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Abstract

Context: 'The mean free path and anisotropy of galactic cosmic rays is calculated in
weak plasma wave turbulence that is isotropically distributed with respect to the ordered
uniform magnetic field.

Aims: The modifications on the value of the Hillas energy, above which cosmic rays are
not confined to the Galaxy, are calculated. The original determination of the Hillas limit
has been based on the case of slab turbulence where only parallel propagating plasma
waves are allowed.

Methods: We use quasilinear cosmic ray Fokker-Planck coefficients to calculate the mean
free path and the anisotropy in isotropic plasma wave tuurbulence.

Results: In isotropic plasma wave turbulence the Hillas limit is enhanced by about four
orders of magnitude to E, = 2.03 - 10*An!/?(Lyay/1 pc) resulting from the dominating
influence of transit-time damping interactions that obliquely propagating magnetosonic
waves undergo with cosmic rays.

Conclusions: Below the energy E. the cosmic ray mean free path and the anisotropy
exhibit the well known E'/3 energy dependence for relevant undamped waves. In case
of damped waves, the cosmic ray mean free path and the anisotropy do not depend on
energy. At energies higher than E, both transport parameters steepen to a E3-dependence
for undamped and damped waves. This implies that cosmic rays even with ultrahigh
energies of several tens of EeV can be rapidly pitch-angle scattered by interstellar plasma

turbulence, and are thus confined to the Galaxy.

Kurzfassung

Kontext:  In der vorliegenden Arbeit werden die mittlere freie Weglange sowie die
Anisotropie der kosmischen Strahlung in schwachen Plasmawellenturbulenzen bestimmt,
die eine isotrope Verteilung in Bezug auf das gleichmaflige Magnetfeld aufweisen.

Ziele:  Die Hillas Energie, jenseits derer die kosmische Strahlung die Galaxie verlassen
kann, wird in einem verbesserten Modell berechnet. Die urspriingliche Bestimmung
dieses Limits basiert auf 'slab’ turbulenzen, die nur parallel propagierende Plasmawellen

berticksichtigt.



Methoden: Quasilineare Fokker-Planck Koeffizienten der kosmischen Strahlung werden
zur Berechnung der mittleren freien Weglidnge und Anisotropie in isotropen Plasmawellen-
turbulenzen verwendet.

Ergebnisse: In isotropen Plasmawellenturbulenzen erhoht sich die Hillas Energie um vier
GréBenordnungen auf einen Wert von E, = 2.03 - 10*An’/?(Lyax/1 pc). Dies wird durch
den dominierenden Einflufl der transit-time damping’” Wechselwirkungen sich schrag aus-
breitender magnetosonic Wellen mit der kosmischen Strahlung hervorgerufen.
Schluf$folgerungen: Unterhalb der Energie E. zeigen mittlere freie Weglange und
Anisotropie die typische E'? Enegergieabhingigkeit ungeddmpfter Wellen. Im Falle
gedampfter Wellen sind beide Transportparameter energieunabhéngig. Oberhalb von E.
verstirkt sich die Energieabhingigkeit zu einem E3-Verhalten Dies bedeutet, daff kosmis-
che Strahlen selbst bei ultrahohen Energien von einigen zehn EeV schnell 'pitch-angle’

gestreut werden konnen und daher in der Galaxie gebunden sind.
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1 Introduction

Cosmic rays are defined as extraterrestrial charged particle radiation. Although we use
word 'rays’, we should not forget that we deal with particles, or more precise, it consists
of a flux of electrons, positrons and nucleons with kinetic energies greater than 1KeV
that bombards the Earth from outside. To understand the origin and dynamics of these
particles one should combine theory and observations.

As far as the theory is concerned, of particular interests are particles interaction pro-
cesses with electromagnetic fields, their collective phenomena, their spontaneous and co-
herent radiation processes and the role of nuclear interactions with ordinary matter. It
means that theoretical development relies to a large extent on our understanding of plasma
physics.

Concerning observations, astronomy spans frequencies from 10* cm radio-waves to
10~ cm, particles of GeV energies. The new astronomy probes the Universe with new
wavelengths, smaller than 10~!* cm, or particle energies larger than 10 GeV. Origin of
low energy cosmic rays is Sun, while for ultrahigh-energy cosmic rays (UHECR) it is still
questionable.

The main purpose of this work is analytical study of the ultrahigh-energy cosmic rays.
We calculate transport parameters using quasilinear theory. In chapter II, we give short
overview of experimental and theoretical achievements on UHECR. Quasilinear theory and
derivation of relevant cosmic transport parameters are explained in chapter III. In chapter
IV we have calculated the Fokker-Planck coeflicients (FPC) step by step. Discussion and
results related with different type of undamped plasma waves are given in chapter V.
Influence of damping and relevant results calculated for magnetosonic waves are discussed
in chapter VI. In chapter VII we present summary and conclusion for possible galactic
origin of UHECR and give some topics for further research. Some parts of chapters II

and IIT are taken from the book Cosmic Ray Astrophysics (Schlickeiser, 2006).



2 Observations and Theoretical Background of Cos-
mic Rays

There are two ways to detect cosmic rays. There are ground based detectors and the
second are out of the Earth atmosphere launching satellites into extraterrestrial space.
The ground based observations have the advantage of long exposure time and no limit on
the size of detectors but their results have to be corrected for the influence of the Earth’s
atmosphere. In the atmosphere the in-falling primary cosmic rays undergo inelastic col-
lisions with the atoms and molecules in the atmosphere, producing secondary particles
which, again, are subject to further interactions (Fig.1). It is said that a whole shower’ of
particles reaches the ground and in order to investigate properties of the in-falling cosmic
rays, one has to reconstruct the 'shower’ with the help of numerical model calculations. It
means that the quality of the cosmic ray measurements using these methods depends on
understanding and modeling of the interaction processes in the atmosphere. In the case
when cosmic ray detection is flown outside the atmosphere these disturbing atmospheric
effects disappear, but here, because of the limited size and weight of detectors and limited
observing time of experiment (which is less of several weeks in the case of space shuttle
experiments), weak cosmic ray intensities cannot be measured. These instrumental limi-
tations may improve with time as more sophisticated platforms (space stations) become
available in the future. Today’s information on the flux of cosmic rays below energies of
~ 10'eV /nucleon stems mainly from satellite and balloon experiments, whereas at higher
energies > 10eV /nucleon, because of the rather weak intensities, information on cosmic

rays is provided solely by ground-based detectors.

2.1 The Cosmic Ray Landscape

Taking a view of the cosmic ray landscape (Lund 1986), most of it is still hidden from our
point of view by clouds, but there are some general physical arguments limit the ultimate
extent of the region (Fig. 2). Up- and downwards in nuclear charge, nuclear stability
sets two boundaries. Towards the high energy side the boundary is set by the universal
background radiation which destroys heavy cosmic ray nuclei with energies in excess of

~ 10%V /nucleon by photonuclear collisions A+~ — (A —1) +n (Greisen1966, Zatsepin
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Figure 1: Development of an extensive airshower in the Earth atmosphere (Weekes, 1972)

and Kuzmin 1966) and ultra high-energy cosmic ray protons with energies larger than
~ 10?°eV /nucleon by photo-pion production p++ — p+ 7. Towards the low energy side
a boundary exists due to ionization losses which increase rapidly with decreasing particle
energy. These energy boundaries are not sharply defined since they depend on the amount
of photons and matter, respectively, the particles have to penetrate on their way from their
sources to us. Lund’s diagram has been drawn as if the Universe were symmetric with
respect to matter and antimatter. Cosmic rays may ultimately prove that this symmetry
exists because they are the only probe of matter of nonsolar origin available to us. So far
this has not happened. If the Universe is matter-dominated everywhere, then the lower
half of the diagram, with the exception of the antiprotons and positrons, can be removed.
In that case we have, over a limited energy range, already explored the full extent of the
cosmic ray charge scale. Besides the instrumental limitations in combination with the
weak fluxes, the clouds are caused mainly by the influence of the Sun, the other planets
and the interplanetary medium. The interferences on the measurements of the galactic

and extragalactic cosmic radiation are two-fold:
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Figure 2: An outline of the cosmic ray landscape

a) The outstreaming solar wind disturbs the determination of particle fluxes below
kinetic energies of ~ 500 MeV /nucleon for nuclei and below 5 GeV for electrons. This
phenomena is referred as solar modulation.

b) The Sun itself and some planets produce cosmic radiation which has to be distin-
guished from the galactic and extragalactic component.

The study of these solar cosmic rays is itself an interesting area of investigation since
in situ observations of these particles provide much more detailed information than the
limited studies of extrasolar cosmic rays. However, we concentrate our analysis on the

later one.

2.2 Anisotropy

The study of anisotropy in the arrival directions of cosmic rays is clearly of great interest
to locate their possible sources. With specific position of our solar system with respect
to the galactic disk, one would expect an anisotropy towards the direction [ = 0, b = 0

(heliocentric galactic coordinates, sun is the center, toward galactic center) if the cosmic



ray sources are galactic objects. Experimental data on anisotropy predominantly come
from ground-based shower detectors. There are numbers of problems in interpreting the
data on anisotropy. At the highest energies, the data are statistically limited and subject
to fluctuations. Another experimental problem is the bias of each detector due to the
non-uniform acceptance of cosmic ray arrival directions. For instance, detector located in
the northern hemisphere do not see a region around the south magnetic pole. This hole
in acceptance, if not properly accounted for, can produce biases in event distributions
(Sokolsky 1979,503). At the end, since we usually search for anisotropy as a function of

energy, biases in determining energy will cause problems and uncertainties.

2.2.1 Harmonic Analysis

For a detector operating approximately uniformly with respect to sidereal time the zenith
angle dependent shower detector and direction reconstruction efficiency is a strong func-
tion of declination but not of the right ascension (RA). Therefore one usually searches for
anisotropy in RA only within a given declination band. This is done by measuring the
counting rate as a function of sidereal time (RA) and performing a harmonic analysis,

e.g. fitting the data by

21t 27t
R(t) = Ay + A, sm(% +é1) + Ay sm<1i2 + éo), (1)

where Ay, A;, and A, are the amplitudes of the zeroth, first and second harmonics,
respectively, and ¢; and ¢, are the phases of the first and second harmonics. In Fig. 3
we show the amplitude A; /Ay and the phase ¢ of the first harmonic. One notes that

a) at energies less than 10 eV the anisotropy is small (~ 0.07) and has constant
phase (~ 3"RA),

b) the anisotropy starts to increase as the energy rises above ~ 10 eV,

c) the phases of the relatively large amplitude anisotropies (several percent) above
10'7 eV vary rapidly with energy but are consistent between the various experiments.

These data do not convincingly establish a significant anisotropy beyond 10'7 eV. The
data show no evidence of anisotropy at any energy, regardless of the energy calibration

model chosen.
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2.3 Ultrahigh Energy Cosmic Rays

In the context of cosmic ray anisotropy we have described some results of ground-based
observations of cosmic rays with energies above 10**eV. Here, we concentrate on the mea-
surements of the energy spectrum and the composition of these ultrahigh energy particles.
Studies of the composition are indirect by measuring the muon content of the airshowers,
since their muon multiplicity depends on the atomic number of the primary particle, and
by analyzing the lateral shower distribution on the ground. A common problem of the
method is that such high primary energies are not available in terrestrial accelerators, so
that the interpretation relies on the theoretical extrapolation of nuclear interactions to
these energies. It is clear that the same observations made in this way can be interpreted
quite differently and that many controversial results exists on the composition ranging
from a dominantly protonic composition to a dominantly Fe composition of UHECR. We
restrict discussion to the energy spectrum as a function of the total energy of the primary
particle. It should be mentioned that it is much harder to measure the all-particle spec-
trum at 10'° eV than it is at 10'® eV for example, since showers produced by 10 eV
primaries are rather small, even at the highest altitude laboratory, so that fluctuations are
severe problem (Watson 1984). Of particular interest are cosmic ray particles with total
energy larger than 10 eV. Soon after the discovery in 1965 of the universal microwave
background radiation, Greisen, Zatsepin and Kuzmin (GZK 1966) pointed out that pro-
tons of these energy would interact with this microwave background through photo-pion
reactions and lose energy on a length scale of about ~ 10 Mpc which is relatively short
distance in cosmological terms (radius of a flat disk of our Galaxy is ~ 15 kpc, 1 kpc
~ 3 x 10*! cm). Tt was therefore anticipated that the UHECR spectrum would show a
cutoff at these energies. However, airshower arrays in the US and Japan have detected
seven particles at energies clearly above 10%° eV with no indication of GZK cutoff. Within
conventional explanations of cosmic ray acceleration this means that the potential sources
have to be relatively nearby within 50 Mpc. But the detection of these UHECR has also
stimulated a great deal of speculation about possible new physics. However, more data are
required, although the fluxes at these energies are only of order one per square kilometer

per century.



2.3.1 Interaction between Cosmic Ray Nuclei and Photons

The photo-hadron production process is dominated by photo-pion production, e.g. for
protons at threshold the channels p++ — 7°+p and p+v — 7" +n dominate and at higher
energies by multi-pion production. Baryon production and K-meson production can be
neglected in most astrophysical applications. Photo-pion production by nuclei of mass
number A obeys the simple Glauber rule o4 ~ A% 30,. However, in any astrophysical
environment nuclei cannot be accelerated to energies above pion threshold, since they
are destroyed before by photo-disintegration that has much lower threshold of about 10
MeV in the nucleus rest frame compared to pion production which requires at least 145
MeV. For a cosmic ray proton of Lorentz factor ,, traversing an isotropic photon field of
number density n(e,r), one obtains the energy loss rate

dy ¢

! /:O den(er)e? /2%6 de'e'a(e)K,(€), (2)

dt 29, Ja, /) i

where o(€¢') and K),(¢') are the total photo-hadron production cross-section and inelas-
ticity, respectively, as a function of the photon energy in the proton rest frame, while the
proton rest frame threshold energy €}, _is given by €}, = Km.c*(1 + %m;’) for the
respective reaction. Crucial for further evaluation is the knowledge of both the photo-
hadron production cross-section and inelasticity as a function of energy €. Here, we
just list literature for more detailed discussion on it, since there exist a vast number of
phenomenological particle physics models for the photo-hadron production cross-section
and inelasticity as a function of energy whose free parameters are adjusted by available
accelerator studies of individual reactions (Stecker 1968, Sikora et al. 1987, Mannheim,
Biermann 1989, Begelmann et al. 1990, Mannheim, Schlickeiser 1994).

It is clear from all experiments that the particle nature of the cosmic rays is either
protons or, possible, nuclei. Since the Universe is opaque to the photons with energies of
tens TeV because they annihilate into electron pairs in interaction with mentioned back-
ground light, it is necessary to investigate interactions between protons and background
light above a threshold energy F), of about 50 EeV. The major source of proton energy
loss is photoproduction of pions on a target of cosmic microwave photons. Therefore,
the Universe is also opaque to the highest energy cosmic rays, with an absorption length

Ayp = (nempoyy) =~ 10 Mpe. This is mentioned GZK cutoff which depend only on two



known numbers: neap = 400cm ™2 and Onp = 10~2em?. Protons with energies in excess
of 100 EeV, emitted in distant quasars and gamma ray bursts, would have lost their energy
to pions before reaching detectors on the Earth. There are three possible resolutions:

1.) the protons are accelerated in nearby sources,

2.) they do reach us from distant sources which accelerate them to much higher
energies than we observe, thus exacerbating the acceleration problem, or

3.) the highest energy cosmic rays are not protons.

The first possibility motivates to find an appropriate accelerating mechanism by con-
fining these source even to our own galaxy or nearby our galaxy. It will be analyzed and

discussed in details through this work.

2.3.2 Detectors and Observations of UHECR

There are two detected events of energies above GZK cutoff done by two detectors. In
1991, The Fly’s Eye cosmic ray detector recorded an event of energy ~ 10?2 eV. The
second one, detected for the first time in 1993 by AGASA air shower array in Japan.
AGASA has by now accumulated an impressive 10 events with energy in excess of 10%
eV (Fig4).

In order to improve the detection and collect as much as possible data, in 1995 started
building The Pierre Auger Cosmic Ray Observatory, the biggest detector of UHECR. It
consists of two parts, one on northern hemisphere (Millard Country, Utah, USA), and the
other, on the southern (Malarge, Province of Mendoza, Argentina). This observatory will
allow continual exposition of the whole sky, which is important in order to find out are
the distribution of directions of cosmic rays isotropic, or there is some structure on larger
scale. Two mentioned independent detectors are correlated in one, which allow higher
resolution and better control of systematic errors. The shower can be observed by

a) sampling the electromagnetic and hadronic components when they reach the ground
with an array of particle detectors such as scintilators,

b) detecting the fluorescent light emitted by atmospheric nitrogen excited by the
passage of the shower particles,

c¢) detecting the Cerenkov light emitted by the large number of particles at shower

maximum, and
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d) detecting muons and neutrinos underground. Cerenkov and fluorescent light is
collected by large mirrors and recorded by arrays of photomultipliers in their focus.

Cosmic rays travel through the vacuum with velocity close to the velocity of light.
When these particles enter the medium which is not vacuum, but is denser than vacuum ,
they travel with velocity bigger than real velocity of light in that medium. As a result it is
possible to detect so called Cerenkov light of the blue color. Great number of the cosmic
rays are able to excite the nitrogen molecules in the atmosphere. The consequence of
these excitations is spontaneous cascade de-excitations through the emission of fluorescent
photons in optical part of spectrum. Detector for this type of light is Fly’s Eye. Detectors
of cosmic rays on the Earth are mostly scinitillators. Cosmic ray showers passing by the
atmosphere spread out, so that on the earth surface it is scattered from few hundred
square meters up to few hundred square kilometers. That is the reason why scintillation
detectors are connected in the net of large area. According to the statistics, flux for
particles of energies E > 10'? eV is 1 particle/km? in one year, while flux for the particles
with £ > 10V is 1 particle/km? in 100 years. Since these events are very rare, as
large the area is, bigger chances are to catch the event. The Pierre Auger observatory
will use 1600 Cerenkov detectors on the area of 3000 km?, and 24 fluorescent detectors,
each in every 15 km. Informations from each detector are transfered via radiowaves to the
main station where the shower is reconstructed and analyzed (http:www.cosmic-ray.org,

http:www-zeuthen.desy.de).

2.4 Cosmic Ray Scattering, Confinement and Isotropy

Summarizing the observational material on galactic cosmic rays we note that the solar
system is bombarded by cosmic rays from all sides isotropically. However, a successful
model for the origin of of galactic cosmic ray has to explain the following key issues:

a) an over 10% yr constant ray power of ~ 10 erg/s,

b) a nearly uniform and isotropic distribution of cosmic ray nucleons and electrons
with energies below 10 eV over the Galaxy,

c) elemental and isotopic composition similar to solar flare particles,

d) electron/nucleon ratio in relativistic cosmic rays at the same Lorentz factor of about

0.01,

11



e) the formation of power law energy spectra for all species of cosmic rays over large
energy ranges accounting for the systematic differences in the spectral index values of
primary and secondary cosmic ray nucleons and cosmic ray electrons.

The general problem of the origin of cosmic rays can be divided into two parts. The
first part concerns the actual origin or injection of the cosmic rays into the Galaxy by
sources which keep up the power over a long time, while the second part concerns the
subsequent behavior of the cosmic rays, their motion, transport and confinement in the
Galaxy. We will concentrate in the second one. It is generally recognized that due to

their small Larmor radii, for cosmic ray nucleons of momentum p

pc/eV

fr = 300B/Gauss o

(3)

as compared to galactic dimensions, the majority of cosmic rays with energies below
~ 10'® eV propagate along the galactic magnetic field. Because of the observed isotropy
and age of cosmic rays, it seems clear that the cosmic rays cannot propagate freely along
the lines of force but must be continually scattered. If they were to propagate freely with
the speed of light, they would leave the galaxy within 10* to 4-10° years, as the dimension
of our Galaxy suggest. But from the measured abundance of the cosmogenic cosmic ray
clocks we know that their average lifetime in the Galaxy is ~ 107 years. Moreover, if there
is no scattering, we would expect a strong anisotropy towards the direction of the galactic
center due to specific location of the solar system, since there should be more sources of
the type discussed in previous section towards the inner galaxy. Yet we do not see this
anisotropy for cosmic rays with energies less than 10'® eV which apparently is lost due to
multiple scattering of the cosmic rays on their path from the sources to us. The scattering
cannot be by particles (Coulomb scattering) since the energies of cosmic rays are much
higher than nuclear binding energies and such collisions would destroy all nuclear species
heavier than protons in the interstellar medium, which is not the case (Kulsrud, Pearce
1969). Moreover, the mean free path for Coulomb collision of relativistic nucleons in the
dilute interstellar medium of order ~ 10%~/ny(cm™3) is far too long. Thus, the most
likely scattering mechanism is of plasma waves, i.e. fluctuating electromagnetic fields in
the interstellar medium. How these plasma waves are produced and how they influence

the dynamics of cosmic ray particles are the main topics of this work and will be discussed

12



in detail in the following chapters.
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3 Transport Coefficients for Cosmic Rays
In this chapter we discuss the basic equations and necessary approximations we have to

made in order to model interaction between charged particles moving in certain plasma.

3.1 Transport Equations

In order to describe interaction between particle and waves we start from the relativistic

Vlasov equations

Ofa Ofa | . Ofa
ot +v- % +p- ap _Sa(x7p7t)7 (4)
with the equations of motion
, v X Br(x,t)
P = Qa[ET(XJ t) + c ]7 (5)
x=v=P2_ (6)

Sa in (4) denotes sources and sinks of particles. We can neglect any large scale electric
field because of the high conductivity of plasmas, so that the total electromagnetic field
is a superposition of the uniform magnetic field By = Bye, and the plasma turbulence

(0E, dB) is

BT = B() + 5B(X, t)7 ET = 6ET(X, t) (7)

We can follow, instead of the actual position of the particles, the coordinates of the

guiding center, because of the gyrorotation of the particles

vV X e,
O (8)

where ) denotes the absolute value of the particle’s gyrofrequency in the uniform field

R=(X,Y,2)=x+

and o = ¢,/|q.| the charge sign. It is also convenient to use spherical coordinates (p, u, @)

in momentum space defined by

Pz = peospy/1 — p?, p, = psingy/1 — p?, p. = pu. 9)
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Consequently

1= 2 1= 2
X:x+usin¢,}/:y—ucos¢, = z. (10)
of2 o2
Transforming (4) to the coordinate set
$U:(p7u>¢7X7Y7Z) (11)

by using (5)-(10) and the Einstain summation convention, one obtains the appropriate

form of the Vlasov equation (Hall, Sturrock 1968, and Urch 1977)

afa afa . afa (p grafa)
ot Tz ey T oz,

where the generalized force term g, includes the effect of the randomly fluctuating

= Sa(x,p, 1) (12)

electromagnetic fields. Solutions of (12) with g, = 0 will be called "unperturbed orbits”.

The components of the fluctuating force term are

n_ .2 . ,
¢ pHoE) + T'u(cgEle_w + 6 E,e™)

Q Q
_ mecCy D- SE = b€
pB() UBO

, (13)

OV =t e ) i e i . C
go=p=-Y"H L}m 2B+ — [e Y(B. +in oE,) — e (5B, - wv(SEl)” ,
1

+ By [6i¢(M5BT +iS0E,) + ¢ (udBy — ic5El)] o (15)
v v

gx = — \/ﬁcos¢ 5 + , {ME — 0k — ZMU((SBZ+5B ﬂ (16)

V2B,
gy = —vy/1 — p?sin qb@ __° [5ET +0E; + w—v((SBl — 5BT)} (17)
By V2B, ¢ ’
9z = 0. (18)

In the derivation we have introduced
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1
0B, = —2(5Bx +i0B,), 0B = 0B, (19)
and
1

V2

which are related to the left-handed and right-handed polarized field components.

0By, = —(0E, £ i6E,),0E) = 6E., (20)

The function f, develops in an irregular way under the influence of g,, but the detailed
fluctuations are not of interest. An expectation value of f, must be found in terms of
the statistical properties of g,, so we consider an ensemble of distribution functions all
beginning with identical values at some time t = ty. Let each of these function be subject
to a different member of an ensemble of realizations of g, i.e. fluctuating field histories
which are independent of one another in detail, but identical as to statistical averages. At
any time t > ty, the various functions differ from each other, and we require an equation

for

< fa(x,p,t) >= F,(x,p, 1), (21)

the average of f, over all members of the ensemble. This is obtained by taking the

average of (12) using

< IB(x,t) >=< 0E(x,t) >= 0, (22)
implying
< B(x,t) >= Bg, < E(x,t) >=0. (23)
We find
OF, OF, OF, 1 O(< p2ga,0fs >)
— of2 = t) — — z 24
5 TG, O 96 Sa(%, P, 1) e or. , (24)
where
dfa(x,p,t) = fu(x,p,t) — Fu(x,p,1t). (25)

Subtracting (24) from (12) gives an equation for the fluctuation
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95 £, 95 £, 95 f, OF, 95 f, 951,
ot "oz "% e T gy, " Ir gy, TSI, (26)
where we used
1 0(p*Ya,)
) _0. 2
2 om, 0 (27)

We use perturbation method (referred to as the quasilinear approximation) to solve
these equations, which is based on the assumption that the fluctuations are of small

amplitude - g, must be significantly small, so that, there exists a time scale T' satisfying

t.<<T << tp, (28)

where tr represents the time scale on which g, effects the evolution of the distribution
function and ¢. is correlation time. From the equation of motion ¢r can be estimated as
Fy

gxo 8;50

Then according to (26) the variation ¢ f, generated by g, within a time 7" must remain
much smaller than F,, and the right-hand side of (26) may be approximated by its first

term, leading to

0fa , \ 0fa _ 00000, O,

Bt 07 96 o,

Equation (30) can readily be solved by the method of characteristics and we obtain

(30)

OF,(z,,s) I
0x, ’

where the prime indicates that the bracketed quantities are to be evaluated along the

5Fa() = 6 fa(to) — /tt ds[ga. (25 ) (31)

characteristics, i.e. an unperturbed particle orbit in the uniform magnetic field, given by

X:fEmY:yan:ZO‘i‘UM(S_t)a
vy 1 — p? -

T =1 e sin(¢),
vy/1 — p? -
Y=Y + TM cos(¢),

Z=zy+vu(s—t)
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P=pi=pd=dy— s —1), (32)

where all (zg, yo, 20, ¢0, P, t) denote the initial phase space coordinate values at time
to. Moreover, we demand that at the initial time ¢y the particle’s phase space density is

completely uncorrelated to the turbulent field, so that the ensemble average

< 0 faGe, >=0 (33)

vanishes. Then, inserting (31) into the averaged (24) leads to

OF, OF, 0

N OF,(z,,s),,
o~ Poaz T % a0

0z, I'>)
(34)

Note that the third term on the right-side of (26) if kept, would vanish in (34) because

10, ,
= S0 pot) + g (<SP0, [ dslge, ()

< gz, >= 0. Here (t —ty) ~ T, where T satisfies the restriction (28). Under certain
physical conditions the integrodiferrential equation (34) reduces to a differential equation

for F,. The second term on the right-hand side of (34) can be rearranged as

B i ) t OF,(z,,s),,
My = o (< 00e, [ dslge,(r0,9) =5 2] >)
1 0 OF4(z,,5) .,
— 0 [ d51< 0 (9) > (), (3)

Suppose that there exists a correlation time ¢, so that the correlation function of
magnetic and electric irregularities that determine the correlation function < g, g, >,
falls to a negligible magnitude for times t — s > t.. This means that the important
contribution to the right-hand side of (35) comes from the integral from ¢ — ¢, to ¢ which
can be assumed to be finite. Moreover, suppose that the variation of [0F,/0x,|" during

this time interval is small enough to consider that the value is nearly equal to that as

s =t. Then the term (35) reduces to

1 0 4, [ OF, (2., 5)
My ~ ]7@ ( [ - ds < Gz, 9, (I,,, 5) >] T
-3 OF,.5)
oy Py < ) A2 0 (36)

The requirement (28), i.e. ¢t —ty >> t., makes the term (36) a function of ¢ alone,

eliminating any dependence upon conditions at ¢, which justifies the replacement 0 for
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t —t. in the lower boundary of the integration. With these rearrangements (34) reduces to
a diffusion equation, involving only second order correlation functions of the fluctuating
field g, integrated along the unperturbed orbit. This equation, named Fokker-Planck

equation is

oF, oF, oF, 1 0 oF,
= ¢ _oN—2=5, t)+ — 2Dy 4 —2 37
at +vluaZ 0 8(25 (X7p7 )+p28$0(p auaxl/)7 ( )
with the Fokker-Planck coefficients
t
Doslst) = [ ds < gz, (s, (5) >, (38)
0

being homogenous integrals along unperturbed particle orbits of the fluctuating force
field’s correlations functions. The bar notation indicates that the force fields have to be

calculated along unperturbed orbit of the particles.

3.2 The Diffusion Approximation

The Fokker-Planck equation (37) with its 25 Fokker-Planck coefficients is very complicated
and cannot be solved in most cases. However, that in comparison to
0 oF, 0 oF, 0 oF, 0 oF,

@Duu@ + @Dw% + %Dqﬁuw + %Dw%

apart from the injection function S, all other terms on the right-hand of (37) are of

the order (vyn/v), (vpn/v)?, (vpn/v)(RL/R) or (Ry/R)? where vy, = wg/k is the plasma

(39)

waves phase speed, R, = v/€ is the gyroradius of a particle and R is a typical length scale
for the variation of F, in X and Y. Therefore, if we consider only particle distributions
which are weakly variable in X and Y, i.e. R;, << R, we can argue that the fastest
particle-wave interaction processes are diffusion in gyrophase ¢ and pitch angle u, since
for low frequency magnetohydrodynamical waves the phase speed vy, is much less than
the individual cosmic ray particle speeds, i.e. wv,,/v << 1. Then, we can follow the
analysis splitting the particle distribution function into its average in pitch angle and an

isotropic part (Jokipii 1966, Hasselmann and Wibberenz 1968, and Skilling, 1975)

Fo(x,p, 1, 0,t) = My(x,p,t) + Go(X,p, 1t, 9, 1), (40)
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where

M (X D, ) 417T/ dqb/ll d/j’Fa(Xapnua gb,t),

1 2 1

[ do [ duGalx,p0.t) = 0. (41)
7 Jo -1

Substituting (40) in the Fokker-Planck equation (37) and averaging over p and ¢ using

(41) we obtain

8;;\?“ + A;;Z 0% dcb/_ll dppGo — Sa(x,p,t) =
pl(.f[ /27r d¢/_1 dup®( ppaéw + Dpxaa]\; _|_Dpyaaj\}{“>]+
ég([zm /Qﬂdcb/ du( Dxpaéw +DXX86])\/[( +nyaaj\é )+
8‘1[4% /%dcb/ dpu DYpaéw +DYX%A§ +DYY8£“]+
pl al’napXY)[‘l?T/ d(b/ (e 8:Ejj—?pi(,l¢7x,y)>]7 (42

where we have used D,,,, = 0 for |u| = 1 and the periodicity G,(¢) = G,(¢+27). The
diffusion approximation applies if the particle densities are slowly varying in the time and
space, i.e.
oM, (Ma) oM, (Ma)
o 17z L
0G, G 8G G,
= — 4

where T'>> 7 ~ 0o(1/D,,,) and L >> v7, where 7 denotes the pitch angle relaxation

time. In this case, the cosmic ray particles have time to adjust locally to a near isotropic
equilibrium, so that G, << M,. Subtracting the averaged Fokker-Planck equation (42)
from the full Fokker-Planck equation (37) and keeping only terms which are at most of
first order in the small quantities (7/T), (vr/L), (v,n/v) and (Rr/R), we obtain to lowest
order an approximation for anisotropy G, in terms of the isotropic distribution function

M,:

0 oG 0 0G 0 oG
Q D 2+ —(Dyy—= —(D,,—2) ~
[O +a H¢] a¢ a¢( (010 a¢>+8u( 12233 a,u>

oM, 0 oM, 0 oM,
vp o7 _%<Dﬂp 8]) )_ailu(DMX 0X )_
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0 oM, 0 oM, 0 oM,
. D ) — %(DqﬁY 5y

aM(DuYaT)—%( oX 5y )- (44)

Since (G, is periodic in the gyrophase we can express it as a Fourier series

o

Go(X,p, 1, 0) = > Gyl(x,p, p)e’”. (45)

S=—00

For our purpose only G_;, Gy and G, are of interest since all other terms do not
contribute to the averaged Fokker-Planck equation (42) because all Fokker-Planck coeffi-
cients have a periodicity in gyrophase with a maximal period of 27. Inserting (45) into

(44) and comparing coefficients we derive the two equations

0 0G oM, oM,

@[DM#W + DWTp] = v 07’ (46)
and
0 oG
[i0Q — Dyy)G1 + @DW@—; = A, (47)
where
0D, x 0 oM, 0 0Dyy , 0OM,
A=— i — = 7o 4

and where we neglected D, in comparison to €2. The equation for G_; is not necessary
since the anisotropy G, is real and therefore the complex conjugate G} = G_;. Since

Q/D,,, ~ o(Bi/5B?) we may neglect the pitch angle diffusion term in (47) to obtain

A A

G|~ ~
! ZOQ — D¢¢ iOQ’

(49)

since gyrorotation is faster than gyrophase diffusion. Combining (48) and (49) we note

that

(6B)*
B3

would be of second order in the small parameter (0B/Bj)* << 1. Reinserting G; and

G1 ~ of M,) (50)

G_; into the averaged Fokker-Planck equation (42) would then yield terms of the order
(6B/By)*. However, the Fokker-Planck equation was derived by truncation of the order
(6B/By)*. For consistency, G has to be neglected and we approximate (45) by
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Ga ~ G(), (51)

where Gy obeys (46).

3.2.1 Cosmic Ray Anisotropy

Integrating (46) over u we obtain

G, M, op? OM,
=4 Dyt = — 2
”“8u+ P op at 2 07’ (52)

where the integration constant c; is determined from the requirement that the left-

D

hand side of (52) vanishes for 1 = £1, yielding

v OM,
Using (53) in (52) we derive
2
0G, _ - UaMa Dy 8Ma. (54)
op 2D, 0Z D, Op
Integrating this equation gives for anisotropy
vOM, v 1—v* OM, (# , D,(v)
Galpt) = ¢y — 220 = [ av 55
W=e=5%2 1"t~ o J1 "D, (55)

where the integration constant ¢, is determined by condition (41). We then obtain for

the anisotropy

_0dM, (1= p?)(1 - p) o
R S AV I o e ML 1

10M, ! D,p(11) no Dyp(v)
3o UL - gty =2 [ 50

Apparently the anisotropy (56) is made up of two components. The first is related to

(56)

pitch angle scattering and the spatial gradient of the isotropic distribution M. This term
will provide the spatial diffusion of particles. Pitch angle diffusion produces spatial effects
in a plasma if a density gradient along the ordered magnetic field, OM,/0Z, is present.
The second contribution to the anisotropy (55) stems from the moment gradient of M,
and is related to the Compton-Getting effect (Compton, Getting 1935). Expanding the

anisotropy (56) into orthonormal Legendre polinomials F;(u), i.e.
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Gulp, Z,p) = f;AxZ, P)E(), (57)

defines the harmonics A;(Z, p) of the anisotropy.

3.2.2 The Diffusion-Convection Transport Equation

We insert (54) and (55) into the averaged Fokker-Planck equation (42). For the two

p-integrals we obtain

1 vOM, 1—1/
[1 dupGa(p) = 55~ u/

oM, 1 mo Dyp(v)
op /4 dup /71 dVDW(I/) N
v oM, / d,u(l — u?)?

407 (1) -

10M, /1 1 — 12Dy (11)
2 dp J-1 D, (p)
where we partially integrated the right-hand side, and

(58)

1 0G, vOM, v (1—p>)D,y(n) OM, 1t D? (n)
dpD,y—— = —= d o — dpu—rr—.
/ s o 2 07 J : D) Op /—1 NDMM(PJ)

Collecting terms in (42) we obtain

(59)

My g ooy D, OMa 1 0PoA) M,
ot ’ 0z 7 0z  4p*  Op 0z
0 oM, oM,
ax rxx gy Xy Gy

0 oM, oM,
oy Y Gy TRy It
10 OM,. wvOA, OM,
26]3( 28}))_’_1@ 0}97

where the components of the spatial diffusion tensor ;;, the rate of adiabatic decel-

|+

(60)

eration A; and the momentum diffusion coefficient Ay are determined by the pitch angle

averages of Fokker-Planck coefficients as

7;

— A3 = / (61)

~

uu)
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1 1
xx =5 [1 dpDxx (1), (62)

wxy =3 [ duDyr(w), (63)
wvv =3 [ duDyy(n), (64)
wvx = [ duDyx(w) (65)
A= [ du1 - u2)m, (66)

and

- D7y (1)
Ay = 92 /4 Al Dpwl) = D1t

Equation (60) is commonly referred to as the diffusion-convection equation for the

J (67)

isotropic pitch-angle averaged particle distribution function M, (x,p,t). In its the most
general form it contains spatial diffusion and convection terms, describing the propagation
of cosmic rays in space, as well as momentum diffusion and convection terms, describing
the acceleration of cosmic rays, i.e. the transport in momentum space. Whether in a
specific physical situation all seven cosmic ray transport parameters (61)-(67) arise and
are different from zero, depends solely on the nature and the statistical properties of
the plasma turbulence and the background medium. In (61) we also defined the spatial
diffusion coefficient along the ordered magnetic field x,, in terms of the mean free path
for scattering A. Note that the diffusion-convection equation (60) has been derived in
the comoving refernce frame, i.e. the rest system of the moving plasma. If the situation
is that the background plasma, supporting the plasma waves, moves with respect to the
observer with non-relativistic bulk speed U << ¢ along the ordered magnetic field, we

can apply a simple Galilean transformation to (60).
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4 Derivation of the Fokker-Planck Coeflicients

We are particularly interested in the UHECR component of the cosmic rays. We start
from the generally-accepted hypothesis that galactic point sources like supernova remnants
would inject cosmic ray particles only at energies below 10 eV. Our purpose is to find
out if there is some other mechanism able to accelerate particles up to ultrahigh energies.

Observationally it is well established that the interstellar medium is turbulent up
to the largest scales, due to the motion of giant clouds, supernova explosions, stellar
winds and formation of superbubbles, loops and so on. Measurements of the density
fluctuations indicate the presence of Kolmogorov-type fluctuations spectrum up to scales
of 100 pc. Together with an interstellar magnetic field strength of ~ 5u G this would
allow acceleration up to particle energies ~ 107 eV. In this chapter, in order to model
plasma turbulence, we give basic equations and step by step calculation of Fokker-Planck

coefficients.

4.1 The Fokker-Planck coefficient D,
4.1.1 Equations of Motion

In order to derive relevant transport coefficients, spatial diffusion coefficient x, the cosmic
ray bulk speed V' and momentum diffusion coefficient Ay, we start from the random parts

of the Lorentz force for the coordinates p and p of the guiding center (52002, 12.1)
Qv1—pu? |c i T . c , . c
== ——" |21 — 2B + — |e*(6B, —0F,) —e (6B, — E]
Gu = f B, L’V (26 |+\/§[6 (0B: +ip_0E,) — e (0B —iudEy)| |,
(68)

1— p?
2

. My

Qpce
gp =1D =

. SE = £°

SE e + §E, e
pBO p ’UBO ( e + € )

poE) +

: (69)

In these equations we use pitch-angle cosine p, the particle speed v, the gyrophase
¢, the cosmic ray particle gyrofrequency Q = ZeBy/(mc7y) in the background field By
and the turbulent fields 05;, and JE;, which are related to the left-handed and right-
handed polarized field components. These random force terms determine the correspond-

ing Fokker-Planck coefficients (Hall & Sturrock 1968)
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D, = lim —="L 2

t—00 2t
Ap(Ap)*
Dup = thm —< M<2t p) -
Ap(Ap)*
Dpu = thm = p(2t'u) =
. < (Ap)? >
Dy = Jm <552 ()

which are calculated from the respective displacements (Au) and (Ap) caused by the
stochastic field components. In this section we calculate step by step the Fokker-Planck

coefficient D,,,,; the other coefficients are calculated similarly.

4.1.2 Step 1: Quasilinear Approximation

The quasilinear approximation is achieved by replacing in the Fourier transform of the

fluctuating electric and magnetic field

+oo . +o00 ) o

IE(x(t),t) = / dPkOE(k, t)e’k'x(t) ~ / dkoE(k, t)eik'x (t) (71)
+oo . 400 ) 0

0B(x(t).1) = / d*ROB (K, 1)e KX ~ / PkoB(k, ) KX (72)

the true particle orbit x(¢) by the unperturbed orbit x°(¢), resulting in

o(t) = do — (73)
and (Schlickeiser 2002, (12.2.3a))

+oo
6Bl,r,|| ~ Z dgk(SBlm”(k, t)Jn(W)em(z/Jfgbo)Jrz(kHvH+nQ)t+zk.Xo’ (74)
respectively, where xg = (o, Yo, 20) denotes the initial (¢ = 0) position of the cosmic ray

particle and W = ﬁ ~ki\/1—p? = Ry - k1/1— p? involving the cosmic ray Larmor

radius Ry, = v/|f2|. For the wave vector k we have used cylindrical coordinates:

ky = k.,
ki = \/kZ+k2
= arccot(g). (75)

<
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With these approximations the equations of motion become

dp QV1—p? & (Vo) +i kxo(C [T 2
P h ()= 2P /dSk in(—ao)+i(kjv+nQ)t+iK-Xo ([~ 1 — ;2 ; SE(Kk.t
dt H( ) BO Z € (U 1% J <W> ||< ) )

n=—oo

+\;§Jn+l(w)e’”" 6B, (k. 1) + i =0, (k. 1)] - LT (W)e 5B 1) - iy OBk, 1))
(76)

>

and

dp Qpe & R .
— ~h (t) = — E /d3k in(y ¢0)+2(1€\|U‘|+n9)t+z X
dt p( ) 'UBO . e

V1= p?
2

=—00

(,an(W)cSE(k, t) + [Jos1(W)eSE, (K, t) + Jo_1(W)e V6 Ey(k, t)]) (77)

4.1.3 Step 2: The Kubo Formalism

Integration of (76) yields

Ap(t) = [ dtih(t) (78)

for the displacement in pitch angle cosine. We then find for the ensemble average

< (AM)Q >=< /Ot dtlhu(tl) /Ot dtghi(tg) > (79)

which we evaluate using the Taylor-Green-Kubo formalism (Green 1951, Kubo 1957).
As illustrated in Fig. 5, instead of integrating over the full box we may integrate over the

hatched triangle and multiply by the factor 2 (Peskin & Schroeder 1995) implying
t t1 t 0
< (Ap)? >=2 </ dtrh,(tr) [ dish(ts) >=2 </ dtlhu(tl)/ drhs (T + 1) >
0 0 0 —t;

t 0
- 2/ dty [ dr < (bR (T 1) > (80)
0 —t1

where we substituted 7 = t5 — t;.
As second assumption (after the quasilinear approximation) we use the quasi-
stationary turbulence condition that the correlation function < hy,(t1)h;,(7+t1) > depends

only on the absolute value of the time difference [ty — 1| = |7| so that

< hyu(t)hy (T + 1) >=< h,(0)h, (0 +7) > (81)
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Figure 5: Geometric interpretation of (79)

implying with the substitution s = —7

t 0 t t1
< (Ap)? >= 2/0 iy [ dr < by (0)05,(0+7) >:2/0 dt1/0 ds < h,(0)h%(s) > (82)

Thirdly, we assume that there exists a finite correlation time t¢. such that the correlation
function < h,(0)h}(s) >— 0 falls to a negligible magnitude for s — oo. This allows us

to replace the upper integration boundary in the second integral by infinity so that

< (Ap)? >~ 2/; dt, /:o ds < h,(0)(s) >= 2t/0°° ds < h,(0)h(s) > (83)

As can be seen, the two assumptions of quasi-stationary turbulence and the existence
of a finite correlation time ¢. guarantee diffusive behaviour of quasilinear transport in
agreement with the conclusion of Shalchi & Schlickeiser (2004). For the quasilinear Fokker-
Planck coefficients (70) we then obtain

D= [ T ds < h(0)h%(s) > (84)

and similarly

Dy =Dy = /0 ds < h,(0)hi(s) > (85)
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and

D,, = /0 T ds < hy(0)R5(s) > (86)

4.1.4 Step 3: Homogenous Turbulence

From the quasilinear equation of motion (76) we infer

2

Q Z Z /dgk/d?,k/ i(n—m)(p—¢o)— (kHvH—l-mQ)s—s—z(k k)
BQ

n=—oo m=—0o

hyu(0)hy,(s) =

[g 1 — p2J,(W)SE) (k, 0) + \jﬁjw(vv) [5Br(k,0)+zu55Er(k,0)]

Jua(W)e™™[B(k, 0) — iMS5Ez(ka 0)]]

V2
(VT I (V)SEL 0. 5) = sl (W BB, 5) = i O (1 5)
+\;§Jm_1(W’)ew [Bf(k’, s) + mgaEl*(k’, s)]] (87)

Next, as fourth assumption we use that the turbulence field which is homogenously dis-
tributed, and average (87) over the initial spatial position of the cosmic ray particles

using

(Zi)3 / T P K KXo _ 5 _ ) (88)

implying that turbulence fields at different wavevectors are uncorrelated. The respec-

tive ensemble average of (87) then involve the correlelation tensors

< 6B4(K,0)6B3(K', 5) >= 6(k — K') Pag(k, ) (89)
< 6Ea(K,0)E}(K, 8) >= 6(k — k) Ras (K, s) (90)
< 6Bo(k,0)E}(K, 5) >= 6(k — K)Typ(k, 5) (91)
< §E.(k,000B5(K, s) >= d(k — K)Qas(k, 5). (92)
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After performing the k’-integration and employing the random phase approximation,
that the initial phase ¢ of the cosmic particle is a random variable that can take on any

value between 0 and 27, the averaging over ¢, results in

1 +o0 2m e}
D,, = / et KK / d¢0/0 ds < h,(0)h"(s) >=

(271')4 —00
QQ
B Z / dSkf / dse—z(k”U”—i—nQ)s
0 n=—00

(;(1 o) (W) Ry (k, 5)+2Jn+1(W)[PRR(k $)+i’~ RRR(k S)+w (Qrr(k, s)=Trr(k, s))]

W) Pra () 1 S Res 0 8) 4 in (Toa0c 5) — Qs 8))

—;Jn1(W)Jn+1(W)[e2w(PRL(k, 5) — /E%RRL(k, )+ i (Tas (,5) + Qe (K, 5)))

e (Pl ) — i 5 Ruplk,s)) = i (Tia(k. s) + Qua(k. )]
A V\lf; I Jo (W) [ Jnr (W) (€T (K, s)—e P Qa(k, s)+iuS(RR‘ (k, )™ + R p(k, s)e ™)
+ o (W) (€ Q1 (k, 5) — e Ty (k, s) + mg(R‘L(k, s)e™ + Ry (k, s)e*“/’))]] (93)

4.1.5 Step 4: Plasma Wave Turbulence

In order to further reduce (93) we have to make additional assumptions about the geom-
etry of the turbulence, and specially, the time dependance of the correlation functions,
in order to perform the time(s)-integration. The geometry will be discussed in the Sec.
5.2. Here, we first define the properties of the plasma turbulence that will be considered.
We follow the approach for the electromagnetic turbulence that represents the Fourier
transforms of the magnetic and electric field fluctuations as superposition of N individual

weakly damped plasma modes of frequencies

w = wi(K) = wr(K) — i75(K), (94)

j =1,..N, which can have both the real and imaginary parts with |v;| << |wg |, so that

[B(k, 1), = [Bl(k), E/(k)] e (95)

Jj=1
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Damping of the waves is counted with the a positive 4/ > 0. We need to add Maxwell’s

induction law

B/(k) = <k x E/(k). (96)

WR,j

As a consequence of (95), the magnetic correlation tensor (89) becomes

N ‘ y .
Paﬂ(ka s) = Z Pojég(k)e_wﬁj( )5 =5 ( )s’ (97)
j=1
where
Ply(k) =< BL(k)BY* (ki) > o(k — ky). (98)

Corresponding relations hold for the other three correlation tensors.
With (97) we derive for the Fokker-Planck coefficient (93)
QQ

B2 Z Z / dgk/ ds e i(k)v+wr,;+n8)s—;s

j=1ln=—00

Dy =

2

-(;<1—u2>J3<W>Rf<k,s>+;Jz+1<W>[PRR<k )12y R, )+ (@l )Tl 5))

g () [Py ) + 2 < Rk, )+ ipS (T 5) — QLo )]

—;Jn_1<W>JnH<w>[eWPI@L(k, 5) — M%R@{L(k, )+ i (T (K, ) + Qhy (k. 5)))

e (Pl s) — it G Ralle 5)) — i (T]n(k,9) + @ (k. 5)
+icv1f‘v“ To(W) i (W)€ T (O, 5) = QI )i (Rl (O )6 + Rk, s)e ™)
(W)l (. 5) — T )+ i (R (e 5)e™ + B (e, )] (99)

The s-integration is readily perform and yields the Lorentzian resonance function

0o . j k)
() = —i(kyv)twr,j+n)s—yjs _ i 1
Rj (VJ) /O ds e 7]2(1{) + [k}”’U” + Wgrj (k) + TLQ)]Q ( 00)

In the case of negligible damping v — 0, use of the d-function representation
lim — ' = 75(¢) (101)
y—>0 72 + 52
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reduces the resonance function (100) to sharp d-functions

Rj(”y =0) = wd(kjv) + wr,; +n2)). (102)

The Fokker-Planck coefficient (99) finally reads

2

B Q 31 (k)
D = 21 Z > / TSR0 + ooy + wiy () + P

j=1ln=—00

'<$(1—u2)Js(W)R|(k S)+2J72L+1(W)[PRR<k 3))+M RRR<k 8)+zu (Qhr(k, s)—Thr(k, s))]
—|—;J3 \(W)[PE (K, 5) +N RJLL(k s) —l—zu (TiL(k s)— Q4. (k,s))]

—;Jn1<W>Jn+1<w>[ew<P;L<k, 5) — ﬁ%RﬁL&, )+ i (Thy (k, 8) + Qi k. 9))

e (Pl s) — 12 S Rk, 9) — i (Ta(k ) + QLak, )]

+icv1f_v“ To(W) i (W)€ T (O, ) Qg )i (Rl (O )6 + Rl K, s)e ™)

F It (W) (e Q1 (k. 5) — e T} (K, s)+m§(RfL(k,s)ew—|—RJi|(k, s)e” )] (103)

It remains to specify the geometry of the plasma wave turbulence through the corre-

lation tensors which, according to Mattheaus & Smith (1981), have the form

szﬁ<k): 12 5aﬁ— L2 —|—Z0'(k)€aﬂ>\f s (104)

k

where o(k) is the magnetic helicity and the function g(k) determines different turbu-

g (k) kakip kA]

lence geometries. This will be discussed in Sec. 5.2.

4.2 The Other Fokker-Planck Coefficients D,, and D,,

Applying the same approximations as in the last section to the other Fokker-Planck

coefficients in (70) results in

pc 3 7j(k)
Dyp = Dy = Bz\/_iﬂ Z Z / @k + (ko) + wr (k) + nQ2)J?

j=1n=—0o0

[onf = )2 Rk, s) + <1 ‘2’“‘2> (W) (W)™ Rl (k. 5)+

Tu(W )y (W)€ Riy (0, 8))-+ 5 Tn(W) T (W) Ty 0, 8) = -Z T (W) T (W)™ B ()
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i/ (1= p?)

o (W) Thalk,8) £ ua (W) Juia (W) Ty (k. )

+

cp =
voo2V/2

(2 (W)REg(K, 8) + St (W) Tt (W)X Ry (k, 5))—

T3 (W) (W)e T b 5) - jf}J( o (W)e ™ Ry, (K, 5)
—M(J (W) Tir (W)e™2¥TY (k. s) + J2_(W)TE, (k, 5))
2\/§ n—1 n+1 LR ) n—1 LL )

I (W) W) Rtk s) = S IR ()R s)] (105)

and

92 Cab R 3 75(K)
=R 4, / o + kv + wr (k) +nQ)P?

0 j=1ln=-—oc0

1 — 2 . ,
[ 2OV Ry (ke 5) + T“(JLl(W)RJRR(k, $)+ L2 (W)RE, (k, 5)
0 A (W) gt (W)Y Ry (K, 8) + Jua (W) Jnsa (W)e >V R (K, s))

V1 — 2 o o o
+an(W)i“(JnH(W)e—WR{R(k, s) + Jn 1 (W)e Rl (K, 8) + Jnp1r (W)e™ Ry, (k, 5)

+ 1 (W)e ™ R (K, 5)| (106)

4.3 Derivation of D, for Fast Mode Waves

4.3.1 Dispersion Relation

Using the high phase velocity approximation wg/k > Va(3/2)Y* for low beta plasmas
Ragot & Schlickeiser (1998) have calculated the dispersion relation of fast magnetosonic
waves in a magnetized electron-proton fluid plasma (Braginskii 1957, Stringer 1963,

Swansson 1989) as

1
wh = SR, |1+ (R+ iy +/[L+ (R + 22 — dn? (107)
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with n = cos 6 and

52 k}2
k? + (&k.)?
where £ = \/m,/m. = 43 and k. = w,,,/c is the inverse proton skin length. For wavenum-

bers well below the inverse electron skin length k << &k, (108) approaches R(k) ~ (k/k.)?

R(k) = (108)

which is much smaller than unity in the MHD-wave range & << k. and much larger than
unity at wavenumbers k. << k << &k..
In the MHD wave range that is of our interest, the dispersion relation (107) then

simplifies to

wr > JkVa (109)

describing forward (j = 1) and backward (j = —1) moving fast mode waves. The associ-

ated electric field and magnetic field polarizations are (e.g. Dogan et al. 2006)

0E, = —0Eg, 0E =0, 6B, =0Bgp, 6B #0 (110)

4.3.2 Reduction of the Fokker-Planck Coefficient D,

From the polarization properties (110) we deduce (Schlickeiser & Miller 1998) for the

correlation functions
Pr;, = Prr = Prr = PrL

Qrr = —Qrr = Qrr = —Qrr
Tir=—Tgr = —Tir = —Trr
Rir = Rrr = —Rpr = —Rgr

Ryy=Rj=Rjr=Ry =Rp) =Ty =Tr =CQu=Qr=0

Tir = -T\r
Qr = —Qr|
Pry=Prj, PjL=PFr (111)

yielding for the coefficient (103) for fast mode waves
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02

Dy = 230 (1—p?) Z Z_:/ dgkRJ J£+1(W)+J5—1(W)_Jn+1(W)Jn—1<W)COSQ@/J]
[PféR(k)Hu — Rin(k )+w (Qhr(k) = Tha(k))] (112)

Faraday’s induction law

w .
SE = ——ngk x 0B (113)
implies
w k w k.
OB, =~ [’f||5BL 2125B||1 0Ep =~ 7 [ k|0 Br + 21/25B||] (114)

allowing us to all tensors in terms of magnetic field fluctuation tensor, i. e.

w2, 2
k1 kyky
Rrr = 2k4 [ D) 9 (Prj + PIIR)l
1% sin? 6 sin @ cos 0
— = lcos2 OPrr + 5 Py — 5172 (PR” + PR)] , (115)
IWRj ki 17Va sin #
Qrr = ? [k’”PRR 21/2PR] = p [COS 0 Prr WP”R]’ (116)
LWR;j ki 17V sin
Trr = ok [ ]{Z”PRR + 21/2PR] = [ cos @ Prp + 21/2 PHR], (117)
so that
) MY 2v2
PjR+N R]R+ZM (Qhn — Thr) = (1_MTA 0s0) PJJ:.’,R""LLQ sin 9P|f||
Vap . . uVy ' '
~ sinf(j + —— cos0)[ Py + Pig] (118)
which can be inserted into (112) yielding
F 02 3 2 2
DML - 2B2 1 :U’ Z Z / d kR] Jn+1(W)_}_Jnfl(W)_an—i-l(W)Jn—l(W) COS 21/}]
j=tln=-oc0
JjuV, ; vz Vap Va
[(1 - % cos0)*Php(k)) + IMZTQA sin” 0 Py — \/Aiv sin0(j + L cos 6?)[P] PﬁR]] (119)
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4.4 Derivation of D, for Slow Mode Waves

4.4.1 Dispersion Relation

Dispersion relation for slow magnetosonic waves in low- plasma reads (Dogan et al.
2006)
np n* 5

wﬁngVj(Hﬁ + (1+5)3) (120)

with n = cos 6 and (3 is the ratio of thermal and magnetic pressure. In the last equation,

in the first approximation, we neglect the second term in brackets since it is one order
smaller then the first term. The associated electric field and magnetic field polarizations

are

§E, = —0Ep, 0E =0, 6B, =0Bg, 0B #0. (121)

which implies
Prp = Prr = PLp = Prp

Qrr = —Qrr = Qrr = —Qrr
Tir=—Tgrr = —Tir = —Thrr
Rir = Rprr = —Rrr, = —Rpr

Ryy=Ry=Rjr=Ry =Rp) =Ty =Tr =CQ=Qr=0

Tie=—T)r
Qr = —Cnr
Pry= Pg), P = Pjr. (122)

So that, all tensors in terms of magnetic field fluctuation tensor for slow mode waves

are
2 2
WRj kl k”kJ_
Rpr = 762]6]2 [k2PRR + ?P”” - (PRH + P||R)
_ Vi np 9 sin? 0 sin @ cos §
=37 5 cos” O Prp + 5 Py — T(PRH + P||R) ) (123)
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ki ijVa | 0B sin ¢
Qrr = ? [kPRR IV P”R] = T [cos 0 Prr 21/2 Pg], (124)
iwpy ki ijVa | npB sin 0
Trr = ko [ i Pre + 91/2 P”R] T m[ cos0Prr + 21/2 o7z Dlel: (125)

4.4.2 Reduction of F-P Coefficient D,

Using (122)-(125), we derive

0?
Diu = 232 1 ,u Z Z / dgk R] Jn2+1 (W)—‘—Jg_l(W)—2Jn+1(W)Jn_1(W) Ccos Qw]

j=tln=—0c0

JuVA / ﬁ Vi B
[(1 - cos 0)2 Pl (k) + QUQA 15 sin® 0P

V V.
AM Sl nf(j+ M\/ COSQ R” + IIRH (126)

4.4.3 The Other Fokker-Planck Coefficients D,, and D,, for Slow Magne-

tosonic Waves

The other two Fokker-Planck coefficients D,,, and Dy, for slow magnetosonic waves are
the same as for fast mode waves (105) and (106). The differences will appear when we
insert resonance function and dispersion relation for slow mode waves. We will do it in

Sec. 6.
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5 Undamped Waves

To unravel the nature of cosmic sources that accelerate cosmic rays to ultrahigh energies
has been identified as one of the eleven fundamental science questions for the new century
(Turner et al. 2002). Cosmic rays with energies up to at least 10! eV are likely accelerated
at the shock fronts associated with supernova remnants (for review see Blandford &
Eichler 1987), and radio emissions and X-rays give conclusive evidence that electrons are
accelerated there to near-light speed (Koyama et al 1995, Koyama et al. 1997, Tanimori et
al. 2001, Allen et al. 1997, Slane et al. 1999, Borkowski et al. 2001). The evidence for a
supernova origin of hadrons below 10 eV is less conclusive (Enomoto et al. 2002, Reimer
& Pohl 2002) although consistent with the observed GeV excess of diffuse galactic gamma,
radiation from the inner Galaxy (Biisching et al. 2001). Most puzzling are the much higher

0%%° eV for which an extragalatic origin

energy cosmic rays with energies as large as 1
is favored by many researchers. Extragalactic ultrahigh-energy cosmic rays (UHECRs)
coming from cosmological distances > 50 Mpc should interact with the universal cosmic
microwave background radiation (CMBR) and produce pions. For an extragalactic origin
of UHECRS the detection or non-direction of the Greisen-Kuzmin-Zatsepin cutoff resulting
from the photopion attenuation in the CMBR will have far-reaching consequences not
only for astrophysics but also for fundamental particle physics as e.g. the breakup of
Lorentz symmetry (Coleman & Glashow 1997) or the non-commutative quantum picture
of spacetime (Amelio-Camella et al. 1998).

It is well known (e.g. Schlickeiser 2002, Ch. 17) that after injection further distributed
acceleration over the whole interstellar medium results from the resonant wave-particle
interactions of cosmic ray particles with low-frequency magnetohydrodynamic plasma
turbulence that reveals itself by density fluctuations in observations of interstellar scintil-
lations, dispersion measures and Faraday rotation measures (Rickett 1990, Spangler 1991,
Armstrong et al. 1995) over 11 decades in wavenumber below the ion skin length. Within
a plasma wave viewpoint this interstellar turbulence is a mixture of fast and slow mag-
netosonic waves and shear Alfven waves because the plasma beta § = 0.22 of the diffuse
interstellar intercloud phase is much smaller unity. The rate of distributed acceleration
of cosmic rays, particularly its dependence on cosmic ray energy, is determined by the

statistical properties of the interstellar plasma turbulence, i.e. the power spectra of the
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magnetic field fluctuations.

For many years the theoretical development of the resonant wave-particle interactions
has mainly concentrated on the special case that the plasma waves propagate only parallel
or antiparallel to the ordered magnetic field — the socalled slab turbulence. In this case
only cosmic ray particles with gyroradii Ry smaller than the longest parallel wavelength
Ly mae of the plasma waves can resonantly interact.

This condition is equivalent to a limit on the maximum particle rigidity R:

R =2 < eBobjmas- (127)

An alternative way to express the condition (127) is

By LH mazx
Fi:-/Z <4. : 128
15/2 < (4,u G) (parsec) ’ (128)

where E;5 denotes the cosmic ray particle energy in units of 10* eV. The limit set by
the right hand side of (128) is referred to as Hillas limit (Hillas 1984). According to this
limit, cosmic ray protons of energies larger than 4 PeV= 4-10' eV cannot be confined or
accelerated in the Milky Way, and an extragalactic origin for this cosmic ray component
has to be invoked. In Fig. 6 are plotted some cosmic sites where particle acceleration
may occur, with sizes from kilometers to megaparsecs. Sites lying below the diagonal line
fail to satisfy conditions (128) and (129) for 10 eV protons. For these high cosmic ray
energies only very few sites remain as possibilities: either highly condensed objects with
huge magnetic field strength such as neutron stars, or enormously extended objects such
as clusters of galaxies or radio galaxy lobes. As we have already mentioned, supernova
remnant shock waves can only accelerate particles up to rigidities of ~ 10'° eV.

Moreover, as the cosmic ray mean free path in case of spatial gradients is closely related
to the cosmic ray anisotropy (Schlickeiser 1989, (94)), the Hillas limit (128) implies strong
anisotropies at energies above 4 PeV which have not been observed by the KASKADE
experiment (Antoni et al. 2004; Horandel, Kalmykov and Timokhin 2006).

In this chapter we investigate how the Hillas limit (129) is affected if we discard the
assumption of purely slab plasma waves, i.e. if we allow for oblique propagation angles
of the plasma waves with respect to the ordered magnetic field component. There is obser-

vational evidence that obliquely propagating magnetohydrodynamic plasma wave exists
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1984)
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in the interstellar medium (Armstrong et al. 1995, Lithwick and Goldreich 2001, Cho et
al. 2002). In particular, we will consider the alternative extreme limit that the plasma
waves propagation angles are isotropically distributed around the magnetic field direction.
It has been emphasised before by Schlickeiser and Miller (1998) that oblique propagation
angles of fast magnetosonic waves leads to an order of magnitude quicker stochastic ac-
celeration rate as compared to the slab case, since the compressional component of the
obliquely propagating fast mode waves allows the effect of transit-time damping acceler-
ation of cosmic ray particles. Here we will demonstrate that the obliqueness of fast mode
and shear Alfven wave propagation also modifies the resulting parallel spatial diffusion
coefficient and the limit. Moreover we will show that the maximum wavelength L., of
isotropic waves does not have such a strong effect on the maximum particle rigidity as in

the slab case.

5.1 Relevant Magnetohydrodynamic Plasma Modes

Most cosmic plasmas have a small value of the plasma beta 3 = ¢%/V3, which is defined
by the ratio of the ion sound to Alfven speed, and thus indicates the ratio of thermal to
magnetic pressure. For low-beta plasmas the two relevant magnetohydrodynamic wave

modes are the
(1) incompressional shear Alfven waves with dispersion relation
wp = Viki (129)

at parallel wavenumbers |k| < €2,0/Va, which have no magnetic field component along

the ordered background magnetic field 0B, (|| By) = 0,

(2) the fast magnetosonic waves with dispersion relation
wp = Vik?, K =k + k] (130)

for wavenumbers |k| < Q,0/Va, which have a compressive magnetic field component

0B, # 0 for oblique propagation angles § = arccos™" (k;/k) # 0.

In the limiting case (commonly referred to as slab model) of parallel (to By) propa-

gation (0 = k; = 0) the shear Alfven waves become the left-handed circularly polarised
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Alfven-ion-cyclotron waves, whereas the fast magnetosonic waves become the right-handed
circularly polarised Alfven-Whistler-electron-cyclotron waves.

Schlickeiser and Miller (1998) investigated the quasilinear interactions of charged par-
ticles with these two plasma waves. In case of negligible wave damping the interactions
are of resonant nature: a cosmic ray particle of given velocity v, pitch angle cosine p and
gyrofrequency Q. = 2.0/ interacts with waves whose wavenumber and real frequencies
obey the condition

wr(k) = vk + nfl, (131)

for entire n =0, +1,+2,....

5.1.1 Resonant Interactions of Shear Alfven Waves

For shear Alfven waves only interactions with n # 0 are possible. These are referred to as
gyroresonances because inserting the dispersion relation (129) in the resonance condition

(131) yields for the resonance parallel wavenumber

n ),

132
T — (132)

Kja =

which apart from very small values of || < V), /v typically equals the inverse of the cosmic

ray particle’s gyroradius, kj 4 ~ n/R; and higher harmonics.

5.1.2 Resonant Interactions of Fast Magnetosonic Waves

In contrast, for fast magnetosonic waves the n = 0 resonance is possible for oblique
propagation due its compressive magnetic field component. The n = 0 interactions are
referred to as transit-time damping, hereafter TTD. Inserting the dispersion relation (130)

into the resonance condition (131) in the case n = 0 yields
v = +Vy/ cosf (133)

as necessary condition which is independent from the wavenumber value k. Apparently all
super-Alfvenic (v > V4) cosmic ray particles are subject to TTD provided their parallel
velocity v equals at least the wave speeds +V,. Hence, equation (133) is equivalent to
the two conditions

| > Vajv, v > Vy. (134)
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Additionally, fast mode waves also allow gyroresonances (n # 0) at wavenumbers

B n ),
- 4Vy —vpcosh’

kr (135)

which is very similar to (132).

5.1.3 Implications for Cosmic Ray Transport

The simple considerations of the last two subsections allow us the following immediate

conclusions:

(1) With TTD-interactions alone, it would not be possible to scatter particles with |u| <
Va/v, i.e., particles with pitch angles near 90°. Obviously, these particles have basically no
parallel velocity and cannot catch up with fast mode waves that propagate with the small
but finite speeds +V4. In particular this implies that with TTD alone it is not possible to
establish an isotropic cosmic ray distribution function. We always need gyroresonances

to provide the crucial finite scattering at small values of pu.

(2) Conditions (133) and (134) reveal that TTD is no gyroradius effect. It involves fast
mode waves at all wavenumbers provided the cosmic ray particles are super-Alfvenic and
have large enough values of i as required by (134). Because gyroresonances occur at single
resonant wavenumbers only, see (132) and (135), their contribution to the value of the
Fokker—Planck coefficients in the interval |p| > V4 /v is much smaller than the contribution
from TTD. Therefore for comparable intensities of fast mode and shear Alfven waves,
TTD will provide the overwhelming contribution to all Fokker-Planck coefficients D,,,,
D,,, and Dy, in the interval || > V4 /v. At small values of |u| < V4 /v only gyroresonances
contribute to the values of the Fokker—Planck coefficients involving according to (132) and

(135) wavenumbers at kj 4 = kg ~ +n./Va.

(3) The momentum diffusion coefficient

~ Di(w)
D)

has contributions both from transit-time damping of fast mode waves,

=3 [ au D) | = Ar+ Ap (136)

1
A= [ duDE™(p) (137)
VA/U
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and from second-order Fermi gyroresonant acceleration by shear Alfven waves (Schlickeiser

1989) D1
Lo A Dy, ()]
o= 5/_1@ (DA (1) — B . (138)

(4) On the other hand, the spatial diffusion coefficient

:f;/idM1—u%2D$00 (139)

is given by the integral over the inverse of the Fokker—Planck coefficient D, so that here

>
the smallest values of D, due to gyroresonant interactions in the interval |p| < Vj4/v

determine the spatial diffusion coefficient and the corresponding parallel mean free path

Va/v

K=v\/3~— /

The gyroresonances can be due to shear Alfven waves or fast magnetosonic waves. For

mmD (140)

relativistic cosmic rays the relevant range of pitch angle cosines |u| < va4/v is very small

allowing us the approximation D, (u) ~ D, (0) so that

v € vVa

K=v\/3 ~ ZDEM(O) = 1DC,(0) (141)

(5) According to (90) of Schlickeiser (1989) the streaming cosmic ray anisotropy due to
spatial gradients in the cosmic ray density is given by

Fmax_Fmin 1 voF 1 1

_ _max “mm - ZT¥" 22 -
= TR ari0s ) ) Due) (142)

which also is determined by the smallest value of D, around p = 0. Approximating
again D, (n) ~ DS, (0) for |u| < e = V4 /v we derive with (141) the direct proportionality
of the cosmic ray anisotropy with the parallel mean free path, i.e.

-~ (% 8F QVA VA 1 (‘9F 1 (‘9F

~ 2 =4 B | (143)
80ImzvDG,(0) 4 DG(0)0lnz 3 Olnz

Introducing the characteristic spatial gradient of the cosmic ray density < z >71=

(1/F)|0F/0z| (143) reads

— 144
3< z> ( )
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5.2 Quasilinear Cosmic ray Mean Free Path and Anisotropy for

Isotropic Plasma Wave Turbulence

Throughout this work we consider isotropic linearly polarised magnetohydrodynamic tur-
bulence so that the components of the magnetic turbulence tensor for plasma mode j
is

¢ (k) kaks
=2 (0as — .
sz Qo0 = )

The magetic energy density in wave component j then is

Ply(k) = (145)

3 o
6B): = [k Y Palk) = [ dkg'(k) (146)
i=1 0
We also adopt a Kolmogorov-like power law dependence (index ¢ > 1) of ¢/ (k) above the

minimum wavenumber k,,;,

@ (k) = gk~ for k > kin. (147)

The normalisation (147) then implies
g6 = (a = )(OB) k. (148)
Moreover we adopt a vanishing cross helicity of each plasma mode, i.e. equal intensity of
forward and backward moving waves, so that gJ refers to the total energy density of each

mode.

5.2.1 Fast Mode Waves

According to (30) of Schlickeiser and Miller (1998) the Fokker-Planck coefficients D,
and Df = €p®D,,, with e = V, /v for fast mode waves are the sum of contributions from

transit-time damping (T) and gyroresonant interactions (G):

T (1 — p?)

152 [Dr(p) + Da ()] (149)

F —
Dp,u (,LL) -
with

1+ (¢/p)°

SETR)T 01 2 (] — (6] )2 )19/2
il (1 =) (1 = (e/1)7)]

Dr(p) = (q = D)OB)HIQ ™ (Rekmin) ™™ H{|p| — €]
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x /U s 5050 J2(g), (150)

where the lower integration boundary is

U = kminBry/ (1= 12)(1 = (¢/1n)?). (151)
n = cosh, Ry, = v/|Q| denotes the gyrofrequency of the cosmic ray particle, H is the

Heaviside’ step function and .J;(s) is the Bessel function of the first kind.

The gyroresonant contribution from fast mode waves is

_1 o]
) kzuizz/ dn(L+7) [ dkk

n=1j=+1 kmin

X[ (kR (1= 2) (1 — p2)2[6(kvpm — jVal +nQ) + 8(k[vun — jVa] —nQ)]  (152)
Equations (150) and (152) are obtained using (119), (102) and (130).

5.2.2 Shear Alfven Waves

On the other hand shear Alfven waves provide only gyroresonant (n # 1) interactions

yielding

A PA pA) _ 2 1 (0B)% . . 9
(Djh Djtys D) = m(q — 1)Q2(1 — i 257 nzlji;ﬂ (1= jpel?, jeplt — juel, (ep)?)

1 o] o o ° o
/_1 dn(1+772)/k Ak k0(fop — jValnk + n€2) + 0([op — jValnk — nf2)]

(Juea(kRpy/(1 = 12)(1 = 0?) + Jua (kRuy/ (1 = p2)(1 = ). (153)
According to Schlickeiser and Miller (1998) at particle pitch-angles outside the interval
|| > € transit-time damping provides the dominant and overwhelming contribution to
these Fokker-Planck coefficients. This justifies the approximations to derive (141) and
(143) for the cosmic ray mean free path and anisotropy, respectively. Both transport
parameters are primarily fixed by the small but finite scattering due to gyroresonant

interactions in the interval |u| < e. We then derive

A=t = L0+ DL = e g (09

and
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1. oF Ve OF
= — ~ 1
g 3>\81nz ADE (p=0)+ Da (n=10)]0lnz (155)

In the following, we consider both transport coefficients for positively charged cosmic ray

particles with € > 0 especially in the limit k,,;, Ry, >> 1.

5.2.3 Gyroresonant Fokker-Planck Coefficients at ;=0

At p = 0 the contribution from shear Alfven waves to the pitch-angle Fokker-Planck

coefficient is according to (153)

A0 ~ m(q — 1)92]?3;“711 53 )i
Djilp=0) = 16 B2 Z / onin

20)2 e n20)2 n202 .
N1 4+ g — o, k2 — : Sk — 21
X ( + ija) [ VA](J 1(RL VA2 ) +J, +1(RL V/% )) ) ( 56)

where we readily performed the 7-integration. Substituting ¢t = Ry[k? — (n?Q?/V3)]"/2,

and using V4 /Q = eRy, (156) reduces to

— 1)9(53) i
DA = =~ Tr(q mm
W(N 0) 16¢B2 Rp]"™ ngl
[e%S) 2n 2 2 °
/ dtt (22 + )12 + L], (8) + Juia (1)) (157)
Ua E €
where
2
Uy = max(0, [R2E2,, — ?2]1/2)' (158)

Likewise the contribution from gyroresonant interactions with fast mode waves is accord-

ing to (149) and (152)

(g = D)%k (0B)% Vay,

AV, B? g

F ~Y
D, (n=0)~

— km'LTLV
xznqﬂ Bin 41 [ an(14) (T = )2 (159)
where we performed the k-integration. With V,/Q = eRp, (159) becomes

(g — D)Q6B)
AB?

DZL(,u =0) ~ E(kpin Rpe) Z n~YH[n — eRpkmin)

n=1

< [ () (LT ) (160)
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The Bessel function integral in (160)

n= [ a1 (T ) (161)

has been calculated asymptotically by Schlickeiser and Miller (1998) to lowest order in

the small quantity e = V4 /v << 1 as

3 €
I~ - 162
15 (162)
yielding
3m(q — 1)Qe(6B)? Bl
Dy (11 =0) ~ rla 41)326( e hmin Rl > n WV Hn — eRpkyin).  (163)
0 n=1

In Appendix A we evaluate the Bessel function integral in (157)

- 2 20 T —(g+4)/2 12

I= [t (4 =) + SO (6) + T (2) (164)
A

for small and large values of k,,;, Rpe€.

For values k,,;, R e < 1 we obtain approximately

Ly(kminRre < 1) ~

3| oo

€291 + (—1)"1.00813] (165)
yielding

(¢ — DQe(0B)%
21+

D (=0, kpinRre < 1) ~ [Kpmin Rpe) 7

x[2.00813¢(q) + 0.00813¢(g,0.5)]. (166)

in terms of the zeta and the generalised zeta functions of Riemann (Whittaker and Watson
1978).
For values of kp;,Rre > 1 we obtain (165) for values of n > N + 1, where N =

inf[k,,i, Rre] is the largest integer smaller than e Ry ki, while for smaller n

L(kpinRpe > 1,n = N) ~ 4¢t2N—(a+D) (167)

and
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am?
I(kpinRre > 1,n < N —1) =~ (713)UA (a+3) (168)
(g

According to (158) this yields

q—1)Qe*(6B)3
2B?

™
INa+1

DZ‘M(M =0,kninRre>1) ~ ( [kminRLE]q—l[ n

N-—1 00
T n*@“)[(wf—u*(q*?’)/u S nTl+ (—1)"1.00813])].  (169)
2 +3) — n n=N+1

Comparing the Fokker-Planck coefficients from fast mode waves (163) and Alfven waves
(166) and (169) we note that the latter one is always smaller by the small ratio e = V4 /v
than the first one:

D;‘“(,u =0) ~ EDZL(LL =0) (170)

so that the gyroresonant contribution from Alfven waves can be neglected in comparison

to the gyroresonant contribution from fast mode waves.

5.2.4 Cosmic Ray Mean Free Path

Neglecting D7), (1 = 0) we obtain for the cosmic ray mean free path (154)

3ve 1 B? Rp(kpminRpe)' ™1
)\ ~ — 0 mn 1 1
) 4DE (n=0) 7w(q—1)(6B)% o2y n~ WY H[n — eRpkpmin)’ (171)

which exhibits the familiar Lorentzfactor dependence oc 37279 ~ 4277 at Lorentzfactors

v < 7. below a critical Lorentz factor defined by

Ve = kc/kmin (172)

with k. = Qo ,/Va = w,;/c being the inverse ion skin length. The Lorentzfactor depen-
dence \ oc 277 especially holds at rigidities 1 < kyin Rz, < 1/€ = ¢/Va, in a rigidity range
where the slab turbulence model would predict an infinitely large mean free path.
Expresing kpin = Lmax/27 in terms of the longest wavelength of isotropic fast mode
waves Ly.x = 1 pc yields
Wp.iLmax Lax

Y, = PR — 916 - 1010012 () (173)

27mc 1 pc

49



The corresponding cosmic ray hadron energy is

Lmax
E. = Ayemyc® = 2.03 - 104An;/2(1—) PeV (174)
pcC

which is four orders of magnitude larger than the Hillas limit (128) for equal values of the
maximum wavelength. This difference demonstrates the dramatic influence of the plasma
turbulence geometry (slab versus isotropically distributed waves) on the confinement of
cosmic rays in the Galaxy. With isotropically distributed fast mode waves, even ultrahigh
energy cosmic rays obey the scaling Ay4~2 = const..

Only, at ultrahigh Lorentzfactors v > 4. or energies £ > E. the mean free path (171)

approaches the much steeper dependence

1 B
m(q —1) (6B)%

independent from the turbulence spectral index ¢q. Here the mean free path quickly attains

R (kminRre)? oc By® ~ 3. (175)

Ay > 7e) =

very large values gretaer than the typical scales of the Galaxy.

5.2.5 Anisotropy

Because of the direct proportionality between mean free path and anisotropy, the cosmic

ray anisotropy (155) shows the same beaviour as a function of energy:

- 1 Bg OF RL(k?mmRLE)liq
 3n(q—1)(0B)%0Inz >0 n~ @tV H[n — eRpkmin]
which is proportional §(F < E.) o E*7? at energies below E. and §(E > E,.) o< E? at

5(E) (176)

energies above F,.. In particular we obtain no drastic change in the energy dependence of

the anisotropy at PeV energies.
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6 Implication of Damped Waves

The steepening of the magnetic power spectra at high wavenumbers most probably results
from the collisionless cyclotron damping of the transverse Alfven waves at wavenumbers
near o~ ) ,/v4. It has been emphasized that this damping enters twice into the calculation
of cosmic ray transport parameters:

1) the plasma wave intensity at long wavelength is drastically reduced, which is re-
flected by the cutoff ,

2) wave damping modifies the resonance function in the Fokker-Planck coefficients from
sharp delta-function resonances to broadened Breit-Wigner resonance function (Schlick-
eiser, Achatz, 1993a).

Considering only the first effect leads to quasilinear mean free paths of cosmic rays
drastically larger than those measured, in obvious contradiction to the observational evi-
dence. For the second effect, in the case of cosmic ray protons, the scattering of particles
in pitch angle is markedly different at small and large particle momenta. At large relativis-
tic momenta at all pitch angles the resonant interaction with undamped waves controls
the scattering D,,,. At nonrelativistic energies there exists a small pitch angle interval
|| < va/c where the undamped left and right handed polarized Alfven waves do not
contribute. In this interval the scattering relies entirely on the small but finite resonance
broadened contribution from damped right-handed polarized waves. Because the mean
free path is sensitively determined by the minimum value of D,,, one finds a quite different
behavior of the mean free path at small and large particle momenta. In this chapter, we
investigate influence of damping on the relevant cosmic ray transport coefficients, for fast
and slow magnetosonic waves, in small pitch angle interval |u| < ¢ = v4/v, where v is
the speed of cosmic ray (for the relativistic case v = ¢). We consider dominant viscous
damping of fast mode waves.

We have already discussed in previous chapter for undamped waves how the rigidity
limit (128) is affected if we discard the assumption of purely slab plasma waves, i.e. if we
allow for oblique propagation angles # of the plasma waves with respect to the ordered
magnetic field component. In particular, we have considered the alternative extreme
limit that the plasma waves propagation angles are isotropically distributed around the

magnetic field direction. As we have already mentioned, it has been emphasised by
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Schlickeiser and Miller (1998) that oblique propagation angles of fast magnetosonic waves
leads to an order of magnitude quicker stochastic acceleration rate as compared to the slab
case, since the compressional component of the obliquely propagating fast mode waves
allows the effect of transit-time damping acceleration of cosmic ray particles. In the case
of damped waves, the wavenumber at which the resonance condition occurs is, for fast

mode waves the same as in the case of undamped waves (136) , and for slow mode waves is

somewhat changed by the factor C(l):eﬂﬁ and reads (see dispersion relation for slow mode
waves (120))
Q.
ks = - . (177)
+Va Cfiﬁﬁ — v cosf

However, the corresponding cosmic ray hadron energy, in the case of damped fast mode

waves will be the same as (174). For damped slow mode waves, it will be modified by

the factor m . Here we will use the same approach to demonstrate how fast and slow
mode wave propagation also modifies the resulting parallel spatial diffusion coefficient and
the limit.

When discussing the nature of interstellar turbulence, it is necessary to consider the
fact that the interstellar medium contains a number of plasmas of very diverse character-
istics, not only cold plasma. In this work, we include the temperature effects to the first

order (Dogan et al. 2006), in deriving the relevant Fokker-Planck coefficients.

6.1 Damping Rate of Fast Mode Waves

The damping of fast mode waves is caused both by collisionless Landau damping and col-
lisional viscous damping, Joule damping and ion-neutral friction. According to Spanier &
Schlickeiser (2005) and Lerche, Spanier & Schlickeiser (2006) the dominating contribution
is provided viscous damping with the rate calculated for plasma parameters of the diffuse

intercloud medium

1
TP = 5 BViTk? [sin® 0 +5- 107 cos? 0] = 2.9 - 10°BVFk [sin® 0 + 5 - 10~ cos” ] (178)

in terms of the ion-ion collisional time 7; = 3.5 - 10% s. Except at very small propagation

angles the second term in (178) is negligible small and we infer
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vr ~2.9-10°4Vik*sin? 6. (179)

For the ratio of damping rate to real frequency we obtain

TE 9.9 10°3Vaksin? 0 = 2.9 - 10° fuwp sin® 0. (180)

|wn|
Because in the interstellar medium Qg, = 3.6 - 1072B(4uG) Hz, we see that in the far

MHD-wave region wr < 10740 ,/3, the weak damping limit is fulfilled.

6.1.1 Dominance of Transit-time Damping

With (109) and (179) the resonance function (100) for forward and backward moving fast

mode waves becomes

2.9 - 10°8V3k? sin* 0
(2.9 - 1058V 2k2 sin? 0)2 + [kvp cos 0 + jVak + n))?

describing both gyroresonant (n # 0) and transit-time damping (n = 0) wave-particle

Rip(n) =

(181)

interactions.

The non-vanishing parallel magnetic field component Bj # 0 (see (110)) of fast mode
waves allows transit-time damping interactions with n = 0. It has been pointed out by
Schlickeiser & Miller (1998) that this transit-time damping (TTD) contribution provides
the overwhelming contribution to particle scattering because in this interaction the cos-
mic ray particle interacts with the whole wave spectrum, in contrast to gyroresonances
that singles out individual resonant wave numbers (see also the discussion in Schlickeiser
(2003)). The inclusion of resonance broadening due to wave damping in the resonance
function (100) guarantees that this dominance also holds for cosmic ray particles at small
pitch angle cosines p < |V, /v|, unlike the case of negligible wave damping (see (103))
discussed by Schlickeiser & Miller (1998). Therefore, in the following we will only take
into account the TTD-contribution to particle scattering and assume n = 0 both in the
resonance function (181) and in the calculation of the Fokker-Planck coefficients. This
justified approximation greatly simplifies the evaluation of the Fokker-Planck coefficients.
Since we consider only TTD-contribution, only fast and slow magnetosonic waves are
subjects of it. It has been already emphasized that in the case on negligible damping,

there is no TTD for shear Alfven waves (Teufel, Lerche and Schlickeiser, 2003) and the
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gyroresonant interactions provided by shear Alfven waves is small compared to the same
contribution provided by fast magnetosonic waves (see Sec. 5). As a consequence, we
consider only fast and slow magnetosonic waves in this section.

With n = 0 the resonance function for fast mode (181) becomes

2.9-10°3V3k?sin* 0
(2.9 -10°8VZk2sin*0)2 + [kvp cos 0 + jVak]?

Rix(0) =

_ 2.9 - 10°4V3 sin® 0
(2.9 1058V 3ksin? 0)2 + [vjucos § + jVa)?
and the Fokker-Planck coefficient (119) reads

(182)

QZ

Dy = a1 21 / &l RI(0)J2(W)[1 + cos 2]
J

JiVa : Vi Vap

[(1 — = cos 0)* Pl (k) + TQA sin® 0Py — iRt

Adopting the correlation tensor (104) with no magnetic helicity we obtain

sin 0(j +ﬂCOSQ)[ R”+P|fR]] (183)

B 1+ cos? 0 j , sin? 6 ; , ' stcos@

= Wg (k), PﬁR(k) = szu(k) = 8\/_7rk2 (k
(184)

and we obtain

0? j 9
Din= 151 _ 2 ]Zﬂ/ dk:/ dz/;/ d6 sin R (0)g7 (k) J2(W)[1 + cos 2¢/]
’ 272 2 Vi
{(1 — ‘WJ/ACOS 0)*(1 + cos? ) + %Sin‘l@ + %‘Msm Ocosf(j + M— cos 9)} (185)

Throughout this chapter we consider isotropic turbulence ¢’ (k) = gj(k:). Modifications
due to different turbulence geometries are easily incorporated into the analysis.
For energetic cosmic ray particles with v >> V, the Fokker-Planck coefficient (185)

then simplifies to

QQ
Do 150 El / dk / dn R (0)g (k) J2 (W) (1 + 172) (186)
where
7o) 2.9 10°3V2(1 — 1) 187)

(2.9 - 10°8V2k(1 — 12))2 + [vpn + jVa]?
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O2p2V3
Dy =~ (1= by [ [ an R0 R+ ) (188)
2
D, =~ VAD (189)
QZPMVA
D,y = D,, =~ - / dk/dRJ B)JAW)(1+n%) (190
pp P 2\/53(2) 2 ]Zﬂ n ( )T (W)( n°)  (190)

We can further simplify (186) assuming equal intensity of forward and backward waves,

1

= it (k) (191)

g7k = g () = 5

which reads,

QZ

D/Jf# 327} SBO

DY [Tk [ RO BRI ) (192)

j==%1

To illustrate our results, we adopt a Kolmogorov-type power law dependence of ¢’ (k)

above and below some minimum and maximum wavenumber £k,,;,, and k.., respectively,

gtot(k) = Grotk ™! (193)

for kpin < k < kmaz-

The magnetic energy density in wave component j is given by

B))? = / " dkg (k) (194)
0
which implies
gtor = (¢ = 1)(6B)?/ (kppar — ko) = (¢ — D)(0B) ki (195)

for kjax >> kmin.
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6.1.2 Rate of Adiabatic Deceleration

From (190) we obtain for the symmetric wave case I = I; that D,,(—p) = —D,,(p) is

antisymmetric in pu, so that the rate of adiabatic acceleration D

D:/imu—M%DWW)zo (196)

is identically zero.

6.1.3 Pitch-angle Fokker-Planck Coefficient

With (193), (194) and (195), Fokker-Planck coefficient D,,, reads as

Dy 4la = DEBYRA1 =) [ arkoe [ anRe ) OV +). (197

Now, we must approximate the resonance function. For doing this we consider two
cases:

a) 1 <1

b) n > ne,

where 7, = €/p. Than, using D, (—u) = D,,(p) and substitution s = Rpky/1 — 2,

we derive

5B q+1 o0
1—u®)' =
BJ( 1) A

1 1
TE(s\/1 = %) ooy +/ dn (1-n")

i VR Iminten

1
J2(5y/1 —n?) pelEEEEre : (198)

“Rpaom T (vin)?

o1 q min(l,e/p) 4
Dy =~ (g — 1) (ki Rr)* 1 dss (/0 dn (1 —7%)

where € = V4 /v and o = 2.9 - 10°8V3.
Large values p > e:

For large pitch-angles © > € we obtain

=D B G20 = )5

oo
D, (1> €) - /k I dss™?
mindlL -

/u 1
4 2
QL dn (1 —n")Ji(s\/1—n?) ot

(1 —n?)2s? +

?
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1 1

dn (1 —n"Ji(s\/1—n? : 199
/e/u n ( n°)Ji(s n )(1 )4 R%(l—;;i)(anV) (199)
Small values p < e:

This case is important when treated damped waves. For the small pitch-angles 1 < €

we obtain

DEn < 0= alg = Db R0 =2 [©dssi( [ (1)

1
JH(s\/1 = 1) o= (200)

s Vi

We have already discussed in Sec. 6.1.1 that inclusion of resonance broadening due to
wave damping in the resonance function guarantees dominance of transit-time damping.
The main contribution of waves damping comes exactly in the region |u| < € that is
relevant in deriving the spatial diffusion coefficient and related mean free path which are
given by the average over 1 of the inverse of D,,,. Therefore we can further consider only

the case D, (1 = 0), which simplifies the analysis enormously, and reads:

F _ (q - 1) g—1 0B / —q
DML(M =0) ~ o (KminR1) <Bo) . dss

[ =BT ) (201)

(1 _ 772)232 + 1;2L

In the last equation s = kRy.

6.1.4 Cosmic Ray Mean Free Path for FMS Waves

In this section we calculate the mean free path which is connected with the spatial diffusion
coefficient through

3k 3v 1 (1—p?)?

A=—=— dyp ~———. 202
v 4 "D, (202)
For the case we are interested in, it can be written as
)\OF — Bj — 3 / d#’ § vA —
v 4Dy, (p=0)

BO) 1
sB’ G’

(KminRL) (203)

4 (g—1)

where
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= - 4\ 72
G_/kmmRL dss q/o dn (1= ") J2(s7/1 = ) e 200

(1—mpps+
Now, we consider two limits: k,,;,R; << 1, and k,,;, R, >> 1, where k,,,;,, R, =T = FE

«

and is normalized with respect to E, (where E. is defined as for undamped case (174)).
kminRL >> 1:

This case is treated in detail in Appendix B, where we derive

1 —14
G(T >> 1) = 2O—T‘(q+2), (205)
q
15V, B
NF(T >> 1) = 81“0‘(131(5;)21014T3, (206)

where T = ki, Rr. At relativistic rigidities we find that \° ~ T73.
kmmRL << 1:

This case is treated in detail in Appendix B, where we derive

1

1
G(T << ].) - gﬁTl_q, (207)
FO BO 2
NUT << 1) = 36Vaa(55)" (208)

In this energy limit the mean free path is constant with respect to T'.

6.1.5 Cosmic Ray Momentum Diffusion from FMS Waves

In order to discuss the stochastic acceleration of the cosmic rays we calculate momentum
diffusion coefficient. Instead of using (67), we use the time scale estimates that provides
the product

3L

TDTEp — (E)Q, (209)

to be constant, given by macroscopic properties of the considered physical system
(Schlickeiser 1986). 7p is the time scale for particle to diffuse a length L by pitch-
angle scattering along the ordered magnetic field (calculated from the diffusion coefficient
Kk or equivalent mean free path \), 7p is the stochastic acceleration time scale for a

particle to increase its momentum by factor e due to resonant wave scattering (calculated
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from the momentum diffusion coefficient A5) and L is the typical scale length. Diffusion
along magnetic field lines and stochastic acceleration due to resonant diffusion are twin
processes: once we know the time scale for one of them, the time scale for the other
process and this its relevance can be estimated from (209).

Thus, we derive momentum diffusion coefficient as:

ro_ V3
2 3e\F0

Using (206) and (208) we obtain for the momentum diffusion coefficient in the two

P2 (210)

limits:
1 p® 6B.,10°V7
AFO(T > 1) =12 272 211
2 ( >> ) q CVAﬁ BO) T3 ) ( )
and
2 §B
AFOT << 1) = 5.2 (22321077, 212
2 ( << ) CVAﬁ(BO) ( )

6.2 Slow Magnetosonic Waves

In order to find transport coefficients for slow magnetosonic waves we use derivations of
Fokker-Planck coefficient D, in Sec. 4.4.

With (120) and (179) the resonance function (100) for slow mode waves becomes

2.9-10°8V3k?sin 0

, 213
(2.9 - 1058V 2k2sin?0)2 + [kvp cos 0 + jVak % + nQ)]? (213)

Ris(n) =

and according to what have been concluded in Sec. 6.1.1 for fast magentosonic waves,
which holds for slow mode too, we consider n = 0 and resonance function (213) becomes

2.9-10°8V2k%sin? 0

R%(0) =
T (29 1050VER sin® 0)2 + [kupcos 0+ jVak ]

2.9-10°8V2sin% 6
- PVisin . (214)

(2.9 1093V 3k sin® 0)? + [vpcos 6 + jVa\ [FE 2

Following the same procedure as for fast mode waves in Sec. 6.1.1, we make same

assumptions (191), (193) and (194), together with implication (195), we derive
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0?

o= =) S [k [ iy RO 0ROV (1)1 e |2

(215)

D

which can be simplified since we consider energetic cosmic ray particles v >> Vy to
the same expression as in case for fast mode waves
02 2 > ! j j 2 2
Dun 1 1=1) X [ ak [ anREOF W)W A +7),  (216)
0 j=£177% -

and finally,

2

DS ~
4B32

(= DOBPEGA =) [k [y Re( B+, (217

The other two FP coefficients give

2,.21/2
D, ~ TP VA e Z/ dk;/ dn R0V (k) 2(W (L +?),  (218)
T ABgv? 1 +5] 11 ' 7
PpuVvi B
D,, = D,, ~ . / dk:/dRﬂ K)J2(W)n(1 + %),
pp pH 2\/5381}21+ﬁ w? ]21 Ui g (k)T (W)n(1 +n?)
(219)
and
3v 1 Dp(p2)
D:—/ du(1 — 2y 2\ 220
Ap J—1 ( )Duu(ﬂ) (220)

is identically zero.

Next, we have to approximate the resonance function for slow mode waves. As in fast
mode case, there are two cases:

a) 1 <1

b) n > ne,

where

(221)



Note that S << nf'. Using D,,(—p) = D,,.(u) and substitution s = Rpky/1 — 12,

we derive

. 2 B
0B q+1 0o mm(l,p—pﬁg)

Dy = g =V ki Re)' ™ (20— [~ vr__dssﬂpg dn (1-n")

1 1
P (s\1 = 1) oy Foa e =)

RZ (1- 'uf + VA771+5 min(1,< 2 T48
1
JH s\l = 1?) e (222)
R(21( ) e (Ulm)
where € = Vy /v and o = 2.9 - 10° V3.

Large values p > e

For large pitch-angles u > € we obtain

Dol > 0 = Dy Ry -y [ dss

(07 BO minRL\/m
52[? 1
2 1y 72
(/0” diy (1 —1°)Ji(s/1 —n?) R Vi T

1 1
[ o dn (=25 1= ) ) (223)

W2(1+5) (1 —n?)%s*>+ o7

Small values p < e:

This case is important when treated damped waves for the same reason we have

discussed for fast mode waves (Sec. 6.1.3). For the small pitch-angles ;1 < € we obtain

DS (n <) = (q—lﬂhmﬁhﬁ”(g?(l—u)%JAZMEJFEd%ﬂiélmﬂl—nﬂ

— 1
J12(8 1—- 7]2) a?(1— 772)2 2 218 (224)

RZ (1—p2) VA 1+

0B
D? (1 =0) ~ (g-1) q-1 / —q
L (/’L O) o (kmmRL) ( B() ) Ry dss

[ (=) sy ) o (225)

(1 — n2)2s2 + Vi Lif

In the last equation s = kRy.
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6.2.1 Cosmic Ray Mean Free Path for SMS Waves

In this section we calculate the mean free path which is connected with the spatial diffusion
coefficient through
3% 3u ot (11— p?)?
N="C = adu— (226)
S
v 4 Jo Dy,
For the case we are interested in, it can be written as

ST T D T
v 4 D5, (n=0)Jo 4Dy

3V -
ERTE I

By 51

B o (227)

where

e 1
dss™ [ dn (1= ")J3(s\/1 =) e (229

kmin <1 _ 772)282 + A1+ﬁ

a?

= for

Now, we consider two limits: k,,;, R << 1, and k,,;, R, >> 1.
kminBr >> 1:

This case is treated in detail in Appendix C, where we derive

2v/2h 10713

G(T >>1) = .
™

T2, (229)

3Vaa q (Bo )277
8\/_ 2qg—16B" h
where T = k,;in R, h = 2arctanh/1 — 0 — 2+/1 — 6, with § << 1.
At relativistic rigidities we find that \° ~ T3,

NNT >>1) = 101373, (230)

kminBr << 1:

This case is treated in detail in Appendix C, where we derive

1
T<<1)=-—-T"1 231
G(T << 1) =5 —T"", (21)
05 Bo 1
AT << 1)—36VAa(5B) (232)

In this energy limit the mean free path is constant with respect to 7'
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6.2.2 Cosmic Ray Momentum Diffusion from SMS Waves

In order to discuss the stochastic acceleration of the slow mode waves, we use the same
time scale estimates that was used for fast mode where we derived momentum diffusion
coeflicient as:

Vi o,
3eA0s P

Using (230) and (232) we obtain for the momentum diffusion coefficient in the two

A = (233)

limits:
2 ¢—1h 68,1077
AP(T >> 1) =42 1222y 234
2 (T>>1) cVaB q w By’ T3 (234)
and
2 4B
AB(T << 1) = 50‘25(30)2107, (235)

which is similar to ones obtained for fast mode waves.
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Figure 7: Anisotropy dependence on energy for particle energies below E.. Result obtained
from (176) for £ < E, in case of undamped waves, and result obtained from (208) for
E < FE. in case of damped fast magnetosonic waves, compared to reported results from

the literature (Antoni et al. 2004; Aglietta et al. 2003; Kifune et al.1986).
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7 Summary

We have investigated the implications of isotropically distributed interstellar magnetohy-
drodynamic plasma waves on the scattering mean free path and the spatial anisotropy of
high-energy cosmic rays. We demonstrate a drastic modification of the energy dependence
of both cosmic ray transport parameters compared to previous calculations that have as-
sumed that the plasma waves propagate only parallel or antiparallel to the ordered mag-
netic field (slab turbulence). In case of slab turbulence cosmic rays with Larmor radius Ry,
resonantly interact with plasma waves with wave vectors at k,.s = Rzl. If the slab wave

turbulence power spectrum vanishes for wavenumbers less than k,;,,, as a consequence then

-1

cosmic rays with Larmor radii larger than k.. cannot be scattered in pitch-angle, causing
the socalled Hillas limit for the maximum energy Eff = 4Z - (By/4uG)(Lj mas/parsec)
of cosmic rays being confined in the Galaxy. At about these energies this would imply
a drastic increase in the spatial anisotropy of cosmic rays that has not been detected by
KASKADE and other air shower experiments.

In case of isotropically distributed interstellar magnetohydrodynamic waves we demon-
strated that the Hillas energy E is modified to a limiting total energy that is about 4
orders of magnitude larger £, = 2.03 - 10*An/?(Lyay/1 pc) PeV, where A denotes the
mass number and L, the maximum wavenumber of isotropic plasma waves. Below this
energy the cosmic ray mean free path and the anisotropy exhibit the well known E?~4
energy dependence, where ¢ = 5/3 denotes the spectral index of the Kolmogorov spec-
trum. At energies higher than E, both transport parameters steepen to a E3-dependence.
This implies that cosmic rays even with ultrahigh energies of several tens of EeV can be
rapidly pitch-angle scattered by interstellar plasma turbulence, and are thus confined to
the Galaxy.

The physical reason for the dramatically higher value of the limiting energy is the
occurrence of dominating transit-time damping interactions of cosmic rays with magne-
tosonic plasma waves due to their compressive magnetic field component along the ordered
magnetic field. This n = 0 resonance is not a gyroresonance implying that cosmic rays in-
teract with plasma waves at all wavenumbers provided that the cosmic ray parallel speed

(transit speed) equals the parallel phase speed of magnetosonic waves. Only at small

values of the cosmic ray pitch-angle cosine |u| < € = V4 /v, where the cosmic ray particles
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spirals at nearly ninety degrees with very small parallel speeds less than the minimum
magnetosonic phase speed Vy, gyroresonant interactions are necessary to scatter cosmic
rays. However, the gyroresonance condition of cosmic rays at u = 0 reads k., = (Rpe)™"
instead of the slab condition k., = (Rr)~! causing the limiting energy enhancement from
Ef to E, by the large factor ¢! = ¢/V, ~ O(10%).

Considering damped fast and slow mode waves caused by dominate viscous damping,
we have calculated the Fokker-Planck coefficients, the spatial diffusion coefficient, the
mean free path and the momentum diffusion coefficient of cosmic ray particles. We show
that inclusion of resonance broadening due to wave damping in the resonance function
guarantees that dominance of transit-time damping also holds for cosmic ray particles
at small pitch angle cosines p < |V, /v|, unlike the case of neglible wave damping. We
determined energy dependance of the mean free path of the cosmic rays. We have found
that for small energies it is approximately constant and for high energies is proportional
to the third power of energy of the particle. For the acceleration of the cosmic rays we
have used the time scale estimates to derive the momentum diffusion coefficient.

We have found that damping, at least for fast mode waves, has no dramatic influence
comparing to undamped case. The key issue in order to change Hillas limit has oblique
propagation of the waves in damped and undamped case.

The analysis for the influence of different types of damping, as well as the influence of

different geometries of turbulence, will be the subject of further research.
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8 Appendix A: Asymptotic calculation of the inte-
gral (164)

The task is to calculate the integral (164)

> 2, 207, —(q+4)/2 )2
b::LVﬁt@—+z?Mt+Eﬂ Oy () + Tuia (1)), (236)
. A

for small and large values of k,,;, R, using the approximations of Bessel functions for small

and large arguments (Abramowitz and Stegun 1972), yielding

th
2 1)y ——— 2
Ji(t << 1) T2 1] (237)
and
1
J2(t >> 1) ~ E[l + (—1)"sin(2t)]. (238)
According to (158)
n2
UA = maX(07 [R%krzmn - 7]1/2)7
€

the lower integration boundary U, = 0 in the case k,,;, R e < 1 which includes in partic-

ular the limit k,,;,R;, << 1 because ¢ << 1.

8.1 Case k,,;,Rre <1

With the identity

2nJ,(t
Jn_1(t) + Ju1(t) = " ®) (239)
we obtain
9 q+2 n? qg+4
Io(kin Rre < 1) = 4n* W=7 + S W[E—]] (240)
where
(e%e] 2 t
WME/(Ml%Q. (241)
o U e

With the asymptotics (237) and (238) we obtain
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Wla] ~ (;)QQ[M /01 dtt? 1 + 71r/1n/ dtt™2[1 + (—=1)"sin(2t)]]

1 foo € 1 €
— [ dtt 20O 4 (=1)"sin(2¢)] = (=)**|=[1 + (=1)"1.00813 — —
= (14 (=) sin(26)] = ()%~ [1+ (1) .

(=)™ e, 2n 1 1 € 1100 . (1)
5 GV O g rrr W) e (29)

where we use
2/ dr 2% sinx = 2(sin(1) — Ci(1)) = 1.00813
1
and where

ji = / dtt—>72%sin 2t = 2%¢ [rHQF[—(l + 2a), —2z@]+
n €

/e
—2-2a n
(=) 27T [~ (1 + 20), 20| (243)
€
in terms of the incomplete gamma function. For large arguments (n/e¢) >> 1 we obtain
asymptotically
_ 1 e o 2n
g1 o~ 5(5)2” cos(?) (244)

Collecting terms we find to lowest order in << 1

Wla] ~ =(=)*[1+ (~1)"1.00813 + (245)

€
n

N

n22n 112 [p 4 1]}
so that

Ly(kminRre < 1) ~ §6‘1’+27fq[1 + (—1)"1.00813 +

24
s n22n 112 [p 4 1]] (246)

8.2 Case k,,;,Rre>1

In this case Uy =0 forn > N + 1, and Uy = \/(RLkmm)Q — (n/e)? for n < N, where

N = inf[eRpkynin] (247)

denotes the largest integer smaller than €Rpk,,;,. Hence we obtain again (246) for n >

N+1
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8 1o n s
L(kpinRre>1,n>N+1) ~ ;eq n~ 91+ (—1)"1.00813 + R ERY ] 1]} (248)
For values of n < N we find that
ol 1q T+ 2 q+4
L(kpinRre > 1,0 < N) = 4n?[V[F5= 5+ V[ 5 | (249)
where
J2(t) € o0 J2(nt/e)
Via] = [ dtet 22\ (€ 2“/ dttt = 250
o] Ua [t2 + ’Z—j]a (n) Ua/n 14 2]« (250)
We may express

with ¢ < 1/N, so that the lower integration boundary in (250) is

T (252)

EminRre 1)(@ F1)]2 = E[(1+¢_ Y1+ b+ ¥

Ux =

A=l n n n N
In cases where N > 2, (252) yields that for all values of n such that 1 <n < N — 1 the
lower integration boundary Uy, is greater unity. Using the expansion (238) in this case we

find that

1 00 2nt
Vle,n < N —1] =~ —(E)QO‘H/ dtt™*72%[1 4 (=1)"sin(=— n )] ~
™ n Ua/n €
. 1+ 2 U£(2a+l)
(14 2«) 2U 4 (14 2a)

In the remaining case n = N the lower integration boundary (252)

U1+ (=1)" cos(2U4)] ~ (253)

€
—Uy = 2 <4/25p <1 254
Ua =02 +0) < /250 (254)
is smaller unity, so that we approximate (250) in this case by

€ g [ B 9 Nt
Vieyn = N] = (£)2 [/GUA/tht g2 M / d it TR ()]

€

(3) i+ M(1+(—1) (1+2a) " cos(“))] (255)

2N €

where we approximate
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1 Nt o0 Nt 1
o = dtt™ J}(— </ dit™ TR (—) = = 2
o= [, At RS < | M) = 5y (256)

by its upper limit to obtain

€2«
V]a,n = NJ| ~ (JQV;\I : (257)
Collecting terms in (249) we derive
L(kminRpe > 1,n = N) ~ 42 N—(a+D) (258)
and
Ly(k <Re>1n<N—1)~47nQU_(q+3) (259)
2\ vmindlL ) = —W(q+3) A

70



9 Appendix B: Evaluation of the function G

The task is to calculate the function G (204)

e 1
— —q _ 4 72 _n2
G /k'minRL dss /0 dn (1 —n")J;(sy/1 —n?)

and evaluate it in two energy limits.

9.1 Case G(kpinRrp >>1)

1

(1= +

For energies T' >> 1 we substitute s = 7. Than, (204) reads as

0 1
G = / dox 9T~ (1+9) / dn (1 —n"J2(xTy/1 —n?)
1 0

00 1—-L1_
f(1+q)/ da;qu(/ =t dn (1 —n
1 0

1 1
| =)t T =)
1 1

T 22T

where we have used

2
J(z>>1) ~ | — cos(vz — %
Tz

implying

J(z>>1) =

7r:cT\/1 —

2p2
VARL
a2

1

(1

1

1

1
4
)ﬂxT\/l —n?2 (1 —n?)2x%+ 1014+

(1 _ 772)23:.2 + 1014

(2v +1)

— sin(2z27'y/1

(1/€ >>sin/€) for the argument z = 27T << 1, and

J(z<<1) =~

implying

Ji(z<<1) =

for the argument z = 2T >> 1. We then obtain

THIG(T >> 1) —/ drx™ q+2/

| oo (=7
— d (q+1)/ d
7TT/1 o o VIR

)

),

7m:T\/1 —
(2/2)"
I'(v+1)
o221 - )
4 ?
1—7%)
dn (1 —n* (
o WO on
1 —
_ 772>2372 + 1014

71

_ 772)21,2 + 1014 -

+

(260)

(261)

(262)

(263)

(264)

(265)



1/00 dz—(+D) /1 an L=1) ! — L+ 1~ (266)
7T )1 1 /T—12 (1 —n?)2x2 4+ 104 3 1 2.

Next, we evaluate each integral in turn.

1 0 52T 4dm 1
I, — 7/ d —(q+1)/ d —
T aT )k . 0 m V2m 4dm2x? + 1014

2 107* 5
—— T2, 267
3m(q+3/2) (267)
where we have substitute m =1 — .
2m 1107+
2 _
/ drx~ Tt / dm 4m1014 =1 4 T, (268)

where we have used the same substitution as in previous case and 10** >> 4m2z2. Note,

that I, << 1.

1-n) 1 51041
drz=(@+D) / e 2
WT/ e \/_ 0416 ¢ T (269)

Combining all these three integrals we obtain

2107
G(T>>1)=— .

T4+, (270)

9.2 Case G(kpinRrp << 1)

For energies T' << 1 we use approximation for Bessel function (265). Then, (204) reads

as
1 1 1 1 — 2\ o2
G(T << 1):—/ dss_q/ dn (1 —n%) (L=n")s =
4 JkminRe 0 (1 —n?)2s% + %
1 1 1 M2 1 1 1
_ - d*q/dl 2——/d’q/d1 2 — I — 1,
4/T SS 0 77( +77) 4 Jr SS 0 77( +77)<1_n2>282+M2 5 4
(271)
where M? Q—R We evaluate each integral in turn.
= 1/1 dss™? /1 dn (1+n?) = ! (T —1) ~ ! T (272)
4 Jr 0 3(¢g—1) 3(g—1) ’

since T'<< 1,and 1 < ¢ < 2.
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M? 1 1
I, = —/ dss_q/ dn (14 1) / dss™ g, (273)
4 Jr 0 (1-—

n)§+wﬂ_
where
I ' 2 ! 274
= 1
6 /0 77( +77)((1_n2)282/M2)+1 ( )
Exact solution of integral I reads
(—2i+n) arctan( (_1)_1/4 ) 1(2i+n) arctan( (_1).3/4 )
(1) R ol )
V—i+tn vV—i+tn (275)
2nV1 + n?
where n = M?/s*. We can evaluate I by
1
I =~ et (276)
which for I, gives
1 1
I~ Wﬂ(l — 7)), (277)

In order to compare I, and I5 and calculate G(T" << 1) we have to consider two cases,

flat (1 < ¢ < 2) and steep (2 < g < 6) turbulence spectrum.

9.2.1 Flat turbulence spectrum 1 < ¢ < 2

We investigate G(T << 1) = I5 — I, where I4 is evaluated for 1 < ¢ < 2 and reads

1 1 1 1077
I, =~ = , (278)
82—¢q)10'T 8(2—¢q) T
so that,
G << 1) = 21 _qioaq _ 3=y rp-2) (279)
3¢—1 8(2— )
Here, we have to analyze function g(¢,7) =1 — ggg qglO "T(@=2) Function ¢ attains

minimum at ¢, = (3In7 + /In*T +4InT)/2InT, and has vertical asymptote in ¢ = 2
which is in agreement with assumption for flat turbulence spectrum. Since ¢x(T) is a
function of T, as T becomes smaller the minimum peak becomes sharper, which gives
that in very narrow region around g, function ¢ << 1, even become < 0 for T' < 1077,

As long as T' > 1077 function ¢ ~ 1. In Fig. 9 we show how function g depend on ¢ for
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Figure 8: q dependance on the function g for 3 different fixed values of T

3 different fixed value of T. However, we can approximate g ~ 1 for 1 >> T > 1077 and
1 < q< 2, and for T < 1077 but we have restriction ¢, + 0 < ¢ < 2 where o depends on

smallness of T'. In that case

1 1
GT<<1l,1<qg<?2) = gq—lTl‘q. (280)

9.2.2 Steep turbulence spectrum 2 < ¢ <6

We investigate G(T' << 1) = I5 — I, where I is evaluated for 2 < ¢ < 6 and reads

1 1 —1
i~ ——— 1—-T%9 = 107779, 281
! &2—@1WT( ) 8(2 —q) (281)
since T' << 1, so that,
1 10-7 11
G(T<<1,2<qg<6)=T"1 + ~ = T4 282
( TG T se o) T (25)
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10 Appendix C: Evaluation of the function G

The task is to calculate the function G (228)

o[t 1
dss q/0 dn (1 — 7]4)J12(s\/1 —n?) FER

kminR (1 _ 772)252 + AT+

?

= for,

and evaluate it in two energy limits.

10.1 Case G(kpinRr >> 1)

For energies T' >> 1 we substitute s = 7. Than, (228) reads as

oo 1 1
_ —g—(1 4y 72
G—/l dovx™1T (+q)/0 dn (1 —mn )Jl(xT\/l—'rF)(l_ 5

2a? +pPn

] 1— 1
—(1+q)/ d —Q/ “Tdn (1—n
, ( 0 n )m:T\/ n? (1 — )2:1:2+p277+
1 1
dn (1 — T%(1 — n? ,
=T )
where p? = (v R 3)/(a?(1 + 3)), and we have used

2 2 1
J(z>>1) ~ \/acos(yz - (I/ZM)

1
(22T4/1
ch\/l — —sin(2e ch T/ — 12 e

(1/€ >> sin/€) for the argument z = 2T << 1, and

implying

Jiz>>1) =

(2/2)"

J(z<<1) & m

implying
1
Ji(z<<1) = 1x2T2(1 — ),

for the argument z = 2T >> 1. We then obtain

1—7%)
TO+G(T >> 1) f/ dzz~ q+2/ dn (1 — ) —L
2:51T (1 - 772>2372 + p277
/ dgz~(@tD) / dn ! —
T VI—n2(1—n?)%?+ py
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(284)

(285)

(286)

(287)
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L /Oo drz @D /1 an L") ! Y A | (289)
T J1 1- 22 /T—12 (1 —n2)222 4 p2n 3 1 2.
Next, we evaluate each integral in turn.
1 oo =T 4m 1 1 oo
I, = —/ drz— (1) / d = 7/ drex= (@t .T),
T 0 " 2m dm2z? +p*(l—=m) 7T ) e 2(m 2)
(290)

where we have substitute m =1 — 7.

2

I3 = T2/Oo dyx~ 12 /MIT dm Sm
4 N 0

T2 foo
P?(1 —m) + 4m?a? :T/l dua™ Iy (m, ), (291)

where we have used the same substitution as in previous case.

1 oo 1 4m 1 1 oo
I, = 7/ d —(q+1)/ d — 7/ dex= @D (m, ).
Ymarh o " V2mp* (1 —m) +4m22? 7T ) o 1(m, )
(292)

In order to compare functions under integration with respect to m, we write out

following integrals

T 4m 1 2V2 [z

]’/ — /2 r d = d 293
2(m7 LC) 0 m /_2m Am22 +p2(1 _ m) p2 0 m fl ( )

1 2 1

24T &m 8 22T
I3(m,x) = /0 dm P2(1 — m) + dm2a2 - pQ/O dm f, (294)

1 4m 1 2v/2 1
o= / d _ / d 295
1(m,x) B m /_2m p2(1 _ m) + 4m242 p2 0 m f17 ( )

where f; = % and fo = %, where we have approximated denominator as 1 —m, as
long as holds 41)%2 << 1. Analyzing f; and f5 in given intervals of integration we deduce
that I, << I3 << I, since f; >> fo and f; is dominant in interval [0, 1).

Integral I] diverge for m = 1, so we integrate up to b = 1—6 where § << 1. Combining

all, we obtain

2v2 LT—(qu?)

G(T>>1) = P

: (296)

where h = 2arctgh\/b — 2v/b.
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10.2 Case G(kninRp << 1)

For energies T" << 1 we use approximation for Bessel function (288). Then, (283) reads

as
1 1 1 1 — 2\ o2
G(T << 1):1/ dss_q/ dn (1 —n% ( n)VRznﬁ
Fmin L 0 (1 —=n*)%s* + ks
n
dq/d + /dq/d 1+ — I — 1,
=5 [ass [Can (e 570 [ (1) g =
(297)
where p? = peIg] Jfg We evaluate each integral in turn.

1 ! 1 1 1
R —q/d 1+?) = —— (T"9—1) ~ T4, 298
L [dss™ [ dn () eEL )= 5T (298)
since T'<< 1,and 1 < ¢ < 2.
In order to estimate I, we write
P ass [y (1402 dss™] 209
_Z/T S A 77( +77>(1 77)32+p77 / SS 65 ( )
where
L= [ dn (142 il 300
- + 7
o= D 00

and w? = s?/p?. Here, we compare functions in integrals I5 with respect to  named
f1 = (]. + 7’]2) and in ]6 named f2 = (]. + 772)%

We find that for w? >> 1 one has f; > f, all over interval [0,1). Close to n = 1
these two functions tend to infinity, so we restrict our calculation up to n =1 — §, where
0 << 1.

Combining these two integrals we obtain,

1 1

q_

In the case w? << 1, f; = f, and integral vanishes.

T, (301)
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