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Abstract

Context: The mean free path and anisotropy of galactic cosmic rays is calculated in

weak plasma wave turbulence that is isotropically distributed with respect to the ordered

uniform magnetic field.

Aims: The modifications on the value of the Hillas energy, above which cosmic rays are

not confined to the Galaxy, are calculated. The original determination of the Hillas limit

has been based on the case of slab turbulence where only parallel propagating plasma

waves are allowed.

Methods: We use quasilinear cosmic ray Fokker-Planck coefficients to calculate the mean

free path and the anisotropy in isotropic plasma wave tuurbulence.

Results: In isotropic plasma wave turbulence the Hillas limit is enhanced by about four

orders of magnitude to Ec = 2.03 · 104An1/2
e (Lmax/1 pc) resulting from the dominating

influence of transit-time damping interactions that obliquely propagating magnetosonic

waves undergo with cosmic rays.

Conclusions: Below the energy Ec the cosmic ray mean free path and the anisotropy

exhibit the well known E1/3 energy dependence for relevant undamped waves. In case

of damped waves, the cosmic ray mean free path and the anisotropy do not depend on

energy. At energies higher than Ec both transport parameters steepen to a E3-dependence

for undamped and damped waves. This implies that cosmic rays even with ultrahigh

energies of several tens of EeV can be rapidly pitch-angle scattered by interstellar plasma

turbulence, and are thus confined to the Galaxy.

Kurzfassung

Kontext: In der vorliegenden Arbeit werden die mittlere freie Weglänge sowie die

Anisotropie der kosmischen Strahlung in schwachen Plasmawellenturbulenzen bestimmt,

die eine isotrope Verteilung in Bezug auf das gleichmäßige Magnetfeld aufweisen.

Ziele: Die Hillas Energie, jenseits derer die kosmische Strahlung die Galaxie verlassen

kann, wird in einem verbesserten Modell berechnet. Die ursprüngliche Bestimmung

dieses Limits basiert auf ’slab’ turbulenzen, die nur parallel propagierende Plasmawellen

berücksichtigt.



Methoden: Quasilineare Fokker-Planck Koeffizienten der kosmischen Strahlung werden

zur Berechnung der mittleren freien Weglänge und Anisotropie in isotropen Plasmawellen-

turbulenzen verwendet.

Ergebnisse: In isotropen Plasmawellenturbulenzen erhöht sich die Hillas Energie um vier

Größenordnungen auf einen Wert von Ec = 2.03 · 104An1/2
e (Lmax/1 pc). Dies wird durch

den dominierenden Einfluß der ’transit-time damping’ Wechselwirkungen sich schräg aus-

breitender magnetosonic Wellen mit der kosmischen Strahlung hervorgerufen.

Schlußfolgerungen: Unterhalb der Energie Ec zeigen mittlere freie Weglänge und

Anisotropie die typische E1/3 Enegergieabhängigkeit ungedämpfter Wellen. Im Falle

gedämpfter Wellen sind beide Transportparameter energieunabhängig. Oberhalb von Ec

verstärkt sich die Energieabhängigkeit zu einem E3-Verhalten Dies bedeutet, daß kosmis-

che Strahlen selbst bei ultrahohen Energien von einigen zehn EeV schnell ’pitch-angle’

gestreut werden können und daher in der Galaxie gebunden sind.
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1 Introduction

Cosmic rays are defined as extraterrestrial charged particle radiation. Although we use

word ’rays’, we should not forget that we deal with particles, or more precise, it consists

of a flux of electrons, positrons and nucleons with kinetic energies greater than 1KeV

that bombards the Earth from outside. To understand the origin and dynamics of these

particles one should combine theory and observations.

As far as the theory is concerned, of particular interests are particles interaction pro-

cesses with electromagnetic fields, their collective phenomena, their spontaneous and co-

herent radiation processes and the role of nuclear interactions with ordinary matter. It

means that theoretical development relies to a large extent on our understanding of plasma

physics.

Concerning observations, astronomy spans frequencies from 104 cm radio-waves to

10−14 cm, particles of GeV energies. The new astronomy probes the Universe with new

wavelengths, smaller than 10−14 cm, or particle energies larger than 10 GeV. Origin of

low energy cosmic rays is Sun, while for ultrahigh-energy cosmic rays (UHECR) it is still

questionable.

The main purpose of this work is analytical study of the ultrahigh-energy cosmic rays.

We calculate transport parameters using quasilinear theory. In chapter II, we give short

overview of experimental and theoretical achievements on UHECR. Quasilinear theory and

derivation of relevant cosmic transport parameters are explained in chapter III. In chapter

IV we have calculated the Fokker-Planck coefficients (FPC) step by step. Discussion and

results related with different type of undamped plasma waves are given in chapter V.

Influence of damping and relevant results calculated for magnetosonic waves are discussed

in chapter VI. In chapter VII we present summary and conclusion for possible galactic

origin of UHECR and give some topics for further research. Some parts of chapters II

and III are taken from the book Cosmic Ray Astrophysics (Schlickeiser, 2006).
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2 Observations and Theoretical Background of Cos-

mic Rays

There are two ways to detect cosmic rays. There are ground based detectors and the

second are out of the Earth atmosphere launching satellites into extraterrestrial space.

The ground based observations have the advantage of long exposure time and no limit on

the size of detectors but their results have to be corrected for the influence of the Earth’s

atmosphere. In the atmosphere the in-falling primary cosmic rays undergo inelastic col-

lisions with the atoms and molecules in the atmosphere, producing secondary particles

which, again, are subject to further interactions (Fig.1). It is said that a whole ’shower’ of

particles reaches the ground and in order to investigate properties of the in-falling cosmic

rays, one has to reconstruct the ’shower’ with the help of numerical model calculations. It

means that the quality of the cosmic ray measurements using these methods depends on

understanding and modeling of the interaction processes in the atmosphere. In the case

when cosmic ray detection is flown outside the atmosphere these disturbing atmospheric

effects disappear, but here, because of the limited size and weight of detectors and limited

observing time of experiment (which is less of several weeks in the case of space shuttle

experiments), weak cosmic ray intensities cannot be measured. These instrumental limi-

tations may improve with time as more sophisticated platforms (space stations) become

available in the future. Today’s information on the flux of cosmic rays below energies of

∼ 1014eV/nucleon stems mainly from satellite and balloon experiments, whereas at higher

energies > 1014eV/nucleon, because of the rather weak intensities, information on cosmic

rays is provided solely by ground-based detectors.

2.1 The Cosmic Ray Landscape

Taking a view of the cosmic ray landscape (Lund 1986), most of it is still hidden from our

point of view by clouds, but there are some general physical arguments limit the ultimate

extent of the region (Fig. 2). Up- and downwards in nuclear charge, nuclear stability

sets two boundaries. Towards the high energy side the boundary is set by the universal

background radiation which destroys heavy cosmic ray nuclei with energies in excess of

∼ 1019eV/nucleon by photonuclear collisions A+ γ → (A− 1) +n (Greisen1966, Zatsepin
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Figure 1: Development of an extensive airshower in the Earth atmosphere (Weekes, 1972)

and Kuzmin 1966) and ultra high-energy cosmic ray protons with energies larger than

∼ 1020eV/nucleon by photo-pion production p+γ → p+π0. Towards the low energy side

a boundary exists due to ionization losses which increase rapidly with decreasing particle

energy. These energy boundaries are not sharply defined since they depend on the amount

of photons and matter, respectively, the particles have to penetrate on their way from their

sources to us. Lund’s diagram has been drawn as if the Universe were symmetric with

respect to matter and antimatter. Cosmic rays may ultimately prove that this symmetry

exists because they are the only probe of matter of nonsolar origin available to us. So far

this has not happened. If the Universe is matter-dominated everywhere, then the lower

half of the diagram, with the exception of the antiprotons and positrons, can be removed.

In that case we have, over a limited energy range, already explored the full extent of the

cosmic ray charge scale. Besides the instrumental limitations in combination with the

weak fluxes, the clouds are caused mainly by the influence of the Sun, the other planets

and the interplanetary medium. The interferences on the measurements of the galactic

and extragalactic cosmic radiation are two-fold:
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Figure 2: An outline of the cosmic ray landscape

a) The outstreaming solar wind disturbs the determination of particle fluxes below

kinetic energies of ∼ 500 MeV/nucleon for nuclei and below 5 GeV for electrons. This

phenomena is referred as solar modulation.

b) The Sun itself and some planets produce cosmic radiation which has to be distin-

guished from the galactic and extragalactic component.

The study of these solar cosmic rays is itself an interesting area of investigation since

in situ observations of these particles provide much more detailed information than the

limited studies of extrasolar cosmic rays. However, we concentrate our analysis on the

later one.

2.2 Anisotropy

The study of anisotropy in the arrival directions of cosmic rays is clearly of great interest

to locate their possible sources. With specific position of our solar system with respect

to the galactic disk, one would expect an anisotropy towards the direction l = 0, b = 0

(heliocentric galactic coordinates, sun is the center, toward galactic center) if the cosmic

4



ray sources are galactic objects. Experimental data on anisotropy predominantly come

from ground-based shower detectors. There are numbers of problems in interpreting the

data on anisotropy. At the highest energies, the data are statistically limited and subject

to fluctuations. Another experimental problem is the bias of each detector due to the

non-uniform acceptance of cosmic ray arrival directions. For instance, detector located in

the northern hemisphere do not see a region around the south magnetic pole. This hole

in acceptance, if not properly accounted for, can produce biases in event distributions

(Sokolsky 1979,503). At the end, since we usually search for anisotropy as a function of

energy, biases in determining energy will cause problems and uncertainties.

2.2.1 Harmonic Analysis

For a detector operating approximately uniformly with respect to sidereal time the zenith

angle dependent shower detector and direction reconstruction efficiency is a strong func-

tion of declination but not of the right ascension (RA). Therefore one usually searches for

anisotropy in RA only within a given declination band. This is done by measuring the

counting rate as a function of sidereal time (RA) and performing a harmonic analysis,

e.g. fitting the data by

R(t) = A0 + A1 sin(
2πt

24
+ φ1) + A2 sin(

2πt

12
+ φ2), (1)

where A0, A1, and A2 are the amplitudes of the zeroth, first and second harmonics,

respectively, and φ1 and φ2 are the phases of the first and second harmonics. In Fig. 3

we show the amplitude A1/A0 and the phase φ1 of the first harmonic. One notes that

a) at energies less than 1014 eV the anisotropy is small (∼ 0.07) and has constant

phase (∼ 3hRA),

b) the anisotropy starts to increase as the energy rises above ∼ 1015 eV,

c) the phases of the relatively large amplitude anisotropies (several percent) above

1017 eV vary rapidly with energy but are consistent between the various experiments.

These data do not convincingly establish a significant anisotropy beyond 1017 eV. The

data show no evidence of anisotropy at any energy, regardless of the energy calibration

model chosen.
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Figure 3: A summary of data on the phase and the amplitude of the first harmonic of

cosmic ray anisotropy in right ascension, Watson, 1984
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2.3 Ultrahigh Energy Cosmic Rays

In the context of cosmic ray anisotropy we have described some results of ground-based

observations of cosmic rays with energies above 1014eV. Here, we concentrate on the mea-

surements of the energy spectrum and the composition of these ultrahigh energy particles.

Studies of the composition are indirect by measuring the muon content of the airshowers,

since their muon multiplicity depends on the atomic number of the primary particle, and

by analyzing the lateral shower distribution on the ground. A common problem of the

method is that such high primary energies are not available in terrestrial accelerators, so

that the interpretation relies on the theoretical extrapolation of nuclear interactions to

these energies. It is clear that the same observations made in this way can be interpreted

quite differently and that many controversial results exists on the composition ranging

from a dominantly protonic composition to a dominantly Fe composition of UHECR. We

restrict discussion to the energy spectrum as a function of the total energy of the primary

particle. It should be mentioned that it is much harder to measure the all-particle spec-

trum at 1015 eV than it is at 1018 eV for example, since showers produced by 1015 eV

primaries are rather small, even at the highest altitude laboratory, so that fluctuations are

severe problem (Watson 1984). Of particular interest are cosmic ray particles with total

energy larger than 1019 eV. Soon after the discovery in 1965 of the universal microwave

background radiation, Greisen, Zatsepin and Kuzmin (GZK 1966) pointed out that pro-

tons of these energy would interact with this microwave background through photo-pion

reactions and lose energy on a length scale of about ' 10 Mpc which is relatively short

distance in cosmological terms (radius of a flat disk of our Galaxy is ' 15 kpc, 1 kpc

∼ 3 × 1021 cm). It was therefore anticipated that the UHECR spectrum would show a

cutoff at these energies. However, airshower arrays in the US and Japan have detected

seven particles at energies clearly above 1020 eV with no indication of GZK cutoff. Within

conventional explanations of cosmic ray acceleration this means that the potential sources

have to be relatively nearby within 50 Mpc. But the detection of these UHECR has also

stimulated a great deal of speculation about possible new physics. However, more data are

required, although the fluxes at these energies are only of order one per square kilometer

per century.
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2.3.1 Interaction between Cosmic Ray Nuclei and Photons

The photo-hadron production process is dominated by photo-pion production, e.g. for

protons at threshold the channels p+γ → π0+p and p+γ → π++n dominate and at higher

energies by multi-pion production. Baryon production and K-meson production can be

neglected in most astrophysical applications. Photo-pion production by nuclei of mass

number A obeys the simple Glauber rule σA ' A2/3σp. However, in any astrophysical

environment nuclei cannot be accelerated to energies above pion threshold, since they

are destroyed before by photo-disintegration that has much lower threshold of about 10

MeV in the nucleus rest frame compared to pion production which requires at least 145

MeV. For a cosmic ray proton of Lorentz factor γp, traversing an isotropic photon field of

number density n(ε, r), one obtains the energy loss rate

−dγ
dt

=
c

2γp

∫ ∞

ε′
th
/(2γp)

dεn(εr)ε−2
∫ 2γpε

ε′
th

dε′ε′σ(ε′)Kp(ε
′), (2)

where σ(ε′) and Kp(ε
′) are the total photo-hadron production cross-section and inelas-

ticity, respectively, as a function of the photon energy in the proton rest frame, while the

proton rest frame threshold energy ε′th,Kπ
is given by ε′th,Kπ

= Kmπc
2(1 + Kmπ

2mp
) for the

respective reaction. Crucial for further evaluation is the knowledge of both the photo-

hadron production cross-section and inelasticity as a function of energy ε′. Here, we

just list literature for more detailed discussion on it, since there exist a vast number of

phenomenological particle physics models for the photo-hadron production cross-section

and inelasticity as a function of energy whose free parameters are adjusted by available

accelerator studies of individual reactions (Stecker 1968, Sikora et al. 1987, Mannheim,

Biermann 1989, Begelmann et al. 1990, Mannheim, Schlickeiser 1994).

It is clear from all experiments that the particle nature of the cosmic rays is either

protons or, possible, nuclei. Since the Universe is opaque to the photons with energies of

tens TeV because they annihilate into electron pairs in interaction with mentioned back-

ground light, it is necessary to investigate interactions between protons and background

light above a threshold energy Ep of about 50 EeV. The major source of proton energy

loss is photoproduction of pions on a target of cosmic microwave photons. Therefore,

the Universe is also opaque to the highest energy cosmic rays, with an absorption length

λγp = (nCMBσpγ) ' 10 Mpc. This is mentioned GZK cutoff which depend only on two
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known numbers: nCMB = 400cm−3 and σγp = 10−28cm2. Protons with energies in excess

of 100 EeV, emitted in distant quasars and gamma ray bursts, would have lost their energy

to pions before reaching detectors on the Earth. There are three possible resolutions:

1.) the protons are accelerated in nearby sources,

2.) they do reach us from distant sources which accelerate them to much higher

energies than we observe, thus exacerbating the acceleration problem, or

3.) the highest energy cosmic rays are not protons.

The first possibility motivates to find an appropriate accelerating mechanism by con-

fining these source even to our own galaxy or nearby our galaxy. It will be analyzed and

discussed in details through this work.

2.3.2 Detectors and Observations of UHECR

There are two detected events of energies above GZK cutoff done by two detectors. In

1991, The Fly’s Eye cosmic ray detector recorded an event of energy ∼ 1020 eV. The

second one, detected for the first time in 1993 by AGASA air shower array in Japan.

AGASA has by now accumulated an impressive 10 events with energy in excess of 1020

eV (Fig.4).

In order to improve the detection and collect as much as possible data, in 1995 started

building The Pierre Auger Cosmic Ray Observatory, the biggest detector of UHECR. It

consists of two parts, one on northern hemisphere (Millard Country, Utah, USA), and the

other, on the southern (Malarge, Province of Mendoza, Argentina). This observatory will

allow continual exposition of the whole sky, which is important in order to find out are

the distribution of directions of cosmic rays isotropic, or there is some structure on larger

scale. Two mentioned independent detectors are correlated in one, which allow higher

resolution and better control of systematic errors. The shower can be observed by

a) sampling the electromagnetic and hadronic components when they reach the ground

with an array of particle detectors such as scintilators,

b) detecting the fluorescent light emitted by atmospheric nitrogen excited by the

passage of the shower particles,

c) detecting the Cerenkov light emitted by the large number of particles at shower

maximum, and

9



Figure 4: The cosmic ray spectrum. There are three important parts: knee, ankle and

fingers. The highest energy cosmic rays belong to the part named fingers, measured by

the AGASA and HiRes.
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d) detecting muons and neutrinos underground. Cerenkov and fluorescent light is

collected by large mirrors and recorded by arrays of photomultipliers in their focus.

Cosmic rays travel through the vacuum with velocity close to the velocity of light.

When these particles enter the medium which is not vacuum, but is denser than vacuum ,

they travel with velocity bigger than real velocity of light in that medium. As a result it is

possible to detect so called Cerenkov light of the blue color. Great number of the cosmic

rays are able to excite the nitrogen molecules in the atmosphere. The consequence of

these excitations is spontaneous cascade de-excitations through the emission of fluorescent

photons in optical part of spectrum. Detector for this type of light is Fly’s Eye. Detectors

of cosmic rays on the Earth are mostly scinitillators. Cosmic ray showers passing by the

atmosphere spread out, so that on the earth surface it is scattered from few hundred

square meters up to few hundred square kilometers. That is the reason why scintillation

detectors are connected in the net of large area. According to the statistics, flux for

particles of energies E > 1019 eV is 1 particle/km2 in one year, while flux for the particles

with E > 1020eV is 1 particle/km2 in 100 years. Since these events are very rare, as

large the area is, bigger chances are to catch the event. The Pierre Auger observatory

will use 1600 Cerenkov detectors on the area of 3000 km2, and 24 fluorescent detectors,

each in every 15 km. Informations from each detector are transfered via radiowaves to the

main station where the shower is reconstructed and analyzed (http:www.cosmic-ray.org,

http:www-zeuthen.desy.de).

2.4 Cosmic Ray Scattering, Confinement and Isotropy

Summarizing the observational material on galactic cosmic rays we note that the solar

system is bombarded by cosmic rays from all sides isotropically. However, a successful

model for the origin of of galactic cosmic ray has to explain the following key issues:

a) an over 109 yr constant ray power of ∼ 1040 erg/s,

b) a nearly uniform and isotropic distribution of cosmic ray nucleons and electrons

with energies below 1015 eV over the Galaxy,

c) elemental and isotopic composition similar to solar flare particles,

d) electron/nucleon ratio in relativistic cosmic rays at the same Lorentz factor of about

0.01,
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e) the formation of power law energy spectra for all species of cosmic rays over large

energy ranges accounting for the systematic differences in the spectral index values of

primary and secondary cosmic ray nucleons and cosmic ray electrons.

The general problem of the origin of cosmic rays can be divided into two parts. The

first part concerns the actual origin or injection of the cosmic rays into the Galaxy by

sources which keep up the power over a long time, while the second part concerns the

subsequent behavior of the cosmic rays, their motion, transport and confinement in the

Galaxy. We will concentrate in the second one. It is generally recognized that due to

their small Larmor radii, for cosmic ray nucleons of momentum p

RL =
pc/eV

300B/Gauss
cm, (3)

as compared to galactic dimensions, the majority of cosmic rays with energies below

∼ 1015 eV propagate along the galactic magnetic field. Because of the observed isotropy

and age of cosmic rays, it seems clear that the cosmic rays cannot propagate freely along

the lines of force but must be continually scattered. If they were to propagate freely with

the speed of light, they would leave the galaxy within 104 to 4 ·105 years, as the dimension

of our Galaxy suggest. But from the measured abundance of the cosmogenic cosmic ray

clocks we know that their average lifetime in the Galaxy is ∼ 107 years. Moreover, if there

is no scattering, we would expect a strong anisotropy towards the direction of the galactic

center due to specific location of the solar system, since there should be more sources of

the type discussed in previous section towards the inner galaxy. Yet we do not see this

anisotropy for cosmic rays with energies less than 1015 eV which apparently is lost due to

multiple scattering of the cosmic rays on their path from the sources to us. The scattering

cannot be by particles (Coulomb scattering) since the energies of cosmic rays are much

higher than nuclear binding energies and such collisions would destroy all nuclear species

heavier than protons in the interstellar medium, which is not the case (Kulsrud, Pearce

1969). Moreover, the mean free path for Coulomb collision of relativistic nucleons in the

dilute interstellar medium of order ∼ 1023γ/nH(cm−3) is far too long. Thus, the most

likely scattering mechanism is of plasma waves, i.e. fluctuating electromagnetic fields in

the interstellar medium. How these plasma waves are produced and how they influence

the dynamics of cosmic ray particles are the main topics of this work and will be discussed
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in detail in the following chapters.
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3 Transport Coefficients for Cosmic Rays

In this chapter we discuss the basic equations and necessary approximations we have to

made in order to model interaction between charged particles moving in certain plasma.

3.1 Transport Equations

In order to describe interaction between particle and waves we start from the relativistic

Vlasov equations

∂fa
∂t

+ v · ∂fa
∂x

+ ṗ · ∂fa
∂p

= Sa(x,p, t), (4)

with the equations of motion

ṗ = qa[ET (x, t) +
v×BT (x, t)

c
], (5)

ẋ = v =
p

γma

. (6)

Sa in (4) denotes sources and sinks of particles. We can neglect any large scale electric

field because of the high conductivity of plasmas, so that the total electromagnetic field

is a superposition of the uniform magnetic field B0 = B0ez and the plasma turbulence

(δE, δB) is

BT = B0 + δB(x, t),ET = δET (x, t). (7)

We can follow, instead of the actual position of the particles, the coordinates of the

guiding center, because of the gyrorotation of the particles

R = (X, Y, Z) = x +
v× ez
oΩ

, (8)

where Ω denotes the absolute value of the particle’s gyrofrequency in the uniform field

and o = qa/|qa| the charge sign. It is also convenient to use spherical coordinates (p, µ, φ)

in momentum space defined by

px = p cosφ
√

1− µ2, py = p sinφ
√

1− µ2, pz = pµ. (9)
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Consequently

X = x+
v
√

1− µ2

oΩ
sinφ, Y = y − v

√
1− µ2

oΩ
cosφ, Z = z. (10)

Transforming (4) to the coordinate set

xσ = (p, µ, φ,X, Y, Z) (11)

by using (5)-(10) and the Einstain summation convention, one obtains the appropriate

form of the Vlasov equation (Hall, Sturrock 1968, and Urch 1977)

∂fa
∂t

+ vµ
∂fa
∂Z

− oΩ
∂fa
∂φ

+
1

p2

∂(p2gxσfa)

∂xσ
= Sa(x,p, t) (12)

where the generalized force term gσ includes the effect of the randomly fluctuating

electromagnetic fields. Solutions of (12) with gσ = 0 will be called ”unperturbed orbits”.

The components of the fluctuating force term are

gp = ṗ =
macγΩ

pB0

p · δE =
Ωpc

vB0

µδE|| +

√
1− µ2

2
(δEle

−iφ + δEre
iφ)

 , (13)

gµ = µ̇ =
Ω
√

1− µ2

B0

[
c

v

√
1− µ2δE|| +

i√
2

[
eiφ(δBr + iµ

c

v
δEr)− e−iφ(δBl − iµ

c

v
δEl)

]]
,

(14)

gφ = −oΩ
δB||

B0

+
oΩ√

2(1− µ2)
B0

[
eiφ(µδBr + i

c

v
δEr) + e−iφ(µδBl − i

c

v
δEl)

]
, (15)

gX = −v
√

1− µ2 cosφ
δB||

B0

+
ic√
2B0

[
δEr − δEl −

iµv

c
(δBl + δBr)

]
, (16)

gY = −v
√

1− µ2 sinφ
δB||

B0

− c√
2B0

[
δEr + δEl +

iµv

c
(δBl − δBr)

]
, (17)

gZ = 0. (18)

In the derivation we have introduced
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δBl,r =
1√
2

(δBx ± iδBy), δB|| = δBz, (19)

and

δEl,r =
1√
2

(δEx ± iδEy), δE|| = δEz, (20)

which are related to the left-handed and right-handed polarized field components.

The function fa develops in an irregular way under the influence of gσ, but the detailed

fluctuations are not of interest. An expectation value of fa must be found in terms of

the statistical properties of gσ, so we consider an ensemble of distribution functions all

beginning with identical values at some time t = t0. Let each of these function be subject

to a different member of an ensemble of realizations of gσ, i.e. fluctuating field histories

which are independent of one another in detail, but identical as to statistical averages. At

any time t > t0, the various functions differ from each other, and we require an equation

for

< fa(x,p, t) >= Fa(x,p, t), (21)

the average of fa over all members of the ensemble. This is obtained by taking the

average of (12) using

< δB(x, t) >=< δE(x, t) >= 0, (22)

implying

< B(x, t) >= B0, < E(x, t) >= 0. (23)

We find

∂Fa
∂t

+ vµ
∂Fa
∂Z

− oΩ
∂Fa
∂φ

= Sa(x,p, t)−
1

p2

∂(< p2gxσδfa >)

∂xσ
, (24)

where

δfa(x,p, t) = fa(x,p, t)− Fa(x,p, t). (25)

Subtracting (24) from (12) gives an equation for the fluctuation
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∂δfa
∂t

+ vµ
∂δfa
∂Z

− oΩ
∂δfa
∂φ

= −gxσ

∂Fa
∂xσ

− gxσ

∂δfa
∂xσ

+ < gxσ

∂δfa
∂xσ

>, (26)

where we used

1

p2

∂(p2gxσ)

∂xσ
= 0. (27)

We use perturbation method (referred to as the quasilinear approximation) to solve

these equations, which is based on the assumption that the fluctuations are of small

amplitude - gσ must be significantly small, so that, there exists a time scale T satisfying

tc << T << tF , (28)

where tF represents the time scale on which gσ effects the evolution of the distribution

function and tc is correlation time. From the equation of motion tF can be estimated as

tF =
Fa

gxσ

∂Fa

∂xσ

. (29)

Then according to (26) the variation δfa generated by gσ within a time T must remain

much smaller than Fa, and the right-hand side of (26) may be approximated by its first

term, leading to

∂δfa
∂t

+ vµ
∂δfa
∂Z

− oΩ
∂δfa
∂φ

' −gxσ

∂Fa
∂xσ

. (30)

Equation (30) can readily be solved by the method of characteristics and we obtain

δfa(t) = δfa(t0)−
∫ t

t0
ds[gxσ(x∗ν , s)

∂Fa(xν , s)

∂xσ
]′, (31)

where the prime indicates that the bracketed quantities are to be evaluated along the

characteristics, i.e. an unperturbed particle orbit in the uniform magnetic field, given by

X̄ = x0, Ȳ = y0, Z̄ = z0 + vµ(s− t),

x̄ = x0 −
v
√

1− µ2

oΩ
sin(φ̄),

ȳ = y0 +
v
√

1− µ2

oΩ
cos(φ̄),

z̄ = z0 + vµ(s− t)
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p̄ = p, µ̄ = µ, φ̄ = φ0 − oΩ(s− t), (32)

where all (x0, y0, z0, φ0, p, µ) denote the initial phase space coordinate values at time

t0. Moreover, we demand that at the initial time t0 the particle’s phase space density is

completely uncorrelated to the turbulent field, so that the ensemble average

< δfagxσ >= 0 (33)

vanishes. Then, inserting (31) into the averaged (24) leads to

∂Fa
∂t

+ vµ
∂Fa
∂Z

− oΩ
∂Fa
∂φ

= Sa(x,p, t) +
1

p2

∂

∂xσ
(< p2gxσ

∫ t

t0
ds[gxν (xν , s)

∂Fa(xν , s)

∂xσ
]′ >).

(34)

Note that the third term on the right-side of (26) if kept, would vanish in (34) because

< gxσ >= 0. Here (t − t0) ∼ T , where T satisfies the restriction (28). Under certain

physical conditions the integrodiferrential equation (34) reduces to a differential equation

for Fa. The second term on the right-hand side of (34) can be rearranged as

M1 =
1

p2

∂

∂xσ
(< p2gxσ

∫ t

t0
ds[gxν (xν , s)

∂Fa(xν , s)

∂xσ
]′ >)

=
1

p2

∂

∂xσ
(p2

∫ t

t0
ds[< gxσg

′
xν

(xν , s) > [
∂Fa(xν , s)

∂xσ
]]′). (35)

Suppose that there exists a correlation time tc so that the correlation function of

magnetic and electric irregularities that determine the correlation function < gxσg
′
xν
>,

falls to a negligible magnitude for times t − s > tc. This means that the important

contribution to the right-hand side of (35) comes from the integral from t− tc to t which

can be assumed to be finite. Moreover, suppose that the variation of [∂Fa/∂xν ]
′ during

this time interval is small enough to consider that the value is nearly equal to that as

s = t. Then the term (35) reduces to

M1 '
1

p2

∂

∂xσ
(p2[

∫ t

t−tc
ds < gxσgxν (xν , s) >]′

∂Fa(xν , s)

∂xσ

=
1

p2

∂

∂xσ
(p2[

∫ t

0
ds < gxσgxν (xν , s) >]′

∂Fa(xν , s)

∂xσ
). (36)

The requirement (28), i.e. t − t0 >> tc, makes the term (36) a function of t alone,

eliminating any dependence upon conditions at t0 which justifies the replacement 0 for
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t−tc in the lower boundary of the integration. With these rearrangements (34) reduces to

a diffusion equation, involving only second order correlation functions of the fluctuating

field gxσ integrated along the unperturbed orbit. This equation, named Fokker-Planck

equation is

∂Fa
∂t

+ vµ
∂Fa
∂Z

− oΩ
∂Fa
∂φ

= Sa(x,p, t) +
1

p2

∂

∂xσ
(p2Dxσxν

∂Fa
∂xν

), (37)

with the Fokker-Planck coefficients

Dσν(xν , t) =
∫ t

0
ds < ¯gxσ(t) ¯gxν (s) >, (38)

being homogenous integrals along unperturbed particle orbits of the fluctuating force

field’s correlations functions. The bar notation indicates that the force fields have to be

calculated along unperturbed orbit of the particles.

3.2 The Diffusion Approximation

The Fokker-Planck equation (37) with its 25 Fokker-Planck coefficients is very complicated

and cannot be solved in most cases. However, that in comparison to

∂

∂µ
Dµµ

∂Fa
∂µ

+
∂

∂µ
Dµφ

∂Fa
∂φ

+
∂

∂φ
Dφµ

∂Fa
∂µ

+
∂

∂φ
Dφφ

∂Fa
∂φ

(39)

apart from the injection function Sa all other terms on the right-hand of (37) are of

the order (vph/v), (vph/v)2, (vph/v)(RL/R) or (RL/R)2, where vph = ωR/k is the plasma

waves phase speed, RL = v/Ω is the gyroradius of a particle and R is a typical length scale

for the variation of Fa in X and Y . Therefore, if we consider only particle distributions

which are weakly variable in X and Y , i.e. RL << R, we can argue that the fastest

particle-wave interaction processes are diffusion in gyrophase φ and pitch angle µ, since

for low frequency magnetohydrodynamical waves the phase speed vph is much less than

the individual cosmic ray particle speeds, i.e. vph/v << 1. Then, we can follow the

analysis splitting the particle distribution function into its average in pitch angle and an

isotropic part (Jokipii 1966, Hasselmann and Wibberenz 1968, and Skilling, 1975)

Fa(x, p, µ, φ, t) = Ma(x, p, t) +Ga(x, p, µ, φ, t), (40)
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where

Ma(x, p, t) =
1

4π

∫ 2π

0
dφ
∫ 1

−1
dµFa(x, p, µ, φ, t),

1

4π

∫ 2π

0
dφ
∫ 1

−1
dµGa(x, p, µ, φ, t) = 0. (41)

Substituting (40) in the Fokker-Planck equation (37) and averaging over µ and φ using

(41) we obtain

∂Ma

∂t
+

v

4π

∂

∂Z

∫ 2π

0
dφ
∫ 1

−1
dµµGa − Sa(x,p, t) =

1

p2

∂

∂p
[

1

4π

∫ 2π

0
dφ
∫ 1

−1
dµp2(Dpp

∂Ma

∂p
+DpX

∂Ma

∂X
+DpY

∂Ma

∂Y
)]+

∂

∂X
[

1

4π

∫ 2π

0
dφ
∫ 1

−1
dµ(DXp

∂Ma

∂p
+DXX

∂Ma

∂X
+DXY

∂Ma

∂Y
)]+

∂

∂Y
[

1

4π

∫ 2π

0
dφ
∫ 1

−1
dµ(DY p

∂Ma

∂p
+DY X

∂Ma

∂X
+DY Y

∂Ma

∂Y
]+

1

p2

∂

∂xii=(p,X,Y )

[
1

4π

∫ 2π

0
dφ
∫ 1

−1
dµp2(dij

∂Ga

∂xjj=(p,µ,φ,X,Y )

)], (42)

where we have used Dµxi
= 0 for |µ| = 1 and the periodicity Ga(φ) = Ga(φ+2π). The

diffusion approximation applies if the particle densities are slowly varying in the time and

space, i.e.

∂Ma

∂t
= o(

Ma

T
),
∂Ma

∂Z
= o(

Ma

L
),

∂Ga

∂t
= o(

Ga

T
),
∂Ga

∂Z
= o(

Ga

L
), (43)

where T >> τ ' o(1/Dµµ) and L >> vτ , where τ denotes the pitch angle relaxation

time. In this case, the cosmic ray particles have time to adjust locally to a near isotropic

equilibrium, so that Ga << Ma. Subtracting the averaged Fokker-Planck equation (42)

from the full Fokker-Planck equation (37) and keeping only terms which are at most of

first order in the small quantities (τ/T ), (vτ/L), (vph/v) and (RL/R), we obtain to lowest

order an approximation for anisotropy Ga in terms of the isotropic distribution function

Ma:

[oΩ +
∂

∂µ
Dµφ]

∂Ga

∂φ
+

∂

∂φ
(Dφφ

∂Ga

∂φ
) +

∂

∂µ
(Dµµ

∂Ga

∂µ
) '

vµ
∂Ma

∂Z
− ∂

∂µ
(Dµp

∂Ma

∂p
)− ∂

∂µ
(DµX

∂Ma

∂X
)−
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∂

∂µ
(DµY

∂Ma

∂Y
)− ∂

∂φ
(DφX

∂Ma

∂X
)− ∂

∂φ
(DφY

∂Ma

∂Y
). (44)

Since Ga is periodic in the gyrophase we can express it as a Fourier series

Ga(x, p, µ, φ) =
∞∑

s=−∞
Gs(x, p, µ)eisφ. (45)

For our purpose only G−1, G0 and G1 are of interest since all other terms do not

contribute to the averaged Fokker-Planck equation (42) because all Fokker-Planck coeffi-

cients have a periodicity in gyrophase with a maximal period of 2π. Inserting (45) into

(44) and comparing coefficients we derive the two equations

∂

∂µ
[Dµµ

∂G0

∂µ
+Dµp

∂Ma

∂p
] = vµ

∂Ma

∂Z
, (46)

and

[ioΩ−Dφφ]G1 +
∂

∂µ
Dµµ

∂G1

∂µ
= Λ, (47)

where

Λ = −[
∂DµX

∂φ
+

∂

∂φ
(DφX ]

∂Ma

∂X
]− [

∂

∂µ
(DµY +

∂DφY

∂φ
]
∂Ma

∂Y
, (48)

and where we neglected Dµφ in comparison to Ω. The equation for G−1 is not necessary

since the anisotropy Ga is real and therefore the complex conjugate G∗
1 = G−1. Since

Ω/Dµµ ' o(B2
0/δB

2) we may neglect the pitch angle diffusion term in (47) to obtain

G1 '
Λ

ioΩ−Dφφ

' Λ

ioΩ
, (49)

since gyrorotation is faster than gyrophase diffusion. Combining (48) and (49) we note

that

G1 ' o(
(δB)2

B2
0

Ma) (50)

would be of second order in the small parameter (δB/B0)
2 << 1. Reinserting G1 and

G−1 into the averaged Fokker-Planck equation (42) would then yield terms of the order

(δB/B0)
4. However, the Fokker-Planck equation was derived by truncation of the order

(δB/B0)
2. For consistency, G1 has to be neglected and we approximate (45) by
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Ga ' G0, (51)

where G0 obeys (46).

3.2.1 Cosmic Ray Anisotropy

Integrating (46) over µ we obtain

Dµµ
∂Ga

∂µ
+Dµp

∂Ma

∂p
= c1 +

vµ2

2

∂Ma

∂Z
, (52)

where the integration constant c1 is determined from the requirement that the left-

hand side of (52) vanishes for µ = ±1, yielding

c1 = −v
2

∂Ma

∂Z
. (53)

Using (53) in (52) we derive

∂Ga

∂µ
= −1− µ2

2Dµµ

v
∂Ma

∂Z
− Dµp

Dµµ

∂Ma

∂p
. (54)

Integrating this equation gives for anisotropy

Ga(µ) = c2 −
v

2

∂Ma

∂Z

∫ µ

−1
dν

1− ν2

Dµµ(ν)
− ∂Ma

∂p

∫ µ

−1
dν
Dµp(ν)

Dµµ(ν)
, (55)

where the integration constant c2 is determined by condition (41). We then obtain for

the anisotropy

Ga(µ) =
v

4

∂Ma

∂Z
[
∫ 1

−1
dµ

(1− µ2)(1− µ)

Dµµ(µ)
− 2

∫ µ

−1
dν

1− ν2

Dµµ(ν)
]+

1

2

∂Ma

∂p
[
∫ 1

−1
dµ(1− µ)

Dµp(µ)

Dµµ(µ)
− 2

∫ µ

−1
dν
Dµp(ν)

Dµµ(ν)
]. (56)

Apparently the anisotropy (56) is made up of two components. The first is related to

pitch angle scattering and the spatial gradient of the isotropic distribution M . This term

will provide the spatial diffusion of particles. Pitch angle diffusion produces spatial effects

in a plasma if a density gradient along the ordered magnetic field, ∂Ma/∂Z, is present.

The second contribution to the anisotropy (55) stems from the moment gradient of Ma

and is related to the Compton-Getting effect (Compton, Getting 1935). Expanding the

anisotropy (56) into orthonormal Legendre polinomials Pl(µ), i.e.
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Ga(µ, Z, p) =
∞∑
l=0

Al(Z, p)Pl(µ), (57)

defines the harmonics Al(Z, p) of the anisotropy.

3.2.2 The Diffusion-Convection Transport Equation

We insert (54) and (55) into the averaged Fokker-Planck equation (42). For the two

µ-integrals we obtain

∫ 1

−1
dµµGa(µ) =

v

2

∂Ma

∂Z

∫
−1
dµ
∫ µ

−1
dν

1− ν2

Dµµ(ν)
−

∂Ma

∂p

∫ 1

−1
dµµ

∫ µ

−1
dν
Dµp(ν)

Dµµ(ν)
=

−v
4

∂Ma

∂Z

∫ 1

−1
dµ

(1− µ2)2

Dµµ(µ)
−

1

2

∂Ma

∂p

∫ 1

−1
dµ

1− µ2Dµp(µ)

Dµµ(µ)
, (58)

where we partially integrated the right-hand side, and

∫ 1

−1
dµDµp

∂Ga

∂µ
= −v

2

∂Ma

∂Z

∫ 1

−1
dµ

(1− µ2)Dµp(µ)

Dµµ(µ)
− ∂Ma

∂p

∫ 1

−1
dµ
D2
µp(µ)

Dµµ(µ)
. (59)

Collecting terms in (42) we obtain

∂Ma

∂t
− Sa(x,p, t) =

∂

∂z
κzz

∂Ma

∂z
− 1

4p2

∂(p2vA1)

∂p

∂Ma

∂z
+

∂

∂X
[κXX

∂Ma

∂X
+ κXY

∂Ma

∂Y
]+

∂

∂Y
[κY Y

∂Ma

∂Y
+ κY X

∂Ma

∂X
]+

1

p2

∂

∂p
(p2A2

∂Ma

∂p
) +

v

4

∂A1

∂z

∂Ma

∂p
, (60)

where the components of the spatial diffusion tensor κij, the rate of adiabatic decel-

eration A1 and the momentum diffusion coefficient A2 are determined by the pitch angle

averages of Fokker-Planck coefficients as

κzz = vλ/3 =
v2

8

∫ 1

−1
dµ

(1− µ2)2

Dµµ(µ)
, (61)
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κXX =
1

2

∫ 1

−1
dµDXX(µ), (62)

κXY =
1

2

∫ 1

−1
dµDXY (µ), (63)

κY Y =
1

2

∫ 1

−1
dµDY Y (µ), (64)

κY X =
1

2

∫ 1

−1
dµDY X(µ), (65)

A1 =
∫ 1

−1
dµ(1− µ2)

Dµp(µ)

Dµµ(µ)
, (66)

and

A2 =
1

2

∫ 1

−1
dµ[(Dpp(µ)−

D2
µp(µ)

Dµµ(µ)
]. (67)

Equation (60) is commonly referred to as the diffusion-convection equation for the

isotropic pitch-angle averaged particle distribution function Ma(x, p, t). In its the most

general form it contains spatial diffusion and convection terms, describing the propagation

of cosmic rays in space, as well as momentum diffusion and convection terms, describing

the acceleration of cosmic rays, i.e. the transport in momentum space. Whether in a

specific physical situation all seven cosmic ray transport parameters (61)-(67) arise and

are different from zero, depends solely on the nature and the statistical properties of

the plasma turbulence and the background medium. In (61) we also defined the spatial

diffusion coefficient along the ordered magnetic field κzz in terms of the mean free path

for scattering λ. Note that the diffusion-convection equation (60) has been derived in

the comoving refernce frame, i.e. the rest system of the moving plasma. If the situation

is that the background plasma, supporting the plasma waves, moves with respect to the

observer with non-relativistic bulk speed U << c along the ordered magnetic field, we

can apply a simple Galilean transformation to (60).
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4 Derivation of the Fokker-Planck Coefficients

We are particularly interested in the UHECR component of the cosmic rays. We start

from the generally-accepted hypothesis that galactic point sources like supernova remnants

would inject cosmic ray particles only at energies below 1014 eV. Our purpose is to find

out if there is some other mechanism able to accelerate particles up to ultrahigh energies.

Observationally it is well established that the interstellar medium is turbulent up

to the largest scales, due to the motion of giant clouds, supernova explosions, stellar

winds and formation of superbubbles, loops and so on. Measurements of the density

fluctuations indicate the presence of Kolmogorov-type fluctuations spectrum up to scales

of 100 pc. Together with an interstellar magnetic field strength of ' 5µ G this would

allow acceleration up to particle energies ∼ 1017 eV. In this chapter, in order to model

plasma turbulence, we give basic equations and step by step calculation of Fokker-Planck

coefficients.

4.1 The Fokker-Planck coefficient Dµµ

4.1.1 Equations of Motion

In order to derive relevant transport coefficients, spatial diffusion coefficient κ, the cosmic

ray bulk speed V and momentum diffusion coefficient A2, we start from the random parts

of the Lorentz force for the coordinates µ and p of the guiding center (S2002, 12.1)

gµ = µ̇ =
Ω
√

1− µ2

B0

[
c

v

√
1− µ2δE|| +

i√
2

[
eiφ(δBr + iµ

c

v
δEr)− e−iφ(δBl − iµ

c

v
δEl)

]]
,

(68)

gp = ṗ =
macγΩ

pB0

p · δE =
Ωpc

vB0

µδE|| +

√
1− µ2

2
(δEle

−iφ + δEre
iφ)

 , (69)

In these equations we use pitch-angle cosine µ, the particle speed v, the gyrophase

φ, the cosmic ray particle gyrofrequency Ω = ZeB0/(mcγ) in the background field B0

and the turbulent fields δBl,r and δEl,r which are related to the left-handed and right-

handed polarized field components. These random force terms determine the correspond-

ing Fokker-Planck coefficients (Hall & Sturrock 1968)
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Dµµ = lim
t→∞

< (∆µ)2 >

2t

Dµp = lim
t→∞

< ∆µ(∆p)∗ >

2t

Dpµ = lim
t→∞

< ∆p(∆µ)∗ >

2t

Dpp = lim
t→∞

< (∆p)2 >

2t
(70)

which are calculated from the respective displacements (∆µ) and (∆p) caused by the

stochastic field components. In this section we calculate step by step the Fokker-Planck

coefficient Dµµ; the other coefficients are calculated similarly.

4.1.2 Step 1: Quasilinear Approximation

The quasilinear approximation is achieved by replacing in the Fourier transform of the

fluctuating electric and magnetic field

δE(x(t), t) =
∫ +∞

−∞
d3kδE(k, t)eik·x(t) '

∫ +∞

−∞
d3kδE(k, t)eik·x

0(t) (71)

δB(x(t), t) =
∫ +∞

−∞
d3kδB(k, t)eik·x(t) '

∫ +∞

−∞
d3kδB(k, t)eik·x

0(t) (72)

the true particle orbit x(t) by the unperturbed orbit x0(t), resulting in

φ(t) = φ0 − Ωt (73)

and (Schlickeiser 2002, (12.2.3a))

δBl,r,‖ ≈
+∞∑

n=−∞
d3kδBl,r,‖(k, t)Jn(W )ein(ψ−φ0)+i(k‖v‖+nΩ)t+ik·x0 , (74)

respectively, where x0 = (x0, y0, z0) denotes the initial (t = 0) position of the cosmic ray

particle and W = v
|Ω| · k⊥

√
1− µ2 = RL · k⊥

√
1− µ2 involving the cosmic ray Larmor

radius RL = v/|Ω|. For the wave vector k we have used cylindrical coordinates:

k‖ = kz,

k⊥ =
√
k2
x + k2

y,

ψ = arccot(
kx

ky

). (75)
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With these approximations the equations of motion become

dµ

dt
' hµ(t) =

Ω
√

1− µ2

B0

∞∑
n=−∞

∫
d3kein(ψ−φ0)+i(k‖v‖+nΩ)t+ik·x0

( c
v

√
1− µ2Jn(W )δE‖(k, t)

+
i√
2
Jn+1(W )eiψ[δBr(k, t) + iµ

c

v
δEr(k, t)]−

i√
2
Jn−1(W )e−iψ[δBl(k, t)− iµ

c

v
δEl(k, t)]

)
(76)

and

dp

dt
' hp(t) =

Ωpc

vB0

∞∑
n=−∞

∫
d3kein(ψ−φ0)+i(k‖v‖+nΩ)t+ik·x0

(
µJn(W )δE‖(k, t) +

√
1− µ2

2
[Jn+1(W )eiψδEr(k, t) + Jn−1(W )e−iψδEl(k, t)]

)
(77)

4.1.3 Step 2: The Kubo Formalism

Integration of (76) yields

∆µ(t) =
∫ t

0
dt1hµ(t1) (78)

for the displacement in pitch angle cosine. We then find for the ensemble average

< (∆µ)2 >=<
∫ t

0
dt1hµ(t1)

∫ t

0
dt2h

∗
µ(t2) > (79)

which we evaluate using the Taylor-Green-Kubo formalism (Green 1951, Kubo 1957).

As illustrated in Fig. 5, instead of integrating over the full box we may integrate over the

hatched triangle and multiply by the factor 2 (Peskin & Schroeder 1995) implying

< (∆µ)2 >= 2 <
∫ t

0
dt1hµ(t1)

∫ t1

0
dt2h

∗
µ(t2) >= 2 <

∫ t

0
dt1hµ(t1)

∫ 0

−t1
dτh∗µ(τ + t1) >

= 2
∫ t

0
dt1

∫ 0

−t1
dτ < hµ(t1)h

∗
µ(τ + t1) > (80)

where we substituted τ = t2 − t1.

As second assumption (after the quasilinear approximation) we use the quasi-

stationary turbulence condition that the correlation function < hµ(t1)h
∗
µ(τ+t1) > depends

only on the absolute value of the time difference [t2 − t1| = |τ | so that

< hµ(t1)h
∗
µ(τ + t1) >=< hµ(0)h∗µ(0 + τ) > (81)
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Figure 5: Geometric interpretation of (79)

implying with the substitution s = −τ

< (∆µ)2 >= 2
∫ t

0
dt1

∫ 0

−t1
dτ < hµ(0)h∗µ(0 + τ) >= 2

∫ t

0
dt1

∫ t1

0
ds < hµ(0)h∗µ(s) > (82)

Thirdly, we assume that there exists a finite correlation time tc such that the correlation

function < hµ(0)h∗µ(s) >→ 0 falls to a negligible magnitude for s → ∞. This allows us

to replace the upper integration boundary in the second integral by infinity so that

< (∆µ)2 >' 2
∫ t

0
dt1

∫ ∞

0
ds < hµ(0)h∗µ(s) >= 2t

∫ ∞

0
ds < hµ(0)h∗µ(s) > (83)

As can be seen, the two assumptions of quasi-stationary turbulence and the existence

of a finite correlation time tc guarantee diffusive behaviour of quasilinear transport in

agreement with the conclusion of Shalchi & Schlickeiser (2004). For the quasilinear Fokker-

Planck coefficients (70) we then obtain

Dµµ =
∫ ∞

0
ds < hµ(0)h∗µ(s) > (84)

and similarly

Dµp = Dpµ =
∫ ∞

0
ds < hµ(0)h∗p(s) > (85)
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and

Dpp =
∫ ∞

0
ds < hp(0)h∗p(s) > (86)

4.1.4 Step 3: Homogenous Turbulence

From the quasilinear equation of motion (76) we infer

hµ(0)h∗µ(s) =
Ω2

B2
0

(1− µ2)
∞∑

n=−∞

∞∑
m=−∞

∫
d3k

∫
d3k′e

i(n−m)(ψ−φ0)−i(k′‖v‖+mΩ)s+i(k−k′
)·x0

[ c
v

√
1− µ2Jn(W )δE‖(k, 0) +

i√
2
Jn+1(W )eiψ[δBr(k, 0) + iµ

c

v
δEr(k, 0)]

− i√
2
Jn−1(W )e−iψ[Bl(k, 0)− iµ

c

v
δEl(k, 0)]

]
[ c
v

√
1− µ2Jm(W ′)δE∗

‖(k’, s)− i√
2
Jm+1(W

′)e−iψ[δB∗
r (k’, s)− iµ

c

v
δE∗

r (k’, s)]

+
i√
2
Jm−1(W

′)eiψ[B∗
l (k’, s) + iµ

c

v
δE∗

l (k’, s)]
]

(87)

Next, as fourth assumption we use that the turbulence field which is homogenously dis-

tributed, and average (87) over the initial spatial position of the cosmic ray particles

using

1

(2π)3

∫ +∞

−∞
d3x0e

i(k−k′
)·x0 = δ(k− k′) (88)

implying that turbulence fields at different wavevectors are uncorrelated. The respec-

tive ensemble average of (87) then involve the correlelation tensors

< δBα(k, 0)δB∗
β(k′, s) >= δ(k− k′)Pαβ(k, s) (89)

< δEα(k, 0)δE∗
β(k′, s) >= δ(k− k′)Rαβ(k, s) (90)

< δBα(k, 0)δE∗
β(k′, s) >= δ(k− k′)Tαβ(k, s) (91)

< δEα(k, 0)δB∗
β(k′, s) >= δ(k− k′)Qαβ(k, s). (92)
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After performing the k’-integration and employing the random phase approximation,

that the initial phase φ0 of the cosmic particle is a random variable that can take on any

value between 0 and 2π, the averaging over φ0 results in

Dµµ =
1

(2π)4

∫ +∞

−∞
d3x0e

i(k−k′
)·x0

∫ 2π

0
dφ0

∫ ∞

0
ds < hµ(0)h∗µ(s) >=

Ω2

B2
0

(1− µ2)
∞∑

n=−∞

∫ ∞

−∞
d3k

∫ ∞

0
dse−i(k‖v‖+nΩ)s

·
( c2
v2

(1−µ2)J2
n(W )R||(k, s)+

1

2
J2
n+1(W )[PRR(k, s))+µ2 c

2

v2
RRR(k, s)+iµ

c

v
(QRR(k, s)−TRR(k, s))]

+
1

2
J2
n−1(W )[PLL(k, s) + µ2 c

2

v2
RLL(k, s) + iµ

c

v
(TLL(k, s)−QLL(k, s))]

−1

2
Jn−1(W )Jn+1(W )[e2iψ(PRL(k, s)− µ2 c

2

v2
RRL(k, s) + iµ

c

v
(TRL(k, s) +QRL(k, s)))

+e−2iψ(PLR(k, s)− µ2 c
2

v2
RLR(k, s))− iµ

c

v
(TLR(k, s) +QLR(k, s)))]

+
ic
√

1− µ2

√
2v

Jn(W )[Jn+1(W )(eiψTR|(k, s)−e−iψQ|R(k, s)+iµ
c

v
(RR|(k, s)e

iψ+R|R(k, s)e−iψ)

+Jn−1(W )(eiψQ|L(k, s)− e−iψTL|(k, s) + iµ
c

v
(R|L(k, s)eiψ +RL|(k, s)e

−iψ))]
]

(93)

4.1.5 Step 4: Plasma Wave Turbulence

In order to further reduce (93) we have to make additional assumptions about the geom-

etry of the turbulence, and specially, the time dependance of the correlation functions,

in order to perform the time(s)-integration. The geometry will be discussed in the Sec.

5.2. Here, we first define the properties of the plasma turbulence that will be considered.

We follow the approach for the electromagnetic turbulence that represents the Fourier

transforms of the magnetic and electric field fluctuations as superposition of N individual

weakly damped plasma modes of frequencies

ω = ωj(k) = ωR,j(k)− iγj(k), (94)

j = 1, ...N , which can have both the real and imaginary parts with |γj| << |ωR,j|, so that

[B(k, t),E(k, t)] =
N∑
j=1

[
Bj(k),Ej(k)

]
e−iωjt (95)
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Damping of the waves is counted with the a positive γj > 0. We need to add Maxwell’s

induction law

Bj(k) =
c

ωR,j
k× Ej(k). (96)

As a consequence of (95), the magnetic correlation tensor (89) becomes

Pαβ(k, s) =
N∑
j=1

P j
αβ(k)e−iωR,j(k)s−γj(k)s, (97)

where

P j
αβ(k) =< Bj

α(k)Bj
β
∗(k1) > δ(k− k1). (98)

Corresponding relations hold for the other three correlation tensors.

With (97) we derive for the Fokker-Planck coefficient (93)

Dµµ =
Ω2

B2
0

(1− µ2)
N∑
j=1

∞∑
n=−∞

∫ ∞

−∞
d3k

∫ ∞

0
ds e−i(k‖v‖+ωR,j+nΩ)s−γjs

·
( c2
v2

(1−µ2)J2
n(W )Rj

||(k, s)+
1

2
J2
n+1(W )[P j

RR(k, s))+µ2 c
2

v2
Rj
RR(k, s)+iµ

c

v
(Qj

RR(k, s)−T jRR(k, s))]

+
1

2
J2
n−1(W )[P j

LL(k, s) + µ2 c
2

v2
Rj
LL(k, s) + iµ

c

v
(T jLL(k, s)−Qj

LL(k, s))]

−1

2
Jn−1(W )Jn+1(W )[e2iψ(P j

RL(k, s)− µ2 c
2

v2
Rj
RL(k, s) + iµ

c

v
(T jRL(k, s) +Qj

RL(k, s)))

+e−2iψ(P j
LR(k, s)− µ2 c

2

v2
Rj
LR(k, s))− iµ

c

v
(T jLR(k, s) +Qj

LR(k, s)))]

+
ic
√

1− µ2

√
2v

Jn(W )[Jn+1(W )(eiψT jR|(k, s)−e
−iψQj

|R(k, s)+iµ
c

v
(Rj

R|(k, s)e
iψ+Rj

|R(k, s)e−iψ)

+Jn−1(W )(eiψQj
|L(k, s)− e−iψT jL|(k, s) + iµ

c

v
(Rj

|L(k, s)eiψ +Rj
L|(k, s)e

−iψ))]
]

(99)

The s-integration is readily perform and yields the Lorentzian resonance function

Rj(γj) =
∫ ∞

0
ds e−i(k‖v‖+ωR,j+nΩ)s−γjs =

γj(k)

γ2
j (k) + [k‖v‖ + ωR,j(k) + nΩ)]2

(100)

In the case of negligible damping γ → 0, use of the δ-function representation

lim
γ−>0

γ

γ2 + ξ2
= πδ(ξ) (101)

31



reduces the resonance function (100) to sharp δ-functions

Rj(γ = 0) = πδ(k‖v‖ + ωR,j + nΩ)). (102)

The Fokker-Planck coefficient (99) finally reads

Dµµ =
Ω2

B2
0

(1− µ2)
N∑
j=1

∞∑
n=−∞

∫ ∞

−∞
d3k

γj(k)

γ2
j (k) + [k‖v‖ + ωR,j(k) + nΩ)]2

·
( c2
v2

(1−µ2)J2
n(W )Rj

||(k, s)+
1

2
J2
n+1(W )[P j

RR(k, s))+µ2 c
2

v2
Rj
RR(k, s)+iµ

c

v
(Qj

RR(k, s)−T jRR(k, s))]

+
1

2
J2
n−1(W )[P j

LL(k, s) + µ2 c
2

v2
Rj
LL(k, s) + iµ

c

v
(T jLL(k, s)−Qj

LL(k, s))]

−1

2
Jn−1(W )Jn+1(W )[e2iψ(P j

RL(k, s)− µ2 c
2

v2
Rj
RL(k, s) + iµ

c

v
(T jRL(k, s) +Qj

RL(k, s)))

+e−2iψ(P j
LR(k, s)− µ2 c

2

v2
Rj
LR(k, s))− iµ

c

v
(T jLR(k, s) +Qj

LR(k, s)))]

+
ic
√

1− µ2

√
2v

Jn(W )[Jn+1(W )(eiψT jR|(k, s)−e
−iψQj

|R(k, s)+iµ
c

v
(Rj

R|(k, s)e
iψ+Rj

|R(k, s)e−iψ)

+Jn−1(W )(eiψQj
|L(k, s)− e−iψT jL|(k, s) + iµ

c

v
(Rj

|L(k, s)eiψ +Rj
L|(k, s)e

−iψ))]
]

(103)

It remains to specify the geometry of the plasma wave turbulence through the corre-

lation tensors which, according to Mattheaus & Smith (1981), have the form

P j
αβ(k) =

gji (k)

k2

[
δαβ −

kαkβ
k2

+ iσ(k)εαβλ
kλ
k

]
, (104)

where σ(k) is the magnetic helicity and the function g(k) determines different turbu-

lence geometries. This will be discussed in Sec. 5.2.

4.2 The Other Fokker-Planck Coefficients Dµp and Dpp

Applying the same approximations as in the last section to the other Fokker-Planck

coefficients in (70) results in

Dµp = Dpµ =
Ω2

B2
0

√
(1− µ2)

pc

v

N∑
j=1

∞∑
n=−∞

∫ ∞

−∞
d3k

γj(k)

γ2
j (k) + [k‖v‖ + ωR,j(k) + nΩ)]2

·
[ c
v
µ
√

(1− µ2)J2
n(W )Rj

||(k, s) +
c

v

(1− µ2)

2
(Jn(W )Jn+1(W )e−iψRj

|R(k, s)+

Jn(W )Jn−1(W )eiψRj
|L(k, s))+

iµ√
2
Jn(W )Jn+1(W )eiψT jR|(k, s)−

c

v

µ2

√
2
Jn(W )Jn+1(W )eiψRj

R|(k, s)
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+
i
√

(1− µ2)

2
√

2
(J2
n+1(W )T jRR(k, s) + Jn−1(W )Jn+1(W )e2iψT jRL(k, s))

−cµ
v

√
1− µ2

2
√

2
(J2
n+1(W )Rj

RR(k, s) + Jn−1(W )Jn+1(W )e2iψRj
RL(k, s))−

iµ√
2
Jn−1(W )Jn(W )e−iψT jL|(k, s)−

c

v

µ2

√
2
Jn(W )Jn−1(W )e−iψRj

L|(k, s)

−
i
√

(1− µ2)

2
√

2
(Jn−1(W )Jn+1(W )e−2iψT jLR(k, s) + J2

n−1(W )T jLL(k, s))

−cµ
v

√
1− µ2

2
√

2
e−2iψJn−1(W )Jn+1(W )Rj

LR(k, s)− cµ

v

√
1− µ2

2
√

2
J2
n−1(W )Rj

LL(k, s)
]

(105)

and

Dpp =
Ω2p2c2

v2B2
0

N∑
j=1

∞∑
n=−∞

∫ ∞

−∞
d3k

γj(k)

γ2
j (k) + [k‖v‖ + ωR,j(k) + nΩ)]2

·
[
µ2J2

n(W )Rj
||(k, s) +

1− µ2

4
(J2
n+1(W )Rj

RR(k, s) + J2
n−1(W )Rj

LL(k, s)

+Jn−1(W )Jn+1(W )e2iψRj
RL(k, s) + Jn−1(W )Jn+1(W )e−2iψRj

LR(k, s))

+µJn(W )

√
1− µ2

2
(Jn+1(W )e−iψRj

|R(k, s) + Jn−1(W )eiψRj
|L(k, s) + Jn+1(W )eiψRj

R|(k, s)

+Jn−1(W )e−iψRj
L|(k, s)

]
(106)

4.3 Derivation of Dµµ for Fast Mode Waves

4.3.1 Dispersion Relation

Using the high phase velocity approximation ωR/k > VA(β/2)1/4 for low beta plasmas

Ragot & Schlickeiser (1998) have calculated the dispersion relation of fast magnetosonic

waves in a magnetized electron-proton fluid plasma (Braginskii 1957, Stringer 1963,

Swansson 1989) as

ω2
R '

1

2
RΩ2

0,p

[
1 + (R + 1)η2 +

√
[1 + (R + 1)η2]2 − 4η2

]
(107)
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with η = cos θ and

R(k) =
ξ2k2

k2 + (ξkc)2
(108)

where ξ =
√
mp/me = 43 and kc = ωp,p/c is the inverse proton skin length. For wavenum-

bers well below the inverse electron skin length k << ξkc, (108) approachesR(k) ' (k/kc)
2

which is much smaller than unity in the MHD-wave range k << kc and much larger than

unity at wavenumbers kc << k << ξkc.

In the MHD wave range that is of our interest, the dispersion relation (107) then

simplifies to

ωR ' jkVA (109)

describing forward (j = 1) and backward (j = −1) moving fast mode waves. The associ-

ated electric field and magnetic field polarizations are (e.g. Dogan et al. 2006)

δEL = −δER, δE‖ = 0, δBL = δBR, δB‖ 6= 0 (110)

4.3.2 Reduction of the Fokker-Planck Coefficient Dµµ

From the polarization properties (110) we deduce (Schlickeiser & Miller 1998) for the

correlation functions

PLL = PRR = PLR = PRL

QLR = −QRL = QLL = −QRR

TLR = −TRL = −TLL = −TRR

RLR = RRL = −RLL = −RRR

R‖‖ = R‖L = R‖R = RL‖ = RR‖ = TL‖ = TR‖ = Q‖L = Q‖R = 0

T‖L = −T‖R

QL‖ = −QR‖

PL‖ = PR‖, P‖L = P‖R (111)

yielding for the coefficient (103) for fast mode waves
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Dµµ =
Ω2

2B2
0

(1−µ2)
∑
j=±1

∞∑
n=−∞

∫ ∞

−∞
d3kRj

F (n)[J2
n+1(W )+J2

n−1(W )−Jn+1(W )Jn−1(W ) cos 2ψ]

[P j
RR(k)) + µ2 c

2

v2
Rj
RR(k) + iµ

c

v
(Qj

RR(k)− T jRR(k))] (112)

Faraday’s induction law

δE = −ωR,j
ck2

k× δB (113)

implies

δEL = −iωR,j
ck2

[
k‖δBL −

k⊥
21/2

δB‖

]
, δER = −iωR,j

ck2

[
−k‖δBR +

k⊥
21/2

δB‖

]
, (114)

allowing us to all tensors in terms of magnetic field fluctuation tensor, i. e.

RRR =
ω2
Rj

c2k4

[
k2
‖PRR +

k2
⊥
2
P‖‖ −

k‖k⊥
2

(PR‖ + P‖R)

]

=
V 2
A

c2

[
cos2 θPRR +

sin2 θ

2
P‖‖ −

sin θ cos θ

21/2
(PR‖ + P‖R)

]
, (115)

QRR =
iωRj
ck

[
k‖PRR −

k⊥
21/2

P‖R

]
=
ijVA
c

[cos θPRR −
sin θ

21/2
P‖R], (116)

TRR =
iωRj
ck

[
−k‖PRR +

k⊥
21/2

P‖R

]
=
ijVA
c

[− cos θPRR +
sin θ

21/2
P‖R], (117)

so that

P j
RR + µ2 c

2

v2
Rj
RR + iµ

c

v
(Qj

RR − T jRR) = (1− jµVA
v

cos θ)2P j
RR +

µ2V 2
A

2v2
sin2 θP j

‖‖

−VAµ√
2v

sin θ(j +
µVA
v

cos θ)[P j
R‖ + P j

‖R] (118)

which can be inserted into (112) yielding

DF
µµ =

Ω2

2B2
0

(1−µ2)
∑
j=±1

∞∑
n=−∞

∫ ∞

−∞
d3kRj

F (n)[J2
n+1(W )+J2

n−1(W )−2Jn+1(W )Jn−1(W ) cos 2ψ]

[
(1− jµVA

v
cos θ)2P j

RR(k))+
µ2V 2

A

2v2
sin2 θP‖‖−

VAµ√
2v

sin θ(j+
µVA
v

cos θ)[P j
R‖+P j

‖R]
]

(119)
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4.4 Derivation of Dµµ for Slow Mode Waves

4.4.1 Dispersion Relation

Dispersion relation for slow magnetosonic waves in low-β plasma reads (Dogan et al.

2006)

ω2
R ' k2V 2

A(
ηβ

1 + β
+

η2β2

(1 + β)3
) (120)

with η = cos θ and β is the ratio of thermal and magnetic pressure. In the last equation,

in the first approximation, we neglect the second term in brackets since it is one order

smaller then the first term. The associated electric field and magnetic field polarizations

are

δEL = −δER, δE‖ = 0, δBL = δBR, δB‖ 6= 0. (121)

which implies

PLL = PRR = PLR = PRL

QLR = −QRL = QLL = −QRR

TLR = −TRL = −TLL = −TRR

RLR = RRL = −RLL = −RRR

R‖‖ = R‖L = R‖R = RL‖ = RR‖ = TL‖ = TR‖ = Q‖L = Q‖R = 0

T‖L = −T‖R

QL‖ = −QR‖

PL‖ = PR‖, P‖L = P‖R. (122)

So that, all tensors in terms of magnetic field fluctuation tensor for slow mode waves

are

RRR =
ω2
Rj

c2k2

[
k2
‖PRR +

k2
⊥
2
P‖‖ −

k‖k⊥
2

(PR‖ + P‖R)

]

=
V 2
A

c2
ηβ

1 + β

[
cos2 θPRR +

sin2 θ

2
P‖‖ −

sin θ cos θ

21/2
(PR‖ + P‖R)

]
, (123)
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QRR =
iωRj
ck

[
k‖PRR −

k⊥
21/2

P‖R

]
=
ijVA
c

√
ηβ

1 + β
[cos θPRR −

sin θ

21/2
P‖R], (124)

TRR =
iωRj
ck

[
−k‖PRR +

k⊥
21/2

P‖R

]
=
ijVA
c

√
ηβ

1 + β
[− cos θPRR +

sin θ

21/2
P‖R]. (125)

4.4.2 Reduction of F-P Coefficient Dµµ

Using (122)-(125), we derive

DS
µµ =

Ω2

2B2
0

(1−µ2)
∑
j=±1

∞∑
n=−∞

∫ ∞

−∞
d3kRj

F (n)[J2
n+1(W )+J2

n−1(W )−2Jn+1(W )Jn−1(W ) cos 2ψ]

[
(1− jµVA

v

√
β

1 + β
cos θ)2P j

RR(k)) +
µ2V 2

A

2v2

β

1 + β
sin2 θP‖‖

−VAµ√
2v

√
β

1 + β
sin θ(j +

µVA
v

√
β

1 + β
cos θ)[P j

R‖ + P j
‖R]
]
. (126)

4.4.3 The Other Fokker-Planck Coefficients Dµp and Dpp for Slow Magne-

tosonic Waves

The other two Fokker-Planck coefficients Dµp and Dpp for slow magnetosonic waves are

the same as for fast mode waves (105) and (106). The differences will appear when we

insert resonance function and dispersion relation for slow mode waves. We will do it in

Sec. 6.
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5 Undamped Waves

To unravel the nature of cosmic sources that accelerate cosmic rays to ultrahigh energies

has been identified as one of the eleven fundamental science questions for the new century

(Turner et al. 2002). Cosmic rays with energies up to at least 1014 eV are likely accelerated

at the shock fronts associated with supernova remnants (for review see Blandford &

Eichler 1987), and radio emissions and X-rays give conclusive evidence that electrons are

accelerated there to near-light speed (Koyama et al 1995, Koyama et al. 1997, Tanimori et

al. 2001, Allen et al. 1997, Slane et al. 1999, Borkowski et al. 2001). The evidence for a

supernova origin of hadrons below 1014 eV is less conclusive (Enomoto et al. 2002, Reimer

& Pohl 2002) although consistent with the observed GeV excess of diffuse galactic gamma

radiation from the inner Galaxy (Büsching et al. 2001). Most puzzling are the much higher

energy cosmic rays with energies as large as 1020.5 eV for which an extragalatic origin

is favored by many researchers. Extragalactic ultrahigh-energy cosmic rays (UHECRs)

coming from cosmological distances ≥ 50 Mpc should interact with the universal cosmic

microwave background radiation (CMBR) and produce pions. For an extragalactic origin

of UHECRs the detection or non-direction of the Greisen-Kuzmin-Zatsepin cutoff resulting

from the photopion attenuation in the CMBR will have far-reaching consequences not

only for astrophysics but also for fundamental particle physics as e.g. the breakup of

Lorentz symmetry (Coleman & Glashow 1997) or the non-commutative quantum picture

of spacetime (Amelio-Camella et al. 1998).

It is well known (e.g. Schlickeiser 2002, Ch. 17) that after injection further distributed

acceleration over the whole interstellar medium results from the resonant wave-particle

interactions of cosmic ray particles with low-frequency magnetohydrodynamic plasma

turbulence that reveals itself by density fluctuations in observations of interstellar scintil-

lations, dispersion measures and Faraday rotation measures (Rickett 1990, Spangler 1991,

Armstrong et al. 1995) over 11 decades in wavenumber below the ion skin length. Within

a plasma wave viewpoint this interstellar turbulence is a mixture of fast and slow mag-

netosonic waves and shear Alfven waves because the plasma beta β = 0.22 of the diffuse

interstellar intercloud phase is much smaller unity. The rate of distributed acceleration

of cosmic rays, particularly its dependence on cosmic ray energy, is determined by the

statistical properties of the interstellar plasma turbulence, i.e. the power spectra of the
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magnetic field fluctuations.

For many years the theoretical development of the resonant wave-particle interactions

has mainly concentrated on the special case that the plasma waves propagate only parallel

or antiparallel to the ordered magnetic field – the socalled slab turbulence. In this case

only cosmic ray particles with gyroradii RL smaller than the longest parallel wavelength

L‖,max of the plasma waves can resonantly interact.

This condition is equivalent to a limit on the maximum particle rigidity R:

R =
p

Z
≤ eB0  L‖,max. (127)

An alternative way to express the condition (127) is

E15/Z ≤ 4 ·
(

B0

4µ G

)(
L‖,max
parsec

)
, (128)

where E15 denotes the cosmic ray particle energy in units of 1015 eV. The limit set by

the right hand side of (128) is referred to as Hillas limit (Hillas 1984). According to this

limit, cosmic ray protons of energies larger than 4 PeV= 4 · 1015 eV cannot be confined or

accelerated in the Milky Way, and an extragalactic origin for this cosmic ray component

has to be invoked. In Fig. 6 are plotted some cosmic sites where particle acceleration

may occur, with sizes from kilometers to megaparsecs. Sites lying below the diagonal line

fail to satisfy conditions (128) and (129) for 1020 eV protons. For these high cosmic ray

energies only very few sites remain as possibilities: either highly condensed objects with

huge magnetic field strength such as neutron stars, or enormously extended objects such

as clusters of galaxies or radio galaxy lobes. As we have already mentioned, supernova

remnant shock waves can only accelerate particles up to rigidities of ' 1015 eV.

Moreover, as the cosmic ray mean free path in case of spatial gradients is closely related

to the cosmic ray anisotropy (Schlickeiser 1989, (94)), the Hillas limit (128) implies strong

anisotropies at energies above 4 PeV which have not been observed by the KASKADE

experiment (Antoni et al. 2004; Hörandel, Kalmykov and Timokhin 2006).

In this chapter we investigate how the Hillas limit (129) is affected if we discard the

assumption of purely slab plasma waves, i.e. if we allow for oblique propagation angles θ

of the plasma waves with respect to the ordered magnetic field component. There is obser-

vational evidence that obliquely propagating magnetohydrodynamic plasma wave exists
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Figure 6: Size and magnetic field strength of possible sites of particle acceleration (Hillas

1984)
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in the interstellar medium (Armstrong et al. 1995, Lithwick and Goldreich 2001, Cho et

al. 2002). In particular, we will consider the alternative extreme limit that the plasma

waves propagation angles are isotropically distributed around the magnetic field direction.

It has been emphasised before by Schlickeiser and Miller (1998) that oblique propagation

angles of fast magnetosonic waves leads to an order of magnitude quicker stochastic ac-

celeration rate as compared to the slab case, since the compressional component of the

obliquely propagating fast mode waves allows the effect of transit-time damping acceler-

ation of cosmic ray particles. Here we will demonstrate that the obliqueness of fast mode

and shear Alfven wave propagation also modifies the resulting parallel spatial diffusion

coefficient and the limit. Moreover we will show that the maximum wavelength Lmax of

isotropic waves does not have such a strong effect on the maximum particle rigidity as in

the slab case.

5.1 Relevant Magnetohydrodynamic Plasma Modes

Most cosmic plasmas have a small value of the plasma beta β = c2S/V
2
A , which is defined

by the ratio of the ion sound to Alfven speed, and thus indicates the ratio of thermal to

magnetic pressure. For low-beta plasmas the two relevant magnetohydrodynamic wave

modes are the

(1) incompressional shear Alfven waves with dispersion relation

ω2
R = V 2

Ak
2
‖ (129)

at parallel wavenumbers |k‖| � Ωp,0/VA, which have no magnetic field component along

the ordered background magnetic field δBz (‖ ~B0) = 0,

(2) the fast magnetosonic waves with dispersion relation

ω2
R = V 2

Ak
2, k2 = k2

‖ + k2
⊥ (130)

for wavenumbers |k| � Ωp,0/VA, which have a compressive magnetic field component

δBz 6= 0 for oblique propagation angles θ = arccos−1(k‖/k) 6= 0.

In the limiting case (commonly referred to as slab model) of parallel (to ~B0) propa-

gation (θ = k⊥ = 0) the shear Alfven waves become the left-handed circularly polarised
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Alfven-ion-cyclotron waves, whereas the fast magnetosonic waves become the right-handed

circularly polarised Alfven-Whistler-electron-cyclotron waves.

Schlickeiser and Miller (1998) investigated the quasilinear interactions of charged par-

ticles with these two plasma waves. In case of negligible wave damping the interactions

are of resonant nature: a cosmic ray particle of given velocity v, pitch angle cosine µ and

gyrofrequency Ωc = Ωc,0/γ interacts with waves whose wavenumber and real frequencies

obey the condition

ωR(k) = vµk‖ + nΩc, (131)

for entire n = 0,±1,±2, . . . .

5.1.1 Resonant Interactions of Shear Alfven Waves

For shear Alfven waves only interactions with n 6= 0 are possible. These are referred to as

gyroresonances because inserting the dispersion relation (129) in the resonance condition

(131) yields for the resonance parallel wavenumber

k‖,A =
nΩc

±VA − vµ
, (132)

which apart from very small values of |µ| ≤ VA/v typically equals the inverse of the cosmic

ray particle’s gyroradius, k‖,A ' n/RL and higher harmonics.

5.1.2 Resonant Interactions of Fast Magnetosonic Waves

In contrast, for fast magnetosonic waves the n = 0 resonance is possible for oblique

propagation due its compressive magnetic field component. The n = 0 interactions are

referred to as transit-time damping, hereafter TTD. Inserting the dispersion relation (130)

into the resonance condition (131) in the case n = 0 yields

vµ = ±VA/ cos θ (133)

as necessary condition which is independent from the wavenumber value k. Apparently all

super-Alfvenic (v ≥ VA) cosmic ray particles are subject to TTD provided their parallel

velocity vµ equals at least the wave speeds ±VA. Hence, equation (133) is equivalent to

the two conditions

|µ| ≥ VA/v, v ≥ VA. (134)
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Additionally, fast mode waves also allow gyroresonances (n 6= 0) at wavenumbers

kF =
nΩc

±VA − vµ cos θ
, (135)

which is very similar to (132).

5.1.3 Implications for Cosmic Ray Transport

The simple considerations of the last two subsections allow us the following immediate

conclusions:

(1) With TTD-interactions alone, it would not be possible to scatter particles with |µ| ≤

VA/v, i.e., particles with pitch angles near 90o. Obviously, these particles have basically no

parallel velocity and cannot catch up with fast mode waves that propagate with the small

but finite speeds ±VA. In particular this implies that with TTD alone it is not possible to

establish an isotropic cosmic ray distribution function. We always need gyroresonances

to provide the crucial finite scattering at small values of µ.

(2) Conditions (133) and (134) reveal that TTD is no gyroradius effect. It involves fast

mode waves at all wavenumbers provided the cosmic ray particles are super-Alfvenic and

have large enough values of µ as required by (134). Because gyroresonances occur at single

resonant wavenumbers only, see (132) and (135), their contribution to the value of the

Fokker–Planck coefficients in the interval |µ| ≥ VA/v is much smaller than the contribution

from TTD. Therefore for comparable intensities of fast mode and shear Alfven waves,

TTD will provide the overwhelming contribution to all Fokker–Planck coefficients Dµµ,

Dµp and Dpp in the interval |µ| ≥ VA/v. At small values of |µ| < VA/v only gyroresonances

contribute to the values of the Fokker–Planck coefficients involving according to (132) and

(135) wavenumbers at k‖,A = kR ' ±nΩc/VA.

(3) The momentum diffusion coefficient

A2 =
1

2

∫ 1

−1
dµ [Dpp(µ)−

D2
µp(µ)

Dµµ(µ)
] = AT + AF (136)

has contributions both from transit-time damping of fast mode waves,

AT '
∫ 1

VA/v
dµDTTD

pp (µ), (137)
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and from second-order Fermi gyroresonant acceleration by shear Alfven waves (Schlickeiser

1989)

AF =
1

2

∫ 1

−1
dµ [DA

pp(µ)−
[DA

µp(µ)]2

DA
µµ(µ)

]. (138)

(4) On the other hand, the spatial diffusion coefficient

κ =
v2

8

∫ 1

−1
dµ(1− µ2)2D−1

µµ (µ) (139)

is given by the integral over the inverse of the Fokker–Planck coefficient Dµµ, so that here

the smallest values of Dµµ due to gyroresonant interactions in the interval |µ| < VA/v

determine the spatial diffusion coefficient and the corresponding parallel mean free path

κ = vλ/3 ' v2

8

∫ VA/v

−VA/v

dµ

DG
µµ(µ)

. (140)

The gyroresonances can be due to shear Alfven waves or fast magnetosonic waves. For

relativistic cosmic rays the relevant range of pitch angle cosines |µ| ≤ vA/v is very small

allowing us the approximation DG
µµ(µ) ' DG

µµ(0) so that

κ = vλ/3 ' v2

4

ε

DG
µµ(0)

=
vVA

4DG
µµ(0)

. (141)

(5) According to (90) of Schlickeiser (1989) the streaming cosmic ray anisotropy due to

spatial gradients in the cosmic ray density is given by

δ =
Fmax − Fmin

Fmax + Fmin

=
1

2F

v

4

∂F

∂z

∫ 1

−1
dµ(1− µ2)2D−1

µµ (µ) (142)

which also is determined by the smallest value of Dµµ around µ = 0. Approximating

again Dµµ(µ) ' DG
µµ(0) for |µ| ≤ ε = VA/v we derive with (141) the direct proportionality

of the cosmic ray anisotropy with the parallel mean free path, i.e.

δ ' v

8

∂F

∂ ln z

2VA
vDG

µµ(0)
=
vA
4

1

DG
µµ(0)

∂F

∂ ln z
=

1

3
λ
∂F

∂ ln z
(143)

Introducing the characteristic spatial gradient of the cosmic ray density < z >−1≡

(1/F )|∂F/∂z| (143) reads

δ =
λ

3 < z >
(144)
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5.2 Quasilinear Cosmic ray Mean Free Path and Anisotropy for

Isotropic Plasma Wave Turbulence

Throughout this work we consider isotropic linearly polarised magnetohydrodynamic tur-

bulence so that the components of the magnetic turbulence tensor for plasma mode j

is

P j
αβ(~k) =

gj(~k)

8πk2
(δαβ −

kαkβ
k2

). (145)

The magetic energy density in wave component j then is

(δB)2
j =

∫
d3k

3∑
i=1

Pii(~k) =
∫ ∞

0
dkgj(k) (146)

We also adopt a Kolmogorov-like power law dependence (index q > 1) of gj(k) above the

minimum wavenumber kmin

gj(k) = gj0k
−q for k > kmin. (147)

The normalisation (147) then implies

gj0 = (q − 1)(δB)2
jk

q−1
min. (148)

Moreover we adopt a vanishing cross helicity of each plasma mode, i.e. equal intensity of

forward and backward moving waves, so that gj0 refers to the total energy density of each

mode.

5.2.1 Fast Mode Waves

According to (30) of Schlickeiser and Miller (1998) the Fokker-Planck coefficients DF
µµ

and DF
pp = ε2p2Dµµ with ε = VA/v for fast mode waves are the sum of contributions from

transit-time damping (T) and gyroresonant interactions (G):

DF
µµ(µ) =

πΩ2(1− µ2)

4B2
0

[DT (µ) + DG(µ)] (149)

with

DT (µ) = (q − 1)(δB)2
F |Ω|−1(RLkmin)q−1H[|µ| − ε]

1 + (ε/µ)2

|µ|
[(1− µ2)(1− (ε/µ)2)]q/2
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×
∫ ∞

U
ds s−(1+q) J2

1 (s), (150)

where the lower integration boundary is

U = kminRL

√
(1− µ2)(1− (ε/µ)2). (151)

η = cosθ, RL = v/|Ω| denotes the gyrofrequency of the cosmic ray particle, H is the

Heaviside′ step function and J1(s) is the Bessel function of the first kind.

The gyroresonant contribution from fast mode waves is

DG(µ) =
q − 1

2
(δB)2

F k
q−1
min

∞∑
n=1

∑
j=±1

∫ 1

−1
dη(1 + η2)

∫ ∞

kmin

dkk−q

×[J
′

n(kRL

√
(1− η2)(1− µ2)]2

[
δ(k[vµη − jVA] + nΩ) + δ(k[vµη − jVA]− nΩ)

]
(152)

Equations (150) and (152) are obtained using (119), (102) and (130).

5.2.2 Shear Alfven Waves

On the other hand shear Alfven waves provide only gyroresonant (n 6= 1) interactions

yielding

(
DA
µµ, D

A
µp, D

A
pp

)
= π(q − 1)Ω2(1− µ2)kq−1

min

(δB)2
A

32B2
0

∞∑
n=1

∑
j=±1

(
[1− jµε]2, jεp[1− jµε], (εp)2

)
∫ 1

−1
dη(1 + η2)

∫ ∞

kmin

dk k−q[δ([vµ− jVÅ]ηk + nΩ̊) + δ([vµ− jVÅ]ηk − nΩ̊)]

(Jn−1(kRL

√
(1− µ2)(1− η2) + Jn+1(kRL

√
(1− µ2)(1− η2)̊)2. (153)

According to Schlickeiser and Miller (1998) at particle pitch-angles outside the interval

|µ| ≥ ε transit-time damping provides the dominant and overwhelming contribution to

these Fokker-Planck coefficients. This justifies the approximations to derive (141) and

(143) for the cosmic ray mean free path and anisotropy, respectively. Both transport

parameters are primarily fixed by the small but finite scattering due to gyroresonant

interactions in the interval |µ| < ε. We then derive

λ ' 3v

8

∫ ε

−ε
dµ(1− µ2)2 [DF

µµ(µ) + DA
µµ(µ)]−1 ' 3vε

4[DF
µµ(µ = 0) + DA

µµ(µ = 0)]
, (154)

and
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δ =
1

3
λ
∂F

∂ ln z
' vε

4[DF
µµ(µ = 0) + DA

µµ(µ = 0)]

∂F

∂ ln z
(155)

In the following, we consider both transport coefficients for positively charged cosmic ray

particles with Ω > 0 especially in the limit kminRL >> 1.

5.2.3 Gyroresonant Fokker-Planck Coefficients at µ = 0

At µ = 0 the contribution from shear Alfven waves to the pitch-angle Fokker-Planck

coefficient is according to (153)

DA
µµ(µ = 0) ' π(q − 1)Ω2kq−1

min(δB)2
A

16B2
0

∞∑
n=1

∫ ∞

kmin

dk

×k−q−1(1 +
n2Ω2

V 2
Ak

2
)H[k − nΩ

VA
](Jn−1(RL

√
k2 − n2Ω2

V 2
A

) + Jn+1(RL

√
k2 − n2Ω2

V 2
A

)̊)2, (156)

where we readily performed the η-integration. Substituting t = RL[k2 − (n2Ω2/V 2
A)]1/2,

and using VA/Ω = εRL, (156) reduces to

DA
µµ(µ = 0) ' π(q − 1)Ω(δB)2

A

16εB2
0

[kminRL]q−1
∞∑
n=1∫ ∞

UA

dt t (t2 +
2n2

ε2
)[t2 +

n2

ε2
]−(q+4)/2(Jn−1(t) + Jn+1(t)̊)

2 (157)

where

UA = max(0, [R2
Lk

2
min −

n2

ε2
]1/2). (158)

Likewise the contribution from gyroresonant interactions with fast mode waves is accord-

ing to (149) and (152)

DF
µµ(µ = 0) ' π(q − 1)Ω2kq−1

min(δB)2
F

4VAB2
0

[
VA
Ω

]q

×
∞∑
n=1

n−qH[n− kminVA
Ω

]
∫ 1

−1
dη(1 + η2) (J

′

n(
n

ε

√
1− η2)̊)2 (159)

where we performed the k-integration. With VA/Ω = εRL, (159) becomes

DF
µµ(µ = 0) ' π(q − 1)Ω(δB)2

F

4B2
0

[kminRLε]
q−1

∞∑
n=1

n−qH[n− εRLkmin]

×
∫ 1

−1
dη(1 + η2) (J

′

n(
n

ε

√
1− η2)̊)2 (160)
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The Bessel function integral in (160)

I1 =
∫ 1

−1
dη(1 + η2) l(J

′

n(
n

ε

√
1− η2)̊)2 (161)

has been calculated asymptotically by Schlickeiser and Miller (1998) to lowest order in

the small quantity ε = VA/v << 1 as

I1 '
3

2

ε

n
(162)

yielding

DF
µµ(µ = 0) ' 3π(q − 1)Ωε(δB)2

F

4B2
0

[kminRLε]
q−1

∞∑
n=1

n−(q+1)H[n− εRLkmin]. (163)

In Appendix A we evaluate the Bessel function integral in (157)

I2 =
∫ ∞

UA

dt t (t2 +
2n2

ε2
)[t2 +

n2

ε2
]−(q+4)/2(Jn−1(t) + Jn+1(t)̊)

2 (164)

for small and large values of kminRLε.

For values kminRLε ≤ 1 we obtain approximately

I2(kminRLε ≤ 1) ' 8

π
εq+2n−q[1 + (−1)n1.00813] (165)

yielding

DA
µµ(µ = 0, kminRLε ≤ 1) ' (q − 1)Ωε2(δB)2

A

21+qB2
0

[kminRLε]
q−1

×[2.00813ζ(q) + 0.00813ζ(q, 0.5)]. (166)

in terms of the zeta and the generalised zeta functions of Riemann (Whittaker and Watson

1978).

For values of kminRLε > 1 we obtain (165) for values of n ≥ N + 1, where N =

inf[kminRLε] is the largest integer smaller than εRLkmin, while for smaller n

I2(kminRLε > 1, n = N) ' 4εq+2N−(q+1) (167)

and
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I2(kminRLε > 1, n ≤ N − 1) ' 4n2

π(q + 3)
U
−(q+3)
A . (168)

According to (158) this yields

DA
µµ(µ = 0, kminRLε > 1) ' (q − 1)Ωε2(δB)2

A

2B2
0

[kminRLε]
q−1[

π

2N q+1
+

+
ε

2(q + 3)

N−1∑
n=1

n−(q+1)[(
RLkminε

n
)2 − 1]−(q+3)/2 +

∞∑
n=N+1

n−q[1 + (−1)n1.00813]]. (169)

Comparing the Fokker-Planck coefficients from fast mode waves (163) and Alfven waves

(166) and (169) we note that the latter one is always smaller by the small ratio ε = VA/v

than the first one:

DA
µµ(µ = 0) ' εDF

µµ(µ = 0) (170)

so that the gyroresonant contribution from Alfven waves can be neglected in comparison

to the gyroresonant contribution from fast mode waves.

5.2.4 Cosmic Ray Mean Free Path

Neglecting DA
µµ(µ = 0) we obtain for the cosmic ray mean free path (154)

λ(γ) ' 3vε

4DF
µµ(µ = 0)

=
1

π(q − 1)

B2
0

(δB)2
F

RL(kminRLε)
1−q∑∞

n=1 n
−(q+1)H[n− εRLkmin]

, (171)

which exhibits the familiar Lorentzfactor dependence ∝ βγ2−q ' γ2−q at Lorentzfactors

γ ≤ γc below a critical Lorentz factor defined by

γc = kc/kmin (172)

with kc = Ω0,p/VA = ωp,i/c being the inverse ion skin length. The Lorentzfactor depen-

dence λ ∝ γ2−q especially holds at rigidities 1 ≤ kminRL ≤ 1/ε = c/VA, in a rigidity range

where the slab turbulence model would predict an infinitely large mean free path.

Expresing kmin = Lmax/2π in terms of the longest wavelength of isotropic fast mode

waves Lmax = 1 pc yields

γc =
ωp,iLmax

2πc
= 2.16 · 1010n1/2

e (
Lmax

1 pc
) (173)
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The corresponding cosmic ray hadron energy is

Ec = Aγcmpc
2 = 2.03 · 104An1/2

e (
Lmax

1 pc
) PeV (174)

which is four orders of magnitude larger than the Hillas limit (128) for equal values of the

maximum wavelength. This difference demonstrates the dramatic influence of the plasma

turbulence geometry (slab versus isotropically distributed waves) on the confinement of

cosmic rays in the Galaxy. With isotropically distributed fast mode waves, even ultrahigh

energy cosmic rays obey the scaling λγq−2 = const..

Only, at ultrahigh Lorentzfactors γ > γc or energies E > Ec the mean free path (171)

approaches the much steeper dependence

λ(γ > γc) '
1

π(q − 1)

B2
0

(δB)2
F

RL(kminRLε)
2 ∝ βγ3 ' γ3. (175)

independent from the turbulence spectral index q. Here the mean free path quickly attains

very large values gretaer than the typical scales of the Galaxy.

5.2.5 Anisotropy

Because of the direct proportionality between mean free path and anisotropy, the cosmic

ray anisotropy (155) shows the same beaviour as a function of energy:

δ(E) ' 1

3π(q − 1)

B2
0

(δB)2
F

∂F

∂ ln z

RL(kminRLε)
1−q∑∞

n=1 n
−(q+1)H[n− εRLkmin]

(176)

which is proportional δ(E ≤ Ec) ∝ E2−q at energies below Ec and δ(E > Ec) ∝ E3 at

energies above Ec. In particular we obtain no drastic change in the energy dependence of

the anisotropy at PeV energies.
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6 Implication of Damped Waves

The steepening of the magnetic power spectra at high wavenumbers most probably results

from the collisionless cyclotron damping of the transverse Alfven waves at wavenumbers

near' Ω0,p/vA. It has been emphasized that this damping enters twice into the calculation

of cosmic ray transport parameters:

1) the plasma wave intensity at long wavelength is drastically reduced, which is re-

flected by the cutoff ,

2) wave damping modifies the resonance function in the Fokker-Planck coefficients from

sharp delta-function resonances to broadened Breit-Wigner resonance function (Schlick-

eiser, Achatz, 1993a).

Considering only the first effect leads to quasilinear mean free paths of cosmic rays

drastically larger than those measured, in obvious contradiction to the observational evi-

dence. For the second effect, in the case of cosmic ray protons, the scattering of particles

in pitch angle is markedly different at small and large particle momenta. At large relativis-

tic momenta at all pitch angles the resonant interaction with undamped waves controls

the scattering Dµµ. At nonrelativistic energies there exists a small pitch angle interval

|µ| < vA/c where the undamped left and right handed polarized Alfven waves do not

contribute. In this interval the scattering relies entirely on the small but finite resonance

broadened contribution from damped right-handed polarized waves. Because the mean

free path is sensitively determined by the minimum value of Dµµ one finds a quite different

behavior of the mean free path at small and large particle momenta. In this chapter, we

investigate influence of damping on the relevant cosmic ray transport coefficients, for fast

and slow magnetosonic waves, in small pitch angle interval |µ| < ε = vA/v, where v is

the speed of cosmic ray (for the relativistic case v = c). We consider dominant viscous

damping of fast mode waves.

We have already discussed in previous chapter for undamped waves how the rigidity

limit (128) is affected if we discard the assumption of purely slab plasma waves, i.e. if we

allow for oblique propagation angles θ of the plasma waves with respect to the ordered

magnetic field component. In particular, we have considered the alternative extreme

limit that the plasma waves propagation angles are isotropically distributed around the

magnetic field direction. As we have already mentioned, it has been emphasised by
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Schlickeiser and Miller (1998) that oblique propagation angles of fast magnetosonic waves

leads to an order of magnitude quicker stochastic acceleration rate as compared to the slab

case, since the compressional component of the obliquely propagating fast mode waves

allows the effect of transit-time damping acceleration of cosmic ray particles. In the case

of damped waves, the wavenumber at which the resonance condition occurs is, for fast

mode waves the same as in the case of undamped waves (136) , and for slow mode waves is

somewhat changed by the factor
√

1+β
cos θβ

and reads (see dispersion relation for slow mode

waves (120))

kS =
nΩc

±VA
√

cos θβ
1+β

− vµ cos θ
. (177)

However, the corresponding cosmic ray hadron energy, in the case of damped fast mode

waves will be the same as (174). For damped slow mode waves, it will be modified by

the factor
√

1+β
cos θβ

. Here we will use the same approach to demonstrate how fast and slow

mode wave propagation also modifies the resulting parallel spatial diffusion coefficient and

the limit.

When discussing the nature of interstellar turbulence, it is necessary to consider the

fact that the interstellar medium contains a number of plasmas of very diverse character-

istics, not only cold plasma. In this work, we include the temperature effects to the first

order (Dogan et al. 2006), in deriving the relevant Fokker-Planck coefficients.

6.1 Damping Rate of Fast Mode Waves

The damping of fast mode waves is caused both by collisionless Landau damping and col-

lisional viscous damping, Joule damping and ion-neutral friction. According to Spanier &

Schlickeiser (2005) and Lerche, Spanier & Schlickeiser (2006) the dominating contribution

is provided viscous damping with the rate calculated for plasma parameters of the diffuse

intercloud medium

γF =
1

12
βV 2

Aτik
2
[
sin2 θ + 5 · 10−9 cos2 θ

]
= 2.9 · 105βV 2

Ak
2
[
sin2 θ + 5 · 10−9 cos2 θ

]
(178)

in terms of the ion-ion collisional time τi = 3.5 · 106 s. Except at very small propagation

angles the second term in (178) is negligible small and we infer
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γF ' 2.9 · 105βV 2
Ak

2 sin2 θ. (179)

For the ratio of damping rate to real frequency we obtain

γF
|ωR|

' 2.9 · 105βVAk sin2 θ = 2.9 · 105βωR sin2 θ. (180)

Because in the interstellar medium Ω0,p = 3.6 · 10−2B(4µG) Hz, we see that in the far

MHD-wave region ωR ≤ 10−4Ω0,p/β, the weak damping limit is fulfilled.

6.1.1 Dominance of Transit-time Damping

With (109) and (179) the resonance function (100) for forward and backward moving fast

mode waves becomes

Rj
F (n) =

2.9 · 105βV 2
Ak

2 sin2 θ

(2.9 · 105βV 2
Ak

2 sin2 θ)2 + [kvµ cos θ + jVAk + nΩ)]2
(181)

describing both gyroresonant (n 6= 0) and transit-time damping (n = 0) wave-particle

interactions.

The non-vanishing parallel magnetic field component B‖ 6= 0 (see (110)) of fast mode

waves allows transit-time damping interactions with n = 0. It has been pointed out by

Schlickeiser & Miller (1998) that this transit-time damping (TTD) contribution provides

the overwhelming contribution to particle scattering because in this interaction the cos-

mic ray particle interacts with the whole wave spectrum, in contrast to gyroresonances

that singles out individual resonant wave numbers (see also the discussion in Schlickeiser

(2003)). The inclusion of resonance broadening due to wave damping in the resonance

function (100) guarantees that this dominance also holds for cosmic ray particles at small

pitch angle cosines µ ≤ |Va/v|, unlike the case of negligible wave damping (see (103))

discussed by Schlickeiser & Miller (1998). Therefore, in the following we will only take

into account the TTD-contribution to particle scattering and assume n = 0 both in the

resonance function (181) and in the calculation of the Fokker-Planck coefficients. This

justified approximation greatly simplifies the evaluation of the Fokker-Planck coefficients.

Since we consider only TTD-contribution, only fast and slow magnetosonic waves are

subjects of it. It has been already emphasized that in the case on negligible damping,

there is no TTD for shear Alfven waves (Teufel, Lerche and Schlickeiser, 2003) and the
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gyroresonant interactions provided by shear Alfven waves is small compared to the same

contribution provided by fast magnetosonic waves (see Sec. 5). As a consequence, we

consider only fast and slow magnetosonic waves in this section.

With n = 0 the resonance function for fast mode (181) becomes

Rj
F (0) =

2.9 · 105βV 2
Ak

2 sin2 θ

(2.9 · 105βV 2
Ak

2 sin2 θ)2 + [kvµ cos θ + jVAk]2

=
2.9 · 105βV 2

A sin2 θ

(2.9 · 105βV 2
Ak sin2 θ)2 + [vµ cos θ + jVA]2

(182)

and the Fokker-Planck coefficient (119) reads

Dµµ =
Ω2

B2
0

(1− µ2)
∑
j=±1

∫ ∞

−∞
d3kRj

F (0)J2
1 (W )[1 + cos 2ψ]

[
(1− jµVA

v
cos θ)2P j

RR(k) +
µ2V 2

A

2v2
sin2 θP‖‖−

VAµ√
2v

sin θ(j+
µVA
v

cos θ)[P j
R‖ +P j

‖R]
]

(183)

Adopting the correlation tensor (104) with no magnetic helicity we obtain

P j
RR(k) =

1 + cos2 θ

16πk2
gj(k), P j

‖‖(k) =
sin2 θ

8πk2
gj(k), P j

‖R(k) = P j
R‖(k) = −sin θ cos θ

8
√

2πk2
gj(k)

(184)

and we obtain

Dµµ =
Ω2

16πB2
0

(1− µ2)
∑
j=±1

∫ ∞

−∞
dk

∫ 2π

0
dψ

∫ π

0
dθ sin θ Rj

F (0)gj(k)J2
1 (W )[1 + cos 2ψ]

[
(1− jµVA

v
cos θ)2(1 + cos2 θ) +

µ2V 2
A

2v2
sin4 θ +

2VAµ

v
sin2 θ cos θ(j +

µVA
v

cos θ)
]

(185)

Throughout this chapter we consider isotropic turbulence gj(k) = gj(k). Modifications

due to different turbulence geometries are easily incorporated into the analysis.

For energetic cosmic ray particles with v >> VA the Fokker-Planck coefficient (185)

then simplifies to

Dµµ '
Ω2

4B2
0

(1− µ2)
∑
j=±1

∫ ∞

−∞
dk

∫ 1

−1
dη Rj

F (0)gj(k)J2
1 (W )(1 + η2) (186)

where

Rj
F (0) =

2.9 · 105βV 2
A(1− η2)

(2.9 · 105βV 2
Ak(1− η2))2 + [vµη + jVA]2

(187)
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Dpp '
Ω2p2V 2

A

4B2
0v

2
(1− µ2)

∑
j=±1

∫ ∞

−∞
dk
∫ 1

−1
dη Rj

F (0)gj(k)J2
1 (W )(1 + η2) (188)

Dpp '
p2V 2

A

v2
Dµµ (189)

Dµp = Dpµ '
Ω2pµV 2

A

2
√

2B2
0v

2
(1− µ2)

∑
j=±1

∫ ∞

−∞
dk
∫ 1

−1
dη Rj

F (0)gj(k)J2
1 (W )(1 + η2) (190)

We can further simplify (186) assuming equal intensity of forward and backward waves,

g+(k) = g−(k) =
1

2
gtot(k) (191)

which reads,

Dµµ '
Ω2

8B2
0

(1− µ2)
∑
j=±1

∫ ∞

−∞
dk
∫ 1

−1
dη Rj

F (0)gjtot(k)J2
1 (W )(1 + η2). (192)

To illustrate our results, we adopt a Kolmogorov-type power law dependence of gj(k)

above and below some minimum and maximum wavenumber kmin and kmax, respectively,

gtot(k) = gtotk
−q (193)

for kmin < k < kmax.

The magnetic energy density in wave component j is given by

(δBj)
2 =

∫ ∞

0
dkgj(k) (194)

which implies

gtot = (q − 1)(δB)2/(k1−q
min − k1−q

max) = (q − 1)(δB)2kq−1
min (195)

for kmax >> kmin.
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6.1.2 Rate of Adiabatic Deceleration

From (190) we obtain for the symmetric wave case I+
0 = I−0 that Dµp(−µ) = −Dµp(µ) is

antisymmetric in µ, so that the rate of adiabatic acceleration D

D =
3v

4p

∫ 1

−1
dµ(1− µ2)

Dµp(µ)

Dµµ(µ)
= 0 (196)

is identically zero.

6.1.3 Pitch-angle Fokker-Planck Coefficient

With (193), (194) and (195), Fokker-Planck coefficient Dµµ reads as

Dµµ '
Ω2

4B2
0

(q − 1)(δB)2kq−1
min(1− µ2)

∫ kmax

kmin

dkk−q
∫ 1

−1
dη RF (0)J2

1 (W )(1 + η2). (197)

Now, we must approximate the resonance function. For doing this we consider two

cases:

a) η < ηc

b) η > ηc,

where ηc = ε/µ. Than, using Dµµ(−µ) = Dµµ(µ) and substitution s = RLk
√

1− µ2,

we derive

Dµµ ' α(q − 1)(kminRL)q−1(
δB

B0

)2(1− µ2)
q+1
2

∫ ∞

kminRL

√
1−µ2

dss−q(
∫ min(1,ε/µ)

0
dη (1− η4)

J2
1 (s

√
1− η2)

1
α2(1−η2)2s2

R2
L(1−µ2)

+ V 2
A

+
∫ 1

min(1,ε/µ)
dη (1− η4)

J2
1 (s

√
1− η2)

1
α2(1−η2)2s2

R2
L(1−µ2)

+ (vµη)2
, (198)

where ε = VA/v and α = 2.9 · 105βV 2
A .

Large values µ > ε:

For large pitch-angles µ > ε we obtain

Dµµ(µ > ε) ' (q − 1)

α
(kminRL)q−1(

δB

B0

)2(1− µ2)
q+3
2

∫ ∞

kminRL

√
1−µ2

dss−q

(
∫ ε/µ

0
dη (1− η4)J2

1 (s
√

1− η2)
1

(1− η2)2s2 +
R2

L(1−µ2)V 2
A

α2

+
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∫ 1

ε/µ
dη (1− η4)J2

1 (s
√

1− η2)
1

(1− η2)2s2 +
R2

L(1−µ2)(vµη)2

α2

). (199)

Small values µ < ε:

This case is important when treated damped waves. For the small pitch-angles µ < ε

we obtain

DF
µµ(µ < ε) ' α(q − 1)(kminRL)q−1(

δB

B0

)2(1− µ2)
q+1
2

∫ ∞

kminRL

√
1−µ2

dss−q(
∫ 1

0
dη (1− η4)

J2
1 (s

√
1− η2)

1
α2(1−η2)2s2

R2
L(1−µ2)

+ V 2
A

. (200)

We have already discussed in Sec. 6.1.1 that inclusion of resonance broadening due to

wave damping in the resonance function guarantees dominance of transit-time damping.

The main contribution of waves damping comes exactly in the region |µ| < ε that is

relevant in deriving the spatial diffusion coefficient and related mean free path which are

given by the average over µ of the inverse of Dµµ. Therefore we can further consider only

the case Dµµ(µ = 0), which simplifies the analysis enormously, and reads:

DF
µµ(µ = 0) ' (q − 1)

α
(kminRL)q−1(

δB

B0

)2
∫ ∞

kminRL

dss−q

∫ 1

0
dη (1− η4)J2

1 (s
√

1− η2)
1

(1− η2)2s2 +
V 2

AR
2
L

α2

. (201)

In the last equation s = kRL.

6.1.4 Cosmic Ray Mean Free Path for FMS Waves

In this section we calculate the mean free path which is connected with the spatial diffusion

coefficient through

λ =
3κ

v
=

3v

4

∫ 1

0
dµ

(1− µ2)2

Dµµ

. (202)

For the case we are interested in, it can be written as

λ0F =
3κ

v
=

3v

4

1

Dµµ(µ = 0)

∫ ε

0
dµ =

3

4

vA
DF
µµ(µ = 0)

=

3vA
4

α

(q − 1)
(kminRL)1−q(

B0

δB
)2 1

G
, (203)

where
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G =
∫ ∞

kminRL

dss−q
∫ 1

0
dη (1− η4)J2

1 (s
√

1− η2)
1

(1− η2)2s2 +
V 2

AR
2
L

α2

. (204)

Now, we consider two limits: kminRL << 1, and kminRL >> 1, where kminRL = T = E

and is normalized with respect to Ec (where Ec is defined as for undamped case (174)).

kminRL >> 1:

This case is treated in detail in Appendix B, where we derive

G(T >> 1) =
2

5

10−14

q
T−(q+2), (205)

λ0F (T >> 1) =
15VAα

8

q

q − 1
(
B0

δB
)21014T 3, (206)

where T = kminRL. At relativistic rigidities we find that λ0 ∼ T 3.

kminRL << 1:

This case is treated in detail in Appendix B, where we derive

G(T << 1) =
1

3

1

q − 1
T 1−q, (207)

λF0(T << 1) = 36VAα(
B0

δB
)2. (208)

In this energy limit the mean free path is constant with respect to T .

6.1.5 Cosmic Ray Momentum Diffusion from FMS Waves

In order to discuss the stochastic acceleration of the cosmic rays we calculate momentum

diffusion coefficient. Instead of using (67), we use the time scale estimates that provides

the product

τDτF = (
3L

VA
)2, (209)

to be constant, given by macroscopic properties of the considered physical system

(Schlickeiser 1986). τD is the time scale for particle to diffuse a length L by pitch-

angle scattering along the ordered magnetic field (calculated from the diffusion coefficient

κ or equivalent mean free path λ), τF is the stochastic acceleration time scale for a

particle to increase its momentum by factor e due to resonant wave scattering (calculated
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from the momentum diffusion coefficient A2) and L is the typical scale length. Diffusion

along magnetic field lines and stochastic acceleration due to resonant diffusion are twin

processes: once we know the time scale for one of them, the time scale for the other

process and this its relevance can be estimated from (209).

Thus, we derive momentum diffusion coefficient as:

AF0
2 =

V 2
A

3cλF0
p2. (210)

Using (206) and (208) we obtain for the momentum diffusion coefficient in the two

limits:

AF0
2 (T >> 1) = 6

q − 1

q

p2

cVAβ
(
δB

B0

)2 10−17

T 3
, (211)

and

AF0
2 (T << 1) = 5

p2

cVAβ
(
δB

B0

)210−7. (212)

6.2 Slow Magnetosonic Waves

In order to find transport coefficients for slow magnetosonic waves we use derivations of

Fokker-Planck coefficient Dµµ in Sec. 4.4.

With (120) and (179) the resonance function (100) for slow mode waves becomes

Rj
S(n) =

2.9 · 105βV 2
Ak

2 sin2 θ

(2.9 · 105βV 2
Ak

2 sin2 θ)2 + [kvµ cos θ + jVAk
√

ηβ
1+β

+ nΩ)]2
, (213)

and according to what have been concluded in Sec. 6.1.1 for fast magentosonic waves,

which holds for slow mode too, we consider n = 0 and resonance function (213) becomes

Rj
S(0) =

2.9 · 105βV 2
Ak

2 sin2 θ

(2.9 · 105βV 2
Ak

2 sin2 θ)2 + [kvµ cos θ + jVAk
√

ηβ
1+β

]2

=
2.9 · 105βV 2

A sin2 θ

(2.9 · 105βV 2
Ak sin2 θ)2 + [vµ cos θ + jVA

√
ηβ

1+β
]2
. (214)

Following the same procedure as for fast mode waves in Sec. 6.1.1, we make same

assumptions (191), (193) and (194), together with implication (195), we derive
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Dµµ '
Ω2

4B2
0

(1−µ2)
∑
j=±1

∫ ∞

−∞
dk

∫ 1

−1
dη Rj

F (0)gj(k)J2
1 (W )((1+η2)(1+µ2ε2

ηβ

1 + β
)−4µjε

√
ηβ

1 + β
η),

(215)

which can be simplified since we consider energetic cosmic ray particles v >> VA to

the same expression as in case for fast mode waves

Dµµ '
Ω2

4B2
0

(1− µ2)
∑
j=±1

∫ ∞

−∞
dk

∫ 1

−1
dη Rj

F (0)gj(k)J2
1 (W )(1 + η2), (216)

and finally,

DS
µµ '

Ω2

4B2
0

(q − 1)(δB)2kq−1
min(1− µ2)

∫ kmax

kmin

dkk−q
∫ 1

−1
dη RF (0)J2

1 (W )(1 + η2), (217)

The other two FP coefficients give

Dpp '
Ω2p2V 2

A

4B2
0v

2
(1− µ2)

β

1 + β

∑
j=±1

∫ ∞

−∞
dk
∫ 1

−1
dη Rj

F (0)gj(k)J2
1 (W )η(1 + η2), (218)

Dµp = Dpµ '
Ω2pµV 2

A

2
√

2B2
0v

2

β

1 + β
(1− µ2)

∑
j=±1

∫ ∞

−∞
dk
∫ 1

−1
dη Rj

F (0)gj(k)J2
1 (W )η(1 + η2),

(219)

and

D =
3v

4p

∫ 1

−1
dµ(1− µ2)

Dµp(µ)

Dµµ(µ)
= 0 (220)

is identically zero.

Next, we have to approximate the resonance function for slow mode waves. As in fast

mode case, there are two cases:

a) η < ηc

b) η > ηc,

where

ηSc =
ε2

µ2

β

1 + β
. (221)
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Note that ηSc << ηFc . Using Dµµ(−µ) = Dµµ(µ) and substitution s = RLk
√

1− µ2,

we derive

Dµµ ' α(q−1)(kminRL)q−1(
δB

B0

)2(1−µ2)
q+1
2

∫ ∞

kminRL

√
1−µ2

dss−q(
∫ min(1, ε2

µ2
β

1+β
)

0
dη (1−η4)

J2
1 (s

√
1− η2)

1
α2(1−η2)2s2

R2
L(1−µ2)

+ V 2
Aη

β
1+β

+
∫ 1

min(1, ε2

µ2
β

1+β
)
dη (1− η4)

J2
1 (s

√
1− η2)

1
α2(1−η2)2s2

R2
L(1−µ2)

+ (vµη)2
, (222)

where ε = VA/v and α = 2.9 · 105βV 2
A .

Large values µ > ε:

For large pitch-angles µ > ε we obtain

Dµµ(µ > ε) ' (q − 1)

α
(kminRL)q−1(

δB

B0

)2(1− µ2)
q+3
2

∫ ∞

kminRL

√
1−µ2

dss−q

(
∫ ε2β

µ2(1+β)

0
dη (1− η4)J2

1 (s
√

1− η2)
1

(1− η2)2s2 +
R2

L(1−µ2)V 2
A

ηβ
1+β

α2

+

∫ 1

ε2β

µ2(1+β)

dη (1− η4)J2
1 (s

√
1− η2)

1

(1− η2)2s2 +
R2

L(1−µ2)(vµη)2

α2

). (223)

Small values µ < ε:

This case is important when treated damped waves for the same reason we have

discussed for fast mode waves (Sec. 6.1.3). For the small pitch-angles µ < ε we obtain

DS
µµ(µ < ε) ' α(q − 1)(kminRL)q−1(

δB

B0

)2(1− µ2)
q+1
2

∫ ∞

kminRL

√
1−µ2

dss−q(
∫ 1

0
dη (1− η4)

J2
1 (s

√
1− η2)

1
α2(1−η2)2s2

R2
L(1−µ2)

+ V 2
A

ηβ
1+β

. (224)

DS
µµ(µ = 0) ' (q − 1)

α
(kminRL)q−1(

δB

B0

)2
∫ ∞

kminRL

dss−q

∫ 1

0
dη (1− η4)J2

1 (s
√

1− η2)
1

(1− η2)2s2 +
V 2

A
ηβ

1+β
R2

L

α2

. (225)

In the last equation s = kRL.
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6.2.1 Cosmic Ray Mean Free Path for SMS Waves

In this section we calculate the mean free path which is connected with the spatial diffusion

coefficient through

λS =
3κS

v
=

3v

4

∫ 1

0
dµ

(1− µ2)2

DS
µµ

. (226)

For the case we are interested in, it can be written as

λS0 =
3κS

v
=

3v

4

1

DS
µµ(µ = 0)

∫ ε

0
dµ =

3

4

VA
Dµµ(µ = 0)

=

3VA
4

α

(q − 1)
(kminRL)1−q(

B0

δB
)2 1

G
, (227)

where

G =
∫ ∞

kminRL

dss−q
∫ 1

0
dη (1− η4)J2

1 (s
√

1− η2)
1

(1− η2)2s2 +
V 2

A
ηβ

1+β
R2

L

α2

. (228)

Now, we consider two limits: kminRL << 1, and kminRL >> 1.

kminRL >> 1:

This case is treated in detail in Appendix C, where we derive

G(T >> 1) =
2
√

2h

π

10−13

q
T−(q+2), (229)

λ0S(T >> 1) =
3VAα

8
√

2

q

q − 1
(
B0

δB
)2π

h
1013T 3, (230)

where T = kminRL, h = 2arctanh
√

1− δ − 2
√

1− δ, with δ << 1.

At relativistic rigidities we find that λ0 ∼ T 3.

kminRL << 1:

This case is treated in detail in Appendix C, where we derive

G(T << 1) =
1

3

1

q − 1
T 1−q, (231)

λ0S(T << 1) = 36VAα(
B0

δB
)2. (232)

In this energy limit the mean free path is constant with respect to T .
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6.2.2 Cosmic Ray Momentum Diffusion from SMS Waves

In order to discuss the stochastic acceleration of the slow mode waves, we use the same

time scale estimates that was used for fast mode where we derived momentum diffusion

coefficient as:

A0S
2 =

V 2
A

3cλ0S
p2. (233)

Using (230) and (232) we obtain for the momentum diffusion coefficient in the two

limits:

A0S
2 (T >> 1) = 4

p2

cVAβ

q − 1

q

h

π
(
δB

B0

)2 10−17

T 3
, (234)

and

A0S
2 (T << 1) = 5

p2

cVAβ
(
δB

B0

)210−7, (235)

which is similar to ones obtained for fast mode waves.
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Figure 7: Anisotropy dependence on energy for particle energies below Ec. Result obtained

from (176) for E < Ec in case of undamped waves, and result obtained from (208) for

E < Ec in case of damped fast magnetosonic waves, compared to reported results from

the literature (Antoni et al. 2004; Aglietta et al. 2003; Kifune et al.1986).
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7 Summary

We have investigated the implications of isotropically distributed interstellar magnetohy-

drodynamic plasma waves on the scattering mean free path and the spatial anisotropy of

high-energy cosmic rays. We demonstrate a drastic modification of the energy dependence

of both cosmic ray transport parameters compared to previous calculations that have as-

sumed that the plasma waves propagate only parallel or antiparallel to the ordered mag-

netic field (slab turbulence). In case of slab turbulence cosmic rays with Larmor radius RL

resonantly interact with plasma waves with wave vectors at kres = R−1
L . If the slab wave

turbulence power spectrum vanishes for wavenumbers less than kmin, as a consequence then

cosmic rays with Larmor radii larger than k−1
min cannot be scattered in pitch-angle, causing

the socalled Hillas limit for the maximum energy EH
15 = 4Z · (B0/4µG)(L‖,max/parsec)

of cosmic rays being confined in the Galaxy. At about these energies this would imply

a drastic increase in the spatial anisotropy of cosmic rays that has not been detected by

KASKADE and other air shower experiments.

In case of isotropically distributed interstellar magnetohydrodynamic waves we demon-

strated that the Hillas energy EH is modified to a limiting total energy that is about 4

orders of magnitude larger Ec = 2.03 · 104An1/2
e (Lmax/1 pc) PeV, where A denotes the

mass number and Lmax the maximum wavenumber of isotropic plasma waves. Below this

energy the cosmic ray mean free path and the anisotropy exhibit the well known E2−q

energy dependence, where q = 5/3 denotes the spectral index of the Kolmogorov spec-

trum. At energies higher than Ec both transport parameters steepen to a E3-dependence.

This implies that cosmic rays even with ultrahigh energies of several tens of EeV can be

rapidly pitch-angle scattered by interstellar plasma turbulence, and are thus confined to

the Galaxy.

The physical reason for the dramatically higher value of the limiting energy is the

occurrence of dominating transit-time damping interactions of cosmic rays with magne-

tosonic plasma waves due to their compressive magnetic field component along the ordered

magnetic field. This n = 0 resonance is not a gyroresonance implying that cosmic rays in-

teract with plasma waves at all wavenumbers provided that the cosmic ray parallel speed

(transit speed) equals the parallel phase speed of magnetosonic waves. Only at small

values of the cosmic ray pitch-angle cosine |µ| ≤ ε = VA/v, where the cosmic ray particles
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spirals at nearly ninety degrees with very small parallel speeds less than the minimum

magnetosonic phase speed VA, gyroresonant interactions are necessary to scatter cosmic

rays. However, the gyroresonance condition of cosmic rays at µ = 0 reads kres = (RLε)
−1

instead of the slab condition kres = (RL)−1 causing the limiting energy enhancement from

EH to Ec by the large factor ε−1 = c/VA ' O(104).

Considering damped fast and slow mode waves caused by dominate viscous damping,

we have calculated the Fokker-Planck coefficients, the spatial diffusion coefficient, the

mean free path and the momentum diffusion coefficient of cosmic ray particles. We show

that inclusion of resonance broadening due to wave damping in the resonance function

guarantees that dominance of transit-time damping also holds for cosmic ray particles

at small pitch angle cosines µ ≤ |Va/v|, unlike the case of neglible wave damping. We

determined energy dependance of the mean free path of the cosmic rays. We have found

that for small energies it is approximately constant and for high energies is proportional

to the third power of energy of the particle. For the acceleration of the cosmic rays we

have used the time scale estimates to derive the momentum diffusion coefficient.

We have found that damping, at least for fast mode waves, has no dramatic influence

comparing to undamped case. The key issue in order to change Hillas limit has oblique

propagation of the waves in damped and undamped case.

The analysis for the influence of different types of damping, as well as the influence of

different geometries of turbulence, will be the subject of further research.
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8 Appendix A: Asymptotic calculation of the inte-

gral (164)

The task is to calculate the integral (164)

I2 =
∫ ∞

UA

dt t (t2 +
2n2

ε2
)[t2 +

n2

ε2
]−(q+4)/2l(Jn−1(t) + Jn+1(t)̊)

2, (236)

for small and large values of kminRL using the approximations of Bessel functions for small

and large arguments (Abramowitz and Stegun 1972), yielding

J2
n(t << 1) ' t2n

22nΓ2[n+ 1]
, (237)

and

J2
n(t >> 1) ' 1

πt
[1 + (−1)n sin(2t)]. (238)

According to (158)

UA = max(0, [R2
Lk

2
min −

n2

ε2
]1/2),

the lower integration boundary UA = 0 in the case kminRLε ≤ 1 which includes in partic-

ular the limit kminRL << 1 because ε << 1.

8.1 Case kminRLε ≤ 1

With the identity

Jn−1(t) + Jn+1(t) =
2nJn(t)

t
(239)

we obtain

I2(kminRLε ≤ 1) = 4n2
[
W [

q + 2

2
] +

n2

ε2
W [

q + 4

2
]
]

(240)

where

W [α] ≡
∫ ∞

0
dt t−1 J2

n(t)

[t2 + n2

ε2
]α
. (241)

With the asymptotics (237) and (238) we obtain
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W [α] ' (
ε

n
)2α[

1

22nΓ2[n+ 1]

∫ 1

0
dtt2n−1 +

1

π

∫ n/ε

1
dtt−2[1 + (−1)n sin(2t)]]

+
1

π

∫ ∞

n/ε
dtt−2(1+α)[1 + (−1)n sin(2t)] ' (

ε

n
)2α
[ 1

π
[1 + (−1)n1.00813− ε

n

−(−1)n

2
(
ε

n
)2 cos(

2n

ε
)] +

1

n22n+1Γ2[n+ 1]

]
+

1

π(1 + 2α)
(
ε

n
)1+2α +

(−1)n

π
j1, (242)

where we use

2
∫ ∞

1
dx x−2 sin x = 2(sin(1)− Ci(1)) = 1.00813

and where

j1 =
∫ ∞

n/ε
dtt−2−2α sin 2t = 22α

[
ı−2−2αΓ[−(1 + 2α),−2ı

n

ε
]+

(−ı)−2−2αΓ[−(1 + 2α), 2ı
n

ε
]
]

(243)

in terms of the incomplete gamma function. For large arguments (n/ε) >> 1 we obtain

asymptotically

j1 '
1

2
(
ε

n
)2+2α cos(

2n

ε
) (244)

Collecting terms we find to lowest order in << 1

W [α] ' 1

π
(
ε

n
)2α
[
1 + (−1)n1.00813 +

π

n22n+1Γ2[n+ 1]

]
(245)

so that

I2(kminRLε ≤ 1) ' 8

π
εq+2n−q[1 + (−1)n1.00813 +

π

n22n+1Γ2[n+ 1]
] (246)

8.2 Case kminRLε > 1

In this case UA = 0 for n ≥ N + 1, and UA =
√

(RLkmin)2 − (n/ε)2 for n ≤ N , where

N = inf[εRLkmin] (247)

denotes the largest integer smaller than εRLkmin. Hence we obtain again (246) for n ≥

N + 1
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I2(kminRLε > 1, n ≥ N + 1) ' 8

π
εq+2n−q[1 + (−1)n1.00813 +

π

n22n+1Γ2[n+ 1]
] (248)

For values of n ≤ N we find that

I2(kminRLε > 1, n ≤ N) = 4n2
[
V [
q + 2

2
] +

n2

ε2
V [
q + 4

2
]
]

(249)

where

V [α] ≡
∫ ∞

UA

dt t−1 J2
n(t)

[t2 + n2

ε2
]α

= (
ε

n
)2α

∫ ∞

εUA/n
dt t−1 J

2
n(nt/ε)

[1 + t2]α
(250)

We may express

kminRLε = N(1 + φ) (251)

with φ < 1/N , so that the lower integration boundary in (250) is

UA = [(
kminRLε

n
− 1)(

kminRLε

n
+ 1)]1/2 =

N

n
[(1 + φ− n

N
)(1 + φ+

n

N
)]1/2 (252)

In cases where N ≥ 2, (252) yields that for all values of n such that 1 ≤ n ≤ N − 1 the

lower integration boundary UA is greater unity. Using the expansion (238) in this case we

find that

V [α, n ≤ N − 1] ' 1

π
(
ε

n
)2α+1

∫ ∞

εUA/n
dt t−2−2α [1 + (−1)n sin(

2nt

ε
)] '

1

π(1 + 2α)
(U

−(2α+1)
A [1 + (−1)n

1 + 2α

2UA
cos(2UA)] ' U

−(2α+1)
A

π(1 + 2α)
(253)

In the remaining case n = N the lower integration boundary (252)

ε

N
UA =

√
φ(2 + φ) ≤

√
2.5φ < 1 (254)

is smaller unity, so that we approximate (250) in this case by

V [α, n = N ] ' (
ε

N
)2α[

∫ 1

εUA/N
dt t−1 J2

N(
Nt

ε
) +

∫ ∞

1
dt t−1−2α J2

N(
Nt

ε
)] '

(
ε

N
)2α[j2 +

ε

πN(1 + 2α)
(1 + (−1)n(1 + 2α)

ε

2N
cos(

2N

ε
))] (255)

where we approximate

69



j2 =
∫ 1

εUA/N
dt t−1 J2

N(
Nt

ε
) <

∫ ∞

0
dt t−1 J2

N(
Nt

ε
) =

1

2N
(256)

by its upper limit to obtain

V [α, n = N ] '
( ε
N

)2α

2N
. (257)

Collecting terms in (249) we derive

I2(kminRLε > 1, n = N) ' 4εq+2N−(q+1) (258)

and

I2(kminRLε > 1, n ≤ N − 1) ' 4n2

π(q + 3)
U
−(q+3)
A (259)
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9 Appendix B: Evaluation of the function G

The task is to calculate the function G (204)

G =
∫ ∞

kminRL

dss−q
∫ 1

0
dη (1− η4)J2

1 (s
√

1− η2)
1

(1− η2)2s2 +
V 2

AR
2
L

α2

, (260)

and evaluate it in two energy limits.

9.1 Case G(kminRL >> 1)

For energies T >> 1 we substitute s = xT . Than, (204) reads as

G =
∫ ∞

1
dxx−qT−(1+q)

∫ 1

0
dη (1− η4)J2

1 (xT
√

1− η2)
1

(1− η2)2x2 + 1014
=

T−(1+q)
∫ ∞

1
dxx−q(

∫ 1− 1
2xT

0
dη (1− η4)

1

πxT
√

1− η2

1

(1− η2)2x2 + 1014
+

∫ 1

1− 1
2xT

dη (1− η4)
1

4
x2T 2(1− η2)

1

(1− η2)2x2 + 1014
), (261)

where we have used

Jν(z >> 1) ≈
√

2

πνz
cos(νz − (2ν + 1)π

4
) (262)

implying

J2
1 (z >> 1) =

1

πxT
√

1− η2
(1− sin(2xT

√
1− η2)) ' 1

πxT
√

1− η2
(263)

(1/ξ >> sin ξ/ξ) for the argument z = xT << 1, and

Jν(z << 1) ≈ (z/2)ν

Γ(ν + 1)
(264)

implying

J2
1 (z << 1) =

1

4
x2T 2(1− η2), (265)

for the argument z = xT >> 1. We then obtain

T (1+q)G(T >> 1) =
T 2

4

∫ ∞

1
dxx−q+2

∫ 1

1− 1
2xT

dη (1− η4)
(1− η2)

(1− η2)2x2 + 1014
+

1

πT

∫ ∞

1
dxx−(q+1)

∫ 1

0
dη

(1− η4)√
1− η2

1

(1− η2)2x2 + 1014
−
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1

πT

∫ ∞

1
dxx−(q+1)

∫ 1

1− 1
2xT

dη
(1− η4)√

1− η2

1

(1− η2)2x2 + 1014
= I3 + I1 − I2. (266)

Next, we evaluate each integral in turn.

I2 =
1

πT

∫ ∞

1
dxx−(q+1)

∫ 1
2xT

0
dm

4m√
2m

1

4m2x2 + 1014
=

2

3

10−14

π(q + 3/2)
T−

5
2 , (267)

where we have substitute m = 1− η.

I3 =
T 2

4

∫ ∞

1
dxx−q+2

∫ 1
2xT

0
dm 4m

2m

1014
==

1

12

10−14

q
T−1, (268)

where we have used the same substitution as in previous case and 1014 >> 4m2x2. Note,

that I2 << I3.

I1 =
1

πT

∫ ∞

1
dxx−(q+1)

∫ 1

0
dη

(1− η4)√
1− η2

1

1014
=

5

16

10−14

q

1

T
. (269)

Combining all these three integrals we obtain

G(T >> 1) =
2

5

10−14

q
T−(q+2). (270)

9.2 Case G(kminRL << 1)

For energies T << 1 we use approximation for Bessel function (265). Then, (204) reads

as

G(T << 1) =
1

4

∫ 1

kminRL

dss−q
∫ 1

0
dη (1− η4)

(1− η2)s2

(1− η2)2s2 +
V 2

AR
2
L

α2

=

=
1

4

∫ 1

T
dss−q

∫ 1

0
dη (1 + η2)− M2

4

∫ 1

T
dss−q

∫ 1

0
dη (1 + η2)

1

(1− η2)2s2 +M2
= I5 − I4,

(271)

where M2 =
V 2

AR
2
L

α2 . We evaluate each integral in turn.

I5 =
1

4

∫ 1

T
dss−q

∫ 1

0
dη (1 + η2) =

1

3(q − 1)
(T 1−q − 1) ' 1

3(q − 1)
T 1−q, (272)

since T << 1, and 1 < q < 2.
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I4 =
M2

4

∫ 1

T
dss−q

∫ 1

0
dη (1 + η2)

1

(1− η2)2s2 +M2
=

1

4

∫ 1

T
dss−qI6, (273)

where

I6 =
∫ 1

0
dη (1 + η2)

1

((1− η2)2s2/M2) + 1
. (274)

Exact solution of integral I6 reads

(−1)1/4(
(−2i+n) arctan(

(−1)1/4
√
−i+n

)
√
−i+n +

i(2i+n) arctan(
(−1)3/4
√
−i+n

)
√
−i+n )

2n
√

1 + n2
(275)

where n = M2/s2. We can evaluate I6 by

I6 ≈
1

2n3
, (276)

which for I4 gives

I4 ≈
1

8M

1

2− q
(1− T (2−q)). (277)

In order to compare I4 and I5 and calculate G(T << 1) we have to consider two cases,

flat (1 < q < 2) and steep (2 < q < 6) turbulence spectrum.

9.2.1 Flat turbulence spectrum 1 < q < 2

We investigate G(T << 1) = I5 − I4, where I4 is evaluated for 1 < q < 2 and reads

I4 ≈
1

8(2− q)

1

107T
=

1

8(2− q)

10−7

T
, (278)

so that,

G(T << 1) =
1

3

1

q − 1
T 1−q(1− 3(q − 1)

8(2− q)
10−7T (q−2)). (279)

Here, we have to analyze function g(q, T ) = 1 − 3(q−1)
8(2−q)10−7T (q−2). Function g attains

minimum at qk = (3 lnT ±
√

ln2 T + 4 lnT )/2 lnT , and has vertical asymptote in q = 2

which is in agreement with assumption for flat turbulence spectrum. Since qk(T ) is a

function of T , as T becomes smaller the minimum peak becomes sharper, which gives

that in very narrow region around qk function g << 1, even become < 0 for T < 10−7.

As long as T > 10−7 function g ≈ 1. In Fig. 9 we show how function g depend on q for
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Figure 8: q dependance on the function g for 3 different fixed values of T

3 different fixed value of T . However, we can approximate g ≈ 1 for 1 >> T > 10−7 and

1 < q < 2, and for T < 10−7 but we have restriction qk + σ < q < 2 where σ depends on

smallness of T . In that case

G(T << 1, 1 < q < 2) =
1

3

1

q − 1
T 1−q. (280)

9.2.2 Steep turbulence spectrum 2 < q < 6

We investigate G(T << 1) = I5 − I4, where I4 is evaluated for 2 < q < 6 and reads

I4 ≈
1

8(2− q)

1

107T
(1− T 2−q) =

−1

8(2− q)
10−7T 1−q, (281)

since T << 1, so that,

G(T << 1, 2 < q < 6) = T 1−q(
1

3(q − 1)
+

10−7

8(2− q)
) ≈ 1

3

1

q − 1
T 1−q. (282)
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10 Appendix C: Evaluation of the function G

The task is to calculate the function G (228)

G =
∫ ∞

kminRL

dss−q
∫ 1

0
dη (1− η4)J2

1 (s
√

1− η2)
1

(1− η2)2s2 +
V 2

A
ηβ

1+β
R2

L

α2

. (283)

and evaluate it in two energy limits.

10.1 Case G(kminRL >> 1)

For energies T >> 1 we substitute s = xT . Than, (228) reads as

G =
∫ ∞

1
dxx−qT−(1+q)

∫ 1

0
dη (1− η4)J2

1 (xT
√

1− η2)
1

(1− η2)2x2 + p2η
=

T−(1+q)
∫ ∞

1
dxx−q(

∫ 1− 1
2xT

0
dη (1− η4)

1

πxT
√

1− η2

1

(1− η2)2x2 + p2η
+

∫ 1

1− 1
2xT

dη (1− η4)
1

4
x2T 2(1− η2)

1

(1− η2)2x2 + p2η
), (284)

where p2 = (v2
AR

2
Lβ)/(α2(1 + β)), and we have used

Jν(z >> 1) ≈
√

2

πνz
cos(νz − (2ν + 1)π

4
) (285)

implying

J2
1 (z >> 1) =

1

πxT
√

1− η2
(1− sin(2xT

√
1− η2)) ' 1

πxT
√

1− η2
(286)

(1/ξ >> sin ξ/ξ) for the argument z = xT << 1, and

Jν(z << 1) ≈ (z/2)ν

Γ(ν + 1)
(287)

implying

J2
1 (z << 1) =

1

4
x2T 2(1− η2), (288)

for the argument z = xT >> 1. We then obtain

T (1+q)G(T >> 1) =
T 2

4

∫ ∞

1
dxx−q+2

∫ 1

1− 1
2xT

dη (1− η4)
(1− η2)

(1− η2)2x2 + p2η
+

1

πT

∫ ∞

1
dxx−(q+1)

∫ 1

0
dη

(1− η4)√
1− η2

1

(1− η2)2x2 + p2η
−
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1

πT

∫ ∞

1
dxx−(q+1)

∫ 1

1− 1
2xT

dη
(1− η4)√

1− η2

1

(1− η2)2x2 + p2η
= I3 + I1 − I2. (289)

Next, we evaluate each integral in turn.

I2 =
1

πT

∫ ∞

1
dxx−(q+1)

∫ 1
2xT

0
dm

4m√
2m

1

4m2x2 + p2(1−m)
=

1

πT

∫ ∞

1
dxx−(q+1)I ′2(m,x),

(290)

where we have substitute m = 1− η.

I3 =
T 2

4

∫ ∞

1
dxx−q+2

∫ 1
2xT

0
dm

8m2

p2(1−m) + 4m2x2
=
T 2

4

∫ ∞

1
dxx−q+2I ′3(m,x), (291)

where we have used the same substitution as in previous case.

I1 =
1

πT

∫ ∞

1
dxx−(q+1)

∫ 1

0
dm

4m√
2m

1

p2(1−m) + 4m2x2
=

1

πT

∫ ∞

1
dxx−(q+1)I ′1(m,x).

(292)

In order to compare functions under integration with respect to m, we write out

following integrals

I ′2(m,x) =
∫ 1

2xT

0
dm

4m√
2m

1

4m2x2 + p2(1−m)
=

2
√

2

p2

∫ 1
2xT

0
dm f1 (293)

I ′3(m,x) =
∫ 1

2xT

0
dm

8m2

p2(1−m) + 4m2x2
=

8

p2

∫ 1
2xT

0
dm f2, (294)

I ′1(m,x) =
∫ 1

0
dm

4m√
2m

1

p2(1−m) + 4m2x2
=

2
√

2

p2

∫ 1

0
dm f1, (295)

where f1 =
√
m

1−m and f2 = m2

1−m , where we have approximated denominator as 1−m, as

long as holds 4x2

p2
<< 1. Analyzing f1 and f2 in given intervals of integration we deduce

that I2 << I3 << I1, since f1 >> f2 and f1 is dominant in interval [0, 1).

Integral I ′1 diverge for m = 1, so we integrate up to b = 1−δ where δ << 1. Combining

all, we obtain

G(T >> 1) =
2
√

2

π

h

qp2
T−(q+2), (296)

where h = 2arctgh
√
b− 2

√
b.
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10.2 Case G(kminRL << 1)

For energies T << 1 we use approximation for Bessel function (288). Then, (283) reads

as

G(T << 1) =
1

4

∫ 1

kminRL

dss−q
∫ 1

0
dη (1− η4)

(1− η2)s2

(1− η2)2s2 +
V 2

AR
2
Lηβ

α2(1+β)

=

=
1

4

∫ 1

T
dss−q

∫ 1

0
dη (1 + η2)− p2

4

∫ 1

T
dss−q

∫ 1

0
dη (1 + η2)

η

(1− η2)2s2 + p2η
= I5 − I4,

(297)

where p2 =
V 2

AR
2
Lβ

α2(1+β)
. We evaluate each integral in turn.

I5 =
1

4

∫ 1

T
dss−q

∫ 1

0
dη (1 + η2) =

1

3(q − 1)
(T 1−q − 1) ' 1

3(q − 1)
T 1−q, (298)

since T << 1, and 1 < q < 2.

In order to estimate I4 we write

I4 =
p2

4

∫ 1

T
dss−q

∫ 1

0
dη (1 + η2)

η

(1− η2)2s2 + p2η
=

1

4

∫ 1

T
dss−qI6, (299)

where

I6 =
∫ 1

0
dη (1 + η2)

η

((1− η2)2w2) + η
, (300)

and w2 = s2/p2. Here, we compare functions in integrals I5 with respect to η named

f1 = (1 + η2) and in I6 named f2 = (1 + η2) η
((1−η2)2w2)+η

.

We find that for w2 >> 1 one has f1 > f2 all over interval [0, 1). Close to η = 1

these two functions tend to infinity, so we restrict our calculation up to η = 1− δ, where

δ << 1.

Combining these two integrals we obtain,

G(T << 1, 1 < q < 2) =
1

3

1

q − 1
T 1−q. (301)

In the case w2 << 1, f1 = f2 and integral vanishes.
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