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Abstract

The Sun is an active star that manifests its activity not only in the appearance of the well-
known sunspots but also in flares. During a flare, a huge amount of the stored magnetic
energy is suddenly released and transfered into: a local heating of the corona, mass motions
(e.g., jets and coronal mass ejections), an enhanced emission of electromagnetic radiation
(from the radio up to the γ-ray range), and a generation of energetic particles (e.g., elec-
trons, protons, and heavy ions). A substantial part of the flare released energy is carried by
the energetic electrons, which are the source of the nonthermal radio and X-ray radiation.
They can be detected by different means: with radio (e.g., from the ground-based radio
observatories of the Astrophysical Institute Potsdam, Germany and the Nançay radioheli-
ograph, France, respectively), with X-ray (e.g., RHESSI satellite), and with in-situ (e.g.,
WIND spacecraft) measurements. One of the most important and still open questions in
solar physics is how the electrons are accelerated up to high energies within a short time,
as it is observed during flares. Understanding the basic physical mechanisms that take part
in the acceleration process of electrons in the solar corona is also of general astrophysical
interest (e.g., for flares at other stars, relativistic jets, active galactic nuclei).

From radio observations it is known that electrons can be accelerated up to velocities of the
order of 0.3 c for time scales of around 10 ms. This gives an estimate for the acceleration
length of several hundred kilometers. Compared to the solar radius, the acceleration site is
extremely small in spatial extent, and hence the electron acceleration can be regarded as a
local process.

The aim of the dissertation is to search for localized wave structures that are
able efficiently to accelerate electrons. Motivated by radio and X-ray observa-
tions, it is theoretically investigated how such structures can contribute to the
processes leading to the effective electron acceleration in the solar corona.

There are two main mechanisms able to accelerate electrons: due to a process of magnetic
reconnection and by shocks. These aspects are investigated with respect to the localized
wave structures here. Accepting the general picture of magnetic reconnection as the basic
process of the flare, it is focused on the ejection of plasma after the rearranging of the newly
reconnected magnetic field lines. Such plasma jets, as extensively studied with the Yohkoh
satellite mission, were spatially and temporally associated with the so-called type III metric
radio bursts, regarded as the radio signatures of a beam of energetic electrons propagating
through the solar corona. In order to study the link between the plasma jets and the genera-
tion of energetic electrons, the jet–plasma interaction (i.e., jet with the background coronal
plasma) is investigated here, namely, how in this configuration an (ion-acoustic) instability
could arise and provide an enhanced level of electrostatic fluctuations, at which electrons
can be accelerated (and/or heated), as observed in the type III metric radio bursts in the
solar radio radiation.
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iv Abstract

On the other hand, shocks are also able to accelerate electrons, as observed by so-called
type II metric radio bursts (the radio signature of a shock wave in the solar corona). In
space plasmas, shocks are best observed at Earth’s bow shock, traveling interplanetary
shocks and shocks related with co-rotating interaction regions. These observations show,
that energetic electrons are associated with shocks attached by whistler waves. Here, we
study the electron–whistler–shock interaction under coronal conditions as a possible config-
uration for the successful acceleration of electrons in the solar corona. Because there are no
direct observations of shocks in the corona, it is assumed that the basic plasma processes
responsible for the electron acceleration at all shocks should be the same.

In both approaches, the electron is regarded as a test particle moving in the electro-
static (ion-acoustic) wave field, in the case of a jet–plasma interaction, and/or in the
electric and magnetic fields of the shock and the attached whistlers, in the case of an
electron–whistler–shock interaction. Both provide us two new theoretical models for elec-
tron acceleration in the solar corona and are well in agreement with the radio and X-ray
observations.

The dissertation is structured as follows:

A general overview on the Sun, the flare process and the flare-produced energetic electrons
in the solar corona is given in Chapter 1. Thereafter, an overall description of the plasma
waves is briefly presented in Chapter 2.

In Chapter 3 a nonlinear analysis of the plasma waves is performed for a pure electron–
proton plasma, in order to obtain fully nonlinear solutions of the employed two-fluid plasma
equations. These nonlinear solutions are a complementary study for the considered later on
(in Chapter 5) problem of electron movement in the attached whistler packets at a coronal
shock wave.

Chapter 4 explores the new approach for electron acceleration due to an ejection of plasma
jets when a magnetic reconnection takes place in the corona. The mechanism considers the
process of the jet–coronal plasma interaction that is treated in a kinetic manner (via the
Vlasov–Maxwell equations). Under special conditions this jet–plasma interaction gives rise
to an (ion-acoustic) instability providing an enhanced level of electrostatic fluctuations at
which electrons are accelerated and/or heated.

Chapter 5 presents the study of an electron interaction with attached whistler waves at
shocks as a further successful mechanism for electron acceleration in the solar corona. The
presented model in the dissertation has the advantage to account for a more realistic shock
configuration in the solar corona, in contrast to the already existing theories for particle
acceleration at coronal shocks.

A summary of all obtained results of the dissertation is presented in Chapter 6.
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Chapter 1

Introduction

1.1 Structure of the Sun

Our Sun is an ordinary main-sequence star of absolute stellar magnitude 4.8. It is however
the only star in our proximity that we are able to observe in such great details. In the
last decades, a fleet of satellite missions (e.g., Ulysses, Yohkoh, SOHO, TRACE, RHESSI,
Hinode (SOLAR-B), STEREO, see for example [19, 11]) essentially did and will continue
to enhance our knowledge about the Sun (an overall view of the Sun is shown on Fig. 1.1).
The quality enhancement of the satellite data is one necessary condition for the gradual im-
provement of our physical understanding: on the Sun (in particular), on the other stars (in
general), and on the solar system, as an unique real-plasma laboratory (mostly impossible
to reproduce in terrestrial conditions). Naturally, the discoveries on the physical properties
of the Sun can be applied to other stars, that is usually called solar–stellar connection.

Overall physical properties of the Sun [83]:

Spectral type: G2 V

Age: 4.5 × 109 yr

Mass: M⊙ = 1.99 × 1033 g

Radius: R⊙ = 6.96 × 1010 cm (696 000 km)

Mean mass density: ρ⊙ = 1.4 g cm−3

Surface gravity: g⊙ = 2.74 × 104 cm s−2

Luminosity (emitted radiation per second):

L⊙ = 3.86 × 1033 erg s−1 (3.86 × 1026 W)

Mass loss rate: 1012 g s−1

Equatorial rotation period: 26 days

Effective temperature: Teff = 5785 K Figure 1.1: Cartoon on the solar interior,
atmosphere and phenomena (NASA).
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2 Chapter 1: Introduction

However, the Sun is mostly important for us because of its constant supply of light and heat
that sustain life on Earth. It is as well the main driver for the geomagnetic and climate
disturbances on our planet. Such solar–terrestrial connection is known as space weather.

Because the mean distance from the Sun to Earth is about 150 × 106 km (or 1 AU), an
angle of 1 arcsecond corresponds to a length scale of 726 km on the solar surface. Presently,
the achieved spatial resolution from ground-based optical telescopes goes down to resolving
structures of about 100 km, as for example done with the Swedish Solar Telescope (SST)1.

Though a detailed description of the Sun is not intended here, a general overview of the
solar interior and atmosphere will follow, for the completeness of the introductory part.

Solar interior

The solar interior (as schematically given on Fig. 1.1) is visually hidden from us, i.e., there
is no radiation coming directly from this inner part of the Sun that could give us a hint
about the physical conditions inside the Sun (the neutrinos are the only exception). It was
up to the theoretical models to determine how the physical quantities (like temperature,
density, pressure, rotation, sound speed, and chemical composition) vary with depth. In
the 1970s, the prediction of such solar models could be actually checked with observation,
namely with the results given from the helioseismology. Helioseismology is a study of the
interior of the Sun by analyzing magnetosound and magnetogravity waves that propagate
through the solar interior and manifest themselves as oscillations at the solar surface. Hence
due to analysis of these pressure (or p-) modes, one can actually ‘see’ in the solar inner parts
(by analogy with the earthquakes used for probing the terrestrial interior).

The Sun, as any other star, is a plasma sphere held together by the perfect balance of its gas
pressure and its gravitational attraction. The Standard Model of the Sun (i.e., spherically
symmetric, negligible effects of: internal rotation, internal magnetic fields, mass loss, and
tidal forces) is based on the simplest possible assumptions, in contrast to the more recent
models, taking into account the latest available physical inputs (e.g., opacity, hydrogen–
helium abundance, neutrino deficit), see for example the model by [15]. Usually all models
give chemical composition dominated by hydrogen (X = 0.71) and helium (Y = 0.27), with
small fraction of heavy elements (Z = 0.02) [7].

The solar interior is schematically divided into three zones: core, radiative and convective
zone (see Fig. 1.1). The solar models give a central temperature 15 × 106 K and mass den-
sity2 150 g cm−3. The core temperature and density are both high enough to initiate and
sustain thermonuclear reactions. The solar core extends to about a quarter of the visible
solar radius but contains half of the total solar mass. There, the hydrogen nuclei are fused
into helium (most efficiently by the proton–proton cycle) and thus generate more than 99%
of the whole energy needed for sustaining the solar luminosity. The thermonuclear burning

1The Swedish 1-meter Solar Telescope (SST) is operated on the island of La Palma by the Institute
for Solar Physics of the Royal Swedish Academy of Sciences in the Spanish Observatorio del Roque de los
Muchachos of the Instituto de Astrofsica de Canarias. http://www.solarphysics.kva.se/

2For the solar interior the mass density will be used, and its value is given here in cgs-units,
from http://solarscience.msfc.nasa.gov/interior.shtml, but note that slight variations are possible in other
references.
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is almost completely shut off beyond the outer edge of the core (at a distance of about
175 000 km from the center of the Sun). At that point the temperature is only half its cen-
tral value, i.e., 5.9–7.5× 106 K and the density drops to about 20 g cm−3, which is regarded
as the ‘lower border’ of the next zone.

The core is wrapped with the so-called radiative zone that extents up to nearly 0.7 of
the solar radius and reaches temperature of 1.8–2× 106 K, whereas the density drops down
to 0.2 g cm−3 at the top of the zone. Throughout this zone, the photons are transported
by radiative diffusion. The generated photons in the core need some 10 million years to
finally leave the solar interior (compare to about 2 seconds in the case of a free path), being
constantly scattered, absorbed and re-emitted on their way. The effect of these collisions
is that the initial wavelength of the photon generated in the core (in the γ-ray range) is
increased to that of a visible light.

In the upper one-third of the visible solar radius, the so-called convective zone is es-
tablished, since the temperature gradient becomes too steep for the plasma to remain in
static equilibrium (the measured temperature and density on the surface are 5785 K and
0.2 × 10−6g cm−3, correspondingly). As a result, this region is convectively unstable and
the plasma is brought in up- and downward motions due to buoyancy forces. Restless con-
vective sells of different sizes arise, and so the energy is transported dominantly by such
convective motions.

A different kind of motions of large regions of the Sun are the vertical oscillations with
speed of a thousand km per hour and period of about 5 minutes. In the early 1970s these
5-minute oscillations were correctly interpreted as surface vibrations arising from standing
sound waves in the convection zone. Sound waves of narrow frequency range are trapped in
the convection zone and they interfere with each other forming standing waves. Analyzing
the complicated interference pattern that arise on the surface from all oscillating modes,
it is possible to determine the depths at which the modes get refracted (usually at place
where a sharp gradient in density is present, i.e., at the borders of two different zones of the
solar interior). After the investigation of such solar oscillation data from MDI3 instrument
aboard SOHO4 spacecraft, an important discovery was made, namely the distinct ‘bump’
in the sound speed profile at the base of the convection zone. Due to this sudden increase in
the sound speed and hence a corresponding increase in temperature and density, a ‘shear’
region near 0.67 R⊙ develops, which is known as ‘tachocline’ [11]. This interface layer
between the radiative and the convection zone, has an important consequence related to
the dynamo theory for generation of the magnetic field in the Sun.

Solar atmosphere

The solar atmosphere can be roughly divided into three layers with no rigid boundaries be-
tween each of them: photosphere, chromosphere, (transition region) and solar corona
(that extends outwards as the solar wind). Usually, they are considered as spherical shells,
instead of regarding them as domains with different physical characteristics [10] (Fig. 1.1).

3Michelson Doppler Imager (MDI). http://soi.stanford.edu/
4SOlar and Heliospheric Observatory (SOHO) is a project of international collaboration between

ESA and NASA to study the Sun from its deep core to the outer corona and the solar wind.
http://sohowww.nascom.nasa.gov/
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Figure 1.2: White light image of the Sun
with sunspot group, from the finder tele-
scope at the SST, credit Royal Swedish
Academy of Sciences.

Figure 1.3: Granulation and group of
sunspots on 15–Jul–2002 from the SST,
credit Royal Swedish Academy of Sciences
(zoomed area from Fig. 1.2).

In each of these layers, the main physical plasma properties: number density5, temperature,
pressure, and magnetic field strength, vary with the radial distance (due to the gravitation-
ally stratification of the medium) and additionally different transient features/structures
are present or become prominent.

Photosphere

The lowest atmospheric layer, called photosphere, is the ‘optical surface’ of the Sun because
there the solar plasma becomes transparent to optical light (see Fig. 1.2). The emitted
radiation is primarily in the form of thermal blackbody radiation. It has an effective tem-
perature of 5785 K and overall density of 1017 cm−3. It is only some hundred kilometers
wide and the gas is only partially ionized (mostly neutral) with electron to neutral density
ratio of about 10−4 [83]. Convective motions, as present just below the photosphere, are
observed over the whole surface as a boiling structure, called granulation, see Fig. 1.3.
The granules are usually very irregular, but in general with polygonal shapes and are sur-
rounded with darker intergranular lanes. Each granulation cell ranges in width from 210 km
up to 2300 km (0.3”–3”) with mean diameter of 970 km (1.3”) and characteristic lifetime
of 10–16 min (observed with SST). The up-/downward motion as measured by Doppler
shifts of Fraunhofer lines gives vertical rms (root mean squared) velocities of 1 km s−1

and horizontal rms velocities of 2 km s−1. In summary, in white light the granulation can
be described as irregular mosaic of bright patterns (that are in fact rising hot material),
separated by narrow dark lanes (cooler descending material, respectively). Another kind
of large-scale horizontal motion on the Sun is the so-called supergranulation [47], with

5Here, for describing the density of the plasma in the solar atmosphere, the number density will be used.
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velocities of about 0.3–0.5 km s−1. The supergranulation also manifests itself in the photo-
sphere, although it is more difficult to distinguish than the granulation. Supergranulation
cells range from 25000 km to 85000 km (mean size of about 35000 km across) and have
lifetime of about 1–2 days. Another intermediate velocity pattern was also observed, with
scale size of 5000–10000 km (7”–14”) across, lifetime of around 2 hours and vertical rms
speed of 0.06 km s−1. It was called mesogranulation [76] and the mesogranules could be
interpreted as groups of individual granules displaying a common velocity pattern.

Chromosphere
The chromosphere is the ‘coloured’ sphere as revealed just before and after a total solar
eclipse. Another definition, [83] for example, describes it as the layer between the temper-
ature minimum (4200 K) and the level of ≈ 104 K, with a width of about 2000 km. This
layer is more transparent in comparison with the underlying photosphere, with a density
of the order of 1011 cm−3. The gas in the chromosphere is almost transparent to visible
(continuum) radiation but is optically thick in certain atomic transition lines. For example,
very fine observations in the strong chromospheric Hα and CaII H&K lines display a variety
of interesting phenomena, such as: spicules (small jets seen in projection as ‘fur/hair’-like
structure, extending up to 6500–9500 km out of the limb); bright and dark mottles (that
are in fact spicules projected on the bright background); chromospheric network structure
(bright network pattern with cells of 30 000–35 000 km); plages (bright patches), filaments
(elongated dark structures that are in fact protuberances seen on the disc); fibrils (fine
dark lines), etc. This very complex morphology confirms the non-uniform and the non-
homogeneous structure of the chromosphere.

Transition region
This is an intermediate region between the relatively cool chromosphere (104 K) and the
hot corona (106 K) and it is more appropriate to regard it as a temperature regime than a
concentric geometric layer of few hundred kilometers [10]. In this region there is a sharp
spatial discontinuity in temperature and density, as shown on Fig. 1.4, i.e., the temperature
rises 100 times, while the density drops at least 1000 times. The transition region (TR) is
best visible in certain strong EUV resonance lines of heavy ions of FeXV, MgIX, NeVII,
OVI/IV. Observations made at HeII line (304 Å) from SOHO arise at 6 × 104 K, which
corresponds to the lower part of the TR, while images taken in Fe IX line (171 Å) formed
at 1 MK refer to the upper TR. Observations made in different lines allow to actually see
various layers from the TR (and the solar atmosphere in general), thus different structures
become more prominent and could be seen in greater details.

Corona
The corona is the uppermost region of the solar atmosphere and it extends gradually out-
wards into the interplanetary medium as the solar wind. This is the hottest (surprisingly
reaching values of 1–2×106 K) and the most tenuous layer (with density fall from 109 cm−3

to 106 cm−3) of the atmosphere. It can be observed in visible (white) light only during
the total phase of a solar eclipse from Earth (as for example on Fig. 1.5) or with corono-
graphs (artificially blocking the bright photosphere) from satellites (e.g., with LASCO6

abord SOHO). The coronal gas is fully ionized and emits radiation mostly in the form of

6Large Angle and Spectrometric Coronagraph Experiment (LASCO) is a set of three coronagraphs that
image the solar corona from 1.1 to 32 solar radii. http://lasco-www.nrl.navy.mil/
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Figure 1.4: Temperature (solid line) and
density (dashed line) dependence with the
height over the solar surface, from A.
Gabriel (1976) [24].

Figure 1.5: Solar corona during the
total eclipse on 29–03–2006, credit M.
Druckmüller and P. Aniol (2006).

line emission from highly ionized species (e.g., FeXVI, SIX, HeII).

In general, there are several different types of observations that are used to determine the
coronal properties, namely in white light, EUV emission lines, soft and hard X-ray (e.g.,
from SOHO, TRACE7, Yohkoh8 and RHESSI9, respectively, as well as with Hinode10). Such
images reveal that the corona is highly structured consisting of complex fine filamentary
loops, outwardly directed streamers, helmet-shaped structures/streamers, extending far out
from the Sun. Around the poles, short streamers bending toward lower latitudes are de-
tected. These polar jets are called polar plumes, that apparently follow the magnetic field
lines of a global bar magnet with strength of 5–10 G, rooted in the center of the Sun [11].

One of the still open problems of the modern astrophysics is the source and the physical
regime for the heating of the solar corona. Several different mechanisms were proposed,
namely, heating by sound, magnetosound or Alfvén waves and later another idea for heat-
ing by micro- or/and nano-flares emerged. None of these mechanisms however was able to
reproduce the expected value of the coronal temperature. Recent observation from MDI
and EIT11 aboard SOHO revealed the constant appearance and disappearance of magnetic
bipoles at the feet of the magnetic loops. Due to ceaseless reconnection of these magnetic

7Transition Region and Coronal Explorer (TRACE) is a NASA Small Explorer (SMEX) mission to image
the solar corona and transition region at high angular and temporal resolution. http://trace.lmsal.com/

8Yohkoh solar observatory satellite is a cooperative mission of Japan, the USA, and the UK.
http://www.lmsal.com/SXT/homepage.html

9Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is a NASA Small Explorer (SMEX)
mission with primary mission to explore the basic physics of particle acceleration and explosive energy release
in solar flares. http://hesperia.gsfc.nasa.gov/hessi/index.html

10Hinode (Solar B) is a Japanese satellite with three advanced solar telescopes aboard: solar optical
telescope, X-ray telescope and EUV imaging spectrometer. http://solar-b.nao.ac.jp/

11Extreme ultraviolet Imaging Telescope (EIT). http://umbra.nascom.nasa.gov/eit/
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loops all over the Sun (creating the so-called ‘magnetic carpet’ [109]), strong magnetic cur-
rents are generated in such magnetic short circuits that can heat the corona up to several
million degrees.

Solar wind
It is well known that the solar corona is the source of the solar wind. The solar wind is
not a uniform medium, but consists of two distinct types of streamers: slow and fast (see
Fig. 1.6). The fast solar wind (400–800 km s−1) originates from the coronal (polar) holes (see
Fig. 1.8 in Sect. 1.2), where the magnetic field configuration is predominantly open. The
slow solar wind (250–400 km s−1) comes from open field lines above active regions and/or
extention of coronal helmet streamers, that is from the nearly equatorial region (seen on
Figs. 1.5 and 1.6). The overall temperature and density near 1 AU are 0.3–1×105 K and
10 cm−3, respectively [93].

It was Parker (1958) who was able to present a model of the solar corona which cannot be
in static equilibrium, but instead extending outwards as ‘solar wind’ [77]. The classical way
is considering a steady, spherically symmetric expansion of isothermal plasma. The solar
wind solution of such approach was observationally confirmed by one of the first satellite
missions (Venus probe Mariner II in 1962) that measured the speed of the solar wind at
Earth (of several hundred kilometers per second). Recently the Ulysses12 mission substan-
tially improved the overall knowledge about the 3D-structure of the heliosphere and the
solar wind [121, 122].

Figure 1.6: Plot of the solar speed as detected from Ulysses satellite (from NASA/ESA).

12The main scientific goal of the joint ESA-NASA Ulysses deep-space mission is to make the first-ever
measurements of the unexplored region of space above the Sun’s poles. http://helio.estec.esa.nl/ulysses/
http://ulysses.jpl.nasa.gov/index.html
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1.2 The active Sun

The Sun is an active star. The solar atmosphere manifests this activity in various spatial
(horizontal and vertical) and temporal (periodic and sporadic) scales. When observed in
white light, the photosphere show one of the earliest discovered and most famous phenom-
ena of the solar activity: the sunspots (see Fig. 1.3). Sunspots have horizontal extent
comparable to the supergranulation cell, i.e., 20 000 km for the umbra and 40 000 km for
the penumbra. The magnetic field in sunspots is 1000–3000 G (0.1–0.3 T), whereas the
average surface field strength is about 1 Gauss (10−4 T). They appear dark (i.e., cooler) on
the solar surface. The temperature of the umbra is about 3800 K, i.e., nearly 2000 K less
than the surrounding photospheric gas. The sunspots are regarded as the manifestation of
a magnetic field tube that emerges over the surface – and hence at least a pair of magnetic
spots with opposite polarities is seen.

A plasma tube of enhanced magnetic field becomes buoyant in the convection zone because
is less dense than the surrounding (field-free) plasma. The (plasma plus magnetic) pressure
balance condition requires that such fluid should rise and during its upward motion it cools
adiabatically (because the magnetic field prohibit convection). Thus it will appear colder on
the surface in comparison with the surrounding plasma. Sunspots usually appear in groups
and the field in the group can be unipolar, bipolar or very complex (see e.g., the Zurich
classification system [39] and its modification by [63]). Sunspots mainly appear in two zones
of heliospheric latitude in the northern and southern hemisphere (at around ±35◦) and the
leading sunspot in the group (in direction of the solar rotation) has the same polarity as
the hemisphere where it is created. The total number of sunspots varies with a period of
about 11 years – known as the solar cycle. The average latitude of the sunspot appearance
migrates from mid-latitudes down to the equator region during the solar cycle, forming the
famous butterfly-diagram (i.e., number of sunspots vs. time, see Fig. 1.7). The average
solar magnetic field is roughly bipolar and the dipole switches its polarity every solar cycle
as the reversal occurs during the solar maximum (maximum of sunspots). Thus the true
period of the magnetic field is 22, instead of 11 years.

Figure 1.7: Butterfly diagram of the sunspots, from NASA/NSSTC/Hathaway 2006/07.
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Active regions (ARs) appear as bright areas on the images in X-ray emission (see Fig. 1.8)
at the equatorial belt (i.e., ±30◦ around the solar equator), and represent concentrations
of magnetic flux with field strength greater than 100 G and temperature (in the corona)
of about 2.5 × 106 K. Usually the active regions overlie sunspot groups in the photosphere.
The distribution of the active regions changes during the solar cycle, for example during
the solar minimum the few active regions are confined around the solar equator, whereas
near the solar maximum they can be seen at higher heliospheric latitudes, which has the
corresponding influence on the appearance of the solar corona as well.

A coronal hole, as for example is nicely seen at the pole of the Sun on Fig. 1.8, is an area
of dilute plasma and predominantly open magnetic field lines, hence it appears dark in soft
X-ray images. The coronal holes are the source of the fast solar wind. In contrast, regions of
closed magnetic lines contain dense plasma and thus appear as bright coronal loops in soft
X-ray. Morphologically the coronal loops (see Fig. 1.9) can be ordered, with increasing
temperature and density levels but decreasing typical length, in the following way: intercon-
necting loops (joining different active regions, sometimes further apart), quiet-region loops,
active region loops, post-flare loops and simple flare loops.

These coronal structures vary with the solar cycle, i.e., with the change of local and global

Figure 1.8: Polar coronal hole
on the Sun, on 08–May–1992 in
soft X-rays from Yohkoh.

Figure 1.9: Coronal loop on
28–Sept–2000 from TRACE,
credit M. Aschwanden.

Figure 1.10: Sketch on 2D CIR in the solar equatorial
plane in the inner heliosphere, from Pizzo (1978) [82].
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magnetic field, which leads to the overall different shape of the solar corona (symmetric
during solar maximum or with distinctive polar holes and extensive (helmet) streamers at
the equatorial region during solar minimum, the latter case could be seen for example on
Fig. 1.5).

The spatial inhomogeneity of the expanding solar corona and the rotation of the Sun, which
cause fast and slow solar wind streamers to align radially, have an important consequence
in the interplanetary region. Namely, compressive interaction regions are formed where the
high-speed solar wind reaches and subsequently overcomes the slowly moving one. These
regions spiral out from the rotating Sun in the equatorial plane that co-rotate with the Sun.
Hence, they are named co-rotating interaction regions, or CIRs [82], see Fig. 1.10. They
represent a contact discontinuity between the fast and slow solar wind streams, where the
leading edge represents a forward pressure wave propagating ahead into the slower plasma,
while the trailing edge is a reverse pressure wave, propagating back into the high-speed flow.
Usually at distances beyond 1 AU, these areas of compression steepen and thus shock waves
are formed (in many cases a pair of forward shock and reversed shock, correspondingly, [28]).

1.3 The flare

Solar flares represent the most powerful explosions in the solar system. Enormous amount
of emitted radiation of the order of 1029 erg s−1 (1022 W) is released in a very short time
scales of several seconds to few hours. This is less than 1/10 of the total energy emitted by
the Sun every second, but even one small flare produces energy that is enough to supply
Earth’s consummation for million years [11].

The first solar flare published in astronomical lite-
rature was observed independently by Richard C.
Carrington and Richard Hodgson on 1st September
1859. Both were doing sunspot observation in an ac-
tive region, when a large flare in white light occurred.
Presently, the solar flares are viewed with different
instruments, from radio to hard X-ray wavelengths.
The so-called ‘Halloween’ storm in 2003 has produced
the most powerful flares detected so far, one of them
is seen in an image from EIT on Fig. 1.11.

One can recognize three main stages for the flare ener-
gy, the so-called energy build-up, energy release and
energy transport.

Figure 1.11: Flare event on
28–Oct–2003, from SOHO/EIT.

Because all flares occur in active regions, i.e., in regions of strong magnetic field, it should
be the magnetic energy that supplies the flare. The basic idea is that the magnetic field
configuration becomes stressed or sheared, a process that leads to a build-up of magnetic
energy, previously stored in the solar corona. How this magnetic energy converts into flare
energy, however, is still an open study.

One possible scenario of the energy release can be explained with the process of mag-
netic reconnection. When two magnetic field lines with opposite directions (see for example
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Fig. 1.12) approach each other (e.g., due to their photospheric footpoint motion), a current
sheet is established between them. If the electrons, carrying the current in this current
sheet, have a velocity exceeding a certain critical value, plasma waves can be excited due to
different plasma instabilities. The occurrence of these plasma waves leads to an enhance-
ment of the resistivity, so-called anomalous resistivity [9]. The plasma and magnetic field
decouple in a neutral X-point due to anomalous resistivity that arises in this very small,
so-called diffusion region (DR). Thus, the magnetic field lines can disconnect and eventu-
ally rearrange. A new magnetic field configuration is established after reconnecting of the
‘diffused’ magnetic field lines. Because the stressed magnetic fields tend to be restored, the
magnetic free energy is released by the process of magnetic reconnection, powering the solar
flare (note that sheared magnetic field lines have more magnetic energy than potential field
configurations). This energy release manifests itself as a sudden, rapid and intense bright-
ening of the active region on the Sun. The overall time profile of the flare energy release,
seen at various types of radiation (from radio to hard X-rays and γ-rays), can be divided
to: pre-cursor/pre-heating phase (lasting 2–5 minutes, seen at some flares), impulsive phase
(a sudden increase in brightness in the radio, microwave, EUV and hard X-ray emission,
lasting from few seconds up to a minute), and gradual phase (sometimes with a flat plateau
before the gradual decline, lasting from several minutes to hours) [11].

Figure 1.12: Vertical cut through the length axis
of a two-ribbon flare (see in the text for abbre-
viations and further explanations), from [64].

The final stage for the flare energy is the
energy transport, that covers a wealth
of phenomena related to the transfer of
the released energy. In general, the stored
magnetic field energy is transformed into:
• plasma heating;
• accelerated particles (electrons, protons
and heavy nuclei);
• plasma motions, e.g., plasma jets
and/or coronal mass ejections (CMEs);
• shock waves;
• radiation across the entire electromag-
netic spectrum, i.e., from radio waves,
through the optical up to X-ray and γ-ray
range.
From the presently available flare mo-
dels, only the reconnection models of
flares will be considered here, following a
review by [96]. Various types of magnetic
reconnection were already observed in the
solar corona, as revealed by the soft X-ray
images from Yohkoh satellite. A flare con-
figuration [64] is shown on Fig. 1.12.

The general scenario starts when a filament (or plasmoid) becomes unstable and starts
rising up. The underlying magnetic field lines are stretched and a current sheet is estab-
lished under the erupting plasmoid. If the velocity of the electrons carrying this current
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is exceeding a critical value, a local enhancement of the resistivity [9] occurs in the diffu-
sion region (the X-point on Fig. 1.12). There, the magnetic field lines can reconnect and
form a new magnetic field topology. Due to the strong curvature of the newly reconnected
magnetic field lines in the vicinity of the diffusion region, the inflowing plasma is pushed
away from the reconnection site, i.e., a plasma jet appears as really observed by the Yohkoh
satellite [97, 106, 101]. The slow magnetosonic shocks (SMSS) (Fig. 1.12) divide the in-
flowing plasma from the outflowing one, or the pre-reconnection magnetic field from the
post-reconnection one. At these slow shocks the plasma is strongly heated, so that the jet
represents a hot plasma flow. The outflow jets go in two opposite directions. If the jet
has a super-magnetosonic speed and accounts an obstacle on its way (e.g., the erupting
plasmoid in the upwards motion and/or the dense post-flare loops in the downward mo-
tion), a standing fast magnetosonic shock (FMSS) is established there. Signatures of such
a shock were really observed in terms of stationary type II radio burst pattern in the solar
radio radiation [6]. These shocks could be the source of the energetic electrons needed for
the nonthermal radio and X-ray radiation [111]. Thus, due to the magnetic reconnection
energetic electrons are generated that travel along the magnetic field lines either towards
the dense chromosphere, where they emit the X-ray radiation via Bremsstrahlung [12, 13]
or in the higher corona and, subsequently, into the interplanetary space, where they can be
observed in terms of the induced solar type III radio bursts. The chromospheric emission
can be seen in the Hα ribbons and the double hard X-ray sources (Fig. 1.12).

1.4 Radio emission

The solar and interplanetary (IP) radio emission is considered to be generated mainly by
plasma emission, occurring predominantly at frequencies below 1 GHz. When the solar
plasma gets externally disturbed (e.g., by an electron beam or a shock wave), the electrons
are excited to oscillate (as in the case of harmonic oscillator). The frequency of these oscil-
lations is the electron plasma frequency, ωpe = (4πe2Ne/me)

1/2 (with e, electric charge, Ne,
the electron number density and me, the electron mass). In plasma, a large variety of waves
modes are present. Initially, the suprathermal electrons in the plasma excite high frequency
electrostatic waves (e.g., Langmuir waves, with frequency near ωpe and/or upper hybrid
waves). Subsequently, these waves convert into escaping electromagnetic (radio) waves by
nonlinear interaction with low frequency plasma waves and/or scattering at ion density fluc-
tuations [66]. This mechanism generates the fundamental emission near fpe = ωpe/(2π),
whereas the coalescence of two high-frequency electrostatic waves leads to the harmonic
emission. Thus, the radio waves are emitted near the local electron plasma frequency
and/or its harmonics. Another important issue is that the electrons collectively emit radio
waves in contrast to the gyrosynchrotron emission, where the electrons individually gener-
ate radio waves. Since the electron plasma frequency depends only on the electron number
density (and natural constants), measuring the frequency of the radio emission gives us the
density of the plasma that is responsible for this radiation. All that is needed to localize the
radio emitter is an appropriate density model, giving the distribution of the density (and
hence frequency) with height in the corona. This can be accomplish when one constructs a
suitable coronal density model as a function of the height above the solar surface.
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Such density model can be derived from the spherical solutions of magnetohydrostatic equa-
tions including the thermal pressure and the gravitational force of the Sun, see [57]. The
analytical solution from these equations gives the barometric height formula,

N(r) = N⊙ exp
[
A
(
R⊙/r − 1

)]
(1.1)

with A =
mp µ̃ G M⊙

kB T R⊙
N⊙ = N(r = R⊙)

where mp is the proton mass; µ̃ is the mean molecular mass (for solar corona and wind
µ̃ ≈ 0.6 [83]); G is the gravitational constant; kB is the Boltzmann constant; T is the
temperature of the plasma and r is the distance from the solar surface. In contrast to such
theoretical approach, a density model, deduced empirically from white light observation,
was proposed by Newkirk [75]:

N(r) = αN0104.32 R⊙ /r (1.2)

with N0 = 4.2 × 104 cm−3 and the enhancement factor α is in the range 1–10. Note that
α = 1 is well appropriate for describing the density behaviour in the corona above quiet
equatorial regions [41], α = 4 is more suitable for the active regions, whereas α = 10
should be used for very dense loops. For coronal temperature T = 1.4 × 106 K and N⊙ =
8.775 × 108 cm−3 at the base of the corona (and A = 9.879), the general barometric height
model, Eq. (1.1), agrees with the one-fold Newkirk model (i.e., Eq. (1.2) with α = 1) [57].

Additionally, a global magnetic field model is given in terms of the empiric model proposed
by [21], namely

B(r) = 0.5
(
r/R⊙ − 1

)−1.5
Gauss, 1.02 R⊙ . r < 10 R⊙ . (1.3)

With such coronal density model (or/and magnetic field model), the measured (electron
plasma) frequency and hence electron density (or/and magnetic field strength), can be as-
signed to certain coronal heights. Because the electron density monotonically decreases with
height (Fig. 1.4), each layer of the solar atmosphere has its characteristic fpe (and hence
Ne), so higher/lower frequency (density) is emitted from at lower/higher distance above the
photosphere, correspondingly.

Of course, the solar corona is strongly structured with respect to the density and the mag-
netic field, as already mentioned. Therefore, the presented formulas should be considered as
a rough estimate, but they are very useful in order to deduce important physical parameters
from the radio observation, as going to be demonstrated in the next Subsection.

1.4.1 Dynamic radio spectrum

A diagnostic tool for deriving important information from the parameters of the plasma pro-
cesses, related with nonthermal electrons during solar flares, is the dynamic radio spectrum.
The latter represents a plot of the intensity, I, of the nonthermal solar radio radiation, inte-
grated over the whole disk, as a function of time t and frequency, f , i.e., as frequency–time
plot, f(t), where the intensity is color-coded (see for example Figs. 1.13–1.16). Usually, the
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frequency (vertical axis) is chosen to increase downwards and the time (horizontal axis)
runs to the right. The colour-coded intensity represents the third dimension of such a
plot. With the so-chosen coordinate system, one can achieve a graphic representation that
accounts for a gravitationally stratified atmosphere, i.e., with higher densities (because of
the higher frequency) at the bottom and with lower densities at the top of the spectrum.
Thus, such frequency–time diagram is in fact a height–time plot. Sometimes, the detected
emission shows a drift toward lower/higher frequencies (so-called negative/positive drift).
This feature is denoted as drift rate, Df , and represents the frequency range/bandwidth
(∆f) over the time spam/duration (∆t) of the emitting structure. The following impor-
tant relationship between the Df (deduced from observation) and the radial velocity of the
source of emission is derived as

Df

(
=

∆f

∆t

)
:=

f

2

1

Ne

dNe

dr
Vsource, (1.4)

where f is the observed frequency, and dNe/dr denotes the radial density gradient along the
propagation path of the radio source. Hence a global density model is needed to determine
the source velocity. Finally, a negatively drifting feature represents a moving radio source
upward in the solar corona, whereas a positively drift denotes a descending source toward
the solar surface.

Plasma parameters units notation 55 MHz 300 MHz

electron number density(∗) cm−3 Ne 3.74 × 107 1.1 × 109

height(∗∗) R⊙ r 1.63 1.13

magnetic field strength(∗∗∗) Gauss B 1 10.7
plasma beta — β 0.36 0.1

electron plasma frequency s−1 ωpe 0.345 × 109 1.885 × 109

proton plasma frequency s−1 ωpi 0.8 × 107 4.39 × 107

electron cyclotron frequency s−1 ωce 1.758 × 107 1.758 × 108

proton cyclotron frequency s−1 ωci 0.958 × 104 9.58 × 104

frequency ratio S — ωpe/ωce 19.6 10.7

Alfvén velocity km s−1 vA 360 700
electron thermal velocity km s−1 vth,e 4608 4608
proton thermal velocity km s−1 vth,i 107.5 107.5

Debye length cm λDe 1.336 0.24
electron Larmor radius cm rLe 26.21 2.6
proton Larmor radius cm rLi 1123 112
electron inertial length cm de 86.96 15.9
proton inertial length cm di 3750 683

Table 1.1: Plasma parameters for 55 and 300 MHz. The coronal temperature is 1.4 MK,
corresponding to kB T = 120 keV. (∗) Ne is deduced from the electron plasma frequency,
ωpe;

(∗∗) r is deduced from the Newkirk model [75], Eq. (1.2), with α = 4 (for 300 MHz)
and α = 2 (for 55 MHz); (∗∗∗) B is deduced from the Dulk & McLean model [21], Eq. (1.3).
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Two important examples of radio emission are of special interest for the present thesis and
will be presented in more details, namely the type II and type III metric radio bursts.
Because their emission is typically observed at 55 MHz and 300 MHz, respectively, the
main plasma parameters (see Table 1.1), corresponding to these frequencies, are calculated
according to the expressions summarized below:

β =
16π Ne kB T

B2
, ωpj =

(
4πe2Ne

mj

)1/2

, ωcj =
eB

c mj
, vA =

B

(4πmi Ne)1/2
,

vth,j =

(
kB Tj

mj

)1/2

, λDe =

(
kB Te

4πe2Ne

)1/2

=
vth,e

ωpe
, rLj =

vth,j

ωcj
, dj =

c

ωpj
,

where the lower index ‘j ’ substitutes ‘e’ for an electron or ‘i’ for a proton, respectively and
for the temperature of the corona is assumed to be 1.4 MK.

Type II

Type II radio bursts (see Fig. 1.13) are narrow band emission stripes with slow drift towards
lower frequencies, Df ≃ −(0.1–1)MHz s−1. Both fundamental and harmonic band can be
present, and sometimes each band is split into a higher and lower frequency lane (with
relative separation of ∆f/f ≃ 0.1) [74, 51]. It is mostly observed in the metric range, but
IP type II bursts are also observed in the decametric/kilometric regimes.

A type II burst is generated by a shock wave propagating outward through the corona [74].
In the solar corona and the IP medium, a type II-generating shock is formed when the
exciting disturbance exceeds the local Alfvén speed. The typical type II velocities are of the
order of 1000 km s−1 [58]. At the shock front, the electrons are accelerated to suprathermal
and/or higher energies. The type II bursts can be associated both with flares [117] and
coronal mass ejections (CMEs) [26], though there could be also no correspondence [86, 95].
The present view is that there are in general two ways for shock formation (that later

Figure 1.13: Dynamic spectrum of type II
burst from OSRA Tremsdorf, Germany.

Figure 1.14: Dynamic spectrum of herring-
bones from OSRA Tremsdorf, Germany.
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on produces the burst itself), namely: flare-associated pressure pulse/blast wave [117] and
piston-driven shock wave, created by CMEs [2, 46]. Usually the flare-generated disturbances
cannot penetrate into the IP space, since most of the bursts in the higher corona cease
around the 20 MHz level. Therefore, most hectometric/kilometric type II bursts seem to
be generated by CME-driven shocks.

Type II bursts usually consist of two components [74]. The so-called ‘backbone’ (Fig. 1.13)
is an emission lane slowly drifting from high to low frequencies with Df ≃ −0.1375 MHz s−1

which corresponds to a mean source velocity of V̄BB ≃ 950–1000 km s−1, by means of a
two-fold Newkirk model [75]. A two-fold Newkirk model is appropriate since type II burst
sources appear not radially above the active regions but more oriented to the motion of the
plasma blob, that was theoretically treated in [60]. Furthermore, rapidly drifting stripes
of enhanced radiation are shooting up and down from the ‘backbone’ toward lower and
higher frequencies, respectively. These are called ‘herringbones’ [14] with typical positive
and negative drifts Df ≃ ±7MHz s−1, see Fig. 1.14, and mean source velocity V̄HB ≃
50 000 km s−1 ≃ 0.17 c, using again the two-fold Newkirk model. Because of their rapid
drift they resemble to type III bursts, but in general the drift rate of the herringbones is
approximately a half of the type III-drift rate for the same frequency range, as was calculated
by [58]. In summary, the ‘backbone’ emission is a signature of a moving shock wave through
the corona, whereas the ‘herringbones’ are signatures of electron beams accelerated by the
shock wave [59].

Type III

Type III radio bursts (Fig. 1.15) are the most common flare associated radio bursts. They
occur on a wide frequency range 10 kHz ≤ ∆f ≤ 1 GHz, corresponding to height range
from the low corona to beyond 1 AU [107]. The typical type III burst values are: broad
bandwidth ∆f ≃ 100 MHz, short duration (∆t is just few seconds), and hence, fast drift
rate Df ≃ −100 MHz s−1 [120]. Many bursts at metric and decametric wavelengths display
harmonic structure and often appear in groups.

Figure 1.15: Dynamic spectrum of type III
burst from OSRA Tremsdorf, Germany.

Figure 1.16: Dynamic spectrum of type U
bursts from OSRA Tremsdorf, Germany.
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Type III radio bursts are characteristic of the impulsive phase of the solar flare (see
Sect. 1.3). The electron beams associated with type III burst are believed to be imme-
diately accelerated in the reconnection site [31]. It is widely accepted that the exciting
agent of the type III burst is a beam of mildly relativistic electrons (with velocity ≃ 0.3 c),
propagating along the magnetic field lines. If they meet open field lines, they can travel
along them through the corona (and sometimes even out up to the IP space) where they
generate type III radio bursts, [107] (see Fig. 1.15). When the beam propagates along a
closed magnetic loop, a so-called (inverted) U radio burst results in the radio spectrum
(see Fig. 1.16) [3, 4]. When the type III associated electron beam propagates through the
IP space up to Earth, the electrons that generate it can be directly observed as impulsive
electron events (see Subsect. 1.5.3). Type III bursts, therefore, give vital clues on the ac-
celeration of electrons in flares, as well as on the propagation of these electrons (the energy
transport) through the IP space.

1.5 Other solar phenomena

Our Sun manifests a spectrum of mass motions, from the relatively small (as compared
to the solar radius) scale motion seen in granulation, supergranulation, sunspots to large
scale motion like solar jets, CMEs, and solar wind. Another important phenomenon is the
acceleration of charges particle populations up to high energies at flare sites or/and shock
waves in the corona and in IP space (the so-called solar energetic particles, SEPs). Taking
into account the topic of this thesis, a brief introduction to solar jets, CMEs and SEP events
is required and will be given below.

1.5.1 Solar jets

A solar jet is defined as transitory X-ray enhancement with apparent collimated motion
by [97], as (re-)discovered from SXT13/Yohkoh satellite. Presently, TRACE mission keeps
providing images of solar jets in EUV, see Fig. 1.17.

Figure 1.17: Solar jet from TRACE, on 19–Jul–2000 at 171Å.

The magnetic field configuration possibly leading to the formation of solar jets in the solar
corona is sketched on Fig. 1.18. It is considered that the process of magnetic reconnection
can lead to the formation of plasma jets due to the relaxation of the stressed magnetic field
lines (see Sect. 1.3).

13SXT stands for the Soft X-ray Telescope aboard the Yohkoh satellite.
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There exists generally two types of solar jets: anemone and two-sided loop jet (see
Fig. 1.19). When the emerging flux is ascending near a coronal hole (i.e., quiet coronal re-
gion), the magnetic reconnection between the emerging flux region (EFR) and the overlying
coronal field leads to the formation of anemone-type jet, that is expelled in nearly vertical
direction, see Fig. 1.19 (a) and (c). When, however, the emerging flux appear inside an
active region with closed magnetic field lines, as a result from the reconnection process,
two jets occur in nearly horizontal direction at both sides of the emerging flux. This is the
so-called two-sided loop jet, see Fig. 1.19 (b) and (d). Magnetic reconnection should be re-
garded as just one of the possible mechanisms, explaining the jet formation, but simulations
based on it, as performed by [124, 125], confirm most of the observed jet characteristics.

Finally, a summary of the typical physical parameters
of the soft X-ray jets is given [100]:

• Temperature: 3–8 × 106 K, average 5.6 × 106 K
• Density: 0.7–4 × 109cm−3, average 1.7× 109cm−3

• Apparent speed: 10–103km s−1, average 200 km s−1

• Lifetime: 100 seconds to some hours

Figure 1.18: Sketch of a magnetic reconnection
possibly leading to the formation of solar jets.

Figure 1.19: Two main configura-
tions for a solar jet, from [125].

1.5.2 Coronal mass ejections (CMEs)

The coronal mass ejection (or CME for short) is a large magnetized volume of solar plasma
moving outward from the Sun (Fig. 1.20). They could be seen as rapidly expanding in
size filament- or loop-like huge bubbles or irregular-shaped amount of gas, but much of the
variety of shapes is due to projection effects. If a so-called ‘light bulb’ CME, usually seen at
mid-latitudes when projected on the sky, occurs close to the solar disk center, the resulting
image will resemble to a bright ‘splash’ surrounding (completely or not) the disk of the
coronograph. Thus, the so-called ‘halo’ or ‘partial halo’ CME is observed, respectively. The
general CME’s properties, as summarized by [94], are:
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• Measured speed ranges from few kilometers per second to 3000 km s−1;
• Apparent angular width ranges from a few degrees to more than 120◦;
• Total ejected mass ranges from some 103 g to few 1016 g (average 1.4 × 105 g);
• Total (kinetic and potential) energy ranges from 1027 to 1033erg (average 2.6× 1030erg).

In the case of a ‘light-bulb’ CME there is an apparent three-part structure: a bright outer
loop as the leading edge of the CME followed by a darker region – void or cavity which
represent a depletion in the plasma density and finally a bright kernel or knot, that could
be a remnant of a prominence.

Generally, CMEs arise from large-scale closed magnetic structures. The temporal and la-
titudinal distribution of CMEs show similarities to the distribution of coronal streamers,
prominences and filaments. At solar minimum the source regions of the CMEs clearly peak
at the solar equator, whether at solar maximum CMEs are seen at broader regions of the
Sun. The frequency of their occurrence follows the 11-year solar cycle. Presently, it is
thought that there are flare- and non-flare-associated CMEs [119]. Although in the ma-
jority of the cases both CME and flare are detected, there are also number of instances
wherein a flare was seen but no CME followed. Hence, it is possible CMEs to occur before,
during and after a flare, therefore a localized flare event in general does not seem to be
necessary connected with such global phenomenon as CME, according to [11]. An example
for flare-related CME is shown on Fig. 1.20. Presently, the STEREO14 mission is expected
to give further insights on the causes, mechanisms and propagation of the CMEs, observing
the Sun in 3D by the two nearly identical satellites.

Figure 1.20: CME from LASCO C2-
coronograph on SOHO and an EIT
image, from 28–Oct–2003 flare.

Figure 1.21: Impulsive electron event: GOES soft
X-ray curves, WIND/WAVES dynamic spectra, and
WIND/3DP electron flux (top–to–bottom panels).

14STEREO (Solar TErrestrial RElations Observatory) is a NASA’s Solar Terrestrial Probes Program
mission for stereoscopically observation of the Sun in order to study the nature of coronal mass ejections.
http://stereo.jhuapl.edu/
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1.5.3 Solar energetic particle events (SEPs)

Various highly dynamic processes in the magnetized coronal and IP plasma can cause
major acceleration of the charged particles. The main locations for the electron and ion
acceleration are flare sites and shock waves in the corona and IP space. The energy of these
SEPs ranges from few keV for the suprathermal particles up to some GeV (e.g., the protons
at flares). The fastest particles obtain velocities > 0.5 c and arrive at Earth shortly after the
observed light flash. When they happen to hit the CCD-cameras of the orbiting satellite,
such particles produce the well-known ‘snow-storms’ that usually follow a detection of a
strong flare or a CME. Also they are of particular interest for the space weather concept.
The SEPs contain electrons, protons, ions, and neutrons.
It is now largely agreed that SEPs come from two different sources with different acceleration
mechanisms, namely impulsive SEP events, released from flares (Fig. 1.21) and gradual SEP
events, caused by CME-related shocks. Generally, the peak proton intensity in the case of
gradual SEPs was found to correlate best with the shock passage from moving CME. As
presented on Fig. 1.21, energetic electrons traveling toward us can be detected by the
instruments aboard the orbiting satellites (for example by the WAVES and 3D Plasma
instruments aboard the WIND15 mission). The electron flux curves on the bottom panel
clearly show that the more energetic populations travel faster and reach Earth first and
thus are important for the space weather concept. The most intensive SEP events are
produced by CME-driven shocks, but only the fastest (about 1%) of all CMEs can produce
significant SEP events [94]. There are variety of processes that produce the fluxes of non-
thermal electrons, being of main interest in the present dissertation, namely: (i) events with
energy spectra that extend to the suprathermal range (down to 2 keV), originating high
in the corona; (ii) electrons accelerated at flare sites, having very wide energy spectrum
that cause the type III radio bursts; (iii) electrons accelerated at propagating coronal shock
waves (both up- and downward), leading to the characteristic herringbone pattern in the
radio spectra.

In the present Chapter, a general overview of the solar interior, atmosphere
and some of the most famous solar phenomena, was presented, without the aim
of completeness. A special attention is drawn toward those features, that later
are going to be used for the theoretical modeling in the dissertation. For the
theoretical research done in Chapter 4, for example, the physical properties of
the solar jets and type III radio bursts are needed. In Chapter 5, however, the
characteristics of a coronal shock wave in terms of a type II burst, together with
some additional information provided from CIR-related shocks, is used. Both
configurations could be initiated by a flare event or/and CME. Hence, the aim
of this Introduction, is to present those phenomena and their properties, that
are necessary as input parameters for constructing the new theoretical models.
To propose new theoretical models on electron acceleration in the solar corona,
more specifically considering localized wave structures due to solar jets and
shock waves, is the subject of this dissertation.

15WIND is NASA spacecraft in the Global Geospace Science initiative, in order to investigate basic plasma
processes occurring in the near-Earth solar wind. http://pwg.gsfc.nasa.gov/wind.shtml



Chapter 2

The multi-fluid equations

2.1 Introduction

Because of its million degree temperature, the solar corona is in a fully ionized plasma
state, containing electrons, protons and heavy ions. Such a plasma medium can be ap-
propriately described by the multi-fluid equations. The multi-fluid approach regards each
particle species as an individual fluid and thus each fluid is described by its equation of
continuity, momentum and equation of state. In the general case, the equations for each
fluid can be summarized in the system below, where the subscript ‘j ’ denotes the different
particle species, i.e., ‘e’ for electrons or ‘i’ for protons, correspondingly.

Equation of continuity

∂Nj

∂t
+ ∇ · (Njvj) = 0 (2.1)

Momentum equation

mj Nj

[
∂

∂t
+ vj · ∇

]
vj = −∇pj + qj Nj

[
E +

1

c
(vj × B)

]
(2.2)

The different particle fluids interact with each other by the external and self-induced electric
and magnetic fields, which are governed by the Maxwell’s equations.

Maxwell equations

∇ · E = 4π
∑

j

qjNj (2.3)

∇ · B = 0 (2.4)

∇× E = −1

c

∂B

∂t
(2.5)

∇× B =
4π

c

∑

j

qjNjvj +
1

c

∂E

∂t
(2.6)

21
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The multi-fluid equations can be closed with the so-called equation of state1 for the pressure
of each individual fluid,

pj = pj0

(
Nj

Nj0

)γ

. (2.7)

The index γ = cp/cv, the ratio of the specific heat at constant pressure and constant
volume, is constant for the case of collisionless ideal isotropic plasma. It can be regarded
in the general case as the polytropic index, comprising different cases in it, e.g., isothermal
case, with γ = 1, and adiabatic case, with γ = 5/3. The expression for the gradient of the
pressure is:

1

mj Nj
∇pj =

γ

mj Nj

pj0

Nj0

(
Nj

Nj0

)(γ−1)

∇Nj = γ
V 2

Tj

Nj

(
Nj

Nj0

)(γ−1)

∇Nj , (2.8)

where the thermal velocity, defined as V 2
Tj = kB Tj/mj , is used and kB is the Boltzmann’s

constant. Combining Eqs. (2.5) and (2.6), a wave equation naturally arises and its general
form is given below:

∇(∇ · E) − ∆E +
1

c

∂2E

∂t2
= −4π

c2

∑

j

qjNj
∂

∂t
vj . (2.9)

These are the basic equations for the linear wave analysis (see Subsect. 2.3).

2.2 Normalization of the multi-fluid equations

The multi-fluid equations must be normalized in order to obtain a dimensionless system of
equations, that later on is going to be solved numerically. All physical quantities (i.e., num-
ber density, temperature, magnetic field) are normalized with respect to their undisturbed
(or background) values. In addition, the spatial and temporal coordinates are normalized
to the characteristic length scale L0 and the inverse of a characteristic frequency ω0, re-
spectively. Consequently, the velocities need to be normalized with respect to the quantity
V0 = L0 ω0. Denoting the dimensionless quantities with primes and the characteristic ones
with subscript 0, the general form for the normalization used further on is:

B′ =
B

B0
; E′ =

E

E0
; N ′

j =
Nj

Nj0
; v′

j =
vj

Vj0
; T ′ =

T

T0
;

ω′ =
ω

ω0
; t′ = ω0 t; r′ =

r

L0
; ∇′ = L0∇; k′ = L0k. (2.10)

Here, ω and k represents the frequency and the wave number vector of a plane wave.
According to the induction equation (2.5), the general form of the dimensionless electric
field needs to obey the relation,

E0 =
ω0 B0 L0

c
. (2.11)

1The actual form of the equation of state depends on the assumption for the pressure tensor (e.g., isotropic
or anisotropic) and also on the multi-fluidity of the plasma (i.e., the number of all particle species). In the
case of isotropic pressure, the general pressure tensor reduces to a diagonal one with equal non-zero elements.
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The choice for the characteristic values is arbitrary but is usually intrinsically justified for
each particular plasma configuration. A summary of all different normalizations used in the
dissertation is given below:

• Nonlinear solution of the Sakai–Sonnerup system (Chapter 3)

E0 = ωci B0/ωpi; Nj0 = Ne0; Vj0 = vA;

ω0 = ωci; L0 = c/ωpi. (2.12)

• Electrostatic wave excitation due to solar jet in the solar corona (Chapter 4)

E0 =
kBTe

eλDe
; Nj0 = νjN0; Vj0 = Vth,e; Tj0 = θjT0;

ω0 = ωpe; L0 = λDe. (2.13)

• Attached whistler wave packages at coronal shock (Chapter 5)

E0 = ωce B0/ωpe; Nj0 = N0; Vj0 = Vth,e; Tj0 = T0;

ω0 = ωce; L0 = c/ωpe. (2.14)

The parameters νj and θj in (2.13), denote how the particles are distributed in density
and temperature over the whole plasma, respectively, in the assumed in Chapter 4 multi-
component plasma. A pure electron–proton plasma is considered in the other two cases (i.e.,
Chapter 3 and 5). Further on, one can rearrange the general relations (2.10) in expressions
for the physical quantities, namely:

B = B′B0; E = E′E0; Nj = N ′
jN0; vj = v′

jVj0; Tj = T ′
jT0;

ω = ω′ω0; t = t′ω−1
0 ; r = L0 r′; ∇ =

∇′

L0
; k =

k′

L0
;

∂

∂ t
= ω0

∂

∂ t′
,

that need to be substituted in the corresponding system of equations, in order the latter
one to be normalized.

2.3 Linear wave analysis

The easiest way to solve the multi-fluid equations is to perform the linear wave analysis,
i.e., assuming that all dependent variables can be presented as a sum of ‘equilibrium’ (i.e.,
background, given with subscript ‘0’) and ‘perturbed’ (i.e., oscillating, given with ‘δ’) parts,
namely,

α = α0 + δα with δα ≪ α0,

where α stands as abbreviation for the density Nj , the velocity vj , the electric E and
the magnetic B fields, correspondingly. The equilibrium quantities express the plasma
state in the absence of motions (so, v0 = E0 = 0 is assumed henceforth). Usually one
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considers a small perturbation that is introduced to the uniform neutral plasma (where
∇α0 = ∂α0/∂ t = 0 is valid for the initial plasma state) or finally:

Nj = Nj0 + δNj

vj = δvj

E = δE

B = B0 + δB

The above expressions are substituted in the multi-fluid equations, (2.1), (2.2), (2.8) and
(2.9), and after keeping only the linear terms, the final linearized multi-fluid equations are:

∂

∂t
δNj + Nj0∇ · δvj = 0 (2.15)

∂

∂t
δvj = −

γV 2
Tj

Nj0
∇δNj +

qj

mj
δE +

qj

c mj
(δvj × B0) (2.16)

∇(∇ · δE) − ∆δE +
1

c

∂2δE

∂t2
= −4π

c2

∑

j

qjNj0
∂

∂t
δvj (2.17)

Additionally the background magnetic field is chosen to be
aligned to the ẑ-axis, i.e., B0 = B0(0, 0, 1) and the wave vec-
tor takes and angle θ to the ẑ-axis, i.e., k = k(sin θ, 0, cos θ),
see Fig. 2.1. The harmonic wave analysis implies that all
perturbed quantities can be presented in the following way,

δαj = αA
j ei(k·r−ω t),

where the notation for the amplitudes (superscript A) will
be dropped henceforth. Figure 2.1: Sketch of the

configuration.

Following the plane wave analysis, one can express ∇ → ik and ∂/∂t → −iω. Then the
linearized system of equations (2.15)–(2.17) provides:

ω Nj = Nj0(k · vj) (2.18)

−iωvj = −i
γV 2

Tj

ω
k(k · vj) +

qj

mj
E +

ωcj

B0
(vj × B0) (2.19)

−k(k · E) + k2E − ω2

c2
E = i

4πω

c2

∑

j

qjNj0vj (2.20)

Then, Eq. (2.19) is written by components:



ω − aj sin2 θ −iωcj aj sin θ cos θ
iωcj ω 0

−aj sin θ cos θ 0 ω − aj cos2 θ






vjx

vjy

vjz


 = i

qj

mj




Ex

Ey

Ez


 , (2.21)
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where aj = γV 2
Tjk

2/ω. The solution of Eq. (2.21) can be given in terms of

vjx =
∆jx

∆j
, vjy =

∆jy

∆j
, vjz =

∆jz

∆j
, (2.22)

where the coefficient determinant of the matrix in Eq. (2.21) is

∆j = ω3 − ω2aj − ω2
cj(ω − aj cos2 θ), (2.23)

and ∆jx, ∆jy and ∆jz are the corresponding sub-determinants,

∆jx = i
qj

mj
[ω(ω − a2

j cos2 θ)Ex + iωcj(ω − aj cos2 θ)Ey (2.24)

+aj ω sin θ cos θEz]

∆jy = i
qj

mj
[−iωcj(ω − aj cos2 θ)Ex + ω(ω − aj)Ey (2.25)

−i aj ωcj sin θ cos θEz]

∆jz = i
qj

mj
[aj sin θ cos θ(ωEx + iωcjEy) (2.26)

+(ω(ω − aj sin2 θ) − ω2
cj)Ez]

Equivalently, written by components Eq. (2.20) becomes




n2 cos2 θ − 1 0 −n2 sin θ cos θ
0 n2 − 1 0

−n2 sin θ cos θ 0 n2 sin2 θ − 1






Ex

Ey

Ez


 = i

4π

ω

∑

j

qjNj0




vjx

vjy

vjz


 (2.27)

where n = k c/ω is the index of refraction. In order to derive the dielectric tensor,
one needs first to express the velocity components via the electric field components (using
the relations (2.22)) and to substitute them in the Eq. (2.27). Thus, the following tensor
relation is obtained:

t · E = 0, (2.28)

where the tensor t has the form

t =




n2 cos2 θ − ε1 i ε4 −(n2 − ε5) sin θ cos θ
−i ε4 n2 − ε2 −i ε6 sin θ cos θ

−(n2 − ε5) sin θ cos θ i ε6 sin θ cos θ n2 sin2 θ − ε3


 (2.29)
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and

ε1 = 1 −
∑

j

ω2
pj

∆j
(ω − aj cos2 θ) (2.30)

ε2 = 1 −
∑

j

ω2
pj

∆j
(ω − aj) (2.31)

ε3 = 1 −
∑

j

ω2
pj

∆j

[
(ω − aj sin2 θ) −

ω2
cj

ω

]
(2.32)

ε4 =
∑

j

ω2
pj

∆j

ωcj

ω
(ω − aj cos2 θ) (2.33)

ε5 =
∑

j

ω2
pj

∆j
aj (2.34)

ε6 =
∑

j

ω2
pj

∆j
aj

ωcj

ω
(2.35)

The zeros of the determinant of the tensor (2.29) gives the dispersion relation for the wave
modes propagating in this plasma configuration,

D(ω,k) = Det t = 0. (2.36)

The finite number of discrete solutions of Eq. (2.36) describes the propagation of linear waves
with frequency ω = ω(k). The full treatment of the linear wave analysis (i.e., dispersion
relation and polarization) in a multi-ion plasma is given in the work by [56]. Because the
general case is not easy to handle, it is focused only on the cases that are needed in this
thesis.

2.3.1 Cold plasma approximation

In this case aj = 0, and ∆j = ω(ω2 − ω2
cj), so the system (2.30)–(2.35) reduces to

ε1 = ε2 = 1 −
∑

j

ω2
pj

ω2 − ω2
cj

(2.37)

ε3 = 1 −
∑

j

ω2
pj

ω2
(2.38)

ε4 =
∑

j

ω2
pj

ω2 − ω2
cj

ωcj

ω
(2.39)

ε5 = ε6 = 0 (2.40)

In the case of a pure electron–proton plasma (because the corona consists predominantly
from electrons and protons), from the above components of the plasma dielectric tensor one
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can recover the expressions in [9], namely,

ε1 = 1 −
ω2

pe

ω2 − ω2
ce

−
ω2

pi

ω2 − ω2
ci

(2.41)

ε4 = −ωce

ω

ω2
pe

ω2 − ω2
ce

+
ωci

ω

ω2
pi

ω2 − ω2
ci

(2.42)

ε3 = 1 −
ω2

pe

ω2
−

ω2
pi

ω2
(2.43)

In order to obtain the dispersion relation for cold plasma waves, one needs to substitute the
corresponding components of the cold dielectric tensor into Eq. (2.29) and to calculate the
coefficient determinant. The result recovers the well-known Appleton–Hartree equation:

A n4 − Bn2 + C = 0, (2.44)

where

A = ε3 cos2 θ + ε1 sin2 θ

B = ε1ε3 (1 + cos2 θ) + (ε2
1 − ε2

4) sin2 θ

C = ε3 (ε2
1 − ε2

4)

The solution of Eq. (2.44) gives the dispersion relation for the cold plasma waves. From
this general formula one can obtain the dispersion relations in the case of parallel, oblique,
and perpendicular propagation, with respect to the ambient magnetic field. Here, the wave
frequency and the wave number are normalized to ωce and ωpe/c, respectively, i.e., ω0 = ωce

and L0 = c/ωpe (see Subsect. 2.2). Then the normalized quantities are:

n2 =
k′2

ω′2

ω2
pe

ω2
ce

(2.45)

ε′1 = 1 −
ω2

pe

ω2
ce

[
1

ω′2 − 1
+

µe

ω′2 − µ2
e

]
(2.46)

ε′3 = 1 −
ω2

pe

ω2
ce

1 + µe

ω′2
(2.47)

ε′4 = −
ω2

pe

ω2
ce

[
1

ω′(ω′2 − 1)
− µ2

e

ω′(ω′2 − µ2
e)

]
(2.48)

Because for the most space plasma it is appropriate to assume ω2
pe/ω2

ce ≫ 1 (see Chapter 1,
Table 1.1), one can neglect the unity in the expressions for ε′1 and ε′3. Additionally, for
the numerical solution of the dispersion relation (2.44), the frequency ratio is taken to be
ωpe/ωce = 20, that is the value for the 55-MHz level of the solar corona (see again Table 1.1).

Now, some important issues that affect the mode propagation need to be considered here,
namely the so-called cutoff and resonance frequencies. A cutoff frequency occurs in plasma
when the index of refraction goes to zero, n → 0 (i.e., k → 0) and equivalently the wave-
length becomes infinite, λ → ∞. The opposite is valid in the case of a resonance, namely
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k → ∞ and λ → 0. From the available literature on plasma waves, here [9] is followed, so
the following definitions are adopted:

ωR,co =
1

2

[
(ω2

ce + 4ω2
pe)

1/2 + ωce

]
(2.49)

ωL,co =
1

2

[
(ω2

ce + 4ω2
pe)

1/2 − ωce

]
(2.50)

for the right- and heft-hand cutoff frequencies, respectively, and also

ωUH,res =
√

ω2
ce + ω2

pe (2.51)

ωLH,res = ωce ωci (2.52)

for the upper and lower hybrid resonance frequencies, respectively. Because the computed
plots2 use normalized parameters, all frequencies are normalized to ωce, e.g., ω′ = ω/ωce,
and the wave number is normalized in such a manner that k′ = k c/ωpe, where the primed
values are dimensionless. Hence, Eqs. (2.49)–(2.52) become correspondingly,

ω′
R,co =

1

2

[
(1 + 4S2)1/2 + 1

]
= 20.506 (2.53)

ω′
L,co =

1

2

[
(1 + 4S2)1/2 − 1

]
= 19.506 (2.54)

ω′
UH = (1 + S2)1/2 = 20.025 (2.55)

ω′
LH = µ1/2

e = 0.0233 (2.56)

where their numerical values are also given and S = ωpe/ωce = 20. Each of them determines
a so-called ‘asymptotic’, that is depicted with a dashed line on the corresponding plots,
Figs. 2.2–2.9, and for completeness also

ω′ = 1 =⇒ ω = ωce (2.57)

ω′ = µe = 0.00054 =⇒ ω = ωci (2.58)

ω′ = S = 20 =⇒ ω = ωpe (2.59)

are explicitely given in these figures. Henceforth, the dispersion of the plasma waves, in the
case for parallel and perpendicular propagation with respect to the ambient magnetic field,
is discussed. In particular, it is focused on those modes, that are needed in the forthcoming
Chapters.

Parallel wave propagation

Initially θ = 0◦ is discussed, so in this case the waves propagate along the ambient magnetic
field. Then, A = ε3, B = 2 ε1 ε3, and C = ε3(ε

2
1 − ε2

4) and the solution of the dispersion
relation (2.44) reduces to:

n2
R,L = ε′1 ± ε′4, (2.60)

2All plots in the present Chapter were computed with the Mathematica software package.
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where the subscripts R and L denote the right- and left-hand side polarized wave, obtained
when one consider the positive or the negative sign, respectively. After substituting the
normalized components of the cold dielectric tensor, one obtains for S ≫ 1

k
′2

ω
′2
R,L

=
±1

ω′(1 ∓ ω′)
− µe

ω′(ω′ ± µe)
. (2.61)

These modes correspond to the right-hand circularly polarized whistler wave and the left-
hand circularly polarized Alfvén wave. The resonance frequencies are at the electron (ω′ =
1) and proton (ω′ = µe) cyclotron frequencies. In the case of electron dominated component,
the second term can be neglected, resulting for the upper branch of the right-hand polarized
wave in the whistler dispersion relation,

k′
wh =

√
ω′

R

1 − ω′
R

, (2.62)

as completely plotted on Fig. 2.2. In the short wavelength limit (large k) the mode tends to
ωce. Introducing back the dimensions into the formula above, one recovers the well-known
relation for whistler waves,

kwh =
ωpe

c

√
ω

ωce − ω
. (2.63)

In the long wavelength limit, i.e., k → 0, Eq. (2.61) provides

ω =
√

µe k

(
1 ± k

2
√

µe

)
, (2.64)

where the upper and lower sign stands for the right- and left-hand circularly polarized mode,
respectively. Thus, in the long wavelength limit, the phase velocity of the whistler wave
is the Alfvén speed. Another solution of the dispersion relation (2.60) appears in the very
long wavelength limit. This is the well-known Alfvén wave, plotted on Fig. 2.3, that tends
to ωci with increasing of the wave number. The other two solutions are the left and the
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Figure 2.2: Whistler dispersion relation.

0.1 0.2 0.3 0.4 0.5
k’ÈÈ

0.0001

0.0002

0.0003

0.0004

0.0005

Ω’

Figure 2.3: Dispersion of the Alfvén wave.



30 Chapter 2: The multi-fluid equations

0.1 0.2 0.3 0.4 0.5
k’ÈÈ19.5

20

20.5

21

21.5

22

22.5

Ω’

Figure 2.4: Left (red) and right (blue) hand
polarized waves for θ = 0◦.
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Figure 2.5: L and R modes from Fig 2.4.
The dashed line is the light wave, ω′ = S k′.
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Figure 2.6: Ordinary (red) and extraordi-
nary (blue) waves for θ = 90◦.
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Figure 2.7: O and X modes from Fig. 2.6.
The dashed line is the light wave, ω′ = S k′.

(upper branch of the) right-hand polarized, high frequency electromagnetic waves, plotted
together on Fig. 2.4. At large k, both modes approach the light wave mode, ω = c k, see
Fig. 2.5.
In order to recover the dimensions for the frequency and the wave number, one needs to
multiply the normalized quantities, as given on the plots, by ωce = 1.76 × 107 s−1 and the
inverse of c/ωpe = 87 cm, respectively (see Table 1.1 for the 55 MHz plasma).

Perpendicular wave propagation

In the perpendicular case, θ = 90◦, A = ε1, B = ε1 ε3 + (ε2
1 − ε2

4), and C = ε3(ε
2
1 − ε2

4) that
are set in the relation (2.44), so one obtains,

n2
O = ε′3 and n2

X =
ε
′2
1 − ε

′2
3

ε′1

taking the positive or the negative sign while solving the Appleton–Hartree equation, re-
spectively. In this case, the positive and the negative sign are usually named ordinary
(O) and extraordinary (X) mode, correspondingly, and are plotted both on Fig. 2.6. The
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Figure 2.8: Upper hybrid mode.
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Figure 2.9: Lower hybrid mode.

O-mode has a cut-off frequency at ωpe, whereas the cut-off frequency of the X-mode is at
ωR,co, or in normalized quantities, ω′ = 20 and 20.506, respectively. At shorter wavelengths
both modes approach the asymptotic, defined by the light waves (i.e., ω = c k), as shown
on Fig. 2.7, similarly to the R- and L-modes in the parallel case, see Fig. 2.5.
The other two roots of the dispersion relation in the perpendicular case, are the so-called
upper and lower hybrid mode, plotted on Fig. 2.8 and Fig. 2.9, respectively. As denoted
by their name, the mode has an asymptotic at ωUH (the horizontal dashed line at 20.025
on Fig. 2.8) or at ωLH (the 0.0233-level line on Fig. 2.9), correspondingly. Their cut-off
frequencies are at ω′

L,co = 19.506 and 0, respectively, as seen on Figs. 2.8 and 2.9.

2.3.2 Waves in an unmagnetized plasma

In this case ωci = 0, ∆j = ω2(ω − aj) and the angle θ = ∠(k, B0) looses its sense.
Additionally, here it is assumed cold protons (i.e. ap = 0) and warm electrons (i.e. ae =
γv2

th,ek
2/ω). Hence, one obtains,

ε3 = 1 −
ω2

pi

ω2
−

ω2
pe

ω2 − γv2
th,ek

2
.

When it is normalized to ω0 = ωpe and L0 = vth,e/ωpe, it leads to

ε′3 = 1 − µe

ω′2
− 1

ω′2 − γk′2
.

In the case of pure electrostatic waves, the dispersion relation reduces to ε′3 = 0, see
Eq. (2.28) and (2.29), or finally:

ω′4 − (γk′2 + µe + 1)ω′2 + γk′2µe = 0. (2.65)

In the high frequency limit one gets the dispersion relation for Langmuir waves,

ω′ =
√

1 + γk′2, (2.66)
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Figure 2.10: Langmuir wave dispersion
relation.
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Figure 2.11: Sound (ion-acoustic) wave dis-
persion relation.

or

ω =
√

ω2
pe + γv2

th,e k2, (2.67)

see Fig. 2.10. The low frequency limit of Eq. (2.65) provides the ion-acoustic waves, plotted
on Fig. 2.11,

ω′ =
√

µe
k′

√
1 + k′2

, (2.68)

or in the limit k′2 ≪ 1 one gets

ω′ = k′√µe or
ω

k
=

√
kBTe

mi
= cse, (2.69)

where cse is the ion-acoustic speed. This mode approach the ωpi level at short wavelengths,
as shown by the dashed line on Fig. 2.11. Due to the different normalization, in this Sub-
section, ω′ = 1 corresponds to the electron plasma frequency, ωpe, and ω′ = 0.0233 (because

ωpi/ωpe = µ
1/2
e = 0.0233), corresponds the ion plasma frequency, ωpi.

This Chapter represents an overview on the multi-fluid theory, together with
the used normalization (different in each of the subsequent three Chapters), the
general procedure of the linearization analysis and a summary of the existing
wave modes in the case of a cold plasma approximation. The multi-fluid equa-
tions are the staring point for the theoretical and numerical results, presented
in Chapter 3 and 5. In the case of Chapter 4, however, only the more appro-
priate for this particular case kinetic approach is presented in the dissertation
(for the multi-fluid treatment see [67, 68]).



Chapter 3

Nonlinear solution of the
Sakai–Sonnerup system

3.1 Introduction

Large-amplitude magnetic field fluctuations are often observed by in-situ measurements in
space, e.g., at the Earth’s bow shock [79, 35, 61, 62], other planetary bow shocks [23, 33, 25],
in the vicinity of comets [87, 114, 112], and at co-rotating interaction regions (CIRs) [113].
In general, all these wave phenomena are thought to be generated by energetic particles
produced at the related shocks [79]. That is also confirmed by numerical simulations [1, 91].

For illustration, three examples of such magnetic field fluctuations are presented here,
namely:

• The so-called low frequency upstream waves (Fig. 3.1) appear in the upstream region
of Earth’s bow shock, for instance. Dual spacecraft measurements [34] reveal that they
have typical frequencies of 0.1 of the proton cyclotron frequency and amplitudes in
the magnetic field fluctuations of 0.3 of the undisturbed magnetic field [61]. They are
correlated with density fluctuations [79] and are predominantly right-hand circularly
polarized in the plasma rest frame, i.e., they have been classified as fast magnetosonic
waves.

• Since the above mentioned waves are compressive ones, they steepen into so-called
shocklets, which are attached by magnetic field fluctuations with a higher frequency
of about 10 times the frequency of the upstream waves [61] (Fig. 3.2). The dual
spacecraft observations reveal that these are large amplitude whistler waves with
frequencies well above the proton cyclotron frequency [34].

• These upstream waves can steepen into very large-amplitude wave phenomena, the
so-called SLAMS (short large-amplitude magnetic field structures), if they approach
to the shock (Fig. 3.3) [92, 62]. They show magnetic field compression by a typical
factor of about three and are also accompanied with density compression.

33
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Figure 3.1: Magnetic field fluctuations during an upstream wave event, from [61].

Figure 3.2: Discrete whistler wave packets embedded in steepened upstream waves, see
Fig. 3.1, from [61].
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Figure 3.3: Magnetic field components, total B-field and electron number density (from top
to bottom) in SLAMS, from [62].

All these phenomena seem to be closely related to each other and play an important role of
the dynamic of the associated shock [92, 89].

These observations motivated us to study the nonlinear behaviour of low frequency plasma
waves. But, it is basically not intended to present an explanation of these wave phenomena
in this dissertation. Since the frequency scale of these fluctuations is very much smaller than
the electron plasma and electron cyclotron frequency, these phenomena are predominantly
carried by the ions, whereas the electrons act as a neutralizing fluid. That allows to simplify
the multi-fluid equations by assuming a pure electron–proton plasma (i.e., two-fluid equa-
tions) with neglecting the displacement current and the electron mass. Since the amplitude
of the observed magnetic field fluctuations may be large (sometimes up to few times the
magnitude of the undisturbed ambient magnetic field), a fully nonlinear description of the
two-fluid equations is necessary, i.e., nonlinear terms cannot be neglected.

3.2 Derivation of the Sakai–Sonnerup system

The system of equations used here for describing the plasma state, was initially presented
in the work by Sakai and Sonnerup, see [88]. The procedure for obtaining the so-called
Sakai–Sonnerup system, that follows naturally from the system of multi-fluid equations
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(as introduced in Chapter 2), is explained in the present Section. The displacement currents
are neglected, an isotropic and diagonal pressure tensors for the electrons (j = e) and the
protons (j = i) are assumed, and finally a quasi-neutral plasma state is considered, i.e.,

Ne = Ni = N. (3.1)

Additionally, quasi-neutrality means the following assumptions [37]:

λD ≪ L; ω ≪ ωce; ω ≪ ωpe; ω ≪ ωpi :
ω

ωci
≪ c

vA
,

ω2

ω2
pe

mi + me

me
≪ 1,

where L is some characteristic length for the system, i.e., the wavelength. Thus, the general
set of multi-fluid equations, i.e., Eqs. (2.1)–(2.6), reduces to:

∂N

∂t
+ ∇ · (Nve) = 0 (3.2)

∂N

∂t
+ ∇ · (Nvi) = 0 (3.3)

d(e)

dt
ve = −Γ

V 2
Te

N
∇N − e

me

[
E +

1

c
(ve × B)

]
(3.4)

d(i)

dt
vi = −Γ

V 2
Ti

N
∇N +

e

mi

[
E +

1

c
(vi × B)

]
(3.5)

∇× B =
4πe

c
N(vi − ve) (3.6)

with the convective derivative for electrons and protons defined correspondingly as,

d(e,i)

dt
=

∂

∂t
+ ve,i · ∇ (3.7)

and Γ = γ (N/N0)
(γ−1), with γ as the ratio of specific heats (see Eq. (2.8) in Chapter 2).

As next, the electron fluid velocity ve and the electric field have to be removed. Starting
from Eq. (3.6), one gets the ve as:

ve = vi −
c

4πeN
∇× B. (3.8)

The electric field E can be expressed from Eq. (3.4), as

E = −me

e

d(e)

dt
ve − Γ

me

e

V 2
Te

N
∇N − 1

c
(ve × B), (3.9)

which, together with the expression for the electron velocity (3.8), can be substituted in the
Faraday law, Eq. (2.5), in order to get a relation between the ion velocity and the magnetic
field, that finally reads as,

∂B

∂t
= − c2me

4πe2
∇×

[
1

N

d(e)

dt
(∇× B)

]
+

mec

e
∇×

[
d(e)

dt
vi

]

− c

4πe
∇×

[
1

N
(∇× B) × B

]
+ ∇× (vi × B) . (3.10)
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Next, one can multiply Eq. (3.4) with me and Eq. (3.5) with mi and add these two equations,
that finally, using Eq. (3.8) for the ve, becomes,

mi
d(i)

dt
vi + me

d(e)

dt
vi − me

c

4πeN

d(e)

dt
∇× B = −Γ

(
me V 2

Te + mi V
2
Ti

) ∇N

N

+
1

4πN
(∇× B) × B. (3.11)

This intermediate step is justified if the center of mass velocity v is introduced, that is,

v =
mivi + meve

mi + me
(3.12)

and thus is possible to reduce Eq. (3.11) even further, until it obtains the following form,

[
mi

mi + me

d(i)

dt
+

me

mi + me

d(e)

dt

]
v − me

mi + me

c

4πe

d(e)

dt

∇× B

N
= −Γ

meV
2
Te + miV

2
Ti

mi + me

∇N

N

+
1

4π(mi + me)

(∇× B) × B

N
(3.13)

with

d(e)

dt
=

d(i)

dt
− c

4πeN
(∇× B) · ∇ (3.14)

that is deduced from Eq. (3.7) for the ion part, where vi is taken from Eq. (3.8). Finally,
ve taken from Eq. (3.12) is substituted in Eq. (3.8), in order to obtain an expression for vi

where ve is canceled out, i.e.,

vi = v +
c

4πeN

me

mi + me
(∇× B). (3.15)

In summary, the electron fluid velocity and the electric field have been removed in favour
of the center of mass velocity by the presented procedure.

3.2.1 Normalization

Now, the normalization of the physical quantities is performed here, as was introduced in
Chapter 2, Sect. 2.2. Namely, all physical quantities can be expressed as a normalized value
(denoted with primes) multiplied by some characteristic one for the given plasma state (that
is also carrying the dimension), i.e.,

B = B′B0; N = N ′Ne0; v = v′vA; vi = v′
ivA

t = t′T ; ∇ = L−1∇′;
d(e)

dt
= T−1 d(e)

dt′
, (3.16)

where

L =
c

ωpi
≡ vA

ωci
; T = ω−1

ci ;
L

T
≡ vA; vA =

B0√
4π(mi + me)Ne0

.
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The normalized ion velocity from Eq.(3.15) becomes,

v′
i = v′ +

µe

N ′
∇′ × B′ (3.17)

with µe = me/mi as already defined in Chapter 2 and Eq. (3.14) reduces to

d(e)

dt′
=

d(i)

dt′
− 1 + µe

N ′
(∇′ × B′) · ∇′ (3.18)

in normalized form. Eqs. (3.3), (3.10) and (3.13) are normalized according to (3.16), and
additionally, the limit µe → 0 is performed, so finally the following relations are obtained:

∂N ′

∂t′
+ ∇′ · (N ′v′) = 0, (3.19)

∂v′

∂t′
+ (v′ · ∇′)v′ = −Γ β0

∇′N ′

N ′
+

(∇′ × B′) × B′

N ′
, (3.20)

∂B′

∂t′
−∇′ × (v′ × B′) = −∇′ ×

[
1

N ′

(
∇× B′

)
× B′

]
, (3.21)

where β0 = 8πN0kBT/B2 and Γ = γN ′(γ−1) are dimensionless quantities. Thus the
Eqs. (3.19)–(3.20) represent our basic equations, also called Hall-MHD equations [36].

3.2.2 Specifying the problem

The ambient magnetic field is assumed to lie in the x–z-plane and taking an angle θ to the
x-axis, i.e., B0 = B0(cos θ, 0, sin θ). Additionally, all primes, denoting the dimensionless
quantities, will be dropped henceforth. Here, all quantities are considered to depend only
on x and t, i.e., the wave vector is aligned in the x-direction, then ∇ → ∂/∂x and

d

dt
=

∂

∂t
+ vx

∂

∂x
.

Then Eqs. (3.19)–(3.20), written by components, create a system of normalized equations,
that is the so-called Sakai–Sonnerup system of equations, namely,

∂N

∂t
+

∂

∂x
(N u) = 0 (3.22)

du

dt
= −Γ β0

1

N

∂N

∂x
− 1

2N

[
∂

∂x
(B2

y + B2
z )

]
(3.23)

dvy

dt
=

1

N
Bx

∂By

∂t
(3.24)

dvz

dt
=

1

N
Bx

∂Bz

∂t
(3.25)

dBy

dt
= −By

∂u

∂x
+ Bx

∂vy

∂x
+

∂

∂x

(
Bx

N

∂Bz

∂x

)
(3.26)

dBz

dt
= −Bz

∂u

∂x
+ Bx

∂vz

∂x
− ∂

∂x

(
Bx

N

∂By

∂x

)
(3.27)

with vx ≡ u. The Eqs. (3.22)–(3.27) represents our basic system of nonlinear equations,
which need to be studied.
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3.2.3 Linear case

In this Subsection, the usual linearization analysis is performed while assuming small am-
plitude waves. In this sense, the background/undisturbed state (denoted with subscript 0)
can be presented in the following dimensionless form,

N0 = 1, u0 = vy0 = vz0 = 0, Bx0 = cos θ, By0 = 0, Bz0 = sin θ. (3.28)

In general, the dimensionless quantities can be expressed as a sum of the background and
the perturbed ones, namely

N := 1 + n (3.29)

u := u1 vy := vy1 vz := vz1 (3.30)

Bx := cos θ By := by Bz := bz + sin θ. (3.31)

Then, after substituting the above expressions for the plasma quantities in the Eqs. (3.22)–
(3.27), the latter become a linearized system of equations, namely:

∂n

∂t
+

∂u1

∂x
= 0 (3.32)

∂u1

∂t
= −γβ0

2

∂n

∂x
− sin θ

∂bz

∂x
(3.33)

∂vy1

∂t
= cos θ

∂by

∂t
(3.34)

∂vz1

∂t
= cos θ

∂bz

∂t
(3.35)

∂by

∂t
= cos θ

∂vy1

∂x
+ cos θ

∂2bz

∂x2
(3.36)

∂bz

∂t
= cos θ

∂vz1

∂x
− sin θ

∂u1

∂x
− cos θ

∂2by

∂x2
(3.37)

In the system above, one sets the perturbed values (n, u1, vy1, vz1, bx, by, bz) to depend as
∝ exp[i(kx−ωt)], that implies ∂/∂t → −iω and ∂/∂x → i k (see for comparison Sect. 2.3).
Performing such plane wave analysis leads to the following equations for the amplitudes:

n =
k2 sin θ

ω2 − k2 γβ0/2
bz, u1 =

ω

k
n, vy1 = − k

ω
cos θ by, vz1 = − k

ω
cos θ bz,

and after substituting them into Eqs. (3.36) and (3.37), a homogeneous system of equations
is obtained. Its determinant provides the dispersion relation for this plasma state:

(ω2 − k2 cos2 θ)

[
(ω2 − k2 cos2 θ) − ω2k2 sin2 θ

ω2 − k2 γβ0/2

]
− ω2k4 cos2 θ = 0. (3.38)

The solutions of Eq. (3.38) give the dispersion relation for the different wave modes that
occur in the case of such small wave approximation. The above dispersion relation is solved
for four different angles, i.e., θ = 10◦, 40◦, 60◦, and 80◦. Only the positive part from all 6
modes is considered and these 3 modes are recognized as ion-cyclotron, sound and whistler
mode, correspondingly plotted1 on Fig. 3.4, Fig. 3.5 and Fig. 3.6.

1All plots in this Chapter were computed with the Mathematica software package
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Figure 3.4: Plot of the ion-cyclotron mode of the dispersion relation (3.38) as function of θ.
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Figure 3.5: Plot of the sound mode of the dispersion relation (3.38) as a function of θ.
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Figure 3.6: Plot of the whistler mode of the dispersion relation (3.38) as a function of θ.

3.3 Stationary solutions

When the amplitude of the wave is not small, the linearization analysis is no longer an
appropriate description. Here, we search for stationary solutions of the Sakai–Sonnerup
system (3.22)–(3.27), leading to solitary waves, for instance, [20, 108]. Because we look for
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a stationary solution, all functions may be presented in the form:

ξ = x − V t, (3.39)

i.e., all varying quantities depend only from ξ and the new coordinate system is moving
with the wave. Then, it is true that,

∂

∂t
= −V

∂

∂ξ
and

∂

∂x
=

d

dξ
. (3.40)

The following ‘four-step’-analysis is performed further on, starting with the first equation
from the Sakai–Sonnerup system, Eq. (3.22). In the beginning, a change of the coordinate
systems is done, namely the equation is re-written in a stationary system (moving with the
same velocity V of the wave), or equivalently, the relations (3.40) are taken into account
leading to,

−V
dN

dξ
+

d(Nu)

dξ
= 0. (3.41)

After that, a spatial integration over ξ is performed,

−V N + Nu = C1, (3.42)

where the integration constant C1 can be fixed by means of the conditions (3.28), which
defines the undisturbed plasma state, as

C1 = −V. (3.43)

Then it is substituted it back into Eq. (3.42) and one finally gets,

u = V

(
1 − 1

N

)
. (3.44)

Now, the same procedure is performed for Eq. (3.23), where one uses (3.31) for the compo-
nents of the magnetic field. Then, Eq. (3.23) takes the form:

−V
du

dξ
= −γβ0

2
Nγ−1 dN

dξ
− 1

2

d (b2
y + (bz + sin θ)2)

dξ
. (3.45)

The integration provides

−V u = −β0

2
Nγ −

b2
y + (bz + sin θ)2

2
+ C2, (3.46)

where the integration constant C2 can be fixed to

C2 =
β0

2
+

sin2 θ

2
(3.47)

by means of Eq. (3.28) leading to

b2
y + b2

z + 2bz sin θ

2
=

β0

2
(1 − Nγ) + V 2 N − 1

N
(3.48)
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as a final result. Similarly, performing the same four-step analysis, Eq. (3.24) and Eq. (3.25)
will result correspondingly into:

−V
dvy

dξ
= cos θ

dby

dξ
(3.49)

−V vy = by cos θ + C3 (3.50)

C3 = 0 (3.51)

vy = −cos θ

V
by (3.52)

and

−V
dvz

dξ
= cos θ

dbz

dξ
(3.53)

−V vz = bz cos θ + C4 (3.54)

C4 = 0 (3.55)

vz = −cos θ

V
bz (3.56)

Finally, Eq. (3.26) and Eq. (3.27) lead to:

−V
dby

dξ
= cos θ

dvy

dξ
− d(uby)

dξ
+

d

dξ

(
cos θ

N

dbz

dξ

)
(3.57)

C5 = −cos2 θ

V
by +

V

N
by +

cos θ

N

dbz

dξ
(3.58)

and

−V
dbz

dξ
= cos θ

dvz

dξ
− d(ubz)

dξ
− d

dξ

(
cos θ

N

dby

dξ

)
(3.59)

C6 = −cos2 θ

V
bz +

V

N
bz − V

(
1 − 1

N

)
sin θ − cos θ

N

dby

dξ
. (3.60)

In the case of solitary solutions, all disturbed quantities and their derivatives should vanish
at infinity, i.e. ξ → ±∞. In the case of oscillatory (or periodic) solutions, one should
assume that by should be 0 at the maximum of bz, i.e., at dbz/dξ = 0, as well as bz = 0 at
the maximum of by, i.e., at dby/dξ = 0. Both conditions lead to

C5 = C6 = 0. (3.61)

In summary, the following system of equations

b2
y + b2

z + 2bz sin θ

2
=

β0

2
(1 − Nγ) + V 2 N − 1

N
(3.62)

0 = −cos2 θ

V
by +

V

N
by +

cos θ

N

dbz

dξ
(3.63)

0 = −cos2 θ

V
bz +

V

N
bz − V

(
1 − 1

N

)
sin θ − cos θ

N

dby

dξ
(3.64)

is the basic system of equations for the further study. It consists of one algebraic equation
and two ordinary differential equations. One need to bear in mind that the particle number
density is a function of ξ, i.e., N = N(ξ).
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3.3.1 Discussion of the parameter regime of the solutions

In the present Subsection it is intended to study the parameter regime of the different
solutions of the stationary Sakai–Sonnerup system, that are basically nonlinear ones.
Because in the case of solitary solutions all disturbed quantities need to take small values at
infinity, this justifies to linearize the Eqs. (3.62)–(3.64) and the linearization of Eq. (3.62)
provides:

n =
sin θ

V 2 − c2
s

bz, (3.65)

where cs = (γβ0/2)1/2 is the sound speed. Since all disturbed quantities are decreasing with
exp(−λξ) at ξ → ±∞ for solitary solutions, Eqs. (3.63) and (3.64) result in a homogeneous
system of equations,

0 = −λ cos θ bz +
V 2 − c2

s

V
by

0 = λ cos θ bz +
1

V

(
V 2 − cos2 θ − V 2 sin2 θ

V 2 − c2
s

)
bz

that leads to an expression for λ,

−λ2 =
(V 2 − cos2 θ)

[
(V 2 − V 2

+)(V 2 − V 2
−)
]

V 2 cos2 θ(V 2 − c2
s )

, (3.66)

where V± are the solutions of the equation (V 2 − cos2 θ)(V 2 − c2
s ) − V 2 sin2 θ = 0, namely,

V 2
± =

1 + c2
s

2

[
1 ±

√
1 − 4c2

s cos2 θ

(1 + c2
s )

2

]
.

From Eq. (3.66) we have two possibilities: (i) −λ2 < 0 for solitary solutions, and (ii)
−λ2 > 0 for oscillatory solutions (waves). That gives the following ranges of solutions:

• V < V−, cs, cos θ, V+ − osc. I
• V− < V < cs, cos θ, V+ − sol. I
• V−, cs < V < cos θ, V+ − osc. II
• V−, cos θ < V < cs, V+ − osc. IV
• V−, cs, cos θ, < V < V+ − sol. II
• V−, cs, cos θ, V+ < V − osc. III

plotted on Fig. 3.7, where the ranges of solitary and oscillatory solutions are denoted by ‘sol’
and ‘osc’, respectively. Here, a low-beta plasma is assumed, β0 = 0.4. Otherwise, as will be
shown in Chapter 4 for the case of high-beta plasma, kinetic effects need to be taken into
account, i.e., the fluid approach would not be an appropriate plasma description anymore.
The other free parameters are the angle θ and the phase speed V . With the so-chosen
parameters, some representative plots in each range of all possible solutions (oscillatory
and solitary ones) can be computed. Note that the specific values of V and θ place the
solutions in the oscillatory or in the solitary regime.
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Figure 3.7: Plot of V/VA(θ), where V+ is denoted with blue, V− with green, cs with red and
cos θ with yellow line. Additionally β0 = 0.4.

Before calculating the solutions in each range of Fig. 3.7, here it is considered the right
hand side of Eq. (3.48) as a function of N , i.e.,

F (N) =
β0

2
(1 − Nγ) + V 2

(
1 − 1

N

)
(3.67)

and look for its maximum, F (Nmax), found at Nmax =
[
2V 2/(γβ0)

]1/(γ+1)
. Note that the

function F (N) has only one local extremum, namely a maximum at Nmax. The procedure
of finding F (Nmax) is done in order to obtain an estimate for the range of possible values
that the initial condition bz(0) can take. The value of the initial condition bz(0) is necessary
for solving the differential equations (3.63) and (3.64). At ξ = 0, Eq. (3.48) reduces to:

bz(0)2/2 + bz(0) sin θ ≤ F (Nmax) (3.68)

since by(0) = 0 is required. Or in short, after setting the angle θ to certain value and taking
the already obtained values for F (Nmax), will lead to a range of possible solutions for bz(0),
that was originally the aim. The used set of parameters for calculating the solutions of the
stationary Sakai–Sonnerup system, presented in the next Subsections, are summarized in
Table 3.1 (computed for γ = 5/3).

3.3.2 Example of a mathematical pendulum

Now as an example, we look at the ‘mathematical pendulum’ in order to illustrate the
nature of ‘oscillatory’ and ‘solitary’ solutions. The movement of a mathematical pendulum
with the length l is usually described by

d2φ

dt2
+ ω2

0 sinφ = 0, (3.69)
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θ V F (Nmax) Nmax Range of bz(0) Solution

0◦ 10.0 81.355 8.49 (–12.76; 12.76) oscillatory
30◦ 0.2 0.0983 0.451 (–1.168; 0.168) oscillatory
30◦ 0.55 0.0005 0.964 (–1.001; 0.001) solitary
30◦ 0.7 0.1146 1.155 (–1.022; 0.022) oscillatory
30◦ 0.86 0.0619 1.348 (–1.111; 0.111) oscillatory
30◦ 1.0 0.1403 1.509 (–1.228; 0.228) solitary
30◦ 1.6 0.853 2.148 (–1.898; 0.898) oscillatory
30◦ 4.0 10.205 4.27 (–5.045; 4.045) oscillatory
60◦ 0.2 0.0983 0.451 (–1.839; 0.107) oscillatory
60◦ 0.4 0.0229 0.759 (–1.758; 0.026) solitary
60◦ 1.0 0.1403 1.509 (–1.881; 0.149) solitary
60◦ 1.6 0.853 2.148 (–2.433; 0.701) oscillatory
80◦ 0.4 0.0229 0.759 (–1.992; 0.022) oscillatory

Table 3.1: Computed bz(0)-range and the parameter set, used for the numerical calculation.

with ω0 = (g/l)1/2 and g is the gravitational acceleration. The angle φ denotes the temporal
deflection of the pendulum off the vertical axis. Normalizing the time t to the inverse of
the frequency ω0, i.e., t′ = tω0, the Eq. (3.69) reduces to

d2φ

dt′2
+ sin φ = 0, (3.70)

where the prime will be omitted further on. In order to solve directly Eq. (3.70), one needs
to set two initial conditions. For obtaining the oscillatory solutions of the pendulum, one
sets φ(t = 0) = φ0 and φ̇(t = 0) = 0. Then, φ0 denotes the amplitude of the oscillations.
The initial angle of deflection of the pendulum φ0 can take any value in the range 0–π, but
here for illustration are chosen φ0 = 30◦, 90◦, and 150◦. Such choice of the initial conditions
will result in the concentric curves in the (φ–φ̇)-plane, plotted on Fig. 3.8.
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Figure 3.8: Phase portraits in the (φ-φ̇)-plane of a mathematical pendulum.
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However, at one special point, namely φ0 = π, the only possible solitary solution is obtained
(this is the separatrix, plotted in blue on Fig. 3.8). For the rotational motion, which is also
possible for a mathematical pendulum, the initial conditions need to be changed (in this case
to φ(t = 0) = 0 and φ̇(t = 0) with values ±2.5 and ±3). Note, that both the ‘oscillatory’
and ‘rotational’ solutions are periodic ones and a solitary solution occurs only for a single
(definite) value of the initial conditions. In the case of ‘solitary’ solution, the movement
starts with φ̇(t = 0) = 0 at φ(t = 0) = π and needs an infinite time to reach φ = −π.

Multiplying Eq. (3.70) with φ̇ and, subsequently, integrating once, one gets

φ̇ = ±
√

2(C + cosφ), (3.71)

where C is the integration constant. In order to get a real solution, C+cos φ ≥ 0 is required.
Then, the three types of solutions are obtained with the following choice for the constant
C:

1. −1 < C < 1 leads to an ‘oscillatory’ solution (see the curves enclosed by the blue curve
on Fig. 3.8). Then, φmax = arccos(−C) < π gives the amplitude of the oscillations.

2. C = 1 provides the ‘solitary’ solution (see the blue curve on Fig. 3.8). Here, the
movement starts at φ = π at t = 0 and needs an infinite time to reach the final point
at φ = −π.

3. C > 1 provides no zeros of φ̇, i.e., it leads to ‘rotational’ solutions. Here, it is chosen,
C = 2.125 (corresponding to φ̇(0) = ±2.5), and C = 3.5 (φ̇(0) = ±3), both for
φ(0) = 0 (see the open curves on Fig. 3.8).

Additionally, the half period of a mathemat-
ical pendulum is given by,

T

2
= 2

∫ φmax

0

dφ√
2(C + cos φ)

,

where φmax = − arccos(C). A plot of the
dependence of the half period of the mathe-
matical pendulum T/2 on the constant C is
given on Fig. 3.9. In the case of a solitary
solution, i.e., C = 1, the period of the pen-
dulum tends to infinity.
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Figure 3.9: Dependence of T/2 from C.

On Fig. 3.10, the dependence φ(t) and φ̇(t) for four different initial conditions is shown, as
given on the top of each plot. Each row of two plots represents the certain solution/curve
from Fig. 3.8, namely, two oscillatory solutions, the separatrix/solitary solution and one
rotational solution (from top to bottom). There, one can follow the change in the shape of
the curves (in the corresponding columns), while passing from one type of solution (e.g., os-
cillatory/solitary) to another (e.g., solitary/rotational), correspondingly. One can see that
the period is increasing with the amplitude for φ(0) < π, whereas it is decreasing after
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Figure 3.10: Plots of φ(t) (left panel) and φ̇(t) (right panel) for initial conditions as given
on the top of each plot.

exceeding φ(0) = π. The solitary nature of the solution with φ(0) = π is obvious (see third
row in Fig. 3.10).

The mathematical pendulum is a simple, but non-trivial example of a fully non-
linear problem, which fortunately can be easily imagined. For small deflections,
one obtains linear oscillations with a frequency, which is not depending on the
amplitude. With increasing amplitudes, the motion leaves the linear regime.
That is characterized by the fact, that the period of the oscillation becomes de-
pendent from the amplitude. The study performed here shows, that the period
is increasing with the amplitude (see Fig. 3.10). If the amplitude reaches π, one
gets a very special solution, which corresponds to the ‘solitary’ one. Here, the
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pendulum starts with an infinitely slow velocity at π and reach asymptotically
the state −π after a infinitely long time, i.e., T/2 → ∞ (Fig. 3.8 and Fig. 3.9).
This ‘solitary’ solution separates the ‘oscillatory’ solutions from the ‘rotational’
ones (Fig. 3.8). All solutions can be characterized by the initial conditions,
i.e., the choice of φ̇ and C, covering the range 0 ≤ φ̇ < ∞ and −1 ≤ C < ∞,
respectively. It should be noted, that the ‘solitary’ solution is only given for
one point in this parameter range, i.e., φ̇ = 0 and C = 1. All other conditions
provide periodic (either oscillatory or rotational) solution. That impressively
demonstrates the singular nature of the ‘solitary’ solution.

3.3.3 Special stationary solutions

In this Subsection some special solutions of the system of Eqs. (3.62)–(3.64) are presented.
Because the aim of the thesis is not to discuss the complete manifold of solutions of this
system of equations, only some special cases of all solutions are presented here2. As ex-
pected, oscillatory and solitary solutions are obtained. The detailed numerical evaluation
of the system of equations (3.62)–(3.64), provides in addition a third kind of solution, that
is called here an ‘open’ solution. When the solutions are plotted in a (bz–by)-plane, the
oscillatory and solitary solutions appear as closed contours. In contrast to these cases,
the ‘open’ solutions, as suggested by their notation, are characterized as a finite bow-like
curve. A detailed inspection of the ‘open’ solutions, provides that outside the completed
(and plotted on all images with dashes) path, the algebraic equation (3.62) is violated and
hence the system of equations provides no more a common solution. Therefore, this type
of the solutions is not discussed further.

As already mentioned, a solution of the Eqs. (3.62)–(3.64) is determined by choosing the
parameters β0, θ and V . Here for the parameter β0 is chosen 0.4, because at a higher value
kinetic effects become important and the fluid description used here is no longer an appro-
priate one (see also Chapter 4). Furthermore, in order to illustrate some special examples,
one focuses on angles of propagation of θ = 30◦ and θ = 60◦. The last parameter, the
velocity V , can take arbitrary positive values, that will place the solution in one of all 6
possible ranges of solutions (see Fig. 3.7).

Finally, the system of Eqs. (3.62)–(3.64), representing a system of one algebraic and two
ordinary differential equations, can be solved numerically. Additionally, the initial condi-
tions need to be introduced, that in this case are: by(0) = 0, range of bz(0) (from Eq. (3.68)
given in details in Table 3.1), and b′z(0) = 0. The solutions of the system of equations
are sought inside a symmetric ξ-range in the form: by(ξ), bz(ξ), |b|(ξ) (i.e., the magnitude
of the magnetic field, b(ξ)2 = cos2 θ + by(ξ)

2 + (bz(ξ) + sin θ)2), and N(ξ). Solutions are
found for different combinations of the initial conditions and the parameters β0 = 0.4, θ and
V . Another important issue is to construct a so-called ‘hodograph’ representation of the
solutions [73], i.e., plotting them in a (bz–by)-plane. Hence, an analogy of the visual shape

2A detailed study of the different families of stationary solutions of the equations of Hall magnetohydrody-
namics is found in [8, 65, 103, 73]. In the limit of small but finite amplitude magnetic field fluctuations, those
equations reduce to the ‘derivative non-linear Schrödinger’ (DNLS) equation, which is basically non-linear
and provides solitary solutions [8, 73].
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of the ‘hodograph’ curves, can be drawn to the phase curves in the case of a mathematical
pendulum, plotted in the phase portrait on Fig. 3.8, i.e., in the (φ–φ̇)-plane.

The numerical procedure is performed as follows: For each set of input parameters (i.e.,
β0 = 0.4, θ, and V ) and initial conditions (i.e., by(0) = 0, bz(0)-range, see Table 3.1, and
b′z(0) = 0), the system of equations (3.62)–(3.64) is solved and the solution is plotted in the
(bz–by)-plane, see Figs. 3.11–3.14. The calculation is repeated with the same set of param-
eters, but this time with another value for bz(0). Choosing nearly equidistant values for
the initial condition bz(0) (when possible), places the solutions or the curves also at equal
separation on the bz(ξ)-axis. For example, the following choice of parameters, θ = 30◦,
V = 0.2, and bz(0) = 0.05, corresponds to the innermost circular curve on Fig. 3.11. On
the other side, choosing bz(0) = −0.2 leads to a solution represented with an ‘open’ curve
this time, that is passing exactly through the point −0.2 on the bz(ξ)-axis (and plotted with
dashed line). Because the parameter set given in Table 3.1 is used, each line of the table
corresponds to a given ‘hodograph’ curve (i.e., in the (bz–by)-plane).
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by HΞL Θ=30° Β0 =0.4 V=0.2

Figure 3.11: Oscillatory solutions (from right
to left) for bz(0): 0.16, 0.05 (pink); −0.2
(dashed). For further details see the text.
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Figure 3.12: Oscillatory solutions (from right
to left) for bz(0): 0.4, 0.2 (pink); −0.3632
(blue), and 0.7, −0.4 (dashed).
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Figure 3.13: Oscillatory solutions (from right
to left) for bz(0): 0.05, 0.25 (pink); 0.072
(blue), and 0.073, −0.05 (dashed).
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Figure 3.14: Oscillatory solutions (from right
to left) for bz(0): 0.4, 0.2 (pink); 0.564 (blue),
and 0.565, −0.35 (dashed).
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Figure 3.15: Plots of by(ξ), bz(ξ), |b|(ξ), and N(ξ) from Fig. 3.11 ‘osc. I’: for bz(0) = 0.05
(left panel), and for bz(0) = 0.16 (right panel).
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The exact values for the parameters and the initial condition bz(0) vary for each case and
thus they are explicitly given in each figure caption. Now it is focused on the ‘osc I’ and
‘osc III’-ranges (from Fig. 3.7), where for the parameters are chosen to be the following
values: θ = 30◦ with V = 0.2 and 1.6 and θ = 60◦ with V = 0.2 and 1.6, correspondingly
plotted on Figs. 3.11–3.14. From nearly circular shape (Fig. 3.11), the curves ‘degenerate’
into ellipses for the same angle θ (Fig. 3.12), when the parameter V is increased.

The dependencies of by, bz, |b|, and the density, N , on the coordinate ξ comprise a panel of 4
plots, as can be seen on Figs. 3.15–3.17 and Fig. 3.19. The plots on Fig. 3.15 are for β0 = 0.4,
θ = 30◦ and V = 0.2, as well as for bz(0) = 0.05 and 0.16. i.e., in the range of ‘osc. I’.
In the case of bz(0) = 0.05, the plots are reminiscent to the harmonic wave accompanied
with very weak density variations. In the case of bz(0) = 0.16, an asymmetric shape (i.e.,
steepened trailing edge) of the by(ξ) behaviour is visible. This is a non-linear property.
After comparing both panels on Fig. 3.15, it is seen that the period of the oscillations is
increasing with increasing the initial value of bz(0), i.e., the period of the oscillatory solution
is depending on the amplitude. That is a typical non-linear property as already seen in the
example of the mathematical pendulum (Fig. 3.10). In addition, strong density variations
are accompanied with the magnetic field fluctuations in the case of bz(0) = 0.16, according
to Eq. (3.62).

Changing the angle from 30◦ to 60◦ and choosing the initial condition bz(0) = 0.05, the
departure from the harmonic bahaviour is seen at the by(ξ)-behaviour, comparing Fig. 3.15
(left panel) to Fig. 3.16 (also left panel). In all these cases, belonging to the ‘osc. I’ range on
Fig. 3.7, a maximum of |b| is related to a local density depletion. In contrast, the parameters
on Fig. 3.16 (right) correspond to the ‘osc. III’ range, and in this range a compression in
the density is seen for a maximum of |b| at ξ = 0. For completeness, similar four-panel plots
are computed for the oscillatory solutions in the ‘osc. II’ and ‘osc. IV’ ranges, as presented
on Fig. 3.17. There, for a maximum of |b| at ξ = 0, one can see a density compression in
the ‘osc. II’ case and density depletion in the ‘osc. IV’ case. However, the by-behaviour
(i.e., the positions of the minimum and maximum values) is different in both ‘depletion’
ranges (‘osc. I’ and ‘osc. IV’) and also in both ‘compression’ ranges (‘osc. II’ and ‘osc. III’),
compare the corresponding panels on Fig. 3.16 and Fig. 3.17. Another important issue
in the range of oscillatory solutions is the appearance of a ‘separatrix’ (the blue curve on
the Figs. 3.12–3.14). It is similar to the separatrix in the case of a pendulum motion (see
Fig. 3.8), but here it can be obtained for two different values of the initial condition bz(0).

Approaching the range of solitary solutions (i.e., moving towards ‘sol. I’-range on Fig. 3.7),
leads to the so-called ‘banana’-like curves, that can be clearly seen on Fig. 3.18. The
dependence on ξ for bz(0) = −0.1, is plotted on Fig. 3.19. Such ‘banana’-like (or also
called ‘arc’-like) polarizations are really seen in terms of magnetic field fluctuations in the
interplanetary space [112]. In comparison to the other oscillating solutions (see Figs. 3.15–
3.17), they have long periods of about 75 in the dimensionless ξ-space. Additionally, they
show steepened trailing edges, where density depletions occur. Both are pure non-linear
properties.
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Figure 3.16: Plots of by(ξ), bz(ξ), |b|(ξ), and N(ξ): from Fig. 3.13 ‘osc. I’, for bz(0) = 0.05
(left panel), and from Fig. 3.14 ‘osc. III’, for bz(0) = 0.4 (right panel).
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Figure 3.17: Plots of by(ξ), bz(ξ), |b|(ξ), and N(ξ) for bz(0) = 0.01: ‘osc. II’-range (left
panel), and ‘osc. IV’-range (right panel).
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Figure 3.18: Oscillatory solutions (from right to left) for bz(0): −0.1 (brown), −0.8 (blue),
−0.9 (green), −1.0 (orange) and −1.1 (pink). No solutions for bz(0) ∈ (0.25, 0.75).
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Figure 3.19: Plots of by(ξ), bz(ξ), |b|(ξ), and N(ξ) from Fig. 3.18 for bz(0) = −0.1.

In the range of parameters corresponding to the areas of ‘sol. I’ and ‘sol. II’ (see Fig. 3.7),
solitary solutions are obtained, as depicted on the ‘hodographs’ on Figs. 3.20 and 3.22
(‘sol. I’) and on Figs. 3.21 and 3.23 (‘sol. II’), respectively. The corresponding explicite
solutions are presented in Figs. 3.24 and 3.25. In all presented cases, bz(ξ) and |b|(ξ) are
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Figure 3.20: Solitary solution in the ‘sol. I’
range for bz(0) = −0.2835.
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Figure 3.21: Solitary solution in the ‘sol. II’
range for bz(0) = −0.5758.
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Figure 3.22: Solitary solutions in the ‘sol. I’
range for bz(0) = −0.7716.
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Figure 3.23: Solitary solution in the ‘sol. II’
range for bz(0) = −0.3754.

always smaller than 0 and 1, respectively. For parameters related to ‘sol. I’-range, the
solitons are accompanied by a density compression. A density depletion occurs for the
solitary solutions in the parameter range ‘sol. II’. Such solutions are found as so-called
magnetic holes in the interplanetary space [8, 103], for instance.

Additionally, the overall shape of the oscillatory and the solitary solutions intrinsically
differs as a function of ξ. From Eq. (3.63), follows that an extremum of bz (i.e., dbz/dξ = 0),
corresponds to by = 0, in the specific case of bextr

z . An analytical expression for the value of
bz in the point of the extremum can be found setting the condition by = 0 in Eq. (3.62), or
finally,

bextr
z = sin θ ±

√
sin2 θ + 2F (N).

This can be seen comparing the numerical solutions for the oscillatory solutions (Figs. 3.15–
3.17), having maximum of bz at ξ = 0, whereas in the solitary case (Figs. 3.24 and 3.25),
bz has minimum at ξ = 0. The density compression (maximum of N(ξ = 0)) is obtained
in the ‘osc. II’, ‘osc. III’, and ‘sol. I’ ranges, whereas the density depletion (minimum of
N(ξ = 0)) occurs in the ‘osc. I’, ‘osc. IV’, and ‘sol. II’ ranges. In all plots, by(ξ = 0) = 0, as
required from the initial condition.
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Figure 3.24: Plots of by(ξ), bz(ξ), |b|(ξ), and N(ξ) for bz(0) = −0.2835 from Fig. 3.20 (left
panel), and for bz(0) = −0.5758 from Fig. 3.21 (right panel).
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Figure 3.25: Plots of by(ξ), bz(ξ), |b|(ξ), and N(ξ) for bz(0) = −0.7716 from Fig. 3.22 (left
panel), and for bz(0) = −0.3754 from Fig. 3.23 (right panel).



58 Chapter 3: Nonlinear solution of the Sakai–Sonnerup system

3.3.4 Nonlinear whistler waves

The parametric range associated with the ‘osc. III’ corresponds to whistler waves at low
frequencies, i.e., much lower than the electron cyclotron frequency. For these solutions, the
velocity V exceeds the Alfvén speed. In this subsection, the hodograph curves for θ = 0◦ and
30◦ are computed, see Fig. 3.27 and Fig. 3.26, respectively. The corresponding behaviour

-3 -2 -1 1 2 3
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-2

-1

1

2

3

by HΞL Θ=0° Β0 =0.4 V=10

Figure 3.26: Solutions (from right to left) for
bz(0): 3, 2, 1, and 0.2.

-2 -1 1 2 3
bz HΞL

-2

-1

1

2

by HΞL Θ=30° Β0 =0.4 V=4.0

Figure 3.27: Solutions (from right to left) for
bz(0): 3, 2, 1 and 0.2.

in the ξ-space is given on Fig. 3.28. The case for 60◦ was already presented on Figs. 3.12,
3.14 and 3.16 (the right panel there). In general, the period is decreasing with increasing
V , and the associated density fluctuations become weaker with increasing V , as expected
by Eq. (3.62). For V ≫ 1, Eq. (3.62) reduces to

b2
y + b2

z + 2 bz sin θ

2
= V 2 N − 1

N

providing |N − 1| ≪ 1 for finite amplitudes, i.e., by, bz < 1. Such whistlers are really
seen in space plasmas (see Fig. 3.3) and play important role for accelerating electrons in
the upstreaming region of shocks in collisionless plasmas, as will be discussed in Chapter 5.

In summary, the Sakai–Sonnerup system (3.62)–(3.64) describes the evolution
of one-dimensional plasma waves for frequencies much lower than the electron
cyclotron frequency, so that the displacement current and the charge separa-
tion effects can be neglected. The stationary solutions of the Sakai–Sonnerup
system offers both oscillatory and solitary solutions, reminiscent to the fully
non-linear motion of a mathematical pendulum. In this respect, the solitary
solution separates different types of solutions as was discussed in details in the
present Chapter. It should be pointed out, that the solitary solution is related
to a very special choice of parameters and initial conditions. This fact means
actually that the oscillatory (or periodic) solutions are mostly probably to oc-
cur in space plasmas. They are related to different kinds of polarization, e.g.,
circular, elliptical and banana-like polarization, as really observed in terms of
low frequency magnetic field fluctuations in space plasmas.
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Figure 3.28: Plots of by(ξ), bz(ξ), |b|(ξ), and N(ξ) for bz(0) = 0.2 (left panel) from Fig. 3.26
and for bz(0) = 1.0 (right panel) from Fig. 3.27.



Chapter 4

Electron energization due to jet
propagation in the solar corona

4.1 Introduction

4.1.1 Observations on solar jets and accelerated electrons

Solar jets

Plasma jets in the solar corona were discovered on the images from the soft X-ray telescope
(SXT) aboard Yohkoh satellite, see e.g., [97, 106, 99]. Example of a solar jet is presented
as a sequence of snap shots at 195 Å from the TRACE satellite on Fig. 4.1. The observed
physical parameters of the jets were already summarized in Subsect. 1.5.1.

Many jets were observed to occur at flare events, e.g., in X-ray bright points (XBPs),
emerging flux regions (EFRs) or active regions (ARs). As it is widely known, during solar
flares stored magnetic field energy is suddenly released and transfered into plasma heating,
mass motions (e.g., jets and/or coronal mass ejections), energetic particles (e.g., electrons,
protons, and heavy ions), and radiation across the whole electromagnetic spectrum, i.e.,
from radio waves up to γ-rays, [30]. When two magnetic field lines with opposite directions
approach each other due to their photospheric footpoint motion (see Fig. 1.18), a current
sheet is established between them. If the electric current exceeds a certain critical value,
the anomalous resistivity is suddenly increased by exciting plasma waves owing to various

Figure 4.1: Solar jets from TRACE satellite, detected on 30–Jul–2004 at 195 Å.

60
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Figure 4.2: Metric type III and U radio bursts in the frequency range 110–400 MHz, seen
in the dynamic radio spectrum recorded by the radio spectralpolarimeter [53] of the Obser-
vatory for Solar Radio Astronomy (OSRA), Germany.

plasma instabilities, [110]. A process known as magnetic reconnection takes place rearrang-
ing the magnetic field line configuration. Due to the strong curvature of the newly formed
magnetic field lines, the plasma is shooting away from the reconnection site leading to the
establishment of (sometimes oppositely directed) jets of hot plasma (see also Fig. 1.18,
Chapter 1). As already discussed by [124, 125], magnetic reconnection is the most probable
mechanism leading to the generation of the solar jets.

Accelerated electrons

Beams of accelerated electrons are observed in the solar corona, in terms of type III metric
radio bursts (see Chapter 1). The solar type III radio bursts are usually regarded as the
signature of beams of supra-thermal electrons [74]. An example of a solar type III and
U radio bursts is presented in Fig. 4.2. It shows a dynamic radio spectrum in the range
110–400 MHz, recorded in the Observatory for Solar Radio Astronomy (OSRA), Germany.
A stripe of enhanced radio emission starts near 350 MHz at 08:18:51 UT and rapidly drifts
towards lower frequencies down to 110 MHz. This is a typical type III radio burst, which
is considered to be a signature of an electron beam traveling along open magnetic field
lines outwards in the corona. Another feature starts near 300 MHz at 08:18:53 UT, reaches
230 MHz at 08:18:57 UT, and turns back towards higher frequencies, reaching 400 MHz at
08:19:00 UT. It represents the so-called type U radio burst, that is regarded as an electron
beam traveling along closed magnetic field lines in the corona, according to the commonly
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accepted interpretation of such emission [3, 4] (see Subsect. 1.4.1). The dynamic radio
spectrogram indicates that both electron beams are generated near the same place and
time in the corona.

The accelerated electron beams in terms of type III/U radio bursts and the mass motion
through the solar corona in terms of soft X-ray jets, are the two components of the performed
theoretical analysis in the present Chapter. The analytical and numerical explanation of
the electron energization due to the jet propagation in the coronal plasma is the aim of the
subsequent Sections. Initially, a procedure of association between the two kind of events
(i.e., jets and radio bursts) needs to be performed, and its main properties are summarized
in the following Subsection.

4.1.2 Jet associated type III/U radio bursts

Soon after the Yohkoh discovery of the solar jets with its SXT instrument, a good spatial
and temporal correspondence of soft X-ray jets to type III and U metric bursts in radio
emission was recognized. Here, an attempt of a summary comprising the reported events
on jet associated radio bursts is performed, and its results are presented in Table 4.1.

The first reports, see [81, 5, 45], on the correlation of a type III radio burst and a jet-like
brightening in the corona were done by a joint multi-frequency analysis of: i) spectro-
graphic radio data, e.g., from University of Porto1 (Portugal), OSRA Tremsdorf2 (Ger-
many), ARTEMIS3 (Greece); ii) imaging radio data, e.g., from the Nançay radioheliograph
(NRH)4 (France); and iii) soft X-ray data, from Yohkoh/SXT. Type III and U radio bursts
were clearly associated (temporally and spatially) with: a coronal structure, a jet-like fea-
ture, or a whip-like brightening from a XBP. The general outcome from the data analysis
is that the path of the electron beams responsible for the type III/U radio burst is directed
along the soft X-ray jet.

Further examples on the association between metric type III bursts and soft X-ray jets soon
followed, see [43, 84]. There, for a first time it was presented a comprehensive radio and soft
X-ray analysis, where the physical parameters of the jets were also estimated. Additionally,
the centroids of the type III bursts at different frequencies were confirmed to be aligned in
the direction of the soft X-ray jets. Further evidence for the production of non-thermal ra-
dio emission associated with soft X-ray ejection at the top of a coronal loop was reported by
[85]. The collected data set by all these authors gives an evidence for the good spatial and
temporal correspondence between soft X-ray jet and nonthermal electron beams in terms
of metric radio bursts. In general, when solar jets occur in a complex magnetic field config-
uration (as in the case of a two-sided-loop jet, see Fig. 1.19), the accelerated electrons also
will travel along the closed field lines and hence type U radio bursts are naturally expected
to be observed in the radio spectrum. In fact, reports on type U radio bursts were given,
by [5, 81], but with no information on the type of the associated jet. On the other hand,

1Radio Spectrograph of University of Porto, located at 40◦ 59’ 57” N, 8◦ 13’ 52” W, in Espiunca, 70 km
away from Porto, Portugal, [50].

2OSRA, located at 52.286◦ N, 13.135◦ E, in Tremsdorf, 15 km south-east of Potsdam, Germany.
http://www.aip.de/groups/osra/

3ARTEMIS, located at 38◦ 49’ N, 22◦ 41’ E, in Thermopylae, Greece. http://www.cc.uoa.gr/artemis/
4NRH, located at 47◦N, 02◦ E, near Meudon, France. http://www.obs-nancay.fr/
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No. dd-Mon-yyyy jet SXT jet radio burst reference

position time, UT time, UTi)

1 13–Nov–1992 AR 7335 12:13:121) 12:12:43 [5]
2a 18–Aug–1992 13:01:45 13:00:45 [81]
2b 18–Aug–1992 13:01:45 13:00:50 [81]
3 20–Jun–1992 22:29:10 [45]

4 16–Aug–1992 AR 7260 12:37:281) 12:37:50 [43]
5 06–Dec–1991 AR 6958 11:42:30 11:40:38 [84]
6 21–Apr–1992 AR 7138 11:44:02 11:48:05 [84]

7a 10–Sep–1994 AR 7773 ∼10:24max) 10:26:51 [85]

7b 10–Sep–1994 AR 7773 ∼10:24max) 10:27:01 [85]
8 26–Sep–1992 AR 7296 09:50 [44]

9 07–Aug–1998 AR 8293 15:16:51∗) 15:16:51g) [40]

Table 4.1: Reports on: date, jet position on the solar disk (AR number), time in UT,
together with the time of the associated metric radio bursts. The superscripts notate,
correspondingly: i) initial time of the jet or radio burst; 1) time of the first available image
of the jet; max) time of estimated maximum of the jet; ∗) TRACE image at 171 Å; g) part
of a group of type IIIs; if time is not explicitly classified, to be regarded as in case 1).

when the jet (called anemone-type, Fig. 1.19) occurs near an area of predominantly open
magnetic field lines, the electron beam follows these field lines and a type III radio burst is
reported.

The physical parameters of the solar jets from the soft X-ray images, following the same
enumeration as in Table 4.1, together with the corresponding type of the associated radio
bursts, are gathered in Table 4.2. The so-reported values were taken into account while
performing the numerical calculations, as shown in the next Section.

No. vproj
jet Tjet Njet association, temporal remarks

km s−1 ×106 K ×109 cm−3 burst type delay

1 320 yes, U 65 s Vsource > 0.2c
2a,b yes, III&U Vsource ∼ c/3
3 5 ?, III
4 300 5.8 ± 1.5 0.6–1 yes, III no
5 250 1.5–3.5 1.3 ± 0.15 yes, III > 4 min
6 800 1.5–3.5 0.6 ± 0.35 yes, III ∼ 1.5 min
7a,b 1.8 ± 0.4 yes, III
8, 9 yes, III

Table 4.2: Available physical parameters of the soft X-ray jets from Table 4.1, and the
corresponding types of the associated radio bursts.
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4.2 Jet–plasma interaction

The interaction of the jet with the surrounding plasma is studied in the present Chapter.
From observations is known that the jet consists of a hot plasma [102], thus a kinetic ap-
proach in terms of the Vlasov–Maxwell equations is much more appropriate than the multi-
fluid approach (the latter was investigated in [67, 68]). The analysis of the interaction of the
hot jet with the cold background plasma provides that such unstable configuration leads to
excitation of electrostatic waves. Further on, the movement of an electron considered as a
test particle in this growing electrostatic wave field is numerically treated, that results into
an energizing and/or heating of these electrons. The settings for the jet and the electrons
are done under typical coronal conditions. This mechanism can explain the occurrence of
jet related type III metric radio bursts, as really observed (see Table 4.1), see also [72, 71].

4.2.1 Kinetic approach

A kinetic analysis is performed here, considering close relationship between plasma jets in
the solar corona and a consequent acceleration of electrons. This analysis argue on the
possibility of regarding the plasma jet as a trigger mechanism for the electron energization
(heating or/and acceleration).

A collisionless plasma can be described by the well-known Vlasov–Maxwell equations, see
e.g., [9, 42]. It is intended to study the interaction of a hot neutral plasma stream (jet) with
the surrounding background plasma with the aim to search for a plasma wave excitation.
That is usually done by a linear treatment of the Vlasov–Maxwell equations leading to a
homogeneous system of equations

εijEj = 0 (4.1)

with the dielectric tensor εij [9, 42]. The determinant of the tensor εij provides the dis-
persion relation of the different waves. Here, Ej denotes the components of the vector of
the electric field accompanied by these plasma waves. The jet and the waves are assumed
to propagate along the ambient magnetic field (chosen to be the z-direction). Since it is
intended to look only for the excitation of electrostatic waves, the system of equations (4.1)
can be reduced to

ε33 Ez = 0 and finally ε33 = 0 (4.2)

with

ε33 = 1 − 2π
∑

j

ω2
pj

k2

∞∫

−∞

dV‖

∞∫

0

dV⊥V⊥
k

kV‖ − ω

∂fj

∂V‖
(4.3)

with the wave number k and the frequency ω [9]. Here, each kind of particle j, with a charge
qj , a mass mj , a temperature Tj , and a velocity distribution function fj (normalized to
unity), interacts with each other by electromagnetic forces. Nj and ωpj = (4πq2

j Nj/mj)
1/2

denote the number density of each kind of particles and its corresponding plasma frequency,
respectively.
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Figure 4.3: Numerical behavior of the function H(ξj) (here x ≡ ξj).

Since a magnetized plasma is considered, the velocity distribution function fj basically
depends on the particle velocities parallel (V‖) and perpendicular (V⊥) to the ambient
magnetic field, i.e., fj = fj(V‖, V⊥). Here, the jet is regarded as propagating along the
magnetic field lines, hence a drifting Maxwellian distribution is assumed for the velocity
distribution function

fj =
1

(2πv2
th,j)

3/2
e−[(V‖−V0,j)

2+V 2

⊥]/2v2

th,j (4.4)

with vth,j = (kBTj/mj)
1/2, as the thermal velocity of the particle species j and V0,j , as the

drift velocity of the species j. Inserting the velocity distribution function (4.4) into Eq. (4.2)
and performing the integrals, one gets the expression for the general dispersion relation of
electrostatic waves

−k2 =
∑

j

ω2
pj

v2
th,j

H(ξj), (4.5)

with

ξj =
Vph − V0,j

21/2 vth,j
. (4.6)

The phase velocity is denoted with Vph = ω/k and the function H(ξj) is given by

H(ξj) = 1 + ξj Z(ξj) (4.7)

with the well-defined from [9] plasma dispersion function

Z(ξj) =
1

π1/2

+∞∫

−∞

du
e−u2

u − ξj
.

The numerical behavior of the H(ξj)-function is shown on Fig. 4.3. The H-function changes
its sign at ξj = 1.3, takes a global minimum of −0.2875 at ξj = 2.1, and finally tends to
zero for ξj → ∞ as seen on Fig. 4.3.
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4.2.2 Electrostatic wave excitation due to the jet–plasma interaction

Now, the interaction of a hot plasma jet with the coronal background plasma is studied.
Both, the jet and the background plasma are considered to be neutral. The jet is drifting
with the velocity V0 with respect to the background plasma. The electrons of the jet are
considered to be hot, i.e., their temperature is θ T0 (with θ > 1), whereas the protons of the
jet have the same temperature as the protons of the background plasma, T0. The number
density of the jet electrons is νN0 (with 0 < ν < 1), where N0 = 1.2 × 109 cm−3 is the
assumed value for the total number density of all electrons in the combined jet–background
plasma system. It corresponds to the 300 MHz level, at which type III bursts are usually
seen. Since a neutral plasma is considered, the same needs to be valid for the protons.
Finally, the parameters of the jet (abbreviated with subscript ‘j’) are given by

V0j,e = V0j,i = V0

Tj,e = θ T0 and Tj,i = T0

Nj,e = Nj,i = νN0.

In the case of the background plasma (denoted with subscript ‘b’), the electrons and pro-
tons (with subscripts ‘e’ and ‘i’, correspondingly) have the temperature T0, and their drift
velocity is zero. Then, the background parameters can be fixed to be

V0b,e = V0b,i = 0

Tb,e = Tb,i = T0

Nb,e = Nb,i = (1 − ν)N0.

Here, the abbreviation for the jet/background plasma is given with the first lower index ‘j/b’,
whereas the electrons/protons are denoted with the second lower index ‘e/i’, respectively.

Thus, the considered plasma configuration represents a four component plasma. The fo-
llowing normalization is now introduced (see also Chapter 2, Sect. 2.2),

ω′ :=
ω

ωp0
, ωp0 =

(
4πe2N0

me

)1/2

; q := kλDe, λDe =
vth,e

ωp0
;

vph :=
Vph

vth,e
, vth,e =

(
kBT0

me

)1/2

; v0 :=
V0

vth,e
;

T ′
b,e/i = T ′

j,i := 1, T ′
j,e := θ; N ′

b,e/i := 1 − ν, N ′
j,e/i := ν,

where the quantities ω′, q, vph, v0, T ′ and N ′ are already dimensionless ones. Here, the
spatial and temporal coordinates are normalized to the Debye length λDe and the inverse
plasma frequency ω−1

p0 , respectively. Consequently, all velocities are normalized with respect
to the electron thermal one vth,e (see Sect. 2.2 and Subsect. 2.3.2). Then, the dispersion
relation (4.5) reduces to

−q2 = (1 − ν)H(ξb,e) + (1 − ν)H(ξb,i) +
ν

θ
H(ξj,e) + νH(ξj,i), (4.8)

where ξb,e = vph/21/2, ξb,i = vph/(2µe)
1/2, ξj,e = (vph−v0)/(2θ)1/2, ξj,i = (vph−v0)/(2µe)

1/2,
are already normalized quantities and µe = me/mi is again the electron–proton mass ratio.
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Since the jet speeds are in the range V0 = 10–1000 km s−1 [101], and the thermal electron
velocity is vth,e = 4600 km s−1 for a coronal temperature of T0 = 1.4 × 106 K, then the
normalized jet velocity is in the range v0 ≪ 1. Therefore, the waves excited by the jet
plasma interaction will have phase speeds that also are vph ≪ 1. That leads to ξb,e, ξj,e ≪ 1
and, consequently, to H(ξb,e) ≈ 1 and H(ξj,e) ≈ 1. This is not in general valid for the ion
parts, due to the presence of the factor µe in both denominators (of ξb,i and ξj,i). In the
case of a wave-like solution of Eq. (4.8), i.e., q2 > 0, one needs to find for which condition
the right-hand-side of Eq. (4.8) becomes negative. As already mentioned, the H-function,
Eq. (4.3), has a global minimum of Hmin = −0.2875 at ξj = 2.1 (see Fig. 4.3). If the
ion-parts are adjusted in such a way that their H-functions take Hmin, finally one gets the
condition

(1 − ν) +
ν

θ
− 0.2875 < 0 or ν >

0.7125

θ − 1
θ (4.9)

for a wave-like solution. This condition should be fulfilled in the sense of a rough estimate.
For example, if one has an upper limit for the parameter ν, Eq. (4.9) gives the lower limit
for the other parameter θ. The condition ν = 1 can be regarded as an upper limit, because
then all particles are to be considered inside the jet, Nj = N0. In the other extreme, ν = 0,
all particles are in the background plasma and Nb = N0, i.e., no jet. The requirement ν ≤ 1
in Eq. (4.9) results in θ ≥ 3.4783. From observations, see also [102], one could estimate the
upper temperature limit of the jet, i.e., θ ≤ 5.71, which leads to ν ≥ 0.864. Even higher
value for the jet temperature was reported by [98], where the jet temperature was estimated
to reach 107 K (or equivalently, θ = 7.1 and hence ν = 0.829). In general, only a jet with
hot electrons is able to provide a wave-like solution of Eq. (4.8), but one needs to keep
in mind the relation (4.9), which gives the limits of the constructed theoretical approach.
Finally, the limits of the dimensionless quantities θ and ν are summarized below:

(7.1) 5.71 ≥ θ ≥ 3.4783

(0.829) 0.864 ≤ ν ≤ 1

or in terms of physical quantities, the jet temperature and density need to be confined in
the following ranges,

(107) 8 × 106 ≥ Tjet, K ≥ 4.87 × 106

(0.995 × 109) 1.033 × 109 ≤ Njet, cm−3 ≤ 1.2 × 109

where the extreme observed case [98] is given in brackets.

For the numerical evaluation of Eq. (4.8), the jet parameters observed during the solar event
on 28th December 1993 [100] are adopted, namely jet speed of 532 km s−1 (= 0.12 vth,e) and
a temperature in the range of 7.4–8.2×106 K or θ = 5.28–5.86. These parameters are typical
ones. The relation (4.9) gives ν > 0.88 (for θ = 5.28). Bearing in mind the uncertainties for
the reported observed physical parameters of the jets, θ = 5.5 and ν = 0.9 are taken for the
numerical calculations further on. With the so-chosen parameters, Eq. (4.8) is calculated
numerically using the procedure, described in [9], but adapted here for the ion-acoustic case.
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Additionally, the jet velocity is set to have a value in the range v0 = ±0.45 (in normalized
quantities). Further on, it is assumed that the wave frequency is a complex quantity, i.e.,
sum of real ω and imaginary γ counterparts, namely ωcomplex = ω + i γ. In this sense,
the solutions of Eq. (4.8) is plotted in terms of a v0(ω)-dependence, where the values of γ
are given in colour code (from blue to green). When the imaginary part of the complex
frequency (i.e., γ) is positive, the wave grows in time (given with yellow-green color on
the plots). The case of negative γs gives the wave damping (with blue color, respectively).
The task here is to look for electrostatic wave excitations, so the yellow-green areas on the
v0(ω)-plots are to be of main interest.

As could be seen from Fig. 4.4, the numerical evaluation of Eq. (4.8) provides growth
rates of the instability for jet speeds in the interval 0.09 < v0 < 0.15, i.e., in the range
414−690 km s−1, leading to an excitation of electrostatic waves up to frequencies of 0.01 ωp0.
These waves are of the ion-acoustic mode (see Chapter 2). The maximum of the growth
rate γmax = 0.00319ωp0 appears at a frequency ω = 0.00372ωp0.

Two additional runs were performed5, using different set of jet’s parameters, as could be
seen on Figs. 4.5 and 4.6, namely with lower and higher jet temperature of Tjet = 5.87×106 K
and Tjet = 107 K, respectively, in comparison with the first analysis. Some general trends

5The calculations resulting in Figs. 4.3–4.6 were done by means of a numerical code available at AIP.

Figure 4.4: Jet velocity–real frequency plot, the imaginary part of the frequency is colour-
coded, as given below the graphic. The parameters set is: θ = 5.5 (Tjet = 7.7 × 106 K) and
ν = 0.9 (and vjet ≡ v0).
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Figure 4.5: Jet velocity–real frequency plot for a parameter set: θ = 4.2 (Tjet = 5.87×106 K)
and ν = 0.95.

Figure 4.6: Jet velocity–real frequency plot for a parameter set: θ = 7.14 (Tjet = 107 K)
and ν = 0.9.
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Fig. θ Tjet, MK ν Njet, cm−3 ∆ vjet/vth,e ∆ vjet, km s−1

4.5 4.2 5.87 0.95 1.14 ×109 0.08–0.11 368–506
4.4 5.5 7.7 0.9 1.08×109 0.09–0.15 414–690
4.6 7.14 10 0.9 0.96 ×109 0.075–0.25 345–1472

Table 4.3: Summary on the input/output parameters for the jet excited instability.

can be immediately noticed. Namely, simultaneously with the increasing of the parameter θ,
the range of jet velocities for which the instability occurs, ∆v0, also increases (e.g., compare
Fig. 4.4 and Fig. 4.6). It is easily to notice that the hotter jets allow growth of the instability
for broader range of values of the jet velocities. Another important outcome confirms the
θ–ν-constrain, namely, if one wants to obtain instability for much colder jets (for example
with Tjet < 5.8 MK), it needs to consider that nearly all plasma particles are in the jets
(i.e., ν > 0.95 that becomes unrealistic) and the assumption for a four-component plasma
becomes questionable! The values of all input and output parameters in these calculations
are summarized in the Table 4.3.

In summary, the interaction of the jet with the background plasma leads to an instability for
a small range of jet speeds, exciting electrostatic waves in the sense of the ion-acoustic mode.
For example, in the case of a jet with temperature of 7.7 MK, this range is 415−690 km s−1.
The electrostatic fluctuations represent localized spatial structures which grow in time. In
order to see if such waves are able to accelerate electrons, one needs to follow the movement
of an electron in this wave field. When the kinetic energy of the co-moving electron increases
in time, the ability of such wave structure to energize electrons is proven. This is shown in
details in the next Subsection.

4.2.3 Test electron movement in an oscillatory electrostatic field

In this Subsection, the movement of an electron in a given electrostatic wave field is stud-
ied. The wave field results from the jet–plasma interaction, as discussed in the previous
Subsection. Here, the electron is generally considered to be a test particle, i.e., only one
electron is taken into account in the numerical analysis.

The equation of motion of a test electron in an electrostatic field is usually given by

dp

dt
= −eE = e

∂ϕ

∂x
, (4.10)

with the electrostatic potential ϕ, the momentum p = mev/(1−β2)1/2, and particle velocity
v (β = v/c; c, velocity of light). Introducing dimensionless quantities,

t′ := ωp0 t, x′ := x/λDe, φ := ϕ/(kBT0/e).

and dropping the primes henceforth, the equation of motion is transformed into the nor-
malized one:

1

βth

1

(1 − β2)3/2

dβ

dt
=

∂φ

∂x
, (4.11)
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with βth = Vth,e/c. Additionally, the definition of the velocity v = dx/dt, i.e.,

dx

dt
=

β

βth
(4.12)

in normalized quantities, must be added, in order to complete the system of equations for
describing the test particle motion. The ansatz

φ = φ0 eγ t cos[q x(t) − ω t] (4.13)

is adopted for the spatial–temporal behavior of the electrostatic potential. Here, the same
normalization has been employed. The electrostatic fluctuations are generated by the in-
stability appearing due to the jet–plasma interaction (as found in the previous Section).
Since the conditions of maximum growth rate should be used, γ = 0.00319, ω = 0.00372,
and q = 0.05 are chosen. At the thermal, i.e., undisturbed level, the amplitude of the elec-
trostatic (ion-acoustic) fluctuations can be assumed to be about kBT0 (kBT0 = 0.12 keV for
T0 = 1.4× 106 K), or φ0 = 1 in normalized quantities. The normalized equations of motion,
(4.11) and (4.12), have been numerically solved with the choice of these parameters. Since
the electron is regarded as a test particle, it must be collisionless with respect to Coulomb
collisions. To be sure concerning this subject, the initial velocity of the electron is chosen to
be 4 times the thermal one, i.e., β0 = 0.0613 in normalized quantities [22]. It corresponds
to a kinetic energy of about 1 keV. In summary, the initial conditions are x(t = 0) = 0 and
ẋ(t = 0) = 4 in the sense of normalized quantities. The resulted movement in the x–t plane
is presented in Fig. 4.7.

As seen from Fig. 4.7, the electron is initially moving with a nearly constant velocity until
t ≈ 650 in the initial phase. Then, its motion is dramatically changed into a much more
slower one superimposed by an oscillatory motion with a frequency increasing with time.

250 500 750 1000 1250 1500
time

500

1000

1500

2000

spatial coordinate k=0.05 Γ=0.00319 Ω=0.00372

Figure 4.7: Co-movement of the test electron with the electrostatic wave.
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That can be explained in the following manner:

Initially, the amplitude of the electrostatic wave is small, see Eq. (4.13), so that its influence
on the electron motion can be neglected. Then, the electron continuously propagates with
a constant velocity of β0. Since the amplitude of the electrostatic field is increasing with
time t, its influence on the particle motion will become essential, if the potential energy of
the particle in the electrostatic wave, φ0 eγt, is comparable with the kinetic energy of the
particle, W/(kBT0), i.e.

W

kBT0
≡ 1

β2
th

[
1√

1 − β2
− 1

]
:= φ0 eγt. (4.14)

That state is reached after the time

t =
1

γ
ln

(
W

kBT0
· 1

φ0

)
(4.15)

The kinetic energy, corresponding to β0 = 4Vth,e/c = 0.0613 (the minimal speed for the
electrons to be regarded as collisionless) and βth = 0.015, is W0/kBT0 = 8. Setting this
values in Eq. (4.15), one gets t0 = 652, as in agreement with the (exact) numerical solution
on Fig. 4.7. After this time the electrostatic field dramatically changes the particle move-
ment. Namely, the particle starts to co-move with the electrostatic wave, i.e., its averaged
velocity is the phase speed of the wave, as depicted in Fig. 4.7. An oscillatory motion with
temporally increasing frequency is superimposed upon this slow co-motion with the wave.

That can be demonstrated in the following way: Inserting the Ansatz (4.13) into Eq. (4.11)
one gets

1

βth

dβ

dt
= −q φ0 eγt sin[q x(t) − ωt] (4.16)

in the non-relativistic approach (i.e., β ≪ 1). In the case of the co-motion with the wave,
the function x(t) can be expressed by

x(t) = v∗pht + δx + x0 (4.17)

with v∗ph = ω/q as the phase velocity of the wave, δx as the oscillatory motion superimposed
on the slowly translatory motion, and x0 as the initial spatial displacement. Inserting the
expression (4.17) into Eq. (4.16) and using Eq. (4.12) one obtains

d2δx

dt2
= −qφ0 eγt sin[q δx + q x0]. (4.18)

Since the oscillatory motion has small amplitudes, q δx ≪ 1 should be assumed, leading to

sin[q δx + q x0] = q δx cos[q x0] + sin[q x0].

Then, Eq. (4.18) reduces to

d2δx

dt2
+ ̟2δx = −q φ0 eγt sin[qx0] (4.19)
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energy gain k=0.05 Γ=0.00319 Ω=0.00372

Figure 4.8: Energy gain of the test electron with the time, calculated from Eq. (4.14) for
the kinetic energy, taking into account Eqs. (4.11), (4.12) and the initial conditions.

with ̟2 = q2φ0 exp(γt) cos[qx0]. Equation (4.19) actually represents an equation of an
oscillatory motion with the frequency ̟, which increases with time. That can be really ob-
served on Fig. 4.7. Adopting the parameters used in the numerical solution of the Eqs. (4.11)
and (4.12), one finds a period of 2π/̟ = 35 at t = 800 for the oscillatory motion. This
value is similar to that deduced from the numerical calculations as depicted in Fig. 4.7.
It should be emphasized that a total agreement between the analytical approach and the
numerical solution should not be expected since the numerical result (Fig. 4.7) is the exact
one, whereas the analytical treatment presented above is only an approximative approach.
It, however, demonstrates the important appearance of an oscillatory motion with a tem-
porally increasing frequency during the co-motion of the electron with the wave.

While co-moving with the wave, the electron obtains an energy from the electrostatic wave
(Fig. 4.8)6. The particle gets an energy of 80 kBT0 within a period of ≈ 1 600/ωp0, i.e.,
corresponding to an energy of 10 keV within 0.85 µs for ωp0 = 2π × 300 MHz, for instance.

4.3 Discussion

During magnetic reconnection, which is one possible process of solar flares, jets of hot plasma
are ejected from the reconnection site into the surrounding coronal plasma. The interaction
of such jets with background plasma leads to the excitation of electrostatic waves due to an
instability, if the jet speed is for example in the range 415–690 km s−1 for a jet’s electron
temperature of 7.7 MK. Such values for the jet speed are typical ones, as observed in the
soft X-ray images by Yohkoh [101, 102].

If the jet moves through the surrounding coronal plasma, it is decelerated due to Coulomb
collisions within a period of the order of the Coulomb collision time tCc, which is given by

tCc =
1

ωpe

4πλ3
DeNe

lnΛ
, (4.20)

6Figs. 4.7 and 4.8 were computed with the Mathematica software package.
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with Λ = 4πλ3
DeNe [9, 22]. At the 300 MHz level and a coronal temperature of 1.4× 106 K,

one gets Ne = 1.12 × 109 cm−3 and λDe = 0.244 cm resulting in tCc = 107/ωp0. In com-
parison, the growing time tgrowing for the excitation of electrostatic waves is given by
tgrowing = γ−1/ωp0 = 313/ωp0 for γ = 0.00319. Thus, the instability acts much faster
than the deceleration of the jet due to Coulomb collisions.

As discussed in this Chapter, the plasma stream ejected from the reconnection site passes
through the surrounding coronal plasma leading to the excitation of electrostatic fluctua-
tions in terms of the ion-acoustic mode. If these fluctuations act on supra-thermal (i.e.,
collisionless free) electrons, these electrons co-move with the wave (Fig. 4.7) and gain en-
ergy (Fig. 4.8). That process represents a collisionless energizing and/or heating of the
electrons during flares. It is well-known that electrons are rapidly heated and energized in
a collisionless manner during flares [48, 49]. That is impressively seen in the hard X-ray
emission of the flaring plasma as observed by the spacecraft RHESSI [49], for instance.

Since the instability only appears in a small range of the jet speed (Fig. 4.4), the enhanced
level of electrostatic fluctuations is localized in a small spatial region in the corona. Con-
sequently, if the energized electrons leave the region of instability, some of them can run
away with a high velocity along a magnetic field line. That leads to either solar type III
or type U radio bursts due to their propagation along open and closed magnetic field lines
(see Fig. 4.2 for example), respectively.

The observations show that there are generally three kinds of events:

i. jets that are not accompanied by type III bursts,

ii. jets with a simultaneous appearance of type III bursts,

iii. jets accompanied with type III bursts, but with a temporal delay concerning the jet
onset time.

They can be explained in the framework of our approach, summarized in [71]. Since the
instability only occurs in a small range of the jet speed around V0, jets with a speed smaller
than V0 do not give rise to an electrostatic instability and, hence, to type III bursts (case i).
On the other hand, if the jet speed is greater than V0, it is initially not able to excite
electrostatic fluctuations. However, the jet is decelerating due to its interaction with the
surrounding plasma, e.g., due to Coulomb collisions. Then, it needs time until the jet speed
slows down to V0 leading to the onset of the electrostatic instability and, consequently, to
the occurrence of type III radio bursts (case iii). That could be the reason of the observed
delay between the onset of the jet and that of the type III burst, [5, 84]. Only in the special
case, at which the jet speed is very close to V0, the type III radio bursts can simultaneously
appear with the jet (case ii), [43].

In summary, the interaction of a solar jet ejected from the reconnection site
with the surrounding plasma leads to both the collisionless energizing and/or
heating of electrons (as seen in the hard X-ray emission) and to type III bursts
(as observed in the solar radio emission during flares). Here, the kinetic energy
of the jet is partly transfered into energy of electrostatic fluctuations and, sub-
sequently, into the energy of the electrons. This process represents an electron
acceleration at a localized wave structure in the solar corona.



Chapter 5

Electron acceleration at coronal
shock waves with attached whistler
packets

5.1 Observational background

In the solar corona, shock waves can be generated either by blast waves due to the flare
process [115, 118] and/or by coronal mass ejections (CMEs) [104, 105, 27, 16, 46, 26]. It
should be emphasized, that a shock wave is a discontinuity accompanied with an increase of
the entropy. The jump of the density, temperature, and magnetic field across the shock is
governed by the Rankine–Hugoniot relationships [83], i.e., the shock itself and the processes
immediately associated with it should be considered independently from its exciter.

Coronal shock waves can be observed as type II bursts in the solar radio radiation [123, 115].
As introduced in Sect. 1.4, a type II radio burst can morphologically be divided into two
types of emission in its dynamic radio spectrum: the ‘backbone’ (Fig. 1.13) and the ‘her-
ringbone’ (Fig. 1.14) emission. The so-called backbone emission is slowly drifting from
high to low frequencies with a typical drift rate of about −0.1375 MHz s−1 at 55 MHz [58]
and shows often a fundamental–harmonic structure. It is widely accepted to be the radio
signature of a shock wave traveling through the corona [74, 51, 2, 52]. Sometimes, very
fast drifting patches of emission (see Fig. 1.14) can be seen to emanate from the backbone,
toward both lower or higher frequencies with typical drift rates of about ±7.2 MHz s−1 at
55 MHz [58]. These features are the so-called herringbone emission, regarded as the radio
signature of shock-accelerated electrons [14, 126, 59]. According to the interpretation of
a dynamic radio spectrum (see Subsect. 1.4.1) the 55 MHz plasma level is located at a
distance of 1.63 R⊙ from the center of the Sun, i.e., in a height of about 450 Mm above
the photosphere, if a two-fold Newkirk [75] model is used, see Sect. 1.4 (the choice of α = 2
in Eq. (1.2) is appropriate for type II burst sources [55]). At this height, a magnetic field
strength of 1 G is expected according Eq. (1.3) [21]. That provides for ωpe = 2π × 55 MHz,
the electron cyclotron frequency to be ωce = 1.76 × 107 s−1, the ratio ωpe/ωce = 20, the
Alfvén speed to be vA = 360 km s−1, and the plasma beta to be 0.36, if an usual coronal

75
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temperature of 1.4 × 106 K is adopted (see Table 1.1). Assuming the same density model
[75], the velocities related to the backbone VBB and herringbone emission VHB are estimated
to be 1000 km s−1 and 50 000 km s−1 (= 0.17c, corresponding to a kinetic energy of 7.3 keV),
respectively. Since the backbone is associated with the shock traveling through the corona,
coronal shock waves have typical Alfvén Mach numbers (MA = VBB/vA) of 2.76. Such
shocks can be considered to be super-critical [38, 55] under coronal conditions.

Holman and Pesses [32] proposed, that the electrons associated with the herringbones are
generated by shock-drift acceleration. Further studies on this subject show that, this mech-
anism provides a beam-like distribution function for the accelerated electrons [59], that
corresponds well to the observed characteristics of the herringbone emission stripes. The
beam has a velocity parallel to the ambient magnetic field

Vbeam = Vsh sec θB,n (1 + cos2 αlc) (5.1)

with Vsh as the shock speed [59], and θB,n denotes the angle between the upstream magnetic
field and the shock normal. The loss-cone angle αlc is defined by the jump of the magnetic
field across the shock, i.e., αlc = arcsin[(Bup/Bdown)

1/2] with Bup and Bdown as the magnetic
field in the up- and downstream region, respectively. If we apply the shock-drift acceleration
as a mechanism for electron acceleration in the case of herringbone emission, we need to
take into account the values from the observed drift rates, i.e., Vbeam = VHB = 50 000 km s−1

and Vsh = VBB = 1000 km s−1. Assuming for the jump of the magnetic field across the shock
Bdown/Bup = 2, i.e., αlc = 45◦, Eq. (5.1) provides θB,n = 88.28◦. This result shows, that
shock-drift acceleration is an efficient mechanism for electron acceleration under coronal
circumstances only for nearly perpendicular shocks.

However, considering this mechanism for the herringbone emission, a nearly perpendicu-
lar shock configuration is required to be present during the whole event. For the example
shown in Fig. 1.14, the type II burst appears for about 2 minutes, i.e., it would cover a
spatial scale in the corona of about 120 Mm for a source velocity of 1000 km s−1. Hence,
despite that the shock-drift acceleration is able to explain the electron acceleration rates,
the physical conditions required for this mechanism to work are difficult to sustain, since
the shock travels more than 100 Mm and needs to be nearly perpendicular all the time.
That is an event with low probability. Thus, there is a need for another mechanism for
electron acceleration at coronal shocks. This new mechanism should avoid the restriction
of a nearly perpendicular shock geometry. That is the purpose of this Chapter.

Spacecraft observation of the Earth’s bow shock, interplanetary shocks, and shocks related
with co-rotating interaction regions (CIRs), are the only possibility for in-situ measurements
of shocks in space plasmas. Observations of the spacecraft Ulysses at CIR-related shocks
reveal, that electrons are really accelerated up to 0.1–0.4 MeV at such shocks (see top panel
of Fig. 5.1). CIR related shocks are efficient to accelerate particles when the conditions
MA > 2.5 and 50◦ < θB,n < 80◦ are simultaneously fulfilled by the shock waves, [18]. Such
shocks can be regarded as super-critical shocks [38] and are usually associated with whistler
waves in the up- and downstream region [29, 17, 54]. These quasi-perpendicular and super-
critical shocks with attached whistler waves preferably generate energetic electrons.

In summary, the aim of the present Chapter is to look for a new mechanism for electron
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Figure 5.1: Behaviour of the fluxes of energetic electrons (0.1−0.4 MeV) and protons (0.8–
1.0 MeV), the solar wind speed VSW, the proton temperature, the proton number density,
and the magnitude of the magnetic field (from top to bottom) during the crossing of a CIR
by Ulysses [90].
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acceleration at quasi-perpendicular shocks in the solar corona. Motivated by the observa-
tions at CIR related shocks, we consider an electron–whistler–shock interaction. Here, it
is basically assumed that the same physical processes for the collisionless shocks in space
(e.g., at CIRs), are also true for the coronal shock waves.

5.2 The model

The model presented here considers the following scenario (schematically shown on Fig. 5.2).
A shock wave is moving through the solar atmosphere with a velocity of about 1000 km s−1.
The in-flowing protons (i.e., toward the shock) can be successfully accelerated by reflection
at the shock (see Subsect. 5.2.1). Due to their relatively slow thermal velocity (of the
order of 110 km s−1 for a typical coronal temperature of 1.4 MK), the quasi-perpendicular
configuration with θB,n = 70◦, as a typical value for instance, is sufficient for a substantial
velocity gain of the protons of about 6000 km s−1. (A quasi-perpendicular configuration is
one for which 45◦ < θB,n < 90◦, so that θB,n = 70◦ is roughly a mean value.) The protons
are accelerated and reflected at the shock back to the upstream region, where they are able
to excite whistler waves by resonant wave–particle interaction (see Subsect. 5.2.2). These
so-excited whistlers can interact only with the in-flowing electrons, that fulfill the resonance
condition. These electrons are accelerated (i.e., gain energy) in the whistler electric field (see
Subsect. 5.2.3). Consequently, the perpendicular electron velocity component with respect
to the ambient magnetic field is increasing during this resonant interaction. That also leads
to an increase of its magnetic moment. Simultaneously with this process, the accelerating
electrons are moving toward the shock front. Since the shock is accompanied by a jump of
the magnetic field, it represents a traveling magnetic mirror (see Subsect. 5.2.4). Finally,
the electrons are mirror-reflected at the shock and propagate into the upstream region. The

pref
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Figure 5.2: Sketch of a shock ramp (with solid lines) with attached whistler wave (dotted
curves), propagating to the right (chosen as the positive direction). The in-flowing proton
(‘p’) and electron (‘e’) are denoted with subscript ‘in’, the out-flowing, with subscript ‘ref’,
and the accelerated electrons with ‘acc’.
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out-flowing electrons (i.e., away from the shock) do not fulfill the resonance condition and,
hence, are not in resonance with the whistler wave. Then, they can travel undisturbed into
the far upstream region, and be detected as herringbone emission, for example.

5.2.1 Inflow of the upstream protons and their acceleration

It is well-known from observations at Earth’s bow shock [78, 80], that protons are reflected
and accelerated by nearly conserving their magnetic moment at the quasi-perpendicular
region of Earth’s bow shock. The proton (denoted with superscript ‘i’) velocity gain parallel
to the upstream magnetic field can be expressed by

V i
‖,ref = 2Vsh sec θB,n − V i

‖,in (5.2)

[78, 32], where the subscript ‘in’ denotes the initial velocity of the particle and ‘ref’, the
reflected one, correspondingly.

For the protons in the initial state in the upstream region a Maxwellian distribution nor-
malized to unity is assumed

fi(V ) =
1

(2πV 2
th,i)

1/2
e−V 2/(2V 2

th,i
),

with a proton thermal velocity Vth,i = (kBT/mi)
1/2 (kB, Boltzmann’s constant; T , tem-

perature; mi, proton mass). Then, the numbers of particles with velocities parallel to the
ambient magnetic field in the range −Vu < V i

‖,in < Vu is given by

N(Vu)

N0
=

2π

(2πV 2
th,i)

3/2

∫ Vu

−Vu

dV‖

∫ ∞

0
e
−(V 2

‖
+V 2

⊥)/(2V 2

th,i
)
V⊥dV⊥ = 2Φ(Vu/Vth,i) (5.3)

with

Φ(Vu/Vth,i) =
1

(2π)1/2

∫ Vu/Vth,i

0
e−t2/2dt. (5.4)

Equation (5.3) provides that 99% of all protons have velocities parallel to the ambient
magnetic field in the range,

−2.576 Vth,i ≤ V i
‖,in ≤ 2.576 Vth,i or − 277 ≤ V i

‖,in ≤ 277, km s−1,

where for the thermal velocity of the protons was used the value of Vth,i = 107.5 km s−1 for
a coronal temperature of T = 1.4 MK. Note that such a value is essentially smaller than the
shock speed, which is 1000 km s−1. Since 99% of all initial protons have velocities parallel
to the ambient magnetic field in the above given range, Vsh = 1000 km s−1 and θB,n = 70◦,
the substitution of these values in Eq. (5.2) will give the final speed of the main part of the
reflected proton to be in the range

5571 < V i
‖,ref < 6125, km s−1 or 0.0186 < βi

‖ = V i
‖,ref/c < 0.0204.

Here, the shock propagation is chosen to be in the positive direction, and the reflected
and accelerated protons are moving in the same direction, i.e., away from the shock. That
demonstrates that the protons get a substantial gain of energy due to the encounter with
the quasi-perpendicular coronal shock wave.
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5.2.2 Whistler excitation

In order to excite whistler waves by wave–particle interaction in the case of the accelerated
protons, they need to fulfill the resonance condition, see [9, 42],

k c βi
‖ − ω − ωci = 0, (5.5)

where k, ω, and ωci are the wave number, the wave frequency, and the proton cyclotron
frequency, respectively. Because whistler waves are predominantly excited along the mag-
netic field [116], the whistler waves propagating parallel to the ambient magnetic field are
considered here (see Subsect. 2.3.1), namely

k2c2

ω2
= 1 +

ω2
pe

ω(ωce − ω)
, (5.6)

in the case of ω ≫ ωci. Now, the following normalization (see Sect. 2.2) is introduced for
the wave number k′ = k c/ωpe and the frequency ω′ = ω/ωce, correspondingly. Here, the
primed quantities are already dimensionless. Substituting these expressions back into the
Eq. (5.5) we obtain the normalized ion resonance condition, namely,

S k′ βi
‖ − ω′ − µe = 0, (5.7)

with S = ωpe/ωce and µe as the electron to proton mass ratio (that is neglected further
on). In the case of a coronal plasma at the 55 MHz-level, the frequency ratio is estimated
to be S = 20 (see Table 1.1). Because of S ≫ 1, the normalized dispersion relation for the
whistler waves is found to be, see Eq. (2.62),

k′ =

√
ω′

1 − ω′
. (5.8)

This relation is substituted into the normalized ion resonance condition (5.7) leading to

βi
‖ =

1

S

√
ω′(1 − ω′). (5.9)

In order to obtain an estimation for the frequencies of the excited whistlers, 0.0186 < βi
‖ <

0.0204 are employed for βi
‖ in Eq. (5.9) resulting in

0.165 < ω′ < 0.211 or equivalently from Eq. (5.8), 0.445 < k′ < 0.518.

In summary, shock-accelerated protons are able to excite whistler waves with frequencies
in the range (0.165–0.211)ωce. These whistlers are propagating away from the shock in the
upstream region. From the resonance condition Eq. (5.5) one gets ωci = k(V i

‖−Vph) with the
whistler phase velocity Vph. Since the proton cyclotron frequency ωci is positive, the proton
velocity is faster than the phase speed of the whistlers, so that the right-hand circularly
polarized whistlers appear to be left-hand circularly polarized in the rest frame of the
energetic protons. Thus, the shock accelerated protons do fulfill the resonance condition and
the condition for providing the right whistler polarization, which is left-handed circularly
polarized in the proton rest frame, but right-handed circularly polarized in the laboratory
frame.
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5.2.3 Resonant electron–whistler interaction

The so-excited whistler waves can resonantly interact with the electrons in the upstream
region. The electron resonance conditions is given by

k c βe
‖ − ω + ωce = 0, (5.10)

with βe
‖ = V e

‖ /c, see [9, 42]. The electron part is denoted with superscript ‘e’, again. Then,
one gets

S k′ βe
‖ − ω′ + 1 = 0. (5.11)

after the usual normalization (see Subsect. 2.2). Using again relation (5.8) for the normalized
wave number, the equation above becomes

−βe
‖ =

1

S

√
(1 − ω′)3

ω′
. (5.12)

With S = 20 and the ω′-range, 0.165 < ω′ < 0.211, one gets finally that

−0.094 < βe
‖ < −0.076 or − 28 200 ≤ V e

‖ ≤ −22 800, km s−1

or −6.13 Vth,e ≤ V e
‖ ≤ −4.96 Vth,e, with Vth,e = 4600 km s−1. Thus, only counter-streaming

(i.e., moving towards the shock) electrons are in resonance with the whistler waves.

In order to study relativistic electrons, one needs to correct the above result using the
extended, relativistic resonance condition, i.e.,

k c βe
‖ − ω + ωce

[
1 − (βe

‖)
2 − (βe

⊥)2
]1/2

= 0, (5.13)

see [9]. Employing the same normalization, the above equation becomes,

S k′ βe
‖ − ω′ +

[
1 − (βe

‖)
2 − (βe

⊥)2
]1/2

= 0. (5.14)

Taking into account relation (5.8) for k′, a quadratic equation for the parallel component
of the electron velocity is obtained, namely

c1 (βe
‖)

2 − c2 βe
‖ + c3 = 0, (5.15)

with the coefficients, c1 = S2ω′/(1−ω′)+1, c2 = S
√

ω′3/(1 − ω′) and c3 = (βe
⊥)2 +ω′2 − 1.

Setting a value for the S and ω′, one can plot the relation (5.15) for 0 ≤ βe
⊥ < 1, as done

on Fig. 5.3 in the (βe
‖–βe

⊥)-plane. There, one could see two curves, corresponding to the

minimum (0.165) and the maximum (0.211) values of ω′ (or to −0.094 and −0.076 in terms
of βe

‖ at βe
⊥ = 0, respectively). The curvature (as enhanced on the plot) is due to the

relativistic effects, since in the non-relativistic case it would be two straight lines parallel
to the βe

⊥-axis.

During the resonant interaction with the whistler wave field, the electron is increasing its
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Figure 5.3: Resonance curves, plotted in the (βe
‖–βe

⊥)-plane, as solutions of Eq. (5.14) for:

S = 20, ω′ = 0.165 (dashed line) and 0.211 (solid line). The dotted line corresponds to a
pitch angle of 45◦.

velocity component perpendicular to the magnetic field. That represents a motion upward
in the the (βe

‖–βe
⊥)-plane between these curves, or in the so-called ‘resonance band’ leading

to an increase of its kinetic energy. Normalized to the rest energy (i.e., m0 c2 = 512 keV),
the kinetic energy of the electron is usually defined as

W ′
kin =

Wkin

m0 c2
=

1√
1 − β2

− 1 (5.16)

with β2 = (βe
‖)

2 + (βe
⊥)2. Taking into account the relation (5.14), the kinetic energy (5.16)

can be plotted1 in terms of the perpendicular velocity component βe
⊥, see Fig. 5.4. A

substantial energy gain for the electrons can be noticed due to the resonant electron–whistler
interaction.

Now, the movement of an electron in the whistler wave field is investigated. In general, the
movement of an electron in given electric and magnetic fields can be described by

dp

dt
= −e [E + β × B] , (5.17)

together with the kinematic equation,

dr

dt
= cβ, (5.18)

with β = v/c. The momentum is defined by p = m0 cβ/
√

1 − β2. In order to norma-
lize the above equations of motion, the following dimensionless quantities are introduced
(compare with Sect. 2.2): time, t′ = tωce; spatial coordinate, r′ = rωpe/c; momentum,
p′ = p/(m0 c); energy, W ′

kin = Wkin/(m0 c2); the magnetic and electric fields are normalized

1All plots in this Chapter were computed with Mathematica software package.
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Figure 5.4: Relation between βe
⊥ and the kinetic energy Wkin/m0 c2, Eq. (5.16), where βe

⊥

is related to βe
‖ by the resonance curve, Eq. (5.14), for the case ω′ = 0.211 and S = 20 (see

the solid line in Fig. 5.3).

to the background (upstream) magnetic field, B0, and B0/S, respectively. Substituting
these normalizations into the above equations of motion, one gets the following normalized
system of equations,

dp′

dt′
= −E′ − β × B′, (5.19)

dr′

dt′
= S β. (5.20)

In order to find the energy gain, the time derivative of Eq. (5.16) is performed, i.e.,

Ẇ ′
kin =

β · β̇
(1 − β2)3/2

, (5.21)

which gives the same result as a dot-product of Eq. (5.19) with β, since Eq. (5.19) can be
rewritten as

dp′

dt′
=

β̇(1 − β2) + (β · β̇) · β
(1 − β2)3/2

= −E′ − β × B′.

Finally using the relation β = p′/(1 + p′2)1/2, one obtains the following expression for the
time derivative of the normalized kinetic energy,

Ẇ ′
kin = − E′ · p′

(1 + p′2)1/2
, . (5.22)

Thus, the energy gain can be obtained if one knows the wave electric field and the momentum
of the particle.
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Whistler wave field

In order to describe the electric and magnetic fields accompanied with the whistler wave,
the ambient magnetic field is assumed to be along the x̂-axis, i.e., B0 = B0(1, 0, 0). Since
whistler waves propagating along the magnetic field are considered, they are not accompa-
nied with an electric field along the magnetic field, i.e., Ewh = (0, Ey, Ez). Additionally,
all varying quantities are assumed to depend only on the spatial and temporal coordinate
x and t, respectively. Then, the Ansatz

B′
y = B′

wh sin [k′x′ − ω′t′] (5.23)

B′
z = B′

wh cos [k′x′ − ω′t′] (5.24)

describes a right-hand circularly polarized whistler wave in normalized quantities. The
corresponding electric fields are deduced from the induction equation, see Eq. (2.5),

1

c

∂Bx

∂t
= 0 (5.25)

1

c

∂By

∂t
=

∂Ez

∂x
(5.26)

1

c

∂Bz

∂t
= −∂Ey

∂x
(5.27)

It can be written in normalized quantities by

1

S

∂B′
y

∂t′
=

∂E′
z

∂x′
(5.28)

1

S

∂B′
z

∂t′
= −

∂E′
y

∂x′
(5.29)

Substituting the Ansatz (5.23) and (5.24) into Eqs. (5.28) and (5.29) and, subsequently,
performing the integration, one can obtain an expression for the electric field of the whistler
in terms of its magnetic field,

E′
y =

V ′
ph

S
B′

wh cos [k′x′ − ω′t′] (5.30)

E′
z = −

V ′
ph

S
B′

wh sin [k′x′ − ω′t′] (5.31)

with V ′
ph = ω′/k′ as the normalized whistler phase velocity and B′

wh as the normalized
amplitude of the whistler magnetic field. The integration constants are fixed requiring that
the whistler electric field vanishes if the whistler magnetic field is absent. The normalized
components for the whistler electric field can be substituted into Eq. (5.22).
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Electron motion in a homogeneous magnetic field

The motion of an electron in an homogeneous magnetic field along the x̂-axis can be ex-
pressed in the normalized way, see Eq. (5.19) and (5.20), by:

d p′x
dt′

= 0 (5.32)

d p′y
dt′

= − p′z
(1 + p′2)1/2

(5.33)

d p′z
dt′

=
p′y

(1 + p′2)1/2
(5.34)

and

d x′

dt′
=

S

(1 + p′2)1/2
p‖ (5.35)

d y′

dt′
= −S p⊥ sin (ω′

cet
′ + φ0) (5.36)

d z′

dt′
= S p⊥ cos (ω′

cet
′ + φ0) (5.37)

Here, ω′
ce denotes the relativistically shifted electron gyrofrequency normalized to ωce, i.e.,

ω′
ce = γ−1 with γ = (1 − β2)−1/2 = (1 + p′2)1/2. The solutions of the above equations of

motion are:

p′x = p‖ = const (5.38)

p′y = −p⊥ sin (ω′
cet

′ + φ0) (5.39)

p′z = p⊥ cos (ω′
cet

′ + φ0) (5.40)

and

x′(t′) =
S

(1 + p′2)1/2
p‖ t′ + x0 (5.41)

y′(t′) = S p⊥ cos (ω′
cet

′ + φ0) + y0 (5.42)

z′(t′) = S p⊥ sin (ω′
cet

′ + φ0) + z0 (5.43)

The normalized components for the momentum can be substituted into Eq. (5.22) for the
energy gain.

Energy gain

Finally, substituting the expressions for the whistler electric field, Eq. (5.30) and Eq. (5.31),
and the momentum of an electron in a homogeneous magnetic field, Eq. (5.39) and Eq. (5.40),
in the expression for the energy gain, Eq. (5.22), one obtains the following result:

Ẇ ′
kin =

V ′
phβ⊥B′

wh

S
sin(α1 + α2) (5.44)
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with α1 = k′x′(t′)−ω′t′ and α2 = ω′
cet

′+φ0, where the normalized frequency of the whistler
magnetic field is ω′. Introducing the solution for x′(t′), see Eq. (5.41), the argument of the
sin-function, α1 + α2, can be expressed by

α1 + α2 = Dt + ϕ0,

with

D = k′Sβe
‖ − ω′ + (1 + p′2)−1/2, (5.45)

ϕ0 = k′x0 + φ0.

Here x0 and φ0 are the initial conditions for the spatial coordinate and the phase, respec-
tively. The temporal integration of Eq. (5.44) leads to

∆W ′
kin = −

V ′
phβ⊥B′

wh

D S
[cos(Dt′ + ϕ0) − cos ϕ0], (5.46)

which actually represents a temporally oscillating function. ∆W ′
kin only increases in time if

the condition D → 0 (which is exactly the resonance condition (5.14)) is fulfilled, resulting
in

∆W ′
kin =

V ′
phβ⊥B′

wh

S
t′ sinϕ0. (5.47)

From Eq. (5.47) follows that the particles either gain or loose energy due to the resonant
interaction, if the phase ϕ0 is in the range 0 < ϕ0 < π and π < ϕ0 < 2π, respectively.
Assuming that the in-flowing electrons are gyrotropically distributed in an even way (i.e.,
equally distributed with respect to the gyro-phase), one half of them is accelerated, whereas
the other half is decelerated with respect to the velocity perpendicular to the ambient
magnetic field. Averaging over all angles ϕ0 in the range 0 < ϕ0 < π, i.e.,

1

π

∫ π

0
sinϕ0 dϕ0 =

2

π
(5.48)

one gets for the mean temporal energy gain of the accelerated electrons to be

¯∆W ′
kin = 2

V ′
phβ⊥B′

wh

πS
t′. (5.49)

As already mentioned, the gain and the loss of energy happens due to the change of the
particle velocity perpendicular to the magnetic field due to the resonant electron–whistler
interaction. Since a Maxwellian distribution, which is a monotonically decreasing function
with respect to V⊥, is assumed in the initial state, there are more particles that are accel-
erated, than those which are decelerated, which finally leads to a net energy gain of the
whole population.
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5.2.4 Magnetic mirroring at the shock

It is well known that a fast magnetosonic shock wave is accompanied by a jump of the
density and the magnetic field. In this sense it represents a moving magnetic mirror at
which charged particles can be reflected and subsequently accelerated. In a weakly varying
magnetic field, i.e., |rL ∇B/B| ≪ 1, where rL is the particle’s Larmor radius, the particle
motion is governed by the conservation of the kinetic energy (or amount of momentum) and
the magnetic moment, [9], i.e.

p2
‖,j + p2

⊥,j = p2
‖,0 + p2

⊥,0

(
β2
‖,j + β2

⊥,j = β2
‖,0 + β2

⊥,0

)
(5.50)

p2
⊥,j

Bj
=

p2
⊥,0

B0

(
β2
⊥,j

Bj
=

β2
⊥,0

B0

)
(5.51)

where the index ‘0’ denoted the values of the corresponding quantities in the undisturbed
(i.e., upstream) region and the index ‘j’ denotes any subsequent temporal state. One can
combine the above equations into the following expression

p2
‖,j

p2
‖,0

= 1 −
(

Bj

B0
− 1

)
p2
⊥,0

p2
||,0

(
β2
‖,j

β2
‖,0

= 1 −
(

Bj

B0
− 1

)
β2
⊥,0

β2
||,0

)
. (5.52)

Now, two important angles, as commonly used, are introduced here: the pitch angle,

αj = arctan
p⊥,j

p‖,j
= arctan

β⊥,j

β‖,j
(5.53)

and the loss-cone angle,

αlc,j = arcsin(B0/Bj)
1/2, (5.54)

and hence Eq. (5.52) can be re-written as

p2
‖,j

p2
‖,0

= 1 − tan2 α0

tan2 αlc,j
, (5.55)

where α0 = arctan (p⊥,0/p‖,0) = arctan (β⊥,0/β‖,0) is the initial pitch angle of the particles
and depends on the initial conditions. The inspection of Eq. (5.55) provides that all particles
with an initial pitch angle α0 > αlc,j are reflected. Identifying B0 and Bj with the magnetic
fields Bup and Bdown in the up- and downstream region, respectively, all particles with an
initial pitch angle

α0 > αlc,sh = arcsin (Bup/Bdown)
1/2 (5.56)

will be reflected by their encounter with the shock. The other ones are transmitted into the
downstream region.

Since the shock is moving, the above presented consideration must actually be done in the
so-called de Hoffmann-Teller frame, see e.g., [59]. The shock speed in the de Hoffmann-
Teller frame is given by V HT

sh = Vsh sec θB,n [59], which has a typical value of 3000 km s−1
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adopting Vsh = 1000 km s−1 and θB,n = 70◦. Since this value is smaller than the thermal
electron velocity Vth,e = (kBT/me)

1/2, which has a typical value of 4600 km s−1 for a coronal
temperature of 1.4 MK, the influence of the shock motion on the electron reflection process
can be neglected for considering electrons, as done in this Subsection. Due to the motion
of the shock, the electrons reflected at it get an additional energy gain due to shock drift
acceleration, but this can be neglected in the case of quasi-perpendicular (but not for nearly
perpendicular) shocks under coronal conditions.

As already discussed, the electrons increase their momentum perpendicular to the ambient
magnetic field due to the resonant electron−whistler interaction (see Fig. 5.3) and, con-
sequently, their pitch angle (see Eq. 5.53), as well. Thus, a major part of the energized
electrons fulfill the reflection condition (5.56) if they encounter the shock and, finally, move
away from the shock into the upstream region. After the reflection the accelerated electrons
are co-streaming with the whistler and, thus, do not fulfill the resonance condition (5.14),
i.e., they are out of resonance and can freely reach the far upstream region, where they can
be observed in terms of herringbones in the solar type II radio emission.

5.3 Discussion

In the framework of the proposed mechanism, the electron acceleration happens in the
(βe

⊥–βe
‖)-plane due to the resonant electron−whistler interaction as illustrated in Fig. 5.3.

As already mentioned, it actually represents a motion toward higher values of βe
⊥ within

the so-called ‘resonance band’ (βe
⊥–βe

‖)-plane. Fig. 5.3 results from parameters, which are
appropriate for shock wave associated with solar type II radio bursts around 55 MHz. In
the initial state, the electron must be located in the ‘resonance band’ in order to become
energized. The process of acceleration can be demonstrated with the following example. In
the ‘resonance band’, the electrons with the lowest initial energy have values of βe

‖ = −0.076
and βe

⊥ = 0, i.e., they have an initial energy of W0 = 1.5 keV. In the case of the most effi-
cient energy gain, i.e., the electron experiences only acceleration, they move upward along
a straight line parallel to the βe

⊥-axis in the (βe
⊥–βe

‖)-plane (see Fig. 5.3). They leave the

‘resonance band’ at the point (βe
‖ = −0.076, βe

⊥ = 0.537) in the (βe
⊥–βe

‖)-plane. Then, they
have a final kinetic energy of about 100 keV. During this process, the pitch angle changes
from 0◦ to 82◦. This example represents the most efficient process of electron energizing
(i.e., from 1.5 to 100 keV) in the framework of the proposed mechanism. Particles with such
a final pitch angle are reflected at shock, since their pitch angle is greater than the loss-cone
angle αlc,sh = 45◦ as required for reflection, see Eq. (5.56). Such a value is obtained for the
loss-cone angle, if one assumes a jump of the magnetic field Bdown/Bup = 2 as a typical
value for coronal shock waves.

After the reflection at the shock, the energized electrons are moving in an area of enhanced
whistler waves. The whistler amplitude is about 0.2 of the upstream magnetic field [29, 38],
so that the total magnetic field is enhanced by factor of 1.02 with respect to the undis-
turbed upstream magnetic field (see Fig. 3.28 (left panel) in Chapter 3). Since the electrons
are out of resonance with these whistlers, they can freely leave this area. But due to the
connected decrease of the total magnetic field from Bj = 1.02 Bup to B0 = 1.0 Bup, the
electron velocity parallel to the magnetic field, experiences an increase from βe

‖,0 = −0.076
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(22 800 km s−1) to βe
‖,j = 0.1078 (32 340 km s−1) after the reflection, i.e., by a factor of 1.42,

see Eq. (5.52).

In summary, due to the resonant electron–whistler interaction the particle velocity perpen-
dicular to the magnetic field is strongly enhanced. Subsequently, these particles are reflected
at the jump of the magnetic field associated with the shock because of their high magnetic
momentum. If they leave the area of enhanced whistlers, that is connected with a slightly
decrease of the total magnetic field, the electron velocity parallel to the upstream magnetic
field will increase as well. Thus, a part of the gained kinetic energy perpendicular to the
magnetic field due to the resonant electron–whistler interaction is finally transfered into an
enhanced kinetic energy parallel to the magnetic field, i.e., into a particle acceleration.

The inspection of Fig. 5.3 reveals, that only electrons with an initial energy ≥ 1.5 keV
corresponding to a velocity of 0.076c = 4.96 Vth,e (with Vth,e = 4600 km s−1 as the thermal
electron speed for a coronal temperature of 1.4 MK) will be accelerated. In the case of an
initial Maxwellian distribution of the electrons in the upstream region, only 1.8×10−6Ne of
all electrons fulfill this conditions and can really be accelerated by the proposed mechanism,
i.e., only a minor part of the electrons in the upstream region gain energy.

In order to give some estimation with respect to the acceleration time, we introduce the
whistler period, Twh = 2π/(ω′ωce). Then, the time in dimensionless form can be presented
as t′ = τTwhωce, where τ is the number of periods of the whistler oscillation. Finally, we
obtain the expression for the energy gain (5.49) in terms of whistler periods, i.e.,

¯∆W ′
kin =

βe
⊥B′

wh

Sk′
4τ. (5.57)

This is however only a rough estimate for the time (given in whistler periods) needed for
an electron to reach such an energy gain, ¯∆W ′

kin. From observations it is known that
the whistler amplitude is about B′

wh = 0.2 of the upstream magnetic field [38, 29]. Also,
requesting certain final energy of the electron, Wkin/(m0c

2), one can get the final value
of βe

⊥, for example from the curve plotted on Fig. 5.4 (thus k′ = 0.518, corresponding
to ω′ = 0.211, will be used further on). The procedure is as follows: In the special case
of herringbones, with a typical energy of WHB

kin = 7.3 keV (or W ′7.3 keV
kin = 0.0143), from

Eq. (5.16) one finds that in this case β = 0.167 and the corresponding value of βe
⊥ = 0.149,

if βe
‖ = −0.076 is always assumed. Then, after substituting the mean energy gain (taking

out the initial energy W0 first), the obtained mean electron velocity β̄e
⊥ ≈ βe

⊥/2, and the
parameters B′

wh = 0.2, S = 20 and k′ = 0.518 into Eq. (5.57), finally one gets the estimate
for τ . A summary of the obtained in this manner estimates for β̄e

⊥ and τ in the case of
herringbones (7.3 keV), and also for electrons with a final energy of 25 keV and 80 keV (or
equivalently, with electron beam velocity of 0.3 c and 0.5 c, respectively), is presented below:

¯∆W ′
kin = W ′7.3 keV

kin − W ′
0 = 0.0113, β = 0.167, β̄e

⊥ = 0.0745, τ = 2;

¯∆W ′
kin = W ′ 25 keV

kin − W ′
0 = 0.0459, β = 0.302, β̄e

⊥ = 0.146, τ = 4.1;

¯∆W ′
kin = W ′ 80 keV

kin − W ′
0 = 0.1533, β = 0.502, β̄e

⊥ = 0.251, τ = 7.9.
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Thus, the electrons associated with the herringbones can be generated by this mechanism
within nearly two whistler periods, whereas the more energetic electrons need four to eight
whistler periods. In general, the electrons are accelerated up to high energies within just
several whistler periods. This result is consistent with the observation of attached whistler
waves at shocks, where only several whistler periods are present [29, 38].

In the presented discussion, typical parameters of coronal shock waves are used, as deduced
from solar radio observations. These are: the shock speed, Vshock = 1000 km s−1; the angle
between the shock normal and the upstream magnetic field, θB,n = 70◦; the coronal temper-
ature of 1.4×106 K and the ratio of the electron plasma frequency to the electron cyclotron
frequency, S = 20. Naturally, the efficiency of the proposed process depends on the shock
speed Vsh, the angle θB,n and the ratio S. But the discussions here shows that the presented
mechanism is in agreement with the observations of solar type II bursts in the solar radio
radiation and by in-situ spacecraft measurements.

The proposed mechanism of electron acceleration in this Chapter is applicable
for quasi-perpendicular shocks, i.e., the angle θB,n is in the range of 50◦–80◦.
Thus, the problem connected with the pure shock-drift acceleration, i.e., the
requirement for a nearly perpendicular shock geometry (θB,n ≈ 90◦), is removed
by the proposed new mechanism. It explains the production of highly energetic
electrons at coronal shocks, as really observed (see Fig. 5.1). A continuous
regime for electron acceleration is achieved, when the electron moves in the
resonance band, i.e., the electrons are actually accelerated in a localized wave
structure. The proposed mechanism, see [69, 70], can also act at other shocks
in space plasmas, e.g., at supernova remnants.



Chapter 6

Summary

The aim of the dissertation was to propose new theoretical models on electron acceleration
during flares in the solar corona, namely within the so-called localized wave structures,
that arise for example due to solar jets and/or shock waves both moving through the solar
corona. The question of how electrons are accelerated during flares in the solar corona is
still not fully answered. The observed phenomena from the available high resolution data
(provided by the fleet of satellite missions in space and the ground-based optical and ra-
dio observatories), demands for theoretical explanation. Beside naming the problem to be
solved, the observations additionally provide the input parameters and the restrictions that
need to be kept by the theoretical and numerical attempts.

The work in this thesis is a step in this direction, namely to provide new scenarios in order
to explain the mechanisms leading to the successful acceleration of electrons in spatially
localized wave structures in the solar corona. The two possible configurations that show
evidence for the production of non-thermal electrons in the solar corona are the magnetic
reconnection and the shock waves.

The solar corona is filled by a fully ionized (mainly electron–proton) plasma, which intrinsi-
cally contains a lot of different wave modes. Few of them are able to accelerate electrons by
the electron–wave interaction. As already mentioned two such mechanisms are investigated
in this thesis. Before summarizing both, the non-linear treatment of low-frequency plasma
waves is done in terms of the so-called Sakai–Sonnerup system, which is considered
with respect to the search of stationary solutions. This system of equations describe the
evolution of one-dimensional plasma waves for low frequencies, i.e., much lower than the
electron cyclotron frequency. As reminded of the fully non-linear treatment of the well-
known mathematical pendulum, for illustration, the solutions of the Sakai–Sonnerup
system also offer both oscillatory (or periodic) and solitary types of solutions, where the
latter ones are related to very special choice of parameters and initial conditions. Neverthe-
less, the oscillatory (or periodic) solutions are mostly probably to occur in space plasmas
and are related to different kinds of polarization, e.g., circular, elliptical and arc- or banana-
like polarization, as really observed in terms of low frequency magnetic field fluctuations
in space plasmas. This aspect, i.e., looking for non-linear solutions in the case of whistler
waves, can be regarded as a preliminary stage for the study of electron acceleration at at-
tached whistlers at shock waves in the solar corona.
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Model for electron acceleration due to solar jets

With respect to the flares, here the conventional model for magnetic reconnection was
adopted and a special attention is drawn toward one of the possible outcomes from the re-
arranging of the magnetic filed configuration after a flare: the solar jets. When the plasma
is ejected from the reconnection site, it continues to propagate further through the corona.
Such plasma jets are really seen in the soft X-ray emission with the Yohkoh satellite, and
additionally they are spatially and temporally associated with type III metric radio bursts
in the radio emission. This specific radio feature represents the signature of an electron
beam propagating along the magnetic field lines through the corona. While the jet moves
through the surrounding coronal plasma, it creates disturbances that lead to instability.
The region of this instability was found to be localized, namely, the area, where the excited
fluctuations (in electrostatic sense) are sustained, exists only for a small range of the jet
initial velocity. Hence, when the jet speed has a value within the instability range, the
excited wave-like disturbances grow in time. A test electron was investigated within the
electrostatic field of such a wave: it displays a co-motion with it (in the space–time dia-
gram) and also an energy gain within short time scales (in the energy–time diagram). The
proposed here mechanism for electron acceleration gives an explanation for the observed
classification of the jet–associated type III radio bursts, namely:

(i) Jets that are not accompanied by type III radio bursts, can be explained as plasma
streams with initial speed smaller than the values comprising the instability range
(for the current plasma configuration), so such jets cannot give rise to an electrostatic
instability and, hence, to energize electrons that lead to the type III bursts in the
radio spectrum;

(ii) Jets with a simultaneous appearance of type III bursts: in this case the jet is ejected
with a speed within the instability range and the electrons are accelerated nearly
simultaneously, i.e., type III radio burst is seen together with the observed in soft
X-rays plasma motion;

(iii) Jets accompanied with type III radio bursts, but with a temporal delay concerning
the jet onset time, are due to a faster onset velocity of the jet than the required
from the instability range and thus initially the jet is not able to excite electrostatic
fluctuations. With the time, however, the jet is decelerating due to Coulomb colli-
sions, for example, and its speed slows down to a velocity leading to the onset of the
electrostatic instability and, consequently, to the occurrence of type III radio bursts.

Model for electron acceleration due to attached whistlers at coronal shocks

The search for a new scenario for electron acceleration at coronal shock waves aims to
propose a model that avoids the restriction for a nearly perpendicular shock configuration, as
required by the existing theories (for example the mechanism for shock–drift acceleration).
The observations of shocks in space, especially at co-rotating interaction regions, show, that
electrons are efficiently accelerated at shocks attached by whistler waves. Motivated by this
data, a new model for electron acceleration in the case of a quasi-perpendicular shocks (i.e.,
for an angle between the upstream magnetic field and the shock normal of θB,n = 50◦– 80◦)
is proposed, where the presence of whistler wave packets attached at the upstream part
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of the shock wave are taken into account. Here, it is basically assumed that the physical
processes at collisionless shocks are the same for all collisionless plasmas. The following
scheme is proposed:

(a) The first stage of the model is the velocity gain of the incoming toward the shock
front protons. They can increase substantially their velocity due to the reflection at
the shock and after that they return in the upstream region.

(b) These so-accelerated protons are able to excite whistler waves due to a wave–particle
resonance interaction in the upstream region. The whistler waves that fulfill the so-
called resonance condition are considered to be excited by those protons.

(c) Now, the resonant interaction of these whistlers with the (in-coming) electrons is
considered with the result, that only counter-streaming (i.e., toward the shock front)
electrons are in resonance with these whistler wave packets (forming a so-called here
resonance band), leading to a substantial electron velocity (and energy) gain.

(d) Due to the resonant electron–whistler interaction, the electron gains velocity and
energy from the whistler electromagnetic field (while moving within the resonance
band). When the electron leave this resonance band, the mechanism of energy gain
ceases. Finally, the electrons reach the shock front and those of them who have
increased their pitch angle to values greater that those of the loss-cone angle (given
by the jump of the magnetic field across the shock) will be reflected back into the
upstream region. The rest of the electron population are transmitted into the down-
stream region. Due to the motion of the shock itself, an additional energy gain can be
obtained due to the reflection, but this is minor in comparison to that of the resonant
electron–whistler interaction.

(e) The so-energized electron propagate further in the upstream region. Because they
are co-streaming with the whistler packets now, they are out of resonance and can
propagate undisturbed in the far upstream region and be detected as type II bursts
in the solar radio emission.

The proposed mechanism of electron acceleration due to electron–whistler–shock interac-
tion explains the production of highly energetic electrons at the shocks, within the more
realistic quasi-perpendicular shock configuration, in contrast to the nearly perpendicular
shock geometry necessary in previously existing models.

In both presented mechanisms, the kinetic energy of protons is transfered into
electrons by the action of the localized wave structures, i.e., at jets outflowing
from the magnetic reconnection site and at shock waves in the corona. Both
models are motivated by observations and the obtained results agree well with
radio and X-ray observations. The process of electron acceleration is also of
general astrophysical interest and the proposed here models can be further ap-
plied to other plasma configurations in space, i.e., for shocks in the outflow
reconnection region of the solar corona and in the interplanetary medium, as
well as even beyond the domain of the solar system, e.g., at flares at other stars,
relativistic jets, and supernova remnants.
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1.18 Sketch of a magnetic reconnection possibly leading to the formation of solar
jets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.19 Two main configurations for a solar jet, from [125]. . . . . . . . . . . . . . . 18

1.20 CME from LASCO C2-coronograph on SOHO and an EIT image, from 28–
Oct–2003 flare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.21 Impulsive electron event: GOES soft X-ray curves, WIND/WAVES dynamic
spectra, and WIND/3DP electron flux (top–to–bottom panels). . . . . . . 19

2.1 Sketch of the configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Whistler dispersion relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Dispersion of the Alfvén wave. . . . . . . . . . . . . . . . . . . . . . . . . . 29

105



106 List of Figures

2.4 Left (red) and right (blue) hand polarized waves for θ = 0◦. . . . . . . . . . 30
2.5 L and R modes from Fig 2.4. The dashed line is the light wave, ω′ = S k′. 30
2.6 Ordinary (red) and extraordinary (blue) waves for θ = 90◦. . . . . . . . . . 30
2.7 O and X modes from Fig. 2.6. The dashed line is the light wave, ω′ = S k′. 30
2.8 Upper hybrid mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.9 Lower hybrid mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.10 Langmuir wave dispersion relation. . . . . . . . . . . . . . . . . . . . . . . . 32
2.11 Sound (ion-acoustic) wave dispersion relation. . . . . . . . . . . . . . . . . . 32

3.1 Magnetic field fluctuations during an upstream wave event, from [61]. . . . 34
3.2 Discrete whistler wave packets embedded in steepened upstream waves, see

Fig. 3.1, from [61]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Magnetic field components, total B-field and electron number density (from

top to bottom) in SLAMS, from [62]. . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Plot of the ion-cyclotron mode of the dispersion relation (3.38) as function

of θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Plot of the sound mode of the dispersion relation (3.38) as a function of θ. . 40
3.6 Plot of the whistler mode of the dispersion relation (3.38) as a function of θ. 40
3.7 Plot of V/VA(θ), where V+ is denoted with blue, V− with green, cs with red

and cos θ with yellow line. Additionally β0 = 0.4. . . . . . . . . . . . . . . . 44
3.8 Phase portraits in the (φ-φ̇)-plane of a mathematical pendulum. . . . . . . 45
3.9 Dependence of T/2 from C. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.10 Plots of φ(t) (left panel) and φ̇(t) (right panel) for initial conditions as given

on the top of each plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.11 Oscillatory solutions (from right to left) for bz(0): 0.16, 0.05 (pink); −0.2

(dashed). For further details see the text. . . . . . . . . . . . . . . . . . . . 49
3.12 Oscillatory solutions (from right to left) for bz(0): 0.4, 0.2 (pink); −0.3632

(blue), and 0.7, −0.4 (dashed). . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.13 Oscillatory solutions (from right to left) for bz(0): 0.05, 0.25 (pink); 0.072

(blue), and 0.073, −0.05 (dashed). . . . . . . . . . . . . . . . . . . . . . . . 49
3.14 Oscillatory solutions (from right to left) for bz(0): 0.4, 0.2 (pink); 0.564

(blue), and 0.565, −0.35 (dashed). . . . . . . . . . . . . . . . . . . . . . . . 49
3.15 Plots of by(ξ), bz(ξ), |b|(ξ), and N(ξ) from Fig. 3.11 ‘osc. I’: for bz(0) = 0.05

(left panel), and for bz(0) = 0.16 (right panel). . . . . . . . . . . . . . . . . 50
3.16 Plots of by(ξ), bz(ξ), |b|(ξ), and N(ξ): from Fig. 3.13 ‘osc. I’, for bz(0) = 0.05

(left panel), and from Fig. 3.14 ‘osc. III’, for bz(0) = 0.4 (right panel). . . . 52
3.17 Plots of by(ξ), bz(ξ), |b|(ξ), and N(ξ) for bz(0) = 0.01: ‘osc. II’-range (left

panel), and ‘osc. IV’-range (right panel). . . . . . . . . . . . . . . . . . . . . 53
3.18 Oscillatory solutions (from right to left) for bz(0): −0.1 (brown), −0.8 (blue),

−0.9 (green), −1.0 (orange) and −1.1 (pink). No solutions for bz(0) ∈
(0.25, 0.75). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.19 Plots of by(ξ), bz(ξ), |b|(ξ), and N(ξ) from Fig. 3.18 for bz(0) = −0.1. . . . . 54
3.20 Solitary solution in the ‘sol. I’ range for bz(0) = −0.2835. . . . . . . . . . . 55
3.21 Solitary solution in the ‘sol. II’ range for bz(0) = −0.5758. . . . . . . . . . . 55
3.22 Solitary solutions in the ‘sol. I’ range for bz(0) = −0.7716. . . . . . . . . . . 55



List of Figures 107

3.23 Solitary solution in the ‘sol. II’ range for bz(0) = −0.3754. . . . . . . . . . . 55
3.24 Plots of by(ξ), bz(ξ), |b|(ξ), and N(ξ) for bz(0) = −0.2835 from Fig. 3.20 (left

panel), and for bz(0) = −0.5758 from Fig. 3.21 (right panel). . . . . . . . . . 56
3.25 Plots of by(ξ), bz(ξ), |b|(ξ), and N(ξ) for bz(0) = −0.7716 from Fig. 3.22 (left

panel), and for bz(0) = −0.3754 from Fig. 3.23 (right panel). . . . . . . . . . 57
3.26 Solutions (from right to left) for bz(0): 3, 2, 1, and 0.2. . . . . . . . . . . . . 58
3.27 Solutions (from right to left) for bz(0): 3, 2, 1 and 0.2. . . . . . . . . . . . . 58
3.28 Plots of by(ξ), bz(ξ), |b|(ξ), and N(ξ) for bz(0) = 0.2 (left panel) from Fig. 3.26

and for bz(0) = 1.0 (right panel) from Fig. 3.27. . . . . . . . . . . . . . . . . 59

4.1 Solar jets from TRACE satellite, detected on 30–Jul–2004 at 195 Å. . . . . 60
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