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Preface

The notion of turbulence is known to us from everyday life. Mostly it is known with regard to the
atmosphere (from weather charts and air travel), but there is also a quite indeterminate use of the word
turbulence for actions which do not have anything to do with turbulence in the classical sense. Also
interstellar space is known to most of us. Already the notion that there is a gas between the stars is,
however, not common knowledge anymore. In this work we will, thus, combine these fields to discuss
the interstellar turbulence.

What is the motivation for studying interstellar turbulence? There are many answers to that question.
One of them is that interstellar space with the low collision rates in this dilute plasma is the only known
system, where turbulence with extremely high Reynolds numbers (the ratio of inertial to the viscous
forces at work) actually occurs. This, however, can not be and is not the reason for the existence of
this work. The reason is rather the impression that there exist many distinct approaches to understand
interstellar turbulence. Each scientific community seems to have its own way of handling this matter,
without much interaction between the various groups. On can at least distinguish between two principal
approaches.

On the one hand there are those who extend basic turbulence theory into the domain of interstellar
plasmas. That is methods and simulations borne to investigate scaling laws for isothermal turbulence
are applied to the interstellar medium. These applications are usually to phases of the interstellar matter,
for which the basic methods of numerical turbulence research can be applied without change. That is
research on structure functions and similar statistical aspects of turbulence has so far been performed
mainly for isothermal molecular cloud turbulence.

On the other hand there is the astrophysical approach. Coming from the astrophysical side scientists
usually intend to capture the spatial structure of the ISM without special regard for the turbulent fluctua-
tions. Such simulations are usually more focused on the density and temperature distribution than on the
local dynamics and are very accurate regarding the spatial structure of the ISM, because the multi-phase
structure of the ISM is explicitly taken into account. Another important point is that such simulations
are mostly global simulations describing a major fraction of the ISM in our Galaxy. Thus, they are in
general not suited for turbulence research on more local scales.

Here we present a way to investigate interstellar turbulence with the tools stemming from turbulence
theory, while at the same time retaining an interstellar medium as realistic as possible. To achieve
this goal, we especially take care to model the physics and the external influences on the medium as
accurately as possible. For example, we investigate the question if it is realistic to describe the plasma of
molecular cloud in an isothermal fashion. Moreover we show that the driving of the turbulent fluctuations
is an important issue to be addressed carefully if the resulting medium is desired to be related to what is
observed.

Finally, we should mention those theorists who usually regard interstellar turbulence as some variety
of the classical hydrodynamical Kolmogorov turbulence. What remains of turbulence in their studies
is basically the slope and the extent of the turbulence spectrum due to the fact that in an analytical
model it is not possible to include the full richness of the statistics of a turbulent field. One particular
example for this is the analytical estimate for the heating rate of the warm interstellar medium. For this
investigation the turbulence spectrum is modelled as a set of adjustable parameters, which are subject to

1



2 PREFACE

the resulting heating rate. For such an analytical estimate, the spectrum is determined by the external
influences instead of being in self-consistent interaction with those influences. Therefore, we supplement
these analytical estimates by self-consistent numerical simulations. We would like to cross check these
estimates for the heating rate using a self-consistent model for the turbulence.

Already the discussion of the heating rate shows the impact of turbulence on interstellar space. Apart
from this there are scientists, who even think turbulence to be responsible for a major part of the spatial
structures in the interstellar medium. In particular the star formation seems to be partly determined by
the turbulence in the surrounding medium. This is because the fluctuating velocity field is not only able
to prevent dense interstellar clouds from collapsing, but also because the fluctuations themselves can
produce densities so high that star formation can be triggered in the resulting density clumps. Further-
more there are also the influences of turbulence, which are not that easily accessible to observations.
The transport and acceleration of charged, energetic particles is mainly determined by the fluctuations of
the magnetic field. Due to their high energy densities they probable have a significant influence on the
turbulence itself.

Turbulence is one of the most important ingredients of the plasma in interstellar space. Up to now
it is, however, not even fully understood in its most basic incompressible form, not to mention the com-
pressible, magnetised turbulence pervading interstellar space. Here we do not try to gain any insight
into these basic processes. We rather try to investigate the turbulent interstellar medium using a model
that yields information on the turbulence statistics which is as close to reality as possible at the same
time. In this work we mainly concentrate on the development of the necessary tools to achieve this task.
After introducing the concept of interstellar turbulence in more detail in the first chapter, we develop the
necessary analytical tools for the investigation of interstellar turbulence. A numerical code to be used for
the corresponding computations has to yield correct results at discontinuities without producing spurious
oscillations, while at the same time being of high order away from these discontinuities. Moreover, the
code also has to handle the heating and cooling and other source terms correctly. In this work we develop
a numerical code, which is capable of fulfilling all these demands. After ensuring its capability we finally
apply the newly developed code to the simulation of ISM turbulence. This work should not be regarded
as an exhaustive work on interstellar turbulence. Our aim is rather to develop the appropriate analytical
and numerical tools to permit a consistent study of this research field. Therefore, the supplied example
computations have rather to be regarded as a way to show the applicability of the newly developed nu-
merical code.

Bochum, 2006 Ralf Kissmann



Chapter 1

Introduction

I noticed . . . tracts of palely glowing gas, shining sometimes
by their own light, sometimes by the reflected light of stars.
Often these nacrous cloud-continents had secreted within them a
number of vague pearls of light, the embryos of future stars.

Olaf Stapledon, Star Maker1937

This work deals with the turbulence of the interstellar medium. As such it can be viewed as a work about
a certain kind of turbulence or about a certain state of the interstellar matter. Whatever view is taken, we
are concerned with the combination of two important basic fields of physics and astronomy: turbulence
and the interstellar medium. In view of this we feel the necessity to start with three introductions: One
for the interstellar matter, one for turbulence, and one for the combination of those fields.

1.1 Matter in Interstellar Space

When people look at the sky in a clear dark night, what they essentially see – apart from the objects in
our solar system – are numerous stars. Even the cloud-like band of the Milky Way is merely the diffuse
luminosity of many stars, which can not be resolved by our naked eyes. Already small telescopes,
however, reveal extended gas structures either reflecting stellar light or radiating by themselves. One
famous example for such an extended gas cloud is theHorsehead Nebuladepicted in Fig. 1.1 which
was discovered in 1889 on an astrophysical photography of the Orion region. In the beginning of the
area of the observation by telescopes only these denser gas clouds were known to astronomers. Today,
however, it is clear that the interstellar medium (ISM), as this gaseous phase is called, is ubiquitous.
Even though in some regions the gas is more dilute than any so-called vacuum available in laboratories
it is nonetheless observable due to the enormous column densities.

Nowadays there are many different astrophysical plasmas under investigation by a huge number
of scientists. The corresponding different environments are best visualised by a journey outward from
our home planet. Starting from there after leaving the planet’s atmosphere we initially encounter the
Earth’s ionosphere – the highly ionised part of our atmosphere – and thereafter we find ourselves in the
magnetosphere. From there we cross the magnetopause to cross from the region influenced by the Earth
into the interplanetary plasma of the solar wind. Following its flow direction to the outer regions of the
heliosphere, we, eventually, leave the region dominated by our Sun to cross over into the interstellar
plasma.

Heaving left behind the interplanetary plasma we find ourselves in a region of very dilute plasma,
which is commonly known as the local bubble. Here the temperatures are very high – about a million
degrees – whereas the plasma density is as low as 70000 atoms per cubic meter (in a volume of the size of
the Earth one would not find one kilogram of matter). This region is on the one hand not a good example
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4 CHAPTER 1. INTRODUCTION

Fig. 1.1: High resolution image of the Horsehead Nebula (IC 434) in Orion as observed with the VLT KUEYEN
telescope of the European Southern Observatory (ESO) on Paranal (Chile). For further information see
http://www.eso.org/outreach/press-rel/pr-2002/phot-02-02.html.

for the average properties of the interstellar medium. On the other hand it already shows that the idea of
an average interstellar medium is not what is realised in reality.

As we continue our journey outwards from our solar system we encounter a huge variety of plasmas.
From the dense dark cores of molecular clouds where new stars are continuously born to the hot coronal
gas left behind after hot giant stars turned into supernovae after a short lifespan of greedy consumption
of their hydrogen fuel. In between these two extremes we encounter many different phases of interstellar
matter. Whereas the discussion on how many phases there are to be found in the ISM is still ongoing, it
is clear that the plasma encountered between the stars is mainly made up of different forms of hydrogen.
While helium still contributes a few percent of the interstellar matter all other elements have to be viewed
as trace elements for the ISM plasma and are commonly referred to asmetalsby most astrophysicists.
This, however, does not mean that these elements can be neglected – many of these have to be used
to gain knowledge about interstellar matter at all. One famous example is the CO line, by which the
gas mass in molecular clouds is usually deduced, since CO is thought to trace the amount of molecular
hydrogenH2, which is not easily observed directly.

If we would intend to go still further away from our Sun we would eventually end up in the very
thin gas filling the vast space between the individual galaxies. Since, however, we are not interested in
this, we stop our journey before we reach the outer halo of our Galaxy. We rather turn back to the matter
filling our Galaxy itself – to try to grasp some numbers for what is so appealing to the eye.

1.1.1 Quantitative View of the ISM

When summing up the entire gas mass of our Milky Way and dividing this by the volume it occupies,
one arrives at the average density of the ISM. On average there are about 106 atoms in one cubic meter.
This corresponds to an overall mass of fifteen percent of the visible mass of our Galaxy. Apart from that
99% of the mass of the ISM is in the form of gas with the remaining 1% being bound in dust particles.

When talking about global properties it is also interesting to discuss the average energy densities.
Early estimates gave the easily memorisable number of one electronvolt per cubic centimetre for each

http://www.eso.org/outreach/press-rel/pr-2002/phot-02-02.html


1.1. MATTER IN INTERSTELLAR SPACE 5

Names Main Detected Volume of Fraction N Temp
constituent by interstellar by mass (m−3) (K)

medium
‘Molecular H2, CO Molecular ∼ 0.5% 40% ≥ 109 10-30
clouds’ CS, etc. lines; dust

emission

‘Diffuse clouds’; H,C,O with 21-cm 5% 40 % 106 − 108 80
‘HI clouds’; some ions, emission &
‘cold neutral C+, Ca+ absorption
medium’

‘Intercloud H, H+, e−; 21-cm 40 % 20 % 105 − 106 8000
medium’ ionisation emission &

fraction absorption;
10-20 % Hα emission

‘Coronal gas’ H+, e−; OVI; ∼50% 0.1% ∼ 103 ∼ 106

highly ionised soft X-rays
species, O5+, 0.1-2 keV
C+3, etc.

Table 1.1. Properties of the different phases of the ISM taken from Longair (1994).

of the energy densities of cosmic rays, of the magnetic field and of the dynamic pressure. Nowadays
this value has been refined to about 9· 10−14 J/m3 = 0.56 eV cm−3 (see e.g. Cox 2005). Moreover the
thermal pressure has been estimated to be about one tenth of the dynamic pressure. From this one can
easily estimate an average temperature for the interstellar medium. This is, however, a futile measure,
because the local temperature depends on the local density – typically the average values are untypical
for any local structure in the ISM.

According to the classical view the interstellar medium is made up of distinct phases. The typical
properties of these are given in Table 1.1. Classically these phases are thought to be in thermal pressure
equilibrium. Such a phase structure of the ISM is obtained via the computation of the self-consistent
balance between heating and radiative cooling of the interstellar gas. One of the first analyses of a
two-phase structure of the ISM, where the heating is based only on cosmic rays, is found in Field et al.
(1969). As a result one finds an equilibrium temperature depending on the density and in turn the thermal
pressure. From this it is possible to identify stable and unstable phases in a diagram giving the thermal
pressure as a function of density basically by the local slope by application of the stability criteria from
Field (1965). This can be understood by the example curves shown in Fig. 1.2: For a negative slope
a slight disturbance of the equilibrium to higher temperatures makes the gas cool. At constant thermal
pressure, however, this makes the gas move to the right in the diagram, thereby pushing it further from
the equilibrium and, thus, causing even stronger cooling. This leads to a runaway effect until a stable
branch of the diagram is reached.

With this analysis at hand the stable phases are identified as the phases actually observed and the
unstable phases being merely unstable transients. One important assumption, however, in the above dis-
cussion is the thermal pressure equilibrium. In this picture the energy input of supernova explosions
and other highly dynamic events has not been taken into account. With this in mind a pressure equilib-
rium will not establish itself everywhere in the ISM, thus, yielding a rather dynamic picture. Moreover
the fact, that the dynamical pressure is much higher than the thermal pressure is a strong hint for the
dynamical nature of the ISM. Whereas such investigation is definitely worthwhile to get an impression
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Fig. 1.2: Example pressure curve for a two phase ISM, taken from Cox (2005). Shown is the thermal pressure
as a function of number density. Indicated as red and green are the stable phases with the unstable phase
marked blue.

of the possible phase structure of the ISM, its dynamical nature has to be investigated, whenever being
interested in the real structure of the ISM.

1.1.2 Turbulence in the ISM

Returning to the fact that supernovae appear to be the dominant source for dynamical pressure in the
ISM it is clear that the energy input occurs at large spatial scales (as compared to the scales where
kinetic energy is usually dissipated). This, however, is just the typical paradigm for turbulent flow. For
the latter it is assumed that there is a source of fluctuation energy at large spatial scales much larger
than the dissipation scales. Another important aspect of the interstellar plasma is the fact that particle
collisions are, due to the low densities, very rare. This leads to very high Reynolds numbers for the major
part of the ISM. With high Reynolds numbers being the basic ingredient for turbulence (classically, it is
thought that they have to exceed a value ofRe= 103) it is, thus, to be expected that the ISM is highly
turbulent.

This turbulence, again, has a strong impact on the propagation of cosmic rays. These are scattered
at the inhomogeneities of the interstellar magnetic field. Due to this scattering their propagation can
essentially be described by a convection-diffusion equation, where the diffusive part depends strongly on
the form of the turbulence.

Before making the direct connection between turbulence and interstellar medium, it is necessary
to introduce the basic ideas about turbulence. This will be done in the next section section, where
the discussion will be started with the historical Kolmogorov turbulence. At the end I will introduce
intermittency and show recent ideas about MHD turbulence.

1.2 Turbulence

Since in this work we analyse the properties of turbulence in interstellar space, it is sensible to start out
with the ideas of turbulence in this context. In a way a large part of the astrophysical community is still
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stuck in 1941 when Kolmogorov published his famous paper in which he introduced the Kolmogorov
spectrum (see Kolmogorov 1941b). This is due to the fact that people only use this omnidirectional
spectrum for the description of turbulent fluctuations in interstellar space (see e.g. Spangler 1991). Tur-
bulence research, however, made clear that there is more information available in the velocity field than
just this spectrum. For this the so-calledstructure functionsare analysed. These also contain information
about theintermittencyof the fluctuations.

Very important is the fact that changes with respect to, e.g., the intermittency of the fluctuations
cause only very marginal effects for the omnidirectional spectrum (even for turbulence in a magnetised
medium), whereas the higher order structure functions strongly depend on the intermittency. Therefore,
a plain description of the turbulent field via the omnidirectional spectrum is not sufficient to include all
aspects of the turbulence. In particular it will not be possible to obtain all the physics in an experiment,
when just investigating the omnidirectional spectrum.

Terms likestructure functionsand intermittencywill become more clear for the reader when dis-
cussing the evolution from the Kolmogorov model to more recent ideas for turbulence. First we will
discuss the former of these terms in order to get a little different view of the Kolmogorov model. These
discussions will concentrate on incompressible, hydrodynamic turbulence – not until the end of the sec-
tion will we get to the transition to general MHD turbulence.

1.2.1 The Navier-Stokes Equation

In the following sections we will show that despite the fact that the spectrum is the aspect of turbulence
that is usually referred to it is connected to just one of a whole hierarchy of structure functions. It will
also be shown that the spectrum is easily derived from an evaluation of the structure functions. While this
was not the way it happened historically, it shows the assumptions required for this result very clearly
and will therefore be used in this work.

The first step on the road from structure functions to the spectrum was actually accomplished by Kol-
mogorov himself in his third 1941 turbulence paper (Kolmogorov 1941a). This first step is the derivation
of the so-calledfour-fifth law. For this Kolmogorov started out from the Navier-Stokes equation:

∂tv + v · ∇v = −∇p+ ν∇2v + f (1.1)

∇ · v = 0

This form of the Navier-Stokes equation has a forcing termf (t, r) included, which has to be present in
stationary turbulence in order to replenish the energy dissipated by viscosity. Apart from that here we
consider an incompressible fluid. The equation itself possesses many symmetries of which four are of
major interest for turbulence research. Disregarding the forcing term (or rather assuming, that it will
behave in the same way as the rest of the equation) one can easily find these to be:

• Symmetry under spatial translations

• Symmetry under time translations

• Rotational symmetry

• Scaling symmetry

These are clearly only valid, whenever no fixed spatial or temporal boundaries are present. The last of
these symmetries is of utmost importance when calculating the hierarchy of structure functions in the
Kolmogorov picture as will become clear later. Disregarding the forcing term again, the Navier-Stokes
equation is invariant under the scaling:

r 7→ λr v 7→ λhv t 7→ λ1−ht (1.2)
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Fig. 1.3: Homogeneous turbulence produced by flow through a grid (Photograph T. Corke and H. Nagib – see
also in van Dyke (1982)).

only in the caseh = −1. If, however, the Reynolds number is very high, the viscous term tends to zero
and the Navier-Stokes equation becomes symmetric under the above scaling law for an arbitrary value of
h.

All these symmetries only hold if the initial conditions and the boundaries also correspond to the
given symmetries, which is generally not the case. Therefore one has to introduce different assumptions
in order to regain some of the above symmetries:

1.2.2 Assumptions

Apart from therecoveryof the symmetries in a statistical sense there are some important hypotheses
which are used in the derivation of the structure functions. Before proceeding any further we, therefore,
first discuss these assumptions. As stated above, the first assumption is that the symmetries in the Navier-
Stokes equation are restored in a statistical sense for high Reynolds numbers and far away from any
boundaries.

As an example for this assumption one can examine grid-generated turbulence. Regarding Fig. 1.3
where such a turbulent system is shown, it is apparent that the influence of the boundaries vanishes far
away from these. It also seems justified to say that the turbulence has become homogeneous and isotropic
in a statistical sense at that point.

In the same sense (far away from boundaries, at small spatial scales, . . . ) we will later on use the
assumption that the turbulence behaves self-similar in a statistical sense. With the definition:

δv(r, l) = v(r + l) − v(r) (1.3)

for the velocity increments, the postulated small-scale homogeneity then corresponds to the indepen-
dence ofδv(r, l) from r over a small volume.

The assumption of self-similarity, then, corresponds to the proposal of a scaling law for these velocity
increments like the one holding for the Navier-Stokes equation. Namely, we assume:

δv(r, λl) = λhδv(r, l) (1.4)

This assumption is made under the same conditions as the assumption about the reappearance of the
symmetries – i.e.r and l have to be small.
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Fig. 1.4: Drag coefficient CD for the flow around different kinds of spheres as indicated in the figure taken
from Blevins (1984).

The next hypothesis is strongly based on observations. From experiments on the drag force on
different kinds of bodies (see e.g. Fig. 1.4) it is found that the drag force at high Reynolds numbers
becomes constant. To discuss this assumption in general one has to look at the equation for the dissipation
of kinetic energy:

ε ∝
1
2

U3

L
=

U2/2
L/U

(1.5)

whereU is the velocity at the large spatial scaleL. If this relation is to be constant for the high Reynolds
numbers, which are encountered in turbulent flow in general (and in astrophysical fluids in particular) it
is clear that in one circulation time, which would be aboutL/U, a finite fraction of the kinetic energy of
the fluid has to be transferred (by nonlinear interactions) to scales sufficiently small for this energy to be
dissipated. This gives us some idea about the speed of this process.

Apart from this we assume that the forcef driving the fluctuations is active only at large scales far
away from the dissipation range. Moreover we assume that the system reaches a statistically stationary
state fort → ∞. Using these assumption we can get an idea about the structure functions and the
spectrum of isotropic, incompressible, hydrodynamical turbulence. The first stage on the way to these
results, however, is the so-called four-fifth law by Kolmogorov himself.

1.2.3 The Four-Fifth Law

As will become clear along the way, the four-fifth law is one of the most important laws in turbulence at
all. This is because it is an exact, non-trivial law, which can be derived from the Navier-Stokes equation
directly. To be able, however, to understand the derivation of this law we first have to go back to the
Navier-Stokes equation.

For this there are several known conservation laws, the most important of which – for our purpose –
is the energy conservation. First we introduce the notation:

E ≡

〈
1
2
|v|2
〉

and Ω ≡

〈
1
2
|ω|2
〉

(1.6)

for themean energyper mass and themean enstrophy, respectively, whereω indicates the vorticity. With
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this the energy balance equation for the Navier-Stokes equation can be found to be:

d
dt

E = −2νΩ ≡ ε (1.7)

where the quantity:

−
d
dt

E (1.8)

is referred to as the mean energy dissipationε.
Another conservation law relevant for discussions on turbulence is the energy budget for different

scales. For this wavenumber space is subdivided into two domains. This means that for each quantity
f (r) we distinguish the two parts:

f <K ≡
∑
k≤K

f̂keık·r and f >K ≡
∑
k>K

f̂keık·r (1.9)

wherek is the wavenumber. HereK is some wavenumber dividing wavenumber space in two parts.
Beware that these functions are not Fourier transforms of the original functions but rather the high-pass
and low-pass filtered versions of these.

Now such functions can be defined for all relevant quantities included in the Navier-Stokes equa-
tion. Apart from the velocity itself we will decompose the following quantities according to the above
prescription:

EK ≡
1
2

〈
|U|2
〉
=

1
2

∑
k≤K

|v̂k|
2 kinetic energy at large scales

ΩK ≡
1
2

〈
|ω|2
〉
=

1
2

∑
k≤K

k2|v̂k|
2 Cumulative enstrophy up to K

FK ≡
1
2

〈
| f <K · v

<
K |

2〉 =∑
k≤K

f̂ k · v̂2
−k Energy injection up to K

ΠK ≡
〈
v<K ·

(
v<K · ∇v>K

)〉
+
〈
v<K ·

(
v>K · ∇v>K

)〉
Cumulative enstrophy up to K (1.10)

For the above definitions keep in mind that we are talking about an incompressible medium – therefore
we do not have to take variations for the density into account. Using these definitions one can find (Frisch
1995, see e.g.) an energy budget equation which shows the evolution of the cumulative kinetic energy
between the lowest wavenumber and wavenumberK:

∂tEK + ΠK = −2νΩK + FK (1.11)

In this equation also the nonlinear interactions become important: the rate of change of the cumulative
energy of wavenumbers up toK is equal to the energy injected up to this wavenumber minus the energy
dissipated in this regime minus the flux of energyΠK .

If we now use the assumptions from section 1.2.2 we can greatly simplify the above equations. For a
statistically stationary state we first neglect time derivatives. Moreover, we assume the energy injection
to be confined to scales withk < K. With the further assumption of an infinite Reynolds number the
above conservation equations can be combined to give:

lim
ν→0
ΠK = ε (1.12)

leading to the result that the energy which is transported from the large to the small scales is equivalent to
the energy dissipated at the small spatial scales. This does, however, tell us nothing about how the energy
is transported trough wavenumber space – we did not use any assumption on the locality or non-locality
of energy transport in wavenumber space.
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From Eq. (1.12) one can finally deduce (for the actual derivation see Frisch 1995) the probably most
important results about incompressible hydrodynamic turbulence. This result is Kolmogorov’s four-
fifth law which states that the third order longitudinalstructure functionis given by the mean energy
dissipation per unit mass as:

S3(l ) =
〈(
δv‖(r, l)

)3
〉
= −

4
5
εl (1.13)

This result is exact and very general as compared to many other results in turbulence theory. All theories
considering incompressible turbulence with driving at large spatial scales have to fulfil this equation.
Note also that, observations, e.g., in wind tunnels demonstrate that this result is obviously reproduced
in nature. A result of this form is so far only deducible for the third order structure function. It even
gives a convenient handle for measuring higher order structure function to great accuracy, when they are
expressed as a ratio compared to the third order structure function.

1.2.4 Structure Functions for Kolmogorov Turbulence

Many of the additional results derived by Kolmogorov and others, while based on the exact four-fifth law
usually need more assumptions to be satisfied (not all of which are justified as we will see later).

One such result is the scaling exponent for the presumably self-similar velocity field. When applying
Eq. (1.4) to the four-fifth law, one finds the scaling exponent to be:

h =
1
3

(1.14)

when a self-similar flow can safely be assumed. This assumption also leads to a scaling law for the
longitudinal structure functionsof orderp:

Sp(l ) ∝ lp/3 = lζp (1.15)

where:
Sp(l ) ≡

〈
[(v(r + ln) − v(r)) · n]p

〉
=
〈
|δv‖(r, l)|p

〉
(1.16)

is defined as the spatial average of thep-th power of the velocity difference over the distancel with n
indicating a unit vector. One important result concerning the structure functions is the power law for the
energy spectrum of the fluctuations. It can be shown (see e.g. Frisch 1995) that the energy spectrum is
directly connected to the second-order structure function. Whenever the second-order structure function
scales as a power law with exponentq the spectrum can be shown to have a power law with exponent
−(q+ 1). Thus, we find withq = 2/3 according to Eq. (1.15) in this context for the energy spectrum of
the fluctuations:

E(k) ≡
dE
dk
∝ k−5/3 (1.17)

Be aware that the connection between the energy spectrum of the fluctuations and the second order struc-
ture function holds irrespective of the assumption about the self-similarity of the turbulence. Therefore,
the point we have to stress about the energy spectrum is that the information contained in this is equiv-
alent to the information contained in the second order structure function. For more accurate knowledge
about the velocity fluctuations one has to consult the higher order structure functions. Whereas the spec-
trum found in experiments is consistent with the Kolmogorov spectrum, these higher order structure
functions do pose a problem with regard to the Kolmogorov model. This is illustrated in Fig. 1.5, where
the first structure function exponents obtained using the extended self-similarity (see Benzi et al. 1993)
are compared to the predictions from the Kolmogorov model. Clearly the deviation becomes more and
more severe with the increasing order of the structure function. It is also evident that the second order
structure function yielding the spectral slope does not contradict the Kolmogorov model whereas the
higher order structure functions do so. Nowadays it is thought that the reason for this discrepancy is the
neglect of intermittency in the Kolmogorov model. This will be elaborated in the next paragraph where
we will introduce some important aspects of the more recent turbulence theory.
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p

ζ p

Fig. 1.5: Exponents ζpfor the structure functions for high Reynolds number flow past a cylinder taken from
Benzi et al. (1993) given as a function of the order p. The data points show values for the exponents computed
from the observations using different methods. The solid line shows the Kolmogorov scaling.

1.2.5 From Kolmogorov to the Present

The results given in the preceding sections can mainly be found in Kolmogorov’s works in 1941 (see
Kolmogorov 1941a,b). Since then there was a huge development in turbulence theory. Not all aspects
of turbulence are understood today, but there were issues neglected in his theory from 1941, which have
meanwhile been found to be important. The most important aspect, which was taken into account only
later, is the so-calledintermittency.

Thus, the question arises: what is intermittency and how does it change the behaviour of a turbulent
system?

Basically in an intermittent fluid system there are large patches of space with a quiescent behaviour,
which are interrupted by patches of chaotic, irregular flow. From this definition it becomes clear that an
intermittent system cannot be self-similar and vice versa (at least not in the sense discussed above) – this
is due to the fact, that the small scales in a quiet region are very different from those in the irregular flow.

1.2.6 Theβ Model

We can catch a first glimpse of intermittency in turbulence by theβ model introduced in Frisch et al.
(1978). In the Kolmogorov picture the cascade is assumed to be self-similar and, thus, has to be space
filling. Landau, however, pointed out, that if dissipation is intermittent – as later on became clear in
laboratory experiments – one would have to reconsider this picture. Therefore, a space filling cascade
was not likely anymore.

A simple method to realise an intermittent form of the Kolmogorov picture is the so-calledβ model.
In this model the cascade is assumed to be not space filling anymore, but otherwise the model closely
sticks to the cascade idea of Kolmogorov. To get an idea of the new features of the model we included
Fig. 1.6 and Fig. 1.7 to illustrate the difference between the two cascade models. In Fig. 1.6 the cascade
(going from top to bottom) is space filling. Each individual eddy decays into several smaller eddies (four
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Fig. 1.6: Visualisation of the Kolmogorov cascade. Here we show three steps of the classical cascade. We
start with one large-scale eddy (top). This decays into four smaller eddies filling up the same space as the
initial eddy (middle). Finally these eddies again decay into smaller ones (bottom).

in this case), which fill up the space previously filled by the larger eddy.
In theβ model, in contrast to that, each large eddy decays into smaller ones, which do not fill the

entire space formerly occupied by the larger eddy anymore. Therefore, the energy contained in the
large eddies is restricted to smaller and smaller fractions of the available space, thus, yielding a very
intermittent signal.

The name of this model is closely connected to the idea that the smaller eddies resulting from the
larger ones do not fill up the entire available space: This is because the space filling factor of the resulting
eddies is designated asβ (with 0 ≤ β < 1).

When the eddies on the largest scales have sizesl0 then then-th daughter-eddy has – in the simplified
picture that all eddies decay in the same way – a size ofl = rnl0, wherer is the ratio of the sizes of the
daughter-eddy to themother-eddy. From this we find, thatn = ln(l/l0)/ ln(r). Therefore, the fraction of
space,pl , containing n-th generation eddies as compared to the space filled with eddies of sizel0 is:

pl = β
n = β

ln(l/l0)
ln r (1.18)

In this context Frisch et al. introduce the so-called codimension 3− D given by:

pl
!
=

(
l
l0

)3−D

=⇒ 3− D =
ln β
ln r

(1.19)

whereD is thefractal dimension of space occupied by the eddies of sizel. Thus, the probability to find
an eddy of sizel is connected to a fractal dimension, whereD = 3 regains the Kolmogorov picture of the
daughtereddies to fill all the available space. The structure functions obtained in this extension of the
Kolmogorov model naturally differ from those in the former picture:

In theβ model the fluctuation energy at scalel becomes:

El ∝ v2
l pl = v2

l

(
l
l0

)3−D

(1.20)
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Fig. 1.7: Visualisation of the intermittent cascade in the β model. As in the classical cascade we start with
one large-scale eddy (top). This decays into smaller eddies, which are not space filling anymore (middle).
After another step of the cascade we end with again smaller eddies, which fill even less of the available space
(bottom).

Then the spectral flux becomes by dimensional arguments:

πl =
El

tl
=

v3
l

l

(
l
l0

)3−D

(1.21)

This has, according to Eq. (1.12), to be the same as the energy dissipation at the smallest scalesε ∝ v3
0/l0.

The scale independence of the spectral fluxπl thus, leads to:

vl ∝ v0

(
l
l0

)h

with h =
1
3
+

3− D
3

(1.22)

This may be viewed as a scaling exponent for the velocity field, which obviously differs from the one
found for the Kolmogorov picture – but forD = 3 the Kolmogorov exponents is again restored. From
this one finds the structure functions to be:

Sp(l) =
〈
δvp
‖
(r, l)

〉
∝ vp

0

(
l
l0

)ζp

mit ζp =
p
3
+ (3− D )

(
1−

p
3

)
(1.23)

This also means that the spectral index becomes different from the one in the Kolmogorov picture. From
the second order structure function the spectrum becomes:

E(k) ∝ k−
` 5

3+
3−D

3

´
(1.24)

This means, that in theβ model the classical Kolmogorov spectrum is the shallowest spectrum possible.
For a more intermittent model, however, the spectrum becomes steeper than that. Theβ-model represents
intermittency in a quite simplified fashion. Especially the fact that intermittency is essentially only
detected in the dissipation range is not taken care of in this model. There are many more elaborate
models available (see Frisch 1995, for further reading), which e.g. use multifractals to gain a better fit to
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the observed (or numerically computed) structure functions. Here, we will only introduce one additional
model, which predicts the structure functions surprisingly well. This seems not only to be the case for
incompressible hydrodynamic turbulence, but also in compressible MHD turbulence there is so far no
contradiction to the She-Leveque model discussed in the following paragraph.

1.2.7 The She-Leveque Model

The She-Leveque model introduced by She and Leveque (1994) is a model based on the connection
of the dissipative structures (vortex tubes in incompressible turbulence and shocks for the compressible
equations) to the scaling in the inertial range. In the Kolmogorov (1941a) model the mean value of the
energy dissipationε (see above) is a central quantity in deriving the turbulence models. However, a
footnote-remark in the first edition of Landau’s book on fluid mechanics together with Lifshitz about
the lack of intermittency in the Kolmogorov theory was aiming especially at the fact that the dissipation
seemed to be intermittent, which was clearly not attributed for in that model. In later editions the remark
found its way into the main text (see e.g. Landau and Lifshitz 1987) – it is popularly known asLandau’s
remark.

This issue was tackled by Kolmogorov himself in his 1962 paper (Kolmogorov 1962), where he
introduced the so-called refined similarity hypothesis. In his 1941 work he used the assumption that the
average energy dissipation was constant to obtain the relation:

ε = const. ∝
v3

l

l
=⇒ vl ∝ (εl )

1
3

The same formula was then used not for the constant average energy dissipation but for the energy
dissipationεl at scalel. This can be viewed as the energy dissipation averaged over a ball of radiusl.
When we also allow for scaling of the energy dissipation instead of taking the mean as in the Kolmogorov
(1941a) model we arrive at:

vl ∝ (εl l )
1
3 −→ Sp(l) =

〈
δvp(r, l)

〉
∝ lζp (1.25)

with some unknown scaling exponentζp. What is essentially named therefined similarity hypothesisis
the assumption that the velocity and the dissipationεl are statistically independent. With the assumption
of some so far unknown scaling behaviour of the local energy dissipationεl given as:〈

ε
p
l

〉
∝ lτp (1.26)

we find for the scaling of the velocity differences over a distancel:〈
δvp

l

〉
∝ lζp with ζp =

p
3
+
τp

3
(1.27)

where the exponent is complemented byτp/3 as compared to the results of the Kolmogorov (1941a)
model. When all statistically averaged quantities at scalel depend only on the mean dissipation we
regain the classical picture, whereτp = 0.

Whereas it soon became clear that the latter was supported neither by experimental nor numerical
studies, the models prior to She and Leveque (1994) had to use adjustable parameters to determineζp

andτp. She and Leveque (1994) were the first to give a physical meaning to the parameters introduced
to obtain these variables. The main assumption in their work is that there exists ahierarchy of fluctuation
structuresε(p)

l being defined by the moments of the dissipation as:

ε
(p)
l =

〈
ε

p+1
l

〉
〈
ε

p
l

〉 (1.28)
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Hereε(0)
l is the mean energy dissipation. This is naturally scale-independent as was also used in the

Kolmogorov (1941a) model. The otherextreme characteristic structureof the hierarchy is:

ε(∞)
l ≡ lim

p→∞

ε
p+1
l

ε
p
l

(1.29)

This is associated to the filamentary structure of the dissipation. It is the intensity of the most inter-
mittent structures of the dissipation. For incompressible Navier-Stokes turbulence as discussed in She
and Leveque (1994) these structures are vortex tubes – one-dimensional structures in three-dimensional
space. By dimensional arguments this is just:ε(∞)

l ∝ δE∞/tl whereδE∞ represents the kinetic energy to
be dissipated andtl is the time scale for this dissipation. Being interested in the scaling behaviour of the
velocity increments one has to discuss the scaling behaviour ofε(∞)

l . She and Leveque (1994) assume
normal scaling fortl , thus, setting a uniform time scale for the dissipation of various intensities. This
time scale can then be estimated as in the Kolmogorov model:

tl =
l
vl

ε∝v3
l /l
∝ l(εl )−

1
3 = ε−

1
3 l

2
3 (1.30)

where the average dissipation was used for the definition of the time scaletl . With this we can discuss
ε(∞)

l . For the most intermittent structures we assume that the energy to be dissipated isδv2
0. This means

that the most dissipative structures are connected to discontinuities in the velocity field. From Eq. (1.30)
and the above arguments we find:

ε(∞)
l ∝ ε

(
l
l0

)− 2
3

∝ l −
2
3 (1.31)

By the definition ofε(∞)
l this directly translates into:

ε(∞)
l = lim

p→∞

〈
ε

p+1
l

〉
〈
ε

p
l

〉 = lim
p→∞

l τp+1

l τp
∝ l −

2
3 (1.32)

Concentrating on the exponents, one has for the scaling of the dissipation:

lim
p→∞

(
τp+1 − τp

)
= −

2
3

=⇒ τp = −
2
3

p+C0 (p→ ∞) (1.33)

HereC0 indicates the codimension of the intermittent dissipative structures. This can be found by the
application of a Legendre transform and is for incompressible Navier-Stokes turbulence set toC0 = 2 by
the authors. This choice becomes clear, when taking into account that the most dissipative structures in
this case are vortex tubes of dimension 1.

The next important step in the derivation by She and Leveque (1994) is the assumption that there
exists a relation like: 〈

ε
p+1
l

〉
ε(∞)

l

〈
ε

p
l

〉 = Ap

 〈
ε

p
l

〉
ε(∞)

l

〈
ε

p−1
l

〉
β

, 0 < β < 1 (1.34)

Here the constantsAp are independent of the scalel, but there is no need for them to be universal. The
authors motivate the above relation with the expectation thatε

(p+1)
l andε(p)

l are somehow connected to
each other. However, the symmetry yielding this relation is not yet known. From this assumption we
directly arrive at:

l τp+1−τp+
2
3 ∝ l β(τp−τp−1+

2
3 ) (1.35)

yielding:

τp+1 − τp +
2
3
= β(τp − τp−1 +

2
3

) (1.36)
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Fig. 1.8: Structure functions in two different turbulent flows taken from Herweijer and van de Water (1995) –
the numbers 2 and 4 indicate the flow conditions given in Table 1 in their manuscript. The dash-dotted line
shows the prediction by the Kolmogorov model. The dotted line shows the results by a multifractal model and
the dashed line represents the She-Leveque model.

This is for p → ∞ identical to the asymptotic law given in Eq. (1.33) and allows us to write for the
general scaling of the dissipation:

τp = −
2
3
+ 2+ f (p) (1.37)

Using this in Eq. (1.36) yields a difference equation forf (p):

f (p+ 1)− (1+ β) f (p) + β f (p− 1) = 0 (1.38)

the only nontrivial solution of which isf (p) = αβp. The constants in this equation are fully determined
by the conditionsτ0 = 0 andτ1 = 0. The former of these, according to the authors, holds, when a finite
support of the dissipation is assumed for the limit of zero viscosity. The latter condition follows in turn
from the fact thatε(0)

l is scale independent as was discussed above. With the resulting constantsα = −2
andβ = 2/3 the final result for the scaling exponent of the dissipation reads:

τp = −
2
3

p+ 2

(
1−

(
2
3

)p)
(1.39)

from which the velocity structure functions can be derived to be:

〈
δvp

l

〉
∝ l ζp with ζp =

p
9
+ 2

(
1−

(
2
3

)p/3
)

(1.40)

The excellent fit of this result to experimental data of turbulence is illustrated in Fig. 1.8. The given data
were observed by Herweijer and van de Water (1995) in laboratory turbulence. They are compared to
the predictions by Kolmogorov, a multifractale and the She-Leveque models. Clearly the She-Leveque
model gives the best fit to the data of all these models.
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In summary, the above She and Leveque (1994) model nicely describes the features of incompressible
turbulence even for structure functions of high order. A major benefit of this model is that all parameters
used in the model are physical parameters, which are known ab initio for the system under consideration.

The model and its physical interpretation was further extended by Dubrulle (1994), who gave a more
general form for the exponent of the structure functions:

ζp

ζ3
= (1− ∆)

p
3
+
∆

1− β
(1− βp/3) (1.41)

where the factors∆ andβ depend on the codimension of the dissipative structures and their characteristic
of intermittency. From this Boldyrev et al. (2002) deduce for the exponent of the structure function for
supersonic compressible MHD turbulence:

ζp

ζ3
=

p
9
+ 1−

(
1
3

)p/3

(1.42)

which they find to be consistent with their numerical simulations. This corresponds to a fluctuation
spectrum of the form:E(k) ∝ k−1.74 which is a little steeper than the famous Kolmogorov spectrum.

Apart from the She and Leveque (1994) model there are many more models for the structure functions
which are also introduced in Frisch (1995). These are, however, not introduced here, because we only
intended to give a brief overview of what has changed since 1941.

The most important remark to be kept in mind is that it is not possible to distinguish between the
different models via a comparison of the omnidirectional spectra. A discrimination between the different
models is, however, most easily done on the basis of the higher order structure functions – for measure-
ments with sufficiently small error bars the fifth order or higher structure function can be expected to
discriminate one or the other of the models. It is, however, not easy to obtain such high order structure
functions, since very good statistics is necessary to be able to obtain these. This posed a major problem
in the past, which was finally solved by Benzi et al. (1993), where they introduced theextended self-
similarity. They claim that the ratio of the slopes of the structure functions remains the same as in the
inertial range also in the dissipation range. Thus, with the unity slope of the third-order structure func-
tion, the ratio of the other structure functions with the third order structure function nicely yields their
exponents even for low Reynolds number turbulence. This is also widely used when evaluating structure
functions for numerical simulations.

With this we conclude the discussion of the most important aspects of homogeneous turbulence. Now
we will discuss the other field important for this work – the interstellar matter.

1.3 Interstellar Turbulence

After the detailed discussion about turbulence and structure functions we are left to combine the classical
picture of the interstellar medium with what was introduced in the preceding section. There we learnt
that in MHD turbulence one can expect that the energy injected at large scales is transmitted to the
damping scales in an intermittent cascade. For the ISM this means that the kinetic energy injected into
the ISM by supernova explosions and other dynamical processes is eventually transformed into small-
scale fluctuations, which are dissipated in shock waves, in current sheets or in vortex tubes. These
dissipative structures are not space filling but show some degree of intermittency.

This can, interestingly, be connected to actual observations. When discussing the phase structure
of the ISM we did not yet include the star forming regions in our considerations. These can be said to
exhibit an intermittent behaviour: The densest clouds in interstellar space, which are the regions where
new stars are born, show a filamentary structure.

This fact helps to illuminate one of the mysteries concerning the star formation rate. In the classical
analyses the star formation rate was usually determined by considering gravitationally collapsing clouds.
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Fig. 1.9: Electron density power spectrum as a function of wavenumber, taken from Armstrong et al. (1995).

Without taking turbulence into account one can compute the Jeans limit giving the minimum mass of a
gas cloud that would collapse in a characteristic time. This time, however, implies star formation rates
much higher than the one actually encountered in nature.

This contradiction was first resolved by the introduction of a turbulent pressure, which was used to
inhibit the rapid gravitational collapse of a dense cloud (see e.g. Lizano and Shu 1989). Recently, this
indirect contribution of turbulence to the star formation process was changed to a more active role for
the turbulence (see e.g. Elmegreen 1991): The idea that the small star forming clumps of matter are
intermittent structures of the ISM turbulence rather than freely decaying clouds in thermal equilibrium
with their environments seems to spread in the astrophysical community.

All in all turbulence seems to become more and more important after the initial discussions on a
turbulent ISM initiated by von Weizsäcker (1951) was soon abandoned. This abandonment is under-
standable, when taking into account that the discussion of intermittency in turbulence had not yet been
started at that time. With regard to the picture of homogeneous turbulence preferred at that time the
observations clearly did not correspond to the picture of global turbulence: instead of a homogeneous
distribution of small vortices observations showed what would nowadays be known as an intermittent
distribution of molecular clouds. Therefore, a more or less static model of the ISM became quite popular
at that time. In that picture the contribution of supernovae was mainly in heating and ionising the diffuse
ISM. Even in the 70s the observation of supersonic linewidth was not initially connected to turbulence.

This changed at the end of the seventies, when observation techniques became better. At that time
power law correlations were found for different structures in the ISM. Moreover, the smallest scales were
already accepted to be turbulent because correlations were found at these scales in radio observations.
With the availability of infrared observations astronomers also found filamentary structure in clouds
thought so far to belong to the diffuse type. Therefore, turbulence in the ISM became apparent at more
and more spatial scales. In 1995, there was for the first time a fluctuation spectrum available for many
spatial scales. This spectrum was compiled by Armstrong et al. (1995) for the density fluctuations and
is shown in Fig. 1.9. For a more detailed account of the observation of interstellar turbulence see e.g.
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Elmegreen and Scalo (2004).
All in all the fact that the interstellar medium is highly turbulent seems to be accepted nowadays by

most astronomers. With this acceptance also a different view of the influence of supernova explosions for
the ISM started to spread, namely that a major part of the energy of a supernova explosion is transferred
into kinetic energy at large spatial scales. This is ‘transported’ to the damping scales via nonlinear
interactions. Remembering that the dynamical energy density is much higher than the thermal energy
density it is clear that the energy budget of the ISM is strongly influenced by the turbulence.

Taking all this into account, it is clear that turbulence can not be neglected when discussing the spatial
structure of the interstellar medium. It is especially interesting, how strong the intermittency actually is
in that environment. Together with that, the study of the turbulence statistics is of great importance to
supplement models for particle transport in the Galaxy.

There is, however, a major difference between laboratory turbulence and ISM turbulence since in
the latter case there are many additional influences to be taken into account. Therefore, modellers have
to ask themselves which are the most important of these influences and how to describe the interstellar
plasma correctly. This aspect is investigated in this work.



Chapter 2

The Physical Model

As we learned in the preceding introduction there are many different kinds of plasmas in interstellar
space. They reach from those small systems like planetary magnetospheres to the dilute warm gas filling
most of the space between the stars of our Milky Way1 Therefore, it is clear that there is no general
physical model, by which all these phases can be described in the same way. We rather have to find the
model scenario, which is best suited for the scientific purpose at hand. Here we are interested in mod-
elling the turbulence of the ISM with special regard to the statistics and the spatial structure. Moreover,
all the investigations will be done for limited spatial regions. This implies the use of a periodic box for
the simulations, since we do not know appropriate boundary conditions for such a region. Furthermore,
a periodic box is best suited for the evaluation of the turbulence statistics, keeping in mind that many
quantities have to be evaluated in Fourier space.

2.1 Mathematical Description of the ISM Plasma

Before actually discussing the mathematical description of the ISM we first have to check, whether it
is justified to speak of the plasma state of the ISM. For this there are several conditions to be checked.
A first characteristic of a plasma is the so-called Debye shielding effect. This is related to the fact that
charges in a plasma arrange themselves in such a way as to shield any electrostatic field originating from
other charges. A measure for the corresponding distance over which the shielded charge can still be felt
by other charged particles is the Debye lengthλD:

λD =

√
ε0kB

nee2 (2.1)

For this shielding effect to be of any significance we have to demand even the smallest length scalel
under consideration to exceed the Debye length:

l � λD (2.2)

This relation is fulfilled for all the interstellar environments under consideration in this work. Even for
the hottest and at the same time must dilute phase of the ISM – namely the hot coronal gas – the Debye
length can be estimated using the numbers from table 1.1 to be of the order ofλD ' 4·106 m. This length
has to be compared to the smallest spatial scale to be resolved in the simulation, which is aboutl ' 0.08
parsecs for the simulations with the highest spatial resolution. Therefore, Eq. (2.2) is clearly fulfilled for
the ISM.

For the Debye shielding to be effective in a plasma, however, there also has to be a sufficiently high
number of electrons inside a Debye sphere. This condition amounts to:

neλ
3
D � 1 (2.3)

1Further out there are even larger structures, but here we are only interested in the ISM of our own Galaxy.
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which is also nicely fulfilled for all phases of the ISM taken into account – all of these have more than 105

electrons inside a Debye sphere. Therefore, from the point of view of the possibility of Debye shielding,
all phases of the ISM have to be regarded as a plasma.

Another important aspect of plasmas is the possibility for the electron gas to oscillate with respect to
the heavier particles. The angular frequency of this collective oscillation of the electrons is known as the
electron plasma frequency:

ωpe =

√
nee2

meε0
' 56

√
neHz (2.4)

with ne given in particles per cubic meter. For this independent motion of the electrons to be possible at
all it is necessary that the damping of these oscillations by with neutrals is sufficiently weak. Therefore,
we have to fulfil the additional constraint:

ωpe

2π
> νen (2.5)

whereνen is the electron-neutral collision frequency, which can approximately be given as:

νen ' nn|ue− un|σen (2.6)

Due to the high number density in these regions the collisions frequency can be expected to be highest
in molecular clouds. Moreover, the interaction cross sectionσen is highest for the lowest temperatures.
These also occur in molecular clouds. Therefore, we can be sure that if the above condition holds for
molecular clouds it will also be satisfied for other phases of the ISM. Even though the authors discuss
interaction of protons and neutrons, from Glassgold et al. (2005) the cross section can be estimated never
to exceed a value of 3·10−17 m2. With this in mind it is clear that the collision frequency is much smaller
than the electrons plasma frequency, which even for the low electron densities in molecular clouds will
never fall belowωpe = 103 Hz, thus, allowing for collective electron fluctuations.

Since we are now sure to be dealing with an actual plasma environment, the next question is how
to model this plasma mathematically. There is a whole range of possibilities for the mathematical de-
scription of a plasma ranging from kinetic approaches to overall fluid pictures. For numerical turbulence
research with the available computer hardware, however, some kind of fluid description is necessary, be-
cause a fully kinetic description does not yield sufficiently high Reynolds numbers to gain any statistical
information on the turbulence. For such a description to be valid, however, one important condition is
that the typical scale for spatial variations is large as compared to the kinetic scales of the fluid.

A good proxy to check this condition is the collisional mean free path, which is generally given as:

lc = (nσc)
−1 (2.7)

This length scale is signifying the typical distance traversed by a particle in the plasma before it is
scattered by a collision. For a fluid description of the medium to be valid this length has to be shorter
than the smallest spatial scales over which any significant gradient can be expected in our simulations.
As will be seen in the later discussions the strongest shocks even show gradients from one cell to the
other. Therefore, it is the size of the numerical cells, which has to exceed the collisional mean free path
for a fluid description to be sensible in the case of ISM turbulence.

When taking into account that, e.g., the H+-H scattering cross section,σc, typically decreases for
higher energies (see Glassgold et al. 2005) – corresponding to higher temperatures – the dilute ISM
will be the phase with the longest collisional mean free path. Thus, as long as the dilute ISM can
be described as a fluid, this will also be the case for the denser phases of the ISM. This is especially
true when taking into account that in the denser phases molecules determine the actual scattering rate,
which are much more efficient with respect to the scattering process. Taking into account that the lowest
densities considered in this work never drop below 104 particles per cubic metre, with the scattering cross
section already for H+-H scattering always in excess of 3· 10−19 m2, the collisional mean free path will
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never exceed 3.3 · 1014 m. This value is still an order of magnitude below the smallest spatial scale of
0.08 pc resolved in our numerical simulations. For the coronal gas, however, things might be different.
With the very low number densities and the extremely high temperatures of the gas a fluid description
would be questionable at such small scales as investigated in this work. This phase, however, will not be
considered here.

Another condition for the validity of the fluid description is connected to the fact that charged parti-
cles gyrate around the magnetic field lines. For a fluid description to be valid the radius of these orbits
has to be much shorter than the smallest scales over which a gradient occurs in the numerical simula-
tions. The corresponding quantity to be compared to the spatial scales in the numerical simulations is
the so-called gyroradius, which can be given in the form:

r =

√
mβ

2µ0e2n
(2.8)

whereβ = 2µ0p/B2 which is estimated to be 0.3 for the equilibrium ISM. Clearly the gyroradius for the
ions will be highest for the more dilute phases of the ISM. But even for the coronal gas the gyroradius
does not exceed values of 107 m, which is still considerably shorter than the smallest spatial scales
resolved in the numerical model. With the fact being established that we can safely use a fluid description
for our plasma, we now have to discuss how this model would exactly look like.

2.1.1 The General Fluid Description

Even within the framework of a fluid description for plasmas, however, there are many different realisa-
tions available for this description. What becomes available when the conditions for a fluid description
are given, is an infinite hierarchy of fluid equations for each particle speciesα present. The foundation
for this hierarchy is the fundamental transport equation:

∂ fα
∂t
+ v · ∇ fα +

1
mα

Fα · ∇v fα =

(
δ fα
δt

)
(2.9)

known as the Boltzmann equation. Herefα is the particle distribution function in six-dimensional phase
space for particle speciesα. Additionally Fα indicates the forces acting on the particles. Thiskinetic
equation describes the evolution of the particle distribution function for each individual species. It con-
tains the full information about the distribution of an ensemble of particles in six-dimensional phase
space consisting of the independent spatial (r) and velocity (v) coordinates. The right-hand side of the
Boltzmann equation contains the collisional interactions between the different particle species.

From the Boltzmann equation the full set of fluid equation for the individual particle speciesα are
obtained by computingall its velocity moments. The resulting infinite hierarchy of balance equations
still contains the same information as the Boltzmann equation. These equations are coupled to each other
by the fact that the balance equation corresponding to thekth velocity moment also contains ak + 1th
moment term. For actual application to a scientific problem, therefore, this hierarchy has to be truncated
by means of a physical assumption for one of the moments offα. The equations usually taken into
account in a fluid description are the mass, momentum and energy balance equations, representing the
first three moments of the Boltzmann equation:

∂ρα
∂t
+ ∇ · (ραuα) = Sα (2.10)

∂(ραuα)
∂t

+ ∇ · (ραuαuα) + ∇ · Pα − nα < F >α = Mα (2.11)

1
γ − 1

∂pα
∂t
+

1
γ − 1

∇ · pαuα + (Pα · ∇) · uα + ∇ · qα = Eα (2.12)
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With only these fluid equations taken into account the hierarchy is truncated by means of a physical
assumption for the heat flow vectorqα. This we will assume to vanish for the ISM. As for the Boltzmann
equationFα indicates external forces acting on the fluid, of which only the electromagnetic forces will be
taken into account. This will be discussed later on, when the MHD equations are derived. The parameters
used in the above fluid equations are defined as follows:

nα(r) ≡
∫

v
fα(r, v)d3v Number density (2.13)

ρα(r) ≡ mαnα(r) = mα

∫
v

fα(r, v)d3v Mass density (2.14)

uα(r) ≡
1

nα(r)

∫
v
v fα(r, v)d3v Flow velocity (2.15)

Pα(r) ≡ ρα(r)
∫

v
(v − uα(r))(v − uα(r)) fα(r, v)d3v Pressure tensor (2.16)

pα(r) ≡
1
3

∑
i

Pαii (r) =
1
3
ρα(r)

∫
v
|v − uα|2 fα(r, v)d3v Scalar pressure (2.17)

qα(r) ≡
1
2
ρα(r)

∫
v
|v − uα(r)|2(v − uα(r)) fα(r, v)d3v Heat flow (2.18)

Here (v − uα(r)) is the difference between the velocityv of a particle of typeα and the average velocity
uα of the corresponding species. Apart from these fluid quantities there are also the source terms to be
specified. These are defined as:

Sα ≡ mα

∫
v

(
δ fα(r, v)

δt

)
coll
d3v

Mα ≡ mα

∫
v
v
(
δ fα(r, v)

δt

)
coll
d3v (2.19)

Eα ≡
1
2

mα

∫
v
|v − uα|2

(
δ fα(r, v)

δt

)
coll
d3v (2.20)

These terms describe sources or sinks of density, momentum and energy due to collisions and processes
like ionisation and recombination. Thus, the only missing quantities for the description of astrophysical
fluids are the external forces for the momentum equation. Disregarding gravitational interactions and
radiation pressure the only remaining external forces relevant in astrophysical contexts are the electro-
magnetic ones.

2.1.2 Forces

The termFα describes the forces acting on the fluid of speciesα. These can be of internal or external
nature – either forces effected by other fluid elements or forces acting on the system from the outside. A
typical example for an external force is the gravitation acting on the system from a large mass like the
Sun or the galactic centre. This, however, will not be taken into account in the following, since it is only
of minor influence for the local structure of most phases of the interstellar medium. Only for molecular
clouds gravitational interaction in the form of self-gravity of the plasma might become important. As
will be discussed in chapter 4, however, this would only become important for dense cloud cores, which,
however, are not investigated in this work. Apart from that self-gravity is – like the kinetic equation –
numerically very expensive to handle. Investigation of self-gravitating turbulence has to be left as a task
for a future generation of supercomputers.

The only remaining forces being of interest for the interstellar matter are, therefore, the electromag-
netic forces. These are described via theLorentz-forceacting on the individual particles:

FL = q(E + v × B) (2.21)
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The two additional unknowns – namely the electric (E) and the magnetic field (B) – can be deduced from
the Maxwell equations:

2.1.3 Maxwell Equations

The equations governing electromagnetic phenomena are the famous Maxwell equations. For the case
of a vacuum these are:

∇ · E =
ρc

ε0
Coulomb’s law (2.22)

∇ × B −
1
c2

∂E
∂t
= µ0J Ampère’s law (2.23)

∇ × E +
∂B
∂t
= 0 Faraday’s law (2.24)

∇ · B = 0 No magnetic monopoles (2.25)

Here J andρc are the electromagnetic current density and the charge density, respectively. In a highly
conductive medium like the ISM the term commonly known as thedisplacement current∂E

c2∂t can be
omitted whenever the typical velocities are much lower than the speed of light. Because this is always
the case in all the phases of the ISM to be taken into account in this work this assumption is used
henceforth for the remainder of this work.

Whereas it is possible to solve the coupled set of the fluid and the Maxwell equations this is neither
necessary nor desirable for the ISM. One important disadvantage of the full Maxwell equations is the fact
that electromagnetic waves have to be taken into account. Just by arguments of computational cost these
have to be left out of our considerations. Generally, however, we are rather interested in plasma waves
than in electromagnetic waves. Therefore, we will use a reduced system to describe electromagnetic
phenomena as will be introduced later on. Before this, however, we will discuss how to merge the
system of fluid equations for the different species into a reduced system of equations.

2.2 Macroscopic Equations

In principle it is possible just to take the derived fluid equations and integrate them for each species
separately. This, however, is simply not necessary for most parts of the ISM since many species are
so rare, that they are of no importance for the global dynamics and can, therefore, be left out of the
considerations. Regarding their abundance it is definitely electrons, hydrogen atoms and protons, which
are the most important species for the major parts of the ISM – in the colder parts of the ISM also
hydrogen molecules can become important.

With the number of species reduced to those relevant for the problem under consideration it is still
possible to simplify the system of equations even further. For the MHD equations, for example, the idea
is to describe the plasma as one conducting fluid instead of describing the behaviour of the individual
species separately. For this description adding the contributions of each individual species results in
variables like the total mass and the total momentum. This means that by computing the sums of the
single species equations introduced above we will arrive at the MHD equations.

Unfortunately, it is not a priori clear whether this is a good approximation for all phases of the ISM
since the coupling between neutrals and charged particles might be too weak to justify the usage of the
MHD equations for the more dilute phases. This problem can easily be visualised by the discussion of
the typical speeds. For a neutral fluid signals are propagated typically with the speed of sound. For
a charged fluid there are several wave propagation speeds. For example theAlfvénspeed describes an
additional wave propagation mode being possible due to the presence of a magnetic field:

vA =
B0
√
µ0ρ

(2.26)
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Obviously the value for the Alfv́en speed depends on some mass densityρ. However, depending on the
strength of the coupling this is either the overall density in the case of strong coupling or the density of
the charged particles, when the coupling is weak. Therefore, it can be expected that describing a medium
with weak coupling between ions and neutrals via the MHD equations will yield unphysical results. It
is, however, not initially clear whatweak couplingmeans in this context.

To solve this problem, the easiest thing is to consider two distinct fluids instead of one: one fluid for
the neutral particles and one for the charged particles connected by the appropriate interaction terms. In
such an approach, however, the major difficulty lies in finding the appropriate source terms – and in a
correct numerical implementation. In this work we intend to compare the results obtained via the two
different approaches. Therefore, we introduce a two-fluid description – summing up charged and neutral
fluids respectively – for the investigation of interstellar turbulence.

In the subsequent paragraphs we will derive the corresponding equations for the two-fluid approach.
The MHD equations are easily found from these by the sum of the resulting equations. We start our
discussion by defining averaged quantities, which will be described by the macroscopic equations.

2.2.1 Macroscopic Variables

Instead of considering each plasma species itself it is very convenient to use macroscopic quantities. In
the case of the two-fluid approach this means that we will only investigate the sums of the quantities for
the neutral particles and the charged particles via their corresponding equations. For the species to be
averaged, we will now define the important average quantities.

First, for each of the examined fluids the mass density is just the sum of all individual mass densities:

ρ =
∑
α

ρα =
∑
α

mαnα ρn =
∑
β

ρβ =
∑
β

mβnβ (2.27)

whereρ is the mass density of the charged particle fluid andρn correspondingly designates the mass
density of the neutral particles. Thus,α andβ indicate the charged and the neutral species respectively.
For the charged particle species the same is done for the electric charge density, which is referred to as
ρc (see also Eq. (2.22) to distinguish it from the mass density:

ρc =
∑
α

ρc
α =

∑
α

qαnα (2.28)

where each particle of speciesα carries the chargeqα. The next quantity to define are the mean convec-
tion velocities for the two fluids, which are given as:

ρu =
∑
α

ραuα ρnun =
∑
β

ρβuβ (2.29)

These velocities are actually the mass-weighted mean of the individual species velocities. From these
definitions we find the expression for the electric current density to be:

J =
∑
α

qαnαuα (2.30)

For the charged particle species these general relations can be simplified due to the high conductivity in
interstellar space:

2.2.2 The Charged Particle Fluid

Whenever being interested only in the fluid of the charged particles – either in the case where no neutral
particles are present2 or in the case where they are considered separately – the above quantities are

2Which is a good assumption, e.g., for the solar wind in the inner heliosphere or for the coronal gas in the ISM.



2.2. MACROSCOPIC EQUATIONS 27

modified in the following way:

ρ = mene+mini Mass density (2.31)

ρc = ene− eni Charge density (2.32)

u =
ρeue+ ρiui

ρe+ ρi
Mean fluid velocity (2.33)

J = eniui − eneue Electric current density (2.34)

where we only took electrons and one singly charged positive ion species into account. From the defini-
tion of the electric current density it is possible to obtain an expression for the velocities of the individual
species. A brief manipulation of Eq. (2.34) yields for those:

ui =
µ

me

ρ

ρi
u +

µ

eρi
J (2.35)

ue =
µ

mi

ρ

ρe
u −

µ

eρe
J (2.36)

whereµ = memi/(me+mi) is the reduced mass.
One important point about interstellar matter is the high conductivity of the plasma in interstellar

space. That means that local charge increases on spatial scales larger than the Debye-length are quickly
removed by high currents. Therefore, electrons and ions can safely be assumed to have the same number
density on such scales:

ne− ni

ne+ ni
� 1 (2.37)

Thus, for the remainder of this work the resulting equations will by simplified by usage of:

n = ne = ni (2.38)

By this we also find a more simple form for the current density:

J = en(ui − ue) (2.39)

This equation can now be used to rewrite the equation for the average velocity of electrons and ions. We
start by writing:

u = ui −
ρe

ρ
(ui − ue) = ue+

ρi

ρ
(ui − ue) (2.40)

Then we get, using Eq. (2.39):

u = ui −
ρe

ρ

(
J
en

)
= ue+

ρi

ρ

(
J
en

)
(2.41)

Thus, we find for the individual velocities of ion and electron fluids using the assumption of high con-
ductivity:

ui = u +
me

eρ
J (2.42)

ue = u −
mi

eρ
J (2.43)

With all this in mind we will now derive the equations describing the newly introduced variables.
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2.3 Continuity Equation

To get an idea of how the individual fluid equations are obtained, we will briefly show the corresponding
procedure using the example of the continuity equation. As stated above this is done via adding the
equations describing the mass density of all species to be described by a single fluid equation (that is
either the neutral or the charged fluid). For the example of a charged particle fluid consisting of electrons
and one ion species this sum reads:

∂(ρi + ρe)
∂t

+ ∇ · (ρiui + ρeue) = Si + Se (2.44)

Despite the fact that ionisation processes become important in the dilute phases of the ISM, this task is
left for the future. Because the main focus is on molecular clouds here, it appears to be a well-justified
assumption (see T́oth 1994; Hosking and Whitworth 2004). Therefore the corresponding sources and
sinks of mass density can be set to zero in this context. With the above definitions of the macroscopic
fluid variables, we therefore find for both fluids:

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.45)

∂ρn

∂t
+ ∇ · (ρnun) = 0 (2.46)

In general the fluid equations corresponding to the higher order moments of the Boltzmann equation are
derived in the same way. The derivations become, however, increasingly complicated with the growing
order and are, therefore, given in appendix B. The results of these considerations are stated in the
following paragraphs.

2.4 Momentum Balance

As in the case of the continuity equation that for the momentum balance for the charged particle fluid
basically results from an addition of the corresponding equations for the individual species. In the case
of the momentum balance and the balance equations of higher order, however, this is complicated by the
fact that in general the sum of the individual pressure tensors does not correspond to the overall pressure
tensor. While this is less critical when the individual species velocities are very similar to the average
fluid velocities the derivation is performed in a form as general as possible.

Fortunately, we do not have to include any external forces for the neutral fluid, since gravitation will
have no major impact on the system (and self-gravity is omitted from the discussion). As discussed
above, the remaining forces for the charged particle fluid are, thus, merely the electromagnetic ones.

The only additional obstacle in this derivation are the source terms connecting the individual species
momentum equations. For these we will only take elastic scattering and charge exchange reactions into
account, both being described by interaction terms of the same form.

Taking all this into account, we find for both momentum equations:

∂ (ρnun)
∂t

+ ∇ · (ρnunun) + ∇ · Pn = νnρ(u − un) +
µ

e
(νin − νen) J neutral fluid (2.47)

∂ (ρu)
∂t
+ ∇ · (ρuu) + ∇ · P +

1
µ0

B × (∇ × B) = −νnρ(u − un) −
µ

e
(νin − νen) J charged fluid (2.48)

For the momentum balance of the charged fluid we used the additional assumption that the displacement
current can be neglected for ISM plasmas.

Comparing the two equations it becomes clear that the source terms on the right-hand sides balance
each other as expected with the source terms stemming from mutual interactions. The last of the source
terms given in Eqs. (2.48) and (2.47) is a frictional force aligned to the electric current. It is of the order
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of the frequency of neutral-charged particle collisions divided by the electron gyrofrequency (see Song
et al. 2001) and can generally be neglected for ISM plasmas: with the typical magnetic field strength of
5 · 10−10 T for the ISM we find an electron gyrofrequency ofωe ' 88 Hz which is orders of magnitude
higher than typical collision frequencies.

Equation (2.48) still contains the magnetic field. Therefore we also have to find an equation describ-
ing the evolution of the magnetic induction. For this we consider the generalised form of Ohm’s law in
the next section.

2.5 The Induction Equation

As was already stated above, the magnetic field is described in its most general form by usage of
Maxwell’s equations (2.22) - (2.25). Of these Faraday’s law (2.24) describes the temporal evolution
of the magnetic field.

∂B
∂t
= −∇ × E (2.49)

Thus, next we need an equation either describing the time evolution of the electric field or one linking
the electric field with the magnetic induction. At this point it is customary to decide for the latter. Thus,
we useOhm’s law, which relates the electric field to the current density, instead of solving the complete
set of Maxwell’s equations.

In its usual form, that is when neglecting the temporal evolution of the current density and the pres-
sure terms, Ohm’s law takes the form (see e.g. Bittencourt 2004):

ηJ = E + u × B (2.50)

with η indicating the resistivity. In appendix B.2 this relation is shown to apply also to a multi-fluid
description of the system. Solving Ohm’s law for the electric field and inserting the result in the above
equation yields:

∂B
∂t
= ∇ × (u × B) − ∇ × (ηJ) (2.51)

Again making use of the fact that for interstellar plasmas the displacement current is negligible yields
a simplified version of Amp̀ere’s law. Using this in the above equation we end up with an induction
equation describing the temporal evolution of the magnetic field depending only on the fluid velocity (of
the charged particle fluid) and the magnetic induction:

∂B
∂t
= ∇ × (u × B) −

1
µ0
∇ × η(∇ × B)︸             ︷︷             ︸

(∇η) × ∇ × B + η∇ × (∇ × B)︸           ︷︷           ︸
∇2B

(2.52)

= ∇ × (u × B) +
1
µ0

[
η∇2B − (∇η) × (∇ × B)

]
(2.53)

For the interstellar medium the terms containing the resistivityη ∝ 1/σ are negligible due to the ex-
traordinary high conductivityσ. Apart from that the first term on the RHS can be transformed into a
conservative form:

∇ × (u × B) = −∇ · (uB − Bu) (2.54)

Thus, we arrive at a hyperbolic equation for the magnetic induction:

∂B
∂t
= −∇ · (uB − Bu) (2.55)

So far we derived seven equations to describe eight quantities – the mass density, the three components
of the momentum density, the three components of the magnetic induction and the pressure. Therefore,
to close the system we need at least one additional equation. This equation has to couple the pressure to
the system of equations derived so far.
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2.6 Closure of the System

To couple the pressure to the system of equations derived so far there are, in principle, several methods
at hand. Either we use an equation of state connecting the pressure directly to the other variables or we
have to use an equation describing the temporal evolution of the pressure. The latter is the natural choice,
because the equations of state should be somehow contained in such an evolution equation.

2.6.1 Internal Energy

As for the other evolution equations it is also possible to derive an evolution equation for the pressure of
the neutral and the charged fluid by adding the respective evolution equations. As is shown in appendix
B.3.2 the evolution of the pressure of the charged particle fluid is determined by the following somewhat
lengthy equation that takes interactions between the charged fluid and the neutral fluid into account:

1
γ − 1

∂p
∂t
+

1
2
∂

∂t

(
ρu2) + ∇ · (( 1

γ − 1
p+

1
2
ρu2 + P

)
u
)
+ ∇ · q (2.56)

= −ηJ2 − νnρu · (u − un) −
µ

e
(νin − νen) J · (2u − un) −

(
µ2

e2n

(
νin

mi
+
νen

me

))
J2 + J · E + Ei + Ee

Here we already included the source terms stemming from the momentum equation explicitly; the source
terms for the single species pressure equationsEi andEe still have to be specified. This equation de-
scribes the evolution of the thermal energy density of the system. This can be seen as follows. The
internal energy in its most general form forν mols of a polyatomic gas is given as:

eInt = νcVT (2.57)

whereT is the corresponding temperature andcV is the specific heat for constant volume. The latter
depends on the structure of the molecules or atoms which the gas under consideration is comprised of.
The most general form is:

cV =
3
2

R+
1
2

RNRot+ RNVib (2.58)

whereNRot andNVib indicate the number of rotational and vibrational degrees of freedom. Only the first
term describing the kinetic degrees of freedom is present for all gases. The others only occur for gases
comprised of molecules. All this information is usually shifted into the adiabatic exponentγ. This is
connected to the specific heat in the following way:

γ =
cv + R

cv
=⇒ cv =

R
γ − 1

(2.59)

With this, we finally find for the internal energy:

eInt =
1

γ − 1
(ne+ ni)kBT =

1
γ − 1

p (2.60)

where on one hand we made use of the relations

R= NakB, and νNa = n (2.61)

together with ideal gas law:
p = (ne+ ni)kBT (2.62)

Deviations from the latter are known to occur only for denser gases and can, thus, be safely neglected
for applications to interstellar space. Unfortunately the above pressure equation is not of conservative
form. Apart from the fact that pressure is not a conserved quantity, this also becomes clear from the
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source terms of the above equation. There, the Ohmic heating termηJ2 results from a conversion of
kinetic energy of the individual charged fluids into heat and, thus, pressure. Therefore, even for a system
without external energy sources the pressure is not conserved.

For the correct representation of a shock in a numerical scheme it is, however, necessary for all
evolution equations to be conservative. This is illustrated in Leveque (1992), where it is shown that for
a non-conservative form of the equations a numerical scheme yields erroneous results for the case of
Burgers’ equation. This is also connected to the fact that the entropy must not decrease with time.

2.6.2 Total Energy Density

The conservative equation, which contains the above evolution equation for the thermal energy density,
is the equation for the temporal evolution of the total energy density. Whereas the pressure equation
in the form given above describes the time evolution of the thermal energy density, for the total energy
density also the kinetic and magnetic energy have to be taken into account. With these energies being
defined as:

ef luid =
ρ|u|2

2
and emag=

|B|2

2µ0
(2.63)

we have to find an equation for the overall energy density:

e=
ρ|u|2

2
+
|B|2

2µ0
+

p
γ − 1

charged fluid (2.64)

en =
ρ|un|

2

2
+

pn

γ − 1
neutral fluid (2.65)

This equation is obtained in much the same way as the other macroscopic equations. By summing of the
individual equations we obtain an equation for the global fluid under consideration. For this we have to
make use of the equations obtained so far. All in all the computation is straightforward but quite tedious.
This is especially so due to the large number of interaction terms. With the actual computation given in
appendix B.3 we finally arrive at:

∂e
∂t
+ ∇ ·

((
e+

B2

2µ0
+ P·

)
u + q−

1
µ0

(u · B)B + ηJ ×
B
µ0

)
= −Sien (ionised fluid) (2.66)

∂en

∂t
+ ∇ · (en + P·)un + ∇ · qn = Sien (neutral fluid) (2.67)

where the interaction terms are given as:

Sien =νnρun · (u − un) +
µ

e
(νin − νen) J · un

+ 2
kB

γ − 1
ρi

νin

mi +mn
(Ti − Tn) + 2

kB

γ − 1
ρe

νen

me+mn
(Te− Tn)

+

(
νin

mi +mn

)
1
n

(
ρi(u − un) −

µ

e
J
)2
+

(
νen

me+mn

)
1
n

(
ρe(u − un) +

µ

e
J
)2

(2.68)

These equations together with the definitions of the overall energy densities finally closes the system
of equations. When summing up the equations for the two-fluid system one arrives again at the clas-
sical MHD equations. Before continuing with the discussion of the numerical implementation of these
equations, however, we first will address additional issues concerning the physical model.

2.7 External Influences

What we will discuss in this section are the external influences on the plasma analysed in this work. As
was already mentioned we will neglect any gravitational forces in order to be able to concentrate on the
influence of turbulence itself.
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For this, one has to include one important external influence onto the system namely the energy
inherent in the turbulent fluctuations:

2.7.1 Turbulence Driving

As was discussed in the introduction what is generally known as turbulence is the decay of large-scale
eddies into successively smaller ones. This means that the kinetic energy has to be transferred to such
large scales in the first place. As was also explained in the introduction it is generally thought, that
supernova explosions and other such forceful events supply the energy for the fluctuations observed in
interstellar space. There are different approaches to capture this energy input in a numerical model.

The approach nearest to what is apparently realised in nature is to use Sedov explosions (see Sedov
1959) to model individual supernova events. This is done in several works with the aim to simulate the
global galactic structure (see e.g. de Avillez 2000). This approach is suited for such large-scale models,
but it would not be sensible to use when examining small-scale structures like molecular clouds.

In the latter case the scale on which supernova release their energy into the plasma is often larger
than the extent of the computational domain. Therefore, the energy input has to be modelled indirectly in
these cases. For this the considerations about turbulence can be taken into account. Within the scenario
that the fluctuation energy is transported to successively smaller scales, the idea for the energy input into
the computational domain would be to put in some fluctuations on large scales stemming from the energy
input at even larger scales.

Ultimately, the energy input is applied in a wavenumber space representation with energy being put
into the system only at the smallest wavenumbers corresponding to the largest spatial scales available
for the computation. Considering that it is found that fluctuations in the inertial range are mainly in-
compressible only solenoidal velocity fluctuations are put into the system. This is to mimic the fact that
the fluctuations occurring on the scales under consideration are being transported by the turbulence from
even larger scales.

The numerical implementation of this driving force will be discussed in the next chapter. Here it was
only important to introduce the idea of a continuous forcing of the fluctuations at large spatial scales.

Together with this input of energy into the computational domain we also have to consider dissipa-
tion. Otherwise the energy content of the system would not be limited at large times. This means, that
some way to dissipate the energy has to be introduced. Whereas the ideal MHD equations do not contain
any dissipation, it already becomes important when using a two-fluid description for the plasma. More-
over, the numerical scheme used in this work introduces additional dissipation. Both types of dissipation
essentially convert kinetic energy into thermal energy. In this case, the problem is how to get rid of the
thermal energy.

2.7.2 Heating and Cooling Processes

Due to the continuous input of kinetic energy, which is converted into thermal energy we have to find
means to get rid of the unphysical, excessive heat. In the interstellar medium, heat, generated e.g. by
dissipation near interstellar shocks, is usually radiated away by line radiation. Especially at temperatures
up to∼ 104K the cooling of interstellar plasma mainly occurs due to line radiation of different neutral
atoms or molecules. The most important of these coolants are discussed in Penston (1970) and Dalgarno
and McCray (1972). According to these authors the cooling function for interstellar matter can in its
most general form be given as:

Λ(x,T) =
∑

i

nxi

nH

[
ne

nH
λe(xi ,T) + λH(xi ,T)

]
(2.69)

where the sum is over all relevant species. Here the rationxi/nH gives the relative abundance of the
species under consideration, which is kept constant for the computations (nucleosynthesis by stars and
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Fig. 2.1: Cooling function as used in this work. For temperatures up to 104.2K values as given in Penston
(1970) are used. The cooling curve for higher temperatures is approximated as suggested in Gerritsen and
Icke (1997).

release of, thus, enriched plasma into the interstellar medium is disregarded here). The factorx represents
the ratio of the electron number density to the number density of hydrogen nuclei. For our purpose this
will also be kept constant. In this work we will use the individual cooling functionsλH(xi ,T) and
λe(xi ,T) given in Penston (1970). Above some 104.2 K, however, most elements become ionised. The
corresponding equilibrium ionisation for the various elements in interstellar matter is computed, e.g.,
in Cox and Tucker (1969) from which these authors also deduce the cooling function for temperatures
above 104.2 K. Connecting both regimes gives the cooling rates for a broad range of temperatures, the
result of which is the classical cooling curve depicted, e.g., in Dalgarno and McCray (1972).

For the temperature range up to 104.2 K we use the explicit values tabulated in Penston (1970). The
cooling function for higher temperature is then approximated by the parameterisation given in Gerritsen
and Icke (1997). This yields the final form of the cooling function given in Fig. 2.1.

Similar to the line cooling processes interstellar matter is also heated via external radiation absorbed
in the gas. Dominant in that respect is the absorption of ultraviolet radiation absorbed by dust grains
present in the ISM. Other processes like heating due to cosmic rays and X-rays is negligible for the
major part of the interstellar matter (see Wolfire et al. 1995).

The energy absorbed by the dust grains is then transfered to the gas by collisions with the dust
particles. Bakes and Tielens (1994) give for the corresponding heating rate of the interstellar gas:

nHΓ = 1.0 · 10−25nεG0 J m−3 s−1 (2.70)

Hereε is the fraction of FUV radiation absorbed by the dust grains, that is converted to the heating of
the gas and is mainly determined by the neutral fraction of the gas under consideration. This fraction is
estimated by Bakes and Tielens as:

ε =
4.9 · 10−2

1+ 96
(
G0T1/2/ne

)0.73 +
3.7 · 10−2(T/104)0.7

1+ 2 · 102
(
G0T1/2/ne

) (2.71)

wherene is the electron density. The variableG0 occurring in both equations is the incident FUV field
normalised to the estimate of the local interstellar value offγ = 1.6 · 10−6J m−2 s−1 (see Habing 1968)
which is assumed to be about 1.7.
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The above formula has, however, to be used with care, since it is, according to the authors, only valid
for a restricted range of parameters – i.e. it should not be applied to temperatures above 104 K. This also
becomes clear from the fact that not onlyε increases without bounds for increasing temperature, but also
by the fact that it becomes greater than unity, which is in conflict with its interpretation as an efficiency.

2.7.3 The Equation of State

When it is safe to assume an isothermal medium, which would exist for very efficient cooling, the treat-
ment becomes much simpler. In such a case the energy equation can be shown to be reduced to an
equation of state of the form:

p = csρ (2.72)

wherecs is the isothermal speed of sound. While this would reduce the numerical cost of the method,
since the integration of the energy equation together with any cooling terms can be omitted, the medium
has to be initialised very careful. Without an energy equation the system can not self-consistently con-
verge to the correct pressure values. This is discussed in more detail in chapter 4, where we describe the
molecular cloud medium using an equation of state.

2.7.4 Simulation Time Scale

Regardless if the system of equations is closed by an equation of state or an evolution equation for the
total energy density, we can expect the system to advance eventually to an equilibrium. In the case of
radiative cooling there will exist a balance between the input of kinetic, external heating and the heat
output by radiative cooling. For the isothermal case it is rather an equilibrium between the input of
kinetic energy and natural as well as numerical dissipation.

Thus, one can expect that the system will eventually advance to a balance between energy losses
(either radiative losses or just losses of kinetic energy) and kinetic energy input. At that stage there will
be a finite amount of kinetic energy stored in the system. This balance yields one of the most important
time scales for turbulence. According to Frisch (1995) the so-calledlarge-eddy turnover timeis given
as:

τ =
L
v0

with L =
(v0)3

ε
and v0 =

(
2
3

E

)1/2

(2.73)

whereE is the overall energy contained in the numerical domain andε is the corresponding overall
dissipation rate. This time scale describes the characteristic interaction time of eddies at the largest
scales. Dimensionally it is obvious that this classical estimate was adopted for incompressible turbulence.
For compressible turbulence one has to find another estimate. Sticking to the idea to use some ratio
of a characteristic scale to a characteristic velocity, we will use the same argument as it is given in
Padoan et al. (2004). With the turbulence driving being applied for wavenumbers up tokL/2π =, the
largest turbulent scale is approximatelyL/3, whereL is the length scale of the numerical domain. Using
additionally the average velocity ¯u as the characteristic velocity, we find:

τD =
L
3ū

(2.74)

In high Mach number turbulence any of these time scales can be much shorter than the sound crossing
time for a sound wave to traverse the computational domain. This is due to the fact that the interaction
of the large eddies determines the dynamics of turbulence. For a turbulence simulation it is essential for
the simulations to run for several of these time scales.



2.8. THE NUMERICAL MODEL 35

Variable with normalisation constant

Length x = L x̃ L [m]
Mass m = m0 m̃ m0 [kg]

Number density n = n0 ñ n0 [m−3]
Temperature T = T0 T̃ T0 [K]

Density ρ = ρ0 ρ̃ ρ0 [kg m−3] = m0n0

Gas pressure P = P0 P̃ P0 [Pa] = n0kBT0

Velocity u = u0 ũ u0 [m s−1] = cs =
√

kBT0/mp

Time t = τ t̃ τ [s] = L/u0 = L/cs

Magnetic induction B = B0 B̃ B0 [T] =
√
µ0ρ0cs

Current density J = J0 J̃ J0 [C m−2 s−1] = B0/(Lµ0) = cs/L
√
µ0/ρ0

Energy density e = e0 ẽ e0 [J m−3] = ρ0c2
s

Energy sources Se = Se
0 S̃e Se

0 [J m−3 s−1] = e0/τ = ρ0c3
s/L

Table 2.1. Normalisation factors for the evolution equations.

2.8 The Numerical Model

When implementing a physical model as described in the preceding sections into a numerical program,
there are several issues to consider. Naturally the evolution equations derived above cannot be solved
in a general way using continuous variables when using a numerical solver. Rather all variables have to
be computed on a spatial and a temporal grid. Other issues to be taken into account are the boundary
and initial conditions. Finally as many numerical quantities as possible should be close to unity. This
issue stems from the time when float precision was quite low, but still quantities of the order unity might
help to improve the precision of the numerical solution. In this section we will handle the above points
starting with the derivation of a normalised form of the equations.

2.8.1 Normalised Form of the Equations

The equations introduced in the previous chapter are being normalised in order to obtain quantities of
order unity for the numerical computation. This means that all variables are split into a dimensionless
variable of order unity and a normalisation constant. In our case there are only four independent vari-
ables with respect to this normalisation procedure. These, however, can be chosen at will as long as they
correspond to the environment under consideration. The base units used for the normalisation in this
work are the mass of the hydrogen atom, a typical number densityn0 of the environment under consid-
eration, the length of the computational domain and some typical speed. A typical choice for the latter
is either the speed of sound or the Alfvén speed. These correspond to choosing the temperature or the
magnetic field as base units, respectively. In this work we will use the speed of sound as the base unit
for the velocity. This is a justified choice when taking into account that in molecular clouds the plasma
is mainly neutral. Apart from that the temperature is usually much better known than the magnitude of
the magnetic induction.

Both types of normalisation constants are given in table 2.8.1 with the independent normalisation
constants at the top. Table 2.8.1 also shows how the other variables depend on the independent four base
units.

It might seem surprising at first sight that such a basic unit as time will not be chosen as an indepen-
dent normalisation constant. Spatial scales and typical velocities are, however, more easily supplied –
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therefore, a typical time scale is found by dimensional analysis to be:

τ0 =
L
v0

(2.75)

As mentioned above it is under different circumstances also sensible to use the Alfvén speed as the base
unit for the velocity. This choice, however, does not change the normalised form of the equations at
all. The only difference is that the dimensionless variables have to be initialised differently. This will
clarified when discussing the initial conditions. Before, however, we will first discuss the corresponding
set of normalised, dimensionless evolution equations.

The Dimensionless Form of the Equations

With the normalisation of the individual variables introduced above we also have to normalise the equa-
tions describing the temporal evolution of these variables. The actual derivation of these normalised
evolution equations is again shifted to the appendix – the interested reader will find it in appendix C.
Here we will only discuss the results, which will be the equations used in the numerical scheme. Starting
with the continuity equations these are:

∂ρ

∂t
= −∇ · s (ionised fluid) (2.76)

∂ρn

∂t
= −∇ · sn (neutral fluid) (2.77)

∂s
∂t
= −∇ ·

(
ss
ρ
+

(
p+

B2

2

)
1 − BB

)
+ F (ionised fluid) (2.78)

∂sn

∂t
= −∇ ·

(
snsn

ρn
+ pn1

)
+ Fn (neutral fluid) (2.79)

∂B
∂t
= −∇ ·

(
sB− Bs

ρ

)
(2.80)

where we left out the tilde for these normalised quantities. Here1 is the unit matrix and the abbreviation
sk = ρkvk is the momentum density used for both fluid species.

This system of equations has to be closed by either an energy equation or an equation of state. For
the former the normalised form is found in appendix C to be:

∂e
∂t
= −∇ ·

((
e+ p+

B2

2

)
s− (s · B)B

)
1
ρ
+ S (ionised fluid) (2.81)

∂en

∂t
= −∇ · (en + pn)

sn

ρ
+ Sn (neutral fluid) (2.82)

which together with the definition of the normalised total energy density:

e=
s2

2ρ
+

B2

2
+

1
γ − 1

p (2.83)

closes the above system of equations. For the cases of vanishing external heating or an isothermal
medium, however, it is not necessary to supply an energy equation at all. In the former case Eqs. (2.81)
and (2.82) become equivalent to an adiabatic equation of state:

p ∼ ργ (2.84)

which also holds in the same form for dimensionless quantities. For the case of an isothermal medium it
is sufficient to use:

p =
c2

s

u2
0

ρ
here
= ρ (2.85)
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which allows to directly replace the pressure by the mass density, when the speed of sound is chosen as
the base velocity. What is still missing now is the explicit normalised form for the different source terms
F andS used in the above equations.

2.8.2 Normalised Source Terms

The source terms given in the general not yet normalised form in the momentum and energy equations
are:

F = −F ien+ Fext Fn = F ien+ Fext (2.86)

S = −Sien+ Sext Sn = Sien+ Sext (2.87)

HereF ien andSien are the interaction terms arising from elastic collisions and charge exchange reactions.
HereSext contains the external heating and cooling terms introduced above, which naturally only arise
in the energy equation. External forcesFext will not be taken into account in this work. Moreover, we
have to mention that external heating and cooling will only be used in for the single fluid description.
Therefore, we will discuss collisional and external source terms separately.

External Sources

The normalised forms of the external heating and cooling terms can be found quite easily. As described
in detail in appendix C the dimensionless form of the source terms is found to be (beware that we will
designate the normalised source terms in the same way as the dimensional ones):

Sext = (n2
HΛ − nHΓ)

τ0

e0
= (n2

HΛ − nHΓ)
L

m0n0u3
0

(2.88)

By this we find the normalisation factors forΛ andΓ:

Sext = ρ
2Λ

L

m0u3
0

− ρΓ
Ln0

m0u3
0

(2.89)

whereρ indicates the normalised mass density. This shows that whenever external source terms play a
role the normalisation has to be fixed. This is very similar with regard to the internal sources as will be
seen in the following.

Internal Sources

The interaction terms for the two-fluid description are given in section B.5 of the appendix as:

F ien =νnρ(u − un) +
µ

e
(νin − νen) J (2.90)

Sien =νnρun · (u − un) +
µ

e
(νin − νen) J · un

+ 2
kB

γ − 1
ρi

νin

mi +mn
(Ti − Tn) + 2

kB

γ − 1
ρe

νen

me+mn
(Te− Tn)

+

(
νin

mi +mn

)
1
n

(
ρi(u − un) −

µ

e
J
)2
+

(
νen

me+mn

)
1
n

(
ρe(u − un) +

µ

e
J
)2

(2.91)

with νn given according to Eq (B.13) and the individual scattering frequencies given as:

νxn =
ρn

mx +mn
|ux − un|σxn (2.92)

with x representing either electrons or ions. This representation nicely applies for single particle inter-
actions, but can not be easily applied to the fluid picture. This is because the interaction cross section
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depends on the relative velocities of the colliding particles. This velocity, however, does not directly
correspond to the velocity of a fluid element. It is rather somehow connected to this and the temperature
of the fluid. Hence the scattering frequency for a fluid is usually rather given as:

νxn = ρn
〈σxnvxn〉

mx +mn
(2.93)

where an average value ofσxnvxn is used, instead of any velocity and temperature dependence. For
molecular clouds this constant can according to Hosking and Whitworth (2004) be estimated as〈σxnvxn〉 =

1.69·10−15 m3 s−1. Taking all this into account we find for the normalised form of the momentum source
term:

F̃ien =
(
νnρ(u − un) +

µ

e
(νin − νen) J

) L

ρ0u2
0

=νn
L
u0

ρ

ρ0

(u − un)
u0

+
µ

e
(νin − νen)

L
u0

J
1

ρ0u0

=ν̃nρ̃(ũ − ũn) + (ν̃in − ν̃en)
µ

e
1

ρ0u0

u0

L

√
ρ0

µ0
J̃

=ν̃nρ̃(ũ − ũn) + (ν̃in − ν̃en)
µ

eL
√
µ0ρ0

J̃ (2.94)

Here the first term can be expressed by the normalised quantities introduced above and a normalise
scattering frequency ˜νn. The second term, however, already introduces some additional normalisation
factors.

The normalised scattering frequency can be found from Eq. (2.93) which has just to be multiplied
by L/v0 as shown in the above equation:

ν̃xn = νxn
L
u0
=

ρn

mx +mn
〈σxnvxn〉

L
u0
= ρ̃n
〈σxnvxn〉 Lmnn0/u0

mx +mn
= ρ̃n 〈σxnvxn〉

Ln0

u0

µnx

mx

Thus, we find, that the normalised form of the collision frequency depends on our normalisation factors,
i.e. the importance of the collisions for the system not only depends on the collision cross section and
the density but also e.g. on the global length scale taken into account.

Analogous consideration are also necessary for the source terms of the energy equations. In this case
we find:

Se→ Se
L

ρ0u3
0

(2.95)

Since we will use the two-fluid model only for molecular clouds all variables will be normalised to the
neutral medium, which is by far the most abundant fluid in this phase of the ISM. With this consideration
we find:

Se =ν̃nρ̃ũn · (ũ − ũn) +
µ

eL
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+
2
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where we assumed the temperatures of ions and electrons to be the same. This normalised form now can
be used in the numerical method which will be described later in this work. To conclude the discussion
of the numerical model the last issues are the discussion of the boundary conditions and the initialisation
of the system of equations.
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2.8.3 Initialisation and Boundary Conditions

The choice of the boundary conditions for simulations of interstellar plasma poses a far more severe
problem than is thought in the beginning. In principle the best way would be to describe the whole ISM
of the Galaxy at once. This, however, will not be possible for the near future due to the limited computing
power. Therefore, we will be able only to describe a small volume of the ISM in the numerical model.
For such a volume it is, however, not easily possible to dynamically prescribe values on the boundary of
the numerical domain. Therefore, it is most sensible is to use periodic boundary conditions for a small
volume of the ISM. This also solves the problem that many numerical methods are only well defined for
such boundaries.

However, one has to be careful with regard to the physical processes when using such boundary con-
ditions, due to the fact that no matter can be transported out of or into the numerical domain. Therefore,
one has to make sure that the initial conditions used for the problem correspond to the real physical
system. This can be visualised by the example of a more global picture: the density and the pressure dis-
tribution of the ISM in the Galaxy is determined by the equilibrium of pressure forces and gravitational
fields. Whenever the pressure is increased – e.g. by heat disposed by the decay of turbulent fluctuations
– this equilibrium is disturbed and the matter will be shifted further away from the galactic plane. This
could result in a quite global decrease of density. Such structures can naturally not be observed when
using periodic boundaries.

This leads us directly to the question of the initial conditions. Here, we will discuss different systems
for which the turbulent ISM will be investigated. Mainly, we will concentrate on molecular clouds and
on the more diffuse part of the ISM, for which typical parameters are given in table 1.1. Basically the
correct initialisation is automatically assured by the choice of the base variables when normalising the
evolution equations. Then most variables just have to be initialised as unity. When no sources are present,
one might expect this to be sufficient since the dimensionless equations do not depend on the base units
anymore. Already, however, when the Alfvén speed and the speed of sound differ things get a little more
complicated.

There are, however, further issues to be taken into account regarding the initialisation of the system.
When using the temperature and, thus, the speed of sound as the base unit for the velocity, the normali-
sation of the magnetic field will equate the magnetic energy to the thermal energy. In interstellar space,
these energy densities are usually not identical, however. Therefore, the dimensionless magnetic field
has to be initialised with a value different from unity. This matter is taken care of by the so-called plasma
β. This quantity is defined as the ratio of the thermal energy density to the magnetic energy density:

β =
ptherm

pmag
=

p
B2/2µ0

=
ρ0u2

0

ρ0u2
0

p̃

B̃2/2
=

p̃

B̃2/2
(2.97)

When aiming to quantify this dimensionless measure the phase structure is of not so much importance
as it would be when investigating, e.g., temperatures instead of thermal energy densities. This is due
to the fact that for the simple two-phase models of the ISM these are thought to be in thermal pressure
equilibrium. Thus, the thermal energy can be approximated to be constant even when investigating
different phases of the ISM. Therefore, we will estimate the plasmaβ just using the average values of
the ISM. On average the thermal energy density is according to Cox (2005) about one tenth of the total
pressure of 0.3 · 10−12 Pa for the galactic plain. The non-thermal part, in contrast to that, is supposedly
distributed equally among the magnetic field, cosmic ray and dynamical pressure (the latter of these
might also contain the thermal pressure of the hot component of the ISM). Therefore, each of these is
attributed a pressure of about 0.09 · 10−12 Pa. For the magnetic field this value corresponds nicely to
the value of 5· 10−10 T, which is used as the average mid-plane value stated by Cox (2005). With these
estimates we find the typical value of the plasmaβ for the equilibrium ISM to be aboutβ ' 0.3, which
is used for the rest of this work. Therefore, the initial value for the dimensionless magnetic field is fixed
by Eqn. (2.97) when the plasmaβ is set and the pressure is given as unity.
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When, as is done in this work, dealing with driven turbulence another ratio of the normalisation con-
stants has to be specified, because the energy input rate has to correspond to the physical rate observed
in the ISM, which will be estimated below. What is thought to drive the turbulent fluctuations in inter-
stellar space are large-scale energetic events like supernova explosions or galactic superwinds. Here, we
stick to the usual approach concentrating on the supernova explosions with regard to the driving of the
fluctuations.

For the simulation results to conform to reality we, therefore, have to make sure that the energy input
rate used for the numerical calculations represents the input rate encountered in nature. At first this seems
to be as easily achieved as the normalisation of the cooling and heating terms. Whereas the latter are
simple source terms, however, the input of the velocity fluctuations is a bit more complicated – that is we
decided to choose a fixed amount of energy as input at equally spaced time steps.

What is needed is an estimate for the value of the energy input rate of supernova explosions and
similar processes. For supernova explosions we will obtain a crude estimate based on estimates for
the kinetic energy of the ejected material, the explosion frequency and the volume of the galactic disk.
The kinetic energy of the ejected material of a single supernova explosion is supposedly aboutE '
1043 − 1044 J (see e.g. Dyson and Williams 1997). Numerical simulations by Thornton et al. (1998),
however, indicate that the lower end of this scale is more appropriate, since a major part of the kinetic
energy is dissipated as heat in shock waves. For the dense matter in molecular clouds a value of 1043 J is
appropriate, whereas for the diffuse gas a somewhat higher value of 3· 1043 J can be adopted.

For the volume of the galactic disk and the supernova explosion rate we use values by de Avillez
(2000), from which we estimate the frequencyτS N for the whole galactic disk to be about one supernova
per century. The volumeVDisc of the regions, for which the supernova explosions are taken to be homo-
geneously distributed can be estimated to be 1.4 · 1011 pc3. This leaves us with an estimate for the global
average energy input rateSe by supernova explosions as:

Se ' E τS N/VDisc (2.98)

For the global average this leads us to an input rate of kinetic energy of:

Se ' (0.77− 2.3) · 10−27 J m−3s−1 (2.99)

where the lower value would be the one used for molecular clouds and the higher for the diffuse gas. For
molecular clouds, however, we have then again to take into account that these are star forming regions,
where supernova explosions and winds by young giant stars are far more frequent than for the average
ISM. Therefore, we will use higher value for our numerical studies of these regions. Conforming to
Vestuto et al. (2003) we will also use an energy input of 1· 10−26 J m−3 s−1.

The physical input energy computed above usually does not initially correspond to the numerical
one, with the latter naturally depending on the normalisation. The normalisation constant for the input
power is:

Se = Se0S̃e with Se0 =
e0

τ0
=

ρ0u2
0

L0/u0
=
ρ0u3

0

L0
(2.100)

The normalised source term̃Se, therefore, has to be adjusted so that the actual sources correctly represent
the supernova input rate. Thus, the simulations are not independent of the normalisation anymore – at
leastSe0 has to be the same for all system to be addressed by a numerical simulation.

Similar arguments also apply when normalising the quantities of the charged particle fluid for a
weakly ionised plasma. With the base units being the units of the neutral fluid most variables for the
charged fluid have to be initialised by the degree of ionisation.

With this paragraph we conclude the discussion on the physical model and turn to the numerical
aspects of the simulations. Before continuing on the numerical implementation we, therefore, would first
like to introduce the basic method to solve the system of equations numerically.



Chapter 3

Numerical Simulations

In this chapter we discuss the important numerical issues in the context of ISM turbulence simulations.
Naturally, we start with the description of the numerical method used to solve the set of hyperbolic
equations. Unfortunately, source terms present in the equations are not directly covered by the scheme.
Therefore, we will also introduce a way to include an appropriate solver for the source terms. Addition-
ally, the implementation of the driving of the turbulence is an important issue as is the solenoidality of
the magnetic field whenever such a field is present. First, however, we start with the discussion of the
scheme itself.

3.1 C

The numerical scheme used for the computations presented in this work is the so-called C (Centrally
Weighted Essentially Non-Oscillatory) algorithm (see e.g. Kurganov and Levy 2000). This name already
implies a lot about the method: the important point is that C is a central method on the one hand
and uses a reconstruction suppressing spurious oscillations on the other. This scheme has to be seen in
contrast to the much more complex Godunov schemes (see Godunov 1959), which solve the Riemann
problem for each cell boundary for every time step. The idea behind the C scheme is to abandon the
necessity to use a Riemann solver by averaging over the appropriate fraction of every cell. The resulting
scheme, therefore, enjoys the major advantage of simplicity over the upwind schemes like the Godunov
scheme. Although central schemes are more dissipative than Godunov schemes, this problem can be
solved by using a higher order version of the central scheme. Apart from that they are very efficient and
applicable to a wide field of problems due to their simplicity.

In the following paragraphs we try to give an idea what this method is about and how it can easily be
derived.

3.1.1 Basic Idea

The basic idea behind the C scheme is to utilise the conservative structure of systems of equations
of the form:

∂tu + ∇ · F(u) = 0 (3.1)

whereF(u) is some flux function depending on the vector of variablesu to be investigated. Integrating
this equation over one cell and one time step yields a scheme, which computes the values at the next
time step using an estimate of the flux-integralsF(u) on the cell boundaries. Additionally a correction
due to the estimate for the Riemann-fans at these boundaries has to be taken into account. This will
become clear, when the scheme is explained in more detail in the next section. In this work we will
only describe the multi-dimensional version of the C scheme, because we are only using the 3-D
version of the scheme anyway and the one-dimensional description can be found in Kurganov and Levy
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(2000). Moreover, the transition from the two-dimensional scheme as described in the next paragraph
to the three-dimensional scheme is much more straightforward than it would be for the one-dimensional
scheme.

3.1.2 The Two-Dimensional C Scheme

The multi-dimensional C scheme is best illustrated via the example of the two-dimensional scheme.
The only step in the scheme sometimes not easily extended to higher dimensions is the reconstruction
of point values from the cell averages. This, however, will be the issue of the next section. The two-
dimensional scheme will be applied to hyperbolic differential equations of the form:

∂tu + ∂x f (u) + ∂yg(u) = 0 (3.2)

This equation is examined on a discrete spatial grid with cells given by:(
xi −
∆x
2
. . . xi +

∆x
2

)
×

(
y j −
∆y
2
. . . y j +

∆y
2

)
(3.3)

For these individual cell the scheme will compute the average values ofu, which will from now on be
termed ascell-averagesof u. Since the scheme has to deal with point values on the cell boundaries,
too, these point values are evaluated from the cell averages by the application of a piecewise polynomial
reconstruction – that is the spatial variation ofu is approximated by a polynomial of the desired order.
For the second-order version of the scheme one can, e.g., assume this reconstruction in the cellCi, j at
time tn to be of the form:

pi, j(x, tn) = pn
i, j(x, y) = u0i, j + uxi, j(x− xi) + uyi, j(y− y j) (3.4)

While a cross-term containing both linear parts may also be added, it is not of any importance, because it
cancels out due to the evaluation of these polynomials on the middle of the cell faces in the final form of
the second order scheme (see below). One has to bear in mind that these polynomials are given for just
one cell. Thus, there is an ambiguity at the cell boundaries as to which of these reconstructions is to be
used. For this we introduce the notationp±, where, e.g.,p+

i+ 1
2 , j

is the point value at the upper x-boundary

of cell Ci, j with the reconstruction stemming from the next cellCi+1, j .
From this one obtains the cell-averages via integration as:
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wherexi± 1
2

andy j± 1
2

signify the cell boundaries in the corresponding directions. For further reference the
point values evaluated using such a reconstruction at some specific points are getting labelled:
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(3.6)

With all this in mind the equations are basically solved by a spatial integration of the system in Eq.
(3.2) over each cell and an integration in time from the actual to the next time step. There is, however,
a problem inherent in this integration directly connected to the reconstruction. With every cell having
in general an individual reconstruction polynomial there may occur a jump in the different polynomial
reconstructions from one cell to another. The integration of Eq. (3.2) over each cell and over one time
step results in:

ūn+1
i, j = ūn

i, j − dx
∫ tn+∆t

tn

(
f (u(xi+ 1

2
, y j , τ)) − f (u(xi− 1

2
, y j , τ)) + g(u(xi , y j+ 1

2
, τ)) − g(u(xi , y j− 1

2
, τ))
)

dτ

(3.7)
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xi−1

yi+1

yi

yi−1

xi xi+1

Fig. 3.1: The area around the cell xi , y j with the non-smooth regions hatched.

This equation does not look too bad but due to the discontinuities where the fluxes are to be evaluated, one
would have to solve a generalised Riemann problem at these positions to obtain the temporal evolutions
of the fluxes, which is a numerically very expensive task.

We can, however, make use of the fact that such a jump can only propagate with a finite velocity
depending on the system of equations to be solved with the scheme. In general this maximum propaga-
tion velocity will change with space and time. Therefore, when we would like to integrate the system in
Eq. (3.2) over one cell and over the time-interval [tn, tn+1] only the data near the cell boundaries as, e.g.,
illustrated in Fig. 3.1 might be non-smooth at any time betweentn andtn+1. Thus, instead of integrating
each entire cell we treat the smooth and non-smooth domains individually. This leads to a scheme, which
does not have to utilise Riemann solvers, while still producing high-order results, since we average the
non-smooth parts of the solutions over a domain as small as possible. This has to be seen in contrast
to the Nessyahu-Tadmor scheme (Nessyahu and Tadmor 1990) where an integration is performed over a
complete staggered cell.

To perform the integration over the smooth and the non-smooth regions separately one needs an
estimate for the form of these areas which also has to be able to reflect the order of the scheme. It
will, however, become evident that the transfer into thesemidiscreteframework simplifies things again.
A semidiscrete scheme is one, which was derived utilising the fact that the time stepdt is small as
compared to any characteristic time scale of the system of hyperbolic equations with regard to a single
numerical cell. The use of the semidiscrete limit is motivated by the fact that a fully discrete scheme
suffers from higher numerical dissipation. This results from an accumulation of excessive dissipation
due to the small time steps needed in a fully discrete scheme. The size of these time steps is mainly
determined by the CFL condition first introduced in one of the first papers on finite difference methods
for partial differential equations by Courant et al. (1928). This is a necessary condition for the stability of
a numerical scheme. It essentially states that a numerical method can only be convergent if its numerical
domain of dependence contains the true domain of dependence of the actual partial differential equation.
With respect to this condition a fully discrete scheme has to fulfil the restricted condition∆t ∝ (∆x)2 for
the time step, whereas for the semidiscrete scheme it is possible to use the convective CFL condition see
also Kurganov and Levy (2000). Apart from that we enjoy the fact that a semidiscrete scheme is much
simpler than a fully discrete one.
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Di+1/2, j+1/2

Fig. 3.2: High-order approximation for the non-smooth regions in the individual cells for the C scheme.

An example for a high order estimation for the form of those regions of non-smooth data is illustrated
in Fig. 3.2. In this figure we distinguish three types of regions. First there is the smooth region in the
inner part of each cell. Secondly the light gray and the dark grey regions indicate regions possibly holding
non-smooth data. The dark grey regions can, however, safely be neglected. This is due to the fact that we
are using the semidiscrete form of the scheme, which says that we are solving the system of equations in
the limit dt→ 0.

In the semidiscrete limit the size of the dark-grey regions can be estimated to be:

Di+ 1
2 , j+

1
2
= (a+i+ 1

2 , j+
1
2
+ a−i+ 1

2 , j+
1
2
)(b+i+ 1

2 , j+
1
2
+ b−i+ 1

2 , j+
1
2
)dt2 + O(dt3) (3.8)

whereDi+ 1
2 , j+

1
2

indicates the corresponding region in Fig. 3.2. Additionally,a± are the right- and left-
handed maximum propagation velocities for discontinuities for the upper right corner in thex-direction
respectively. In the same wayb± corresponds to the signal propagation velocities in they-direction. Like
the equations describing the problem under consideration these velocities have to be specified corre-
sponding to the problem. They are obtained from the Jacobian for each direction as will be discussed in
section 3.3. The size of this region is of second order in time and can, therefore, safely be neglected in
the semidiscrete limit.

As compared to this the light-grey areas can be estimated to have the size:
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2
)dt
)
+ O(dt3) (3.9)

which is of orderdt, thus, showing that the dark-grey areas can indeed be neglected as compared to these.
So, it is clear that we only have to discuss the light-grey areas and the undisturbed area in the centre of
the cell.

As mentioned above, we have to integrate the system over the individual areas separately in order to
avoid Riemann-solvers and to obtain the highest possible order. In turn we have to use some procedure
to get from this distributed framework back to the original grid. The overall method can be split in three
major steps:
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1. Integration of the system over the light-grey and the undisturbed domains indicated in Fig. 3.2
utilising a local polynomial reconstructions to obtain averages for all domains for the next time
step.

2. These averages are then used to obtain a reconstruction of all necessary point values at the next
time step.

3. This is then projected to the original grid, thus, finally yielding cell averages at timetn+1.

For step 1 the cell averages over the domains indicated in Fig. 3.2 are designated as:∫
Di, j

−→ ω̄i, j ,

∫
D

i+ 1
2 , j

−→ ω̄i+ 1
2 , j
,

∫
D

i, j+ 1
2

−→ ω̄i, j+ 1
2

(3.10)

From these cell averages given at timetn we compute local averages at timetn+1. From these local
averagesωn+1 we compute a local piecewise polynomial reconstructionω̃n+1. The global piecewise
polynomial reconstruction needed for the second step of the above procedure is then written as:
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∑
i, j

(
ωn+1

i, j χi, j + ω̃
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2
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2

)
(3.11)

Here the ˜χ’s are the characteristic functions of the corresponding domainsD – that is theχ’s restrict the
local polynomial reconstructions to the appropriate domains.

The third step consists of the projection of this interpolant onto the original grid according to:
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According to Eq. (3.11) this results in:
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(3.13)

Here terms likeDi− 1
2 , j
∩ Ci, j indicate that we only integrate the part of the domainsD, which extend

into the cellCi, j under consideration. In the semidiscrete limit these integrals become:"
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for the non-smooth areas and: "
Di, j ∩ Ci, j

ω̃n+1
i, j dx dy= Di, j ω̄

n+1
i, j (3.16)

for the smooth area inside the cell, where the latter is obtained due to the conservation property of the
reconstruction. HereCi, j is again the cell under consideration.
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With these results we find when neglecting terms of orderO(dt2):
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)
What is needed to analyse this expression is the result for the local averages and additionally an estimate
for the size of the different domains. When computing the local cell averages it will become clear that
we will need the size for those domains containing the non-smooth data for this computation. This was,
however, already given in Eq. (3.9) and can be approximated as:
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2 , j
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2
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Now what is left to be computed are the local cell averages – that is we have to revert to the first step to
obtain these averages by a local integration of the hyperbolic system to be solved.

Local Cell Averages

As an example we will explicitly derive the expression for the local cell average of the left/right-handed
non-smooth region (Di± 1

2 , j
in Fig 3.2). This is obtained by integrating Eq. (3.2) over the domain:
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We start by integrating in time obtaining:∫ tn+1
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Assuming, thatu is represented by a polynomial reconstructionPn
i, j we additionally integrate over the

spatial domain:∫
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Using the polynomial representation foru and utilising the conservation property of the reconstruction
for steptn+1 leaves us with:
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Here we could also use the conservation property of the reconstruction forpn
i, j . This, however, would

not help us at all, since we do not know the local cell averagesω̄n
i± 1

2 , j
for t = tn. Therefore, we will

rather evaluate the corresponding integral yielding the dependence on the local cell average and the local
reconstruction.
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compute the flux integrals:∫
D

i± 1
2 , j

f (u)xdx dy=
∫ y

j+ 1
2
−∆tb−

i± 1
2 , j+

1
2

y
j− 1

2
+∆tb+

i± 1
2 , j−

1
2

f (u(x, y, t))dy
∣∣∣xi± 1

2
+∆ta+

i± 1
2 , j

x
i± 1

2
−∆ta−

i± 1
2 , j∫

D
i± 1

2 , j

g(u)ydx dy=
∫ x

i± 1
2
+∆ta+

i± 1
2 , j

x
i± 1

2
−∆ta−

i± 1
2 , j

g(u(x, y, t))dx
∣∣∣y j+ 1

2
−∆tb−

i± 1
2 , j+

1
2

y
j− 1

2
+∆tb+

i± 1
2 , j−

1
2

(3.22)
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In the semidiscrete limit the integrals in the second line vanish since the integration area [xi± 1
2
− a−

i± 1
2 , j
∆t

. . .xi± 1
2
+ a+

i± 1
2 , j
∆t] vanishes for∆t → 0 while the integrand remains nearly constant. Thus, we find in

this limit:

Di± 1
2 , j
ω̄n+1

i± 1
2 , j
'

∫
D

i± 1
2 , j

pn
i, j(x, y)dx dy−

∫ tn+1

tn

∫ y
j+ 1

2
−b−

i± 1
2 , j+

1
2
∆t

y
j− 1

2
+b+

i± 1
2 , j−

1
2
∆t

f (u(x, y, t))dy
∣∣∣xi± 1

2
+a+

i± 1
2 , j
∆t

x
i± 1

2
−a−

i± 1
2 , j
∆t

dt

∆t→0
−→

∫ y
j+ 1

2

y
j− 1

2

(
a+i± 1

2 , j
∆tp+i± 1

2 , j
− a−i± 1

2 , j
∆tp−i± 1

2 , j

)
dy

−

∫ tn+1

tn

∫ y
j+ 1

2

y
j− 1

2

(
f (u+(x, y, tn)) − f (u−(x, y, tn))

)
dy dt (3.23)

At this point one has to decide about the order of the scheme. This is due to the fact that we have to
evaluate the spatial integrals using a method of the same order as the order of the scheme. This should
also fit the order of the reconstruction since it usually is the lowest order the component of the lowest
order which determines the order of the resulting scheme. Therefore, it is not sensible to use higher order
components, since they are usually more expensive to compute. For a second-order reconstruction it is
sufficient to use a midpoint rule for the estimation of the integrals, since this is of second order. Then the
above result can be approximated as:

Di+ 1
2 , j
ω̄n+1

i+ 1
2 , j
'

(
a+i+ 1

2 , j
uW

i+1, j − a−i+ 1
2 , j

uE
i, j

)
∆t −

(
f (uW

i+1, j)) − f (uE
i, j)
)
∆t

Di− 1
2 , j
ω̄n+1

i− 1
2 , j
'

(
a+i− 1

2 , j
uW

i, j − a−i− 1
2 , j

uE
i−1, j

)
∆t −

(
f (uW

i, j)) − f (uE
i−1, j)

)
∆t (3.24)

which can be combined into:

ω̄n+1
i± 1

2 , j
'

1
(a+

i± 1
2 , j
+ a−

i± 1
2 , j

)∆y∆t

((
±a±i± 1

2 , j
uW(E)

i±1, j ∓ a∓i± 1
2 , j

uE(W)
i, j

)
∆t −

(
± f (uW(E)

i±1, j )) ∓ f (uE(W)
i, j )∆t

))
(3.25)

Now, we can come back to the expressions needed in Eq. (3.17). The term needed there forωn+1
i± 1

2 , j
can

now explicitly be given as:

(Di± 1
2 , j
∩ Ci, j)

∆t∆x∆y
ω̄n+1

i± 1
2 , j
'
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2 , j
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1
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± f (uW(E)
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(3.26)

=
a±

i± 1
2 , j

(a+
i± 1

2 , j
+ a−

i± 1
2 , j

)∆x

((
±a±i+ 1

2 , j
uW(E)
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2 , j

uE(W)
i, j

)
−

(
± f (uW(E)

i±1, j )) ∓ f (uE(W)
i, j )

))
The results for the other terms needed in Eq. (3.17) can be found in a similar way and are just given here
without further derivation. For they direction we find:

|Di, j± 1
2
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2
'
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2
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(3.27)

And, finally, for the central part of the cell:[
|Di, j ∩ Ci, j |

∆t∆x∆y
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i, j − ūn
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(
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(3.28)
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When we put all these results into Eq. (3.17) we obtain the final form for the semidiscrete scheme:

d
dt

ūi, j(t) = −
Hx

i+ 1
2 , j

(t) − Hx
i− 1

2 , j
(t)

∆x
−

Hy
i, j+ 1

2
(t) − Hy

i, j− 1
2
(t)

∆y
(3.29)

with the numerical fluxes defined as:

Hx
i+ 1

2 , j
=

1
a+

i+ 1
2 , j
+ a−

i+ 1
2 , j

(
a+i+ 1

2 , j
f (uE

i, j) − a−i+ 1
2 , j

f (uW
i+1, j) − a+i+ 1

2 , j
a−i+ 1

2 , j

(
uW

i+1, j − uE
i, j

))
(3.30)

and an analogous expression for they-direction.

Remarks:

• The scheme can easily be extended to more than two dimensions just by adding the appropriate
terms for the additional directions.

• For a higher order reconstruction the derivation can be re-done with a higher order approximation
for the integrals. This, however, leads exactly to the results one would get when extending the

above equations by intuition. That is terms likeuE
i, j have to be replaced by16

(
uNE

i, j + 4uE
i, j + uS E

i, j

)
when applying the fourth order Simpson’s quadrature formula for the integrals.

3.1.3 The Reconstruction

After having introduced the scheme itself a few words are needed about the aforementioned reconstruc-
tion. This is used to obtain point values from the cell averages to be used for the evaluation of the
numerical fluxes introduced above. In principle, it is an easy task to obtain such point values from the
cell averages by the application of an interpolation polynomial. This procedure, however, becomes more
complicated, when we want the reconstruction to prevent spurious oscillations. This is addressed after
having introduced the basic idea about the reconstruction polynomial.

The Reconstruction Polynomial

In order to be consistent with the previous approach we here describe the second order reconstruction.
In R2 the most general form for a second order polynomial looks like this:

p2 = A0 + Axx+ Ayy+ Axyxy (3.31)

with theAi being constants, which are different for the individual cells. If applied to the reconstruction
in any of the cells of the computational domain we get:

pi, j = un
i, j + ux

i, j(x− xi) + uy
i, j(y− y j) + Axy(x− xi)(y− y j) (3.32)

Considering the scheme derived above it is, however, clear that the last term can be neglected, since it
will vanish at the points where the polynomial is evaluated.

There are different possibilities for an evaluation of the individual coefficients, but it is important to
require the conservation of the cell average for the cell under consideration to be fulfilled:∫ y

j+ 1
2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

pi, jdx dy
!
= ūi, j (3.33)

Apart from that, it is also necessary for the reconstruction to be of second order wherever the solution is
sufficiently smooth. Finally – and this is the most important point for high Mach number simulations –
the reconstruction has to ensure a non-oscillatory behaviour of the numerical scheme.
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The conservation of the cell average is most easily ensured by usingun
i, j = ūi, j . Additionally the

required non-oscillatory behaviour is guaranteed by use of:

ux
i, j = minmod

(
θ

ūn
i, j − ūn

i−1, j

∆x
,
ūn

i+1, j − ūn
i−1, j

2∆x
, θ

ūn
i+1, j − ūn

i, j

∆x

)
(3.34)

whereθ ∈ [1,2] with the corresponding form for they-direction yieldingAy. Note that largerθs corre-
spond to less dissipative but stillnon-oscillatorylimiters. Apart from that, minmod represents van-Leer’s
limiter (van Leer 1979). This limiter is explicitly defined by:

minmod(a,b, c) B

{
sign(a) min(|a|, |b|, |c|) if sign(a) = sign(b) = sign(c)
0 else

(3.35)

For this limiter it can be shown that the reconstruction is not only non-oscillatory but also total-variation
diminishing (TVD) (see e.g. Kurganov et al. 2001). This reconstruction guarantees oscillations to be
suppressed at steep gradients as will be shown when the different tests are discussed.

3.1.4 Higher Order Schemes

The order of a numerical scheme is quite easily figured out by test simulations with increasing spatial
resolution. Ideally the error for annth order scheme decreases as 2−n when the when the spatial resolution
is doubled. This also is a good test to determine if the scheme converges to a solution if the analytical
one is unknown. Therefore, an order as high as possible is desirable.

For the C scheme introduced above there are several higher order versions available for the
solution of one-dimensional hyperbolic conservation laws (see e.g. Qiu and Shu 2002). It is, however,
far from trivial to extent such a scheme to more than one spatial dimension. The easiest way to do
this is a dimension by dimension approach as discussed in Kurganov and Levy (2000). This approach
uses the one-dimensional reconstruction for all spatial dimensions individually, where the reconstruction
polynomial is slightly modified in order to take the additional dimensions into account.

Unfortunately the integrals over the cell boundaries as used, e.g., in Eq. (3.23), which have to be
of the same order as the reconstruction are effectively only done via the midpoint rule in the dimension
by dimension approach. This results in these integrals being only of second order. For the Cartesian
directions this poses no problem. But for any structure oblique to the spatial grid the order of the scheme
is strongly reduced. This is not tolerable in turbulence simulations where grid-connected numerical
artifacts cannot easily be identified. Moreover, it was shown using a simple advection test that the
dimension by dimension scheme for most resolutions hardly exceeded second order.

For a true third order scheme, therefore, integrals like the one in Eq. (3.23) also have to be evaluated
with third order accuracy. The least expensive way to perform such an integral to third order accuracy is
to use a Gaussian quadrature (see e.g. Bronstein et al. 1997, p. 837) based on using roots of the Legendre
polynomials as nodes for the integration. In this case for a third order scheme inR2 each integral would
use two nodes instead of one when applying the midpoint rule. Similar tests as for the dimension by
dimension approach showed that in this case third order accuracy is readily achieved.

For numerical computations inR3, however, the evaluation of the integral already gets four times
as expensive as for the second order scheme. Apart from that also the reconstruction becomes much
more expensive than in the second order version of the scheme – also this reconstruction is not TVD
anymore but ratherEssentially Non Oscillatory(ENO). Another important issue is that near discontinu-
ities the third order reconstruction is reduced to second order to obtain the ENO property. Therefore, for
homogeneous turbulence with strong discontinuities ubiquitous in the numerical domain the best choice
is a second order scheme. This scheme also proved to be more stable than higher order schemes when
coming to high Mach number fluids.
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3.2 Time Integration

After the C scheme was introduced in the preceding paragraph we no discuss how to implement
this scheme in a numerical solver. As was stated above, the C scheme given in the semidiscrete
form requires a very small time step. The advantage of the semidiscrete character at the same time is that
there is a free choice of the method for the computation of the time evolution. Therefore, the next thing
of interest is the time integration.

The simplest method for the numerical time integration is the Euler method, which uses information
on the time derivative at the previous time step to advance the system to the subsequent one. Due to
this use of information about one time step only, however, the Euler method is neither very accurate nor
very stable. To account for these problems there are the Runge-Kutta methods of different order at hand,
which use information on severaltrial steps between the previous and the subsequent time step. In this
work we used a third order Runge-Kutta time integrator of the form:

un+1 = un +
1
6
∆t
(

f ′(tn) + 4 f ′(tn+1/2) + f ′(tn+1)
)
+ O(∆t 4) (3.36)

The time integration is explicitly given in TVD form also applied by Jiang and Shu (1996):

u∗ = un + ∆t f ′(un) (3.37)

u∗∗ =
3
4

un +
1
4

u∗ +
1
4
∆t f ′(u∗) (3.38)

un+1 =
1
3

un +
2
3

u∗∗ +
2
3
∆t f ′(u∗∗) (3.39)

whereu∗ is used as a trial step fortn+1 andu∗∗ as a trial step fortn+1/2. Sinceu∗ andu∗∗ only have
to be used for the next intermediate time step this method is quite efficient concerning the memory
consumption: All in all only the field at the previous time stepun and the actual intermediate step have
to be stored. This matter proved to be essential for being able to perform high resolution computations.

Time Step Limit

An important issue in all numerical schemes is the maximum possible value of the time integration step.
This is especially an issue since with the Runge-Kutta time integrator we rely on an explicit scheme for
the temporal evolution. Whereas implicit schemes often allow much larger time steps, there is no such
scheme available for the direct solution of the MHD equations (even for linear differential equations
implicit schemes involve inversions of huge matrices). The reason why implicit schemes usually allow
larger time steps than explicit ones is that only implicit schemes are absolutely stable. Explicit schemes,
in contrast to that, are stable only up to a certain time step size.

The size of the stability limit for explicit schemes is determined by the so-called Courant or CFL
number introduced above. In the case of hyperbolic conservation laws the Courant number reflects the
portion of a cell that is traversed by the fastest fluid element in the computational domain in a given time
stepdt:

cCFL =
umaxdt

dx
(3.40)

In the case of the C scheme the CFL number clearly has to stay below 0.5. Otherwise the regions
containing the Riemann fans might interact with each other. Apart from the fact that the regions contain-
ing the Riemann fans have to be small compared to the cell size, an intersection of the different Riemann
fans would obviously contradict the idea of the scheme.

There is, however, also an upper limit on the time step for Runge-Kutta time integrators. The actual
stability limit can be found with a so-called Von Neumann stability analysis. For central schemes apply-
ing the third order Runge-Kutta time integrator Pareschi et al. (2005) found the resulting limit to be at
a Courant number of 0.42. Evidently, choosing the limit as 0.4 is a safe choice for the numerical solver
used in this work.
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3.3 C for Numerical MHD

Even for the two-fluid system using the C scheme we essentially have to solve the hyperbolic part
of the equations. The source terms will be taken into account separately. This is sensible insofar as
each aspect of the equations is solved with the most appropriate method. Having to solve only the
hyperbolic part of the equations with the C solver means that the system of equations is reduced
to the MHD equations for the charged particle fluid and to the hydrodynamic equations for the neutral
fluid. Here we discuss the explicit implementation of the MHD equations into the C scheme, since
the hydrodynamic equations are basically included therein.

As seen in the discussion of the C scheme it does not need as much adaptation as, e.g., a
Riemann solver. For the former it is not necessary to use different solvers for hydrodynamical or MHD
simulations. The only inputs that have to be given are the system of equations to be solved and the
formula for the derivation of the maximum of the characteristic speeds at the cell boundaries.

As an example we derive the characteristic speeds for the evolution equations of compressible hy-
drodynamical flow in appendix D. There it is shown that the characteristic speeds correspond to the
eigenvalues of the Jacobian of the system for the individual directions. For the system of the normalised
MHD equations this derivation is also motivated in D and can also be found in de Sterck et al. (1999).
The resulting characteristic speeds are:

λ1 = ux

λ2,3 = ux ± vAx

λ4,5 = ux ± v fx (3.41)

λ6,7 = ux ± vsx

for thex-direction. Here the following definitions have been used for the normalised system of equations:

csB

√
dp
dρ
=

√
γ

p
ρ

speed of sound (3.42)

vA B
B
√
ρ

(
vAx B

Bx
√
ρ

)
Alfv én speed (inx-direction) (3.43)

v fx B
1
√

2

√
c2

s + v2
A +

√
(c2

s + v2
A)2 − (2csvAx)2 fast magnetosonic speed inx-direction (3.44)

vsx B
1
√

2

√
c2

s + v2
A −

√
(c2

s + v2
A)2 − (2csvAx)2 slow magnetosonic speed inx-direction (3.45)

Thus, we can identify four different wave types:λ2,3 obviously indicates Alfv́en waves andλ4,5 andλ6,7

represent the propagation of the fast and slow magneto-acoustic modes. Finallyλ1 indicates a wave not
propagating in space, which is identified in Kalikhman (1967) as an entropy wave. All in all, the Jacobian
has distinct eigenvalues, which are always real. Therefore, the system is strictly hyperbolic, which is a
necessary ingredient for the numerical method.

For the C method we do not have to evaluate all of the characteristic speeds. Rather it is
sufficient to find the maximum possible speeds at the boundaries of the cells as was discussed in section
3.1.2. For example the velocitiesa± needed for the scheme are the highest possible speeds to the left and
to the right, respectively.

For the MHD equations clearlyλ4,5 dominate all other possible speeds. Designatingλ4 as the one
with the positive sign, this is usually the highest possible speed. Only for a negative flow velocityux

greater than the fast magnetosonic speed vfx the corresponding speed has to be set to zero. The highest
possible speed to the left on the other hand isλ5. Therefore, the local speedsa± in the x-direction to be
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Fig. 3.3: Typical Riemann fan structure for high Mach number flow. For the discussion see the text.

used in the C scheme are:

a+ = max
(
ux + v fx,0

)
a− = min

(
ux − v fx,0

)
(3.46)

Initially this might seem as if one has to supply as much information on the system as would be necessary
for a Riemann solver. Luckily, however, Eq. (3.44) can also be applied to strictly hydrodynamical
simulations, for which the magnetic induction merely has to be set to zero. Moreover, one has to keep
in mind that so far no exact Riemann solver for MHD problems is known, whereas the corresponding
velocities necessary for the implementation of the C scheme can very well be found. Finally, a
Riemann solver would also have to yield the spatial dependence of all the other variables involved,
which is not necessary here.

3.3.1 Improvement of the Scheme

From the above discussion it is clear that for high Mach number flows the estimate for the width of the
Riemann fans given in Eq. (3.46) typically exceeds their actual width. This fact is illustrated in Fig. 3.3,
where a typical Riemann fan structure is shown for high Mach number flows. Any signal propagating
with any of the characteristic velocities (3.41) originating from the cell boundaries is confined to the
triangular regions limited by the dashed line. In the C reconstruction introduced in section 3.1 one
of the major steps is the averaging performed over the regions containing the Riemann fans in order not
to have to rely on a Riemann solver. In Fig. 3.3 the respective region is indicated asDi−1/2. This region,
however, clearly overestimates the actual width of the region containing the Riemann fan for flows for
which the background velocity exceeds the maximum signal propagation velocitya± – that is the above
mentioned triangular regions are much smaller than the rectangular area indicating the region over which
the averaging is performed for the classical C scheme.

The major reason to try to minimise the width of the Riemann fans is that the averaging over these
is a major contribution to the dissipation of the scheme. From Fig. 3.3 it becomes clear that in order
to minimise the region over which the averaging is performed the boundaries of this region have to be
allowed to move. The best choice would, therefore, be to perform the averaging over the regionL in
Fig. 3.3 instead of regionDi−1/2. The resulting scheme being consistent with the ideas presented in
section 3.1 is a method with a grid that moves with the local velocitiesvx at the cell boundaries. If these
velocities differ from cell boundary to cell boundary, as they would do in the general case, also the size
of the cells changes in time. The resulting scheme for the one-dimensional case is presented in detail in
Kissmann and Grauer (2006). The evolution equation derived there reads:

d
dt

ūi(t) = −
(Hi+1/2 + v0

i+1/2ūn
i ) − (Hi−1/2 + v0

i−1/2ūn
i )

∆x
(3.47)
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with:

Hi+1/2 = −
ã+i+1/2a−i+1/2u+i+1/2 − a+i+1/2ã−i+1/2u−i+1/2

a+i+1/2 + a−i+1/2
+

a+i+1/2 f (u−i+1/2) + a−i+1/2 f (u+i+1/2)

a+i+1/2 + a−i+1/2
(3.48)

where∆x̃ is the with of the cell at the next time step. Here – similar to the case of the classical C

scheme –a±i±1/2 are the right- and left-handed maximum characteristic velocities at the left and right cell
boundaries respectively. Here they are measured with respect to the local fluid velocities designated as
v0

i±1/2. In contrast to that ˜a±i±1/2 also indicates the characteristic velocities – in this case, however, defined
with respect to the non-moving frame.

This scheme proved to be of very low dissipation and what is even more important yields results
independent of the background flow. This is of particular importance for high Mach number flows, since
the dissipation in the classical C scheme is dominated by the background flow for this case. This is
especially annoying since simple convection can even be solved analytically.

Unfortunately this improved scheme is so far only available for one-dimensional simulations. This
is due to the fact that a co-moving grid cannot be realised in more than one dimension. The solution of
this would be to project the shifted grid back onto the original one every time step. There is, however, a
lot of work still to be done before arriving at such a new scheme, which will be left for future research.
One particular problem in the derivation of the scheme is that for more than one dimension the definition
of the co-moving Riemann-fan structure is very complicated.

All in all the C scheme proves to be a very reliable scheme with the important feature of a
very simple implementation for different physical problems. As we were able to show here, however,
the scheme can still be improved for high Mach number flows. One thing still missing for the MHD
implementation of the scheme, however, is the insurance of the solenoidality of the magnetic field.

3.3.2 Solenoidality of the Magnetic Field

There are various strategies available to ensure the absence of magnetic monopoles for numerical com-
putations as required by the corresponding Maxwell equation (2.25):

∇ · B = 0 (3.49)

This equation has to be fulfilled at all times. Analytically this is guaranteed by the normalised evolution
equation for the magnetic induction (2.80):

∂B
∂t
= ∇ × (u × B) (3.50)

Therefore, analytically the divergence of the magnetic induction evolves according to:

∂∇ · B
∂t

= ∇ ·
∂B
∂t
= ∇ · (∇ × (u × B)) = 0 (3.51)

Thus, an initially solenoidal magnetic induction will analytically be solenoidal for all times. Numerically,
unfortunately, things look a little different. In this case we are using the hyperbolic form of the above
equation:

∂B
∂t
= −∇ · (uB − Bu) = −∇ ·

 0 uxBy − uyBx uxBz− uzBx

uyBx − uxBy 0 uyBz− uzBy

uzBx − uxBz uzBy − uyBz 0

 (3.52)

Analytically the two forms (3.50) and (3.52) are completely equivalent. Unfortunately, however, this is
not the case anymore when using the discrete version of the equation. Additionally the truncation errors
introduced by any numerical computation can accumulate during a numerical simulation. All in all it is
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necessary to find some method to ensure the solenoidality of the magnetic field. Otherwisenumerical
monopolesare introduced yielding physically wrong results.

To ensure the solenoidality of the magnetic field also for the numerical simulations at hand there are
basically three typical methods available. These methods will here be briefly introduced one by one.

Lagrangian Multipliers

The method of Lagrangian multipliers was first implemented by Assous et al. (1993) for the numerical
solution of the Maxwell equations. They introduced a Lagrangian multiplier to couple the divergence
constraint to the other evolution equations. This idea was extended to the MHD equations by Dedner et al.
(2002). They introduced an additional functionψ, which is integrated together with the MHD equations.
Generally this variable is introduced to couple the solenoidality constraint to the other equations. This
means that the system is extended to the form:

∂B
∂t
= −∇ · (uB − Bu) − ∇ψ (3.53)

D(ψ) = −∇ · B (3.54)

with D some linear differential operator. Of the different possibilities for this operator the form:

D(ψ) :=
1

c2
h

∂ψ

∂t
+

1
c2

p
ψ (3.55)

could be shown to be the best choice. This results in an evolution equation of the form:

∂tψ = −c2
h∇ · B −

c2
h

c2
p
ψ (3.56)

This is generally denoted as the mixed generalised Lagrange multiplier (GLM) formulation. The inter-
esting thing about this choice for the operatorD is that it allows for hyperbolic (ch) and parabolic (cp)
corrections at the same time. Especially the hyperbolic part is very interesting since it allows the trans-
port of the divergence out of the numerical domain with the velocitych. Although this method proved to
be very efficient for many numerical problems, it is unfortunately not very interesting for our problem.
Due to the periodic boundary conditions it is not possible to transport the non-zero divergence out of the
numerical domain. Moreover, the fact that the turbulence is homogeneous means that there is no place
in the numerical domain where we can shift the divergence to.

Projection Schemes

An alternative way to get rid of unphysical magnetic monopoles is based on the works by Chorin. In a
series of papers he introduced the so-called projection scheme to guarantee the incompressibility of the
numerical solution of the Navier-Stokes equation (see Chorin 1967, 1968, 1969). This scheme was first
applied to the MHD equations by Brackbill and Barnes (1980). The idea of these schemes is to evolve
the MHD equations by some arbitrary numerical scheme and after each time step to project the resulting
magnetic induction to a divergence free field. For doing so the magnetic induction is decomposed into
the sum of a solenoidal and a divergence containing field:

B = ∇ × A + ∇Φ (3.57)

where the scalar fieldΦ is responsiblefor the divergence of the field. Therefore, the fieldA can be
said to be the physically meaningful part of the magnetic induction. Thus, all that has to be done is to
subtract this part from the magnetic induction in order to obtain a solenoidal magnetic field. By taking
the divergence of the above equation one easily finds an equation determining the scalar field:

∇2Φ = ∇ · B (3.58)
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Fig. 3.4: Visualisation of the accumulation of fluctuation energy at small spatial scales for the projection
schemes (left). These results are compared to those obtained with a constrained transport scheme (right). All
values are normalised.

The essential step, therefore, is to solve this Poisson equation. After this the divergence free magnetic
field is easily obtained by:

B→ B − ∇Φ (3.59)

The actual solution of the Poisson equation can be obtained by many different methods quite easily. For
this work we used a multi-grid solver or a Fourier solver (the latter was used whenever use of thefftw
(see Frigo 2004) library was necessary anyhow ) for the solution of this equation. For both solvers we
showed the solenoidality of the magnetic field to be assured up to the round off error. For a numerical
solver, however, this can only be achieved forone kind of discretisationi.e. we have to decide for one
discretisation of the divergence of the magnetic induction – only for this discretisation we will be able to
assure the solenoidality. This is also true for any other method to assure the solenoidality of the magnetic
field.

Despite the fact that this method yields divergence-free fields to the round off error it proved to be not
acceptable for turbulence simulations. This is due to the fact that the method introduces additional small-
scale fluctuations, which produce unphysical fluctuation spectra for the highest wavenumbers. This is
visualised in Fig. 3.4 where a solution obtained using a projection scheme is compared to one found
by using a constrained transport scheme. There is an unphysical pile up of fluctuation energy at large
wavenumbers for the former solution. This was also observed by Balsara and Kim (2004). They found
that the excessive fluctuation energy at small scales is connected to the decoupling of even and odd grid
points which occurs when using a centred finite difference for the representation of the divergence of
the magnetic induction. The main problem, however, seems to be connected to spurious magnetic field
structures produced by the projection schemes in general, which Balsara and Kim attribute to the non-
locality of the projection schemes. This means that the correction does not take local shock structures
into account, thus, yielding solutions not being conform to the shock solution anymore. Balsara and Kim
identify the constrained transport schemes to be those best suited for turbulence simulations. Therefore,
we also rely on such a scheme for our investigations.

Constrained Transport Schemes

The idea with constrained transport schemes is to formulate the equations in a way that the divergence
of the magnetic induction vanishes in the desired discretisation. Originally this method was introduced
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Fig. 3.5: Spatial arrangement of electromagnetic quantities for constrained transport schemes. For further
discussions on the scheme cf. the text.

by Evans and Hawley (1988) where the authors introduce a staggered grid for the magnetic induction to
maintain the solenoidality of the scheme for finite difference schemes. For this they write the induction
equation explicitly via the curl of the electric field:

∂B
∂t
= −∇ × E (3.60)

Their main idea is to place – for the 2D case – the electric field at the cell corners. Numerically this is
realised by writing:

∂Bx
i−1/2, j,k

∂t
= −

E z
i−1/2, j+1/2,k − E z

i−1/2, j−1/2,k

∆y
+

E y
i−1/2, j,k+1/2 − E y

i−1/2, j,k−1/2

∆z

∂By
i, j−1/2,k

∂t
= −

E x
i, j−1/2,k+1/2 − E x

i, j−1/2,k−1/2

∆z
+

E z
i+1/2, j−1/2,k − E z

i−1/2, j−1/2,k

∆x
(3.61)

∂Bz
i, j,k−1/2

∂t
= −

E y
i+1/2, j,k−1/2 − E y

i−1/2, j,k−1/2

∆x
+

E x
i, j+1/2,k−1/2 − E x

i, j−1/2,k−1/2

∆y

This spatial arrangement is also visualised in Fig. 3.5. This evolution equation satisfies Eq. (3.51) when
the divergence is defined as:

(∇ · B)num :=
Bx

i+1/2, j,k − Bx
i−1/2, j,k

∆x
+

By
i, j+1/2,k − By

i, j−1/2,k

∆y
+

Bz
i, j,k+1/2 − Bz

i, j,k−1/2

∆z
(3.62)

Therefore, an initially solenoidal magnetic induction will remain so up to the truncation error of the
variables used in the code. This property has been verified using the above scheme. This method can
be easily implemented and very successful for finite difference schemes. When, however, dealing with
fluids for which shocks might occur one has to use a method like C also for the magnetic field
evolution. This problem was solved by Balsara and Spicer (1999), where they combine the constrained
transport idea with a Godunov type base scheme. This is done via the identification of the electrical field
with the numerical fluxes.
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For the special case of the C scheme the constrained transport form of such schemes was derived
by Ziegler (2004). By use of the numerical form of the induction equation (3.52) we identify the flux,
e.g., in the x-direction for the evolution of the magnetic induction using the C scheme to be:

H x
i+ 1

2 , j,k
=

1
a+

i+ 1
2 , j,k
+ a−

i+ 1
2 , j,k

a+i+ 1
2 , j,k

 0
−Ez

Ey


E

i, j,k

− a−i+ 1
2 , j,k

 0
−Ez

Ey


W

i+1, j,k

− a+i+ 1
2 , j,k

a−i+ 1
2 , j,k

(
BW

xi+1, j,k − BE
xi, j,k

)
(3.63)

with corresponding fluxes for the other directions. From these fluxes the electric field is evaluated via
interpolation as:

E x
i, j−1/2,k−1/2 =

1
4

(
−H y

z i, j−1/2,k − H y
z i, j−1/2,k−1 + H z

y i, j,k−1/2 + H z
y i, j−1,k−1/2

)
(3.64)

with corresponding interpolations for the other two components of the electric field. The only remaining
issue is the discussion of the correct reconstruction of the magnetic field. Since the magnetic field is
defined on a staggered grid also the reconstruction has to be a little different from the one introduced
in section 3.1.3. Clearly for each component of the magnetic field the point values at the boundaries
of the cells in the parallel direction do not have to be reconstructed at all. For the other directions this
reconstruction is done via a mixture of interpolation and C reconstruction. The details for this are
also given in Ziegler (2004). There the excellent performance of the resulting scheme is shown by several
one and two-dimensional test cases. The same, however, has to be done in our case to assure that the
scheme has been implemented correctly.

3.4 Validity of the Scheme

In this paragraph we will discuss several tests to check the validity of the C scheme for the sim-
ulations presented in this work. The validity of the basic one-dimensional scheme will be verified by
different one-dimensional tests. These were performed in all three grid directions individually to ensure
the homogeneity of the scheme. Moreover, we have included several multi-dimensional test cases, which
were also used to check the correctness of the order of the scheme.

In most cases we have chosen tests for which an analytical solution or at least a semi-analytical one
exists. For hydrodynamics (HD) and magneto-hydrodynamics (MHD) several such tests are provided in
Stone et al. (1992) and Toro (1997). Here we will give a brief excerpt of the tests undertaken with our
newly developed scheme. We will place special emphasis on tests containing shocks since these are on
the one hand much harder to handle than smooth flow and they are on the other hand ubiquitous in high
Mach number turbulence.

3.4.1 Burgers Equation

The most simple test available containing already discontinuities is the solution of the one-dimensional
Burgers equation (see Burgers 1948). This prototype of a nonlinear fluid equation is named after the
Dutch physicist, Johannes Martinus Burgers. Here we will investigate the solution of theinviscid form
of the equation, which reads:

∂u
∂t
= −

1
2
∂u2

∂x
= −u

∂u
∂x

(3.65)

From this form of the equation it is clear already without any characteristic decomposition that the char-
acteristic velocity is justu. All that is needed as input for the C scheme is this characteristic velocity
and the above evolution equation. For the initial condition we choose a sine wave in the numerical do-
main together with periodic boundary conditions. The numerical solution is obtained using a spatial
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Fig. 3.6: Numerical (plus signs) and analytical (solid line) solution of the Burgers equation at two different
times. Obviously the numerical solution is in very good agreement with the analytical results.

resolution of 100 grid cells for the computational domain of unit width. The time step was chosen as
0.002 so that the Courant number never exceeded 0.2. The results for the corresponding numerical solu-
tion of the Burgers equation is shown in Fig. 3.6. Obviously, the numerical solution nicely corresponds
to the analytical one. The latter was found by the method of characteristics in a semi-analytical way. On
the one hand the results in Fig. 3.6 show that the C scheme is capable of solving hyperbolic differ-
ential equations. On the other hand it also becomes clear that discontinuities are well resolved using the
C scheme. There are no artificial, unphysical fluctuations near the discontinuity in the solution at
time t = 0.2. This is a most important property of the C scheme being essential for the simulation
of high Mach number turbulence.

3.4.2 Euler Equations

A more complicated system of equations allowing for discontinuous solutions are theEuler equations.
These equations being named after the Swiss physicist and mathematician, Leonhard Euler, describe the
evolution of aninviscidfluid. They are generally given in the form:

∂ρ

∂t
= −∇ · ( ρv) (3.66)

∂ ( ρv)
∂t

= −∇ · ( ρvv + p1) (3.67)

∂e
∂t
= −∇ · ((e+ p) v) (3.68)

wheree is the total energy densities – that is the sum of internal and kinetic energy density. One of the
most important tests of a numerical method making use of the Euler equations is the hydrodynamic shock
tube problem (the classical hydrodynamical Riemann problem) first introduced by Sod (1978). The initial
state of the problem is a contact discontinuity between two homogeneous domains of different density
and pressure. The idea behind this problem is that the two domains are initially separated by some kind
of barrier, which is removed at the start of the computation. The temporal evolution and resulting spatial
structure strongly depend on the initial conditions in the two distinct domains. Luckily, however, there
exists a semi-analytical solution for these kind of one-dimensional problems, see e.g. Toro (1997). Here
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Fig. 3.7: Density distribution for the shock tube problem. Here we show a comparison of the one-dimensional
(left) and the two-dimensional simulations (right). The results are obtained at time t = 0.08. The analytical
solution is given as the solid line in both cases. Both plots show from left to right a rarefaction wave followed
by a contact discontinuity and a shock wave.

we discuss a form of the problem with stronger gradients than those used by Sod in 1978. The initial
conditions are chosen to be:

[ρ(x), p(x)] =

{
[10,100] if x < 0.5

[1,1] if x ≥ 0.5
(3.69)

where we additionally decide for an adiabatic index ofγ = 1.4. The resulting spatial density distribution
is shown in Fig. 3.7. The left diagram reflects the solution for the strictly one-dimensional problem, that
is for the gradients being present in only one of the Cartesian directions. The right diagram, however,
shows the solution obtained with the gradients oblique to the Cartesian directions.

Both problems were computed with 200 grid cells along the domain shown in Fig. 3.7. The time
step was chosen so that the Courant number never exceeds 0.2. The results in Fig. 3.7 are shown for the
normalised timet = 0.08 and are directly compared to a pseudo-analytical solution.

From the comparison to the analytical solution it becomes clear that the C scheme is perfectly
suited to compute solutions of hydrodynamical problems. What is seen in Fig. 3.7 for any of the two
problems from left to right is a rare faction wave, a contact discontinuity and finally a shock wave. All
those are captured nicely by the scheme fitting quite accurately to the analytical solution. Moreover, it
becomes clear that the results are quite independent of the direction with respect to the Cartesian grid:
Both the strictly one-dimensional and the oblique problems are solved with similar accuracy.

The good behaviour for multi-dimensional simulations is also visualised on the right hand side of
Fig. 3.8 where the spatial temperature distribution is shown. The contours are very regular and smooth
without any artificial oscillations. Apart from that we also compare the temperature distribution – the
temperature being the only variable besides the density showing all of the discontinuities – to the cor-
responding analytical solution. Again the excellent consistency becomes clear. Therefore, and also
regarding other tests described, e.g., in Kleimann et al. (2004) and Kurganov et al. (2001) it is seen that
C is a good choice for multi-dimensional hydrodynamic problems regarding flows with shocks.
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Fig. 3.8: Temperature distribution for the oblique shock tube problem. On the left the temperature profile
is shown, whereas on the right the smoothness of the temperature solution for an oblique initial state is
visualised.

3.4.3 MHD Equations

The next thing that has to be verified is that the MHD equations can also be solved accurately using the
C scheme. The corresponding equations in normalised form were already introduced in paragraph
2.8.1. We do not intend, however, to discuss the complete two-fluid system yet. We are rather interested
in the ionised fluid only. Generally the two-fluid system is a combination of the hydrodynamic equations
with the MHD equations via the corresponding interaction terms. These are handled via a splitting
method: In one step the numerical scheme solves only the interaction terms, whereas in the next step
only the hyperbolic system is solved. Therefore, it is at this point sufficient to demonstrate that the
scheme can handle both the hydrodynamic and the MHD equations. It also has to be checked if the full
system can be solved, but this is independent of the capability of the C scheme.

The ideal MHD equations are obtained from the system of equations in paragraph 2.8.1 by neglect-
ing the normalised fluid equations and the corresponding source terms. This leaves a system of eight
equations:

∂ρ

∂t
= −∇ · s continuity equation (3.70)

∂s
∂t
= −∇ ·

(
ss
ρ
+

(
p+

B2

2

)
1 − BB

)
momentum equation (3.71)

∂B
∂t
= −∇ ·

(
sB− Bs

ρ

)
induction equation (3.72)

∂e
∂t
= −∇ ·

((
e+ p+

B2

2

)
s− (s · B)B

)
1
ρ

energy equation (3.73)

to be solved, where againe is the total energy density. The problem similar to the one discussed in the
preceding section is the MHD shock tube problem introduced by Brio and Wu (1988). It is used as a
standard MHD test problem despite the fact that there is no analytical solution available. With the initial
conditions: [

ρ(x), p(x), Bx(x), By(x)
]
=

{
[1,1,1,1] if x < 0.5

[0.2,0.1,1,0] if x ≥ 0.5
(3.74)
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Fig. 3.9: Density (left) and temperature (right) distribution for the one-dimensional oblique Brio-Wu shock
tube problem at the normalised time t = 0.15. Both plots show from left to right a fast rare faction wave
followed by a slow rare faction wave with the subsequent contact discontinuity being followed by a slow shock
and then finally by a fast shock. The solution is in excellent agreement with the corresponding simulations
depicted in Fig. 4a of Ryu and Jones (1995).

and an adiabatic exponent ofγ = 5/3 the initial state evolves into a rich spatial structure. The simulation
results depicted in Fig. 3.9 show a multitude of shocks and rare faction waves (for details see the figure
caption). These results were obtained using 512 cells in each direction with a time step size chosen so as
to ensure a Courant number never exceeding 0.2.

The results shown in Fig. 3.9 are in agreement with the results for the same problem presented by
Ryu and Jones (1995). As in the preceding section a simulation for the oblique problem yields very
similar results as the strictly one-dimensional problem. Therefore, the scheme also is suited for multi-
dimensional MHD problems. As in the hydrodynamical problems no artificial oscillations occur and,
due to the constrained transport character of the scheme, also the solenoidality of the scheme poses no
problem.

3.4.4 Order of the Scheme

Another important issue to be tested for the scheme is its order. That is we have to assure that the scheme
really is of second order as would be expected considering its derivation. This can most easily be done
by linear advection tests. Since, however, these are in no way similar to the problems we would like to
solve using the scheme, we rather stick to the approach suggested in Ryu et al. (1995). These authors
suggest to investigate the order of the scheme by the decay of different wave types.

Here we will briefly investigate sound waves, Alfvén waves and fast magnetosonic waves. The slow
magnetosonic wave is not taken into account due to its obvious similarity to the other MHD waves. For
the description of these wave types we will use the same equations of ideal MHD as discussed in the
preceding section. Here we will discuss the setup of the corresponding simulations and introduce the
principle ideas at the example of Alfvén waves. Despite the fact that the resulting damping rates are
clearly a numerical artifact since there are no intrinsic damping processes in the ideal MHD equations,
it is nonetheless possible to find a corresponding Reynolds number. This is also elaborated using the
example of a decaying Alfv́en wave.
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Fig. 3.10: Alfvén wave oblique to the background magnetic field with an inclination angle of 45◦. Here we
show the magnetic field lines bent by the wave at an instant when most of the fluctuation energy is stored as
magnetic tension. The wave structure was enhanced by a factor of four for better visibility.

Alfv én Waves

One of the tests being most significant for MHD simulations is the Alfvén wave test. Alfv́en waves are
incompressible at least in the fluid description. This wave type propagates by the restoring force of the
magnetic field lines. Therefore, they are areactionto any perpendicular deflection of these field lines. A
natural initialisation for a standing Alfv́en waves is therefore:

ρ

u
B
T

 =


ρ0

δuzez

B0ex

T0

 with δuz = a0vA sin(k· r); k =

 kx

ky

0

 ; r =

 x
y
z

 (3.75)

wherea0 is just an amplitude-factor. This initial state represents a disturbance in the velocity perpendic-
ular to the homogeneous initial magnetic field embedded in an otherwise homogeneous medium. The
wave is oblique to the magnetic field with the inclination with respect to the background magnetic field
chosen to be 45◦. With a uniform initial magnetic field and a uniform initial density this gives an Alfvén
speed of vA =

√
2/2.

After initialisation the magnetic field lines are bent by the shear flow inz-direction until thetensionof
the magnetic field lines gets so high that they are bent back to the initial configuration, thus, increasingδuz

again. We have consequently a continuous exchange of kinetic and magnetic energy for the fluctuations
in the z-direction. The evolution of the wave is illustrated in Fig. 3.10 where the magnetic field structure
is shown at a time when most of the fluctuation energy is stored in the magnetic field.

For ideal MHD Alfvén waves would not only be incompressible but also dissipation-free. The latter
property is violated for numerical schemes due to numerical viscosity and resistivity of the scheme itself.
This can be seen when investigating the evolution of the amplitude of the wave. Another approach to
investigate this behaviour of the C scheme is presented in Kleimann (2005).

This is visualised in Fig. 3.11 where the evolution of the root mean square of the velocity disturbance
perpendicular to the initially homogeneous magnetic field is shown. The amplitude of the Alfvén wave
decreases with time. From this and similar plots one can determine a decay rate for Alfvén waves
depending on the spatial resolution.

For a plasma with finite viscosityν and resistivityη the dissipation rateΓA for Alfv én waves can also
be deduced analytically to be (see Ryu et al. (1995) for a derivation):

ΓA =
1
2

(
ν

ρ0
+ η

)
k2 (3.76)
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Fig. 3.11: Evolution of the root mean square of the velocity disturbance (shown in logarithmic units) perpen-
dicular to the initially homogeneous magnetic field. The damping of the disturbance by numerical viscosity
and resistivity is obvious.

wherek is the wavenumber of the Alfv́en wave. Here we choose a diagonally propagating Alfvén wave
with kx = ky = 2π. Then we can define a corresponding Reynolds number as:

ReA := vAL

(
1
2

(
ν

ρ0
+ η

))
=

8π2vA

ΓAL
(3.77)

with L indicating the size of the numerical domain. The resulting Reynolds number will depend on the
resolution used for the computation as the numerical dissipation will increase with decreasing resolution.
This fact, however, will be discussed for all wave types together.

There is just another important issue, which can be checked from Fig. 3.11. That is, we can easily test
whether the correct Alfv́en speed is recovered by the scheme. For a standing Alfvén wave as discussed
here this can not be done by an investigation of the motion of the spatial structure. The Alfvén speed,
however, also determines the fluctuation frequency of a standing Alfvén wave. For a damping rate small
compared to unity the real part of the angular frequency isωr ' vAk. With our choice for the wavenumber
and a unity initial magnetic field, this just yields:

vA =
1
√

2
=⇒ ωr = 2π (3.78)

Thus, peaks of the velocity are expected to occur after each∆t ' 0.5 since also negative extremal values
are seen as peaks when investigating the root mean square of the velocity. The peaks are at the correct
positions in Fig. 3.11. Moreover, it is clear, that the fluctuations time scale is much shorter than the
damping time scale. Therefore, the assumption that the effect of damping on the angular frequency can
be neglected is justified. Thus, it is obvious that the scheme represents the Alfvén speed correctly.

All these considerations can also be performed for all possible wave types appearing in MHD. In the
subsequent section, however, we will only concentrate on the typical Reynolds numbers and the order of
the scheme.

Order of the Scheme

For the test of the order of the scheme we applied two additional tests apart from the decaying Alfvén
wave. These were a decaying sound wave and a decaying fast magnetosonic wave. With similar ar-
guments as above it is also possible to define corresponding Reynolds numbers for these wave types
(for details see again Ryu et al. 1995). For all three wave types we performed numerical simulations
with different spatial resolutions. From the derived dissipation ratesΓ it is then possible to compute the



64 CHAPTER 3. NUMERICAL SIMULATIONS

n

R
e

Fast mode
Sound wave
Alfv én mode

Fig. 3.12: Reynolds number dependence for the decay of different wave types on spatial resolution. With
the dotted lines we additionally indicated a dependence ∝ n2 where n is the number of cells along any of the
Cartesian directions.

Reynolds numbers for different wave types and different spatial resolutions. The results of this study are
summarised in Fig. 3.12.

There the computed Reynolds numbers are shown for all wave types individually with the dotted line
indicating a quadratic dependence on the number of cells in the numerical domain. Clearly the scheme
is of second order even though the waves are propagating oblique to the Cartesian grid. Moreover, the
dissipation rates for the different wave types are quite similar. What is interesting, however, is the fact
that the incompressible mode (the Alfvén mode) is substantially more dissipative than the compressive
mode. The reason for this is not entirely clarified yet, but it is clear that the scheme produces very
good results for compressible wave types. Therefore, it is especially suited for the highly compressible
interstellar medium. Furthermore, it is evident, that it is easily possible to reach Reynolds numbers in
excess of 103, which is often viewed as the barrier dividing laminar from turbulent flow.

These tests conclude our little suite. With the above we were able to verify that the C scheme
is capable of solving multi-dimensional hyperbolic problems. It became clear that the scheme does not
produce spurious oscillations at shocks or other steep gradients. Moreover, all types of MHD waves
are well represented by the scheme. Due to the fact that also high Reynolds numbers can be reached
the scheme is well suited for the numerical solution of the MHD equations in the context of interstellar
turbulence.

3.4.5 ISM Turbulence

Obviously, the ISM turbulence discussed in this work does not qualify as a test case. If there would exist
an analytical solution, the whole numerical study would be futile. We have, nonetheless, to verify that
the solution obtained by the numerical procedure is a valid one. A strong hint for this is the convergence
of the results with increasing spatial resolution.

Unfortunately, the dynamical nature of turbulence does not allow for a steady state at any given time.
Thus,convergenceis not that easily identified. This becomes clear when regarding the density structure
at the same location for different spatial resolutions as they are depicted in Fig. 3.13. The large-scale
structure is obviously the same for the different computations. While there is essentially no small-scale
structure visible for the lowest resolution computation, the high resolution computations are dominated
by very fine density structures whose number is increasing with increasing resolution.

A good indication of the convergence of the scheme, however, is the fact that the fine structure visible
at lower resolution is still present at higher resolutions – merely even finer and frequently distorted by
fluctuations whose scale was simply not present in the more weakly resolved simulations. With the above
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Fig. 3.13: Spatial density structure for isothermal turbulence simulations of varying spatial resolutions. The
number of cells is increased from top left (64 cells in each direction) to bottom right (512 cells in each direction)
with a twofold increase from image to image.

tests and the consistency shown in Fig. 3.13 we are confident that our results are indeed numerically
correct and, therefore, can be interpreted physically.

Another indicator of the convergence of the scheme is usually seen in the energy content of the
numerical box. For many numerical simulations one would expect the overall energy to eventually
converge to some finite value. Here, however, we expect the fluctuation energies to become higher and
higher for increasing resolution. This fact is visualised in Fig. 3.14, where both the energy and the
enstrophy content of the simulations for various spatial resolutions are shown. The general temporal
evolution is the same for each of the spatial resolutions only with differences in the absolute values. At
first sight, however, there seems to be a slow trend towards convergence of the energy content of the
numerical domain. One has to keep in mind, however, that the dissipation differs for all the different
spatial resolutions, since it is an exclusively numerical effect. Therefore, one does not really expect a
convergence towards some finite amount of energy. Thus, we have to think about the reason for the
apparent convergence.
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Fig. 3.14: Temporal evolution of the enstrophy (left) and energy (right) content of the numerical domain. The
results are shown for different spatial resolutions as indicated in the figure.

This can be understood by investigating the nature of turbulence. Roughly speaking an increase of
spatial resolution corresponds to smaller spatial scales becoming available for the turbulent fluctuations.
As a first approximation the spectrum can be assumed to be fixed at the largest available wavenumber.
With the spectral slope in the dissipation range being roughly the same for all the spatial resolutions
the growth rate for the overall fluctuation energy for these low resolutions will be constant. As soon
as the spectrum shows an inertial range, however, the spectrum at small wavenumbers becomes flatter.
Therefore, an increase of spatial resolution yields a lower increase of the overall energy whenever an
inertial range is present. When the inertial range is fully developed, we would, thus, expect the fluctuation
energy to grow with the same rate also for all higher resolutions. Thus, we do not expect to see a
convergence of the overall energy content of the numerical domain - but rather a bend in the rate of
energy increase when the inertial range starts to become important. Even though at first sight Fig. 3.14
seems to show a convergence for the energy content, we rather expect the visible effect to be due to the
slowly evolving inertial range. Therefore, the energy is not a good tracer to check the convergence of
the scheme, when the dissipation is exclusively numerical – there is no value the fluctuation energy will
converge to in contrast to what is discussed in Stone et al. (1998).

3.5 Source Terms

So far we only discussed the hyperbolic solver. This, however, in principle does not allow for the in-
clusion of source terms, when these – as is usual – cannot be given in hyperbolic form. Moreover, it
is unclear, how the presence of source terms might change the estimate for the maximum wave speeds
needed for the C solver. These problems can most easily be circumvented by the application of a
so-calledfractional-step method. What we are investigating here are systems of equations of the form:

∂q
∂t
+ ∇ · F(q) = Ψ(q) (3.79)

where the source terms are given on the right-hand side of the equation. In all problems considered in
this work the source terms depend onq only and never on any of its derivatives. In this case the equations
describing the temporal evolution of the source terms represent a system of independent ODEs for each
grid point:

∂q
∂t
= Ψ(q) (3.80)
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The idea behind the fractional-step method is to split Eq. (3.79) and solve its parts separately. The
concept behind the approach is to alternate between solving the two distinct problems, which in our case
are the hyperbolic and the source term problem. This is well suited for problems that require different
solvers. This subdivision of Eq. (3.79) then reads:

Problem A :
∂q
∂t
+ ∇ · F(q) = 0 (3.81)

Problem B :
∂q
∂t
= Ψ(q) (3.82)

Regarding the alteration we decided not for the simplest possible method, but rather for the second order
Strang splittingintroduced in Strang (1968). One solves the first subproblem over a half time step of
length∆t/2. The resulting data is then used for a full time step on the second subproblem. Finally, one
takes another half time step for the first subproblem. All in all we have a scheme of the form:

qn A
−→ q∗

B
−→ q∗∗

A
−→ qn+1 (3.83)

This scheme can easily be shown to be of second order in time (see e.g. Leveque 1992). Furthermore, it
is equivalent to a method that uses a full time step for each subproblem – only that in the case of Strang
splitting the steps are not taken at the same time.

Here the use of a splitting scheme has the major advantage that we can use the methods appropriate
for the individual problems. That is we can still use the shock-capturing C scheme for the hyperbolic
problem, while at the same time we use a Runge-Kutta time integrator for the evolution of the source
terms. Additionally, whenever both problemslive on very different time scales, the splitting allows us to
use different time step sizes for the two subproblems. If, e.g., the time scale of the second problem were
much shorter than the one of the first, one would just useN time steps of the second problem to advance
over an overall step∆t.

There are, however, also shortcomings of splitting methods in general. On the one hand there occur
some problems with so-calledsingularor stiff source terms. These terms denote situations when sources
are very strong and concentrated in small spatial regions. Luckily this is not the case in any of our
problems. On the other hand steady-state solutions do pose a problem for splitting methods. That is,
the steady-state obtained using a splitting method usually depends on the time step, which should not be
the case, of course. Again this poses no problem for our highly dynamic turbulence simulations that do
not converge to any steady-state solution. With this we are finis the description of our basic numerical
scheme. What is left is a discussion of a few specific numerical issues.

3.6 Further Numerical Issues

So far we have introduced the numerical scheme we used in order to solve the system of hyperbolic
equations. There is, however, more physics to this problem than just the statement of the equations. As
was already mentioned the question of the boundary conditions is most easily handled, since we are using
a periodic box. The initial conditions as compared to this are much more involved. These we will only
be able to discuss concisely after a section on how to obtain spectral information about the fluctuations
in the numerical experiments.

3.6.1 Obtaining Turbulence Statistics

Whenever studying turbulence one is usually interested in the distribution of power over different spatial
scales. This, however, can best be studied in wavenumber space. For isotropic turbulence this is done by
investigating theomnidirectional, angle integrated wavenumber spectrum.

For MHD turbulence, however, isotropy might by broken by a sufficiently strong magnetic back-
ground field. In such a case it is common to distinguish between the spectra of fluctuations along and
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perpendicular to the magnetic field. In this case one obtains two different kinds of one-dimensional spec-
tra - one along and one perpendicular to the background field. Here the latter of those is obtained as the
angle averaged form of the two-dimensional fluctuation spectrum perpendicular to the magnetic field.
This division in two spectra will from now on be referred to as theanisotropy spectrum.

The procedures of obtaining omnidirectional or anisotropy spectra will now be illustrated using the
example of some kind of power law given in wavenumber space.

Velocity Spectra

The general definition for the isotropic velocity turbulence spectrumE(k) was already used in the intro-
duction of Kolmogorov turbulence and is given as the auto-correlation of the velocity field:∫

E(k)dk=
1
2
< u · u > (3.84)

Thus, the turbulence spectrum in wavenumber space represents the kinetic energy divided by the density
of the fluid under consideration1. The above spectrum is obtained from the Fourier-transform of the
individual components of the velocity field:

E(k) =
1
2

(u2
x(k) + u2

y(k) + u2
z(k)) (3.85)

From this we still have to deduce the omnidirectional spectrum, since here we are rather interested in the
energy at a particular scale without any additional directional information. Thus, to obtainE(k) we still
have to integrate over spherical shells of radiusk in wavenumber space. Hence, the actual procedure to
obtain the omnidirectional spectrum from the velocity fluctuations is as follows:

1. First we transform the velocity fluctuations into Fourier space.

2. From these we compute thek-dependent fluctuation energy

3. Finally the omnidirectional spectrum is obtained through an integration over spherical shells of
radiusk.

This procedure is not only used to obtain the overall velocity fluctuation spectrum. In this work we will
also investigate density and magnetic field spectra. Additionally, we will examine the compressive and
the solenoidal part of the velocity fluctuations individually. For this we derive the spectra for:

u2
shear(k) =

∣∣k̂kk× u(k)
∣∣2 u2

comp(k) =
∣∣k̂kk · u(k)

∣∣2 (3.86)

wherek is the wavenumber vector andk̂kk indicates the corresponding unit vector (see also Vestuto et al.
2003).

Since space is discrete in numerical computations this also is true for the corresponding Fourier
space. Therefore, on the one hand we have to use a discrete Fourier transform (which is provided by
thefftw library (see Frigo 2004)) and on the other hand also the integration over the spherical shells is a
sum rather than an integral. The latter is done by binning Fourier space into shells and adding all energy
contained in these shells. This procedure yields smooth power spectra for the higher wavenumbers. For
small wavenumbers, however, the number of grid points covered by the shells continuously decreases,
thus, leading to worse statistics for small wavenumbers. This issue can luckily, at least to some extent,
be handled by a renormalisation procedure:

1This definition stems from research on incompressible turbulence where density is constant
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Renormalisation

One reason for spectra to become non-smooth especially for small wavenumbers is connected to the
distribution of grid points in wavenumber space. When using a Cartesian grid one runs into problems,
when summing the values of the grid points on spherical shells. This is due to the fact, that in a spherical
geometry grid points on a Cartesian grid are not homogeneously distributed: On the one hand the number
of cells per shell can be above or below the value (n ∝ k2) expected for a spherical geometry. On the
other hand the average wavenumber of the cells in one shell varies corresponding to the distribution of
the shells. The first problem is taken care of by normalising the number of grid points in any of the
shells. This is done just by counting the number of grid points in a given shell and using the inverse
of this number multiplied by a factor ofk2 as a multiplier for the spectra. This already yields much
smoother spectra for low wave numbers. When also taking the correct average wavenumbers for the
individual shells into account the spectra will only be disturbed by physical effects and bad statistics for
very low wavenumbers.

All the same procedures are also used for the computation of the anisotropy spectra. In this case the
only important modification is that the integration is carried out over only two instead of three spatial
dimensions. With all this in mind we are now in a position to understand the initialisation and driving of
the velocity fluctuations. After this, however, we have once again to return to the discussion of available
tools to investigate the statistics of the turbulence.

3.6.2 Driving and Initialisation

As mentioned in Sec. 2.7.1 we intend to mimic the kinetic energy input by supernova explosions by a
continuous driving spectrum in wavenumber space. By this the initial conditions are fully determined,
since we superimpose the velocity fluctuations onto an otherwise homogeneous background medium (i.e.
the system is initialised with a homogeneous background density, temperature and magnetic field). Thus,
we have to discuss the exact way how to implement the initially disturbed velocity field.

The velocity field has to fulfil some very important conditions: First the fluctuations have to be at
large spatial scales. Then, the fluctuation have to be completely random and the energy distribution
over the different scales has to satisfy some form of scale dependence. For this one also has to discuss,
whether it is desired to use either compressible or solenoidal driving, because when achieving this the
energy dependence in wavenumber space is also modified. Finally the energy put into the system has to
be the same as would be estimated for the supernova explosions.

To clarify this matter we will discuss the procedure from the fluctuation spectrum given in Fourier
space to the actual spatial fluctuations step by step. First, the spectrum in wavenumber space is initially
fixed by the user as some functionf (k). Since we will only investigate either solenoidal or fully com-
pressible driving, these properties have to be taken care of. From a random vector field a solenoidal field
is easily found just by taking the curl of the vector field. The same is true for a scalar field and the gra-
dient, when talking about fully compressible driving. These operations, however, have some influence
on the spectral form in wavenumber space due to the fact that the differential operators are connected to
operations in wavenumber space by the following relations:

∇ × A(x) −→ k × A(k) and ∇Φ(x) −→ kΦ(k) (3.87)

This means that the spectra of the fluctuations will be modified by the above operations. This effect
will depend on the type of spectrum that is eventually investigated. For most purposes this will be
the omnidirectional fluctuation spectrum introduced above. For those only the absolute value of the
wavenumber is of any importance. Therefore, each of the above procedures yields an additional factor
of k for the slope of the velocity spectrum in wavenumber space.

As mentioned in the preceding section, the omnidirectional energy spectrum is eventually obtained
from the angle-integrated form of the square of the velocity – that is the velocity spectra resulting after
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the above differential operation have to be squared and multiplied byk2 (the latter resulting from the
angle integration).

So far we have made clear how the spectral distribution of the initial velocity fluctuations is connected
to a resulting kinetic energy fluctuation spectrum. What is still missing, however, is the randomness of
the initial field. For this we worked closely along what is suggested in literature (see especially Vestuto
et al. 2003; Christensson et al. 2001; Stone et al. 1998). The idea is to introduce fluctuations of random
amplitude, with the amplitudes distributed according to a normal distribution on each of the input scales.
The dependence of the fluctuation energy on the spatial scale is at the same time assured by including
a scale dependence of the width of the normal distribution. For a normal distribution around zero this
width is fully determined by the varianceσk

δu of the GaussianGδu,k. For the velocity fluctuationsδv this
means we have: (

σk
δu

)2
=

∫
δu2Gδu,kd

3δu ≡< δu(k)2 > (3.88)

That is, in this case the variance is equivalent to the second order moment of the velocity fluctuations at
scalek. This means that we can define the form of the initial spectrum via the variance of the amplitude
distribution of velocity disturbances at scalek. With all this in mind it is possible to set the wavenumber
dependence of the variance in a way as to provide any desired spectral slope. Fixing the dependence of
the standard deviation on wavenumber yields a spectral slope of the form:

E(k)Init = k2(k σk
δu)2 (3.89)

From the corresponding inverse relation it is clear that, if a spectrum with a power law index of−s is
desired, the necessary input spectrum has to have a variance of the form:

σδu ∝ k−s/2−2 (3.90)

Thus, we are finally in the position to describe the complete initialisation procedure.

Initialisation and Driving

With the knowledge gained in the preceding paragraphs the initialisation of a turbulence simulation
is quite easily done. For the density, the magnetic field and, whenever having to use the full energy
equation, also for the temperature we initially prescribe constant values. These are, if possible, chosen
as unity with the actual values being taken care of by the normalisation constants.

For the velocity fluctuations we prescribe some wavenumber dependence for the variance of the nor-
mally distributed amplitudes in wavenumber space. The resulting vector fields are then transformed to
configuration space. There the resulting fields are projected either to their solenoidal or fully compress-
ible part. Furthermore, anyglobalmomentum contained in the resulting velocity field is reduced to zero.
Finally, the fluctuations are normalised to correspond to some desired energy input rate. A typical initial
velocity field is shown in Fig. 3.15, where the direction and absolute value of the velocity disturbance is
shown for a slice of the computational domain.

Apart from the initialisation we also include a driving of the turbulence which is very similar to the
initialisation. In that case we add at regular temporal intervals a velocity fluctuation field corresponding
to a fixed amount of kinetic energy to the evolved velocity field. This corresponds to the procedure:

u −→ u + Aδu (3.91)

where the amplitude factorA is fixed by the desired energy input rate∆ E:

A = −

∑
i jk ρi jkδui jkui jk∑

i jk ρi jkδu2
i jk

+

√√√√√(∑i jk ρi jkδui jkui jk∑
i jk ρi jkδu2

i jk

)2

+
2∆E

∆V
(∑

i jk ρi jkδu2
i jk

) (3.92)
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Fig. 3.15: Initial velocity field in a slice of the computational domain. The colours indicate the Mach number
of the absolute value of the velocity field. At the same time the vector projections naturally give additional
directional information.

where the sums are over all grid points of the computational domain. Hereρi, j,k is the density in the
individual grid cells. Clearly Eq. (3.92) can also be used for the initialisation withui jk = 0 in that case.
This concludes our discussion of the numerical setup of the physics contained in our model. Before
concluding the chapter on numerics, however, we will briefly introduce another tool needed for the
investigation of the turbulence statistics.

3.6.3 Structure Functions

As explained in the introduction thestructure functionscontain more information on the statistics of
the fluctuations than the omnidirectional spectrum. Therefore, we briefly explain how such structure
functions are evaluated for a field given on a discrete grid. In general these are defined by Eq. (1.16) as:

Sp(l ) ≡
〈
|(u(r + ln) − u(r)) · n|p

〉
(3.93)

for the velocity field. To evaluate these for a vector field defined on a discrete grid there are several
possibilities. For the most accurate results one would first subdivide the distance rangel into several
bins. Then for every single grid point the expression:

|(u(r + ln) − u(r)) · n|p (3.94)

has to be computed and added to the appropriate bin. Hereln is the vector connecting the grid point
under consideration to all others. After having done this for each grid point, the optimum statistics
should be achieved. This procedure, however, is very time consuming. For sufficiently high resolutions
the time consumption of the procedure for computing the structure functions might even exceed the time
consumption of the actual numerical computation. This is due to the fact that the numerical cost of the
above method is of orderN2 whereN is the number of cells in the computational domain. In contrast to
that the C scheme is of orderN.

For our computations it soon became clear that already for a spatial resolution of 256 cells in each
direction the above method was far too expensive to yield the structure functions in a sensible time.
Luckily we were able to show that such a complex computation is not needed to obtain good statistics
for the structure functions. It proved to be sufficient to compute the structure functions for each grid
point just by using corresponding grid points in the directions of the Cartesian grid. Even in that case
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the statistics is still so good, that it is possible to perform this computation only for a subset of the actual
grid points. By this method we were able to compute structure functions even for spatial resolutions up
to 512 cells in each direction in a reasonable time.



Chapter 4

Molecular Clouds

Turbulence is most often discussed for molecular clouds. This might at first seem arbitrary, but there
are good reasons to concern ourselves with these ISM structures. First, they are very important for the
dynamics of the ISM, since star formation takes place in just these regions. Second, a far more trivial
reason to investigate turbulence in molecular clouds is that they are of lower complexity than other
regions of the ISM. This is due to the fact that typically the gas in molecular clouds is shielded from the
interstellar radiation field. Therefore, dissociation by UV photons can safely be neglected for a study of
molecular clouds. This means that external heating also is of no importance in these regions.

Unfortunately, as for the ISM itself, there is not just oneprototypefor the typical molecular cloud.
Even for those structures one has to distinguish different kinds of clouds. The most recent classifications
of molecular clouds (see Snow and McCall 2006) make a division with regard to the influence of the
interstellar radiation field. The variety of clouds ranges from diffuse atomic clouds to dense molecular
clouds. The former of those are essentially denser parts of the warm ISM, still fully exposed to the
interstellar radiation field. Therefore, nearly no molecules can form in these surroundings, which is why
chemistry can safely be neglected for these regions. The other extreme are the dense cloud cores, which
are completely sealed off from the interstellar radiation field and are, therefore, rather dominated by their
chemistry and also by self-gravity.

It is, however, important to note, that one will not be able to observe the different kinds of clouds
individually. The above definitions are rather to be understood locally for any patch of gaseous materials.
That is, a dense molecular cloud has somehow to be surrounded by dense atomic material, which will
essentially be the reason for the ionising UV radiation not to reach the dense gas. A typical example of
such a dense structure, most probably consisting of different dense cloud phases, is shown in Fig. 4.1.
The image taken by the Very Large Telescope nicely shows the rich structure of the dense ISM.

4.1 Model Parameters

Usually, simulations for molecular clouds are carried out neglecting the interstellar radiation field and
also the chemistry. Obviously, this is a quite crude approximation for most of the dense cloud categories.
Before discussing this any further, we, therefore, have to ask ourselves, which type of dense cloud we
will be investigating.

What would seem the most interesting phase for our purpose is formed by what Snow and McCall
call the diffuse molecular clouds, which are already sufficiently isolated from the interstellar radiation
field. The ionisation is, however, still sufficiently high so that the magnetic field can strongly influence
the plasma and, therefore, cannot be neglected. Despite the fact, that chemistry already plays a role
in these regions it is not as complex as in regions like the dense cloud cores. Moreover, the number
densities being of the order of 108 particles per cubic meter are still low enough that self-gravity has
not to be taken into account. With an ionisation fraction of 0.01 used for this section we have an initial
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Fig. 4.1: Infrared image of the RCW38 star forming region taken with the Very Large Telescope. For further
information see http://www.eso.org/outreach/press-rel/pr-1998/pr-19-98.html.

electron density ofne = 106.

Thus, we can safely neglect self-gravity in this work, so that we will not be able to investigate star
formation directly. Note that with the present day computational resources it is anyhow not yet possible
to investigate self-gravity and turbulence at the same time. This is due to the fact that turbulence and
self-gravity are both computationally expensive. The former has to be very highly resolved, whereas the
latter has a basic numerical cost going asN2, whereN is the number of cells spanning the numerical
domain. This does obviously not fit to the available computing resources.

With the specification of the region of interest to be thediffuse molecular cloudphase of the ISM
we are in a position to specify the corresponding model parameters. For this phase we consider the
lower limit for the number density given in Snow and McCall (2006) – that is we selectn0 = 108 m−3.
The corresponding value for the temperature is obtained from a model for the two-phase ISM. From the
discussion in Cox (2005) with the resulting pressure curve depicted in Fig. 1.2 we find a corresponding
thermal pressure of about 7.76 · 10−14 Pa. This means that we are dealing with a temperature of about
56 K. From this we find a sound speed of 480 m s−1 when we assume an average ion mass ofm0 = 2mp.
The latter choice corresponds to the fact that hydrogen occurs partly in the form of neutral hydrogen
molecules and that also heavier elements are present in the ISM.

For the input power by supernova explosions this choice of parameters leads, according to Eq.
(2.100), to a normalisation factor of the orderSe0 ' 3 · 10−29 J m−3 s−1 for a cube with side length
of 40 pc. This is about 330 times smaller than what we would expect for molecular clouds. Therefore,
the driving of the fluctuations for molecular clouds is introduced as a kinetic energy input of 330 in nor-
malised units per unit time into the numerical domain. Before discussing the results of the computations,
we address the numerical issues connected to these simulations.

4.1.1 Numerical Model

Naturally the normalised density is initialised as unity for the numerical computations. Furthermore the
magnetic field is initially chosen to point into thex-direction with a magnitude given according to the

http://www.eso.org/outreach/press-rel/pr-1998/pr-19-98.html
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desired plasmaβ as:

B̃ =

√
2
β

(4.1)

for an initial pressure of unity. This relation can most easily be found from Eq. (2.97). As was mentioned
earlier, we chooseβ = 0.3, because this quite nicely corresponds to the observations. The fluctuations
are initialised as pure velocity fluctuations and are driven by an input of the same magnitude after every
time step∆tDrive = 10−3. At these driving steps we put in a velocity disturbance corresponding to a
kinetic energy of:

∆Enum= S̃e∆tDrive (4.2)

These fluctuations are restricted to spatial scales with 1≤ kL/2π ≤ 3, wherek is the wavenumber and
L indicates the length of the numerical domain, and they are put in with random phases and random
amplitudes, with the latter also depending on the wavenumber. Moreover, the fluctuations are added as
an incompressible velocity field to mimic the transport through wavenumber space from larger spatial
scales than they are accessible in the simulations.

The simulation results presented in this section are extracted from numerical computations run up to
the normalised timet = 0.3. This time has to be seen in contrast to the time scales relevant for turbulence
as they were introduced in section 2.7.4. For the presented simulations we found a normalised energy
content of the numerical domain ofE f luct ' 30. The normalised energy dissipation rate was chosen as
ε = 330. Finally, we found an average normalised velocity of ¯u = 6.1. Using these values we find for
the characteristic time scales values ofτ ' 0.061 andτD ' 0.55 revealing that after reaching the fully
turbulent state att ' 0.1 (see Fig. 3.14) the system was evolved for more than three characteristic times.

Here we discuss mainly two different models for molecular clouds with a spatial resolution of 512
cells in each spatial direction. We concentrate on the investigation of the differences between an isother-
mal and an adiabatic medium – that is we do not take an energy equation into account but rather use an
equation of state to close the system of equations. This might seem at first surprising, because shocks
can hardly be treated without the application of an energy equation. The latter is needed to describe the
heating occurring at the shock structures – for an isothermal equation of state the heating is obviously
completely neglected, whereas it is suppressed when using an adiabatic equation of state. For molecular
clouds, however, this is argued to be a good approximation due to the fact that cooling is very efficient in
these dense regions (see e.g. Tóth 1994). As can be seen from Eq. (2.88) cooling gets very efficient for
high densities as they are found in molecular clouds. Here we will investigate the changes of the structure
due to the different choice for the equation of state. This will give at least a hint about the sensibility to
use an isothermal equation of state. A comparison to a simulation using the full energy equation together
with the appropriate cooling function for molecular clouds is left as a task for the future.

The neglect of an energy equation is, however, not all that has to be checked about the equations used
to describe molecular clouds. We also have to discuss whether a description using the MHD equations is
appropriate for this case. Thus, before coming to the results, we will first investigate a two-fluid model
for molecular cloud turbulence.

4.1.2 The Two-Fluid Model

For molecular cloud turbulence we first have to clarify, how to model the corresponding plasma. With the
preliminary work in chapter 2 we have two choices available for the numerical model – namely the MHD
model and the two-fluid model. Especially, we have to check whether possible differences in the results
obtained with two models can be attributed to different physics or rather different numerical errors. For
the phase of the molecular clouds the obvious test is to compare the results of a magnetised shock tube
tests, already introduced in Sec 3.4.3, for both models, since such shocks are expected to be the dominant
structures in the high Mach number turbulence inside molecular clouds.
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Fig. 4.2: Density distribution for the one-dimensional, non-dimensionalised Brio-Wu problem at time t = 0.15.
Results are shown for the sum of neutral and charged fluid density for the two-fluid model with coupling
strengths as indicated in the figure. To discriminate the results for 〈σv〉 = 10−15 m3 s−1 are shifted upwards by
∆ρ = 0.1. Additionally we show the MHD solution as the red line.

Results of the corresponding numerical computations are shown in Fig. 4.2. Here we investigate the
magnetical shock tube test as it was already discussed in Sec. 3.4.3. The MHD test was set up exactly
as it was done there. The two-fluid test was set up up basically in the same way apart from the fact that
the mass density was split up into a part for the neutral fluid and one for the ionised fluid, with the sum
yielding the same mass density as for the MHD simulation. The normalisation constants were chosen as
given in the introduction to this chapter – namely we used an overall size of the computational domain
of 40 parsecs, a base temperature of 56 K and a base number density ofn0 = 108 m−3. For the degree of
ionisation we selectedx0 = 0.01.

From Fig. 4.2 we can draw several important conclusions regarding the two-fluid model. While
the actual interaction for molecular cloud turbulence is expected to be even stronger as discussed in
Hosking and Whitworth (2004), the first important point is that the results for coupling strengths of
〈σv〉 = 10−16 m3 s−1 and〈σv〉 = 10−15 m3 s−1 (see section 2.8.2 for a definition of these coupling terms)
are virtually the same (note that one of the solutions is artificially shifted). This shows that the solutions
for a coupling of this strength asaturated. That is they do not change anymore for a higher coupling
strength. This can only be explained by the fact that the coupling is so strong that the velocities and
the temperatures of both fluids are identical in every cell of the numerical grid. Since the evolution of
the mass density is fully determined by the velocity field, the distribution of the mass density will – if
initially the same – remain the same for both fluids at all times. Thus, we have the same distributions of
mass and of momentum density for both fluids. With similar arguments it can be seen that this is also the
case for the magnetic induction and the energy densities. This means we have total coupling in this case.
This also means that for a coupling strength above a given lower limit all simulations will yield identical
results – as was observed for the two different strengths here.

With this in mind one would also expect the actual two-fluid solutions to be identical to those obtained
with the MHD equations. This is seen when taking into account that the evolution equation for the
magnetic induction only depends on the velocity – which is identical for both fluids. Therefore,both
fluids are directly coupled to the magnetic field, leading to the expectation that we should gain the same
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results as for the MHD equations.
The solutions for the sum of the densities obtained using the system of two-fluid equations are not

exactlythe same as the ones obtained from the MHD equations, which can also be seen in the same
figure. The difference in the results, however, is only marginal and can be attributed to the realisation of
the two-fluid model. Due to the fact that as compared to the MHD equations five additional equations
have to be solved it can be expected that the dissipation is somewhat more important than for the case
of the MHD equations. Stronger dissipation, however, would essentially yield smoothed out spatial
structures. This nicely corresponds to the differences visible in Fig. 4.2 – most of the sharp gradients
being present in the solution of the MHD equations have been smoothed out in the two-fluid simulation.
The important point, however, is the fact that all waves are exactly at the same position as in the MHD
equations.

This shows that the solution obtained using the two-fluid model is just the one found using the MHD
equations, with the deviations being caused only by differences in the numerical procedure rather than
by any physical difference. This means that for molecular cloud turbulence at the spatial scales under
consideration here, there is no physical difference between the MHD and the two-fluid model. The only
difference to be expected to the above test is entirely due to numerical errors. Therefore, we will stick to
the MHD model alone, because the numerical cost is much lower and – as has been shown by this test –
the numerical dissipation is also reduced.

There is just another important conclusion to be drawn from the above results. Clearly the nice corre-
spondence of the two-fluid solution to the MHD solution shows that the two-fluid model is implemented
correctly. It can readily be used for any system where the coupling is sufficiently weak so that the use of
a two-fluid is necessary. Additionally by this discussion we have seen that the Brio-Wu shock tube test
is not only to be regarded as an unphysical test case. Here we were able to use this classical test case
to decide about the necessity to use a two-fluid representation for out simulations. The present results
even show that the Alfv́en speed in the limit of strong coupling is, indeed, determined by the sum of the
density of charged and neutral particles.

In what follows we discuss the results obtained using the MHD model. We are especially interested in
the differences between an isothermal medium (with an adiabatic exponent ofγ = 1) and a medium to be
described by an adiabatic equation of state (where we choose the adiabatic exponent asγ5/3) – meaning
a medium, where external temperature sources are neglected. For this we will start the description with
what is most easily observed – the density structure.

4.2 The Density Structure

The line-of-sight integrals of the electron densityne along a given direction is also known asdispersion
measureand defined as:

DM ≡

∫
nedl (4.3)

The spatial density structure resulting from the highest resolution simulations is depicted in Fig. 4.3.
The following general remarks apply to both, the images showing the local density structure and the
ones showing the dispersion measure.

First, it is evident that in both cases the same driving was used. The spatial structures are clearly
similar and in both cases the plasma is concentrated in filamentary substructures. This is to be expected
for compressible MHD simulations where the dissipative structures are shocks.

Due to the fact, however, that we used the same driving in both cases all differences have to be
attributed to the difference of the equation of state. Especially the dispersion measure reveals that the
density contrast is much lower for an adiabatic equation of state. Moreover, when comparing the re-
sults for the local density distributions, the shock structures are clearly much sharper for the isothermal
medium. This is due to the fact that for an adiabatic medium the pressure is much higher in the vicinity
of density enhancements than it would be for an isothermal medium.
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Fig. 4.3: Electron density structure resulting from MHD simulations for molecular clouds. The upper row
shows local density cuts, whereas in the lower one the dispersion measure (for the definition see Eq. (4.3) is
depicted. On the left the corresponding images are shown for simulations with an adiabatic equation of state
whereas on the right the results for an isothermal medium are given. In each figure we show the logarithm of
the number density in units of 106 m−3.

This fact is also reflected in the density power spectra. This is shown in Fig. 4.4 as a direct com-
parison for both cases. For the isothermal spectrum there is apparently much more power in the high
wavenumber modes corresponding to the small spatial scales. Obviously, however, not only the highest
wavenumbers are influenced by the different choices for the equation of state. The fluctuations in the
inertial range also differ.

Interestingly, the density power spectrum can directly be extracted from observations for the inter-
stellar medium. So far it is the only spectrum available for comparison to numerical results. The most
famous of these spectra is the one published in Armstrong et al. (1995), depicted in Fig. 1.9. Especially
the fact that the spectrum is spanning about ten orders of magnitude in wavenumber space and also that
it follows the Kolmogorov index is quite remarkable. There are, however, no theories available for a
density fluctuation spectrum yet. The Kolmogorov theory did not predict anything on such spectra since
for this the fluctuations were assumed to be incompressible. The same is true for the She-Leveque model
for the structure functions to be discussed later (see e.g. section 4.3). These models were just recently
extended to the case of compressible fluids without any discussion of the density fluctuations.
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Fig. 4.4: Density power spectra for molecular cloud turbulence. Here we show the normalised density fluctu-
ation power multiplied by k0.45 as a function of wavenumber k for the adiabatic and the isothermal case.

When taking into account the line-of-sights along which the data for the Armstrong et al. spectrum
were obtained, it becomes clear that it is related to the more dilute phase in the ISM. Therefore, it is
not representative for the dense, high Mach number regions investigated here. For these a spectrum
was observed by Deshpande et al. (2000), that does not correspond to the Kolmogorov scaling at all.
Deshpande et al. rather find a much flatter power law with an index about 0.75. This dependence of the
power law index on the Mach number is further investigated by Kim and Ryu (2005), who also found
flatter spectra for increasing Mach numbers.

Our results, depicted in Fig. 4.4, are quite consistent with these models and the observations. A
result, which was not discussed so far, is the fact, that the density spectrum appears to become steeper
for an adiabatic medium. This can be understood when taking into account the fact that the shocks are
stronger for the isothermal medium. Stronger shocks, however, also correspond to a flatter spectrum (for
this also see Kim and Ryu 2005). This conclusion has to be verified by higher resolution simulations
in the future, but so far it is clear that especially for the density and the density statistics there is a
distinct difference between the two possible choices for the equation of state. For the classical turbulence
statistics, however, the magnetic or kinetic fluctuations are of much greater importance. Especially for
particle propagation it is the former of those which is needed for the evaluation of the particle trajectories.
These types of fields will, therefore, be discussed in the following sections.

Here, however, we still can depict one aspect of the density field, which is thought to be closely
connected to the turbulence statistics for the velocity field. As was discussed in the introduction, it
is nowadays mostly accepted that the turbulence statistics is determined by the dimension of the most
dissipative structures. For compressible HD these are obviously shock waves, which will also strongly
contribute to the dissipation in compressible MHD turbulence. A first indication of such shocks would
be a local density enhancement. As can be seen in the two-dimensional cuts and the dispersion measure
in Fig. 4.3 such density enhancements are ubiquitous in the numerical domain. From those diagrams,
however, the dimensionality of those structures can not be inferred. This has to be done from a three-
dimensional illustration as it is given in Fig. 4.5.
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Fig. 4.5: Isosurface plot for the density for the isothermal molecular cloud turbulence computation. The
isosurfaces are drawn for an electron density of 5.5 · 106 m−3. Additionally the boundary of the numerical
domain is indicated to visualise the three dimensional structure.

The picture shows an isosurface for the number density distribution for the case of the isothermal
molecular clouds. The density value for which the isosurfaces were drawn was chosen asne = 5.5 · 106

m−3 in order to visualise the strong density enhancements expected for shock waves. As is expected for
shock waves the density enhancements are mostly located in sheet-like structures. Therefore, it can be
assumed that the dissipative structures for the turbulence are two-dimensional corresponding to the ideas
about compressible turbulence introduced at the beginning of this work.

The structure is also of interest in the context of star formation. The sheet-like high density structures
will eventually be the ones where new stars will form. As we have seen, when discussing the disper-
sion measure, however, it is nearly impossible to identify actual sheet like structures from astronomical
observations.

4.3 The Velocity Field

In classical turbulence theory naturally the velocity field was of most eminent interest. This is due to the
fact that classically turbulence research concentrated on incompressible neutral fluids. For those, only
the velocity field and the corresponding vorticity are of interest, because they contain the information
about the eddy structures. Before investigating the magnetic field structure we, therefore, also analyse
the statistics and the spatial distribution of the velocity field.

To continue on the discussion started at the end of the preceding section we first compare the density
structure with the divergence of the velocity field. The latter shows the discontinuities in the velocity
field, thus, being a good indicator for shock waves. In Fig. 4.6 we compare the local density structure
with the local divergence of the velocity field. Obviously, there is a close correlation between the two.
Physically a shock is a compression wave. It is, therefore, visible in Fig. 4.6 as a local minimum of
the velocity divergence. Most of these dark creases in the local divergence shown in Fig. 4.6 nicely
correspond to local density enhancements.

The positive divergence peaks for the velocity field are connected to rarefaction waves rather than
to shocks. Indeed, peaks of the velocity divergence in Fig. 4.6 correlate with minima of the local mass
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Fig. 4.6: Comparison of the local density structure (left – in normalised logarithmic units) and the local
divergence of the normalised velocity field (right).

Fig. 4.7: Illustration of the dissipative velocity structures in the numerical domain. Here we show isosurface
for a the velocity divergence (with an isosurface value of ∇ · v = −290).

density. This demonstrates that the density is indeed a good measure for the occurrence of shock waves
in the computational domain.

As for the density we have to check for the dimensionality of the shock structures. An illustration
of these for a lower resolution version of the isothermal simulation is shown in Fig. 4.7. The depicted
isosurface correspond to negative values of the velocity divergence and, thus, to the dissipative shock-
structures of the velocity field. As is expected for compressible simulations these dissipative structures
are generally sheet-like. This is also found for the dissipative structures emerging due to the presence
of a magnetic field as will be seen in the next section. The dimensionality of the dissipative structures
is important for the theoretical model on the structure functions as was discussed in the introduction.
Before, however, discussing the statistics of the velocity field any further, we will first conclude the
analysis of the spatial velocity structure.

The actual velocity structure is depicted in Fig. 4.8 where a comparison for the adiabatic and the
isothermal medium is undertaken for a cut through the computational domain. Here, the initial magnetic
field points to the right in both cases. For both cases it is obvious that the velocity field shows much
finer structures than the initial one shown in Fig. 3.15. This is due to the fact that the initial large-scale
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Fig. 4.8: Cut through the computational domain showing the local velocity field for the adiabatic (left) and
the isothermal (right) molecular cloud medium. The absolute value is shown in units of the isothermal sound
speed and is colour-coded according to the given colour bar. The vectors indicating the projection of the flow
direction are normalised to the maximum velocity occurring in this subset of velocity vectors.

flow evolved into a turbulent flow with fluctuations also at the smallest spatial scales. Clearly, there is a
difference between the adiabatic and the isothermal medium. This, however, cannot be as easily qualified
as in the case of the density distribution. For aquantificationof this difference with regard to turbulence
it is, therefore, necessary to obtain statistical information about the velocity field.

With the velocity field in Fig. 4.8 being given in units of the isothermal speed of sound, we can
easily investigate the sound Mach numberMS of the flow. In both simulations we found the average
sound Mach numberMS to beMS ' 6. This value is decidedly below what is assumed by some authors
(see e.g. Boldyrev et al. 2002). This might be due to the fact that these authors take still larger scales with
the corresponding large scale flows into account. Nonetheless, the environment was correctly designated
as one pervaded by high Mach number turbulence. This is not true anymore with regard to the Alfvén
Mach numberMA. For this we find an average Mach number as low asMA ' 1 due to the low plasma
β. Locally, however, this Mach number is much higher and can easily reach values above 10. This is
also the case for the sound Mach number which reaches even higher values locally. Thus, the simulation
results are in good agreement with the observations.

Before we start with the discussion on the structure functions we investigate the velocity power
spectra. These are shown in Fig. 4.9 where the power spectrum for shear and compressive fluctuations are
given individually (see section 3.6.1 on how turbulence spectra are obtained). Obviously, the compressive
part corresponds to a Kolmogorov-like power law with an index of 5/3. At first sight the power law
index for the solenoidal part of the spectrum would seem to be much flatter than one with index 5/3.
This, however, can be explained by the so-calledbottleneckeffect. By this term researchers in the
area of turbulence call the effect that numerical simulations often show excess power just just in front
of the dissipation wavenumberkd. This is thought to be due to the lack of smaller-scale vortices at
wavenumbersk > kd. It was also found that the bottleneck effect is especially relevant for the three-
dimensional spectrum, which is under consideration here. This fact is elaborated in Dobler et al. (2003).
There the authors show that the omnidirectional spectrum will show a bottleneck effect, whenever the
drop of the spectrum in the dissipation range is quite steep. Therefore, we are not in a position to draw
reliable conclusions about the spectral slope in the inertial range due to the overlying bottleneck effect.
This, however, can be remedied by investigation of the second-order structure function as shown below.

When regarding Fig. 4.9 it is clear that the major part of the kinetic fluctuation energy is stored
in incompressible fluctuations. This means that the inertial range is dominated by vortices rather than
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Fig. 4.9: Power spectra of the velocity fluctuations for the isothermal and the adiabatic cases as indicated
in the figures. The spectra are compensated for a Kolmogorov-like power law. On the left we show only the
solenoidal part of the spectrum whereas on the right the compressible part is depicted. The results are given
in normalised units.

shocks or any compression waves. The compressible character of the molecular cloud medium becomes
more important at the smallest spatial scales, where the fluctuations are actually dissipated. This becomes
clear when comparing the spectra given in Fig. 4.9 and strongly supports the notion that turbulence in
the inertial range is mainly incompressive.

As is discussed in the introduction the dissipation is assumed to have a strong influence on the scaling
behaviour of the turbulence. The main idea is that the statistics is determined by the spatial dimension of
the typical dissipative structures. As we saw these are mostly shocks for compressible hydrodynamics.
In MHD also current sheets – obviously being of the same spatial dimension – have to be taken into
account.

l

ζ n
/ζ

3

Fig. 4.10: Exponents for the structure functions up to fifth order using the extended self similarity. Here
the crosses indicate the data for the isothermal medium, whereas the red diamonds show the results for the
adiabatic medium. A fit to the data is indicated by the dotted lines.

The actual scaling behaviour is shown in Fig. 4.10 where the exponents of the structure functions
are given using the extended self-similarity (ESS). The latter must be invoked here, since the inertial
range is not visible for the structure functions themselves. The statistics is quite good for the lower order
structure functions. If ESS can be trusted we have according to Fig. 4.10 the scaling exponents (see in
the introduction for their definition)ζ1/ζ3 = 0.4, ζ2/ζ3 = 0.72, ζ4/ζ3 = 1.21 andζ5/ζ3 = 1.4. These
are in excellent agreement to the theoretical prediction given in Boldyrev et al. (2002) for compressible
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Fig. 4.11: Magnetic field lines in the numerical domain at the beginning of the computation (left) and after
several eddy turnover times (right).
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In particular it is clear that the data do contradict the classical Kolmogorov scaling ofζn/ζ3 = n/3.
Therefore, the results confirm the basic She and Leveque model. For the spectral slope in the inertial
range this means that we have a power law index of 1.72, which is just a little steeper than the classical
Kolmogorov power law index.

Interestingly, however, there is no principal difference between the turbulence statistics of the isother-
mal and the adiabatic simulations. The same structure is seen in the spectra and the structure functions
in both cases. While there are marginal differences, particularly the power laws are the same in both
cases. This is further evidence of the basic scaling structure. Shocks themselves might look different for
isothermal or adiabatic systems, but the essential aspect of the She and Leveque model is the dimension-
ality of the dissipative structures. This is especially the case in ideal MHD, where shocks would have no
extent in the shock direction when no numerical dissipation is present.

Concluding, we can say that the statistics of the turbulence does not depend on the equation of state
used for the computations. There is, however, a strong dependence of the spatial structure as was seen
in the preceding paragraph. Therefore, the equation of state has to be considered carefully whenever any
resemblance to actual observations is sought for.

4.4 Influence of the Magnetic Field

As mentioned repeatedly in the preceding section, we have to study the influence of the magnetic field on
the spatial structure and on the turbulence statistics. The magnetic field introduces a variety of structures
into the medium. Among these are the additional wave modes already discussed in Sec. 3.4.4. Addi-
tionally, the isotropy of the simulations is destroyed due to the fact that the motion of charged particles
parallel and perpendicular to the magnetic field is different. On large scales, however, the system can be
expected to still look isotropic, because the field lines will be bent due to the turbulence. Therefore, there
is no preferred direction for these large scales anymore.

This fact is illustrated in Fig. 4.11 where the initial magnetic field lines are compared to those after
several eddy turnover times. At first it might seem astonishing that the field lines are not closed through
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Fig. 4.12: Isosurface plots for the square of the normalised current density (left – with an isosurface value of
106) and the squared divergence of the normalised Elsässer variable z+ (right – with an isosurface value of
2 · 105). Results are shown for the normalised time t = 0.3 for the isothermal case.

the periodic boundaries for fully developed turbulence. This is again due to the fact that numerically
one ultimately does not solve the ideal MHD equations: the numerical errors result in some resistivity.
Therefore,numerical reconnectioncan occur, so that the footpoints of the magnetic field lines on the
boundaries do not have to remain connected.

When a finite magnetic induction is present we face the question which are the relevant variables for
the description turbulence. Forincompressibleturbulence these are usually thought to be theElsässer
variables, which read in normalised form:

z± = u ±
B
√
ρ

(4.5)

In an incompressible medium this choice is motivated by the fact that the only wave type to occur in
incompressible MHD is the Alfv́en wave. Unfortunately, however, there is a variety of additional wave
types in compressible MHD as was already discussed in Sec. 3.4.4. One argument in favour the Elsässer
variables as a nonetheless good measure is the fact that the inertial range is dominated by incompressible
flow. Therefore, it would also seem sensible to investigate Elsässer variables in compressible MHD. We
have to be careful, however, because incompressible eddies are not necessarily connected with Alfvén
waves.

Before coming to the evaluation of the spatial structure and the statistics we will again discuss the
dissipative structures. As was mentioned already in the preceding section, the dissipative structures
resulting from the magnetic part of the system are thought to be current sheets. Naturally, we will,
therefore, investigate the regions of high current density. These are illustrated as isosurface plots in Fig.
4.12 together with the squared divergence of the Elsässer variablez+. The latter is also assumed to be a
good tracer for the dissipation according to Merrifield et al. (2005).

As was already discussed before, these dissipative structures are clearly two-dimensional. This is
even more obvious than in the case of the velocity dissipation shown in Fig. 4.7. Taking into account
that we will encounter different forms of numerical dissipation in the computational domain, we find
that the major fraction of these is two-dimensional. This, again, indicates that we will find the same
turbulence statistics as it was discussed in Boldyrev et al. (2002). The results found for the velocity
structure functions in the preceding section reveal that not only the dissipative structures but also the
turbulence statistics are very well in accord with this relation.

Even though the statistics of the magnetic field is not – and probably will not be for the near future
– accessible to observations it is nonetheless the main ingredient for the computation of the transport
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Fig. 4.13: Power spectrum for the magnetic field (left) and Elsässer variable (right) fluctuations. Both spec-
tra are given for the isothermal and adiabatic as indicated in the figures. The spectra are multiplied by a
Kolmogorov power law and are given in normalised units.

of charged energetic particles. This is because charged energetic particles are thought to be scattered at
irregularities of the magnetic field (see Schlickeiser 1989). As for the velocity field, the spectral index
for magnetic field fluctuation spectrum is very near to the Kolmogorov one as can be seen in Fig. 4.13.

In the same figure we also show the Elsässer variable fluctuation spectrum forz−. For this the
bottleneck effect, which was discussed for the velocity fluctuation spectrum, is again present. This
implies that the information on the power law index of the spectrum should rather be obtained from the
second-order structure function. The exponent of the latter is found to beζ2 = 0.7 for both the isothermal
and the adiabatic medium. This value corresponds to a power law index of 1.7, which is slightly steeper
than the classical Kolmogorov spectrum as is expected for compressive turbulence. Unfortunately, the
structure functions for the magnetic induction and also for the Elsässer variables show very bad scaling
behaviour for higher orders, and are, therefore, not discussed here any further.

Moreover, in the spatial structure of the magnetic field itself depicted in Fig. 4.14 the two-dimensional
current-sheets are indirectly visible as the abrupt changes in the magnetic field direction. For these spatial
structures the difference between the isothermal and the adiabatic medium is obvious. Due to the limited
observations on magnetic fields in the ISM and the fact that the simulations results look different without
showing different characteristics, this result does unfortunately not help to distinguish the different cases
in nature.

One especially has to keep in mind that the magnetic induction is not accessible to direct observations
at all. All information on the magnetic field structure, thus, has to be obtained by indirect means. One
of the methods to obtain information on the magnetic field along any line-of-sight is connected to the
Faraday rotation. When plane polarised radiation of wavelengthλ propagates through a plasma with a
component of the magnetic field parallel to the direction of propagation, the plane of polarisation rotates
with a rate depending on the local density and the magnetic induction. The overall angle of rotation when
traversing a line-of-sight of lengthl is.

δθ(λ) = RMλ
2 with RM = −

e3

8π2ε0c3m2
e

∫ l

0
ne(l

′)B‖(z)dl′ (4.6)

whereRM is the so-calledrotation measure. For example, the radiation by pulsars is significantly po-
larised and can, thus, be used to compute the rotation measure. The actual rotation measure can not
directly be measured – what is actually measurable is the polarisation angle at some wavelength. The ac-
tual rotation measure – obviously containing information about the magnetic field along the line-of-sight
– can only be deduced if the polarisation angle is measured at several different wavelengths. A fit using
Eq. (4.6) will then yield the actual rotation measure.
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Fig. 4.14: Cut through the computational domain showing the local magnetic field structure for the adiabatic
(left) and the isothermal (right) molecular cloud medium. The absolute value is shown in normalised units and
is colour-coded according to the given colour bar. The vectors indicate the direction of the field onto the plane
they are normalised to the maximum magnetic induction occurring in this subset of magnetic field vectors.

Here, we are in a much more comfortable situation. Knowing the spatial distribution of density and
magnetic field, we can easily compute the rotation measure directly from the results of the numerical
computations. In principle, we even loose a lot of the information contained in the numerical domain,
but here we would like to compare the results for the adiabatic and the isothermal medium with a glance
at a possible telescopic detection.

The rotation measure along thez-direction for both simulations is depicted in Fig. 4.15. Additionally
we show the resulting polarisation of a homogeneously polarised radiation field behind the numerical
domain for a wavelength ofλ = 0.21 m as it was, e.g., observed by Wolleben and Reich (2004). Obvi-
ously, there are large regions in the numerical domain where the initial radiation field can traverse the 40
parsecs of plasma without any disturbance. Then again it is possible that in these regions the disturbances
just cancel each other. All in all there are extended regions with nearly homogeneous polarisation, with
rapid polarisation changes from region to region.

Evidently, however, there is not much difference between the two different cases. Again, as for the
density the main difference is the smoothness of the structure in an adiabatic medium as compared to an
isothermal one. For this we have to keep in mind that the spatial extent of the shock structures is largely
overestimated in our numerical simulations as a consequence of the finite spatial resolution. Therefore,
we can expect the real shock structures to be much narrower than found here. It will still take some
time until numerical simulations will resolve these structures at all and will, thus, be able to yield results
directly comparable to actual observations.

4.5 Conclusions

As was demonstrated in the preceding sections the turbulence in our molecular cloud simulations is in
accord with the most recent models for compressible MHD turbulence. Not only do the resulting spectra
correspond to what is expected from theory, also the structure functions do so. This theory is coupled
to the assumption that the dissipative structures are mainly two-dimensional, which could be confirmed
with the simulations, where shocks and current sheets make the major contribution to the damping of
the turbulent fluctuations. Regarding the spectral slope we found a power law index slightly steeper than
the one for incompressible, homogeneous turbulence. Despite the finite resolution it is obvious that this
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Fig. 4.15: Rotation measure for the molecular cloud medium along the z-direction for the adiabatic (left) and
the isothermal (right) medium given in units of rad m−2. The bars show the local polarisation of a homoge-
neously polarised background radiation for a wavelength of λ = 0.21 m.

power law index remains considerably below 2 for all cases. Therefore this exponent is comfortably far
away from what was classically thought to be a special value for particle transport theories Schlickeiser
(1988).

We investigated the difference between an isothermal and an adiabatic equation of state. While
there are clear differences in the spatial structures, these do not extend to the velocity statistics of the
turbulence. Only for the density spectrum there are significant differences, where, however, simulations
with still higher spatial resolutions are needed to clarify more details. It might be possible that these
differences result from the smoother density structures of the adiabatic medium. These would sharpen
for higher spatial resolutions.

With regard to the spatial structure the main difference between the two cases is the occurrence of
sharper structures in the isothermal medium. Despite the fact that shocks are not isothermal in nature,
we have to take into account that the real spatial structures might be much sharper than found by our
simulations, by which we can resolve spatial structures no smaller than 0.08 parsecs.

We also investigated observable quantities in particular the dispersion measure and the rotation mea-
sure for the two different cases. The main differences between those is again the sharpness of structures.
When taking into account the finite resolution of the telescopes it can be doubted that these differences
could be observed at all. Nonetheless, the computed structures look very similar to what is observed (see
e.g. Wolleben and Reich 2004, for polarisation observations).



Chapter 5

Diffuse Interstellar Gas

As already mentioned in the previous chapter ISM turbulence is mostly discussed for molecular clouds.
There are, however, also more global simulations for the interstellar medium of the Milky Way (see
e.g. de Avillez and Breitschwerdt 2004; Breitschwerdt and de Avillez 2006). These are set up as a box
reaching from the Galactic plane up into the halo of the Galaxy in order to investigate the stratification of
the interstellar medium. Consequently, an investigation in terms of spectra and structure functions cannot
be done due to the inherent inhomogeneity of the plasma. Therefore, we must be interested in a similar
simulation on a more local scale. In this chapter, we will give first results on such simulations. As we
will show in the next section, the simulations are computationally very expensive. Therefore, we were
not able to perform computations with a spatial resolution in excess of 256 cells in each of the spatial
direction, so that we will here rather concentrate on the spatial structure of the turbulence.

The most important difference between molecular gas and the diffuse phase of the ISM is that the
latter is influenced by the interstellar radiation field, implying that a whole variety of new processes has
to be taken into account. Despite the fact that the ongoing ionisation of the remaining atoms by the
incident radiation makes a single-fluid MHD description questionable, we will nonetheless stick to the
latter as it is also done by authors investigating the global ISM (see e.g. de Avillez and Breitschwerdt
2004; Breitschwerdt and de Avillez 2006). The development of a more adequate description will be left
for future investigations.

In principle, a multi-fluid description of the dilute phases of the ISM would seem appropriate. This,
however, would bring along several problems. One would not only have to include different interaction
processes between the particles themselves, as it would seem sufficient for molecular clouds, but for the
dilute gas one would also have to include ionisation by the external radiation field. This would also
necessitate the use of a parameterisation of the external ionisation corresponding to the observations.
A much more severe matter is the question whether the neutral gas can still be described using a fluid
picture. While for charged particles due to their long range interaction scattering occurs still sufficiently
frequent to justify a fluid description, this might not be the case for the neutral particles. Therefore,
although it is desirable to use a multi-fluid picture for the diffuse interstellar gas, there is still a lot to be
done before we are able to use such a model for turbulence research.

With all of the above in mind, when using an MHD model for the description of the dilute plasma
we still have to take the fact into account that the medium is optically thin. This means that not only the
interstellar radiation field can influence the individual particles but also that the radiation emitted by the
particles can leave the gas. Therefore, heating and cooling processes, as discussed in section 2.7.2, have
to be taken into account. In this chapter we will mainly investigate the spatial structure of the turbulence.
This is due to the fact that we did not yet perform simulations with a spatial resolution of at least 512
cells in each direction, which would seem necessary to obtain good statistics for the turbulence.

89
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5.1 Model Parameters

For the simulation of the dilute gas the parameter choice is easier than for the molecular clouds. For those
finding the parameters that are consistent with observations was an intricate process due to the fact that
we had to take special care to provide the correct temperature. This certainly does not pose a problem
for the diffuse interstellar gas (DIG – also known as the warm interstellar medium (WIM)) due to the
fact that here the energy equations is actually integrated, too. We have, however, to be careful to choose
an initial condition from which the medium can evolve into a state possibly realised in nature. The hope
that the initial state will independently evolve to a physically correct state is ruined, unfortunately, by
the periodic boundary conditions. Due to these it is, e.g., not possible for high pressure regions to push
anything out of the numerical domain – that is, we also have to deal with exactly the same number of
particles in this region. Therefore, the average pressure is just determined by the temperature.

This temperature will, at least on average, not exceed the value 104 K due to the strongly increasing
line cooling efficiency above this temperature (for this see Fig. 2.1). Thus, if we choose the initial
density so low that the pressure even at an average temperature of 104 K is still below the value observed
for the ISM, we can not expect to find simulation results, which are possibly realised in nature. The
initial density has, therefore, to be at least of the value observed for the diffuse ISM. Due to the inclusion
of the cooling function we will eventually end up with a dynamic equilibrium of a two-phase medium
inherent in the cooling function. The initially homogeneous medium will be compressed into a dense,
cold phase with a warm phase filling the space in between. The space filling factors of these phases will
most probably depend on the initial density, with a lower density leading to a dominance of the warm
phase, which we are essentially looking for.

By several numerical tests we arrived at a suitable initial density ofn0 = 5 · 105 m−3, yielding
physically reasonable results for the pressure distribution. Keeping in mind that the typical density of
the warm HI gas is about 105 m−3, this allows for a fragmentation into a warm HI phase and additionally
in a cold phase. The temperature in contrast to the density can be set to an arbitrary initial value, here
we chooseT0 = 1000 K. With a side length of the cube of 40 pc we then find an energy input rate of
Se0 = 1.6 · 10−29 J m−3 s−1, when we introduce the same normalised driving as for the molecular clouds.
This rate was deliberately chosen to be moderately lower than the rate used for the molecular cloud
simulations, because for those we estimated the energy input into the turbulence to be higher than for the
DIG due to the immediate presence of the sources of kinetic energy.

With the above numbers we find a value for the isothermal speed of sound ofcs ' 2.9 · 103 m s−1.
Moreover, the initial pressure is, due to our choice for the velocity, lower than the pressure observed in
the ISM and, thus, also lower than the value used for the molecular cloud simulations. Therefore, we
have to use a lower plasmaβ for the DIG simulations to obtain the observed strength of the magnetic
field. With the above parameters the initial magnetic induction has to be set such as to yield a value of
β ' 0.03.

Due to the fact that the pressure for the fully developed turbulence will be much higher than the initial
one and also that the initial magnetic field is much stronger than for the molecular cloud simulations, we
expect a very different turbulence for this medium. With thenormalisedsound and Alfv́en speeds,
respectively, being much higher than for the molecular cloud simulations we will obtain a rather low
Mach number turbulence. Therefore, the medium will be much less compressive than the molecular
cloud medium, what is exactly what is observed in nature.

This, unfortunately, results in a much grater numerical costs than for the molecular cloud simulations,
due to the fact that the time scales of the turbulent fluctuations will be longer in relation to those of
wave propagation as compared to the case of the molecular clouds. This can be understood as follows:
it can be expected that the normalised kinetic energy content of the numerical domain will be very
similar to that for the molecular cloud simulations. The Alfvén speed as well as the speed of sound,
however, are on average much higher than the corresponding normalised values for molecular clouds.
Therefore, the related time scales will be shorter for the DIG. The resulting numerical costs are indeed
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Fig. 5.1: On the left we show the temperature of the plasma in a cut through the computational domain.
The temperature is given in Kelvins according to the color-coding. On the right we show the temperature
distribution for the whole computational domain.

so high as to render it impossible for now to use a spatial resolution in excess of 256 grid cells. The
simulations presented in this chapter have to be regarded as a first test for this model, with higher resolved
simulations to be performed in the future. Here we will be especially interested in the spatial aspects of
the simulations to find out if the model is consistent with measurements of the actual ISM.

The simulations were run up to the normalised timet = 0.5, which corresponds to an absolute time
of nearly seven million years. When using the normalised fluctuation energy content of the numerical
domain ofE f luct ' 28 at this time together with the known energy dissipation rate ofε = 330 we find
for the large-eddy turnover time from Eq. (2.73) a value ofτ ' 0.057. From the average velocity
ū = 6.35 we find additionally for the dynamical time a value of:τD = 0.052. These time scales are
in good agreement, although the former was introduced for incompressible turbulence. Obviously the
simulations were run more than eight times longer thanτ or τD. Even taking an initialisation phase with
a duration of about∆t = 0.1 into account the fully developed turbulence was still evolved for several of
these time scales.

5.2 The Temperature of the DIG

The resulting temperature for the warm phase of the diffuse interstellar gas is of special interest due to the
ongoing discussion about the heating processes for this phase of the ISM. As is illustrated in Reynolds
(1995) and Reynolds et al. (1999) the heating process for the dilute ionised gas known as thediffuse
interstellar gasor thewarm ionised mediumis not entirely clear yet. One of the main problems is that
the degree of ionisation is much higher than what can classically be expected at these temperatures. A
possible solution of this problem was suggested in Minter and Spangler (1997) and was extended by
Spanier and Schlickeiser (2005). The authors suggest the decay of interstellar plasma turbulence in the
form of MHD waves as the main heating source for this environment. In their publication they compute
the heating rates resulting from different wave dissipation processes and compare those to the cooling
rate of the DIG. The conclusion of their work is that the dissipation of turbulence is a possible agent for
the heating of the DIG resulting in temperatures compatible to the observations.

The main shortcoming of the theoretical model by Minter and Spangler is the fact that they had to
use an analytical model for the turbulence spectrum. Therefore, the dissipation of the turbulence and the
replenishing of the fluctuation energy in the energy range do not happen self-consistently. This could
easily lead to incorrect results for the actual heating rate, for the case that there is too much energy in
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the model for the dissipation range. Therefore, we decided to undertake an investigation of this matter
using our newly developed self-consistent MHD model. As before, fluctuation energy is injected at the
largest spatial scales to be dissipated in shocks, current sheets and vortex tubes. Apart from that we do
not have to impose any model on the turbulence itself – Minter and Spangler had to use different kinds of
MHD waves to describe the turbulence. While it is certainly possible that the essentially incompressible
fluctuations in the inertial range actually can be represented as Alfvén waves, this is not proven. The
fluctuations might as well be eddies like in the classical Kolmogorov picture.

Nonetheless, the results presented have to be seen as a preliminary test for the study of the heating of
the DIG. Here we used the well-documented cooling function for the warm HI gas, with a fixed degree
of ionisation of 0.1, whereas major parts of the DIG have rather to be regarded as warm HII. There is,
as yet however, no analytical model available for the cooling of the warm HII with a varying degree of
ionisation. This is a problem, especially when keeping in mind that a cooling function for HII can not be
applied to low temperatures. Therefore, one has generally to use an analytical model for the dependence
of the degree of ionisation on the density and the temperature. This has to be coupled to a cooling function
depending on the degree of ionisation as is at least partly realised for the cooling function introduced in
section 2.7.2. Remembering that one of the main problems is the unexpectedly high degree of ionisation,
we feel that this also has to be taken into account by the next generation simulations. The best choice
would be the use of a multi-fluid model where ionisation and recombination are included, but such a
model is not available yet for a medium possibly dominated by shocks.So far there is only the DENISIS
code introduced in Schröer et al. (1998) available for this purpose, which, unfortunately is not based on
a shock-capturing scheme. The results presented here can be viewed as a first hint on the possibility to
heat the ISM mainly via the decay of turbulent fluctuations.

The resulting spatial temperature distribution is visualised in Fig. 5.1. The computed ISM is dom-
inated by a warm phase with temperatures of several thousand Kelvins. Regions containing this warm
gas are separated by cool clouds with temperatures below 2000 K. These can be identified as the typical
molecular cloud structures. Thus, we have reproduced what is commonly known from observations –
cool clouds embedded within a warm inter-cloud medium.

To be sure we identified these phases correctly, we show the temperature distribution for the whole
computational domain in Fig. 5.1. Obviously there are two phases present - one cool phase with temper-
atures below 1000 K and a warm phase with temperatures up to 14000 K. This is the temperature range
for the DIG found from observations. Especially for temperatures above 104 K also the cooling function
used in this work assumes the medium to be fully ionised. Therefore, we confirm the result that decaying
turbulence can indeed heat the inter-cloud medium to sufficiently high temperatures – even if it is highly
ionised. To be sure, however, we have to get a more complete picture and look into the other variables
like, e.g., the density as well.

5.3 The Spatial Structure of the DIG

If we indeed have a phase structure as it can be found in nature one would expect the coolest regions
to be much denser than the hot regions. This is actually the case in our numerical model for the DIG.
The density structure is visualised in Fig. 5.2. There we show the same cut through the computational
domain as was used for the Fig. 5.1. Apparently the regions of highest density correspond to the coolest
regions in Fig. 5.1 and vice versa.

These, however, cool often to such low temperatures that they do not remain in thermal pressure
equilibrium. This can be seen from the pressure drops in some of the density enhancements in the
pressure distribution depicted in Fig. 5.2. From this it is also obvious that we are not dealing with an
ISM in thermal equilibrium, we rather observe a dynamical equilibrium. The assumption of a thermal
equilibrium is, however, used quite often in models at least for the more quiet phases of the ISM. It is
especially the WIM, which is thought to be quiet in this respect. Our results show that the assumption of
thermal equilibrium should rather be substituted for one using a dynamic pressure equilibrium.
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Fig. 5.2: Density (left) and thermal pressure (right) distribution in a cut of the computational domain. While
the density is shown in linear normalised units we used a logarithmic scaling for the pressure.

Fig. 5.2 also illustrates the clear difference to the high Mach number turbulence found in molecular
clouds. Here we find an average sound Mach number ofMS ' 1.7 and an Alfv́en Mach number hardly
in excess ofMA = 0.5 – again with the possibility of locally much higher values. While there are a lot
of density enhancements visible in the density distribution, these are less frequent. The density structure
is generally much smoother than in molecular clouds. Nonetheless, shocks are still present in the dilute
gas, even though these essentially represent the cool phase dividing the regions of the quiet warm plasma.
As will be seen in the next section this fact also has implications for the interpretation of observations of
the magnetic field.

5.4 Faraday Effect

In the discussion concerning molecular clouds we already introduced the rotation measure resulting from
the Faraday effect. This observable measure for the magnetic induction will now also be discussed for
the case of the WIM. Naturally both the dispersion and the rotation measure are much lower for the
same length to be traversed due to the lower mass density in warm ISM. Due to the higher strength of
the magnetic field in relation to the turbulent fluctuations in this case the former can be expected to be
more coherent than in the case of molecular clouds. This might also have some impact on the rotation
measure.

The rotation measure for different directions in the numerical domain is given in Fig. 5.3. Here we
compare the results for directions along and perpendicular to the initial magnetic field. The direction of
the initial magnetic field can readily be recognised on the left of Fig. 5.3: whereas the rotation measure
for a perpendicular direction is near zero on average, this average is different for the direction along
the initial magnetic field due to the low plasmaβ. This shows that the magnetic field still coherently
points in the initial direction. Due to this fact the rotation measure is also much higher than for a
direction perpendicular to the field, thus leading to a stronger Faraday rotation everywhere. There is,
in particular, no unperturbed polarisation vector for the direction along the magnetic field in contrast to
the perpendicular direction. As for the molecular clouds, there are large regions, where the resulting
polarisation is the same as the initial one.

Apart from that the basic structure of the rotation measure is almost the same for both directions.
As for the molecular cloud simulations there are large regions of homogeneous rotation measure with
quite sharp transitions from one region to the other. For the direction along the initial magnetic field the
rotation measure appears to be a little bit more distorted. Furthermore, the polarisation vectors indicated
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Fig. 5.3: Rotation measure given in units of rad m−2 together with the local polarisation of a homogeneously
polarised background for a wavelength of λ = 1 m. On the left results are shown for the direction of the initially
homogeneous magnetic field, whereas on the right results are given for a perpendicular direction.

in Fig. 5.3 show that the polarisation of a homogeneous background radiation is more disturbed for the
direction along the initial magnetic field. This will become more evident by the following discussion of
the polarisation canals.

Polarisation Canals

In radio maps there was found another interesting phenomenon – elongated structures with very little
polarised intensity with a width near that of the telescope beam – being usually referred to as canals
(see e.g. Fletcher and Shukurov 2006a), which are directly connected to the rotation measure. These
canals are visible in observations of the polarised intensity, as is visible at the example observations
depicted in Fig. 5.4. Physically they are thought to result at least partially from the finite resolution of
the corresponding radio observations. Whenever the polarisation of the detected radiation changes over
an area on the sky smaller than the beam of the telescope, these polarisation canals can occur. If the
polarisation angles inside the beam are a mixture such that they cancel each other, the polarised intensity
drops to zero in these regions. Whenever the rotation measure is homogeneous in large regions with
extended gradients between these regions it is just at these boundaries that the polarisation canals can
occur.

Presently there are two theories available for the formation of the canals (see Fletcher and Shukurov
2006b). One attributes the canals only to the above idea. This idea uses a foreground Faraday screen to
account for these structures, i.e., it is assumed that the radiation is produced in a region behind a fore-
ground medium, in which it is subject to Faraday rotation. Strong gradients in this foreground Faraday
screen result also in strong gradients in the Faraday rotation for the background radiation. This then leads
to the observed canals for a finite width of the telescope beam. The other model rather relies on line-of-
sight effects. There it is assumed that the Faraday rotation and the actual emission of the radiation occur
in the same region. In this case, with the radiation being emitted everywhere along the line-of-sight, even
the radiation received at a single point will comprise a mixture of different polarisation angles. This pro-
cess is also known as differential Faraday rotation. Therefore, depolarisation – that is mutual cancelling
of the differently polarised radiation – can even occur for an infinitely small telescope beam.

Here we will only investigate depolarisation due to a foreground Faraday screen. Although the
neglect of synchrotron radiation inside the medium itself is rather unphysical, it allows us to concentrate
our study on the Faraday rotation caused by the medium itself as already presented in Fig. 5.3. Here we
do not want to care about trying to disentangle the effects of emission and Faraday rotation. In the case
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Fig. 5.4: Polarised intensity map for the field of the galaxy M31 taken at a wavelength of 0.205m. The image
is taken from Shukurov and Berkhuijsen (2003).

of a foreground Faraday screen the pattern of the observed canals strongly depends on the resolution of
the telescope and also on the wavelength of the observed radiation. For the latter a too short wavelength
means that the foreground Faraday rotation is too ineffective as to produce different polarisation angles.
A too long wavelength in contrast to that causes complete depolarisation – even a slight difference in
the rotation measure causes a huge difference in polarisation, so that the polarisation vectors become
randomly distributed.

For the actual computation of the corresponding maps we use a similar procedure as introduced
in Haverkorn and Heitsch (2004). From the rotation measure for the corresponding direction we first
compute the local polarisation angle using Eq. (4.6) as it was also done for the production of Fig. 5.3.
From the local polarisation angleδθ we then compute the stokes parametersQ andU, which are given
as:

Q = cos(2δθ), U = sin(2δθ) (5.1)

The maps of these parameters are smoothed using a Gaussian beam with a width of 2.5 grid cells, to
mimic the limited telescope resolution. Finally we compute the resulting intensity according to:

I =
√

Q2 + U2 (5.2)

Be aware that the results shown here were computed for a medium in a box of a length of only 40
parsecs. Unlike Haverkorn and Heitsch we did not stack several of the simulation boxes atop of each
other in the direction under consideration with a shift in a perpendicular direction. Here we rather intend
to use a corresponding wavelength that yields canals in the polarised intensity. Whereas the wavelengths
used might not correspond to those used for actual observations, an artificial extension of the numerical
domain would just yield similar results for a shorter wavelength. We, however do not feel confident
stacking shifted boxes atop of each other. This is because the shifts of the individual boxes against each
other will lead to unphysical gradients at their intersections.

This polarised intensity found for our simulations is depicted in Fig. 5.5 for the same directions
as they were used for Fig. 5.3. Here we compare the results for the effect of the foreground Faraday
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Fig. 5.5: Normalised polarised intensity computed assuming homogeneously polarised background radiation.
The resulting intensity is computed with the plasma in the simulations being used as a foreground Faraday
screen. The line-of-sight used on the left corresponds to the initial magnetic field direction, whereas on the
right we show results for a direction perpendicular to this. On the left we show results for a wavelength, λ, of
1 m, whereas on the right it is chosen as λ = 1.5 m.

screen for a line-of-sight along the initial magnetic field direction and a direction perpendicular to this.
For both cases we show the resulting intensity for a wavelength best suited to visualise the polarisation
canals. Interestingly we had to choose different wavelengths for the two cases. Obviously the gradients
of the rotation measure in the direction of the initial magnetic field are stronger than the ones in the
perpendicular direction. Therefore, the wavelength for this case had to be chosen a little shorter than for
the other one.

Nonetheless we can identify polarisation canals in both images, which have about the same width
as the Gaussian telescope beam. Therefore, it is possible to explain the depolarisation canals visible in
radio observations by a foreground Faraday screen. One has, however, to be careful with this statement.
Here we found that these canals only become apparent in a very limited range of wavelengths. For actual
observations it is highly improbable to observe just the appropriate wavelength range. Nonetheless, we
see an encouraging similarity when we compare our results to the observations shown in Fig. 5.4.

Our results also look quite similar to those obtained by Haverkorn and Heitsch (2004). In contrast to
their approach we used a physically correct representation of the warm phase of the ISM. Especially the
Mach number chosen here is far more appropriate for the dilute plasma than the one used by Haverkorn
and Heitsch. The authors’ statement that the turbulence cascade is very similar for the high Mach number
and the low Mach number regime has to be considered with caution. One important point is that the spa-
tial density structure has a huge influence on the rotation measure as will become clear in the discussion
on the average magnetic field. As was discussed in Kim and Ryu (2005) and as it was also seen in the
previous section, the density structure is very different for different Mach numbers. Therefore, one has
to be very careful when using high Mach number simulations for the dilute ISM.

This statement is supported by what is depicted in Fig. 5.6. There we compare the magnetic induction
as it is inferred from the rotation and the dispersion measure with the average magnetic induction along
the same direction. Clearly the estimate does not correspond at all to the actual values - this shows the
strong difference between the mass-weighted and the unweighted average. What is additionally apparent
in Fig. 5.6 is that the absolute value of the magnetic induction is generally overestimated as compared
to the actual line-of-sight integral. This qualitative impression is confirmed by a quantitative analysis –
on average the magnitude of the magnetic induction turns out to be overestimated by a factor of about
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Fig. 5.6: Comparison of the density weighted average for the normalised parallel magnetic induction (left) to
the actual line-of-sight integral (right).

1.5. This has to be taken into account, whenever an interpretation of any observations is desired. For a
completely homogeneous medium the rotation measure directly yields the average magnetic induction.
Obviously, the Mach number for the dilute phase of the ISM is still high enough to yield this strong
discrepancy between the actual and the inferred magnetic field.

This result is another hint that one has to be careful to use the appropriate Mach numbers for the
simulations of all the ISM phases. It also applies to the computation of the polarisation canals. Due to
the fact that the rotation measure seem to depend strongly on the Mach number, one has to take care
to use the appropriate simulations for the polarisation canals. It would be interesting to see how the
deviation of the estimated magnetic field strength and also the structure of the canals depend on the
average Mach number of the medium. This, again, is left as a task for the future.

5.5 Statistics

For the warm ISM we will briefly discuss the statistics of the turbulence. Due to the still quite low
spatial resolution a discussion of the structure functions is not appropriate. Only for the lowest order
structure function we can expect acceptable statistics - therefore, we will be content with a discussion
of the spectrum. With the observations by Armstrong et al. (1995) and Deshpande et al. (2000) it is
especially interesting to investigate the density fluctuation spectrum. With the simultaneous presence of
a warm and a cool medium in the simulation box it can, unfortunately, be expected that the resulting
density fluctuation spectrum will not correspond to any of those presented in the above publications. For
this we have to remember that Armstrong et al. (1995) concentrate on the statistics of the WIM, whereas
the spectrum shown in Deshpande et al. (2000) rather applies to molecular clouds.

In Fig. 5.7 we show the resulting density power spectrum on the left and the velocity power spectra on
the right. The density fluctuation spectra are even flatter than the one for the molecular cloud simulations.
At first it also seems to contradict the simulation results presented in Kim and Ryu (2005), where the
low Mach number simulations yield a quite steep spectrum. These, however, are simulation results for
hydrodynamical turbulence. When regarding the results presented in Padoan et al. (2004) instead our
results are in accord with what is presented there. The authors find the density fluctuation spectrum to be
nearly flat for a near equipartition of kinetic and magnetic pressures. With this being also the case in our
simulations, we are confident to have found a suitable physical model for the description of the warm
ISM.
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Fig. 5.7: Density (left) and velocity (power) spectrum for the simulations of the warm ISM. The latter is
subdivided into the solenoidal and the compressible part. All spectra are given in normalised units.

Moreover, the results for the velocity spectrum depicted in Fig. 5.7 are in good agreement with the
known turbulence models. The spectral slope for the compressive as well as the solenoidal part of the
spectrum is very near to 5/3 as is expected for compressible turbulence. As for the molecular cloud
simulations the major part of the fluctuation energy is stored in incompressible modes; merely for the
dissipation range compressibility starts to get more important.

5.6 Conclusions

In this chapter we presented the first results of our turbulence simulations for the warm phase of the
ISM. We demonstrated that the model is appropriate for simulations of this phase. We found a density
structure, which shows this phase to be much less compressive than the molecular cloud medium. Fur-
thermore, the observed temperatures are in the range known for the WIM. The warm gas surrounds in
these simulations dense filaments of a cold gas, which corresponds to the typical molecular cloud param-
eters. This two-phase medium was found, however, not to be in thermal pressure equilibrium. The ISM
obviously has to be regarded as a very dynamic medium.

We also discussed the rotation measure obtained from the numerical simulations, where we could
identify canals also seen in polarised intensity maps of the ISM found from radio observations. In this
context we showed that it is important to use the correct Mach number in the simulations. Even for quite
low Mach numbers for the WIM there is obviously a significant deviation of the estimate of the magnetic
field inferred from the observation of the rotation measure as compared to the actual magnetic field.

Finally, we briefly discussed the turbulence statistics for these simulations. Although, due to the high
computational costs, we could, so far, perform the simulations only with a spatial resolution of 256 cells
in each spatial direction, the statistics looks quite good. The density power spectrum as well as the one
for the velocity seem to be in good agreement either with theoretical models or with results from other,
better resolved numerical simulations. Therefore, we can conclude that the model is also well suited for
the simulation of the warm ISM.



Summary and Prospects

In this work we introduced basic turbulence theory into the framework of the interstellar medium. In
many cases turbulence simulations are applied to the interstellar medium (ISM) merely because it is a
medium, where extremely high Reynolds numbers are actually realised, and the parameters of the ISM
are only taken into account as far as they are needed for the turbulence research. Here, however, we
investigated the basic turbulence properties, while at the same time we modelled the properties of the
ISM as thoroughly as possible. The important point is that there are many physical processes going
on in the ISM, which should be incorporated in the corresponding simulations. These processes reach
from external influences of the radiation field originating from hot stars to the internal interaction of the
particles culminating in the intricate chemistry of the molecular cloud medium. Each of the different
phases of the ISM has its own dominant processes to be taken into account for a realistic modelling.
A suitable example to illustrate the problem can be seen in the rich variety of molecular clouds. It is
not possible to investigate thetypical molecular cloud medium, because there is no such thing. There is
rather a variety of different plasma states present in all the giant molecular cloud complexes. This reaches
from rather dilute atomic gas, surrounding the denser parts of a cloud, which is still fully exposed to the
interstellar radiation field, to dense cores, where self-gravity is very important.

Therefore, we carefully took into account for each of the turbulence simulations, which medium we
were investigating. Apart from that, we also tried to describe the physical processes of the plasma state
under consideration as accurately as possible. For this we developed an intricate numerical solver that,
beyond the necessity to describe the corresponding physics of the plasma in a closed, self-consistent
form, had to meet several very fundamental requirements.

First of all turbulence simulations require a very high spatial resolution to allow for a reasonable
study of the corresponding fluctuation spectra. This could only be achieved by a highly parallel nu-
merical solver. Such a solver was developed especially for this purpose. The base scheme used in this
numerical solver has to fulfil further requirements. Taking into account that in most phases of the ISM
the energy content of the bulk motion exceeds the thermal one and sometimes even the magnetic energy,
the occurrence of shock waves becomes likely. Therefore, the base scheme must be able to describe
such discontinuities correctly without introducing spurious oscillations. This is particularly important in
a highly turbulent medium where such artificial oscillations can hardly be distinguished from the turbu-
lence itself. With a suite of numerical tests we not only established this characteristic of the base scheme,
but also showed that it is independent of the propagation direction with respect to the coordinate axes.
With a test used to verify the order of the numerical scheme we demonstrated that also this is indepen-
dent of the propagation direction. This fact is especially important when considering that we found this
property to be lacking in a higher order version of the scheme. Only with a scheme yielding the same
order regardless of the propagation direction will homogeneous turbulence really be homogeneous.

In addition, the fact that we are dealing with a plasma complicates the correct description of the
magnetic field. One important aspect for this is the necessity to keep the magnetic field solenoidal at
all times. In this work we implemented and tested each of the basic available schemes to preserve the
initial solenoidality of the field. We were able to show that only one of these methods, namely the
constrained transport form of the numerical scheme, can produce satisfactory results for the purpose of
ISM turbulence simulations. The others either failed to remove the unphysical magnetic monopoles or
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yielded unphysical results with regard to the turbulence spectra.
From the physical point of view, we also made sure to use the correct description for the interstellar

plasma environment. For this we developed a two-fluid model for the molecular cloud medium. With the
low degree of ionisation of the medium we felt the need to check whether it is necessary to describe the
neutral and the charged particles individually and compared the results of the coupled set of evolution
equations to the results obtained when using the MHD equations. By this we were able to show that
a two-fluid description is not necessary for the phase of the molecular clouds investigated in this work
and, thus, we applied the MHD equations to the modelling of molecular clouds. With this we performed
a comparison of an isothermal molecular cloud medium to one where we used an adiabatic equation of
state for the closure of the system of evolution equations. The conclusion that there is nearly no change
in the turbulence statistics for the magnetic field and the velocity fluctuations nicely confirms recent
models on compressible turbulence. For turbulence it does not seem to be important, how the dissipative
shock structures actually look like. The statistics is rather determined by their dimensionality, which is
the same for both equations of state.

For the more dilute ISM we also considered heating and cooling of the plasma. This phase was
so far not in the focus of numerical turbulence research. Reasons for this apparent lack of interest are
most probably connected to the fact that this phase can numerically be described only at very high
computational costs and that appropriate heating and cooling functions have to be taken into account.
The latter of those pose a problem in that they can not be given in a closed analytical form. The major
drawback is that the degree of ionisation can not easily be included self-consistently in a numerical
model. Here we investigated the evolution of the diffuse ISM by means of a combination of the MHD
equations with an estimate of the corresponding cooling function for a fixed degree of ionisation. Due
to the high computational costs we were not yet able to investigate the full statistics of the turbulence.
Nonetheless, we could show the applicability of the model to the dilute ISM. Not only did we find a phase
structure as it is known from observations, but we could in our simulation results even identify structures
visible in actual radio maps. Moreover, the results for the turbulence statistics look very encouraging.

This work has to be regarded as the starting point of a thorough investigation of interstellar turbulence
by means of a numerical model tuned to the description of the interstellar medium. With the models and
methods in this work we will be able to perform complex simulations for the different phases of the ISM
to investigate the turbulence statistics for these.

With this model at our disposal, a task for the future is to obtain a highly resolved simulation for the
warm phase of the ISM in order to be able to perform a thorough investigation of the turbulence in this
phase. This is of particular interest for theories on the propagation of energetic particles in the Galaxy,
because this warm phase represents about half of the interstellar matter in our Galaxy. Nonetheless, we
feel the need to further improve the physical model of the ISM. For this, the necessity to describe the
dilute ISM by a multi-fluid model has to be checked. Most probably the inter-species collisions will
not be sufficiently strong to couple the neutral and the charged particle fluid in a manner found for the
molecular clouds. It is, however, possible that ionisation and recombination processes will facilitate a
strong coupling of the different species. Apart from this we also see the need to find the correct cooling
function for the highly ionised warm ISM.

Luckily, the classical cooling function is known in a closed analytical form for the colder phases of
the ISM. Therefore, it is easily possible to apply the numerical model used to describe the dilute ISM
also for the molecular cloud turbulence. We would like to supplement the study for these regions of the
ISM by a simulation using the full evolution of the energy equation, thus, allowing for heating at shock
waves in this regions. It will be very interesting to see if the plasma will actually be nearly isothermal
due to the very high efficiency of the cooling in these dense regions. Finally there is still the possibility
to improve the basic numerical scheme in a way better suited for high Mach number turbulence. This
was already achieved for one-dimensional problems, but a multi-dimensional extension of this scheme
needs further work. So, there exist a number of improvements and applications to which this work can
be used as a starting point.



Appendix A

Derivation of the Single Species Pressure
Equation

Each equation of the hierarchy of fluid equations is obtained from the corresponding moment of the
Boltzmann equation. The resulting equation for the variableQ then reads:
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Here we are interested in the derivation of the eqvolution equation for the pressure for the fluid species
α. For thisQ has to be chosen as:

Q =
1
2

mα(v − uα) · (v − uα) (A.2)

With this in mind we can discuss all the resulting terms of equation (A.1). The first of these becomes:
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where we used the definition for the scalar pressure:pα = ρα
〈
|v − uα|2

〉
. The second term vanished,

sincet andv are independent variables. The third term, however, can also be transformed:

∇ · nα 〈Qv〉α =
1
2
∇ · ρα 〈(v − uα) · (v − uα)v〉

=
1
2
∇ · ρα 〈(v − uα) · (v − uα)(v − uα)〉 +

1
2
∇ · ρα 〈(v − uα) · (v − uα)uα〉

=
1
2
∇ · ρα

〈
|v − uα|2(v − uα)

〉
+

1
2
∇ · ραuα

〈
|v − uα|2

〉
= ∇ · qα +

1
γ − 1

∇ · pαuα (A.4)

101



102 APPENDIX A. DERIVATION OF THE SINGLE SPECIES PRESSURE EQUATION

The next term yields a tensorial contribution:

nα 〈(v · ∇)Q〉α =
1
2
ρα 〈(v · ∇)(v − uα) · (v − uα)〉α

=
1
2
ρα
∑
i, j

〈
vi∂xi (vk − uαk)

2〉
= ρα

∑
i, j

〈
vi(vk − uαk)∂xi uαk

〉
= ρα

∑
i, j

(〈
(vi − uαi )(vk − uαk)∂xi uαk

〉
+
〈
(uαi )(vk − uαk)∂xi uαk

〉)
= ρα

∑
i, j

(〈
(vi − uαi )(vk − uαk)∂xi uαk

〉
+ uαi∂xi uαk

〈
(vk − uαk)

〉︸           ︷︷           ︸
=0

)
= (Pα · ∇) · uα (A.5)

Finally for a force not depending on the volocity the fifth term is identical zero:

mα 〈(a · ∇v)Q〉α = 〈(a · 2(v − uα)〉 = 2a 〈(v − uα)〉 = 0 (A.6)

The same result also holds for magnetic part of the Lorentz force despite the fact that this does actually
depend on the velocity. This is due to the presence of the outer product in the corresponding equation:〈
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Taking all the above we find for the final form of the single species pressure equation:
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Appendix B

Derivation of the Macroscopic Fluid
Equations

In this chapter we will demonstrate the derivation for the macroscopic momentum and energy equations
stemming from the sum of the corresponding individual species equations. For this derivation we only
take into account one ion species, which together with the electrons forms the macroscopic fluid for the
charged particles.

B.1 Momentum Balance

We start by writing the momentum balance for electrons and ions individually, where we explicitly use
the electromagnetic force as the only force present in the system. For ions we have according to Eq.
(2.11):

∂ (ρiui)
∂t

+ ∇ · (ρiuiui) + ∇ · Pi − eni (E + ui × B) = −νieρi(ui − ue) − νinρi(ui − un) (B.1)

where we included collisions with electrons and neutral particles with the respective collision frequencies
ναβ. This equation is transformed using the identities (2.42) and (2.43):
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where we introduced the reduced mass of ions and electrons as:
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For electrons an equivalent equation can be computed:
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As in the case of the continuity equation the sum of these two equations yields the evolution equation for
the momentum of the plasma fluid:
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where we have used:
νieρi = νeiρe with ne = ni = n (B.6)

which is exactly fulfilled for charge exchange or elastic collisions.
Now we have to take care of the expressions still containing variables of the individual fluids. We

will start by discussing the term:
A = ρiuiui + ρeueue (B.7)

This is transformed using the following identity (withα as usual indicating either ions or electrons):

uα = u + (uα − u) = u + δuα (B.8)

whereδuα indicates the deviation of the single species fluid velocity from the average charged particle
velocity. With this relation Eq. (B.7) is transformed into:

A = ρp((u + δup)(u + δup)) + ρe((u + δue)(u + δue))

= ρp(uu + u(up − u) + (up − u)u + δupδup) + ρe(uu + u(ue− u) + (ue− u)u + δueδue)

= (ρp + ρe︸    ︷︷    ︸
ρ

)uu + u(ρp(up − u) + ρe(ue− u)︸                           ︷︷                           ︸
ρpup + ρeue︸           ︷︷           ︸

ρu

−ρu=0

) + (ρp(up − u) + ρe(ue− u)︸                           ︷︷                           ︸
=0

)u + ρpδupδup + ρeδueδue

= ρuu + ρpδupδup + ρeδueδue (B.9)

Thus, we find:

∂ (ρu)
∂t
+ ∇ · (ρuu) + ∇ ·

(
ρpδupδup + ρeδueδue

)
+ ∇ · (Pp + Pe) − J × B

= −n (νenme+ νinmi) (u − un) −
µ

e
(νin − νen) J (B.10)

Finally this is further abbreviation by the introduction of theaverage pressure tensor. Defining this – as
suggested, e.g., in Bittencourt (2004) – as being caused by the random motions of the particles relative
to the mean flow velocityu we find:

P =
∑
α

Pα +
∑
α

δuαδuα (B.11)

Thus, the third term on the left-hand side of Eq. (B.10) is absorbed into the pressure tensor:

∂ (ρu)
∂t
+ ∇ · (ρuu) + ∇ · P − J × B = −n (νenme+ νinmi) (u − un) −

µ

e
(νin − νen) J (B.12)

As mentioned above,P is the pressure dyad relative to the global mean velocityv of the charged particle
fluid. With the introduction of the following abbreviation for the collision frequencies with neutral
particles:

νn ≡
miνin +meνen

mi +me
(B.13)

the first of the collisional source terms can be abbreviated to read:

n (νenme+ νinmi) (u − un) = (me+mi) n (u − un) = ρ (u − un) (B.14)

Thus, the general form for the momentum equation of the charged particle fluid is:

∂ (ρu)
∂t
+ ∇ · (ρuu) + ∇ · P − J × B = −νnρ(u − un) −

µ

e
(νin − νen) J (B.15)
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Finally, we would like to deal with the electromagnetic terms in this equation. First of all the assump-
tion of quasi-neutrality is already included in Eq. (B.15). This assumption is justified for a plasma in
interstellar space due to the fact that the spatial scales under consideration are much greater than the
Debye length. Apart from that the current density can be expressed using Ampère’s law. Neglecting the
displacement current this reads:

J =
1
µ0
∇ × B (B.16)

Including this into Eq. (B.15) we find:

∂ (ρu)
∂t
+ ∇ · (ρuu) + ∇ · P +

1
µ0

B × (∇ × B) = −νnρ(u − un) −
µ

e
(νin − νen) J (B.17)

Finally there is a tiny last modification to this equations, which will yield the conservative form of the
above equations. This is desirable, because we are using a solver which only works for equations in
conservative form. In order to avoid having to use another solver for the evolution of the magnetic
induction, we transform the term containing the curl of the magnetic field into a conservative form:

1
µ0

B × (∇ × B) = ∇

(
1

2µ0
B2
)
−

1
2µ0

(B · ∇)B

= ∇ ·

(
1

2µ0
B2
)

1− ∇ ·
1
µ0

(BB) (B.18)

thus, ending up with:

∂ (ρu)
∂t
+ ∇ · (ρuu) + ∇ · P + ∇ ·

(
B2

2µ0
1 −

BB
µ0

)
= −νnρ(u − un) −

µ

e
(νin − νen) J (B.19)

Based on the same ideas, we, also, can easily deduce an equation for the momentum balance of the
neutral fluid:

∂ (ρnun)
∂t

+ ∇ · (ρnunun) + ∇ · Pn = νnρ(u − un) +
µ

e
(νin − νen) J (B.20)

Before we discuss the derivation of the energy equation we will first briefly discuss how Ohm’s law can
be abbreviated to the form used in this work.

B.2 Ohm’s Law

To compute Ohm’s law one usually multiplies Eqs. (B.2) and (B.4) by the appropriate charge-mass ratio
and sums the resulting equations. Here, however, we will rather use the same strategy as illustrated in
Song et al. (2001), i.e. we transform the equations in such a way as to get rid of the neutral velocity from
the resulting equation. This can easily be acchieved by multiplying the ion-equation by the electron-
neutral collision frequency and the electron-equation by the ion-neutral collision frequency and by the
subsequent subtraction of the resulting equations.

The usual approach in the derivation for Ohm’s law is to neglect the dynamic and the pressure terms
in these equations as compared to the terms containing the electromagnetic quantities. Then the above
procedure yields:

νenmeen(E + u × B) + νinmien(E + u × B) +
νenm2

e

mi +me
J × B −

νinm2
i

mi +me
J × B

= νenme

(
νie

mi

e
+ νin

µ

e

)
J + νinmi

(
νei

me

e
+ νen

µ

e

)
J (B.21)
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This can be cast in a more compact form:

en(meνen+miνin) (E + u × B) +
1

mi +me

(
m2

eνen−m2
i νin
)

J × B

=
me

e
(miνenνin +meνenνei +miνeiνin) J

=
me

e
(meνenνei +miνin (νen+ νei)) J (B.22)

From which we find:

eρνn (E + u × B) +
1

mi +me

(
m2

eνen−m2
i νin
)

J × B =
me

e
(meνenνei +miνin (νen+ νei)) J (B.23)

This can be cast into the convenient form:

(E + u × B) +
1
ne
α2J × B = η̃α1J (B.24)

where we introduced the following quantities:

η̃ =
meνei

ne2

α1 =
meνenνei +miνin (νen+ νei)

νeiνn(mi +me)

α2 =
m2

eνen−m2
i νin

(mi +me)2νn
(B.25)

Hereη̃ is the longitudinal electrical conductivity. Alsoα1 andα2 are constants of order unity.
Eq. (B.24) is a general form of Ohm’s law connecting the electromagnetic fields to the current density

for a two-fluid description. Obviously the differences to the single-fluid Ohm’s law only lie in the factors
α1 andα2 each being of order unity: the second term is similar to the Hall-term in the Ohm’s law for
fully ionised plasmas. This form of Ohm’s law allows us to apply the same approximations as for the
one-fluid model. For single-fluid models usually for Ohm’s law the conductivities are assumed to be
infinite – in this case one refers to the equations as ideal/ nonresistive MHD. To retain a finite current
in this case we have, therefore, to require the LHS of Eq. (B.24) to vanish. The Hall term, however, is
usually neglected for resistive MHD. Thus we have for a resistive representation:

ηJ = E + u × B (B.26)

where we definedη = η̃α1. From this we are finally able to deduce the usual induction equation.

B.3 The Energy Equation of the Ionised Fluid

For the closure of the system we finally need another equation. Since, we need to work with conserved
quantities, the desired equation is an energy equation. Here one has to keep in mind that the pressure
equation, though, in conservative form can not be used in this case. This is due to the fact that in contrast
to the total energy density the thermal energy density is not conserved over a shock wave. This results in
unphysical solutions when using a numercial scheme to compute the correponding shock-solution (see
e.g. Kleimann 2005). The equation needed in this context will describe the evolution of the total energy
density, total meaning under these circumstances, that we include internal, electromagnetic and kinetic
energy density of the fluid. The kinetic energy density of the fluid motion is given by:

ef luid =
ρ|u|2

2
(B.27)
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Because of the electromagnetic quantities we only investigate the temporal evolution of the magnetic
induction, we only have to take into account the magnetic energy density here:

emag=
|B|2

2µ0
(B.28)

When intending to use a definition for the internal energy in its most general form one has to keep in
mind that the usual approach of giving the internal energy as:

eInt =
3
2

nkT (B.29)

is stricly only valid for a monoatomic ideal gas. Whereas we do not want to abandon the assumption of
the ideal gas, we would still like to include the possibility of a polyatomic gas. Therefore, we consider
the most general form for the internal energy forν mols of gas, which is given by:

eInt = νcvT (B.30)

whereT is the temperature of the gas andcv indicates the specific heat for constant volume. The latter
depends on the structure of the molecules or atoms which the gas under consideration is comprised of.
The most general form is:

cV =
3
2

R+
1
2

RNRot+ RNVib (B.31)

whereNRot andNVib indicate the number of rotational and vibrational degrees of freedom. Only the first
term describing the kinetic degrees of freedom has to be taken into account for all kinds of gases. The
others only occur for gases comprised of molecules, thus, causing a deviation from Eq. (B.29). When
the user is not so much interested in the exact microscopic behaviour of the gas one can still find another
suitable form for the specific heat:

γ =
cv + R

cv
=⇒ cv =

R
γ − 1

(B.32)

By this the adiabatic exponent is connected to the specific heat. So, we finally find for the internal energy:

eInt =
1

γ − 1
nkBT (B.33)

where we also used:
R= NAkB and νNA = n (B.34)

whereNA denotes Avogadro’s number. When we addionally use the ideal gas law:

p = nkBT =⇒ eInt =
1

γ − 1
p (B.35)

we can give the final form for the total energy density to be used in this work:

e=
ρ|u|2

2
+
|B|2

2µ0
+

p
γ − 1

(B.36)

What we have from the single species equations is the evolution equation for the internal energy for the
individual species (see A). Therefore, the derivation of the energy equation is subdivided into several
parts each of which considering one aspect of this equation. First we will begin by deriving an evolution
equation for the energy contained in the magnetic field:
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B.3.1 Magnetic Energy Evolution

With the magnetic energy density being defined as:

emag=
|B|2

2µ0
(B.37)

we can infer the evolution equation for this part of the overall energy density from the MHD form of the
induction equation given in section 2.5. For this we find:

∂emag

∂t
=

B
µ0
·
∂B
∂t

2.5
=

B
µ0
· (∇ × (u × B) − ∇ × (ηJ))

Usage of the vector identity:

∇ · (u · B)B = (B · ∇)(u · B) + (u · B)∇ · B︸ ︷︷ ︸
=0

= B · (B · ∇)u + B · (u · ∇)B + B · (u × (∇ × B)) (B.38)

shows that we can write:

B · ∇ × (u × B) = B · (−B(∇ · u) + (B · ∇)u − (u · ∇)B)

= −B2(∇ · u) − (u · ∇)B2 + (u · ∇)B2︸                       ︷︷                       ︸
=0

+B · (B · ∇)u − B · (u · ∇)B

= −∇ · (B2u) + (u · ∇)B2 + B · (B · ∇)u − B · (u · ∇)B

= −∇ · (B2u) + B · (B · ∇)u + B · (u · ∇)b
(B.38)
= −∇ · (B2u) + ∇ · (u · B)B − B · (u × (∇ × B)) (B.39)

Using this in the equation for the magnetic energy density leaves us with a conservative form for this
equation:

∂emag

∂t
= −∇ ·

(
B2

µ0
u −

1
µ0

(u · B)B
)
− u ·

(
∇ × B
µ0

× B
)
= −

B
µ0
· (∇ × (ηJ)) (B.40)

The next term to discuss is the evolution equation for the internal energy. In this case we will soon find
that the evolution equation equations for the kinetic energy density can easily be included here.

B.3.2 The Pressure Equation

The next thing to discuss is the pressure equation. For this we first have to clarify what the overall
pressure really is. As already used in Eq. (B.11) for the pressure dyad the scalar pressure can be expressed
as:

p = pi + pe+
γ − 1

2

(
ρi(ui − u)2 + ρe(ue− u)2)

= pi + pe+
γ − 1

2

(
ρiu2

i + ρeu2
e − 2 (ρiui + ρeue)︸            ︷︷            ︸

ρu

·u + (ρi + ρe)︸      ︷︷      ︸
ρ

u2)
= pi + pe+

γ − 1
2

(
ρiu2

i + ρeu2
e − ρu2) (B.41)

From this we easily find the connection between the different time derivatives to be:

1
γ − 1

∂p
∂t
=

1
γ − 1

∂

∂t
(pi + pe) +

1
2
∂

∂t

(
ρiu

2
i + ρeu

2
e − ρu2) (B.42)
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Thus, we see, that the sum of thermal and kinetic energy is most easily computed together:

1
γ − 1

∂p
∂t
+

1
2
∂

∂t

(
ρu2) = 1

γ − 1
∂

∂t
(pi + pe) +

1
2
∂

∂t

(
ρiu

2
i + ρeu

2
e

)
(B.43)

Here we start out by computing the contribution by the single species pressure equations Eq. (2.12) for
protons and electrons. This gives:

1
γ − 1

(
∂

∂t
(pi + pe) + ∇ · (piui + peue)

)
+ (Pi · ∇) · ui + (Pe · ∇) · ue+ ∇ · (qi + qe) = Ei + Ee (B.44)

Now these terms will be evaluated one by one. We will begin at the end to spare the messy parts for later.
The definition of the overall heat-flux vector according to Bittencourt (2004) yields:

q =qi + qe+ (ui − u) · Pi + (ue− u) · Pe+
1

γ − 1
((ui − u) pi + (ue− u) pe)

+
1
2

(
ρi (ui − u)2 (ui − u) + ρe (ue− u)2 (ue− u)

)
(B.45)

Additionally Eq. (B.41) can be used to reevaluate the divergence terms including the scalar pressure:

1
γ − 1

∇ · (piui + peue) =
1

γ − 1
∇ · (pi((ui − u) + u) + pe((ue− u) + u))

=
1

γ − 1
∇ · ((pi + pe)u + pi(ui − u) + pe(ue− u))

=
1

γ − 1
∇ · (pu) +

1
γ − 1

∇ · (pi(ui − u) + pe(ue− u))

−
1
2
∇ ·
(
ρi(ui − u)2 + ρe(ue− u)2) u (B.46)

Putting both these things together we find:

1
γ − 1

∇ · (piui + peue) + ∇ · (qi + qe)

=
1

γ − 1

(
∇ · (pu) + ∇ · (pi(ui − u) + pe(ue− u))

)
−

1
2
∇ ·
(
ρi(ui − u)2 + ρe(ue− u)2) u

+ ∇ · q− ∇ · (ui − u) · Pi − ∇ · (ue− u) · Pe−
1

γ − 1
∇ · ((ui − u)pi + (ue− u)pe)

−
1
2
∇ ·
(
ρi (ui − u)2 (ui − u) + ρe (ue− u)2 (ue− u)

)
(B.47)

=
1

γ − 1
∇ · (pu) + ∇ · q− ∇ · (ui − u) · Pi − ∇ · (ue− u) · Pe−

1
2
∇ ·
(
ρi(ui − u)2(ui) + ρe(ue− u)2(ue)

)
The next thing we will include is the term involving the pressure tensor. This is transformed in a way
similar to the scalar pressure:

(Pp · ∇) · up + (Pe · ∇) · ue = (Pp · ∇) · u + (Pe · ∇) · u + (Pp · ∇) · (up − u) + (Pe · ∇) · (ue− u)

= (P · ∇) · u + (Pp · ∇) · (up − u) + (Pe · ∇) · (ue− u)

− ρp(up − u)(up − u) · ∇ · u − ρe(ue− u)(ue− u) · ∇ · u (B.48)



110 APPENDIX B. DERIVATION OF THE MACROSCOPIC FLUID EQUATIONS

Thus, we have an expression for the sum of the pressure and heat flux terms, leading us to the intermediate
result:

1
γ − 1

∂

∂t
(pi + pe)

= −
1

γ − 1
∇ ·
(
ppup + peue

)
− (Pp · ∇) · up − (Pe · ∇) · ue− ∇ ·

(
qp + qe

)
+ Ei + Ee

= −
1

γ − 1
∇ · (pu) − ∇ · q− (P · ∇) · u + (up − u) · ∇ · Pp + (ue− u) · ∇ · Pe+ Ei + Ee (B.49)

+
1
2
∇ ·
(
ρp(up − u)2(up) + ρe(ue− u)2(ue)

)
+
(
ρp(up − u)(up − u) + ρe(ue− u)(ue− u)

)
· ∇ · u

Before discussing the source terms the next thing to worry about are the time derivatives of the single
species kinetic energy density. These can be gained from a combination of the single species momentum
equation and the corresponding equation of continuity. For this, we first insert the continuity equation
for the ions into the corresponding momentum equation, leading to the equation:

ρi
∂ui

∂t
+ ρi(ui · ∇)ui + ∇ · Pi − eni (E + ui × B) = −

(
νie

mi

e
+ νin

µ

e

)
J − νinρi(u − un) (B.50)

with an analogous relation for the electrons. Then we find for the time derivative of the corresponding
kinetic energy – again using the example of the ions:

1
2

∂
(
ρiu2

i

)
∂t

=
1
2

(
ui ·

(
ρi
∂ui

∂t
+
∂ρiui

∂t

))
= −

1
2
ρiui · (ui · ∇)ui −

1
2

ui · ∇ · Pi +
1
2

eniui · (E + ui × B)

−
1
2

ui ·

((
νie

mi

e
+ νin

µ

e

)
J − νinρi(u − un)

)
−

1
2

ui · (∇ · (ρiuiui)) −
1
2

ui · ∇ · Pi +
1
2

eniui · (E + ui × B)

−
1
2

ui ·

((
νie

mi

e
+ νin

µ

e

)
J − νinρi(u − un)

)
= −

1
2
ρiui · (ui · ∇)ui −

1
2

ui · (∇ · (ρiuiui)) − ui · ∇ · Pi (B.51)

+ eniui · (E + ui × B) − ui ·

((
νie

mi

e
+ νin

µ

e

)
J − νinρi(u − un)

)
= −

1
2
∇ · (ρiu

2
i ui) − ui · ∇ · Pi + eniui · E − ui ·

((
νie

mi

e
+ νin

µ

e

)
J + νinρi(u − un)

)
For the electrons we find in an analogous approach:

1
2

∂
(
ρeu2

e

)
∂t

= −
1
2
∇ · (ρeu

2
eui)−ue · ∇ ·Pe−eneue · E+ue ·

((
νei

me

e
+ νen

µ

e

)
J − νenρe(u − un)

)
(B.52)

Therefore, the sum of these two contributions is:

1
2
∂

∂t

(
ρiu

2
i + ρeu

2
e

)
= −

1
2
∇ · (ρiu

2
i ui) −

1
2
∇ · (ρeu

2
eui) − ui · ∇ · Pi − ue · ∇ · Pe+ e(niui − neue) · E

− ui ·

((
νie

mi

e
+ νin

µ

e

)
J + νinρi(u − un)

)
+ ue ·

((
νei

me

e
+ νen

µ

e

)
J − νenρe(u − un)

)
(B.53)
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Now we have to put all the stuff together. This leaves us with the somewhat messy result:

1
γ − 1

∂p
∂t
+

1
2
∂

∂t

(
ρu2) = − 1

γ − 1
∇ · (pu) − ∇ · q

= − (P · ∇) · u + (ui − u) · ∇ · Pi + (ue− u) · ∇ · Pe− ui · ∇ · Pi − ue · ∇ · Pe

−
1
2
∇ · (ρiu

2
i ui) −

1
2
∇ · (ρeu

2
eui)

+
1
2
∇ ·
(
ρi(ui − u)2(ui) + ρe(ue− u)2(ue)

)
+ (ρi(ui − u)(ui − u) + ρe(ue− u)(ue− u)) · ∇ · u

+ e(niui − neue) · E + Ei + Ee

− ui ·

((
νie

mi

e
+ νin

µ

e

)
J + νinρi(u − un)

)
+ ue ·

((
νei

me

e
+ νen

µ

e

)
J − νenρe(u − un)

)
(B.54)

There we can use the relation:

(ui − u) · ∇ · Pi + (ue− u) · ∇ · Pe− ui · ∇ · Pi − ue · ∇ · Pe = −u · ∇ · (Pi + Pe) (B.55)

Using Eq. (B.11) this becomes:

−u · ∇ · (Pi + Pe) = −u · ∇ · P + u · ∇ · ((ui − u)(ui − u) + (ue− u)(ue− u)) (B.56)

By additional usage of∇ · (P · u) = (P · ∇) · u + u · (∇ · P) we find for the kinetic part of the energy
evolution equation:

1
γ − 1

∂p
∂t
+

1
2
∂

∂t

(
ρu2) = − 1

γ − 1
∇ · (pu) − ∇ · q− ∇ · (P · u)

= + u · ∇ · ((ui − u)(ui − u) + (ue− u)(ue− u)) −
1
2
∇ · (ρiu

2
i ui) −

1
2
∇ · (ρeu

2
eui)

+
1
2
∇ ·
(
ρi(ui − u)2(ui) + ρe(ue− u)2(ue)

)
+ (ρi(ui − u)(ui − u) + ρe(ue− u)(ue− u)) · ∇ · u

+ e(niui − neue) · E + Ei + Ee

− ui ·

((
νie

mi

e
+ νin

µ

e

)
J + νinρi(u − un)

)
+ ue ·

((
νei

me

e
+ νen

µ

e

)
J − νenρe(u − un)

)
(B.57)

The next thing we will discuss are the terms containing only velocities and densities. For this we find:

u · ∇ · (ρi(ui − u)(ui − u) + ρe(ue− u)(ue− u)) + (ρi(ui − u)(ui − u) + ρe(ue− u)(ue− u)) · ∇ · u

= ∇ · ((ρi(ui − u)(ui − u) + ρe(ue− u)(ue− u)) · u)

= ∇ ·
(
(ρi(ui · u − u2))ui + (ρe(ue · u − u2))ue− (ρi(ui · u − u2) + ρe(ue · u − u2)︸                                    ︷︷                                    ︸

=0

)u
)

(B.58)

The remaining such terms can be merged in the following way:

1
2
∇·
(
ρi(ui − u)2(ui) + ρe(ue− u)2(ue)

)
−

1
2
∇ · (ρiu

2
i ui) −

1
2
∇ · (ρeu

2
eue)

=
1
2
∇ ·
((
ρi(u

2
i − 2ui · u + u2)ui − ρiu

2
i ui
)
+
(
ρe(u

2
e − 2ue · u + u2)ue− ρeu

2
eue
))

= −∇ ·
(
ρi(ui · u −

1
2

u2)ui + ρe(ue · u −
1
2

u2)ue
)

(B.59)

Equations (B.58) and (B.59) together are, therefore, just:

u · ∇ · ((ui − u)(ui − u) + (ue− u)(ue− u)) −
1
2
∇ · (ρiu

2
i ui) −

1
2
∇ · (ρeu

2
eui)

+
1
2
∇ ·
(
ρi(ui − u)2(ui) + ρe(ue− u)2(ue)

)
+ (ρi(ui − u)(ui − u) + ρe(ue− u)(ue− u)) · ∇ · u

= −
1
2
∇ ·
(
(ρiui + ρeue)u

2) = −1
2
∇ ·
(
ρu2u

)
(B.60)
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With all this in mind Eq. (B.57) can nicely abbreviated. Here we shift all the conservative terms to the
left-hand side and the source terms to the right-hand side. Additionally we used Eq. (2.34) for the current
density. By this we obtain:

1
γ − 1

∂p
∂t
+

1
2
∂

∂t

(
ρu2) + ∇ · (( 1

γ − 1
p+

1
2
ρu2 + P

)
u
)
+ ∇ · q

= −ui ·

((
νie

mi

e
+ νin

µ

e

)
J + νinρi(u − un)

)
+ ue ·

((
νei

me

e
+ νen

µ

e

)
J − νenρe(u − un)

)
+ J · E + Ei + Ee (B.61)

Before we include the magnetic energy to obtain an equation for the overall energy density we will strive
to find a more explicit form for the above source terms. Starting from the source terms for the single
species momentum equations we find:

ui ·

((
νie

mi

e
+ νin

µ

e

)
J + νinρi(u − un)

)
− ue ·

((
νei

me

e
+ νen

µ

e

)
J − νenρe(u − un)

)
= νei

me

e2n
J2 +

µ

e
(νin − νen) J · u +

(
µ2

e2n

(
νin

mi
+
νen

me

))
J2 + νnρu · (u − un) +

µ

e
(νin − νen) J · (u − un)

= ηJ2 + νnρu · (u − un) +
µ

e
(νin − νen) J · (2u − un) +

(
µ

e2n

(
νin

mi
+
νen

me

))
J2 (B.62)

This finally provides us with the possibility to give a quite brief form for Eq. (B.57):

1
γ − 1

∂p
∂t
+

1
2
∂

∂t

(
ρu2) + ∇ · (( 1

γ − 1
p+

1
2
ρu2 + P

)
u
)
+ ∇ · q (B.63)

= −ηJ2 − νnρu · (u − un) −
µ

e
(νin − νen) J · (2u − un) −

(
µ2

e2n

(
νin

mi
+
νen

me

))
J2 + J · E + Ei + Ee

Here the termηJ2 describes Ohmic heating. So far, however, we did not specify the individual source
terms for the single species internal energy equations. This will be treated in the following paragraph:

The Source Terms

For the source terms of the single species energy equation we know:

Eα =
∑
β

(
−2

kB

γα − 1
ναβnα

mα

mα +mβ
(Tα − Tβ) + ναβnαmα

mβ

mα +mβ
(uα − uβ)2

)
(B.64)

where the sum is over all species apart fromα. With this and using the sameγ for all species the term
Ep + Ee yields:

Ei + Ee = − 2
kB

γ − 1
νieρi

1
mi +me

(Ti − Te) + νieρi
me

mi +me
(ui − ue)

2

− 2
kB

γ − 1
νeiρe

1
mi +me

(Te− Ti) + νeiρe
mi

mi +me
(ue− ui)

2

− 2
kB

γ − 1
νinρi

1
mi +mn

(Ti − Tn) + νinρi
mn

mi +mn
(ui − un)2

− 2
kB

γ − 1
νenρe

1
me+mn

(Te− Tn) + νenρe
mn

me+mn
(ue− un)2 (B.65)

Using the conservation of momentum for the electron-proton collisions, which results in:

νieρi = νeiρe (B.66)
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the first two temperature terms cancel identically:

Ei + Ee =νieρi
me

mi +me
(ui − ue)

2 + νeiρe
mi

mi +me
(ue− ui)

2

− 2
kB

γ − 1
νinρi

1
mi +mn

(Ti − Tn) + νinρi
mn

mi +mn
(ui − un)2

− 2
kB

γ − 1
νenρe

1
me+mn

(Te− Tn) + νenρe
mn

me+mn
(ue− un)2 (B.67)

Apart from that we can also use the representation of the current density given in Eq. (2.39) to simplify
the above results even further:

Ei + Ee = ηJ2 − 2
kB

γ − 1
νinρi

1
mi +mn

(Ti − Tn) + νinρi
mn

mi +mn
(ui − un)2

− 2
kB

γ − 1
νenρe

1
me+mn

(Te− Tn) + νenρe
mn

me+mn
(ue− un)2 (B.68)

Being finished, with the charged particle source terms we have to consider the collisional terms for
neutral-charged particle interaction. For the temperature terms we have to use some assumption on how
the electron and ion temperatures are related. For the velocities, however, we have to go from electron
and ion velocities over to average charged particle velocities and current density using the relations (2.42)
and (2.43). This yield:

νinρi
mn

mi +mn
(ui − un)2 + νenρe

mn

me+mn
(ue− un)2 (B.69)

=(νinµin + νenµen)n(u − un)2 + 2
µ

e

(
νinmn

mi +mn
−

νenmn

me+mn

)
J · (u − un)

+
µ2

e2n

(
νinmn

mi(mi +mn)
+

νenmn

me(me+mn)

)
J2

where we introduced the reduced masses:

µin =
mimn

mi +mn
and µen =

memn

me+mn

To Eq. (B.69) we now add some of the other source terms containing the velocities:

νinρi
mn

mi +mn
(ui − un)2 + νenρe

mn

me+mn
(ue− un)2 − νnρ(u − un)2

− 2
µ

e
(νin − νen) J · (u − un) −

µ2

e2n

(
νin

mi
+
νen

me

)
J2

= −

(
νinm2

i

mi +mn
+

νenm2
e

me+mn

)
n(u − un)2 − 2

µ

e

(
νinmi

mi +mn
−

νenme

me+mn

)
(u − un) · J

−
µ2

e2n

(
νin

(mi +mn)
+

νen

(me+mn)

)
J2 (B.70)

The collision terms connencting neutral and charged particles can still be simplified a little further. This,
however, is not important at this point since these are exactly the terms also emerging in the evolution
equation for the internal energy of the neutral fluid. Alse the discussion of the source term containing
the electric field will be deferred to the point, when the magnetic energy is also included. So far we have
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the evolution equation:

1
γ − 1

∂p
∂t
+

1
2
∂

∂t

(
ρu2) + ∇ · (( 1

γ − 1
p+

1
2
ρu2 + P

)
u
)
+ ∇ · q

= − νnρun · (u − un) −
µ

e
(νin − νen) J · un + J · E

− 2
kB

γ − 1
ρi

νin

mi +mn
(Ti − Tn) − 2

kB

γ − 1
ρe

νen

me+mn
(Te− Tn)

−

(
νinm2

i

mi +mn
+

νenm2
e

me+mn

)
n(u − un)2 − 2

µ

e

(
νinmi

mi +mn
−

νenme

me+mn

)
(u − un) · J

−
µ2

e2n

(
νin

mi +mn
+

νen

me+mn

)
J2 (B.71)

Now we are finally ready to put all results together into one evolution equation for the overall energy
density.

B.3.3 Evolution Equation for the Energy Density

The evolution equation for the energy density of the ionised fluid can finally be found by putting the
dynamic and the magnetic energy equations together. This sum leads to:

∂

∂t

(
p

γ − 1
+

1
2
ρu2 +

B2

2µ0

)
+ ∇ ·

((
p

γ − 1
+

1
2
ρu2 +

B2

µ0
+ P

)
u
)
+ ∇ · q−

1
µ0

(u · B)B

= − νnρun · (u − un) −
µ

e
(νin − νen) J · un + J · (E + u × B) −

B
µ0
· (∇ × ηJ)

− 2
kB

γ − 1
ρi

νin

mi +mn
(Ti − Tn) − 2

kB

γ − 1
ρe

νen

me+mn
(Te− Tn)

−

(
νinm2

i

mi +mn
+

νenm2
e

me+mn

)
n(u − un)2 − 2

µ

e

(
νinmi

mi +mn
−

νenme

me+mn

)
(u − un) · J

−
µ2

e2n

(
νin

mi +mn
+

νen

me+mn

)
J2 (B.72)

By the application of Ohm’s law to this equation we can get rid of some of the source terms. For this we
can write:

J · (E + u × B) = J · (ηJ) = ηJ · ∇ ×
B
µ0
= ∇ · (

B
µ0
× ηJ) +

B
µ0
· (∇ × ηJ) (B.73)

Taking this into account we are led to the resulting evolution equation for the overall energy density:

∂e
∂t
+ ∇ ·

((
e+

B2

2µ0
+ P·

)
u + q−

1
µ0

(u · B)B + ηJ ×
B
µ0

)
= − νnρun · (u − un) −

µ

e
(νin − νen) J · un

− 2
kB

γ − 1
ρi

νin

mi +mn
(Ti − Tn) − 2

kB

γ − 1
ρe

νen

me+mn
(Te− Tn)

−

(
νin

mi +mn

)
1
n

(
ρi(u − un) −

µ

e
J
)2
−

(
νen

me+mn

)
1
n

(
ρe(u − un) +

µ

e
J
)2

(B.74)

Now we are left with the task to show that this is consistent with the energy equation for the neutral fluid,
i.e. that the source terms are consistent to each other.
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B.4 The Energy Equation for the Neutral Fluid

For the neutral fluid we luckily just have one momentum equation to consider. Apart from this we only
have to take the internal energy into account, since the magnetic energy is already accounted for in the
energy equation for the ionised species. Therefore, what we are looking for is an evolution equation for
the quantity:

en =
1
2
ρnu2

n +
pn

γ − 1
(B.75)

Naturally the equation for the thermal energy of the neutral fluid is:

1
γ − 1

∂pn

∂t
= −

1
γ − 1

∇ · (pnun) − (Pn · ∇) · un − ∇ · qn + En (B.76)

A short derivation also yields the equation for the kinetic energy:

1
2
∂(ρnu2

n)
∂t

= −
1
2
∇ · (ρnu2

nun) − un · ∇ · Pn + νnρun · (u − un) +
µ

e
(νin − νen)un · J (B.77)

The sum of these two equations results in:

∂en

∂t
+ ∇ · (en + P·)un + ∇ · qn = En + νnρun · (u − un) +

µ

e
(νin − νen)un · J (B.78)

where the source termEn is given consistently to the ones used in the energy equation for the ionised
fluid above as:

En = − 2
kB

γ − 1
νniρn

1
mn +mi

(Tn − Ti) + νniρn
mi

mn +mi
(un − ui)

2

− 2
kB

γ − 1
νneρn

1
mn +me

(Tn − Te) + νneρn
me

mn +me
(un − ue)

2 (B.79)

By usage ofνinρi = νniρn and the corresponding relation for the electrons it is easy to show that the
temperature terms exactly correspond to the one given in the energy equation for the ionised species.
The velocity-terms, however, become a little more difficult:

En = 2
kB

γ − 1
νinρi

1
mi +mn

(Ti − Tn) + νinρi
mi

mn +mi
(ui − un)2

+ 2
kB

γ − 1
νenρe

1
me+mn

(Te− Tn) + νenρe
me

mn +me
(ue− un)2 (B.80)

Because things become quity messy for the velocity terms, we will dedicate the next paragraph just to
this problem:

The Collision Terms

What we are looking at are the terms:

νinρi
mi

mn +mi
(ui − un)2 + νenρe

me

mn +me
(ue− un)2 (B.81)

These are now transformed in a way as to get rid of the electron and proton velocities. Namely, we find:

νinρi
mi

mn +mi
(ui − un)2 + νenρe

me

mn +me
(ue− un)2

=

(
νinρi

mi

mn +mi
+ νenρe

me

mn +me

)
(u − un)2 + 2

(
νinmi

mn +mi
−

νenme

mn +me

)
µJ · (u − un)

+
µ2

e2n

(
νin

mn +mi
+

νen

mn +me

)
J2 (B.82)

This term is clearly identical to the one found in the energy equation for the ionised fluid. Therefore, we
are now able to give the system of equations applicable to a partly ionised fluid:
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B.5 The MHD Equations for a Partly Ionised Fluid

Summarising what was computed above, the system of MHD-equations for a partly ionised fluid, where
only elastic collisions are taken into account, reads:

For the continuity equation:

∂ρ

∂t
+ ∇ · (ρu) = 0 (ionised fluid) (B.83)

∂ρn

∂t
+ ∇ · (ρnun) = 0 (neutral fluid) (B.84)

For the momentum equation:

∂ (ρu)
∂t
+ ∇ · (ρuu) + ∇ · P + ∇ ·

(
B2

2µ0
1 −

BB
µ0

)
= − νnρ(u − un) −

µ

e
(νin − νen) J (ionised fluid)

(B.85)

∂ (ρnun)
∂t

+ ∇ · (ρnunun) + ∇ · Pn =−νnρ(u − un) +
µ

e
(νin − νen) J (neutral fluid)

(B.86)

For the energy equation:

∂e
∂t
+ ∇ ·

((
e+

B2

2µ0
+ P·

)
u + q−

1
µ0

(u · B)B + ηJ ×
B
µ0

)
= −Sien (ionised fluid) (B.87)

∂en

∂t
+ ∇ · (en + P·)un + ∇ · qn = Sien (neutral fluid) (B.88)

with the correponding source terms:

Sien =νnρun · (u − un) +
µ

e
(νin − νen) J · un

+ 2
kB

γ − 1
ρi

νin

mi +mn
(Ti − Tn) + 2

kB

γ − 1
ρe

νen

me+mn
(Te− Tn)

+

(
νin

mi +mn

)
1
n

(
ρi(u − un) −

µ

e
J
)2
+

(
νen

me+mn

)
1
n

(
ρe(u − un) +

µ

e
J
)2

(B.89)

This system is supplemented by an equation describing the evolution of the magnetic induction:

∂B
∂t
= ∇ × (u × B) +

1
µ0

(
η∇2B − (∇η) × (∇ × B)

)
(B.90)

= −∇ · (uB − Bu) +
1
µ0

(
η∇2B − (∇η) × (∇ × B)

)
(B.91)

With this summary we conclude the derivation of the evolution equation for the partly ionised plasma.



Appendix C

Normalisation of the Charged Particle
Fluid Equations

In this paragraph we will show how to normalise the individual evolution equations at the example of the
charged particle fluid. For the neutral fluid exactly the same procedure has to be followed. Here we will
discuss the corresponding equations one by one.

C.1 Equation of Continuity

The equation of continuity is rewritten using the normalisation given in table 2.8.1 as:

ρ0

τ0

∂ρ̃

∂t̃
= −

ρ0u0

L
∇̃ · s̃ (C.1)

where we introduced the normalised mass-flux:

s̃= ρ̃ũ (C.2)

With the above definitions the continuity-equation can be reduced to:

∂ρ̃

∂t̃
= −∇̃ · s̃ (C.3)

The next equation we attend to is the induction equation.

C.2 Induction Equation

The induction equation reads using the normalised quantities:

B0

τ0

∂B̃
∂t̃
= −

B0ρ0u0

ρ0L
∇̃ ·

(
s̃B̃ − B̃s̃

ρ̃

)
(C.4)

which can be abbreviated to give:
∂B̃
∂t̃
= −∇̃ ·

(
s̃B̃ − B̃s̃

ρ̃

)
(C.5)

In the next subsection we will discuss the momentum equation, before finally transforming the evolution
equation for the total energy density.
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C.3 Momentum Equation

The momentum equation translates into the form:

ρ0u0

τ0

∂s̃
∂t̃
= −∇̃ ·

(
ρ2

0u2
0

ρ0L
s̃s̃
ρ̃
+

(
P0

L
P̃+

B2
0

L
B̃2

2µ0

)
1−

B2
0

L
B̃B̃
µ0

)
+ Aien (C.6)

This yields:
∂s̃
∂t̃
= −∇̃ ·

(
s̃s̃
ρ̃
+

(
P0

ρ0u2
0

P̃+
B2

0

µ0ρ0u2
0

B̃2

2

)
1−

B2
0

µ0ρ0u2
0

B̃B̃
)
+ Ãien (C.7)

At first sight it looks like this result strongly depends on the choice for the velocity normalisation. How-
ever, in both cases discussed here we have:

p0 = ρ0u2
0 and B0 =

√
µ0ρ0u2

0 (C.8)

Therefore we find for the normalised momentum equation:

∂s̃
∂t̃
= −∇̃ ·

(
s̃s̃
ρ̃
+

(
P̃+

B̃2

2

)
1− B̃B̃

)
+ Ãien (C.9)

The final equation to be discussed is the equation for the evolution of the energy density.

C.4 Evolution of the Energy Density

As already given in tables 2.8.1 and the normalisation for the total energy density is naturally given by
dimensional analysis as:

e0 = ρ0u2
0 (C.10)

This can also be seen directly from the equation for the total energy density:

e= e0ẽ=
ρu2

2
+

B2

2µ0
+

p
γ − 1

= ρ0u2
0
ρ̃ ũ2

2
+

B2
0

µ

B̃2

2
+ p0

p̃
γ − 1

= ρ0u2
0

(
ρ̃ ũ2

2
+

B̃2

2
+

p̃
γ − 1

)
(C.11)

Thus, we find for the normalised total energy density:

ẽ=
ρ̃ ũ2

2
+

B̃2

2
+

p̃
γ − 1

(C.12)

Now we proceed to the normalisation for the evolution equation itself:

e0

τ0

∂ẽ
∂t
= −∇ ·

((
u0p0

L
ẽ+

u0p0

L
P̃ · +

u0B2
0

L
B̃2

2µ0

)
s̃−

u0B2
0

µ0
(s̃ · B̃)B̃

)
1
ρ̃
+ Se (C.13)

In the same way as it was done for the momentum equation his can be recast into the form:

∂ẽ
∂t
= −∇ ·

((
ẽ+ P̃ · +

B̃2

2

)
s̃− (s̃ · B̃)B̃

)
1
ρ̃
+ S̃e (C.14)

This concludes the derivation of the normalised form of the evoltion equations.



Appendix D

Characteristic Velocities

For the derivation of the characteristic velocities we will intensely investigate the hydrodynamic equa-
tions. These read in conservative form:

∂tU = ∂t


ρ

ρux

ρuy

ρuz

 = −∇ ·


ρu(
ρuxρu
ρ + pex

)(
ρuyρu
ρ + pey

)(
ρuzρu
ρ + pez

)

 (D.1)

where we closed the system via the adiabatic equation of state since source terms are not of interest
here. The characteristic velocities of the flow are obtained using the quasi-linear form of the evolution
equations. This is obtained via differentiation of the corresponding flux functions. For the above three-
dimensional system this yields:

∂tU = −


∂x(ρux) + ∂y(ρuy) + ∂z(ρuz)

ux∇ · (ρu) + ux∂x(ρux) − u2
x∂xρ + uy∂y(ρux) − uxuy∂yρ + uz∂z(ρux) − uxuz∂zρ + γ

p
ρ∂xρ

uy∇ · (ρu) + ux∂x(ρuy) − uxuy∂xρ + uy∂y(ρuy) − u2
y∂yρ + uz∂z(ρuy) − uyuz∂zρ + γ

p
ρ∂yρ

uz∇ · (ρu) + ux∂x(ρuz) − uxuz∂xρ + uy∂y(ρuz) − uzuy∂yρ + uz∂z(ρuz) − u2
z∂zρ + γ

p
ρ∂zρ


(D.2)

From this one easily finds the general form:

∂U
∂t
= −Jx(U) ·

∂U
∂x
− Jy(U) ·

∂U
∂y
− Jz(U) ·

∂U
∂z

(D.3)

with the corresponding Jacobians for each direction:

Jx =


0 1 0 0

−u2
x + γp/ρ 2ux 0 0
−uxuy uy ux 0
−uxuz uz 0 ux

 Jy =


0 0 1 0
−uxuy uy uy 0

−u2
y + γp/ρ 0 2uy 0
−uyuz 0 uz uy



Jz =


0 0 0 1
−uxuz uz 0 ux

−uyuz 0 uz uy

−u2
z + γp/ρ 0 0 2uz

 (D.4)

Now, whenever∂U
∂x is an eigenvector ofJx the system of equations holds the possibility of wave prop-

agation along the x-direction – with the corresponding statement for the other directions. This picture
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originates from the analysis of linear systems, where such a result means, that the structures propagate
with unchanged form in the whole domain of interest. Therefore, the corresponding possible wave speeds
in the x-direction are naturally given by the eigenvalues ofJx. For this the characteristic polynomial of
Jx can with very little algebra be found to be:

Px = −(λ − ux)
2(λ2 − 2uxλ + u2

x − γp/ρ) (D.5)

With the identification of the speed of soundcs as:

cs =
√
γp/ρ (D.6)

the eigenvalues are most easily identified to be:

λ1,2 = ux (D.7)

λ3,4 = ux ± cs (D.8)

Here the eigenspace corresponding toλ1,2 = ux is two-dimensional since these eigenvalues represent
shear waves being propagated in either they- or thez-direction. For the MHD equation the algebra gets
a little more messy, but the results are obtained in a similar way as for the hydrodynamical equations.

Velocities for MHD

The characteristic velocities for the normalised MHD equations are obtained in a very similar way as
they are for the hydrodynamic system. With a similar transformation of the system of equations as in the
preceding chapter we find for the Jacobian for thex-direction:

Jx =



0 1 0 0 0 0 0
−u2

x + γp/ρ 2ux 0 0 −Bx By Bz

−uxuy uy ux 0 −By −Bx 0
−uxuz uz 0 ux −Bz 0 −Bx

0 0 0 0 ux 0 0
(uxBx − uxBy)/ρ By/ρ −Bx/ρ 0 0 ux 0
(uzBx − uxBz)/ρ Bz/ρ 0 −Bx/ρ 0 0 ux


(D.9)

From this the characteristic velocities can, again, be found as the eigenvalues. Thus, we find for these
for thex-direction:

λ1 = ux (D.10)

λ2,3 = ux ± vAx (D.11)

λ4,5 = ux ± v fx (D.12)

λ6,7 = ux ± vsx (D.13)

together with the definitions:

csB

√
dp
dρ
=

√
γ

p
ρ

speed of sound (D.14)

vA B
B
√
ρ

(
vAx B

Bx
√
ρ

)
Alfv én speed (inx-direction) (D.15)

v fx B
1
√

2

√
c2

s + v2
A +

√
(c2

s + v2
A)2 − (2csvAx)2 fast magnetosonic speed inx-direction (D.16)

vsx B
1
√

2

√
c2

s + v2
A −

√
(c2

s + v2
A)2 − (2csvAx)2 slow magnetosonic speed inx-direction (D.17)
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Thus, we see, that also the system of the MHD equations is strictly hyperbolic. A matter unaccounted
for so far, however, is the fact that different ways to present the Jacobian also leads to different values for
the characteristic velocities. The Jacobian can easily be transformed to the the shape given in Kleimann
(2005). This is done by using:

∇ · B = 0 (D.18)

Even though, the system described by the resulting equations is identical to the one under consideration
here, the resulting characteristic velocities differ. Whereas it is justλ1 being different – namely one
arrives atλ1 = 0 in that case (see Kleimann 2005) – this result seems to be unphysical as compared to
the result given here: Waves propagating with−ux against the background flowux are not expected for
possibly supersonic fluid flow.
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Physical Constants

Avogadro’s Number NA = 6.0221364· 1023

Boltzmann Constant kB = 1.380658· 10−23 F m−1

Electron Mass me = 9.109690· 10−31 kg
Electron Charge e = 1.6021773· 10−19 C
Gas Constant R = 8.31451 J K−1 mol−1

Parsec 1pc = 3.0856776· 1016 m
Permittivity of Free Space ε0 = 8.854188· 10−12 A s V−1 m−1

Permeability of Free Space µ0 = 4π10−7 = 1.256637· 10−6 V s A−1 m−1

Proton Mass mp = 1.6426231· 10−27 kg
Speed of Light c = 2.99792458· 108 m s−1

Fundamental Plasma Parameters

Thermal Velocity vTi =
√

kBT/mi

Thermal Pressure P = nkBT
Alfv én Speed vA = B0/

√
µ0ρ

Speed of Sound cs =
√
γkBT/m

Gyrofrequency ωci = eB/mi

Gyroradius r i = vTi/ωci =
√

mβ/2µ0e2n

Debye Length λD =
√
ε0kB/nee2

Plasma Frequencyωpi =

√
niZ2

i e2/ε0mi

Plasmaβ β = 2µ0p/B2
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