
Formation and Stability of the Solar

Tachocline in MHD Simulations

Aniket Sule

Potsdam 2007



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Elektronisch veröffentlicht auf dem 
Publikationsserver der Universität Potsdam: 
http://opus.kobv.de/ubp/volltexte/2007/1461/ 
urn:nbn:de:kobv:517-opus-14612 
[http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14612] 



Astrophysikalisches Institut Potsdam

Formation and Stability of the Solar

Tachocline in MHD Simulations

Dissertation
zur Erlangung des akademischen Grades

”doctor rerum naturalium”
(Dr. rer. nat.)

in der Wissenschaftsdisziplin ”Astrophysik”
der Universität Potsdam

eingereicht an der
Mathematisch–Naturwissenschaftlichen Fakultät

der Universität Potsdam

von
Aniket Sule

Mumbai, Indien

Potsdam, July 6, 2007



4



Contents

Contents 5

List of Figures 7

1 Introduction 3

1.1 Equations of the Standard Solar Model . . . . . . . . . . . . . . . . . . . . 3

1.2 Helioseismology and the Internal Rotation of the Sun . . . . . . . . . . . . 5

1.3 Tachocline Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Location and Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Rotational Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.4 Variability of the solar tachocline . . . . . . . . . . . . . . . . . . . 11

1.3.5 Light Element Abundance . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Modeling the Tachocline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 Tachocline Formation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.2 Tachocline Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 The Numerical Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.1 The MHD Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.2 The Numerical Code . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Formation of the Solar Tachocline 21

2.1 Turbulent Tachocline Models . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Models with Relic Poloidal Field . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 The Chosen Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 The effect of the meridional flow . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Varying the magnetic Prandtl number . . . . . . . . . . . . . . . . 33

2.4.3 Varying the magnetic Reynolds number . . . . . . . . . . . . . . . . 34

2.4.4 Effect on the Lundquist number . . . . . . . . . . . . . . . . . . . . 35

2.4.5 Effect of a temperature gradient . . . . . . . . . . . . . . . . . . . . 38

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



6 Contents

3 Hydrodynamic Stability 43

3.1 Lower Dimensional Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Stability of various solutions . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Effects of buoyancy . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.3 Effects of higher-degree terms . . . . . . . . . . . . . . . . . . . . . 50

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 MHD stability of the tachocline 55

4.1 Lower Dimensional Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 m = 1 Mode Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Rigid rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Thickness of field belts . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.3 Latitudinal differential rotation . . . . . . . . . . . . . . . . . . . . 64
4.3.4 Full differential rotation . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Higher Azimuthal Modes: Linear simulations . . . . . . . . . . . . . . . . . 68
4.5 Non-linear Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Summary 75

A Solar Parameters 79

B Miscellaneous Formulae 81

Bibliography 85



List of Figures

1.1 Tachocline Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Internal rotation profile of the Sun . . . . . . . . . . . . . . . . . . . . . . 7
1.3 The mean radial position of the tachocline . . . . . . . . . . . . . . . . . . 9
1.4 The width of the tachocline . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 1.3 year cycle in the tachocline . . . . . . . . . . . . . . . . . . . . . . . . . 12
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Abstract

The solar tachocline is a thin transition layer between the solar radiative zone rotating
uniformly and the solar convection zone, which has a mainly latitudinal differential rotation
profile. This layer has a thickness of less than 0.05R and is subject to extreme radial as
well as latitudinal shears. Helioseismological estimates put this layer at roughly 0.7R. The
tachocline mostly resides in the sub-adiabatic, non-turbulent radiative interior, except for
a small overlap with the convection zone on the top. Many proposed dynamo mechanisms
involve strong toroidal magnetic fields in this transition region.

The exact mechanisms behind the formation of such a thin layer is still disputed. A
very plausible mechanism is the one involving a weak, relic poloidal magnetic field trapped
inside the radiative zone, which is responsible for expelling differential rotation outwards.
This was first proposed by Rüdiger & Kitchatinov (1997). The present work develops this
idea with numerical simulations including additional effects like meridional circulation. It
is shown that a relic field of 1 Gauss or smaller would be sufficient to explain the observed
thickness of the tachocline.

The stability of the solar tachocline is addressed as the next part of the problem. It is
shown that the tachocline is stable up to a differential rotation of 52% in the absence of
magnetic fields. This is a new finding as compared to the earlier two dimensional models
which estimated the solar differential rotation (about 28%) to be marginally stable or even
unstable. The changed stability limit is attributed to the changed stability criterion of the
3-dimensional model which also involves radial gradients of the angular velocity.

In the presence of toroidal magnetic field belts, the lowest non-axisymmetric mode is
shown to be the most unstable one for the radiative part of the tachocline. It is estimated
that the tachocline would become unstable for toroidal fields exceeding about 100 Gauss.
With both formation and stability questions satisfactorily addressed, this work presents
the most comprehensive analysis of the physical processes in the solar tachocline to date.



2 List of Figures



Chapter 1

Introduction

Sun, the primary source of energy for the entire life on the Earth! It has been observed
and studied right since the dawn of civilization. Be it Egyptians, Indians or Mayans, the
Sun was the most fascinating object for the ancients. Scientists since Galileo have kept
track of all the observable changes on the Sun. But after all these years, do we completely
understand our Sun?

The observers have made headway in the physics of the outer layers of the Sun like
photosphere, chromosphere and corona. The standard solar model has parameterized the
Sun in terms of various physical quantities. Yet dynamics of the solar interior is poorly
understood. To understand this, let us begin with the basic equations governing the
equilibrium of the Sun.

1.1 Equations of the Standard Solar Model

The Sun is a self-gravitating sphere of plasma. Its energy is generated by nuclear fusion
at its core, which then is radiated through the solar radiative zone till the base of the
convection zone at roughly 0.7 solar radii (R⊙). It is then transported outwards by solar
convection. Within a good approximation (assuming non-rotation) the Sun is spherically
symmetric and this assumption helps in understanding the physics of the Sun in a set of
simple equations.

At every point in the Sun, outward pressure of the expanding gas is balanced by the
self-gravitation. This gives rise to “Equation of hydrostatic equilibrium”.

dP (r)

dr
= −GM(r)ρ(r)

r2
, (1.1)

where P (r) is the hydrostatic equilibrium pressure, ρ(r) is the density at radius r. G is
the universal gravitational constant. As pressure is the equilibrium pressure, this equation
corresponds to the mean state of the Sun.

The equation of continuity is given by,

dM(r)

dr
= 4πr2ρ(r). (1.2)
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Next we should consider the equation governing the energy production in the Sun. The
energy generation rate per unit mass (ǫ) is a quantity, which depends on various factors
viz the local temperature, local density, metalicity and hydrogen fraction amongst other
things. Combining the first and the second law of thermodynamics, for a given ǫ, we can
write,

dL(r)

dr
= 4πr2ρ(r)(ǫ − T (r)

∂S

∂t
), (1.3)

where L(r) is the total luminosity generated inside a sphere of radius r, T (r) is the local
temperature and S is the thermodynamic entropy.

Once the energy is generated, it needs to be transported to the exterior of the Sun.
The “energy transport equation“ simply states that the total flux coming out of the sphere
of radius r is sum of its radiative flux and convective flux. The third mode of energy
transport, Conduction, is negligible for the Sun. This equation gives the relation between
the temperature gradient and the output flux of the photons. The efficiency of this process
(which is a function of temperature and opacity) determines the total luminosity of the
Sun. The linearized equation of the process, assuming local thermodynamic equilibrium is
given by

L(r)

4πr2
= Frad + Fconv (1.4)

= −
(

16σT 3(r)

3κρ(r)

)

dT (r)

dr
+ Fconv, (1.5)

where κ is the Rosseland mean opacity and σ the Stefan’s constant. The quantity in
the bracket gives the local heat conductivity. When the temperature gradient required
to transport all the energy by radiation exceeds the adiabatic temperature gradient, the
energy is physically transported outwards by the material. In this case the convective flux
dominated the energy transport equation.

The hydrostatic equilibrium of the Sun is governed mainly by 5 variables, L(r), P (r),
ρ(r), T (r) and M(r). We aim to solve the solar equations self-consistently to arrive at the
solutions of these variables. The “equation of state”, “opacity equation” and the “energy
generation equation” of the Sun supplement the equations above for the complete solar
model. In practice, however these three equations depend on the chemical composition
inside the Sun. The quantum effects come into play close to the center of the Sun. However,
for the bulk of the radiative zone, we can approximate the equation of state by the ideal gas
Law. In the outer layers, good approximation for it is given by Saha Ionization equation.

The actual energy generation inside the Sun is given by nuclear fusion reactions such
as proton-proton (pp) chain and carbon-nitrogen-oxygen (CNO) cycle.

With all the equations and physical parameters fairly well known, we can numerically
evolve the Sun from an initial stage (zero-age model) till the current age (≈ 5 Gyr.). A
range of models with different initial Helium abundances (Y0) and mixing length parameters
(α) are evolved and the outputs are compared with the present solar luminosity and the
radius. By doing this process iteratively, the zero-age model can be tuned up to the initial
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conditions, which can reproduce the present day Sun. At this point, we get a good detailed
model for structure of a non-rotating solar mass star.

However, till recently, these models could be matched only with the observables at the
solar surface as, barring neutrinos, there were no tools to probe the solar interior. The
accurate measurement and continuous monitoring of the solar oscillations has opened a
new branch of observations called helioseismology in the last few years. It has breathed
new life in the physics of the solar interior.

1.2 Helioseismology and the Internal Rotation of the

Sun

The oscillations on the solar surface were first reported by Leighton et al. (1962). These
oscillations are predominantly sound waves, p-modes, with most typical period of 5 min-
utes. They are stochastically excited and linearly damped by the turbulent motions in the
convection zone. Grec et al. (1980) were the first to show that power spectrum of the Sun is
a discreet one, thus leading to the thought that accurate measurement of these frequencies
could provide information about the internal structure of the Sun.

The standard solar model described in the previous section has parameterized the Sun
at different radii. With parameters like sound speed inside the Sun, the solar density etc.
specified, the stable oscillatory frequencies can be predicted and the cross-check with the
observed helioseismic frequencies can help in refining the model. The SOHO telescope at
the Sun-Earth L1 point and group of 6 earth based observatories under the GONG group
are continuously monitoring the Sun for finer as well as long period observations. Many
discoveries in the recent years like measurement of the depth of the solar convection zone,
independent measurement of solar radii, determination of microscopic properties of the Sun
are attributed to helioseismology. Yet, none of it is as important as the solar tachocline.

The helioseismic estimation of the sound speeds inside the Sun was found to be well in
agreement with the standard solar model except for a small layer near 0.7R. The particular
anomaly near 0.7R is clearly visible in the Figure 1.1. In the figure the deviation of the
observed sound speeds from the solar model is plotted. One can clearly see a sudden peak
at about 0.7R, giving indication that the Sun is hotter in this region than predicted by
the models. This layer formed at the junction of the outer side of solar radiative zone and
the inner side of solar convection zone is called the tachocline.

Any small amplitude oscillation on the solar surface can be expressed in terms of spher-
ical harmonics as a function of the axial modes1 (l), giving dependence on co-latitudes and
azimuthal modes (m), giving dependence on the longitudes. At zero rotation, these two
types of modes are degenerate from each other. However, as the Sun is rotating, the os-
cillation frequencies for given azimuthal modes split in to couplets. This frequency line
splitting gives a handle on probing the sound speeds inside the sun, which in turn help in

1The word ’modes’ maybe misleading here as the l and m are merely different harmonics in axial or
azimuthal direction, yet it is used for brevity.
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Figure 1.1: Deviation of helioseismically observed squared sound speed from the model prediction.

constructing the rotation profile inside the sun. In this case, solar structures at different
depths is reflected in different ls. An exhaustive review of the basic helioseismological tech-
niques and their employment in measuring the internal rotation rate of the Sun is given
in Thompson et al. (2003). When the internal rotation profile of the Sun is obtained, this
layer is clearly distinguishable. The latitudinal differential rotation of the solar surface was
first quantized by Newton & Nunn (1951). Since then many authors have expressed the
solar rotation rate as,

Ω(θ) = Ωeq(1 − α2 cos2 θ − α4 cos4 θ). (1.6)

Here Ωeq is the angular velocity at the solar equator and θ is the colatitude. With both
α2 and α4 positive, it dictates that the rotational rate at the equator is maximum and it
gradually decreases towards the pole. Out of the three constants, α4 is the most elusive
one as it depends on the accurate determination of the rotation rate near the pole. Prior
to helioseismology, the surface observations estimated these constants to be,

Ωeq = 2.87 × 10−6 rads−1 and α2 = 0.19, (1.7)

With the advent of helioseismology, these constants can be determined in an unprecedented
detail. The key features of the solar rotation profile as determined by helioseismology can
be summarized as follows:

• The solar convection zone, except a thin layer at the surface undergoes latitudinal
shear but nearly no radial shear. This means, the rotation rate at any point in the
convection zone depends strongly on its latitude and much weakly on the distance



1.2 Helioseismology and the Internal Rotation of the Sun 7

Figure 1.2: Internal rotation profile of the Sun as per 2 different datasets. The left panel shows 2-
D plot of iso-contours of the rotation rate with yellow (grey) corresponding to the fastest rotation
and black corresponding to the slowest rotation. The data from GONG and MDI projects is shown
separately in upper and lower half respectively. The right panel shows the latitudinal rotation
frequencies as a function of fractional radius. The GONG and MDI datasets are represented by
black and red (grey) colour respectively. Source: R. Howe’s presentation (2002).

from the centre. This feature was in contradiction with then existing solar models,
which had predicted cylindrical rotation or the so called Taylor-Proudman flow inside
the Sun. The latitudinal rotation profile invited a complete revision of this model,
which is still an ongoing process.

• The shear layer at the solar surface is another interesting feature of this profile. As
seen in the right side panel, the rotation rates suddenly drop after 0.95R. Conse-
quently, this layer has strong radial shears.

• The solar radiative zone is rotating almost uniformly below 0.65R all the way upto
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0.2R. No significant deviation from uniform rotation is found down to 0.2R. Its
angular velocity is slightly less than that at the equator.

• The uniform rotation in the radiative zone spreads out to latitudinal differential
rotation in a very thin layer called tachocline.

The same is shown in the Figure 1.2. In the left panel, the contours clearly show
uniformly rotating radiative zone and latitudinal rotation in the convection zone. In the
right panel, same is depicted by the fact that at lower radius, lines for different latitudes
are nearly inseparable and at the outer part, they are nearly constant but well spread out.
The layer between these two regions is the tachocline. In the last 3 years, observations
have constrained the tachocline to be even thinner.

1.3 Tachocline Properties

The presence of the shear layer at the base of convection zone was reported as early as 1989
by Brown et al. But, the first definitive measurements of the tachocline properties were
carried out by Thompson et al. (1996) by GONG data and Kosovichev et al. (1997) using
MDI data. Since then many groups have generated information about basic properties
of the tachocline such as its location, shape, size, rotation rate of the radiative zone and
latitudinal dependence of the rotation.

1.3.1 Location and Shape

It is generally agreed that tachocline is situated at the base of convection zone at roughly
0.7R. The best known estimate for tachocline position are given by Kosovichev (1996)
(Eq. 1.8), Antia et al. (1998) (Eq. 1.9) and Basu & Antia (2001) (Eq. 1.10).

rk = (0.692 ± 0.005)R, (1.8)

ra = [(0.6991 ± 0.0099) + (0.0030 ± 0.0061)P2(θ)]R, (1.9)

rba = [(0.6936 ± 0.0020) + (0.0047 ± 0.0010)P2(θ)]R, (1.10)

where P2(θ) = 5 cos2 θ − 1.
We see the uncertainties in the values have gradually gone down over the years, yet the

results are consistent with each other. Results by various other authors like Schou et al.
(1998), Charbonneau et al. (1999b), Howe et al. (2000a) and Eff-Darwich et al. (2002) are
similar to these estimates. The use of Legendre polynomial in Eqs. (1.9), (1.10), suggests
that the midpoint of the tachocline is not equidistant from solar radius at various latitudes.
The tachocline is clearly prolate, which implies that larger part of the tachocline is likely
to be inside convection zone for the polar latitudes. This fact will have to be borne in mind
while simulating the part of the tachocline inside the solar radiative zone. Also we must
note, as shown by Schou et al. (1998), that these best fits drawn from the lower latitudes
data may not be best fits in the polar region.
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Figure 1.3: The mean radial position of the tachocline at few selected latitudes. The crosses
and circles show the results from the calibration method for GONG and MDI data, the open
squares and triangles show the 1D annealing results from the GONG and MDI data, while the
filled squares and triangles show the results from 2D annealing for GONG and MDI data. Source:
Basu & Antia (2001).

1.3.2 Width

The width of the tachocline is differently defined by different authors. Kosovichev (1996),
Charbonneau et al. (1999b) (Eq. 1.11) and others describe the tachocline rotation profile as
an error function. The width of the tachocline is the thickness for which the error changes
from 0.08 to 0.92. On the other hand, others like Antia et al. (1998) (Eq. 1.12) and Basu &
Antia (2001) (Eq. 1.13) have chosen to take the width as the thickness of the layer for which,
the actual rotation rate increases from a factor 1/(1 + e) to 1 − 1/(1 + e) of its maximum
value at a given latitude. We adopt to the first definition. When scaled accordingly, all
the results, along with numerous others, agree that thickness of the tachocline is 0.05R or
smaller.
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Figure 1.4: Width of the tachocline at few selected latitudes. The data points have same meaning
as Figure 1.3. Source: Basu & Antia (2001).

wlow = (0.039 ± 0.013)R (at the equator),

whigh = (0.042 ± 0.013)R (at 60), (1.11)

wa = [(0.0412 ± 0.0353) + (0.0230 ± 0.0206)P2(θ)]R, (1.12)

wba = [(0.0235 ± 0.0044) + (0.0142 ± 0.0083)P2(θ)]R. (1.13)

Again here, the dependence of the tachocline width on the Legendre polynomial implies
that the tachocline becomes thicker at the higher latitudes. At the same time, Basu &
Antia (2001) claim that position of the base of convection zone or the overshoot layer do
not show any significant latitudinal dependence. Thus, tachocline has larger overlap with
the convection zone at polar latitudes.

Converting these estimates in physical units, tachocline width may be less than 10Mm
at the equator and may be as high as 70Mm near the pole.

1.3.3 Rotational Frequencies

The solar convection zone undergoes latitudinal differential rotation. As the rotation rate
weakly depends on radius, the best fit for the rotation profile is mentioned along with the
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radius at which it was measured. The rotational rate at various latitudes at the base of
convection zone is given by Antia et al. (1998) (Eq. 1.15), Schou et al. (1998) (Eq. 1.14)
and also by Basu & Antia (2001) (Eq. 1.15).

Ωs(θ) = (455.8 − 51.2 cos2 θ − 84.0 cos4 θ) nHz (at lower latitudes), (1.14)

Ωa(θ) = (436.6 ± 2.2) − [(1.83 ± 2.18) + (22.71 ± 1.01)P2(θ)

+(3.88 ± 0.45)P4(θ)] nHz, (1.15)

Ωba(θ) = (436.6 ± 2.2) − [(1.17 ± 0.68) + (21.86 ± 0.21)P2(θ)

+(3.44 ± 0.11)P4(θ)] nHz, (1.16)

where P4(θ) = 21 cos4 θ − 14 cos2 θ + 1.
In Eq. (1.14), the first term represents the equatorial frequency of the convection zone.

Schou et al. (1998) noted that the rotation rate in the radiative core is the same as that
at 30 latitude in the convection zone. On the other hand, in the Eqs. (1.15), (1.16), the
first term gives the rotation rate in the radiative core. These equations also agree that
the rotation rate at roughly 30 latitude is same as that in the radiative interior. Similar
inversions have also been shown graphically by, Howe et al. (2000a), Eff-Darwich et al.
(2002) and Howe (2003) amongst others.

From the equations, it is clear that the pole is rotating with a frequency of about
28 − 30% less than that of equator. This is defined as percentage differential rotation.
If for some body, the rotation rate is zero near the pole then the percentage differential
rotation will be 100%. For a body where pole rotates faster than the equator (also called
anti-solar like), the percentage differential rotation will be negative.

1.3.4 Variability of the solar tachocline

After studying 4 years of MDI as well as GONG data, Howe et al. (2000a) concluded
that the equatorial rotation rate at various depths inside the Sun including the rate at
the tachocline is variable in an oscillatory manner with a period of roughly 1.3 years (see
Figure 1.5). But the observations at 30 as well as 60 failed to show any trace of statistically
significant oscillation. These results are also contested by Basu & Antia (2001). They
report no significant periodicity in the data used by them and also point out that the only
hint of oscillation in the Howe et al. (2000a) is from the GONG data alone which is not well
corroborated by the MDI data. The existence of any temporal variation in the tachocline
is still an open question.

1.3.5 Light Element Abundance

The convection zone and the overshoot layer, thoroughly mix chemical elements on a very
short timescale. As a result, the abundances of the chemical elements, as observed on
the solar surface, are constant throughout the convection zone. As the convection zone
flows also reach upper layers of the tachocline, it would be reasonable to assume that
these elements are also present in the tachocline in same proportion. Light elements like
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Figure 1.5: Possible 1.3 years temporal variation in the tachocline as seen in the Gong (black) and
MDI (red) data. The difference from the time-averaged angular velocity is plotted. The upper
plot is for the equatorial region and the lower plot is for higher latitudes. Source: R. Howe’s
presentation (2002)

Lithium (Li), Beryllium (Be) and Boron (B) have been observed on the solar surface, albeit
in a depleted quantity. The temperature in most of the radiative zone is high enough to
destroy these elements (for e.g. Be will be destroyed by fusion below 0.61R, while Li will be
destroyed below 0.67R). This puts a constraint on the efficiency of the mixing of elements
in the tachocline and its interaction with the radiative zone. the depleted proportion of
the light elements at the solar surface, as compared to the solar models, tells us that there
should be some mixing also in the tachocline but as Rüdiger & Pipin (2001) have pointed
out, if the tachocline is as turbulent as the convection zone, there wouldn’t be any trace of
light elements after gigayears of the solar life. It has been argued there that the turbulent
velocities in the tachocline, assuming only horizontal turbulence, should be atleast 3-4
orders weaker than those in the convection zone. It is further argued that the turbulent
velocities should be even weaker if a full 3-dimensional model is taken into account. Thus,
the light elements put a constraint that although the tachocline needs to be turbulent, the
turbulence should be very weak as compared to the convection zone.

Any good tachocline model needs to take into account the restrictions imposed by these
parameters.
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1.4 Modeling the Tachocline

The existence of tachocline raises many fundamental questions. We would like to know
why radiative zone is rotating more or less uniformly whereas there is differential rotation
in the convection zone. Probing further, it would be good to know why tachocline, the
shear layer between the two is so thin. Also the important question, if the tachocline is
stable in the solar case, needs to be addressed. In this work I attempt to tackle these
questions and related issues.

1.4.1 Tachocline Formation

There are various theories regarding formation of the tachocline. First model attempting
to explain tachocline was a hydrodynamic one, given by Spiegel & Zahn (1992). Although
this approach was followed by others like Elliott (1997) and Miesch (2003), the model
suffered from the primary drawback that the resultant tachocline thickness was more than
0.1R.

Some others, primarily Forgács-Dajka & Petrovay (2002) and Petrovay (2003) take
the view that the tachocline entirely belongs to the convection zone. The stark contrast
between the convection zone and the sub-adiabatic radiative interior is the onset of turbu-
lence in the convection region. As a result, viscosity, thermal conductivity and magnetic
diffusivity are much higher in the convection zone. Stix & Skaley (1990) estimated that
these quantities are as small as O(10) in the radiative zone and as large as O(109) or
higher in the convection zone. As shown by helioseismology, some parts of the tachocline,
especially at the polar latitudes may indeed reside inside convection zone, but these large
diffusivities also make diffusive timescales very short and thus numerical simulations using
this approach are restricted to the study of short timescale (of the order of a solar cycle or
less) variations in the tachocline and say little about formation of the tachocline itself.

Most successful approach to explain the tachocline formation has been the MHD evo-
lution of the solar interior and the tachocline with the help of a relic magnetic field. This
approach assumes that the most of the tachocline is a part of the radiative zone rather
than the convection zone. This is certainly consistent with the picture of the Sun we get
from the helioseismology and the standard solar model. The model also assumes that at
the time of formation of the Sun, a small random poloidal field may have been entrapped
inside the radiative zone. If we separate any random field in multipoles, it turns out that
the axisymmetric dipole mode takes the longest time to decay through magnetic diffu-
sion. With microscopic magnetic diffusivity inside the radiative zone, diffusion time for
the dipole field may even be longer than the solar life time. Thus, it would be logical to
assume that the field in the radiative interior may be predominantly a dipolar one.

Rüdiger & Kitchatinov (1997) introduced this idea of magnetic field as primary agent
of the tachocline formation. The significance of this model was explained independently
by Gough & McIntyre (1998). Since then many others like Charbonneau et al. (1999b),
Garaud (2001) etc. have used similar models to explain the observed structure of the
tachocline. I have also used the model of Rüdiger & Kitchatinov (1997) as a starting point
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and performed axisymmetric simulations for the formation of the tachocline. All these
models and subsequent simulations will be discussed in detail in Chapter 2.

1.4.2 Tachocline Stability

The other key issue in case of the tachocline is its stability. Should the tachocline be
completely unstable and hence turbulent, the light elements in the convection zone will be
effectively transported to deep layers of radiative zone where they will be destroyed. As
the light elements on the solar surface have survived till date, albeit in a depleted quantity,
one can deduce that the lower layers of the tachocline should be much more stable than the
convection zone i.e. only weakly turbulent. The diffusivities in these layers might be an
order or two higher than the radiative zone but they should still be substantially smaller
than diffusivities in the convection zone. The depleted quantities of the light elements are
then explained by large scale meridional flows coupling the tachocline with the radiative
zone below (Rüdiger et al. 2005). Can such a thin layer subject to extreme shears remain
stable? What are the key parameters governing the stability criteria? These are just a few
of the questions which need to be answered in the context of the solar tachocline. Further,
we would also like to know if we can extend the same analysis to other stars and can gauge
some general pattern.

The hydrodynamic stability of spherical, inviscid fluid surface under the influence of
latitudinal differential rotation was first probed by Watson (1981). He concluded that the
instability should set in at a differential rotation of about 28.6%. As seen above, this figure
is roughly same as the total differential rotation in the Sun which implies that the Sun
may just be marginally stable or even unstable, if the solar rotation profile would contain
just the α2 term from the eq. 1.6. However, the solar rotation profile is more complex and
the higher order terms were suspected to have significant influence on the stability of the
tachocline. Dikpati & Gilman (2001) revisited the issue with the aid of helioseismological
data and performed the analysis again for the spherical surface allowing deformations along
the radial extent. The results threw another surprise as the critical differential rotation for
the overshoot part of the tachocline was found to be as low as 11%. As mentioned above,
since the lower layers of the tachocline can only be weakly turbulent, some piece of this
puzzle seems to be missing. In Chapter 3, the hydrodynamic stability problem is revisited
with linearized 3-dimensional simulations.

The relic poloidal magnetic field in the solar interior produces belts of toroidal magnetic
field in the solar tachocline region. This toroidal field is expected to be larger than the
poloidal field by 6 orders of magnitude or even more. Most popular solar dynamo models
assume that this winding up of toroidal magnetic fields produces a field of O(105) G which,
along with the differential rotation in the tachocline, acts as an engine for the dynamos.
The emergence of sun-spots on the solar surface, have put an observational constraint on
the minimum toroidal field strength required in the tachocline for such models (Choudhuri
& Gilman 1987; D’Silva & Choudhuri 1993). It is possible that such strong magnetic fields
can further destabilize the tachocline.

The stability of purely toroidal magnetic fields against adiabatic perturbations were
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investigated analytically by Tayler (1973). It was found that a large class of configura-
tions of toroidal fields is unstable in the linear treatment. Non-axisymmetric modes were
more unstable than axisymmetric modes. This instability is known as Tayler instability.
Spruit (2002) showed that Tayler Instability is the most important in this regard. The
stability of toroidal fields on the tachocline has been studied by a host of authors, under
suitable approximations. Most notable are the works of Gilman & Fox (1997), Dikpati &
Gilman (1999) and Gilman & Dikpati (2000), which study instabilities on a 2-dimensional
spherical surface; Dikpati et al. (2003) and Cally et al. (2003), which extend the analysis
to allow perturbations of the spherical surface in radial direction (so-called shallow wa-
ter approximation) and Cally (2003), which employs full, 3D shell, albeit ignoring radial
shears, magnetic field gradients as well as viscous drag. On the other hand, authors like
Forgács-Dajka & Petrovay (2002) and Petrovay (2003) concentrate on the turbulent part
of the tachocline which resides just below the convection zone in the overshoot layer to
explain short timescale phenomenon like the observed 11-year cycle of the sun-spots on the
solar surface. Similar to hydrodynamic stability analysis, MHD instabilities are examined
with full, 3-dimensional, linearized MHD simulations in the Chapter 4.

1.5 The Numerical Procedure

This section briefly describes the governing MHD equations, various approximations in-
volved, the numerical code and also defines various parameters involved. The treatment
here is more general, whereas specific deviations from this generalized form for various
simulations will be discussed at their appropriate places.

1.5.1 The MHD Equations

The Sun is a rotating sphere of plasma mostly made up of Hydrogen and Helium. Thus, it
will be reasonable to apply equations of fluid dynamics to the Sun. To avoid complexities
in the simulations, we can assume the background density profile of this fluid plasma
(ρ) as well as its kinematic (ν)2, thermal (χ) and magnetic (η) diffusivities are uniform
throughout. The density fluctuations from this constant background profile are permitted
through the buoyancy force. This is a fair assumption for the shells of the thickness of
tachocline. However, all these quantities change by about two orders of magnitude across
the width of radiative zone. Nevertheless, we will continue with this assumption due to
limitations of the computational resources.

The general equation governing the motion of continuous, incompressible fluid or plasma
is called Navier-Stokes equation. It is given by

ρ
∂u

∂t
= −ρ(u · ∇)u −∇P + ρν∇2u + F . (1.17)

2also known as viscous diffusivity
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In this equation, u is the velocity of the fluid, P is the gas pressure and F is the total
external force acting on the fluid. As we subject this sphere to the magnetic fields, differ-
ential rotation and temperature gradients with self-gravitation, the external force consists
of centripetal force, Lorentz force and buoyancy force. Thus Eq. (1.17), with Boussinesq
approximation, takes the form,

∂u

∂t
= −(u · ∇)u − 1

ρ0

∇P + ν∆u +
1

µ0ρ0

(∇× B) × B +
ρ(r) · g

ρ0

, (1.18)

where B is the magnetic field and g is the gravitation term, which also absorbs the effect
of temperature gradient. As per the standard practice in the Boussinesq approximation,
the ρ(r) symbol denotes local density at the radius r, which may differ from the average
density ρ0.

The evolution of the magnetic field is described by the induction equation. In the
Eq. (1.19), magnetic field is constantly generated by the first term on the R.H.S. and is
dissipated through diffusion by the second term.

∂B

∂t
= ∇× (u × B) + η∆B. (1.19)

If the varying background profiles for η, ν or ρ are used then one has to make several
changes in these equations. In Eq. (1.18), the −ν∇× (∇× u) term, which is absorbed in
ν△u would change to −∇× (ν∇×u). Similarly, in Eq. (1.19), the −η∇× (∇× b) term,
which is absorbed in η△b would change to −∇ × (η∇ × b). This will include additional
terms in the computation, and demand a decent radial resolution in the central part (i.e.
away from the boundaries) of the computational domain. As Chebyshev polynomials used
in the code are most effective in resolving the boundary layers, the additional points in
the central region would mean a significant increase in the radial resolution forcing smaller
time steps. The time stepping has lower bound as after a certain stage random noise in the
code becomes comparable to the change in numerical values of the velocity and magnetic
field rendering the computation useless. For the density variation the situation is even
more complex. If a varying density profile is used in the background, then the code instead
of the velocity field calculates the product ρ ·u. To obtain the velocity field from these, the
computational time for a simple 1/r type of density profile increases by atleast an order
of magnitude. The trade-off of saving the computational time by constant background
density profile was considered as an appropriate choice.

As there is no source or sink for the velocity field, we get solenoidal conditions in terms
of Eqs. (1.20) and (1.21).

∇ · u = 0, (1.20)

∇ · B = 0. (1.21)

The temperature of the fluid is evolved through Eq. (1.22);

∂T

∂t
= χ∆T − u · ∇T. (1.22)
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In this equation, it is assumed that the contribution from viscous and ohmic dissipation is
small. Thus, the corresponding terms are neglected. We further assume that the tachocline
lies completely inside the radiative zone. Given the very high turbulent viscosity in the
convection zone, we can safely assume that the convection zone rotation profile acts like
an axisymmetric rigid outer boundary on the tachocline. We use Eq. (1.6) as the profile
at the base of the convection zone. As the tachocline is lying in the radiative zone values
of diffusivities in the tachocline will be the microscopic ones (Stix & Skaley 1990) or just
higher (Rüdiger & Pipin 2001). This may not be computationally possible but we will try
to drive the diffusivities as low as possible in our simulations. As mentioned in the previous
section a host of authors including Garaud (2001) and Brun & Zahn (2006) tried to drive
the diffusivities as low as possible with a conviction that diffusivities in the tachocline are
closer to the microscopic values than the turbulent ones. The diffusivities used in this work
are the lowest achieved yet. This is remarkable as Brun & Zahn (2006) used a parallel
code running on an efficient pc cluster whereas the code used here is merely a serial code.

1.5.2 The Numerical Code

The equations described above are solved using the spectral code developed by Hollerbach
(2000). The code is designed for spherical shell. In order to solve the equations in the
most efficient manner, it decomposes both velocity and magnetic fields in it toroidal and
poloidal components as,

u = ∇× (er̂) + ∇×∇× (f r̂), (1.23)

B = ∇× (gr̂) + ∇×∇× (hr̂). (1.24)

where r̂ is the unit vector in radial direction in the spherical co-ordinates.
These potentials are further expanded into functions of the spherical co-ordinates. A

typical expansion, like the one shown in Eq. (1.25) consists of Chebyshev polynomials de-
pending on radius and spherical harmonics in co-latitude. The code facilitates separate
resolution for each spherical coordinates thus revealing fine structures without compromis-
ing much of speed. Further, choice of Chebyshev polynomials for the radial modes ensures
fine resolution in the boundary layer.

e(r, θ, φ, t) =
∑

m

∑

l

∑

k

eklm(t)Tk(x)P
|m|
l (cos θ)eimφ, (1.25)

where k, l and m are radial, co-latitudinal and azimuthal wave-numbers, Tk(x) are the
Chebyshev polynomials of degree k with x being a function of radius (for details: see

Appendix B) and P
|m|
l (cos θ) are the associated Legendre polynomials of degree (l,m). The

non-linear force terms in the Eq. (1.18) are computed in the real space whereas potentials
are advanced by second-order Runge-Kutta method in the spectral space. In the various
computational setups explored in this work, not all of these components in the sum may
be used. As radial, latitudinal and azimuthal modes are separated from each other, the
spectral space resolution for each of these types can be chosen independently depending on
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the problem at hand. As an example, in the simulations regarding tachocline formation, as
axisymmetry is assumed, the resolution in the azimuthal modes can be reduced significantly
or while analysing stability for simple latitudinal rotation (Chap. 3), one can get away
with minimal resolution in the radial modes. In principle, one can go even a step further
and trim the actual code to avoid any unnecessary steps, but the performance of the code
as compared to the former method (reducing the resolution) is not drastically improved.

The curling of the velocity and magnetic fields in the code in order to get the toroidal
and poloidal components separately, is particularly useful as it automatically takes care of
the gradient terms in the Eq. (1.18), improving the efficiency of the code. To improve the
efficiency further, the temperature equation assumes a standard background temperature
profile T0(r) and the numerical code only evolves the perturbations Θ from this profile.
Thus,

T = T0(r) + Θ(r, θ, φ, t). (1.26)

The normalized background solar temperature profile given by Eq. (1.27), is chosen as
solution to the equation ∆T0 = 0;

T0 =
Rin

Rout − Rin

(

Rout

r
− 1

)

. (1.27)

Θ is decomposed in the same way as e in the Eq. (1.25). As the temperature profile is
normalised with the temperature at the inner boundary, T0 is dimensionless. Further,
as the code requires only the temperature differences rather than absolute temperature,
before normalisation, one can subtract the temperature at the outer boundary from the
temperature profile. Thus, although the equation gives an impression that the temperature
is zero at the outer boundary, physically it only implies that the temperature is lowest at
the outer boundary.

Similar to the temperature, normalization also needs to be applied to the other physical
variables. The length is scaled by Rout, time by the magnetic diffusion time, τdiff = R2

out/η,
velocity by η/Rout, and the magnetic field is represented in the form of Lundquist number
(S),

S =
B0Rout√
µ0ρ0 η

. (1.28)

This reduces the equations to very few free parameters, namely Rout, Rin, S, magnetic
Reynolds number (Rm), magnetic Prandtl number (Pm) and magnetic Rayleigh number
R̃a. The last three are defined as,

Rm =
R2

outΩeq

η
=

Routurot

η
, (1.29)

Pm =
ν

η
, (1.30)

R̃a =
gα∆TR3

out

η2
. (1.31)
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α is the coefficient of volume expansion for the fluid, g the average gravitational acceleration
and ∆T the absolute difference between temperatures at the two boundaries. As Rout and
Ωeq are fairly well known in the solar case, Rm acts as a measure of magnetic diffusivity.
In the solar case, assuming that the diffusivities take microscopic values, these parameters
roughly take the values Rm = 5 × 1012 and Pm = 0.005 (Stix & Skaley 1990). If the
tachocline is weakly turbulent, these values of the parameters will be lower accordingly.
The magnetic field will be directly calibrated as,

B0 =
S

Rm
×√

µ0ρRoutΩ =
S

Rm
× 700 kG (1.32)

With these scalings, Eqs. (1.18), (1.19), (1.22) take the form

Rm
∂u

∂t
= −Rm2(u · ∇)u + PmRm∆u + S2(∇× B) × B + R̃aΘr − K∇P, (1.33)

∂B

∂t
= Rm∇× (u × B) + ∆B, (1.34)

∂Θ

∂t
= −Rmu · ∇(Θ + T0) +

Pm

Pr
∆Θ, (1.35)

where Θ is the temperature perturbation and Pr = ν/χ is the Prandtl number using the
thermal diffusivity χ. The u and B in the equations above are normalised to unity. As
explained above, the pressure term in the Eq. (1.33) will drop out after curling, thus, the
constant K in that term is not discussed explicitly. As the limits of simulation domain,
boundary conditions and the initial conditions for the simulations are varied for different
setups, they are discussed alongwith with description of various setups.

With this much acquaintance with the background of the solar tachocline problem, let
us proceed to the examination of the issue of tachocline formation in detail.
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Chapter 2

Formation of the Solar Tachocline

The discovery of a very sharp shear layer at the base of the solar convection zone, i.e.
tachocline, in the late 80’s suggested radical reforms were needed in our understanding of
the Sun. In the last 15 years, many theories have been developed to explain the existence
of such a thin layer. Amongst them, the MHD models have been more successful than
the hydrodynamic ones and this work is also an improvement on an existing MHD model.
Yet, to appreciate the advantages of MHD models, one has to start with the hydrodynamic
models first.

2.1 Turbulent Tachocline Models

The main characteristic of the solar differential rotation that any model will have to explain
is the transition layer at the base of the convection zone. Assuming it is not merely a
temporary feature, it is a good approximation to consider its dynamic and hydrostatic
structure to be in a steady state. The observed differential rotation in the tachocline can
therefore be regarded as the result of a subtle dynamic equilibrium between various angular
momentum transporting processes.

A first model for this shear layer was proposed by Spiegel & Zahn (1992). They were
also the ones to coin the term “tachocline”. The model is based on the assumption that
the Sun is an axisymmetric sphere and only axisymmetric flow fields are considered. The
viscosity in the tachocline is assumed to be much smaller than the turbulent value. The
resultant flow is termed as heliostrophic. After evolving the hydrodynamic equations,
however, it was realized that in absence of turbulent viscosity, the wind stress exerted on
the radiative interior would force the tachocline to penetrate at least half-way to the solar
center. The situation does not improve much when weak isotropic horizontal turbulence
is included. The picture is drastically altered if we allow dynamic interaction between
strongly anisotropic turbulence and large-scale advection.

Elliott (1997) presented a time series evolution of the Spiegel & Zahn (1992) model,
using numerical simulations. He showed that in absence of anisotropic turbulence, the
tachocline would be as thick as 0.1R in the equatorial region and even thicker in the polar
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region. Imposing an anisotropic turbulence, the spreading of the tachocline was reduced
to 0.05R in the equatorial region and 0.1R in the polar region. He also tried to explain the
observed sound speed anomaly in the tachocline (see Figure 1.1), using turbulent helium
mixing in the tachocline region. Miesch (2003) repeated the numerical simulations for
a thin shell 3D geometry. An artificial lower boundary was imposed on the thin shell.
This configuration with high viscosity was chosen so as to produce a thin tachocline, in
agreement with Spiegel & Zahn (1992), but the model was inadequate to explain the
uniform rotation rate in the solar interior.

The hydrodynamic models could not strengthen their case, as soon Rüdiger & Kitchati-
nov (1997) and Gough & McIntyre (1998) showed that the strong restriction of the tur-
bulent motions to spherical shells by background stratification in the radiative zone leads
to Reynolds stresses that would drive the system away from rather than towards uniform
rotation. Further, the assumption of a turbulent tachocline is not supported by the hy-
drodynamic stability analysis of the tachocline. Yet, the notion of a turbulent tachocline
was used by other authors in a different form. As shown below, some authors introduced
a MHD turbulence in order to explain the tachocline.

The primary argument used in case of MHD turbulence is that the tachocline is dynam-
ically coupled with the convection zone rather than the radiative interior. The convection
cells from the convection zone overshoot in the tachocline and are the primary drivers of
the meridional flow in the region. For this, it is necessary that the magnetic diffusivity in
the region is 109 cm2/s or higher. This value is about 6 orders higher than the microscopic
value of η assumed to be prevalent in the solar interior. The dynamo field actively controls
the tachocline dynamics in this case. The positive side of this approach is that the essential
simulation parameters like Reynolds number are much smaller and thus, in the computa-
tional range. On the flip side, the diffusive timescales also get smaller and are of the order
of the solar cycle i.e. 22 years. This is known as “fast” solar tachocline. The model is pri-
marily advocated by Forgács-Dajka & Petrovay (2002) and Petrovay (2003). They impose
a 22-year oscillatory magnetic field on the outer boundary and study dynamic changes in
the tachocline for various imposed stream functions. The model is effective in confining the
thickness of the tachocline to its small observed values. It also predicts that the tachocline
thickness would be larger for polar latitudes. For all its triumphs, the model can be of
hardly any use for predicting long term formation history or evolution of the tachocline.
The simulations of the fast tachocline are limited to time series of a few solar cycles which
are way too short as compared to the solar life. Secondly, the analytical models show that
a thin (≤ 0.05R), turbulent tachocline would require a poloidal field of 1kGauss or more
which looks implausible. Further, there is no direct evidence that the tachocline, which
mostly lies in the stably stratified radiative interior at least for lower latitudes, can be
dynamically coupled to the convection zone.

We thus come to the most successful of the models which couple the tachocline to the
radiative interior and employ a large-scale relic poloidal magnetic field to aid the tachocline
formation.
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2.2 Models with Relic Poloidal Field

The idea of a large scale weak poloidal magnetic field was first introduced by Rüdiger &
Kitchatinov (1997). As explained earlier, if there is a relic poloidal magnetic field in the
tachocline, it will be predominantly dipolar. An axisymmetric dipolar magnetic field given
by

B =

(

1

r2 sin θ

∂A

∂θ
,− 1

r sin θ

∂A

∂r
, 0

)

, (2.1)

with the generating function

A = S0r
2

(

1 − r

Rout

)

sin2 θ (2.2)

was chosen as the initial field configuration. S0 is the Lundquist number (S) corresponding
to the initial condition. The equilibrium solutions for the axisymmetric MHD equations
were searched; but the meridional flow was ignored. The analytical results from simple
shear flow model suggested that the thickness of the tachocline should be roughly

δR

R
∝ Ha−1/2, (2.3)

with the Hartmann number

Ha =
S√
Pm

=
B0R√
µ0ρνη

. (2.4)

This means, for a solar like tachocline (≤ 0.05R), a Hartmann number of O(103) is required,
assuming microscopic magnetic diffusivity. Further, the induced toroidal field winds itself
to a converged value independent of the initial poloidal field amplitude (B0). Their ratio
is given by

Bφ

B0

≃ Ω0R

B0

(

µ0ρν

η

)1/2

≃ Rm

Ha
. (2.5)

With η ≃ 103 cm2/s (Stix & Skaley 1990) as a rough estimate for the solar diffusivity in the
tachocline, one finds Rm ≃ 5× 1012 for the solar transition region between the convection
zone and the radiative interior. With this configuration and a given rotation profile at
the outer boundary various amplitudes of the poloidal fields were chosen. The results
are graphically shown in Figure 2.1. A thin tachocline was achieved for a B0 of 0.1mG.
The toroidal field was always found to be of the order of 200G in all these simulations.
A special feature in these results is a polar cap which shows a thick tachocline in the
polar region. As we will show later, this feature no longer exists when meridional flow is
included. Gough & McIntyre (1998) independently arrived at the same conclusion that the
large scale poloidal magnetic fields are inevitable in the tachocline formation models. In
this work they pointed out that a strong non-linear coupling between a thermally driven
meridional flow and a large scale interior magnetic field is essential to the formation of the
tachocline. The analytical expressions derived for the thickness as well as the toroidal field
matched fairly well with observations and solar dynamo models.
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Figure 2.1: Contour lines of both angular velocity (left panels) and toroidal field (right panels)
for a large scale dipolar internal magnetic field as given in Rüdiger & Kitchatinov (1997). In the
right panels, different line styles indicate different signs of the toroidal magnetic field. The field
strengths are 10−5 G (top), 10−4 G (middle) and 10−3 G (bottom).

MacGregor & Charbonneau (1999) performed numerical simulations for two differ-
ent magnetic field profiles for various Rm. An initial setup of a stable radiative interior
threaded by a poloidal magnetic field was used to find equilibrium solutions for the MHD
equations. Rotation profile on the outer boundary of the simulation domain, which coin-
cides with the top of radiative zone, was rigidly fixed to

Ωout = Ω0

(

1 − 0.1264cos2θ − 0.1591cos4θ
)

, (2.6)

where θ is the co-latitude1. The Reynolds numbers in the simulations were defined with the
Alfvén velocity instead of the rotational velocity as in Eq. (1.29). Figure 2.2 summarizes
their results. In both rows, the leftmost panel shows the poloidal field profile. In the
upper row, the poloidal field crosses the outer boundary of the radiative interior and is
dynamically coupled with the convection zone above. On the other hand, in the lower row,

1MacGregor & Charbonneau (1999) give a positive sign for the cos4 θ term which appears to be a
typographic error. The negative sign used here is essential for a solar-like differential rotation.
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Figure 2.2: Sequences of steady state solutions for two different configurations for increasing
Rm as given in MacGregor & Charbonneau (1999). The leftmost panel shows the poloidal field
configuration used to generate each sequence. In the other panels, the solid lines are iso-rotation
contours, normalized to the surface equatorial rotation rate. Dashed (dotted) lines are contours
of constant positive (negative) toroidal field strength.

the poloidal field is confined to the radiative interior. A vacuum boundary condition is
used for the magnetic field. In the panels except the leftmost ones in each row, in each row,
the solid lines represent contours of constant angular velocity, normalized to the equatorial
rotation rate at the outer boundary. The dashed and dotted lines are contours of constant
positive and negative toroidal magnetic field strengths respectively. From the plots, it is
clear that at very low Rm, representing small magnetic fields, the magnetic field is unable to
alter the rotation, and the resulting rotation profile looks very similar to the non-magnetic
case. In the upper panel, where the poloidal field is coupled to the convection zone, if the
magnetic field strength is very high, the contour lines of constant Ω follow the poloidal
magnetic field lines throughout the interior, in accordance with the theorem of Ferraro
(1937). Thus no tachocline is formed. In the lower panels, for high magnetic field, the
tachocline does get formed at lower latitudes, with uniform rotation throughout interior,
but the rotation axis itself seems to be unaffected by the magnetic field. MacGregor &
Charbonneau (1999) concluded that the poloidal field should be confined to the radiative
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Figure 2.3: Simulation results by Garaud (2001) for an intermediate magnetic field strength,
with iso-rotation contours (top left), streamlines (top right), toroidal (bottom left) and poloidal
(bottom right) magnetic field plotted in the four panels. In the left panels, darker shades represent
smaller values. In panel (b), solid (dotted) lines show anti-clockwise (clockwise) motions.

zone for the formation of the tachocline. Using boundary layer analysis and assuming
standard constants like ρ = 1 gm/cm3 and microscopic magnetic diffusivity, they got

h

Rout

≈ 3 × 10−3B
−1/3
0 , (2.7)

Bφ ≈ 2 × 106B
1/3
0 . (2.8)

Assuming the thickness of the solar tachocline (h/Rout) as 5%, the required strength
of B0 was calculated as roughly 0.2 mG. This leads to a toroidal field strength of 100kG,
as required by the popular dynamo models.

The next major improvement on the tachocline models was presented by Garaud (2001).
The meridional flows were introduced through the judicious choice of boundary conditions
on the flow at the top. Yet the simulations could not perform a time evolution of the system
and only equilibrium solutions were found. As ν and η were introduced in the equation,
the poloidal field would diffuse on short timescales, for computationally achievable small
Reynolds numbers. To avoid this, a constant regeneration of poloidal field at the far placed
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inner boundary (0.35R) was introduced. The system was assumed to be axisymmetric and
the rigid boundary conditions on the flow at the inner as well as the outer boundary (0.7R)
ensured that the stream flows are restricted to the simulation domain.

After the inclusion of the meridional flow, the “Taylor-Proudman” flow patterns were
found to be the stable solution in the non-magnetic case. The inclusion of a weak magnetic
field was not able to alter this stable solution much. In accordance with MacGregor &
Charbonneau (1999), the iso-rotation contours followed Ferraro’s law for high magnetic
field. However, for an intermediate value, a tachocline like structure could be seen at the
low latitude. Again the angular velocity along the rotation axis was least affected (see
Figure 2.3). As seen in the last panel, the poloidal field lines cross the outer boundary
and are coupled with the convection zone. The uniform rotation in the inner parts of
the radiative zone and the shape of the tachocline become even more prominent when
the magnetic Reynolds number was increased by a factor of 4 to 16000. Even though
the model was successful in showing the importance of the meridional circulation to the
tachocline formation, it was found unsatisfactory on other issues, in particular the fact
that the poloidal field was coupled to the convection zone and only equilibrium solutions
were obtained instead of a full time series evolution.

In short, there is a need for a more comprehensive study of the tachocline. The model
should be able to evolve itself in time to study tachocline evolution, should include merid-
ional flow as shown by Garaud (2001) and yet, at the same time be consistent with obser-
vations. A model complying with these needs is presented below.

2.3 The Chosen Model

Starting from the MHD equations described by Eqs. (1.33), (1.34), we evolve an axisym-
metric fluid sphere. As discussed earlier, the radiative zone of the Sun has a very small
(microscopic) value of η. This means the diffusion time is very large. For a dipolar field,
the diffusion time becomes comparable or even larger than the solar life time, this implies
that the dipolar component of the poloidal field may decrease by only a factor of three or
smaller whereas the stable tachocline solution is reached in a much shorter timescale and
in this period the toroidal magnetic field is amplified by few orders of magnitude. Thus, it
would be a good approximation to keep the poloidal dipolar field as time invariant. The
Eq. (1.34) can be reduced to

∂Bφ

∂t
= [∇× (u × B)]φ + [∆B]φ. (2.9)

This approximation is essential for the simulation purposes as the real solar magnetic
Reynolds number (O(1012)) is not achievable for current computational resources. We will
use values of Rm not exceeding 105. This numerically constrained choice of Rm implies
very high values of η and ν in the simulations.

It is assumed that the tachocline lies completely inside the radiative zone. Although
it would be better to include density stratification for more realistic simulations, the test



28 2. Formation of the Solar Tachocline

runs with even moderate density gradients proved computationally too expensive. The
outer radius of the computational domain is taken as Rout = 0.75R and the inner radius
as Rin = 0.1R. Due to numerical constraints, the study was restricted to spherical shells
instead of a complete sphere. The size of the remaining inner hole was found to have a
negligible effect on the results.

It is assumed that the rotation profile in the convection zone is independent of the
dynamics in the radiative zone and can be prescribed as a boundary condition. It is
further assumed that any physical phenomenon occurring in the convection zone, including
a dynamo, does not have an effect on the dynamics within the radiative zone and the
tachocline. For the first set of simulations, the effect of the temperature gradient and
hence buoyancy force on the fluid is also neglected. The equations and results involving a
temperature gradient along the radius will be discussed in a later section.

Given the very high turbulent viscosity in the convection zone, it can be safely as-
sumed that the convection zone rotation profile acts like a rigid outer boundary on the
tachocline. Therefore, the rotation profile of the angular velocity at the outer boundary is
chosen to match the observed rotation profile in the bulk of the convection zone, given by
Eq. (2.6) as a rigid boundary condition. Only the axisymmetric modes of the originally
three-dimensional spectral code are evolved. The runs typically employ 60 radial Cheby-
shev (k) modes and 60 latitudinal Legendre (l) modes. It has been verified by additional
computations that the results change very little at different resolutions.

The magnetic field used is given in the Eq. (2.1). The generating function is changed
to

A = S0r
2

(

1 − r

Rout

) (

1 − Rin

r

)

sin2 θ. (2.10)

This involves the second bracket in order to avoid the magnetic field lines crossing the
inner boundary. This will introduce small toroidal currrents near the inner boundary.
We eliminate the curl of the poloidal magnetic field, which is dominant only at the inner
boundary, by equating it to zero at every time step. A comparison with computations
including the full Lorentz force did not show significantly different results.

At the outer boundary, the rotational velocity was maintained rigidly, where as other
components adhered to the stress free boundary conditions. At the inner boundary stress-
free boundary conditions were used. Vacuum boundary conditions were used for the mag-
netic field. In short,

AtRin ur = 0
∂

∂r

(uθ

r

)

= 0
∂

∂r

(uφ

r

)

= 0 (2.11)

∇× B = 0 (2.12)

AtRout ur = 0
∂

∂r

(uθ

r

)

= RoutΩout uφ = 0 (2.13)

∇× B = 0 (2.14)

The meridional flow from above (convection zone) is not included in the simulation.
However, it will not change the results as it is expected to have very low penetration depth
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Figure 2.4: Results for the simulations excluding (left) and including (right) the meridional
circulation with the magnetic field being confined to the core. The solid lines are the iso-rotation
curves, whereas the dashed and the dotted lines represent the contours of the positive and the
negative toroidal field strength respectively. The dot-dashed lines indicate the boundaries of the
simulation domain. The time-invariant poloidal magnetic field is not shown. S0 = 1100, Pm = 1
and Rm = 104.

(Rüdiger et al. 2005) and the model considers only the lower layers of the tachocline which
are not turbulent.

2.4 Results

2.4.1 The effect of the meridional flow

Earlier investigations have shown that even a weak poloidal seed field is able to produce a
solar-like tachocline. It was found that the region near the rotation axis (i.e. poles) is least
affected by the field and the tachocline is thickest in that part. Further, when the poloidal
field amplitude is very small, the magnetic field is unable to alter the rotation, and the
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Figure 2.5: Results for the simulations excluding (left) and including (right) the meridional
circulation when the magnetic field lines are crossing the outer boundary. The legend is same as
Figure 2.4

. Note the thin Ekman layer (tachocline) produced along the outer boundary in the right
panel.

resulting rotation profile looks very similar to the non-magnetic case. At the other extreme,
if the magnetic field strength is very high, the contour lines of constant Ω follow the poloidal
magnetic field lines throughout the interior, in accordance with Ferraro’s theorem. A solar-
like tachocline is thus impossible in either case. To study the effect of a meridional flow,
the same parameter configuration was evolved twice starting from same initial conditions,
once excluding meridional flows and then including them. The initial flow pattern was
chosen to be a Taylor-Proudman flow, which is known to be hydrodynamically stable.

In these simulations, Rm = 104 and Pm = 1 are used. In all the simulations, it was
found that the system converges to an equilibrium solution in less than 0.1τdiff . Unless
mentioned otherwise, the figures and numerical values throughout this Chapter refer to
the final equilibrium solutions. While the simulations without meridional flow concur
with most of the key features noted by the previous authors, the simulations including
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the meridional flow reveal quite new features. The results are best represented by the
comparison of the two graphs in the Figure 2.4. The left panel is just a reproduction of the
earlier MacGregor & Charbonneau (1999) result, where the magnetic fields are confined
to the simulation domain (see rightmost panel on the bottom in the Figure 2.2) and the
right panel shows the same model including the meridional circulation. The solid lines
are the iso-rotation curves whereas the dashed and the dotted lines represent the contours
of the positive and negative toroidal field strengths, respectively. While in the left graph
the region along the rotation axis is not affected at all, we see that the inclusion of the
meridional circulation changes the picture completely.

In the right side panel, the entire core, including the region near the rotation axis, has
achieved nearly uniform rotation. The tachocline is formed near the outer boundary. In
contrast with the results ignoring the meridional flow, the tachocline is now thinnest near
the pole. In the region near the equator, where the magnetic field influence is smaller,
the iso-rotation curves tend to be similar to the characteristic Taylor-Proudman flow. The
toroidal magnetic field strength is only 30% of the poloidal magnetic field strength.

MacGregor & Charbonneau (1999), in their paper studied another case, where the
poloidal magnetic field is no longer confined to the computational domain and the magnetic
field lines are crossing the outer boundary of the simulation domain. It was reported that
tachocline cannot form in such a configuration. Recently, Brun & Zahn (2006) argued
that any magnetic seed field, confined to the radiative core, will be eventually coupled
to the outer convection zone and this configuration is more realistic than the previous
one. To test this model of magnetic field, the computational setup was restructured. The
magnetic field dipole was chosen much bigger than the computational domain, such that
the eye of the field remains inside the domain. Vacuum boundary conditions on the outer
boundary allow magnetic field to penetrate easily. In reality, the magnetic field penetrating
to the convection zone is distorted by the flows but as the convection zone is outside the
computational domain, this effect is ignored in favour of computationally simple ideal
dipole field. The results obtained were a stark contrast to the MacGregor & Charbonneau
(1999) results. Due to (near) rigid outer convection zone, the Ekman layer is again formed
along outer boundary with the characteristics similar to the one formed in the previous
configuration (see Figure 2.5). This layer can be identified as the tachocline. Brun &
Zahn (2006) also obtained this layer in their simulations with similar configuration. It
was argued there that this layer is a transient feature and is destroyed eventually but its
presence in the sun at the current solar age cannot be ruled out. One distinct feature
of this configuration is the cylindrical pattern formed by iso-rotation contours near the
axis of rotation, conforming to the Ferraro’s law. As the particular configuration can only
produce transient tachocline, the former configuration with simpler setup is used in the
future discussion.

For the former configuration, the initial and final states in terms of fractional Ω are
shown as functions over radius for various latitudes in the upper panels of Figure 2.6. The
upper-left panel in the figure is a characteristic plot for the Taylor-Proudman flow.

Some test simulations were performed with a decaying poloidal magnetic field. During
these simulations, it was observed that the magnetic field does form a tachocline during
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Figure 2.6: Fractional Ω vs. fractional radius plot. The four panels represent the initial config-
uration (top-left), the equilibrium solution when Bpol is constant (top-right) and snapshots at
0.05τdiff (bottom-left) and 0.5τdiff (bottom-right) with decaying Bpol. Different lines represent Ω
at different co-latitudes.

the period up to ∼ 0.05τdiff , but as the magnetic field decays gradually due to the high
value of η assumed in the simulations, the flows readjust themselves, and the resulting
pattern will be the same as the purely hydrodynamic case, i.e. it will approach the Taylor-
Proudman flow. The lower-left panel of Figure 2.6 shows the fractional Ω in an intermediate
stage at t = 0.05τdiff for a decaying poloidal magnetic field, keeping the other parameters
the same as for the run in Figure 2.6. The effect of forming a tachocline structure by a
time-dependent poloidal field is thus very similar to the non-decaying field, but diffusivity
reduces the field too early, and the final tachocline state is not achieved. Figure 2.7 shows
the evolution of the poloidal magnetic field at three different times. Note how an initially
dipolar field changes to predominantly vertical.

In the solar case, if the magnetic diffusivities take microscopic values, the diffusion time
scale (50 Gyr) is much larger than the solar age (5 Gyr). Thus, in the Sun, tachocline
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Figure 2.7: Snapshots of Bpol in case of a decaying poloidal field at (from left to right) t = 0,
0.05τdiff , and 0.5τdiff . For each snapshot, the length of the arrows is proportional to the amplitude
of Bpol at each point. The length of the arrows is renormalized in each plot by the corresponding
maximum field amplitude. Only every fifth arrow in θ and r is plotted in order to avoid congestion.

can be explained even with the decaying poloidal field. The time scale required for the
formation of the tachocline varies directly with viscosity of the flow as the readjustments
of the flow patterns can happen faster. Thus, in the real stars with low viscosity and low
magnetic diffusivity, the tachocline will be formed early and will diffuse very slowly.

It can be concluded here that the magnetic field is not only important for the formation
of the tachocline but also for maintaining it, at least in the case of the high magnetic
diffusivity used in these simulations.

2.4.2 Varying the magnetic Prandtl number

Following Kippenhahn & Weigert (1994) and Stix & Skaley (1990), the solar value for
the magnetic Prandtl number in the radiative zone is approximately 0.005. Although this
value was not achieved, the simulations were performed for various values of Pm in the
range of 0.05–1 whereas Rm = 104 in all the cases.

In these simulations, it was observed that two cells of meridional flow were formed
(see left panel of Figure 2.12). The low-latitude cell was smaller with clockwise (equator-
wards) circulation and small radial extent. The other cell was spread throughout the
radiative interior with anticlockwise (pole-wards) flow pattern. The maximum amplitudes
of the meridional flow is found to be in the horizontal direction near the outer edge. The
amplitudes of these flows are plotted in Figure 2.9(left). The horizontal component of
the meridional flow (uθ) generated is about 2% of uφ at higher latitudes and is about 1%
for lower latitudes. Similarly, the vertical component of the meridional flow (ur) is about
0.5%. These ratios are nearly independent of the value of Pm. The radial component
of the velocity remains much smaller than the latitudinal component especially for lower
values of Pm, as can be seen in Figure 2.8. The figure also shows that strong latitudinal
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Figure 2.8: Results for the simulations with Pm = 1 (left) and 0.05 (right) showing a small section
of the simulation domain with the components of the meridional circulation plotted. The arrow
lengths are assigned in the same way as Figure 2.7. Only alternate points in the radial direction
are plotted. Note that the area shown is not a complete quadrant but only a magnified region at
outer boundary.

flows are expelled closer to the outer boundary for lower values of Pm. This is in line with
the expectation as the lower viscosity (i.e. lower Pm) makes the coupling between different
horizontal layers less effective thus enhancing the horizontal flow at the expense of the
vertical flow. The tachocline, thus formed, is thinner2 at the pole than at the equator.
The thickness of the tachocline at the equator reduces marginally from 0.030R to 0.026R
when Pm is changed from 1 to 0.05, whereas the thickness of the tachocline at the pole
decreases considerably. It was also observed that the amplitude of the toroidal magnetic
field remains smaller than that of the poloidal field and is almost independent of the choice
of Pm.

2.4.3 Varying the magnetic Reynolds number

In this subsection, a constant Pm = 1 is used and Rm is varied. As the solar value of Rm
is about 1012, simulations are run for Rm larger than Rm = 104. The highest value of Rm
in our simulations was 105.

In this set of simulations it was again noticed that the relative amplitudes of the merid-
ional flow are nearly independent of the value of Rm as shown in Figure 2.9 (right). The
thickness of the tachocline at the equator reduces from 0.030R to 0.015R when Rm is
changed from 104 to 105, whereas the thickness of the tachocline at the pole goes down
from 0.012R to 0.003R. This may appear as drastic change in the tachocline thickness,
but eventually tachocline would settle to certain minimum thickness as a Ekman boundary

2The thickness is defined as the distance between the outer boundary and the radius at which the
rotation rate deviates by 1% from the rotation rate deep inside the core.
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Figure 2.9: The amplitudes of the components of the meridional flow at different co-latitudes (θ),
normalized to the rotational velocity at the equator, with varying Pm (left) and Rm (right). The
two different data-sets for the horizontal velocity represent velocities in the two different cells
produced.

layer. The values of tachocline thickness for Rm less than 104 are of little use for scaling as
the system is too viscous. The Rm more than 105 could not be achieved in the simulations.
Thus, the numerical value of this minimum thickness is difficult to estimate at this stage
using the estimates for only one order of magnitude change. Correspondingly, the toroidal
field (Bφ) in the tachocline region increases from 0.3B0 to 1.3B0.

As the relative meridional circulation amplitudes are independent of Rm, one can expect
similar relative amplitudes of the meridional flow in case of the Sun. This would lead to
flows up to 30 m/s. As the current heliosesimological techniques cannot measure the
meridional flows in the tachocline, existence of such a flow cannot be confirmed or denied.
As the Lundquist number increases much slowly than the Rm, both of which depend on
the magnetic diffusivity, the physical value of the magnetic field would go down for the
high Rm.

2.4.4 Effect on the Lundquist number

It will be worthwhile to place some emphasis on the choice of the poloidal field strength.
In the simulations, it was seen that the choice of the amplitude of the seed field value
is very critical. A small deviation in that amplitude of magnetic field which produces a
solar-like tachocline either makes the iso-rotation curves similar to the non-magnetic case
or the curves will comply with Ferraro’s theorem, unable to produce a tachocline in both
cases. This behavior was also seen in the work of Garaud (2001). At lower values of Pm,
we require smaller seed fields as shown in Figure 2.10. The dotted line in the figure shows
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Figure 2.10: Variation of S0 with varying Pm as a log-log plot, for an approximate tachocline
thickness of 0.025R. The dotted line represents a fixed Ha = 1500.

line for the fixed Hartmann number of 1500. This reference line clearly shows that smaller
Hartmann number should be higher for lower values of Pm. The trend observed in this
log-log plot is roughly linear and thus, one can express the relation as a power law. When
calculated, S0 varies roughly as 4

√
Pm.

Next, when Pm is kept constant at 1 and Rm is varied, one finds that at higher values
of Rm, the required values of S0 are higher (Figure 2.11). The points in this log-log plot
show for very high Rm, the power law like extrapolation can be treated as limiting case
on the higher side. The actual Lundquist number at the the solar value of Rm would be
smaller than or equal to the value obtained by the power-law extrapolation. Adopting
similar procedure to the Pm case, one finds that S0 varies roughly as

√
Rm.

Combining the two, an empirical law governing the variation of S0 as a combined
function of Pm and Rm can be deduced from these plots as

S0 ≃ 10 Rm0.5Pm0.25. (2.15)

This scaling is the main result of the computations. It means that

B0√
µ0ρ

≃ 10 4

√

Ω2νη, (2.16)

which, of course, has the correct dimension of a velocity. The old estimate of Rüdiger &
Kitchatinov (1997), without meridional flow, led to the quite different expression B0/

√
µ0ρ ≃



2.4 Results 37

Figure 2.11: Variation of S0 with varying Rm as a log-log plot, for an approximate tachocline
thickness of 0.028R.

103√νη/R which is a very small value due to the appearance of the radius R. Eq. (2.16)
yields

B0√
µ0ρ

≃ 0.25 cm/s, (2.17)

so that a maximum field amplitude of 0.5 Gauss results, for an average density of 0.25 g/cm3.
As the field amplitude is proportional to the square-root of the density, the results will
not alter much for a slightly different choice of the average density. This is a much larger
value than the milli-Gauss values for models without meridional flow, but it is not an
unrealistic number. The scaling relation is now independent of the radius but depends on
the square-root of the angular velocity. The dependence on the diffusivities is also weaker.
Thus, it can be expected that wide ranges of parameter sets would eventually give similar
field amplitudes. The different dependence of the scaling is a result of the readjustment
of the meridional flow in the so-called Ekman layer near the outer boundary. Meridional
circulations tend to readjust themselves along the magnetic field lines. As the meridional
flow amplitudes always maintain a fix ratio with the amplitude of the angular velocity,
a faster Ω would result in a faster meridional circulation. This would require a stronger
magnetic field to re-align itself and this is reflected in dependence of the field amplitude
on the angular velocity. In contrast to the old model, the toroidal field belts now have the
same order of magnitude as the poloidal fields.
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Figure 2.12: Results for the simulations excluding (left) and including (right) buoyancy. The
solid and the dotted lines are clockwise and anti-clockwise meridional circulation, respectively.
R̃a = −2 × 107, Rm = 104.

2.4.5 Effect of a temperature gradient

In the simulations discussed in the previous subsections, it was noted that the amplitude
of the meridional circulation was nearly independent of the variation of Rm as well as Pm.
In the lower latitudinal belt, which is more important for the solar activity, the amplitude
of the horizontal velocity uθ was always around 1% of uφ, and the flow reached very deep
layers of the shell. The lithium abundance, however, as discussed earlier, suggests that the
meridional circulation should either be very shallow or very slow or both.

Therefore, the model is improved by including a given temperature gradient. The
buoyancy force in the Eq. (1.33) now plays a stabilizing role . R̃a is called magnetic Rayleigh
number or modified Rayleigh number as ν in the standard definition of the Rayleigh number
is replaced by η.

When the model is evolved from the initial state including the temperature equation, it
takes much longer (in terms of magnetic diffusion times) to achieve a steady state solution
than the simpler cases in the previous sections. This long settling time may again be due
to the high diffusivities in the simulations and may not be true in the solar case. To save
computational resources, the steady state solutions obtained in the previous sections are
used as the initial condition for the simulations involving temperatures. It was verified
that the solutions obtained in this manner are identical to the solutions obtained from the
same buoyancy runs but starting with the hydrodynamic initial conditions employed in the
previous subsections.

Rm = 104 and Pm = 1 were used for these sets of simulations. As the simulation domain
is of radiative nature, we use negative values of R̃a, implying subadiabaticity. Simulations
are performed with various values of R̃a. The results are presented in Figure 2.12. For
the regime when −R̃a/Rm2 ≤ 0.01, the buoyancy is unable to produce any major change
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Figure 2.13: The contours of Ω and Bφ for one quadrant of the simulation domain, now including
the effect of buoyancy. The solid lines are the iso-rotation curves, whereas the dashed and
the dotted lines represent the contours of the positive and the negative toroidal field strength
respectively. The time-invariant poloidal magnetic field is not shown. S0 = 1100, Pm = 1,
R̃a = −2 × 107 and Rm = 104.

in any of the velocity components in magnitude or in structure. For more negative R̃a, a
gradual change in the structure of the meridional circulation is seen3. The circulation is
then much shallower for higher latitudes (low θ), as desired to explain weak mixing into
the interior. This effect is caused by the temperature gradient itself which acts against
the vertical flow. It will be worthwhile to note that the equatorial cell shows clockwise
circulation in both the figures, which is similar to the motion of the sunspots. However, one
cannot pass judgement if this points to some physical connection or is just an coincidence.
The magnitude of the flow also decreases but the change is not drastic; see Figure 2.14. For
the lower latitudinal belt (high θ), the decrease is relatively stronger and the depth of the
circulation is also clearly reduced. There is a marginal increase in the amplification of the
toroidal field, probably because the field is not advected through the entire computational
domain any longer. The structure of the toroidal field is thus changed as well, and it is
shifted towards the outer parts of the shell. On the other hand, the rotation rate at higher
latitudes, at large depth in the core, becomes slightly slower than that at the equator. But
even this change is marginal and within the observational limits (|1 − Ωpole/Ωequator| ≤ 3

3Note that −R̃a/Rm2 ≃ g/(Ω2R), where g is the gravitational term, similar to Eq. (1.18), which
absorbs the effects of the temperature gradient.
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Figure 2.14: Plot of the amplitudes of the components of the meridional flow at different co-
latitudes θ, normalized to the rotational velocity at the equator, with varying R̃a. The dashed
lines represent the corresponding values without buoyancy effect. Rm = 104, Pm = 1. The
two different data-sets for the horizontal velocity represent velocities in the two different cells
produced.

% for r ≤ 0.65R). Angular velocity and toroidal field belts are shown in Figure 2.13. We
expect that even more negative R̃a will further reduce the depth and amplitude of the
meridional circulation.

2.5 Discussion

The numerical model presented in this Chapter is the first MHD model for the solar
tachocline which self-consistently calculates the meridional circulation in a time-series evo-
lution. The consideration of the meridional flow changes the shape, the structure and
the characteristics of the tachocline radically. Hence, the meridional circulation cannot be
neglected while modeling the solar tachocline. The thickness of the tachocline in the outer
boundary layer near the equator will be determined by the gradient of the magnetic field
near the boundary. Simulations show that the tachocline is thinner near the pole. How-
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ever, it should be noted again that the physical conditions in the solar tachocline are much
more complex than this simple model. As seen from the observational estimates, most of
the tachocline in the polar regions may lie inside the convection zone and the overshoot
layer which has a much higher viscosity (ν) and magnetic diffusivity (η) than their values
in the radiative zone. But the simulation domain has uniform values of ν and η, hence
it will be only fair to say that only part of the tachocline, which is inside the radiative
zone, is simulated in this model. Hence, a definitive conclusion about the thickness of the
tachocline in the polar region cannot be drawn from these simulations.

The tachocline is thinner at lower values of Pm as well as at higher values of Rm. The
relative meridional circulation amplitude is nearly independent of the variation of Rm and
Pm. The amplification of the toroidal magnetic field is naturally larger at higher values of
Rm, whereas from Eq. (2.16) it is clear that the poloidal magnetic field amplitude required
to produce a solar-like tachocline goes down with decreasing η, i.e. increasing Rm. The
magnetic seed field required to produce a solar-like tachocline is a function of Rm as well
as Pm. The value of the seed field is expected to be around 1 Gauss in the Sun, for
an average density of 1 g/cm3. Again a significant change is noted from the simulations
without meridional flow where even a sub-mGauss field was enough to produce a solar-like
tachocline. The scaling of the magnetic field as a function of the rotation rate, ν, and η is
given in Eq. (2.16). In the simulations performed, the order of magnitude of the toroidal
field was comparable to the poloidal magnetic field was the same but the toroidal field
tended to be more and more amplified for higher Reynolds numbers. Thus, for the solar
value of Reynolds number, the toroidal magnetic field is expected to be a at least 1–2
orders higher (i.e. 100 Gauss or higher) than the poloidal seed field.

When a stable temperature gradient is introduced across the shell, it makes the merid-
ional circulation shallower as well as weaker for stronger stabilization (more negative
Rayleigh number). This can explain why atleast some lithium can still survive till the
present solar age even in a weakly turbulent tachocline. The toroidal magnetic field in this
case is limited to a belt in the outer parts of the radiative zone.

The relations describing the variation of various parameters such as the Lundquist
number required to form a solar-like tachocline, the amplification of the toroidal magnetic
field, the amplitude of the meridional circulation etc. are based on the simulation results for
a limited range of Rm and Pm. Although the verification of correctness of these relations
closer to the solar values of Rm and Pm is desirable, it would be possible only with better
computational resources.

The model has successfully shown that a weak poloidal field of strength of about a Gauss
can achieve an extremely thin tachocline with a given differential rotation profile and may
produce toroidal belts of a few hundred Gauss or higher in the real solar tachocline. As
observationally it is known that most of the tachocline – at-least for the lower latitudes –
is part of the radiative zone, one can independently constrain maximum strength of the
toroidal field belt that can be sustained by the non-turbulent tachocline. This maximum
strength of the poloidal fields sustained by the tachocline are also of interest for the models
of solar dynamo. Thus, the discussion proceeds to the stability analysis of the tachocline.
The next Chapter analyses the linear hydrodynamic stability of the solar tachocline.
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Chapter 3

Hydrodynamic Stability

Spiegel & Zahn (1992) used a hydrodynamical tachocline model for its maintainance with-
out the aid of magnetic fields and attempted to explain why it does not spread. However,
the fact that an extremely thin tachocline exists in the present Sun and light elements,
which are mixed throughout the convection zone, are yet to be found on the solar surface,
implies that the tachocline is probably only weakly turbulent i.e. it would be very close
to a stable configuration. It is, therefore, important to examine the stability limits of the
tachocline.

The problem is adressed in small steps. We first examine the linear hydrodynamic
stability of the tachocline for lower non–axisymmetric modes. Subsequently, we hope to
include more effects such as addition of toroidal magnetic field and also the introduction
of non–linearity.The analysis presented here should serve as an intermediate step to study
stability of a simpler configuration.

Ideally, one would be expected to examine stability of the exact tachocline profile
obtained in the previous Chapter. However, in order to introduce non–axisymmetric per-
turbations a very high resolution is needed in the boundary layer. Consequently, the
previous configuration cannot be treated in our simplified analysis. Further, we realise
that the tachocline obtained there is far from ideal and the real tachocline profile is be-
yond the computational limits. Thus, in this Chapter we choose a simple radial profile
of the tachocline, which qualitatively mimics most of the observed features of the real
tachocline. In a later section of this chapter, it is also shown that stability limits of a
non–linear radial rotation profile [Eq. 3.12] eventually converge to the stability limits of
this simplified profile. It is, of course, conceivable that the stability limit for this profile
may vary from that of the one derived earlier. We wish to address this issue in the near
future.

3.1 Lower Dimensional Models

The stability problem of a differentially rotating sphere was addressed by various authors
from a physical point of view even before the existence of the tachocline in the Sun was
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known. Watson (1981) first studied shear instability of the differential rotation. The model
was restricted to only a spherical surface with no radial extent. The latitudinal rotation
profile chosen was

Ω = Ωeq(1 − α2 cos2 θ). (3.1)

Ω is normalized to the equatorial angular velocity and α2 is non dimensional differential
rotation parameter. The equations were solved analytically for a slowly rotating star (i.e.
Ω2r/g ≪ 1). It was further assumed that the fluid is inviscid (ν = 0) and stably stratified
(i.e. Ω2/N2 ≪ 1). The N is called buoyancy (Brunt-Väisälä) frequency,

N2 = −g

[

1

ρ0

∂ρ0

∂r
− 1

c2
0ρ0

∂p0

∂r

]

. (3.2)

The critical value of differential rotation was obtained as a stability criterion. It was found
that the first non-axisymmetric azimuthal mode gets unstable for a differential rotation
of α2 = 2/7 or roughly 29% (Watson 1981). For the m = 2 mode, the system is found
to be stable between α2 = −8/7 and α2 = 2/5. The negative value of α2 denotes anti-
solar differential rotation (pole is rotating faster than equator). As the latter is higher
than the stability limit of the m = 1 mode, in the solar case, the first non-axisymmetric
azimuthal mode turns out to be the most important here. In short, Watson concluded that
a differentially rotating star is stable if,

5

7
≤ Ωpole

Ωequator

≤ 2.14. (3.3)

Dziembowski & Kosovichev (1987) extend the analysis to a rotation profile containing
an additional α4 term as given by Eq. (1.6). The analytical solutions indicated that the
necessary condition for instability is

5α2 + 9α4 > 1. (3.4)

The equation would effectively mean that the tachocline cannot be unstable for α2 < 0.2
in the absence of α4. If α4 > 0, then the critical combined differential rotation (α2 + α4)
should be above 11% or higher depending on the choice of the two parameters. The
sufficient condition showed that the tachocline is likely to get unstable for a combination
of α2 and α4 at half of the observed value. Charbonneau et al. (1999b) tested the results
of Dziembowski & Kosovichev (1987) for a range of parameters including different depths
from the solar surface. Instead of choosing a fixed value of differential rotation parameters,
they used the helioseismological data available to them to adopt suitable values of α2 and
α4 at various values of fractional solar radii. Their results confirmed that m = 1 is the most
important mode for the instability and also the earlier result that when a combination of α2

and α4 is used, the differential rotation can get unstable for much less than the tachocline
values inferred from the helioseismology.

Garaud (2001) investigated the weakly non-linear behavior of this horizontal instability
and found the over-critical system developing into a marginal state very close to the ob-
served rotational profile. In a step towards the three-dimensional stability of the tachocline,
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Dikpati & Gilman (2001) studied the two-dimensional system allowing for deformations
in the third – the radial – dimension. As a result, the critical differential rotation for
instability was reduced to 11% in the overshoot part of the tachocline.

With all the lower dimensional models indicating the solar tachocline to be unstable,
the premise of coupling of the tachocline with the radiative zone is challenged. Tachocline
is the layer where latitudinal and radial shears meet. Thus, radial gradients should not
be ignored in the stability analysis of the tachocline and the stability of the full three-
dimensional rotation profile needs to be investigated. Although it is very reasonable to
assume that radial flows will be weak, the variation of the latitudinal differential rotation
with radius across weakly coupled spherical layers could provide different results for the
stability of the tachocline.

3.2 The Model

The rotational profile depends on both latitude and radius in this study. Between the inner
and outer radius of the tachocline, Rin = 0.65 and Rout = 0.7, respectively, the angular
velocity is defined by,

Ω(r, θ) = Ωeq

[

1 − α2 cos2 θ − α2

(

1

4
− cos2 θ

)

Rout − r

Rout − Rin

]

, (3.5)

where θ denotes the colatitude in the spherical shell, r the radial coordinate, and Ωeq the
equatorial angular velocity. The profile implies that the rotation velocity at the inner
boundary of the computational domain, r = Rin, is the one at θ = 60◦ (or 30◦ heliographic
latitude). This appears to be a valid assumption in agreement with various helioseismolog-
ical inversions (recently e.g. Schou et al. (2002)), whereas core rotation may be adopted at
larger latitudes higher up in the convection zone. The formation of the tachocline rotation
profile is supposed to be caused both by rotating convection on top of it and by reduction
of differential rotation by magnetic fields in the solar core at the bottom. As shown in the
previous Chapter, such a profile causes a meridional circulation reaching steady-state in
competition with the aforementioned (or other tachocline-forming) effects. In our linear
analysis, this flow has no effect on the stability of the non-axisymmetric modes investigated
in this Chapter.

The incompressible, viscous Navier-Stokes equation is employed and the problem is
linearized. The axisymmetric background rotation U can then be separated from the non-
axisymmetric flow u. The latter is evolved by numerical computations. The linearized
form of the Eq. (1.33) reads

∂u

∂t
= u ×∇× U + U ×∇× u −∇P −∇(u · U ) + △u, (3.6)

and the continuity equation ∇·u = 0 holds. When the problem is linearized, the subcritical
configurations give exponentially decaying solutions and supercritical configurations give
exponentially growing solutions. In order to find the critical differential rotation α2, the
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Figure 3.1: Vertical cross-section through the solar tachocline with contours of the assumed
angular velocity depending on radius and latitude as given by Eq. (3.5). The highest angular
velocity is at the equator (bottom right), and radially constant rotation occurs at a heliographic
latitude of 30◦.

marginal case with zero growth rate is sought. The linear (viscous) part of the full equation
of motion is evolved implicitly, while the nonlinear parts are integrated explicitly with the
advection term and the forces being computed in real space. This splitting in the original
code is maintained as it is even in the linearized problem, since a fully implicit scheme would
have required a substantial modification of the code. The △u is thus treated implicitly,
the other R.H.S. terms (two remaining after curling) are computed in real space and are
used for a second-order Runge-Kutta integration.

The viscous Reynolds number (Re) will be used in this Chapter instead of the magnetic
Reynolds number given by Eq. (1.29) as a free parameter. Similar to Rm, the viscous
Reynolds number is essentially a variation of the viscosity ν since radius and Ωeq are
sufficiently well known

Re =
R2

outΩeq

ν
. (3.7)

The solar Reynolds number in the tachocline is – in terms of the definition of Eq. (3.7) –
about 1014. In practice, the time series evolution for modest Re > 104 was found to be
numerically demanding. By comparison with known results from inviscid two-dimensional
analyses, it was found that the critical viscous differential rotation at Re > 103 or 104 is
already sufficiently close to the inviscid value.

Only the non-axisymmetric velocity is decomposed into toroidal and poloidal poten-
tials, as in Eq. (1.23). Since it is potentials being evolved, the continuity equation is
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Figure 3.2: Streamlines of the symmetric Eigen-function of the computation with a three-
dimensional profile Ω(r, θ) on the surface of the tachocline at r = 0.7. Two circulation cells
are found on each hemisphere.

fulfilled automatically. The density is constant throughout the computational domain. As
the simulation domain is a thin shell of about 5% of the solar radius, constant density
throughout the domain is a reasonably good approximation of the true situation. Any
static or dynamic deformations of the tachocline are ignored. Thus, prolateness of the
tachocline and its uneven thickness is assumed to have negligible effect on the results.

The radial boundary conditions for the velocity perturbations are stress-free at both
Rin and Rout. At Reynolds numbers of Re > 104, high spectral resolution was necessary
to obtain reliable results. Up to 80 Chebyshev and 80 Legendre polynomials were used to
resolve the flow properly.

The azimuthal modes of the problem described by Eq. (3.6) are decoupled, and the
stability of individual m-modes can be studied separately. Moreover, even and odd latitu-
dinal modes (symmetric and antisymmetric modes with respect to the equator) decouple,
and the critical differential rotation for the excitation of instability of the two kinds needs
to be examined separately. The radial modes all couple and do not provide results on the
stability of individual radial wavelengths.

3.3 Results

3.3.1 Stability of various solutions

In a set of fiducial computations, a purely latitudinal profile of the angular velocity was
applied to the simulation domain. An m = 1 mode is evolved with the profile of Eq. (1.6),
where α4 = 0 and α2 is varied. Since it is a viscous problem, the critical differential rotation,
αcrit

2 , depends on the Reynolds number. The result is already very close to Watson’s inviscid
result for Re ≥ 1000. This is a good reason to assume that the numerical solutions reaching
Re ∼ 30 000 are suitable approximations for the solar plasma.



48 3. Hydrodynamic Stability

Figure 3.3: Lines of marginal stability for the combined latitudinal and radial shear (solid line)
and the purely latitudinal shear (dashed line). Differential rotation denotes the percentage by
which the pole’s angular velocity is slower compared with the equatorial one. It is expressed by
α2 from Eq. (1.6) and Eq. (3.5) here.

Despite allowing for radial motions, the evolution provides solutions which are nearly
toroidal and do not show significant radial flows. They are surface flows forming two cells
on each hemisphere with stream lines through the poles. Figure 3.2 shows a representation
of the flow in the spherical surface. The graph has to assume that the poloidal component
of the velocity is zero, though, which is not entirely true.

The second step involved the rotation profile of Eq. (3.5), for which the critical steepness
of the differential rotation, αcrit

2 , is again sought for various Reynolds numbers. Figure 3.3
shows the lines of marginal stability, i.e. the critical differential rotation, versus Reynolds
number for the symmetric m = 1 mode. The solid line refers to profile Eq. (3.5), and
the dashed line is the latitudinal profile and converges to the result by Watson (1981) for
Re → ∞.

The most easily excited patterns of m = 1 are always symmetric with respect to
the equator. The lines of marginal stability of antisymmetric patterns are presented in
left panel of Figure 3.4. They are stabler than the symmetric configurations with an
Ω(r, θ) profile. The antisymmetric solutions from the Ω(θ) profile have also higher critical
differential rotation values than their symmetric counterparts.

Modes with higher azimuthal wave numbers require significantly higher differential
rotation for instability. The antisymmetric m = 2 mode, which is symmetric with respect
to the equator, was found to be stable even in the entire parameter range covered by
Figure 3.3. This is in agreement with the inviscid, two-dimensional stability analysis by
Charbonneau et al. (1999a). The stability lines for the antisymmetric m = 2 mode are
shown in the right panel of the Figure 3.4. No instability for any m = 3 mode in the range
covered by Figure 3.3 was detected.
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Figure 3.4: Lines of marginal stability for the antisymmetric m = 1 solutions (left) and antisym-
metric m = 2 solutions (right) caused by the combined latitudinal and radial shear (solid line)
and the purely latitudinal shear (dashed line).

The flow patterns drift with a certain velocity in azimuthal direction around the solar
axis. Since the equations hold for the non-rotating system, the pattern rotation can be
directly converted into physical times. The pattern rotation periods for the 2D and the
3D profiles of Ω are shown in Figure 3.5 by a dashed and a solid line, respectively. The
actual solar rotation periods are also plotted. The reference equatorial period of 25.44 d
(Ωeq = 455 nHz) is given as dash-dot line. The pattern rotation periods are determined
at marginal stability. Since the marginal case gives us a value for the differential rotation,
we also plot the polar rotation period Ppole versus Re. The short-dash line is for the two-
dimensional Ω(θ) profile, and the dotted line for the three-dimensional case described by
Eq. (3.5).

The pattern rotation periods are always between the equatorial and polar rotation
periods, in agreement with the 2D results by Charbonneau et al. (1999a). While the
patterns from the 2D-Ω profile are close to the polar rotation period, the patterns for the
3D profile rotate with nearly the average rotation period between the polar and equatorial
ones.

We can compute the time after which the pattern is passed by a given point on the
equator. This time is often called lap time. Assuming an equatorial rotation period of
25.44 d (Ωeq = 455 nHz), we find a lap time of 91 d for the 2D case and a lap time of 78 d
for the 3D case.

3.3.2 Effects of buoyancy

Little influence is expected from the stable temperature gradient in the tachocline. To
prove the point, the effect of a negative buoyancy force on the stability of the differential
rotation is demonstrated in this subsection. The Navier-Stokes Eq. (3.6) is extended by
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Figure 3.5: Rotation period of the flow pattern for the two-dimensional (long-dashed) and the
three-dimensional (solid) rotation profile. The numbers are computed assuming an equatorial
rotation period of 25.44 d (Ωeq = 455 nHz) plotted with a dash-dot line. Periods are computed
at marginal stability; the polar rotation period for this critical differential rotation is plotted as
short-dashed and dotted lines for the 2D and 3D cases, respectively.

the buoyancy force and reads as

∂u

∂t
= u ×∇× U + U ×∇× u + RaΘr −∇P −∇(u · U ) + △u, (3.8)

∂Θ

∂t
= −U · ∇Θ − u · ∇T0 +

1

Pr
△Θ, (3.9)

with a background temperature profile same as Eq. (1.27). The Rayleigh number in
Eq. (3.8) is also non-magnetic as compared to Eq. (1.31) and takes the form

Ra =
gα(Tin − Tout)R

3
out

ν2
, (3.10)

where Tin and Tout are the temperatures at the two boundaries. Like in the previous Chap-
ter, in the Boussinesq formulation used here, the presence of a sub-adiabatic temperature
gradient actually translates into a negative value of Ra. The Rayleigh number is set to a
value as small (“as negative”) as Ra = −108 in order to see any notable effect on the flow.
The Prandtl number is set to unity.

The critical differential rotation for a growing symmetric m = 1 mode at Re = 104

increases slightly to 53.3%, as compared with the non-buoyant value of 52%. This is in
line with the fact that the solutions contain nearly horizontal motions.

3.3.3 Effects of higher-degree terms

The differential rotation has been expressed by a cos2 θ dependence in latitude and a
linear r dependence over radius. We are studying the stability of the three-dimensional
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tachocline setup with higher-degree dependences in this section, such as the cos4 θ term
and a nonlinear radial dependence of Ω.

Including the cos4 θ term in Eq. (3.5) yields an angular velocity profile of the form

Ω(r, θ) = Ωeq

{

1 − α2 cos2 θ − α4 cos4 θ (3.11)

−
(

Rout − r

Rout − Rin

) [

α2

(

1

4
− cos2 θ

)

+ α4

(

1

16
− cos4 θ

)]}

The computations for the full profile could not be easily extended beyond Re = 5000, but
the results for the possible Re and for the easier two-dimensional Ω(θ) show no decreased
critical differential rotation when the cos4 θ term is included. This also holds for the
extreme case of α4 carrying the shear alone (α2 = 0). In some cases, the total critical
differential rotation (α2 + α4) in-fact increased after inclusion of the α4 term, the effect
being more prominent for higher α4 − α2.

Starting from Eq. (3.5), a modified Ω-profile was constructed in order to find any
influence of the particular radial dependence of the latitudinal shear on the results. We
used

Ω(r, θ) = Ωeq

{

1 − α2 cos2 θ − α2

(

1

4
− cos2 θ

)

1

2

[

1 − cos

(

Rout − r

Rout − Rin

π

)]}

. (3.12)

The radial profile introduces an inflection point. It does not apply the usual error function
for the radial Ω-step in order to obtain an exact ∂Ω/∂r = 0 at both inner and outer
boundaries. A graphic representation is shown in Figure 3.6.

The critical differential rotation for instability is shown versus Reynolds number in
Figure 3.7. Unlike the earlier simulations, a Reynolds number of 105 could be achieved,
probably because of the vanishing ∂Ω/∂r at the boundaries. Instability does not occur at
reduced differential rotation, and the line of marginal stability actually converges to the
simpler profile Eq. (3.5) for high Re. The additional effect of buoyancy on the stability of
the profile Eq. (3.12) with an inflection point is also shown as a dashed line.

3.4 Discussion

A fully three-dimensional, linear analysis of the stability of the solar tachocline was carried
out in this Chapter. If radial variation of the angular velocity is included in the model,
the maximum pole-equator difference of the angular velocity can be as large as 52% for a
symmetric m = 1 mode before instability sets in. Two-dimensional analyses have delivered
much lower critical values. The difference between 3D and 2D is not radial flows emerg-
ing from the extension in the third dimension, but it is the changed stability conditions
emerging from the radial shear and radial dependence of the differential rotation.

Other modes, such as higher m or different flow symmetries, do not get unstable at
lower critical differential rotation values under the influence of a three-dimensional rotation
profile.
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Figure 3.6: Contours of the assumed angular velocity with a radial dependence as in Eq. (3.12).
The highest angular velocity is again at the equator (bottom right), and radially constant rotation
occurs at a heliographic latitude of 30◦.

Figure 3.7: Lines of marginal stability for an angular velocity profile given by Eq. (3.12) having
an inflection point over radius. The solid line refers to the non-buoyant case, Ra = 0; the dashed
line has Ra = −108.

The stabilizing effect of the temperature gradient has been added, but since all the un-
stable modes are almost horizontal, the influence is small. The assumption that horizontal
motions dominate is valid even without a stabilizing temperature gradient. However the
assumption that spherical shells of infinitesimal thickness do not interact with each other is
not applicable, according to these results. One may argue that the viscosity in these com-
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puter simulations is much too high, but the variation of the results is small at Re > 1000.
This is an indication that computations with Re = 104 or higher are a good approximation
of the near-inviscid solar case. It can be concluded that all parts of the tachocline not
affected by convective overshooting are stable in the hydrodynamic case.

However, these stability conditions can be expected to change, owing to the Lorentz
stresses when toroidal magnetic field belts are included. This case is more relevant for the
Sun as most solar dynamo models include such high toroidal magnetic field in the region.
An MHD stability analysis will be presented in the next Chapter.
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Chapter 4

MHD stability of the tachocline

As shown in the previous Chapter, the tachocline is hydrodynamically stable. In reality,
however, it is believed that the tachocline is the seat of high amplitude toroidal field belts.
This Chapter examines the effect of such fields on the tachocline.

Tayler (1973) was the first one to examine stability of the purely toroidal fields. He
showed that any purely toroidal field should be unstable to instabilities on the magnetic
axis of the star. These are pinch-type instabilities, under the influence of the strongly
stabilizing stratification in a radiative stellar interior. They are called Tayler Instabilities.
The toroidal magnetic field in the tachocline is also subject to other instabilities like mag-
netic buoyancy (Parker 1955; Gilman 1970; Acheson 1978) or magnetic shear instabilities
(Velikhov 1959; Acheson 1978; Balbus & Hawley 1992). All these instabilities, except the
Tayler instability, have a stabilizing effect in the stratified interior. On the other hand, the
Tayler instabilities occur on the magnetic axis, where the magnetic field is perpendicular
to gravity and displacements caused by the instability are also perpendicular to gravity.
Thus, as shown by Spruit (1999), the Tayler instability will be the first to appear as the
strength of the toroidal field is increased.

The shape of the unstable displacements is shown in Figure 4.1, for modes with m =
0, 1, 2. The m = 1 mode is called kink instability and sets in once the magnetic field com-
ponent along the flux falls below some critical value in relation to the toroidal component.
It is predicted, in a cylindrical system, for instability to occur, the following conditions
need to be satisfied (Tayler 1973).

∂ ln B

∂ ln r
>

m2

2
− 1 (m 6= 0) and

∂ ln B

∂ ln r
> 1 (m = 0). (4.1)

The growth rates of these instabilities are expected to be of the order of a few years or
smaller, given by

γ =
B2

µ0ρr2Ω
=

ω2
A

Ω
, (4.2)

where γ is the growth rate of the instability and ωA is the Alfvén frequency (Pitts & Tayler
1986; Spruit 1999). The equation holds true when the Alfvén frequency is much smaller



56 4. MHD stability of the tachocline

Figure 4.1: A cartoon showing the physical form of the Tayler instability, for modes m = 0, 1, 2.
Above co-moving surfaces are drawn with the magnetic field represented by lines with arrows.
Gravity acts along the magnetic axis (Z). Cross-sections of these surfaces are plotted below with
dotted circles representing the equilibrium state. Source: Braithwaite (2006).

than the rotational rate (Ω), which in turn should be much smaller than the buoyancy
frequency.

In case of the solar tachocline, this instability is expected to be present and many
authors have attempted to address this problem in the past.

4.1 Lower Dimensional Models

The earliest stability analysis of toroidal magnetic fields in the solar case was done by
Caligari et al. (1995) and was followed up by Ferriz-Mas & Schüssler (1996). They used
a one-dimensional flux tube approximation and concluded that the stability limit is in
excess of 104G in the tachocline as well as the lower convection zone. Gilman & Fox (1997)
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studied the effect of toroidal magnetic field on latitudinal differential rotation in the solar
tachocline. The model used was similar to Watson (1981), i.e. only a spherical surface
was considered but the magnetic fields were included on this differentially rotating surface.
They found that the toroidal magnetic field belts can make the tachocline unstable for
virtually all values of magnetic field amplitude and differential rotation. They found the
peak instabilities have e-folding times corresponding to just a few months. Two clearly
distinct regimes of instability were identified in this study. It was found that at low B the
instability is driven by the differential rotation (hydrodynamic instability) and at high B
it is driven by the toroidal field (magnetic instability).

The model of Gilman & Fox (1997) was followed by a series of papers. Dikpati &
Gilman (1999) studied the dependence of the instability on the width of the toroidal field
band with the peak of the profile always located at a latitude of 45. Symmetric latitudinal
modes were found to be more unstable than antisymmetric ones with stronger fields being
more unstable. The system is most unstable for an intermediate width of toroidal field belts
(10 − 20). Both narrow and widely spread belts are more stable than this configuration
with very narrow bands (3 or smaller) showing no instability at all. For weaker magnetic
fields, the m = 2 mode was found to be more unstable than the m = 1 which dominates at
stronger magnetic fields. In a subsequent paper, Gilman & Dikpati (2000) examined the
stability of fixed-width toroidal fields placed at different latitudes. It was found that belts
placed at high latitudes become unstable for fields of even a few hundred Gauss but lower
latitude belts remain stable unless fields exceed 104G. The numerical scheme adopted in
this work prevented the authors from searching for critical value of magnetic fields but
it was reported that instabilities can have e-folding times1 of the order of a few months.
The widths of the latitudinal belts were chosen as 10, 6 and 4 in these simulations. When
the belt was placed at mid-latitudes, comparatively higher azimuthal modes (m = 4 − 7)
turned out to be the most unstable ones, whereas the lower azimuthal modes (m = 1− 2)
were the most unstable at the lower as well as higher latitudes. For very strong magnetic
field no instability was observed (growth rates going to zero).

Cally (2003) used a 3-dimensional inviscid spectral code, but his model ignored radial
shear as well as radial magnetic field gradients. He found two regimes of instability cor-
responding to VA > Vrot and VA < Vrot, with VA and Vrot corresponding to Alfvén and
rotational velocity respectively2. In the former case, the m = 1 polar kink instability is
the dominant one with e-folding times of a few months and in the latter case instability is
primarily restricted to very short radial length scales. The 2-dimensional surface model of
Gilman & Fox (1997) was extended to include magnetic diffusivity and kinematic viscosity
by Dikpati et al. (2004). Instability was found to exist for a wide range of ν and η for a
toroidal field of 105G. Zhang et al. (2003) considered the case of non-axisymmetric insta-
bilities for a specific magnetic field profile. Braithwaite (2006) examined the 3D stability of
a rigidly rotating star using a box grid MHD code. Very recently, Brun & Zahn (2006), in
their examination of the magnetic confinement of the solar tachocline, found the tachocline

1e-folding time is the time taken by the instability to grow by a factor of e in amplitude.
2The same criteria can be rewritten as “S > Rm and S < Rm” or roughly “B > RΩ and B < RΩ”.
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becoming unstable with a dominant m = 1 mode close to the pole and higher m modes at
slightly lower latitudes, for a toroidal field of roughly a few hundred Gauss.

4.2 The Model

Since the study aims at the stability of a given background state against small non-
axisymmetric perturbations, the problem is formulated by linearized equations, similar
to the previous Chapter. As mentioned in the last Chapter, the buoyancy force does
not drastically change the stability criterion; hence the buoyancy term is neglected here.
As before, after linearization, we can separate the axisymmetric background rotation
U = (0, 0, r sin θΩ) from the non-axisymmetric flow u, with Ω being a normalized an-
gular velocity. An imposed axisymmetric toroidal magnetic field B = (0, 0, Bφ) is also
separated from the perturbations b. The background poloidal field is ignored in this analy-
sis as in the Sun, it is expected to be atleast 2-3 orders smaller than the toroidal field3. The
lower-case quantities are evolved by numerical computations. The upper-case quantities
may depend on r and θ, but not on φ. The Navier-Stokes equation is similar to Eq. (3.6)
and the induction equation given by Eq. (1.34) is normalized as well.

∂u

∂t
= [u × (∇× U) + U × (∇× u) −∇(u · U)] + [(∇× b) × B + (∇× B) × b]

−∇P + Pm△u, (4.3)

∂b

∂t
= ∇× ( U × b + u × B) −△b. (4.4)

All symbols have their standard meaning. As in the previous Chapter, exponentially decay-
ing or growing solutions should be sought in order to find the critical magnetic background
field strength Bφ of the marginal case. The viscous part of the equation of motion is evolved
implicitly, while the other parts are integrated explicitly with the advection term and forces
being computed in real space. This splitting is maintained as it is even in the linearized
problem, since a fully implicit scheme would have required a substantial modification of
the code. The △u is thus treated implicitly, the other RHS terms (four remaining after
curling) are computed in real space.

In the normalized units, the computational domain covers the radial extent from Ri =
0.5 to Ro = 0.7. The outer radius is thought of as the radius at which the high turbulent
viscosity and diffusivity turn into nearly microscopic values at the bottom of the convection
zone. It is not important for the findings at which radius this happens precisely in reality.
The inner radius is not meant to have a physical meaning. It is chosen far enough from
the radii at which the interesting features of the background state, such as magnetic fields
and differential rotation will be placed, that it is unimportant for the results. Since the

3It should be noted that, as argued in Malkus (1968), the stability criteria after inclusion of the poloidal
field may differ from the model. The models with both poloidal and toroidal background magnetic field
are beyond scope of this work
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Figure 4.2: Contour lines of the toroidal magnetic field strength of the imposed axisymmetric
magnetic field if n = 2, p = 2 and q = 1 with a positive Bφ in the northern hemisphere and a
negative one in the southern hemisphere.

linearized equations decouple for azimuthal Fourier modes m, instability limits for each
m-mode are sought individually.

The background magnetic field is purely toroidal and is distributed by,

Bφ = sinp θ cosq θ sin2

[

π

(

r − Ri

Ro − Ri

)n]

, (4.5)

where p, q and n are the free exponents controlling the latitudinal placement and the
radial thickness of the toroidal field belt. p and n take even values and q takes odd values.
In the next Section, mostly n = 2 is used, giving a thickness of about 0.1 solar radii.
Figure 4.2 illustrates the configuration. The maximum Bφ sits at a radius of r = 0.641 and
a colatitude of θ = 55 in the northern hemisphere. If n = 4, the maximum is at r = 0.668.
The full radial widths at half-maximum of these profiles are d = 0.073, d = 0.044, and
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d = 0.025 for n = 2, 4, and 8, respectively. For most of the cases, p = 2 and q = 1
are chosen. This means the “eye” of the toroidal field belt is located at a latitude of 35.
The particular profile is chosen as it qualitatively resembles the profile of magnetic field
obtained in section 2.4.5. The resemblance is evident when Figure 2.13 and Figure 4.2 are
compared.

As said before, the solar magnetic Reynolds number in the tachocline is about 1012. In
reality, one tries to achieve time series for numerically demanding Rm = 2 ·104 and slightly
above. Magnetic-field belts with n = 2 can be treated with relatively low resolution,
such as 20 Chebyshev and 40 Legendre modes for the decomposition of the meridional
structure. Thinner field belts obtained with n = 4 require significantly higher resolution.
A decomposition into 40 Chebyshev and 80 Legendre modes was necessary to achieve
numerical stability.

The boundary conditions for the magnetic field b are vacuum for both radial boundaries.
The turbulent convection zone on top may easily provide vacuum-like conditions. The inner
boundary is actually conducting. However, the conductivity is nearly constant across the
inner boundary. In the context of a finite conductivity in the computational domain, this
is far from ideally conducting. In order to prevent artificially strong magnetic fields near
the boundary, we chose vacuum conditions also for the inner boundary. The boundary
conditions for the m ≥ 1 flow are always stress-free, whereas an axisymmetric background
velocity is prescribed in the models. The velocity fluctuations u do not of course change
the average rotation velocity of the surfaces of the spherical shell. The boundary conditions
also mean that there will be no boundary layers of strong shear near the inner or outer
surfaces.

4.3 m = 1 Mode Stability Analysis

4.3.1 Rigid rotation

In order to understand the influence of toroidal magnetic fields and differential rotation
separately, one has to first start with a rigidly rotating spherical shell, i.e. Ω(r, θ) = Ωeq.

Symmetric and antisymmetric solutions with respect to the equator are also decoupled
in the linearized system investigated here. At a given Rm, the critical Lundquist number is
sought at which the growth rate of the perturbation excited is zero. The critical Lundquist
numbers for an m = 1 mode in the range of Rm = 10 to 20 000 is shown in Figure 4.3 (left).
The magnetic Prandtl number was Pm = 1 in these runs. The dotted line was obtained
for the solution with a velocity field which is antisymmetric with respect to the equator,
the solid line is for the solution with a symmetric velocity field. There is a magnetic
instability also without rotation. It occurs at S = 155 for the symmetric m = 1 mode and
at S = 132 for the antisymmetric mode. For high magnetic Reynolds numbers, it appears
that the symmetric mode is dominating. This study will thus focus on the stability limits
of the symmetric mode below, as it is likely to be the interesting one for solar tachocline
applications.
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Figure 4.3: (left) Lines of marginal stability in a rigidly rotating sphere for different symmetries
of the m = 1 mode with respect to the equator. The solid line is for the solution with a symmetric
velocity field; the dotted line is for the antisymmetric velocity field. The magnetic Prandtl number
was unity. (right) Lines of marginal stability in a rigidly rotating sphere for various values of the
magnetic Prandtl number Pm.

The magnetic Prandtl number is much lower than unity in the solar tachocline. The
stability analysis was repeated for Pm = 0.1 and Pm = 0.01 assuming that the symmetric
mode is the most interesting one for solar applications. The lines of marginal stability
are shown in Figure 4.3 (right). With an antisymmetric background magnetic field as
described by Eq. (4.5), an antisymmetric m = 1 mode is obtained for the magnetic field
b, too. A vertical cross-section of a growing mode is shown in Figure 4.4. Note that the
picture changes if one goes to other longitudes of the computational domain.

As stated before, one cannot access solar magnetic Reynolds numbers in the numerical
model. However, the dependence of the critical Lundquist number on Rm may give us a
scaling relation for the extrapolation to a solar magnetic Reynolds number. The stability
lines in Figure 4.3 (right) indicate a convergence to a common slope for all three Pm. Such
a common slope occurs for magnetic Reynolds numbers of 5000–20 000. Higher Reynolds
numbers have not yet been accessible by the numerics so far. Assuming that the slopes
remain constant for higher Rm, the scaling can be expressed as,

Scrit = Ŝ Rmβ , (4.6)

where β is the slope in a log-log plot and Ŝ is the amplitude of the fit curve. In the
particular case shown in Figure 4.3 (right), a scaling of,

Scrit = 1.6 Rm0.63, (4.7)

is found for the high-Rm part of the Pm = 0.01 line. Because both S and Rm depend on
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Figure 4.4: Magnetic-field perturbation growing in a rigidly rotating sphere at a magnetic
Reynolds number of Rm = 10 000 and a (supercritical) Lundquist number of S = 2000. The
grey scaling represents bφ (without the background profile Bφ of Eq. (4.5)), and the arrows are
the field vectors projected on the meridional section.

the magnetic diffusivity η, it is helpful to replace them by their definitions, leading to,

Bcrit =
Ŝ
√

µρ

R

(

R2Ωeq

)β
η(1−β)

= Q(β) η(1−β). (4.8)

When scaled to a solar tachocline diffusivity of η = 3000 cm2/s (Stix & Skaley 1990), a
critical strength of the toroidal magnetic field of Bcrit ≈ 12 Gauss is obtained. The density
was taken to be ρ = 0.25 g/cm3 for the tachocline (Guenther et al. 1992). It must be noted
how sensitive Q is towards β which is derived from the curves in Figure 4.3 (right) at high
magnetic Reynolds numbers. There is a factor of 10 change in Q, if β is changed by 0.05.
This is in fact roughly the uncertainty of the determination of β.

Since the tachocline is to a large extent stably stratified, the computations were repeated
without the development of a poloidal flow. Preventing radial motions entirely corresponds
to the case of extremely stable stratifications. Since the numerical scheme solves the
toroidal and poloidal potentials of the flow and the field separately, it is as easy as dropping
one of the equations to imitate the stable stratification.

The stability limits resulting from these calculations with purely horizontal flows are
shown in Figure 4.5. The β derived from the slopes of the curves for Pm = 0.1 and 0.01
are close to the above value for the full flow. The horizontal flow yields β = 0.59, but
a somewhat larger Ŝ. Eq. (4.8) gives a critical strength of the toroidal magnetic field of
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Figure 4.5: Lines of marginal stability in a rigidly rotating sphere as in Figure 4.3, but with the
flow restricted to toroidal motions.

Figure 4.6: Critical magnetic-field strengths as a function of the thickness of the field belts. The
values were derived for the symmetric m = 1 mode at Rm = 5000 and Pm = 1.

20 G, again assuming a diffusivity of η = 3000 cm2/s. This value is practically the same
as for the full flow, keeping in mind the general uncertainty of the extrapolation.

4.3.2 Thickness of field belts

The exponent n = 2 in the definition Eq. (4.5) of the magnetic-field belts yields a radial
thickness of the magnetic structure of roughly 7% of the solar radius. Higher n produce
slimmer belts, and the change in stability can be investigated. In order to achieve numerical
stability for very thin belts, we chose a moderate magnetic Reynolds number of Rm = 5000
for this test. The full meridional flow was permitted in the calculations.

The dependence of the critical magnetic field in terms of Lundquist numbers on the
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thickness of the Bφ-belts is plotted in Figure 4.6. There is no significant trend toward lower
or higher stability limits when going to very thin belt thicknesses. The computations may
show whether there is a smooth transition to the results of two-dimensional computations
on spherical surfaces or to flux-tube simulations. These led to maximum field strengths
of 104–105 Gauss. One has to conclude that calculations with no radial gradients and/or
no radial extent may not be able to give full account of the instability of strong magnetic
toroidal fields.

4.3.3 Latitudinal differential rotation

The next step consists of adding a differential rotation to the spherical shell. The angular
velocity Ω should depend only on the latitude for the moment,

Ω = Ωeq(1 − α cos2 θ), (4.9)

where θ and α have their usual meaning. At α = 1, the pole is at rest.
As seen in the previous Chapter, a purely latitudinal differential rotation is hydrody-

namically unstable for α > 0.28 (Watson 1981). In the real solar tachocline, however, the
differential rotation is accompanied by toroidal magnetic field belts, caused by the latitu-
dinal differential rotation with the presence of poloidal magnetic seed field. The location
of these belts is not known with any certainty but the emergence of the sun-spots at the
solar surface require them to be present. As the active regions of the Sun are near the
equatorial latitudes, one can expect the toroidal field belts also to be located there. In
other stars, where big polar spots are observed, the toroidal field belts, if they indeed are
related to surface activity, should also be at higher latitudes. Now, these toroidal field
belts of Eq. (4.5) are added to the differential rotation. The resulting areas of stability are
shown in Figure 4.7 (left) for two magnetic Reynolds numbers, Rm = 1000 and 10 000. The
horizontal axis is the ratio of the Lundquist number to the magnetic Reynolds number.
This is a useful choice as it does not contain the only unknown in the normalization, the
magnetic diffusivity. The ratio is in fact a measure for the ratio of the Alfvén velocity to
the rotational velocity at the equator.

At the lower Reynolds number of the two, viscosity is still large enough to increase the
limit for hydrodynamic instability (intersection with vertical axis) to about 55% differential
rotation. The two solid lines in the upper left and lower right corner are the stability limits.
The area in between the two is the stable region.

At Rm = 1000 the latitudinal differential rotation is stabilized by a relatively weak
magnetic field. There is actually a certain magnetic field strength for which even 100%
differential rotation (resting pole) is stable. However, very strong magnetic fields destabilize
the rotation profile as a consequence of what can be identified as Tayler instability. Starting
from the purely magnetic instability on the horizontal axis of the graph, it is found that
differential rotation stabilizes the Tayler branch. There is no instability at all for the ratios
S/Rm of 1.8 to 2.6.

At Rm = 10 000 the totally stable region disappears. There is no stability at ratios of
Lundquist number to magnetic Reynolds number higher than 0.14. However, the stabilizing
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Figure 4.7: Lines of marginal stability for toroidal magnetic field belts in a differentially rotating
spherical shell with Ω ∼ (1 − α cos2 θ). The value of α is given on the vertical axis. The
magnetic Reynolds number of these computations was fixed at Rm = 1000 for the solid line and
at Rm = 10000 for the dotted line.

effect of a weak magnetic field on the hydrodynamic instability as well as the stabilizing
effect of a weak differential rotation on the magnetic instability are still evident.

4.3.4 Full differential rotation

The next step is to consider a differential rotation profile which depends on both latitude
and radius. The hydrodynamic instability of such a rotation profile emerges at stronger
differential rotation than for purely latitudinal differential rotation (see Figure 3.3).

In parallel to Eq. (3.5) the full differential rotation profile is now,

Ω =







Ωeq

[

1 − α cos2 θ − α
(

1
4
− cos2 θ

)

Ro−r
Ro−Rt

]

if r>Rt

Ωeq

[

1 − α
4

]

if r≤Rt,
(4.10)

where Rt is the radius of the bottom of the tachocline below which no differential rotation is
prescribed. This is different from the configuration of the model described in the previous
Chapter as there is an extended radial zone now below the differentially rotating shell
in which the angular velocity is constant. The value of the tachocline radius was set to
Rt = 0.6 for the relatively thick magnetic-field belts constructed by n = 2 in Eq. (4.5),
and was set to Rt = 0.65 for the n = 4 case.
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Figure 4.8: Lines of marginal stability for toroidal magnetic field belts with n = 2 (left) and n = 4
(right) in a differentially rotating spherical shell at a magnetic Reynolds number of Rm = 10 000.
The values at the vertical axis are α from Eq. (4.10). The dashed line shows the marginal stability
of a horizontal flow, whereas the solid line is the stability limit for full toroidal and poloidal flow.

The stability diagrams in Figure 4.8 showing the amplitude of differential rotation
versus magnetic field strength illustrates the two regimes of the hydrodynamic and mag-
netic instabilities. The lines of marginal stability for a magnetic Reynolds number of
Rm = 10 000 are plotted in terms of the surface differential rotation parameter α versus
the ratio of Lundquist number to Reynolds number (with the latter being fixed). The solid
line gives the marginal stability for computations with a full flow, as it would be expected
in an unstratified sphere. The dashed line is for a flow restricted to horizontal motions or,
in technical terms, without poloidal flow.

Figure 4.8 (left) shows that there is a clear separation of the two instabilities. If the mag-
netic field is small, the hydrodynamic instability (Watson instability) is nearly unaffected
as indicated by the horizontal branch of the stability line. The field strength necessary for
the magnetic instability (Tayler instability) alone is found on the horizontal axis of the dia-
gram. This minimum magnetic field does not change significantly if differential rotation is
added. This is the vertical branch of the stability line. In case of a purely horizontal flow, a
stabilizing effect by weak magnetic fields is observed which slightly suppresses the Watson
instability at not too large magnetic field strengths. This effect, however, becomes smaller
when one goes to larger magnetic Reynolds numbers whence smaller magnetic diffusivities.
The marginal line with a slightly positive slope merges with the line of marginal stability
coming from the purely magnetic part of the diagram at α = 0. There is no stability at all
for S/Rm > 0.30.

The thickness of the magnetic-field belts has been roughly 7% of the solar diameter in
most of the results shown up to this point, except in Section 4.3.2. The same computations
have been repeated with n = 4 in Eq. (4.5). This exponent results in a thickness of about
0.04 solar radii. The lines of marginal stability are shown in Figure 4.8(right). The left
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Figure 4.9: Lines of marginal stability for toroidal magnetic field belts when the eye of the toroidal
field belt is placed at various latitudes. The dashed, solid, dot-dashed and dotted lines represent
latitudes of 20, 35, 51 and 62 respectively. Rm = 10000 and Pm = 1.

part of the diagram shows little change. The full-flow stability line is nearly identical to
the one for n = 2. Also the slight stabilization of differential rotation with magnetic fields
occurs again in the analysis of purely horizontal flows. The strongest magnetic field is
larger, however, and may reach S/Rm = 0.56 for rigid rotation (α = 0).

Finally, the effect of the latitudinal positions of the eye of the toroidal field belt on
the instability is explored. The eye of the belt can be shifted in latitude by appropriate
choice of p and q in Eq. (4.5). Here four case are chosen with the eye of the belt placed
at 20 (p = 8, q = 1), 35 (p = 2, q = 1), 51 (p = 2, q = 3) and 62 (p = 2, q = 7). The
results are shown in Figure 4.9. A gradual transition towards increased stability is seen
in the diagram as the eye of the field belt approaches the equator. At high latitudes, the
hydrodynamic stability limit is reduced as the magnetic field is increased. The critical limit
of hydrodynamic stability in absence of the magnetic field is independent of the latitudinal
position of the belt. The magnetic stability limit (vertical branch of the stability line)
decreases slightly with stronger differential rotation for high latitudes but increases with
stronger differential rotation when the belt is placed close to the equator. The magnetic
stability limit in the absence of differential rotation is nearly independent of the latitudinal
position of the belt, but there is a hint to increased stability at mid-latitudes. The evolution
of the stability limits as a function of latitude seems to be continuous and it can be
concluded that the underlying physical effects will be similar for all latitudes. Thus, the
computations performed for a fixed value of differential rotation and a fixed position of the
toroidal field can be taken as a representative sample of the parameter space.
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Figure 4.10: Growth rates of instabilities for higher azimuthal modes for various Lundquist
numbers (top-left), different latitudes (top-right), magnetic Prandtl numbers (bottom-left) and
magnetic Reynolds numbers (bottom-right). The negative growth rates indicate decay of the
perturbation, i.e. stable case, and zero growth rate indicates marginal stability.

4.4 Higher Azimuthal Modes: Linear simulations

To gain further insight on the nature of the instability produced in the magnetic tachocline,
it will be necessary to extend the linear computations to higher azimuthal modes. The key
results from these computations are presented in this Section.

The numerical setup is unchanged from the preceding Section. Differential rotation
(α2) is fixed at 20%. This value is close to the actual differential rotation in the tachocline
and as was shown in the preceding Section, the results do not change drastically for a small
change in α2 from the chosen value. Higher azimuthal modes are each excited in a different
simulation to perform a linear stability analysis. The time taken for each simulation scales
linearly with the azimuthal mode number, as number of azimuthal grid points increase
correspondingly. Thus, to save the computational time, the growth rates of instability are
measured instead of a manual search for the critical parameters of marginal stability. The
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growth rate here is defined as the inverse of the e-folding time of the instability,

γ =
d ln El

dt
=

1

τe

. (4.11)

The time t is measured in terms of diffusion times and El is the kinematic energy in each
latitudinal mode. It is necessary to convert this time-scale to physical times to compare
them with observable physical phenomena. Using the definition of the diffusion time τdiff ,
the e-folding time (τe) can be scaled in terms of the number of solar rotations or physical
years.

tphy = τeτdiff =
τe Rm

2π
τrot, (4.12)

where τrot is the rotational period of the Sun. Thus the physical e-folding time (τphy) will
be

τphy ≈ 0.1592Rm

γ
rotations ≈ 0.01122Rm

γ
years. (4.13)

Thus, for example, a growth rate of 100 units for Rm of 10000 would correspond e-folding
time of roughly 16 rotations or 1.1 years. The same definition of the growth rate is used in
Figure 4.10. The default parameters for the simulations are Rm = 10000, θ = 35 (latitude
of the eye of the field belt) and Pm = 1. In the top-left panel, the growth rates for different
azimuthal modes are plotted for various Lundquist numbers (S). The most striking feature
of the plot is the fact that m = 5 is the most unstable mode of this instability. In particular,
for S = 1800, where m = 1, 2, 3 are stable, m = 5 is unstable. This is in concurrence with
other authors (Dikpati & Gilman 1999; Brun & Zahn 2006) who also observed smaller scale
structures dominating at mid-latitude bands. The same plot shows that the choice of the
most unstable mode is completely independent of the choice of the Lundquist number i.e.
the strength of the magnetic field, for the Lundquist numbers close to the marginal stability
and above. It can also be noted that for the m = 1 mode the decay rate is constant for low
magnetic fields. This may happen as the strong viscosity in the simulations would require
a minimum time to redistribute the angular momentum. Thus, one expects that with the
lower viscosity (i.e. higher Rm) the terminal decay rate for m = 1 mode would be higher
(more negative growth rate). This is indeed observed. The e-folding decay time scale for
Rm = 14000 corresponds to 1.36 years (about 19 rotations) but seems to rise linearly with
Rm as far as one can check in the simulations (Rm up to 50000). This extraordinarily high
Rm could be achieved as very weak magnetic fields are sufficient to obtain the terminal
decay rate of the m = 1 mode.

The top-right plot shows that higher azimuthal modes are unstable for only mid-
latitudes in concurrence with Gilman & Dikpati (2000). When the magnetic field is placed
at high latitudes, m = 4 is the most unstable mode rather than m = 5. A similar trend
was observed for the magnetic field at low latitudes. The lower-left panel shows that at
mid-latitudes higher azimuthal modes get unstable if the magnetic Prandtl number is low-
ered. However, for the Sun Pm ≈ 0.005 (Stix & Skaley 1990) and the most unstable mode
changes from m = 5 to m = 6 only when Pm is changed from 1 to 0.1. Thus, even at the
solar value, the most unstable azimuthal mode is not likely to be higher than m = 10. The
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Figure 4.11: Fourier transform of the velocity fields in the non-linear simulation. The velocities
ur (dotted), uθ (dashed) and uφ (solid) are integrated over the entire computational domain
and averaged over a long time-scale (0.002τdiff to 0.009τdiff). The Kolmogorov spectrum for
hydrodynamic turbulence is plotted (slope = −5/3) for comparison.

last panel shows that lower azimuthal modes turn out to be the most unstable ones as Rm
is increased. Thus at the solar values, the most unstable mode is likely to be m = 1. As a
relevant node, the choice of the most unstable mode depends on the absolute difference be-
tween angular velocities of pole and equator4. Thus, for both configurations, Rm = 14000
with α2 = 0.20 and Rm = 10000 with α2 = 0.28, m = 4 is the most dominant mode of
the instability. It was observed that the meridional flows caused by the instabilities at
the outer surface radially penetrate for some distance, even below the layer of differential
rotation. The radial flows avoid the eye of the toroidal field belts and are most dominant
in the polar latitudes.

4.5 Non-linear Simulation

For the non-linear simulation, all the non-axisymmetric modes are evolved together with
the axisymmetric mode. The background magnetic field given by Eq. (4.5) is merely
an initial condition for this simulation. Thus, the distinction between B and b doesn’t
exist anymore. However, as a driving force for the flow and to maintain the tachocline
thickness, U is still maintained separately from u. The u now also includes axisymmetric

4∆Ω = α2 · Rm
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flows forming under the influence of U . The changed Eq. (4.3) & (4.4) take the form,

∂u

∂t
= Rm

[

u ×∇× U + U ×∇× u −∇(u · U )
]

+

Rm2
[

U ×∇× U −∇U 2
]

+ u ×∇× u −
∇u2 + (∇× b) × b −∇p + Pm△u, (4.14)

∂b

∂t
= ∇× (Rm U × b + u × b) −△b (4.15)

The set-up uses Rm = 10000 , Pm = 1, α2 = 0.2 and S = 2700. Here S only denotes
the initial strength of the magnetic field and is chosen to be highly super-critical for linear
simulations with identical parameters. Due to high magnetic diffusivity, the magnetic field
decays fast leaving not much possibility to see an instability coming up in the simulation.
Yet, Fourier spectrum of the velocities in the terminal configuration gives indication that
the setup is prone to instabilities. The Figure 4.11, shows Fourier spectrum of velocities
integrated over the entire computational domain and averaged over a sufficiently long time
interval after the initial readjustments. The slope of this Fourier spectrum tends to be close
to −5/3 at the higher azimuthal modes, indicating Kolmogorov type turbulence5. We can
interpret this as a clear sign of turbulent processes in the tachocline. Further, all the three
spectra show a clear jump at the m = 4 mode, meaning there is inherent preference for
instability in that mode. This re-confirm results in the previous section that moderately
higher azimuthal modes need to be examined for complete understanding of tachocline
instabilities. The surface plots of the velocity flows shown in Figure 4.12, are plotted close
to the outer boundary of the simulation domain. The background rotation is subtracted
from the horizontal flows to reveal the non-axisymmetric structure. These plots show super-
imposition of first few azimuthal modes in the flow with additional preference for m = 4
mode (the rightmost plot). The flows shown are few orders smaller in magnitude than
the rotational velocities. In a less diffusive tachocline, the non-axisymmetric instabilities
might overpower the rotational velocities.

4.6 Discussion

This Chapter examined the stability of toroidal magnetic fields in spherical geometry.
Four steps were taken in understanding the stability. Belts of toroidal magnetic fields were
first placed in a rigidly rotating spherical shell. A latitudinal differential rotation was then
added to the configuration. The next step involved tests for a solar-like differential rotation
with Ω depending on r and θ combined with the toroidal field belts and in the final step,
the stability of other azimuthal modes, higher than m = 1, was explored.

A good estimate for the maximum possible toroidal magnetic field is already given by
the calculations of a rigidly rotating sphere. Higher magnetic Reynolds numbers are acces-
sible in that simpler setup. The dependence of the critical field strength on the Reynolds

5It means turbulence transporting energies to smaller length scales (higher wave numbers) through
energy cascade.
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Figure 4.12: The time series evolution at the outer surface of the computational domain at,
0.003τdiff (left), 0.006τdiff (center) and 0.009τdiff (right). The colors represent inwards (blue)
/ outwards (white) radial flows and the arrows show horizontal flows in the rotating frame of
reference.

number appears to be a power-law. The extrapolation to the microscopic solar diffusivity
in the tachocline leads to maximum stable magnetic fields of the order of 10 Gauss.

The hydrodynamic stability of the tachocline in a 3D setup was explored in an earlier
Chapter. Starting from that point with S = 0, it was found that the hydrodynamic limit
is weakly influenced by additional, small toroidal magnetic fields. If the fields are strong
enough to excite a magnetic instability, this in turn is again weakly influenced by the
amplitude of the differential rotation. In other words, the addition of differential rotation
to the magnetic instability does not change the critical field strengths dramatically. This
is best demonstrated in Figure 4.8.

The investigation of the lithium depletion problem showed that the microscopic mag-
netic diffusivity may not be sufficient to explain the observed values. A slightly turbulent
state with a viscosity 10 times above the microscopic value is more likely (Vauclair 1978;
Lebreton & Maeder 1987). If this factor is applied also to the magnetic diffusivity, it
increases the maximum stable field strength to a slight degree. The change of critical
magnetic field strengths is given by η0.4 and is thus not more than one order of magnitude
due to the suggested weak tachocline turbulence.

Maximum stable magnetic fields of roughly 10 Gauss are found with little dependence
on the actual rotation profile used. Even though the precise limit for the toroidal magnetic
field may be different by one order of magnitude from the one derived here, stable fields
of 105 G appear unlikely. The fact that the tachocline is stably stratified does not add
considerably to the stability of the magnetic fields. A decrease of the radial thickness
of the magnetic-field belts does not deliver increasing critical magnetic fields. 1D or 2D
computations may thus give inadequate results for the stability of magnetic fields in the
solar tachocline.

The instability of fields of 105 G will have consequences for the dynamo process causing
the 22-yr cycle of the solar magnetic field. The tachocline will then not be a location where
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very strong magnetic fields can be accumulated and stored. The possibility of a dynamo
distributed over the convection zone, or even restricted to its upper part, was recently
revived by Brandenburg (2005). This idea earns support from results produced here as
only moderate magnetic fields are stable in the solar tachocline. A dynamo much closer
to the surface also generates toroidal magnetic fields, and one can estimate the stability
of such large-scale fields using turbulent values for the magnetic Reynolds number and the
magnetic Prandtl number. The former, Rmt, is about 1000–2000 whereas Pmt is unity or a
bit less than that (Yousef et al. 2003). The maximum stable Lundquist number is 200–300
as read from Figure 4.3 and the solid line at 30% differential rotation in Figure 4.7. With
a density of about 0.01 g/cm3 and a turbulent diffusivity of ηt ∼ 1012 cm2/s, these values
convert to 1000–1500 Gauss which is enough to permit the fields of the suggested surface
dynamo (large-scale field of a few hundred Gauss).

The positioning of the magnetic field belt at different latitudes does not dramatically
change the results of the stability limits. Near equatorial latitudes, however, the magnetic
stability limit is increased by the inclusion of differential rotation. The hydrodynamic
stability limit is not affected by the position of the field belt.

The analysis of the plots in Figure 4.10, as presented in a preceding Section, gives
indication that the m = 1 mode is likely to be the most unstable mode for the solar values.
However, at small Rm as in the simulations, moderately higher azimuthal modes (around
m = 5) are the most dominant ones. It will be important to reemphasise that most high
latitude star-spots tend to be large indicating low azimuthal modes. On the other hand,
the conventional Taylor instability clearly singles out m = 1 as the most dominant mode
and these findings may have implications for our understanding of magnetic instabilities of
toroidal fields coupled with differential rotation. Similar to dynamo processes, the choice
of most unstable mode depends on absolute difference between angular velocities of the
pole and equator.

The non-linear simulation re-confirms preference to moderately higher azimuthal modes
over the m = 1 mode for the given magnetic Reynolds number. The Fourier spectrum of
the velocities in the non-linear simulation indicates presence of Kolmogorov turbulence.

The idea of a tachocline formation from an internal fossil magnetic field is not affected
by the instability studied here. Keeping a weak turbulent diffusion in the tachocline in
mind, a critical field strength of few 100 Gauss appears roughly compatible with what has
been found to be the maximum stable toroidal fields in the tachocline.
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Chapter 5

Summary

Before closing, the key findings of this work are listed here.

• This work employs the idea of Rüdiger & Kitchatinov (1997) that the tachocline is
formed due to a fossil poloidal magnetic field trapped in the solar interior.

• For the first time it is conclusively shown that meridional circulation changes the
shape, the structure and the characteristics of the tachocline radically.

• It is found that the The tachocline is thinner at the lower values of the magnetic
Prandtl number as well as at the higher values of the magnetic Reynolds number.

• It is predicted that a dipolar poloidal field of 1 Gauss would be sufficient to produce
the solar tachocline.

• A scaling for the toroidal field amplitude in the solar case is derived implying it to
be a few orders higher than the poloidal seed field.

• A stable temperature gradient across the shell, makes the meridional circulation
shallower as well as weaker for a stronger stabilization. This can prevent lithium
from reaching excessive temperatures just below the tachocline.

• A fully three-dimensional, linear hydrodynamic stability analysis of the solar tachocline
shows it to be stable for the pole-equator angular velocity difference of as large as
52% for a symmetric m = 1 mode.

• The 3D models differ from the 2D models considering only a surface of infinitesimal
thickness not in the radial flows emerging from the extension in the third dimension,
but in the changed stability conditions emerging from the radial shear and the radial
dependence of the differential rotation.

• The other modes, such as higher m or the different flow symmetries, have even higher
stability.
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• As all the meridional flows are almost horizontal, the influence of the temperature
gradient across the shell is small.

• The simulations with Re > 10000 can be treated as a good approximation for the
solar case for the purpose of hydrodynamic stability analysis.

• The linear MHD stability of the 3D tachocline is examined in the presence of toroidal
magnetic field belts.

• The rigid sphere simulations already give a good indication of the possible magnetic
instabilities produced by the toroidal magnetic field.

• The dependence of the critical field strength on the Reynolds number appears to be
a power-law. The extrapolation to the microscopic solar diffusivity in the tachocline
leads to a maximum stable magnetic field of the order of 10 Gauss.

• It is found that the hydrodynamic limit is weakly influenced by the additional, a
weak, toroidal magnetic field.

• If the fields are strong enough to excite a magnetic instability, this, in turn, is again
weakly influenced by the amplitude of the differential rotation at mid-latitudes and
high-latitudes. The differential rotation stabilizes, although weakly, the magnetic
instability when the belt is placed near equatorial latitudes.

• Even in a case of the tachocline being in a slightly turbulent state (the magnetic
diffusivity being about 10 times its microscopic value), the change in the critical field
strength is not more than one order of magnitude.

• The maximum stable magnetic field strength of roughly 10 Gauss is found to be
nearly independent of the actual rotation profile used. This would mean that it is
unlikely that the lower layers of the tachocline, which are only weakly turbulent, can
host stable fields of the order of 105 Gauss.

• Even the addition of the stable stratification does not add considerably to the stability
of the magnetic fields.

• A decrease of the radial thickness of the magnetic-field belts does not deliver increase
in the critical magnetic fields. Thus lower dimensional models are not adequate to
examine the stability of magnetic fields in the solar tachocline.

• As the tachocline cannot host the strong toroidal magnetic fields, which are pre-
requisite for the tachocline dynamo models, these results lend support to the dynamo
models which place the seat of dynamo in the convection zone itself, like one proposed
by Brandenburg (2005).
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• Close to the solar surface, using the turbulent values for the magnetic Reynolds
number and the magnetic Prandtl number, it can be estimated that a magnetic field
of 1000–1500 Gauss would be stable against non-axisymmetric instabilities, which is
enough to permit the fields of the suggested surface dynamo (a large-scale field of a
few hundred Gauss).

• In the solar tachocline with microscopic diffusivities, the m = 1 mode is likely to
be the most unstable mode. However, in the convection zone where the magnetic
Reynolds number and the magnetic Prandtl number take moderate values, moder-
ately higher azimuthal modes (around m = 5) are likely to be the most dominant
ones.

• The choice of the most dominant azimuthal mode depends not on the magnetic
diffusivity but the absolute value of pole-equator angular velocity difference.

• The non-linear simulation re-confirms preference (namely m = 4) to moderately
higher azimuthal modes over the m = 1 mode for the given magnetic Reynolds
number.

• The Fourier spectrum of the velocities in the non-linear simulation indicates presence
of Kolmogorov turbulence.

The magnetic model of the solar tachocline self consistently explains its formation due
to a weak poloidal field and shows it to be stable for a high degree of differential rotation,
even when coupled with the toroidal magnetic field belts. The model presented here can be
further improved by inclusion of other features like compressibility, variation of diffusivities
and temperature gradients. Even in the current model, a better picture can be obtained
by choosing higher magnetic Reynolds numbers and smaller magnetic Prandtl numbers.
But all this would have to wait till availability of better computational resources and at
this stage, the conclusions of this work, present the most comprehensive analysis of the
magnetic solar tachocline.
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Appendix A

Solar Parameters

The parameters most commonly used in this work are the following, with corresponding
value used in all the calculations:

• The Solar Radius R = 7 × 1010 cm = 7 × 108 m

• Equatorial rotational frequency at the base of the convection zone feq = 456 nHz

• Equatorial angular velocity at the base of the convection zone Ωeq = 2πfeq = 2.87 ×
10−6 s−1

Following are the parameters taken from the standard solar models (see Figure A.1),
helioseismology and related works (Stix & Skaley 1990). These are not as well established
as the parameters above and should be treated with a degree of caution.

• the position of the base of the convection zone Rbase = 0.7R
This differs slightly from the helioseismological estimates but is chosen for computa-
tional convenience.

Figure A.1: Left: Radial profile of the density inside the Sun. Right: Radial profile of temperature
inside the Sun.
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• The density in the tachocline region ρtacho = 0.25 gm/cm3

• Average density in the radiative interior ρrad = 1 gm/cm3

• Temperatures at 0.1R and 0.7R: 107 K and 106 K respectively.

• The average kinematic viscosity in the radiative region, ν = 15 cm2/s

• The average magnetic diffusivity in the radiative region, η = 3000 cm2/s

• The gravitational acceleration used in the section used in section 2.4.5 g = 5.5 ×
104 cm/s2
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Miscellaneous Formulae

Transformation between the physical radius and non-dimensional variable x

r =
Rout + Rin

2
+

Rout − Rin

2
x (B.1)

Representation of velocity field in terms of its poloidal and toroidal components

u = ∇× (er̂) + ∇×∇× (f r̂) (B.2)

=













l(l+1)
r2 f

1
r

[

1
sin θ

∂φe + ∂r∂θf
]

1
r

[

1
sin θ

∂r∂φf − ∂θe
]













(B.3)

The magnetic field can be represented similarly by potentials g and h.
Properties of individual terms of the summation in the potentials e, f , g and h:

1

sin θ
∂θ(sin θ∂θf

′) =

(

m2

sin2 θ
− l(l + 1)

)

f ′ (B.4)

∂2
φf

′ = −m2 f ′ (B.5)

where f =
∑

f ′

First few orders of Chebyshev Polynomials:

T0(x) = 1 (B.6)

T1(x) = x (B.7)

T2(x) = 2x2 − 1 (B.8)

T3(x) = 4x3 − 3x (B.9)

T4(x) = 8x4 − 8x2 + 1 (B.10)

T5(x) = 16x5 − 20x3 + 5x (B.11)

T6(x) = 32x6 − 48x4 + 18x2 − 1 (B.12)
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First few orders of Legendre Polynomials for m = 0:

P0(cos θ) = 1 (B.13)

P1(cos θ) = cos θ (B.14)

P2(cos θ) =
1

2

(

3 cos2 θ − 1
)

(B.15)

P3(cos θ) =
1

2

(

5 cos3 θ − 3 cos θ
)

(B.16)

P4(cos θ) =
1

8

(

35 cos4 θ − 30 cos2 θ + 3
)

(B.17)

P5(cos θ) =
1

8

(

63 cos5 θ − 70 cos3 θ + 15 cos θ
)

(B.18)

P6(cos θ) =
1

16

(

231 cos6 θ − 315 cos4 θ + 105 cos2 θ − 5
)

(B.19)

Other properties:

Tk+1(x) = 2 x Tk(x) − Tk−1(x) (B.20)

Pl+1(cos θ) =
1

l + 1

[

(2l + 1) cos θ Pl(cos θ) − l Pl−1(cos θ)
]

(B.21)
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Rüdiger, G., Schultz, M., 2006, in prep.

Schou, J., Antia, H. M., Basu, S. et al. 1998, , 505, 390

Schou, J., Howe, R., Basu, S., et al. 2002, , 567, 1234

Spiegel, E.A., & Zahn, J.-P. 1992, , 265, 106

Spruit, H. C. 1999, , 349, 189

Spruit, H. C. 2002, , 381, 923

Stix, M., & Skaley, D. 1990, , 232, 234

Tayler, R.J. 1973, , 161, 365

Thompson, M. J., Toomre, J., Anderson, E. et al. 1996, Sci, 272, 1300



88 BIBLIOGRAPHY

Thompson, M. J., Christensen-Dalsgaard, J., Miesch, M., & Toomre, J. 2003, , 41, 599

Vauclair, S., Vauclair, G., Schatzman, E. et al. 1978, , 223, 567

Velikhov, E. P. 1959, J.Exp.Theo.Phys. (USSR), 36, 1398

Watson, M. 1981, GAFD, 16, 285

Yousef, T.A., Brandenburg A. & Rüdiger, G. 2003, , 411, 321
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