe-trum will be strongly suppressed at large k and as a onsequene the very largest strutures areformed �rst, produing then smaller strutures � like galaxies � only later through fragmenta-tion. This is in ontradition with observations that indiate the existene of galaxies alreadyat extreme redshifts of ∼ 6 . Therefore Cold Dark Matter (CDM) is the prevailing onept fromthe perspetive of struture formation.D.3. Silk Damping and HierarhyWe now onsider small imperfetions in the tightly oupled baryon-photon �uid of the earlyUniverse before deoupling. Albeit strong, the oupling of matter and radiation is not exat andphotons will have some �nite mean free path. Therefore, on small sales, where the radiationis able to resort without satter, the pressure support, that onstitutes the restoring fore ofthe adiabati matter osillations, would vanish. Hene, osillations on suh small sales are



140 D. ASPECTS OF STRUCTURE FORMATIONe�etively damped out by the photon dissipation; this is referred to as Silk damping [Sil68℄.The Silk damping ours for the same reasons as the damping of sound waves in an imperfetgas: namely beause of the �nite shear visosity and heat ondutivity that are present in the�uid. A full treatment of the photon transport problem with the aording oe�ients of thermalondution and shear visosity has been given by Weinberg [Wei72℄.We are interested in an estimate that may express the order of magnitude of the Silk damp-ing; we follow the treatment by Longair [Lon98℄. The main proess for the photon sattering inthe primeval plasma is Thomson sattering by the free eletrons. We an obtain an estimate byperforming a rough transport alulation with the Thomson saterring of radiation. Generally,for Thomson sattering, the mean free path of the photons is given by(D.17) λ =
1

neσT
,where σT ≃ 6.665 × 10−29m2 is the Thomson ross setion and ne the number density ofeletrons. The photons and eletrons are in tight thermal ontat before deoupling. Andbeause the plasma is fully ionised, the eletrons are also in tight eletromagneti interationwith the protons (Coulomb sattering), so that the photons are in lose ontat to the protonsas well. We want to determine how far the photons an di�use within a ertain osmi time tunder the given free mean path. This an be quanti�ed by means of the aording di�usivity

D , given by D = λc/3 . The radial distane that photons an over by di�usion is therefore(D.18) rD ≃ (Dt)1/2 =

(
λct

3

)1/2

.Next we should ompute the orresponding baryoni mass MD ≡ (4π/3)r3Dρb within a ball of aradius that equals the disussion radius.First, long before deoupling (z > 2.4× 104Ωh2), radiation is dominant in the Universe andthe relation between osmi time and redshift is given by(D.19) t =

(
3c2

32πGρ

)1/2

=

(
3c2

32πGχaSBT 4
0

)1/2
1

(1 + z)2
≃ 2.4 × 1019

(1 + z)2
s ,with aSB = 4kSB/c and the Stefan-Boltzmann onstant kSB = 5.670 × 10−8JK−4m−2s−1 , ρ =

χ(T )aSBT
4 being the total energy density and χ(T ) ≃ 1.68 being a parameter that enodesthe sum over the statistial weights gi of the involved (standard model) partiles. For T0 weinsert the presently measured CMB monopole temperature of T0 ≃ 2.725K. Further, the numberdensity of eletrons ne varies with redshift as(D.20) ne =

Ωbρcrit

mp
(1 + z)3 ≃ 11 Ωbh

2(1 + z)3 m−3 ,and so we are ready to ompute the resulting damping mass or Silk mass, whih amounts to(D.21) MD =
4π

3
r3Dρb ≃ 2.4 × 1026

(
Ωbh

2
)−1/2

(1 + z)−9/2 M⊙ .This was so far for the times before matter-radiation equality. Within the matter-dominatedepoh, the redshift behaviour of osmi time an be expressed as(D.22) t =
2

3H0Ω1/2
(1 + z)−3/2 ≃ 2.06 × 1017

3H0Ω1/2(1 + z)3/2
s .This leads to a Silk mass of(D.23) MD ≃ 2.0 × 1023

(
Ωbh

2
)−5/4

(1 + z)−15/4 M⊙ .The evolution of damping massMD , Jeans massMJ and horizon massMH are plotted in �g. D.1.Silk damping ontinues until reombination and upon the last sattering surfae (z ≃ 1088) thedamping mass reahes a value of up toMD ≃ 1012(Ωbh
2)−5/4(1+ z)−15/4M⊙ . Taking big bangnuleosynthesis into aount, a bound of around Ωbh

2 < 0.036 an be given, and it follows thatperturbations with masses smaller than roughly 1014M⊙ are damped out by the Silk mehanism.
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Figure D.1. Shemati evolution of sales and their assoiated masses that arerelevant for struture formation within the theory of purely baryoni (no DarkMatter) aousti �utuations. The Jeans sale is haraterised by the wavelength
λJ ≡ cs

p

π/(Gρ) ; whih is the maximal sale for stable osillations at any epoh.This is a result from non-linear Newtonian perturbation theory; it means that anydensity perturbations with wavelengths larger than the Jeans wavelength representunstable modes. The Jeans mass an be de�ned as the mass ontained in a ballof diameter λJ , thus MJ ≡ (πλ3
J/6)ρb . The mass ontained in the partile hori-zon is around MH ≃ 3.0 × 1022(Ωbh2)−1/2a3/2 M⊙. The sale behaviour of theJeans mass at early times an be estimated by MJ ≃ 8.5 × 1028a3Ωbh2 M⊗ andby MJ ≃ 3.75× 1015(Ωbh2)−2 M⊙ after equality. The development of the Silk damp-ing sale � whih ours beause of photon dissipation and ends at deoupling � istraed by MD ; .f. (D.21) and (D.23). The piture is taken from [Lon98℄.Summarising the result of the above di�usion estimate, we an onlude that all massessmaller than roughly 1012M⊙ are e�etively suppressed by the photon dissipation. From this wean learn an important lesson for the hierarhy of struture formation in the framework of purelybaryoni � i.e. negleting Dark Matter � aousti perturbations: only those perturbations withmasses of a very heavy galaxy and larger ould have passed through to the post-reombinationepoh. Those perturbations with smaller assoiated masses � like stars, star lusters or normalgalaxies � are suppressed exponentially to very small amplitudes. Hene, in this framework, theformation of struture is anti-hierarhial (bottom-down), large strutures formed �rst and thenhave fragmented to the smaller observed strutures. Let us emphasise that this result is validunder the assumption of adiabati baryoni perturbations, where adiabatiity is de�ned by thethermodynami relation(D.24) δp

p
= γ

δρ

ρ
,and γ being the ratio of spei� heats: γ = 4/3 for a relativisti gas and γ = 5/3 for amonoatomi non-relativisti gas.A ompeting framework is the theory of isothermal perturbations. Here, isothermal meansthat the perturbations do not indue perturbations in the bakground radiation temperature atthe times of radiation domination. The intrinsi temperature of the isothermal perturbationsequals that of the uniform radiation bakground and so the isothermal perturbations are frozeninto the radiation-dominated bakground. As a onsequene, there is no Silk damping in thispiture. Therefore in the isothermal senario, struture growth is hierarhial (bottom-up):



142 D. ASPECTS OF STRUCTURE FORMATIONsmall strutures would form �rst, then larger strutures are attained by lustering proesses.The big advantage of the bottom-up senario is that it allows strutures of the mass of globularlusters to have formed �rst and indeed, globular lusters are among the oldest objets knownin our Milky Way.However, as we disuss in hap. 2 there is overwhelming evidene � within the sope ofstandard osmology � for the existene of Dark Matter, suh that the above two versions of purebaryoni struture formation are falsi�ed. When transported into the framework of Dark Matter,the ompetition between hierarhial and anti-hierarhial struture formation is mapped ontothe CDM (bottom-up) and HDM (bottom-down) senarios respetively. In the CDM piture,hierarhial proesses lead to the formation of Dark Matter halos of galaxy lusters and galaxies.Then, the baryons would fall into these potential wells and subsequently an loose energy bydissipative proesses; then eventually gas louds and stars are formed. In the HDM senario, vaststrutures, like galaxy lusters, are formed �rst and an asymmetri deay of these progenitorsthen leads to panake-like struture, into whih the baryoni matter than ollapses. Both ofthese models have been plugged into extensive omputer simulations trying to reonstrut thegrowth of struture. Being onsistent with the onlusions of the preeding se. D.1, a mainresult of the simulations is that HDM � albeit (too) good in produing �lament struture �produes galaxies only at too late times. Moreover, as it was mentioned already above, the CDMansatz is suessfull in reproduing the measured two-point orrelation funtion of galaxies ona onsiderably wide range of sales.



APPENDIX EThermal History in a NutshellAording to the Big Bang piture, the Universe was inreasingly hotter when going furtherbakwards in time, T (z) = T0(1 + z) . Beause of the very high temperatures, e.g. 3 × 109Kat z = 109 , and high pressure in the very early Universe whih are `even' higher than in theinterior of stars, one an expet a lot of interesting high-energy proesses like nulear fusion tohappen during the early epohs. Here we want to give a onise overview of the basi steps thatlead to nuleosynthesis, following the treatment in [Sh06℄.E.1. Neutrino DeouplingAn assumption of utmost importane is underlying all the standard theory of the evolutionof partile proesses in the early Universe: we assume that all the ross setions and otherfundamental onstants and all the details of nulear and partile physis we take from theurrent standard model of high energy physis have been exatly the same also fourteen billionyears ago. Having that in mind, we an jump into the evolution of the very early Universe attemperatures of around ∼ 1012K or roughly 100MeV. To see what the basi setup may yield wean ompare this initial energy sale with the rest masses of ommon standard model partiles,(E.1) mn ≃ 939.6MeV , mp ≃ 938.3MeV , mµ ≃ 140MeV , me ≃ 511keV .The baryons are too heavy to be possibly produed at the onsidered temperature, and so atthis epoh the baryons must have existed already. Further, pairs of muons an in priniple beprodued via γ + γ → µ+ + µ− down to temperatures ∼ mµ/3 . But, as is known, existingmuons are unstable (lifetime 2.2× 10−6s) and deay into eletrons (positrons) and neutrinos aswell as antineutrinos. Thus at the given temperature of around 100MeV there are the follow-ing relativisti partiles in the Universe: photons as well as eletrons and neutrinos and theirantipartiles. We are within radiation domination and only these partiles are ontributing tothe radiation energy density ρr at the moment. Although the exat mass of neutrinos has notyet been measured, one an give a bound of mνe < 2eV from tritium deay. From osmology �if one aepts numerous impliit assumptions � one an infer a bound of mνe < 1eV from mea-surements probing the e�et of HDM on the small-sale power spetrum of density �utuationsin the Universe.Beause of these mass onstraints, we an safely regard the neutrinos as massless (rela-tivisti) in our disussion. Besides the relativisti partiles there are also some non-relativistipartiles: protons, neutrons and the hypothetial WIMPs. Beause of their absene in the ael-erator experiments arried out by now, we know that the WIMP rest mass must be higher thanaround 100GeV. All onstituents apart from the WIMPs are in equilibrium through partilereations. The baryon reations are disussed later, and so we an note the following relevantreations of the relativisti partiles(E.2) e± + γ ↔ e± + γ , e+ + e− ↔ γ + γ , ν + ν̄ ↔ e+ + e− , ν + e± ↔ ν + e± .We onsider radiation domination, and so the total energy density is that of the radiation,(E.3) ρ = ρr = 10.75
π2
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~c3
at t ≃
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1MeV

)−2

0.3s .143



144 E. THERMAL HISTORY IN A NUTSHELLThe osmi time was omputed with the solution t = (32πGρ/3)−1/2 , valid at the epoh ofradiation domination.Equilibrium an only be attained by the partile bath if the rate of the above reations ishigh. However, the environment temperature in whih the partiles are trying to equilibrate isontinuously hanging, and so the partile equilibrium is also ontinuously readjusting. Underthese irumstanes, an equilibrium an only be upheld if the time between two partile reationsis muh smaller than the time sale of global temperature hange. The rate of hange intemperature is ditated by the osmi expansion and so we an note the following onstraint forequilibrium: the rate of partile reations Γ has to be higher than the expansion rate.The rate of partile reations is Γ ∝ nσ , i.e. it is proportional to the number density ofthe respetive partile speies and to the interation ross setion. The reations involvingneutrinos belong to the weak interations. Both of the omponents of the rate are dereasingwith osmi time. The number density of partiles is diluted as n ∝ a−3 ∝ t−3/2 beause ofglobal expansion. On the other hand, the weak ross setions are energy dependent and saleroughly as σ ∝ E2 ∝ T 2 ∝ a−2 . Thus, the reation and expansion rate respetively sale as(E.4) Γ ∝ nσ ∝ a−5 ∝ t−5/2 versus H ∝ t−1 .Thus, equilibrium an be realised at early times, when the reation rates are higher than theexpansion rate. At later times, the equilibrium will be broken beause the speed of the reationseventually falls behind the expansion rate: this is alled a freeze-out. The weak interationfreeze-out ours at(E.5) Γ

H
≃
(

T

1.6 × 1010K

)3

,so that the neutrinos beome deoupled from the equilibrium with other partile speies attemperatures T . 1010K. When the neutrinos froze out, they had a thermal distribution withthe same temperature as the other partiles. From their deoupling at around T ∼ 1010K on, theneutrinos will keep this distribution, only their temperature is ontinuously redshifted aordingto T ∝ a−1 .This is a predition. It says that there should exist a primordial neutrino bakground,similar to the CMB whih is a primordial photon bakground. It is estimated that the neutrinoabundane per �avour is 113m−3 today, and the osmi neutrino temperature amounts toaround 1.9K. Beause of the very small interation ross setion and the fat that the momentumof the primordial neutrinos is also very low, there is little hope to observe the reli neutrinobakground. E.2. Eletron-Positron AnnihilationWe further follow the ooling of the early Universe. At temperatures of around ∼ 5 ×
109K (500keV) there are not enough photons in the distribution, with energies above the pairprodution threshold of 511keV, that ould maintain pair prodution at a high rate. Thereforethe e�ient prodution of eletron-positron pairs will fade out at this point. At the same time,the annihilation reation e+ + e− → γ + γ is proeeding undisturbedly, and beause of its largeross setion the number of present eletron-positron pairs will drop rather rapidly.Through this mehanism, there will be an e�et on the photon distribution. The non-equilibrium annihilation will indue additional energy to the photon bath. Sine the form ofthe spetrum remains (Plank spetrum), the main e�et is an inrease in temperature of thephotons. This inrease is fed by the energy whih was initially present in form of eletron andpositron rest mass as well as kineti energy. When annihilation happens, the neutrinos arealready frozen out and so the gain in temperature has no e�et on them. Therefore the photontemperature will be ahead of the neutrino temperature after the e�et of pair annihilation; infat one an show that Taft. annih. ≃ 1.4 Tbef.annih. = 1.4 Tν . This ratio of photon to neutrinotemperature is frozen and valid up to today, and thus we see now the reason for the preditionof 1.9K for the neutrino bakground temperature made above.



E.3. NUCLEOSYNTHESIS 145After annihilation the number of relativisti partile speies is redued and so this in turnleads to a hange the expansion law in (E.1) to t = 0.55s(T/1MeV)−2 . Moreover, throughannihilation the ratio of baryons to photons approahes a onstant value(E.6) η ≡ nb

nγ
≃ 2.73 × 10−8(Ωbh

2) .From this we an get also an estimate on the eletron to photon ratio ne/nγ . Before annihilationthe ratio of eletrons (and positrons) to photons was roughly one, but during annihilation mostof the eletrons disappear. However, not all of the eletrons disappear; it turns out that thereremains a small exess of eletrons over positrons. But there is of ourse another partile thatarries a harge: the proton. Beause the Universe appears to be eletrially neutral (bound onfree harges . 10−27 [Pad02℄), the eletron exess is just ompensated by the number of protons.Therefore the eletron to photon ratio should roughly equal η . Now � sine the neutrons arealso to be ounted � one has more preisely ne/nγ ≃ 0.8η .E.3. NuleosynthesisIf the environment implies a high enough pressure and temperature, nulear fusion an takeplae, like it does happen within stars. That is, protons and neutrons an ombine to formnulei, and in fat the primordial formation of light elements is �nished already after the �rstfew minutes.E.3.1. Baryon Equilibrium. As disussed, the baryons play no signi�ant role for thedynamis of the very early Universe. However, protons and neutrons are in thermal equilibriumvia weak interation proesses. Their equilibrium reations are(E.7) p + e− ↔ n + ν , p + ν̄ ↔ n + e+ , n ↔ p + e− + ν̄ ,the last of whih is the beta deay of the neutron with a lifetime of τn ≃ 887s. In order to notfreeze out, the reations have to be quiker than the global expansion. The ratio of proton toneutron number densities is given by the Boltzmann fator(E.8) nn

np
= e−∆mc2/(kBT ) ,whih is governed by the mass di�erene ∆m ≡ mn −mp (negleting their hemial potentials).This distribution is only valid up to neutrino deoupling. At the moment of neutrino deoupling,the ratio of neutrons to protons is around nn/np ≃ 1/3 , and after the neutrino freeze-out theequilibrium is broken and beomes dominated by the deay of the free neutron. A number ofneutrons has to beome bound into nulei rather quikly, so that a fration of neutrons ansurvive up to today.E.3.2. Deuterium Prodution. The simplest nuleus is deuterium, made from just aproton and a neutron. It is produed via(E.9) p + n → D + γ .The binding energy of deuterium is χD ≃ 2.2MeV, the mass di�erene is ∆m ≃ 1.3MeV and theeletron rest mass is 511keV; so all of these mass sales are of the same order of magnitude. Thereation (E.9) belongs to the strong interations and is therefore running at a high e�ieny.But there is a ath. During neutrino deoupling and pair annihilation the temperature ofthe Universe beomes less than the binding energy χD , but not muh less. And sine there aremuh more photons than baryons, .f. (E.6), there will be enough photons in the high energytail of the Plank spetrum to break up the freshly formed deuterium. From the expliit balaneequations one an infer that the formation rate of deuterium an exeed its photo-dissoiationrate only at temperatures around TD ≃ 8×108K. This happens only at a osmi time of aroundthree minutes � the deay of the neutrons has gone on in the meantime � and so the neutron toproton ratio would have dereased to nn/np ≃ 1/7 . One the obstale of photo-dissoiation isleft behind, the prodution of deuterium proeeds very quikly (strong interation). All available



146 E. THERMAL HISTORY IN A NUTSHELLneutrons beome bound into deuterium and as soon as there is a signi�ant abundane of it,the deuterium an start to form 4He. Now, the helium has already a sizeable binding energy of
χ4He ≃ 28MeV and is thus not vulnerable to photo-dissoiation anymore. Apart from a smallrest fration, nearly all the deuterium is proessed into 4He. Therefore, in order to e�ientlyprodue helium, the Universe has to overome the `bottlenek' of the deuterium stage with itslow binding energy.E.3.3. Helium Abundane. As we have seen by now, almost all of the neutrons in theUniverse beome bound into helium nulei after around three minutes. Therefore it should bepossible to predit the helium abundane. Every helium has two neutrons and so the numberdensity of four-helium will be n4He = nn/2 . The number of protons, when helium formation isover, amounts to nH = np −nn beause 4He is symmetri in protons and neutrons. Finally, thisgives us the mass fration of 4He with respet to the full baryon density at TD as(E.10) Y ≡ 4n4He

4n4He + nH
=

2nn

np + nn
=

2(nn/np)

1 + (nn/np)
≃ 1

4
.This is a simple but robust predition of BBN: a fration of about one forth of the baryonimatter in the Universe is bound into 4He. This predition refers of ourse to the primordialmass fration. Through fusion proesses within stars, metals an be formed and the helium massfration is modi�ed. However, it is possible to experimentally observe metal-poor regions in theUniverse � regions, where little proessing of baryoni matter has taken plae � and indeed ahelium mass fration of Y ≃ 0.25 is measured. Of ourse, a full quantitative omputation oflight element abundanes takes into aount all the possible balane and rate equations andwhat we skethed here is only a bak-of-the-envelope estimate that should introdue the basisteps. In �g. E.1 we show the result of a more detailed BBN alulation for the mass fration.

Figure E.1. Temperature/osmi time evolution of the BBN abundanes of lightelements. Due to beta deay of the free neutrons there is a derease in the neutronabundane within the �rst ≃ 3min. Parallel to the neutron derease, the deuteriumabundane rises steeply until it passes the dissoiation bottlenek, and subsequentlyhelium an be formed e�iently. Only a very little fration (∼ 10−5) of deuterium isnot proessed. There are also subdominant frations of 3He, 7Li and other elementsprodued during BBN. Piture is taken from [HES℄.Sine the abundanes of the light elements are diretly sensitive to the baryon to photonratio η , one an use measured abundanes of the light elements to onstrain η [Y+06℄,(E.11) 3.4 × 10−10 < η < 6.9 × 10−10 and Ωb ≃ 3.66 × 107ηh−2 .
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Figure F.1. The angular power anomaly with respet to WMAP(1yr) data. Thelikelihood of quadrupole and otopole power with inreasing axial ontamination, dueto e.g. a loal Rees-Siama e�et, is ompared to WMAP(1yr) data. Vertial linesindiate the measured values as given in tab. 4.3. See se. 4.3.1 for a disussion ofthe leaned maps. From the WMAP ut-sky analysis, adding any multipole power tothe quadrupole is already exluded at > 99%C.L., whereas it is possible to add up to
80µK to the otopole until reahing the same exlusion level. Adding 50µK (100µK)to the quadrupole leads to an exlusion of 99.6%C.L. (99.9%C.L.).
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Figure F.2. Alignment statisti (4.7) for quadrupole and otopole normals. Thepreferred axis ẑ of the model points in all three ases to the diretion of the WMAPdipole. Shown are the likelihoods of the S-statisti for statistially isotropi Gaussianskies (thik solid lines), orresponding to the ΛCDM predition, as well as di�erentmagnitudes of axial ontamination of the CMB. Vertial lines represent the measured
S-values from the TOH (solid line), LILC (dotted line) and ILC (dashed line) maps,.f. tab. 4.3. Introduing a preferred axis indues orrelations. For the axis pointingin the diretion of the dipole these orrelations make the disrepany between themeasured S-values and model even bigger. For the alignment test with the northgalati pole, a ontribution aaxial

ℓ0 = 60µK (70µK) leads to an exlusion of 99.7%C.L.(99.8%C.L.).
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Figure F.3. Similar to �g. F.2, here the preferred axis ẑ of the model points to thediretion of motion of the loal group after orretion for the Virgo infall. For thisaxis diretion and the test diretions NEP and EQX, the indued orrelations makethe disrepany between the measured S-values and model bigger, similar to the aseof the dipole �g. F.2. For the alignment test with the equinox, already a ontributionof aaxial
ℓ0 = 60µK leads to an exlusion of 99.9%C.L. On the other hand, in ase of

x̂ =NGP, the anomaly is dereased in that the exlusion drops from 98%C.L. with
aaxial

ℓ0 = 0µK to 96%C.L. with aaxial
ℓ0 = 70µK.
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Figure F.4. Similar to �g. F.2, here the preferred axis ẑ of the model points to thediretion of the north elipti pole. Evidently, a Solar system e�et is preferred bythe data. For instane the �rst �gure (x̂ =NEP) shows that the exlusion level an beweakened from 99%C.L. with aaxial
ℓ0 = 0µK to 96%C.L. (92%C.L.) with aaxial

ℓ0 = 40µK(aaxial
ℓ0 = 70µK) by axial ontributions. For the alignment test with the equinox, theexlusion drops from 99.5%C.L. with aaxial

ℓ0 = 0µK to around 98%C.L. with aaxial
ℓ0 =

70µK.
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Figure F.5. ℓ = 2+3 Mollweide maps showing the e�et of additional axial ontri-butions. Upper map: a random realisation of an statistially isotropi and Gaussiansuperimposed quadrupole and otopole. Middle map: adding an axial ontributionof aaxial
20 = aaxial

30 = 70µK to the random map, with the preferred axis of the model
ẑ pointing in the diretion of the dipole. Lower map: adding the same ontribution,now with the preferred axis being in diretion of the north elipti pole. For furtherexplanation see the aption of �g. 4.8. The olour legends are in units of 0.1mK.
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Figure F.6. Same proedure as in �g. F.5, now with a di�erent initial randomrealisation (upper map); for explanation see aption of �g. F.5. The olour legendsare in units of 0.1mK.
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Figure F.7. Same proedure as in �g. F.5, now with a di�erent initial randomrealisation (upper map); for explanation see aption of �g. F.5. The olour legendsare in units of 0.1mK.
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Figure F.8. Besides oriented areas, it is also possible to study the alignment of themultipole vetors themselves. Here, we probe the alignment of the quadrupole vetorsthemselves with the z diretion. The test is de�ned as Squad

d̂v
≡

P

|d̂ · v̂(ℓ,i)| . Axialontributions are added up to 70µK. After some threshold behaviour (∼ 40µK), the
Squad

d̂v
alignment beomes very sensitive on axial ontaminations. The horizontal linesindiate WMAP one-year data: solid (ILC), dashed (TOH) and dotted (LILC) maps.For more detail on the various leaned one-year maps see se. 4.3.1.
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Figure F.9. Histogram showing the (anomalous) planarity of the otopole. The ab-solute value of the parallelepipedial produt represents a volume and is an invariantwhen onerning three spatial vetors v̂(3,i) . Therefore we an test for planarity by us-ing the parallelepipedial produt as a suitable statisti, Vocto ≡ |(v̂(3,1)×v̂(3,2))·v̂(3,3)| .The vertial data lines are due to the same maps as in �g. F.8. The parallelepipedialprodut is rather insensitive to axial ontributions.
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Figure F.10. Probing the e�et on the alignment statisti Sd̂n ≡
P

|n(ℓ;i,j) · d|when adding asymmetri values of quadrupole and otopole axial ontributions. Here
d̂ is mathed with the z axis and therefore the statisti measures alignment of quad-rupole and otopole normals with the z diretion. Plotted is, the arbitrarily saled(×10−3) number of Monte Carlos that are, for given values of aaxial

ℓ0 , onsistent withan experimental value of Sd̂n ≃ 3.47 . That is, for instane a ontour of 0.5 in the�gure means that below this ontour there are & 500 hits onsistent with data � butnever more than ∼ 600 , as an be seen from the �gures. The experimental value is anaverage of Sd̂n for the ILC, TOH and LILC maps of WMAP(1yr). The total numberof Monte Carlos here is 105 . The upper �gure and the lower �gure show the sametest, only in the lower �gure the simulated range is larger by a fator of two. Wean onlude that for this test only small and symmetri axial ontributions to thequadrupole and otopole have the hane to be onsistent with data.
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Random

Figure F.11. Figure similar to �g. 5.2, here we added a smaller ontribution of
aℓ0 = 100µK to the multipoles, suh that we an observe the onset of the separationproess of the vetors. Mollweide projetion of the sky with quadrupole (upper row)and otopole (lower row) multipole vetors [equation (5.5)℄. The mesh onsists of stepsin 30◦. Displayed are ten pairs of quadrupole vetors (small dots) and their ten areavetors [equation (5.6) (big dots)℄ as well as ten triples of otopole vetors (small dots)and their area vetors (big dots); togetherness is indiated by olour. The arbitrarysign of the vetors has been used to gauge them all to the northern hemisphere. Thestatistially isotropi and Gaussian ase (left olumn) is broken by the imprint of amoderate axial e�et aℓ0 = 100µK (right olumn) whereupon multipole vetors startto move to the pole and area vetors start to move to the equatorial plane. The fullseparation an be observed when adding strong ontributions aℓ0 ∼ 1000µK, .f.�g. 5.2.
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Figure F.12. Testing the e�et of asymmetri additive ontributions aaxial
ℓ0 on theintrinsi ross alignment of quadrupole and otopole. Here, the ross alignment testis de�ned as Snn ≡

P

|n̂(2;,1,2) · n̂(3;,i,j)| ; note the di�erent pre-fator as omparedto (5.8). Like in �g. F.10, we have plotted the arbitrarily saled (×10−3) numberof Monte Carlos that are, for given values of aaxial
ℓ0 , onsistent with an experimentalvalue of Snn ≃ 2.62 , that has been obtained from WMAP(1yr) leaned maps. Thetotal number of Monte Carlos is again 105 . The upper and lower �gure show the sametest, only with a di�erent range of simulations. From the upper �gure, we see thatindeed, intrinsi alignments are apparently ured by adding axial ontributions up to

∼ 100µK. In the lower �gure we see that, when inreasing aaxial
ℓ0 further, this is onlya loal maximum. This is perfetly onsistent with our �ndings �g. 5.3.
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