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Chapter 1

Introduction

The field of astroparticle physics is a symbiosis of elementary particle physics, astro-
physics, astronomy and plasma physics. Large astrophysical objects like supernovae,
galaxies, radiation fields and the interstellar medium are linked with the propaga-
tion, acceleration and interaction of elementary particles like photons, neutrinos,
electrons and positrons, neutrons, protons and antiprotons and higher Z nuclei in
different isotopic forms. The energies of these observed cosmic rays span a wide
range up to energies exceeding the values at terrestrial laboratories by orders of
magnitude.

The main topic of this work are the hadronic cosmic rays of energies from a few
GeV up to 1015 − 1017 eV, which are supposed to be of galactic origin. The astro-
physical sources of these nuclei are still experimentally not confirmed, although it is
assumed, that they run through the same pre-acceleration processes as cosmic ray
electrons, which have been detected indirectly by synchrotron radiation and high
energy gamma-rays from supernova remnants. After injection into the interstel-
lar medium the particles interact with plasma waves and the interstellar gas. One
main question in cosmic ray physics is the transformation of macroscopic energy
stemming, for example, from supernova explosions and from plasma waves in the
interstellar medium into particle energy and, thus, explaining the spectra and chem-
ical composition measured at the location of the sun.

The theory of acceleration by shock waves, like the shock fronts of supernova rem-
nants, can explain injection spectra of charged hadronic cosmic rays, which have
to first order the form of power laws. These spectra are now processed by the
interaction of the cosmic ray particles with plasma waves existing in the interstel-
lar medium. An unsolved problem in astroparticle physics is the influence of the
stochastic reacceleration by these plasma waves. In this work we investigate the dif-
fusive spatial and stochastic momentum transport of cosmic rays by the turbulence

5



6

of the interstellar medium to explain the spectra measured by satellites, balloon-
borne and airshower experiments at the earth. The importance of the theoretical
considerations follows from the lack of in situ measurements of the processes in the
interstellar medium.

A mathematical description of the propagation processes is provided by the trans-
port equation, a second-order linear partial differential equation in time, space and
momentum. For the first time we use analytical solutions of the stationary trans-
port equation to calculate the final energy spectra of hadronic cosmic rays. This
has the advantage of a better mathematical control of the results in contrast to a
purely numerical solution of the differential equation. We have to accept, however,
some approximations and simplifications using this method. We neglect the terms
of spatial and momentum convection and also continuous loss processes, which have
been shown to be not important for nuclei. The calculations are first performed for
protons. Later we discuss the consideration of catastrophic losses, like spallation in
the interstellar gas for nuclei with Z > 1. We assume a cylindrical symmetry and a
homogeneous spatial source distribution and insert well-established spatial and mo-
mentum injection functions. The final integrals can only be calculated numerically,
but analytical approximations and consistency checks are made.

In the end, we fit the data for different parameter sets and some best-fit astro-
physical parameters are yielded. The importance of stochastic reacceleration of
galactic cosmic rays in the galactic plasma is evaluated.

This work is structured as follows:

In Chapter 2 we first give an overview of three populations of cosmic rays, so-
lar, galactic and extragalactic. In the galactic cosmic ray section we deal especially
with conclusions from galactic gamma rays, possible sources of hadronic cosmic rays,
their acceleration, transport and propagation and their loss processes. Then we de-
scribe the measurements of solar cosmic rays and the direct and indirect detection
techniques of higher energetic cosmic rays. For completeness we shortly mention
neutrino detectors. Some properties of the galactic plasma and the superimposed
plasma waves are presented.

In Chapter 3 the mathematical way to the transport equation is sketched, which
is central for this work. In the following, we consider only the stationary transport
equation.

Analytical solutions with and without catastrophic losses of this transport equation
are presented in Chapter 4. The solutions, provided by the scattering time method
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separating the equation in a spatial and a momentum part, are infinite eigenfunction
double sums consisting of spatial and momentum functions. The calculations of the
momentum integrals are more sophisticated than those of the spatial integrals, be-
cause the Green’s functions of the momentum part enter, including modified Bessel
functions for the case with catastropic losses and confluent hypergeometric functions
for the case without catastrophic losses.

The momentum parts of the solutions are studied in Chapter 5. We carry out
theoretical and numerical consistency checks and approximate the solutions for dif-
ferent momentum regimes by inserting a power law momentum injection function.
We also consider a momentum source spectrum with a dispersive index, which could
be more realistic.

In Chapter 6 we calculate the spatial part of the solution for different source
functions.

Now, in Chapter 7, we can calculate the spectra of galactic cosmic ray protons.
First, we introduce the diffusion coefficients for a mixture of slab Alfvén waves and
fast magnetosonic waves as the assumed turbulence in the galactic plasma and cal-
culate some typical eigenvalues. After taking into account the solar modulation of
the galactic cosmic rays, the calculated spectra are compared with experimental
data for different astrophysical parameter sets.

In Chapter 8 we deal with the momentum solution integral including catastrophic
losses for nuclei above hydrogen. The confluent hypergeometric functions enter in
the respective Green’s functions. Their analytical properties and numerical treat-
ment are investigated.

In the end a summary is given and the results are discussed.
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Chapter 2

Basics

In this introductory chapter we first give an overview of the different
species of cosmic rays, depending on particle nature, energy and origin,
followed by a section describing the main measurement techniques for
cosmic rays.

Focusing on the topic of this work, especially informations on the galactic
cosmic rays, like their potential sources and their propagation are pre-
sented.

Connected to the mechanisms of propagation and to the cosmic rays
themselves is the theory of plasmas and plasma waves.

2.1 Overview Cosmic Rays

Cosmic rays in general are high energetic particles or photons stemming from outer
space. The following particles can be measured: photons, neutrinos, electrons and
positrons, neutrons, protons and antiprotons and higher Z nuclei in different iso-
topic forms.

The energies of the cosmic rays span a wide range of many of orders of magni-
tudes up to about 1021 eV (see Fig. 2.1). The hadronic spectrum can be described
by a power law

dN

dE
∼ E−γ (2.1)

over a wide range with a spectral index of γ ' 2.7 up to the order of 1015 eV. Then
the spectrum steepens to an index of γ ' 3, the transition region is called the ”knee”
(cf. Fig. 2.2). At about 1018 eV the spectrum flattens again (the so called ”ankle”).

9
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Wether the knee feature is due to a change of chemical composition, of acceleration
mechanisms or different sources is still an important open question. In this work we
try to model the energy regime from about 109 eV to about 1017 eV.

Figure 2.1: Energy spectrum of the hadronic cosmic rays, antiprotons, electrons and
photons. Taken from [Wiebel-Sooth 1998].

The cosmic ray photon energies extend the electromagnetic spectrum above the
MeV gamma-rays. Photons have the advantage of a straight propagation from their
sources to the detectors at the position of earth, while charged particles are bent by
magnetic fields.

The measured electron spectra are also shown in Fig. 2.1. The higher energetic
electron component of the cosmic rays has to be purely of galactic origin, in con-
trast to the hadronic part, due to the inverse Compton losses of high energy electrons
in the 3K thermal microwave background radiation.

The theoretically expected neutrino-spectra are sketched in Fig. 2.3.

Like photons, neutrinos point directly to their sources but they have the advantage
not to suffer from electromagnetic loss processes. If they will be detected at TeV
energies, they would be a signature for hadronic cosmic ray accelerators, because
high energy neutrinos can only result form hadrons hitting material and producing
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Figure 2.2: The allparticle energy spectrum as measured by different ground-based exper-
iments and three direct ones (see Section 2.2). For comparison the allparticle
flux obtained by adding up the single spectra of individual nuclei as measured
by the bulk of direct experiments is also given. To emphasize the changes
in the spectral slope, the differential flux is multiplied by E2.75. Taken from
[Wiebel-Sooth 1998].

mesons through the cascade

p+ p/γ −→ π±/K± + π0+...
K±/π± −→ µ± + νµ/ν̄µ
µ± −→ e± + νeν̄µ/ν̄eνµ

in contrast to photons that can - besides the π0-decay - also be provided by syn-
chrotron radiation and inverse Compton scattering by electrons. More about neu-
trino astrophysics can be found for example in [Klapdor & Grotz 1989].

The main tasks of astroparticle physics are to find the astrophysical sources of the
cosmic rays, to understand their acceleration, propagation and interaction processes,
and to explain the energy spectra and the chemical composition of the hadronic cos-
mic rays measured at the location of earth.

Additionally, we can learn something about high energy particle interaction pro-
cesses beyond the standard model, because the highest energies of the cosmic rays
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Figure 2.3: Theoretical energy spectrum of cosmic neutrinos
([Klapdor-Kleingrothaus & Zuber 1997]). Atmospheric neutrinos are
produced by hadronic interactions of the incident cosmic ray nucleons with
the molecules of the atmosphere (cf. Fig. 2.23). Neutrinos of the galactic
plane stem from supernovae and from interactions of the cosmic rays with
the interstellar medium. Neutrinos from active galaxies are generated in the
proton cascades of the jets (cf. Subsection 2.1.3) and cosmogenic neutrinos
are relics of the big bang.

lie some orders of magnitude above the energies which can be achieved by the mod-
ern particle accelerators, like CERN, DESY, FERMILAB etc.

On the one hand the cosmological evolution of our world is directly connected to the
standard model of elementary particle physics and its extension, the Grand Unified
Theories (GUTs), on the other hand some predictions of the GUTs can be tested
by cosmic ray physics (see for example Subsection 2.1.3).

The cosmic rays also probe cosmic background photon fields, like the 3K microwave
background, the IR and optical background fields (cf. Fig. 2.4).
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Figure 2.4: The measured photon background spectrum. (CMB = Cosmic mi-
crowave background, IRB = Infrared background). Adapted from
[Ressell & Turner 1990].

Because the charged cosmic rays are influenced by magnetic fields and plasma waves
in the sources and on their way through the space, information about the properties
of the magnetic fields and the plasma waves is also provided indirectly by modelling
the acceleration and propagation processes. In this work we will also test some as-
sumptions about plasma wave turbulence in the interstellar medium.

The observed antiproton and positron fluxes can be explained as secondaries re-
sulting from baryon-baryon-collisions and still there is no hint that today there
exists a considerable amount of antimatter as a relic from the early phase of the
universe. Anti-nuclei with Z ≥ 2 cannot be produced by hadronic interactions in
the interstellar and intergalactic medium, so if they exist, they have to be cosmo-
logical, but no detection has been reported so far.

In the following subsections we deal with the different categories of cosmic rays.
In the low energy region up to a few GeV experimental evidence confirmed their
origin from the solar wind, which we will discuss in Subsection 2.1.1. For the cosmic
rays of higher energies there is still a debate of their sort of sources in the galaxy
(cf. Subsection 2.1.2), the ultrahigh energy cosmic rays have to be extragalactic
(cf. Subsection 2.1.3) because of their large gyroradii in the galactic magnetic field,
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which exclude a trapping in the galaxy.

What can be inferred from the chemical composition of cosmic rays being simi-
lar to the solar system elemental composition (Fig. 2.5) is that they seem to stem
from stellar-like sources.

Figure 2.5: Abundances of the cosmic rays in comparison to those in the solar sys-
tem. (a) The elements H - Ni, normalized to Si = 1, cosmic ray flux at
1 TeV/nucleus. (b) The elements Fe - Fm, normalized to Fe = 106, cosmic
ray flux > 1.5 GeV/nucleon. The overabundance of Lithium, Beryllium and
Boron and also the sub-iron group in the cosmic rays is a result of the spalla-
tion of Carbon, Nitrogen and Iron. Graph taken from [Wiebel-Sooth 1998].

The interactions of nuclei in the interstellar medium give rise to second-order fea-
tures of this distribution, like the overabundance of Lithium, Beryllium and Boron
and also the sub-iron group in the cosmic rays, the spallation products of Carbon
and Nitrogen, respectively Iron.

For a survey of the field of cosmic ray physics consult, e. g., the books of
[Schlickeiser 2001], [Pohl 2002] or [Berezinskii et al. 1990]. An introduction of par-
ticle physics can be found, e. g., in [Berger 1992] and [Griffiths 1996]. [Harwit 1988],
[Voigt 1991] and [Unsöld & Baschek 1999] deal with astrophysics and astronomy.
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2.1.1 The Heliosphere

Although galactic cosmic rays are the main topic of this work, the advantage of he-
liospheric physics is the possibility of in situ measurements and the study of plasma
waves, shock acceleration of particles, particle transport and so on. Moreover, the
modulation of galactic cosmic rays by the heliosphere is relevant for fitting the data
in Chapter 7.

The solar corona, photographed in Figs. 2.6, 2.7 and 2.8, is a hot plasma with
a temperature of a few million degrees and represents the outer solar atmosphere,
which turns into a continuous plasma stream of coupled particles and magnetic
fields, the solar wind.

Figure 2.6: The solar corona in the extreme UV, observed by the EIT (Extreme ultraviolet
Imaging Telescope) onboard SOHO (The Solar and Heliospheric Observatory,
a project of ESA and NASA).

This plasma flow encounters the interstellar medium and forms the heliospheric bub-
ble, separated by the heliopause from the interstellar plasma (Fig. 2.9).

Because of the relative motion of the sun with respect to the local interstellar
medium, an asymmetry with a bow shock and a heliotail develops. An adaption
of the solar wind plasma to the surrounding medium takes place at the heliospheric
shock. The magnetic field lines emerging from the sun wind up by the rotation of
the sun, forming the Parker spiral. The heliosphere is an example of an astrosphere,
which may be found around every star.
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Figure 2.7: The solar corona, photographed by the Evans Solar Facility (National Solar
Observatory, Sacramento Peak). The solar disk itself is hidden by an artificial
eclipse.

Figure 2.8: The outer solar corona in UV, photographed by LASCO (Large Angle and
Spectrometric Coronagraph) onboard SOHO. The solar corona passes into the
solar wind.

Several production processes for energetic particles can be found in the solar system:

• solar flares in the corona can accelerate ions up to energies of several GeV and
electrons up to energies of 100 MeV (see Fig. 2.10);

• shock waves occur at coronal mass ejections (CMEs), which are fed by the
energy stored in the coronal magnetic field and released in violent reconnection
processes;

• corotating interaction regions (CIRs) in the solar wind plasma, forming when
slow solar wind streams are overtaken by fast ones and, as a consequence, the
resulting shocks can accelerate particles to higher energies;
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Figure 2.9: A sketch of the heliosphere, taken from [Scherer et al. 2000]. In the rest
frame of the sun, the plasma flow of the local interstellar medium is probably
compressed to form a bow shock.

• shock waves at planetary magnetospheres interacting with the solar wind
plasma;

• the heliospheric termination shock (cf. Fig. 2.9);

• the energetic anomalous cosmic rays (ACR) begin their life as neutral atoms
of the local interstellar medium that penetrate the heliosphere and are ionized
by the solar wind or solar UV radiation, then called pick-up-ions (PUI), which
are pre-accelerated while convecting with the solar wind to the heliospheric
shock. Then a fraction of them is shock-accelerated at the termination shock,
representing the ACR. For a review of this topic read e. g. [Fichtner 2000].

• planetary magnetospheres, like the Jupiter magnetosphere, can emit energetic
electrons.

The reversal of the magnetic dipole field of the sun in a cycle of about 22 years is the
cause of a higher solar activity, indicated by more sun spots and a stronger, more
turbulent and differently structured solar wind.

The solar activity influences the low energetic galactic cosmic rays up to energies of



18

Figure 2.10: A solar flare on the photosphere of the sun. Photographed by the SOON
Telescope on Hawaii (National Solar Observatory/Sacramento Peak).

about 5 GeV. For a high activity state the galactic cosmic rays are shielded stronger
by the small-scale plasma wave turbulence superimposed on the solar wind. Fig.
2.11 shows the anticorrelation of the sun spot numbers, as indicators of solar activ-
ity, and the flux of the galactic cosmic rays measured indirectly on earth by neutron
monitors, which count the hadronic component of the induced airshowers (refer to
Subsection 2.2.3).

Figure 2.11: Yearly running averages of galactic cosmic ray intensities measured with
the Mount Washington neutron monitor (dashed line), compared to the
monthly mean sunspot numbers (solid line) from 1954 to 1996 (from
[Lockwood & Webber 1997]). Sunspot numbers and the flux of galactic cos-
mic rays are anticorrelated. Typical galactic cosmic ray energies detected by
neutron monitors range from about 500 MeV to 20 GeV.
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The resulting energy spectra of cosmic rays are modulated in the low energy regime
with the solar activity (Fig. 2.12). In Chapter 7 we will use a simple model to take
into account this solar modulation.

Figure 2.12: Spectra of galactic cosmic rays for different nuclei. At the low energy regime
the influence of solar modulation changes the fluxes depending on the solar
activity. Taken from [Meyer et al. 1974].

Low energetic cosmic rays up to energies of about several tens of GeV (geomagnetic
cutoff) are shielded additionally from the earth by its magnetosphere (Fig. 2.13).

For more information about the heliosphere and the earth’s magnetosphere consult
e. g. the books of [Scherer et al. 2000], [Kallenrode 1998], [Glassmeier & Scholer 1991]
and [Prölss 2001].
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Figure 2.13: Structure of the earth’s magnetosphere, taken from [Longair 1992]. Analo-
gously to the relative motion of the heliosphere in the interstellar medium, a
bow shock emerges as the solar wind encounters the magnetosphere.
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2.1.2 Galactic Cosmic Rays

This work is mainly dealing with hadronic galactic cosmic rays. But cosmic hadrons,
leptons and gamma-rays are strongly connected, so the first part is devoted to
the gamma-rays. Then, we introduce possible sources for cosmic ray particles and
describe their acceleration. The transport equation, a central theme of this work,
is introduced and two of its special cases are presented. After that, some features
of galactic cosmic ray propagation and loss processes during this propagation are
discussed.

Galactic Gamma-rays

A complete gamma-ray sky survey was given by the EGRET (Energetic Gamma Ray
Experiment Telescope) onboard the CGRO (Compton-Gamma-Ray-Observatory)
satellite (Fig. 2.14).

Figure 2.14: All-sky map from EGRET with energies of gamma-rays > 100 MeV. The
picture has a galactic coordinate system with the origin in the center of the
map. Taken from [Schönfelder 2001].

The bright gamma-ray band of our galaxy is mainly caused by the interaction of
cosmic rays with the interstellar gas, like bremsstrahlung and π0-decay, supple-
mented by inverse Compton boosted starlight by cosmic rays. The local spectrum
of hadronic cosmic rays may not be representative for the galaxy, hence gamma-ray
observations are important to sample a much larger region. Also some point sources,
like pulsars, have been identified.

For photon energies in the TeV regime, Cherenkov telescopes detecting the induced
airshowers have to be used (cf. Subsection 2.2.3). [Bojahr 2002] compiles a list of
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sources above an energy of 250 GeV: Crab M1 (plerion, see Fig. 2.15), AE Aqr
(cataclysmic variable), PSR 1706-44 (plerion), Vela (plerion), SN 1006 (supernova
remnant shell), RX J1713.7-3946 (supernova remnant shell), Cassiopeia A (super-
nova remnant shell, see Fig. 2.17), Centaurus X-3 (X-ray-binary), PSR B1509-58
(plerion), TeV J2032+4131 (unknown object type). Recently the H.E.S.S. (High
Energy Stereoscopic System) group [Aharonian et al. 2005] reported about eight
new unknown very high energy gamma-ray sources in the galaxy; three of them are
associated with supernova remnants.

Figure 2.15: The Crab Nebula, a remnant of a supernova that exploded in 1054. In
the center lies a pulsar with a frequency of 30 Hz. The red color indicates
the recombination of electrons with protons to form neutral hydrogen. The
green color traces the ultrarelativistic electrons gyrating around the strong
magnetic field of the inner nebula. Such a supernova remnant with a pulsar
supplying energetic electrons emitting sychrotron radiation is called a plerion.

The TeV gamma-ray spectra of shell-type supernovae can be explained by electron
acceleration models with shock waves (in Fig. 2.16 a shell-type supernova remnant
is shown), but still there is no experimental evidence of photons induced by hadrons.
Nevertheless, one assumes similar acceleration mechanisms for hadrons and expects
hadronic cosmic rays from supernova remnants also producing high energy gamma-
rays from neutral pion decay, with a luminosity too low in most supernova remnants
to be detected by EGRET, but airshower experiments may be sensitive to high en-
ergy photons (cf. [Drury et al. 1994]). The contribution of secondary electrons and
positrons from charged pion decay to bremsstrahlung, inverse-Compton and syn-
chrotron emission of supernova remnants is negligible (cf. [Schönfelder 2001]).

For reviews of galactic gamma-ray astronomy we refer, e. g. to [Völk 2001] and
[Pohl 2001].
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Figure 2.16: Tycho’s supernova remnant shock wave detected in X-rays. The interstellar
material encountered by the shock wave becomes heated and stirred up.
Tycho is a shell-type supernova remnant. Although for some remnants of
this type gamma-rays of TeV energies have been measured, indicating high
energetic charged particles accelerated at the shock wave, this is not the
case for Tycho as yet.

Tycho’s supernova emerged 1572. Taken by the X-ray satellite ROSAT
(Röntgen Satellite).

Possible Sources of Hadronic Galactic Cosmic Rays

For the requirements of cosmic ray source power, in the following a crude estimate
of cosmic ray energetics is given. From radioactive cosmic ray nuclei a lifetime of
hadronic cosmic rays of approximately tc.r. ≈ 108 yr ≈ 3 · 1015 s is obtained. The
energy density of hadronic cosmic rays is in the order of

wc.r. ≈ 0.5 eV/cm3 ≈ 10−12 erg/cm3 . (2.2)

With a typical volume of the halo (see subsequent subsections) with a radius L ≈
15 kpc ≈ 5 · 1022 cm and a half-height of H ≈ 10 kpc ≈ 3 · 1022 cm

V = 2πL2H ≈ 5 · 1068 cm3 (2.3)

we get a total cosmic ray energy of

Wc.r. ∼ wc.r.V ≈ 1056 erg (2.4)

and, thus, a luminosity of

Lc.r. ∼
Wc.r.

tc.r.
≈ 1040 erg/s . (2.5)
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Another way is to consider the average path length of the relativistic cosmic rays
traversing the interstellar matter:

λ = c ρ̄ tc.r. ≈ 5 g/cm−2 (2.6)

where ρ̄ is the average gas density of the cosmic ray volume. Then again we obtain
a cosmic ray power of the same order of magnitude:

Lc.r. =
Wc.r.

tc.r.
=
cwc.r.ρ̄V

λ
=
cwc.r.Mg

λ
≈ 6 · 1040 erg/s (2.7)

where we have inserted a galactic gas mass of Mg ≈ 1043 g.

Analogous considerations lead us to the total energy and the luminosity of the
electron component, if we assume we ≈ 10−2wc.r. and te ≈ 1015 s:

We ∼ weV ≈ 1054 erg (2.8)

and

Le ∼
We

te
≈ 1039 erg/s (2.9)

which is only one order of magnitude lower than the total power of the hadronic
cosmic ray component.

If we now compare the results with the average cosmic ray luminosity of the sun
Lc.r.,� ≈ 1025 erg multiplied with the factor 1011, because the mass of the galaxy is
MG ≈ 1011M�, we get a crudely estimated cosmic ray luminosity of 1036 erg/s for
the whole galaxy, if only normal stars would contribute.

In contrast, supernovae deliver sufficient energy to sustain the flux of cosmic rays,
because if on average every 30 years a supernova explodes in our galaxy with an
energy of 1049 − 1051 erg - without the energy of the neutrinos - their contribution
in power is roughly 1040 − 1042 erg/s, which is in the claimed order of magnitude.
From analyzing cosmogenic nuclei on meteorites one has derived that the flux of
cosmic rays has been nearly constant for the past 109 years. Because the particles
leak out of the galaxy much faster, the sources have to support the flux continuously.

Other possible sources, which could deliver power within the same orders of magni-
tude, are stellar winds of hot OB-stars and pulsars, but there are some theoretical
arguments why pulsars cannot produce power law energy spectra reaching to high
energies (cf. [Pohl 2002]).
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In supernova remnants synchrotron emission from electrons in the radio regime can
be detected, as it is shown in Fig. 2.17. But one also expects continuum non-thermal
synchrotron emission up to photon energies in the X-ray region in some supernova
remnants, as reported for Cas A (cf. [Allen et al. 1997]) and for some other rem-
nants. This X-ray emission is a clue to electrons with energies up to several tens of
TeV.

Figure 2.17: Supernova remnant Cas A in radio (left) and in X-ray (right) frequency
range.

Cassiopeia A is the remnant of a supernova explosion that occured
over 300 years ago in our galaxy.

The radio emission is synchrotron radiation of shock-accelerated elec-
trons detected with the VLA (Very Large Array) telescope in New Mexico.

The X-ray picture from the CHANDRA observatory is a composite of
three X-ray bands: low energy (red), medium energy (green) and high
energy (blue). The bright outer ring marks the location of a shock wave
generated by the supernova explosion.

Cas A is also a TeV gamma-ray emitter, due to high energy electrons.

The detected radio synchrotron emission has the form of a power law. In the text
book of [Schlickeiser 2001] it is calculated that a power law electron energy spectrum
with a spectral index s leads to a synchrotron radiation power law with a spectral
index of 1

2
(s − 1). We can conclude that there have to be energetic electrons with

a power law energy spectrum in supernova remnants. The average spectral index
of the measured radio synchrotron radiation of supernova remnants in our galaxy
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is approximately 0.5, according to [Green 2000], consequently s ≈ 2 for electrons.
This is in agreement with the investigations in [Pohl & Esposito 1998].

We have the opportunity to observe other galaxies to consolidate the idea, that
supernova remnants are the sources of galactic cosmic rays. For example, from ra-
dio synchrotron measurements of the galaxy M33 [Duric et al. 1995] imply that the
supernova remnants account for the bulk of the relativistic particles in that galaxy.

For some supernova remnants also TeV gamma-rays have been measured, as stated
in the previous subsection. These gamma-rays could be microwave background pho-
tons boosted by high energy electrons (cf. [Pohl 2002]) or products of neutral pion
decays.

Reviews of supernovae being possible sources of galactic cosmic rays can be found,
e. g. in [Drury et al. 2001] and [Berezhko 2001].

Supernova remnants are located mainly in the galactic disk. Some fits for their
distribution are used in Chapter 6.

Figure 2.18: Filaments of shocked interstellar gas, part of the expanding blast wave from
the supernova remnant Cygnus Loop. Cygnus Loop is thought to have been
expanding for 5.000 - 10.000 years. Observed by the Hubble Space Telescope.

Acceleration

The acceleration process for cosmic ray electrons and nucleons in supernova rem-
nants and strong stellar winds is supposed to be a diffusive shock acceleration, if
the wind of the star or the supernova shell hits material of the interstellar medium
(cf. Fig. 2.18).
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Shock acceleration in the first order leads to power law energy spectra. The particles
are scattered by self-generated plasma waves in the shock front and in this process,
some of the macroscopic kinetic energy of the shock front is transfered to the parti-
cles. For an exact mathematical solution of this problem, a non-linear treatment is
required, which, however, is difficult to solve because the shocks are neither steady
nor planar. In detail the spectra could deviate from pure power laws, as it is shown,
for example, in a Monte Carlo approach in [Baring et al. 1999]. A review of shock
acceleration can be found in [Kirk & Dendy 2001].

Though the clear experimental evidence for hadronic cosmic rays to be stemming
from supernovae is unfortunately still missing (cf. e. g. [Reimer & Pohl 2002]) - ex-
cept for the supernova remnant SN 1006, for which interpretations for a hadronic
origin exist according to [Berezhko et al. 2002] -, one assumes the same acceleration
mechanism for nucleons as for the electrons. This is reasonable, because the age of a
supernova is much shorter than the radiative loss times of the accelerated nucleons
and electrons.

The particles can reach only a certain maximum energy Emax being equal for elec-
trons and protons after acceleration, depending on the astrophysical parameters of
the supernova. For example, the supernova remnant Cas A should be able to ac-
celerate protons to energies well above 106 GeV (cf. [Allen et al. 1997]), because of
its extremely strong magnetic field in the order of 10−3 G. The maximum possible
theoretical energies for supernova remnants can also be deduced from the Hillas plot
in Fig. 2.20 discussed subsequently.

After the injection into the interstellar medium, the particles are reaccelerated by
scattering on plasma waves existing in the medium. This stochastic acceleration is
subject of investigation in the following chapters.

In this work, we assume a power law behaviour (cf. e. g. [Drury et al. 2001]) ∼ E−β

of the initial source spectra with a maximum energy Emax. In models without reac-
celeration an exponent of β ' 2.1 is favoured, and if taking into account reaccelera-
tion, values of β ' 2.4 are yielded, according to the discussion of [Drury et al. 2001].
The spectral indices β could be varying for different supernova remnants, which is
called dispersion. We will discuss the consequences for measured spectra in Chapter
5.

In the following we present a short basic treatment of particle acceleration lead-
ing to a power law behaviour, according to [Gaisser 1990]. In shock fronts or in
collisions with plasma waves we assume that a particle gains a fraction of energy
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∆E = ξE with every collision, so that after n collisions the resulting energy is

En = E0(1 + ξ)n . (2.10)

The initial injection energy of the particle is E0. The number of collisions needed
to reach a certain energy E then follows as

n =
ln
(
E
E0

)

ln(1 + ξ)
. (2.11)

With an escape probability Pesc for every collision we get a probability of (1−Pesc)n
that the particle is still in the acceleration mechanism after n collisions. The amount
of particles, that are accelerated up to energies above an energy E is

N(> E) ∼
∞∑

m=n

(1 − Pesc)
m =

(1 − Pesc)
n

Pesc
. (2.12)

With the above calculated n:

N(> E) ∼ 1

Pesc
(1 − Pesc)

lnE/E0
ln(1+ξ) =

1

Pesc

(
E

E0

) ln(1−Pesc)
ln(1+ξ)

. (2.13)

Thus, we get a power law behaviour in such an acceleration process:

N(> E) ∼ 1

Pesc

(
E

E0

)−γ
(2.14)

with a spectral index of

γ = − ln(1 − Pesc)

ln(1 + ξ)
, (2.15)

which is for Pesc � 1 and ξ � 1:

γ ≈ Pesc
ξ

. (2.16)

Pesc is the ratio of a characteristic time scale Tcycle for one acceleration cycle and a
characteristic time scale Tesc for the escape from the acceleration region.

For a finite acceleration time t with nmax = t/Tcycle a maximum energy of

Emax = E0(1 + ξ)
t

Tcycle (2.17)

is reached.
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Now it depends on the fraction of energy gain ξ how efficient the process can be. We
call it a first-order Fermi acceleration process, when ξ ∼ v/c, and a second-order
Fermi process if ξ ∼ (v/c)2. In shock fronts we encounter the first-order Fermi
acceleration, and in the interstellar medium we deal with second-order Fermi accel-
eration, the so called stochastic momentum diffusion, which is a main theme of the
present work.

If we assume Alfvén waves as scattering centers for the particles, their magnetic
component is much stronger than their electric component, so that the particles can
gain nearly no energy in an interaction with such a wave. The increase in energy is
a result of the different velocities of the scattering centers in front and behind the
shock front. If the waves itself have a velocity vA, the particles can gain or loose
energy, when they are scattered by the waves, but on average there is no change in
the momentum. There remains a stochastic diffusion in momentum space with a
typical momentum diffusion equation for the phase space distribution function f̃ :

∂f̃

∂t
− 1

p2

∂

∂p

(

A2p
4∂f̃

∂p

)

= Q(p) . (2.18)

This diffusion term is part of the full transport equation for the galactic cosmic rays.

Transport of Galactic Cosmic Rays

A derivation of the complete transport equation can be found in the text book of
[Schlickeiser 2001]. We will sketch this in Chapter 3. Here we only present and
discuss the terms of the equation:

∂f

∂t
− S(~x, p, t) =

∂

∂z

[

κzz
∂f

∂z
− V f

]

+
1

p2

∂

∂p

(

p2A2
∂f

∂p
+
p3

3

∂V

∂z
f − p2ṗf

)

− f

Tc

. (2.19)

Here, we used the isotropic phase space distribution function f . The transport
equation is a linear partial differential equation of second-order in time, space and
momentum with non-constant coefficients. The first term on the right hand side
decribes spatial diffusion with a diffusion coefficient κzz, as will be shown subse-
quently. The next term represents spatial convection with a cosmic ray bulk speed
of V . The next two terms are responsible for the acceleration and deceleration in
momentum, namely the momentum diffusion (Fermi acceleration of second-order)
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with a diffusion coefficient A2 and momentum convection (Fermi acceleration of first-
order). The fifth term takes into account continuous loss processes, like synchrotron
radiation or bremsstrahlung while the last term represents catastrophic losses, that
means spallation of the cosmic ray nuclei with Z > 1, characterized by a typical
time scale Tc.

In this work, we assume no galactic wind and neglect the two convection terms.
This holds exactly, if we suppose equal amounts of forward and backward moving
Alfvén waves in the interstellar medium, because then the diffusion coefficient A1 in

V :=
1

4p2

∂(p2vA1)

∂p
(2.20)

vanishes to zero, as it is shown in [Stawicki 2003], and hence V , too.

In this work, we deal only with the stationary transport equation, that means ∂f
∂t

= 0.
This is justified because, as mentioned above, the cosmic ray flux can be considered
as constant for our purposes during the past 109 years. For time-dependent calcu-
lations refer to, e. g., the work of [Büsching et al. 2005].

A Simple Diffusion Model

Now, as a simple example for a purely spatial diffusion, we neglect momentum
diffusion and convection of the particles. Spatial diffusion is described by the relation
of the flux of particles to the spatial gradient of the particle density:

~j(~x, t) = −κ∇n(~x, t) . (2.21)

Inserting this into the continuity equation

∂n(~x, t)

∂t
= −∇ ·~j +Q(~x, t) , (2.22)

where Q is a source term, we get a simple transport equation without the momentum
terms, without spatial convection and without continuous and catastrophical losses:

∂n(~x, t)

∂t
= ∇ · (κ∇n(~x, t)) +Q(~x, t) . (2.23)

The associated Green’s function for this equation reads

G(~x, t) =
1

8(πκt)3/2
exp(− ~x2

4κt
) . (2.24)
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The spatial scale that emerges in the Green’s function is 2
√
κt. So, if we consider

diffusion away from a galactic plane into a halo (see subsequent subsections) with
half-height H , the time scale for this process is in the order of

Tesc ∼
H2

κ
. (2.25)

A Leaky Box Model

In contrast to the previous subsection now we neglect spatial diffusion and convection
and replace them by an escape term −f/Tesc and consider only momentum diffusion:

∂f

∂t
− 1

p2

∂

∂p

(

A2p
2∂f

∂p

)

− f

Tesc
= Q(p) . (2.26)

This type of equation is called a leaky box equation (cf. [Schlickeiser 2001] or
[Gaisser 1990]), because we assume, that the particles leak out of the galaxy and
no spatial diffusion takes place. From dimensional arguments the time scale Tf for
momentum diffusion can be inferred:

Tf ∼ p2

A2

. (2.27)

Propagation of Galactic Cosmic Rays

Galactic cosmic rays are confined by galactic magnetic fields and are scattered by
plasma waves superimposed on these fields, thereby loosing their original direction.
Thus, the measured cosmic rays on earth are isotropic up to 1015 eV. There is no
enhancement of cosmic radiation in the direction of the galactic plane, where the
bulk of the supernova remnants is located.

In this work, we are interested in the reacceleration of galactic cosmic rays by plasma
waves after injection of the particles by supernova remnants. These plasma waves
themselves may be induced also by supernova turbulence.

There are some hints that the confinement volume is much larger than the galactic
disk itself. Around the galactic disk there is a halo filled up with magnetic fields
and a hot dilute plasma, as it can be observed also in other galaxies, like that one
in Fig. 2.19.
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Figure 2.19: CHANDRA images of the halo of the galaxy NGC 4631 in the 1.5-7 keV
band (left) and in the 0.3-1.5 keV band (right). The far-UV intensity contours
outline the morphology of the galactic disc. Taken from [Wang et al. 2001].

Radio and optical polarization measurements provide the structure of galactic and
extragalactic magnetic fields, also in galactic halos. Measurements of radio emission
from galactic halos can be interpreted as non-thermal synchrotron radiation of en-
ergetic cosmic ray electrons gyrating around magnetic field lines.

Another evidence for a halo follows from the averaged column density λ, the cosmic
particles have penetrated when they arrive at the solar system:

λ := ρ̄ β c Tesc (2.28)

with β = v/c. This column density can be estimated with a simple leaky box model
applied to measured primary to secondary abundance ratios. From radioactive iso-
topes possessing a half-time roughly equal to the escape time from the galaxy, we
get again within the frame of the leaky box model Tesc, thus the average matter
density ρ̄ can be inferred, which is in the order of 0.4-0.6 atoms/cm3 and therefore
less than the average density of matter in the galactic plane of ≥ 1 atoms/cm3.
Consequently the cosmic rays have to travel a part of their lifetime through regions
with a low-density medium.

In this work we approximate the galactic disk and the halo by cylindrical volumes
and neglect second-order structures like spiral arms, etc. For a review of the prop-
erties of the galaxy refer to, e. g., the book of [Scheffler & Elsässer 1992].
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Loss Processes

During their propagation particles suffer from continuous energy losses and spal-
lation, which is important in the galactic disc, but not in the halo, where the gas
density is substantial lower.

Spallation takes place in the galactic plane, which is filled up with the gaseous
interstellar medium, mainly hydrogen (70%) and helium (28%). These spallation
processes have to be taken into account for primary cosmic ray particles with atomic
numbers A > 1. They enter into the transport equation by a catastrophic loss time
Tc. For radioactive secondaries, we have to introduce additionally a relativistic de-
cay time.

Continuous losses relevant for electrons are, for example, ionization and excita-
tion of atoms, Coulomb interactions, bremsstrahlung, inverse-Compton emission
and synchrotron radiation, which for nucleons are only important at energies below
a few GeV, because into the cross-sections enter the Thomson cross-section, which
is proportional to (Z4/A2)(me/mp)

2 and, therefore, much smaller for interactions of
cosmic ray nuclei (cf. [Pohl 2002]).

Details of the interaction processes can be found, for example, in the text books
of [Longair 1992] and [Schlickeiser 2001]. Formula for the energy losses of nuclei,
which can be applied to the transport equation, are presented in
[Mannheim & Schlickeiser 1994].
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2.1.3 Extragalactic Cosmic Rays

For completeness in this subsection we deal with features and models for extragalac-
tic cosmic rays.

Because the gyroradii

rg ∼
γm0v

ZeB
(2.29)

for protons above 1015 eV are roughly equal to the scale of the galactic magnetic ir-
regularities, which are responsible for the confinement of the particles in the galaxy,
protons with higher energies have to be extragalactic. For higher elements with
charge number Z the gyroradius for the same total energy is a factor 1/Z smaller.

The highest energies of cosmic rays exceed by orders of magnitudes the values that
can be achieved at terrestrial laboratories. Energies up to about 1021 eV have been
measured (Fig. 2.1).

To estimate roughly the maximum possible energy of particles in a magnetic field
B in a source with a scale length L we take the induced electric field ~E:

∇× ~E = −∂
~B

∂t
. (2.30)

With the dimensions of the system we get

E

L
=

B

L/c
(2.31)

thus E = cB. By integration the maximum energy of a particle with charge Ze
follows:

Emax =
∫ L

0
ZeE dx = ZecBL . (2.32)

The possible accelerators for ultrahigh energy cosmic rays deduced from this simple
criterion are shown in the famous Hillas plot in Fig. 2.20.

For the highest energetic hadronic cosmic rays the interactions with the cosmic mi-
crowave background should lead to a cutoff in the observed spectrum at 5 · 1019 eV,
called the GZK-cutoff (Greisen Zatsepin Kuzmin), if the energy lies above the
threshold for photo-pion production and provided that these particles are protons
and that the source distribution is homogeneous in the universe:

p+ γ2.7K −→ p+ π0 . (2.33)
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Figure 2.20: The Hillas plot. Possible accelerators for ultrahigh energy cosmic rays lie
above the lines for 100 EeV (1017 eV) iron, 100 EeV protons and 1 ZeV
(1018 eV) protons. (GRB = Gamma-Ray Burst, SNR = Supernova Rem-
nant). Taken from [Lemoine & Sigl 2001].

But contrary, no cutoff is seen in the data. One could conclude, that cosmic rays
with energies above about 5 · 1019 eV should originate in a local volume with a
radius of the order of 50-100 Mpc. On the other hand the systematic errors of the
airshower experiments in this extreme energy region are still too high to determine
the form of the spectrum unambiguously.

Below the GZK-cutoff energy, the dominant loss mechanism for protons is the pair
production process:

p + γ2.7K −→ p+ e+ + e− . (2.34)

Nuclei of atomic number A suffer - apart from the above mentioned processes -
photo-disintegration at the 2.7 K photon background:
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A + γ2.7K −→ (A− 1) + n/p . (2.35)

To explain the origin of the highest energetic cosmic rays two scenarios are imagin-
able:

• ”top-down”: the particles are decay products of remnant particles (GUT-,
SUSY-, ... particles) or of topological defects (magnetic monopoles, cosmic
strings, ...) created in the early universe. In this scenario the cosmic rays at
the end of these fragmentation chains should be mostly photons, but there is
evidence in the data, that the highest energy cosmic rays are not photons.

• ”bottom-up”: acceleration of particles takes place in shock fronts (termination
shock of a galactic wind, active galactic nuclei (refer to the next subsection),
shockfronts in galaxy clusters, shocks in gamma-ray bursts, ...). For this sce-
nario only classical physics is used, which may be an advantage because of the
partially unknown new physics needed in the top-down scenarios.

There is still a debate in scientific community about the possible theoretical mech-
anisms and the interpretation of the highest energy data. For an overview read,
e. g., [Nagano & Watson 2000]. A short review of the recent observational results
can be found in [Nagano 2002].

Extragalactic Gamma-Rays

In recent years several extragalactic sources of high energy photons for measured
photon energies > 250 GeV have been detected (according to [Bojahr 2002]): Mkn
421 (confirmed), Mkn 501 (confirmed), 1ES 2344+514, 3C 66A, PKS 2155-304, 1ES
1959+650 (confirmed), 1ES 1426+428 (confirmed), BL Lacertae, NGC 253 and M
87. This TeV gamma radiation can be produced by the decay of neutral pions, as a
consequence of the interaction of high energy hadronic cosmic rays, or by electron
inverse Compton scattering (as mentioned in the beginning of this chapter). In the
first case there would be a bump at about 70 MeV (half of the neutral pion mass)
in the rest frame of the galaxy in the photon spectrum, but it could be masked by
the e±-bremsstrahlung of the decaying muons, stemming from the charged pions.

The above listed extragalactic sources all belong to a larger class of galaxies, the ac-
tive galactic nuclei (AGN), with high nonthermal luminosities from the infrared up
to gamma radiation, distinguished from normal galaxies emitting most of their en-
ergy in the optical band. The theoretical standard model of these AGN is illustrated
in Fig. 2.21.
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Figure 2.21: Standard model of an AGN, taken from [Mause 1996]: a galaxy with a
central supermassive black hole, surrounded by an accretion disk and a dust
torus. Accreted material is ejected far out of the galaxy and collides with the
intergalactic medium, forming radio lobes. Depending on the viewing angle
we classify the object as a BL Lac, a blazar, a Seyfert 1 galaxy, a quasar or a
radio galaxy. The relativistic effect of superluminal motion of plasma blobs
can be detected in a small off-axis-viewing angle.

Following from the measured short-time daily variations in the TeV-flux of, e. g.,
Mkn 501 ([Aharonian et al. 1999a] and [Aharonian et al. 1999b]) the only object
supplying enough energy for the detected luminosities from its gravitational field
can be a supermassive black hole (107−1010 solar masses) in the center of the AGN.
Material accumulates in an accretion disk around the black hole feeding two jets
with plasma blobs ejected in the direction of the rotation axis of the black hole by
a still not exactly known mechanism into intergalactic space, leading to radio lobes
when hitting the intergalactic medium. Around the central region there might be
a dust torus. Both, the accretion disk and the dust torus could deliver direct seed
photons or by the broad-line region clouds rescattered photons for inverse Compton
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scattering by electrons in the plasma blobs, leading to high energy photon emis-
sion ([Arbeiter 1999]), where relativistic beaming plays an important role. Instead
other models state the comptonization of self-generated jet synchrotron photons
(SSC models). There is still a discussion, whether and up to which energies accel-
eration of hadrons takes place in the jets, too. For an overview see the article of
[Mannheim 1997].

Fig. 2.22 shows an example of a pair of radio jets emitted deep into intergalactic
space.

Figure 2.22: AGN NGC 4261. Left: radio lobes with superimposed optical photo,
viewed with ground-based telescopes. Right: gas and dust disk in the cen-
ter of the galaxy, photographed by the Hubble Space Telescope (taken from
[Carroll & Ostlie 1996]).

Now it depends decisively on the direction of the jets in relation to the observer,
which type of AGN is detected. If the jet axis points directly to the observer, the
object is classified as the mentioned TeV-blazar.

It is speculated, that the combined gamma radiation from AGN also may make
up the bulk of the cosmic diffuse gamma-ray background.
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2.2 Measurement of Cosmic Rays

The first evidence of the phenomenon of cosmic rays was given by [Hess 1912] fly-
ing with a balloon and detecting an increase of the intensity of an ionizing radi-
ation with altitude, excluding a terrestrial origin (for a historical review refer to
[Federmann 2003]). This radiation, so called ”Höhenstrahlung” in German, later
has been identified with the energetic particles of the airshowers penetrating the
earth’s atmosphere induced by primary high energetic cosmic rays, as mentioned
below in the Subsection 2.2.3.

2.2.1 Solar Wind

In situ measurements of (low energy) cosmic rays and of plasma parameters can be
realized today by space probes travelling through the heliosphere. The first experi-
mental confirmation of the solar wind was given 1962 by the Mariner 2 spacecraft.
To investigate the sun and the interplanetary medium, SOHO (Solar and Helio-
spheric Observatory) recently was positioned between earth and sun. Voyager 1
measures protons up to an energy of 500 MeV and is with a distance of approxi-
mately 90 AU the outermost spacecraft to explore the outer heliosphere, perhaps
crossing the termination shock of the heliospheric boundary in near future. Ulysses
is the first spacecraft leaving the ecliptic plane of solar system to investigate the
solar wind above the poles of the sun.

2.2.2 Direct Experiments

To detect directly the more energetic galactic cosmic rays reaching earth several bal-
loon and satellite experiments have been launched in the past. As seen in Tab. 2.1,
the highest energies that can be detected for nuclei with these methods lie in the
order of 1014-1015 eV, due to the dramatic decreasing of the flux of cosmic rays with
increasing energy (cf. Fig. 2.1), which for example for protons > 10 TeV is in the
order of 3 m−2 h−1 sr−1.

The books of [Grupen 1993] and of [Longair 1992] explain some principles of particle
detection.

An important device for direct detection of gamma-rays was EGRET onboard the
Compton-Gamma-Ray-Observatory (CGRO), with an upper limit of 20 GeV for
photon energies. In the future, GLAST (Gamma Ray Large Area Space Telescope)
will be a successor of EGRET with a larger sensitive area.
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Experiment Type Observed nuclei Energy Range Operating

ACCESS Space station H - U < 1015 eV for H > 2007
ALICE Balloon Si - Fe 3.5 · 108 − 8 · 108 eV/nuc 1987
ATIC Balloon H - Fe 1010 − 1014 eV 2000 - 2003
BACH Balloon Fe > 5 · 1013 eV 1998
BESS Balloon H + He 1.7 · 108 − 3 · 109 eV/nuc 1993 - 1998
Bristol Cosmic Ray Detector Satellite Fe - Fm 1979
CAPRICE Balloon H 1.5 · 108 − 1011 eV/nuc 1994
Cosmic-Ray Charge-Isotope Telescope Balloon Be - Ni 3 · 108 − 5 · 1010 eV/nuc 1974 + 1976
CRISIS Balloon Si - Ni ∼ 4.3 · 108 − 9 · 108 eV/nuc 1977
CRN Satellite C - Fe 7 · 1010 − 1012 eV/nuc 1985
German American High Energy Balloon B - Fe 2 · 109 − 2.5 · 1011 eV/nuc 1976
Cosmic Ray Telescope
HEAO-3-C2 Satellite Be - Ni 6 · 108 − 3.5 · 1010 eV/nuc 1979 - 1980
HEAO-3 Heavy Nuclei Experiment Satellite Zn - U > 1.5 · 109 eV/nuc 1979
HEAT Balloon H, He 1010 − 1011 eV/nuc 1994
HEN Balloon Li - Ni 2 · 1010 − 1011 eV/nuc 1971 + 1972
Successor of HEN Balloon B - Fe 5 · 109 − 9 · 1010 eV/nuc 1974
IMAX Balloon H + He 2 · 108 − 2 · 1011 eV/nuc 1992
ISOMAX Balloon Be ∼ 109 eV/nuc 1998
JACEE Balloon H - Fe 2 · 1012 − 8 · 1014 eV/nuc 1979 - 1995
JEM Space Station H - Fe 1012 − 5 · 1014 eV/nuc ∼ 2007
LEAP Balloon H + He 2 · 108 − 1011 eV/nuc 1987
MASS Balloon H + He ∼ 108 − 4 · 1010 eV/nuc for H 1989
MUBEE Balloon H - Fe > 1010 eV/particle 1975 - 1987
Orth et al. Balloon Li - Fe 2 · 109 − 1.5 · 1011 eV/nuc 1972
Proton-Satellites Satellite H - Fe 1010 − 1014 eV 1965 - 1966
RICH Balloon He - O 4 · 1010 − 3.2 · 1011 eV/nuc 1991
RUNJOB Balloon H - Fe 1013 − 1015 eV/particle since 1995
Ryan et al. Balloon H + He 5 · 1010 − 1012 eV/nuc 1970
Sanriku Balloon Experiment Balloon H - Fe 1013 − 1014 eV/nuc 1989 + 1991
SMILI Balloon H, He 3 · 107 − 2 · 108 eV/nuc 1989 + 1991
Sokol Experiments Satellite H - Fe 2 · 1012 − 1014 eV/nuc 1984 - 1986
TIC Balloon H - Fe 1011 − 1013 eV 1994
TRACER Balloon C - Fe 1012 − 1014 eV since 2000

2.1: Direct experiments for cosmic rays. Adapted from [Wiebel-Sooth 1998].
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2.2.3 Indirect Experiments

In the regime of the highest cosmic ray energies one has to rely on indirect experi-
ments and detect the secondary particles of an extended airshower emerging in the
atmosphere when a primary cosmic ray particle hits an air nucleus and generates a
particle cascade (cf. Fig. 2.23).
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Figure 2.23: An airshower induced by a primary incident nucleus hitting earth’s atmo-
sphere. Three components can be distinguished: the electromagnetic part
(red), the hadronic part (blue) and the muonic part (green). The neutrinos
can be regarded as a fourth component. (Red lines: electrons/positrons; red
dashed lines: photons; blue lines: hadrons; green lines: muons/antimuons;
green dashed lines: electron/muon neutrinos/antineutrinos; black line: resid-
ual of the projectile.)

For a primary incident nucleus we can distinguish four components of an airshower:
an electromagnetic part consisting of electrons, positrons and photons, developing
by pair-production and bremsstrahlung from an originating neutral pion decay after
a hadronic interaction, a hadronic part, stemming from inelastic hadronic interac-
tions, a muonic part, due to the decay of charged pions, and neutrinos from the
decay of muons and charged pions.

The evolving airshower can be investigated with ground-based experiments by dif-
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ferent methods:

• scintillation detectors transform the energy losses of particles crossing the de-
tector crystal into light emission;

• muon counters;

• Cherenkov light detectors, collecting the Cherenkov light emission of the shower
particles propagating through the atmosphere;

• air / nitrogen fluorescence light detectors, which measure the fluorescence light
excited by the shower particles in the atmosphere;

• hadron calorimeters for the hadronic component of the shower;

• radio antennas, catching the synchrotron emission of the cascade-electrons in
the geomagnetic field;

• water Cherenkov tanks, whereby the water has a larger refractive index than
air, so producing more Cherenkov light which can be detected.

Some of the most important ground-based experiments are listed in Table 2.2. Sev-
eral of them combine the above mentioned detecting methods to gain complementary
physical informations.

As an example for a Cherenkov telescope the MAGIC telescope on the isle La Palma
is shown in Fig. 2.24.

Reconstruction of the primary energy, direction and kind of the incident particle
is demanding, but possible, though it remains larger statistical and systematical
errors than for the direct detection methods. For the understanding of the data it
is important to simulate the evolution of the extended airshowers by Monte Carlo
calculations. A serious difficulty for interpretation of the highest energy cosmic rays
is the unknown physics for the ultrahigh energy hadronic interactions. The gap be-
tween these highest energies and the energies, which can be achieved by elemental
particle laboratories, is some order of magnitudes. Fermilab’s Tevatron Collider pro-
vides proton-antiproton collisions at a maximum center of mass energy of 2 ·1012 eV,
equivalent to a cosmic ray particle of about 2 · 1015 eV incident on a stationary pro-
ton. The RHIC (Relativistic Heavy Ion Collider) at Brookhaven produces energies
of more than 1011 eV per nucleon in beam-beam collisions of nuclei. For example, a
nitrogen-nitrogen collision at RHIC corresponds to a 5 · 1014 eV cosmic ray nitrogen
nucleus incident on an air nucleus. The LHC (Large Hadron Collider) at CERN
in the near future will reach a center of mass energy of proton-proton collisions of
1.4 · 1013 eV, equivalent to proton projectile energy of 1017 eV. Another problem
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Experiment Location Techniques Energy Range [eV]

Akeno Japan S, M 3 · 1014 − 1018

AGASA S, M > 1017

Andyrchy Russia S ∼ 2 · 1014 − 1016

ANI Armenia S, M, H 1014 − 1016

Auger Argentina, USA W, A > 1019

BASJE Bolivia S 2 · 1013 − 1016

Buckland Park Australia S > 1014

CASA - MIA USA S, M 1014 − 1016

- BLANCA C 3 · 1014 − 3 · 1016

DICE USA C 5 · 1014 − 3 · 1016

EAS-TOP Italy S, M, C, R 1014 − 1016

Fly’s Eye USA A > 1017

GRAPES III India S, M 3 · 1013 − 3 · 1016

Haverah Park Great Britain W > 4 · 1017

HEGRA Spain S, M, C 3 · 1013 − 1016

HiRes USA A > 1017

KASCADE Germany S, M, H 3 · 1014 − 5 · 1016

MAGIC Spain C 3 · 1010 − 5 · 1013

MSU Russia S, M 1015 − 1017

Mt. Norikura Japan S 1014 − 1016

SPASE Antarctica S 1014 − 3 · 1016

- VULCAN C
SUGAR Australia M > 1017

Tibet ASγ China S 3 · 1012 − 2 · 1016

Tien Shan Kazakhstan S, M, H 1013 − 1018

TUNKA-13 Russia C 3 · 1014 − 7 · 1016

VEGA Kazakhstan C 3 · 1014 − 3 · 1016

Yakutsk Russia S, M, C, R > 1016

Techniques : S = scintillator stations
M = muon counters
C = Cherenkov light detectors
A = air / nitrogen fluorescence light detectors
H = hadron calorimeters / detectors
R = radio antennas
W = water Cherenkov tanks

Table 2.2: Ground-based experiments for cosmic rays.
Adapted from [Wiebel-Sooth 1998].

is that most of the experiments are not able to measure along the direction of the
particle beam. Theoretical calculations of high energy interactions in airshowers
today are only possible by extrapolating empirical models up to the highest cosmic
ray energies, because theoretical QCD (Quantum Chromodynamic) calculations are
still not possible.

The ultrahigh energy events are very rare and new detector fields are under con-
struction to collect more data, like the Auger experiment in Argentina.

A neutron monitor detects the nucleonic component of an airshower. If the nu-
cleons hit a shield of lead, neutrons are generated, which are counted and are a
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Figure 2.24: The MAGIC (Major Atmospheric Gamma-Ray Imaging Cherenkov) tele-
scope on the Canarian Island La Palma site.

measure for the primary intensity.

The books of [Sokolsky 1989] and [Gaisser 1990] are, for example, dealing with
airshower physics and detection methods. The methods of energy and mass de-
termination are described in the review of [Kampert 2001].

2.2.4 Neutrino Detectors

Because Neutrinos experience only weak force processes, their detection requires
large detector mediums, like huge water tanks (Super-Kamiokande detector), seas
(Baikal- and ANTARES (Astronomy with a Neutrino Telescope and Abyss envi-
ronmental RESearch) experiment) or the antarctic ice (AMANDA (Antarctic Muon
And Neutrino Detector Array) experiment) as a detector volume to increase the
possibility of an interaction. The Cherenkov light of the produced electrons, respec-
tive of the positrons, can be detected. Some other detectors are positioned deep
underground to shield background particles. Solar neutrinos can also be detected
by radio chemical experiments, by filtering out the converted unstable nuclei, but
in this case the time, energy and direction information is lost.
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2.3 The Galactic Plasma

The cosmic rays propagate through the interstellar medium and interact with plasma
waves, which occur, if the interstellar medium is partially or fully ionized. The in-
terstellar medium consists of four main constituents: molecular clouds, cold neutral
HI-regions with n ≈ 10 cm−3 and T ≈ 102 K (cf. e. g. [Longair 1994]), the ionized
inter-cloud medium, with n ≈ ne ≈ 0.1 cm−3 and T ≈ 104 K (cf. e. g. [Longair 1994]
and [Voigt 1991]), and the hot coronal gas component with n ≈ 10−3 cm−3 and
T ≈ 106 K (cf. e. g. [Longair 1994]). The last three components are in pressure
equilibrium, that means p = nkT for them is roughly the same.

The energy density of the galactic cosmic rays is in the same order of magnitude
as the turbulent and thermal energy density of the thermal gas and the interstellar
magnetic field energy density (cf. e. g. [Unsöld & Baschek 1999]).

2.3.1 Waves in the Interstellar Medium

Waves in the interstellar medium are mainly generated by supernova explosions and
the cosmic ray particles themselves. [Schlickeiser 2001] concludes from plasma insta-
bility studies, that Alfvén waves and magnetosonic waves have short growth times
in the interstellar medium. In the book cited those spatial and momentum diffusion
coefficients are calculated, which we use in this work.

The mean galactic magnetic field is in the order ofB ≈ 3 µG (cf. e. g. [Scheffler 1997]
or [Spitzer 1978]) and the mean of the magnetic interstellar fluctuations caused by
plasma turbulences is in the order of δB ≈ 0.9 µG (according to [Spangler 1991]
and [Minter & Spangler 1997]).

Wave Cascading

The interstellar plasma waves are assumed to be primarily induced on large scale
lengths in the order of parsecs, corresponding to small wave numbers. The subse-
quent process of cascading to larger wave numbers can be described by a diffusion
in wave number space for a 3-dimensional spectral density W̃i of a wave mode i (cf.
[Schlickeiser 2001]):

∂

∂t
W̃i(~k) = − ∂

∂~k
~F (~k) (2.36)

with the flux

~F (~k) = −D ∂

∂~k
W̃i(~k) (2.37)
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and a diffusion coefficient in wave number space

D =
k2

τs(k)
, (2.38)

where τs(k) is the spectral energy transfer time scale. For the isotropic spectral

density Wi(k) = 4πk2W̃i(~k) we get the one-dimensional diffusion equation

∂Wi

∂t
=

∂

∂k

[

k4

τs(k)

∂

∂k
(k−2Wi)

]

+ ΓiWi + Si(k) . (2.39)

Here Γi is the damping or growth rate of the waves and Si is an injection or sink term.
Now the spectral energy time scale provided by a special cascade phenomenology
is decisive for the type of the wave spectrum. Two typical assumptions are the
Kolmogorov model with

τs(k) =
1

vAk3/2

√

2UB
Wi

(2.40)

and the Kraichnan model with

τs(k) =
2UB

vAk2Wi
(2.41)

including the energy density of the magnetic field UB =
B2

0

4π
and the Alfvén velocity

vA. If we neglect the damping term and the source term and if we consider only the
stationary diffusion equation, then we get for an ansatz

Wi(k) = W0k
−q (2.42)

a spectral index of the turbulence q = 5/3 for a Kolmogorov spectrum and q = 3/2
for a Kraichnan spectrum.

While for the heliosphere a Kolmogorov index of the plasma wave spectrum has
been derived directly by space probes (cf. e. g. [Marsch & Tu 1990]), for the inter-
stellar space only indirect conclusions can be drawn. The time scale for the evolution
of the plasma turbulence in the galaxy is much larger than for the solar wind driven
heliosphere, thus we cannot automatically infer the same spectral behaviour. For
the determination of the turbulence spectrum one assumes a connection between the
electron density fluctuations of the plasma and the magnetic fluctuations induced
by plasma waves:
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δne
ne

∼ δB

B0
. (2.43)

This topic is still under debate. In [Armstrong et al. 1995] is shown, that the elec-
tron density spectrum follows a power law with a Kolmogorov index of q = 5/3
across more than 10 decades with a maximum scale ≥ 1018 cm. In this work we
also analyze the value of the spectral index by fitting model results from cosmic ray
transport influenced by plasma wave turbulence to data.
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Chapter 3

A Sketch of the Derivation of the

Transport Equation

In this chapter we sketch the way from the Vlasov equation to the trans-
port equation of the cosmic rays, which is central for this work, by ap-
plying the quasilinear and the diffusion approximations. The whole pre-
sentation can be found in the text book of [Schlickeiser 2001].

3.1 The Equations of Motion

We begin with the non-relativistic collision-free Vlasov equation for a particle j
which deals with the total derivative of the phase space density:

dfj(t, ~x,~v)

dt
= Sj(t, ~x,~v) . (3.1)

The cosmic plasmas can mostly be considered as collision-free, therefore on the right
hand side of the equation we can find only the source term Sj and no collision terms.

Writing the left hand side explicitely provides the force term ~F = m~̇v, which is in
our case the Lorentz force:

dfj
dt

=
∂fj
∂t

+ ~̇x
∂fj
∂~x

+ ~̇v
∂fj
∂~v

=
∂fj
∂t

+ ~v
∂fj
∂~x

+
q

m



~E(t, ~x) +
~v × ~B(t, ~x)

c




∂fj
∂~v

= Sj(t, ~x,~v) . (3.2)
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This equation is not only valid for one particle j but it describes any of the particles
in the plasma, so that we omit the subscript j.

To complete the equations of motion we have to add Maxwell’s equations for the
electromagnetic fields generated by the collective motion of the plasma particles.
The fields enter via the Lorentz force in the Vlasov equation.

The total charge density and the total current density for a particle of species a
can be expressed by the phase space density:

ρ(t, ~x) =
∑

a

naqa

∫ ∞

−∞
d3vfa(t, ~x,~v) , (3.3)

~J(t, ~x) =
∑

a

naqa

∫ ∞

−∞
d3v~vfa(t, ~x,~v) . (3.4)

We get for the Maxwell equations:

∇× ~B =
1

c

∂ ~E

∂t
+

4π

c

∑

a

naqa

∫ ∞

−∞
d3v~vfa(t, ~x,~v) +

4π

c
~Jext , (3.5)

∇ · ~B = 0 , (3.6)

∇× ~E = −1

c

∂ ~B

∂t
, (3.7)

∇ · ~E = 4π
∑

a

naqa

∫ ∞

−∞
d3vfa(t, ~x,~v) + 4πρext . (3.8)

The Maxwell equations include the external charge density ρext and the external
current density ~Jext.

These equations together with the Vlasov equation (3.2) are coupled nonlinearly:
the electromagnetic field is generated by the particles of the plasma with the dis-
tribution function fa, and fa is determined by the electromagnetic field entering in
the Vlasov equation.

In a first approximation, two different ansatzes can be made:
1. The test wave approach, where the particle distribution function fa is given and
the resulting plasma waves can be examined. In this work we do not deal with
the excitation and propagation of plasma waves. Here we refer to the text book of
[Schlickeiser 2001]. In our case, the waves are taken for granted in the plasma of the
interstellar medium.
2. The test particle approach. In this case, the electromagnetic fields are initially
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present and the behaviour of the particles can be discussed. The particle population
in this work will be the charged hadronic cosmic rays.

The second approach will be followed in the next section.

3.2 The Quasilinear Approximation

First, we introduce the relativistic Vlasov equation:

∂fa
∂t

+ ~v
∂fa
∂~x

+ ~̇p
∂fa
∂~p

= Sa(t, ~x, ~p) (3.9)

with

~̇p = qa



~ET (t, ~x) +
~v × ~BT (t, ~x)

c



 (3.10)

and

~̇x = ~v =
~p

γma

. (3.11)

Because of the high conductivity of the cosmic plasma there is no background elec-
tric field, only a background magnetic field ~B0 = B0~ez. The plasma turbulence is
superposed onto these fields and the total fields are consequently:

~BT = ~B0 + δ ~B(t, ~x) , (3.12)

~ET = δ ~E(t, ~x) . (3.13)

Now we transform the Vlasov equation into a new set of coordinates. The new
spatial coordinates are the coordinates of the guiding center of the gyrorotating
particles:

~R = (X, Y, Z) = ~x+
~v × ~ez
εΩ

(3.14)

with εΩ = qaB0

macγ
, the gyrofrequency Ω in the uniform field and ε the charge sign.

In momentum space, we introduce spherical coordinates (p, µ, φ):

px = p cosφ
√

1 − µ2 , (3.15)

py = p sinφ
√

1 − µ2 , (3.16)
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pz = pµ , (3.17)

with µ = cos θ.

Now the spatial coordinates read:

X = x+
v
√

1 − µ2

εΩ
sinφ , (3.18)

Y = y − v
√

1 − µ2

εΩ
cosφ , (3.19)

Z = z . (3.20)

Changing to the new coordinates xσ = (p, µ, φ,X, Y, Z) yields the Vlasov equation
(using Einstein’s summation convention)

∂fa
∂t

+ vµ
∂fa
∂Z

− εΩ
∂fa
∂φ

+
1

p2

∂

∂xσ
(p2gxσfa) = Sa(t, ~x, ~p) (3.21)

with the generalized force term gxσ which includes the effects of the electromagnetic
fluctuations (δ ~E, δ ~B).

We are interested only in the expectation value of fa:

〈fa(t, ~x, ~p)〉 =: Fa(t, ~x, ~p) , (3.22)

where we consider the average over all members of an ensemble of distribution
functions. For the average of the magnetic fields we obtain

〈δ ~B(t, ~x)〉 = 〈δ ~E(t, ~x)〉 = 0 , (3.23)

consequently for the average of the electromagnetic fields:

〈 ~BT (t, ~x)〉 = ~B0 , 〈 ~ET (t, ~x)〉 = 0 . (3.24)

Averaging the Vlasov equation provides:

∂Fa
∂t

+ vµ
∂Fa
∂Z

− εΩ
∂Fa
∂φ

= Sa(t, ~x, ~p) −
1

p2

∂

∂xσ

(

〈p2gxσδfa〉
)

(3.25)

with

δfa(t, ~x, ~p) := fa(t, ~x, ~p) − Fa(t, ~x, ~p) . (3.26)

Subtracting Eq. (3.25) from Eq. (3.21) yields an equation for the fluctuation function



53

∂δfa
∂t

+ vµ
∂δfa
∂Z

− εΩ
∂δfa
∂φ

= −gxσ
∂Fa
∂xσ

− gxσ
∂δfa
∂xσ

−
〈

gxσ
∂δfa
∂xσ

〉

. (3.27)

Here we used (cf. [Shalchi 2003])

1

p2

∂

∂xσ
(p2gxσ) = 0 . (3.28)

We assume as the quasilinear approximation, that the variation δfa is much smaller
than Fa, so we can neglect the two last terms on the right hand side:

∂δfa
∂t

+ vµ
∂δfa
∂Z

− εΩ
∂δfa
∂φ

' −gxσ
∂Fa
∂xσ

. (3.29)

This differential equation can be solved by the method of characteristics, that means
by the integration along the unperturbed particle orbits.

Then we get:

∂Fa
∂t

+ vµ
∂Fa
∂Z

− εΩ
∂Fa
∂φ

= Sa(t, ~x, ~p) (3.30)

+
1

p2

∂

∂xσ

(〈

p2gxσ

∫ t

t0
ds

[

gxν(xν , s)
∂Fa(xν , s)

∂xν

]′〉)

.

After some rearrangements (cf. [Schlickeiser 2001]) of the second term on the right
hand side we obtain the Fokker-Planck equation

∂Fa
∂t

+ vµ
∂Fa
∂Z

− εΩ
∂Fa
∂φ

= Sa(t, ~x, ~p) +
1

p2

∂

∂xσ

(

p2Dxσxν

∂Fa
∂xν

)

(3.31)

with the 25 Fokker-Planck coefficients

Dxσxν (t, ~x, ~p) = Re
∫ ∞

0
dξ〈ḡxσ(t)ḡ∗xν(t+ ξ)〉 (3.32)

where the bars indicate, that the functions have to be taken along the unperturbed
particle orbits.

3.3 The Diffusion Approximation

The fastest particle-wave interaction processes are diffusion in gyrophase φ and
in pitch angle µ, so that we average over φ and µ. Furthermore, the diffusion
approximation holds, if the particle densities are slowly varying in time and space.
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3.4 The Transport Equation

After some calculations we get the diffusion-convection transport equation for the
isotropic pitch angle averaged particle distribution function f(t, ~x, p) (where we now
omit the index a):

∂f

∂t
− S(t, ~x, p) =

∂

∂z
κzz

∂f

∂z

+
∂

∂X

[

κXX
∂f

∂X
+ κXY

∂f

∂Y

]

+
∂

∂Y

[

κY Y
∂f

∂Y
+ κY X

∂f

∂X

]

− 1

4p2

∂(p2vA1)

∂p

∂f

∂z

+
1

p2

∂

∂p

(

p2A2
∂f

∂p

)

+
v

4

∂A1

∂z

∂f

∂p
(3.33)

depending on the pitch angle averaged Fokker-Planck coefficients:

κzz =
v2

8

∫ 1

−1
dµ

(1 − µ2)2

Dµµ(µ)
, (3.34)

κXX =
1

2

∫ 1

−1
dµDXX(µ) , (3.35)

κXY =
1

2

∫ 1

−1
dµDXY (µ) , (3.36)

κY Y =
1

2

∫ 1

−1
dµDY Y (µ) , (3.37)

κY X =
1

2

∫ 1

−1
dµDY X(µ) , (3.38)

A1 =
∫ 1

−1
dµ

(1 − µ2)Dµp(µ)

Dµµ
, (3.39)

A2 =
1

2
dµ

[

Dpp(µ) − D2
µp(µ)

Dµµ(µ)

]

. (3.40)

We interpret the terms on the right hand side of Eq. (3.33): the first 5 terms rep-
resent the spatial diffusion, the 6th term spatial convection, the 7th term decribes
the momentum diffusion and the 8th term momentum convection.
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For slab Alfvénic wave turbulence we can omit the perpendicular diffusion terms
(cf. e. g. [Shalchi & Schlickeiser 2004]), i. e. the 2nd to the 5th term on the right
hand side.

Introducing the cosmic ray bulk speed

V :=
1

4p2

∂(p2vA1)

∂p
(3.41)

provides

∂f

∂t
− S(t, ~x, p) =

∂

∂z
κzz

∂f

∂z
− V

∂f

∂z

+
1

p2

∂

∂p

(

p2A2
∂f

∂p

)

+
p

3

∂V

∂z

∂f

∂p
. (3.42)

Combining

p

3

∂V

∂z

∂f

∂p
− V

∂f

∂z
= − ∂

∂z
[V f ] +

1

p2

∂

∂p

[

p3

3

∂V

∂z
f

]

(3.43)

we get

∂f

∂t
− S(t, ~x, p) =

∂

∂z

[

κzz
∂f

∂z
− V f

]

+
1

p2

∂

∂p

(

p2A2
∂f

∂p
+
p3

3

∂V

∂z
f

)

. (3.44)

Including continuous loss processes (like synchrotron radiation) by the term

− 1

p2

∂

∂p
(p2ṗf) (3.45)

with a loss rate ṗ = ṗ(p, ~x) and catastrophic loss processes (like spallation) by the
term

− f

Tc
(3.46)

with a catastrophic loss time Tc = Tc(p, ~x) in general, we can write for the transport
equation
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∂f

∂t
− S(t, ~x, p) =

∂

dz

[

κzz
∂f

∂z
− V f

]

+
1

p2

∂

∂p

(

p2A2
∂f

∂p
+
p3

3

∂V

∂z
f − p2ṗf

)

− f

Tc
. (3.47)

In the following we assume that Tc is independent of space and momentum. We
want to investigate the stationary transport equation ( ∂

∂t
f = 0), for the treatment

of the time-dependent equation see e. g. [Büsching 2004]. In this work, we neglect
continuous loss processes and spatial and momentum convection (cf. Subsection
2.1.2), so the transport equation we analyze reads

∂

∂z

(

κzz
∂f

∂z

)

+
1

p2

∂

∂p

(

p2A2
∂f

∂p

)

− f

Tc
= −S(~x, p) . (3.48)

We remind that we also do not take into account a moving background medium.

Now we assume that the two diffusion coefficients (spatial and momentum, respec-
tively) are independent of position

κzz = κ0κ(p) (3.49)

A2 = A2(p) (3.50)

and we define the two operators

L~x := κ0∇2 (3.51)

Lp :=
1

κ(p)

(

1

p2

∂

∂p

(

p2A2(p)
∂

∂p

)

− 1

Tc

)

(3.52)

separated in space and momentum, where we generalize the spatial operator for the
present to three dimensions in arbitrary coordinates.

Additionally, the source function is assumed to be separable

S(~x, p) = Q1(~x)Q2(p) , (3.53)
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which is reasonable, because the cosmic ray intensity has hardly varied at earth over
the last 109 years while the earth has rotated 5-times around the galactic center (cf.
[Schaeffer 1975]), so we get for the transport equation:

L~xf(~x, p) + Lpf(~x, p) = −Q1(~x)
Q2(p)

κ(p)
. (3.54)

We note that f(~x, p) is the phase space distribution function of the charged cosmic
ray particles. By solving Eq. (3.54) and inserting special spatial and momentum
source functions we are able to calculate the spectra of the cosmic rays at any point
in our galaxy, especially at the position of the solar system, after they diffused
through the galaxy and the galactic halo and after they were accelerated by the
plasma waves superimposed on the galactic plasma. Consequently, the results can
be compared to data, as we will do later in Chapter 7.
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Chapter 4

Analytical Solution of the

Transport Equation

In this chapter we present the complete solution of the transport equation
in cylindrical coordinates after introducing a dimensionless momentum
variable x and special forms of the diffusion coefficients.

The transport equation can be separated in a spatial and momentum part by ap-
plying the ”scattering time method” (see Appendix A.1).

The complete solution is an infinite double sum (see Eq. (A.64)):

f(~x, p) =
∞∑

m=1

∞∑

n=1

cmntmn(~x)Nmn(p) (4.1)

respectively

f(~x,Ampcx) =
1

(mpcA)3

∞∑

m=1

∞∑

n=1

cmntmn(~x)Nmn(x) (4.2)

with the dimensionless momentum variable x defined subsequently.

We introduce cylindrical coordinates and assume a cylindrical halo with half-height
H and radius L as the confinement region (see Fig. 4.1) with ”free-escape-boundary
conditions”. These are appropriate if the majority of the cosmic ray sources do
not concentrate at the halo boundary, which is indeed the case, as we will see in
Chapter 6.

For the spatial functions then we get (see Appendix A.2):
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X

r

z

L

H
0

0

X: Position of solar system

Halo

Galactic disk

Figure 4.1: Geometry of the galaxy.

tmn(r, z) =

√
2√

HLJ1(yn)
cos

(

(2m− 1)π

2H
z

)

J0

(
yn
L
r
)

(4.3)

where yn are the zeros of the Bessel function J0.

The corresponding eigenvalues are:

λ2
mn = κ0

(

y2
n

L2
+

(2m− 1)2π2

4H2

)

. (4.4)

The expansion coefficients depend on the spatial functions and the spatial source
function:

cmn =
∫ L

0
dr r

∫ H

−H
dz Q1(r, z)tmn(r, z) . (4.5)

For the momentum problem remains an infinite set of equations:

[

κ(p)Lp − λ2
mnκ(p)

]

Nmn(p) = −Q2(p) . (4.6)

Explicitely they read:
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1

p2

d

dp

(

p2A2(p)
dNmn(p)

dp

)

−
[

1

Tc
+ λ2

mnκ(p)
]

Nmn(p) = −Q2(p) . (4.7)

The following part is taken from [Schlickeiser 2001]. We introduce the particle mo-
mentum per nucleon

p̃ := p/A = R/α (4.8)

with the mass to charge number

α := A/Z (4.9)

and the rigidity R thus changing

Fmn(p̃) := A3Nmn(p) (4.10)

and

Q(p̃) := A3Q2(p) (4.11)

and we get

1

p̃2

d

dp̃

(

p̃2D(p̃)
dFmn(p̃)

dp̃

)

−
[

1

Tc
+ λ2

mnκ(p̃)
]

Fmn(p̃) = −Q(p̃) (4.12)

with

D(p̃) = A2(p)/A
2 . (4.13)

Now we make an ansatz for the momentum dependence of the two diffusion coeffi-
cients:

κ0κ(p̃) = K1(αp̃)
2−q (4.14)

and

D(p̃) = D1α
q−2p̃q (4.15)

where the power law index q of the wave number distribution of the turbulence
spectrum enters (cf. Subsection 2.3.1):

I(k) = I0k
−q . (4.16)

We define the dimensionless momentum variable
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x := p̃/(mpc) = p/(mc) (4.17)

and therefore

fmn(x) := (mpc)
3Fmn(p̃) (4.18)

q(x) := (mpc)
3Q(p̃) . (4.19)

Introducing the two time scales for momentum diffusion and spatial diffusion

Tf := (mpc)
2−q/D1 (4.20)

and

Tmn := (mpc)
q−2κ0/(K1λ

2
mn) (4.21)

then for the differential equation follows

αq−2

Tfx2

d

dx

(

xq+2dfmn(x)

dx

)

−
[

1

Tc
+
α2−qx2−q

Tmn

]

fmn(x) = −q(x) . (4.22)

We introduce

χ := 2 − q (4.23)

and the ratios of the characteristic time scales

ψ :=
Tf
Tc
α2−q (4.24)

φmn :=
Tf
Tmn

α2(2−q) (4.25)

and obtain the self-adjoint form of the differential equation

[

d

dx

(

x4−χ d

dx

)

− (ψx2 + φmnx
2+χ)

]

fmn(x) = −Tfαχx2q(x) . (4.26)

fmn can be expressed by a Green’s function
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fmn(x) = Tfα
χ
∫ ∞

0
dx0x

2
0q(x0)Gmn(x, x0) (4.27)

with the momentum source function q(x0). Gmn is the solution of

[

d

dx

(

x4−χ d

dx

)

− (ψx2 + φmnx
2+χ)

]

Gmn(x, x0) = −δ(x− x0) . (4.28)

In the next two sections we present the Green’s functions for the momentum solution
with and without catastrophic losses.

4.1 Green’s Function for the Solution Without

Catastrophic Losses

The Green’s function for no catastrophic losses, that means the case ψ = 0 (see
Appendix A.3.1), contains modified Bessel functions I and K (cf. Appendix H):

Gmn(x, x0) =
1

χ
x
χ−3

2 x
χ−3

2
0







I 3−χ
2χ

(

√
φmn

χ
xχ)K 3−χ

2χ
(

√
φmn

χ
xχ0 ) ; 0 ≤ x ≤ x0

I 3−χ
2χ

(

√
φmn

χ
xχ0 )K 3−χ

2χ
(

√
φmn

χ
xχ) ; x0 ≤ x <∞

.

(4.29)
This function is used in the Chapters 5 and 7.

4.2 Green’s Function for the Solution With Catas-

trophic Losses

In consideration of catastrophic losses (ψ 6= 0) we get (cf. [Schlickeiser 2001]) a
Green’s function involving the confluent hypergeometric functions M and U (see
[Abramowitz & Stegun 1984], Chapter 13):

Gmn(x, x0) =

(

2
√
φmn

) 3
χ
−1

χ
3
χ

Γ
[

3
2χ

+ ψ

2χ
√
φmn

]

Γ
[

3
χ

] exp

[

−
√
φmn(x

χ + xχ0 )

χ

]

×

×







M
(

3
2χ

+ ψ

2χ
√
φmn

, 3
χ
,

2
√
φmnxχ

χ

)

U
(

3
2χ

+ ψ

2χ
√
φmn

, 3
χ
,

2
√
φmnx

χ
0

χ

)

; 0 ≤ x ≤ x0

U
(

3
2χ

+ ψ

2χ
√
φmn

, 3
χ
,

2
√
φmnxχ

χ

)

M
(

3
2χ

+ ψ

2χ
√
φmn

, 3
χ
,

2
√
φmnx

χ
0

χ

)

; x0 ≤ x <∞
.(4.30)

We investigate this solution in Chapter 8.
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Chapter 5

Studies of the Momentum Solution

In the following we deal with the momentum solution without catastrophic
losses, as it is valid for the protons (α = 1) of the cosmic rays. We
study the I-K-Bessel function solution by performing some theoretical
consistency checks and by varying the parameters for different momen-
tum source functions.

5.1 Theoretical Consistency Checks

5.1.1 Inserting the Solution Into the Differential Equation

By inserting the momentum solution into the differential equation its correctness is
proved, as shown in Appendix B.

5.1.2 Transition From the Solution With to That Without

Catastrophic Losses

The M-U -solution for the case with catastrophic losses with a time scale Tc trans-
forms into the I-K-solution, if we neglect catastrophic losses by setting

ψ → 0 (5.1)

because

ψ ∼ Tf
Tc

→ 0 for Tc → ∞ . (5.2)

The calculation can be found in Appendix C.
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5.2 A δ Momentum Injection Function

If we insert a δ momentum source function with the injection momentum xi

q(x0) = q0x
−2
0 δ(x0 − xi) , (5.3)

we get for the momentum part of the phase space distribution function:

fmn(x) =







q0TF
1
χ
x
χ−3

2 Kν

(√
φmn

χ
xχ
)χ

Iν

(√
φmn

χ
xχi

)χ

; for x > xi

q0TF
1
χ
x
χ−3

2 Iν

(√
φmn

χ
xχ
)χ

Kν

(√
φmn

χ
xχi

)χ

; for x < xi

, (5.4)

with the abbreviation ν := 3−χ
2χ

.

5.3 The Limit q → 2

In the limit q → 2 of the index of the turbulence spectrum, we obtain singularities
in the solutions of the momentum equations. Starting directly with the momentum
differential equation for q = 2, that means χ = 0, we get for each eigenvalue the
following Green’s function of the momentum solution (see Appendix D):

Gmn(x, x0) =
(xx0)

− 3
2

2
√

9
4

+ ψ + φmn







(x/x0)
√

9
4
+ψ+φmn ; 0 ≤ x ≤ x0 <∞

(x/x0)
−
√

9
4
+ψ+φmn ; 0 < x0 ≤ x <∞

.

(5.5)
We insert a δ momentum source function like Eq. (5.3). The appropriately calculated
phase space distribution function for q < 2 converges towards this limiting curve for
each eigenvalue φmn, as it should be expected (see Fig. 5.1 for a special eigenvalue).

5.4 A Power Law Momentum Injection Function

Now we study the response of the momentum solution for a power law injection
spectrum (refer to Subsection 2.1.2)

q(x0) = q0x
−β−2
0 (5.6)

covering the interval from xmin to xmax by varying the spectral index q of the plasma
turbulence, the ratio Tf/T0 of the momentum to the spatial diffusion time scale (T0
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Figure 5.1: Momentum solution for a δ-injection at 1 GV for different spectral indices of
the plasma wave spectrum. The numerically calculated functions for q < 2
converge towards the limiting curve (Eq. (5.5)) for q = 2 for one special
eigenvalue φmn.

is the time for the first eigenvalue φ11) and the spectral index β of the initial spec-
trum. Here, xmax was set to 106 GV (cf. Subsection 2.1.2).

A further test of the analytical solution and especially of the numerical code are
the following approximations (see Appendix E) for the momentum solution:

fmn(x) '
q0Tf
β − 1

1

3 − χ
x1−β
minx

χ−3 (5.7)

for x� xc (see case 1, Eq. (E.25), and 2, Eq. (E.38)) and

fmn(x) ' q0Tf
1

φmn
x−χ−β−2 (5.8)

for x� xc (see case 3, Eq. (E.48), and 4, Eq. (E.52)) according to the characteristic
momentum
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xc :=

(

χ√
φmn

) 1
χ

, (5.9)

which appears in the argument of the Bessel functions. xc contains the ratio Tf/T0.

In the case x � xc, the influence of the source function disappears and momen-
tum diffusion dominates, and in the case x � xc, the initial power law is only
steepened by q − 2 and momentum diffusion plays a minor role.

Above the maximum injection momentum xmax all spectra cut off exponentially,
independent of the source index β (see Appendix E.2.5):

fmn(x) ∼ x−
3
2 e−( x

xc
)
χ

. (5.10)

The approximating curves from Eqs. (5.7) and (5.8) are superimposed in the Figs.
5.2, 5.3 and 5.4.

The strong effect of the wave number distribution of the turbulence spectrum shows
Fig. 5.2. For larger values of q the momentum diffusion process can accelerate par-
ticles to higher momenta, exceeding the upper momentum injection limit xmax.

A similar consequence has the increase of Tf/T0 (see Fig. 5.3). If the time scale
for momentum diffusion in comparison to the spatial diffusion is small, more parti-
cles can reach higher momenta.

From Fig. 5.4 one notices that a flatter injection spectrum, of course, results in
a flatter processed spectrum. If momentum acceleration dominates, the influence of
the primary distribution vanishes for larger momenta.

5.5 A Source Spectrum With a Dispersive Index

Assuming a superposition of source spectra with different spectral indices, as it can
occur if the sources are supernova remnants producing power law injection spectra
with variable steepnesses, we insert the dispersive source function

q(x0) = q0x
−<β>−2+ 1

2
σ2 ln(

x0
xr

)

0 (5.11)

with a mean index < β > and a dispersion parameter σ at a reference momentum xr
(for a derivation see, e. g., [Schlickeiser 2001]; the proton source spectral indices are
inferred from the radio spectral indices, which show a dispersion, cf. [Green 2000]).
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Figure 5.2: Phase space distribution function for a power law momentum source function
(Eq. (5.6)) with spectral index β = 1.75 extending to xmax = 106 GV for dif-
ferent spectral indices q of the plasma turbulence spectrum and φ = Tf/T0 =
1/10. The three upper flat dotted lines are the power law approximations (Eq.
(5.7)) for small x with the mentioned parameters β and φ and the quoted val-
ues of q. The lower steeper dashed line is the respective approximation (Eq.
(5.8)) for large x for the case q = 1.6.

A comparison to the single power law distribution is shown in Fig. 5.5. A typi-
cal dispersion parameter is in the order of σ = 0.25 ([Büsching et al. 2001]). To
see an effect, here we take also an extreme value of σ = 0.55. As expected, the
flattest source spectrum of the sample dominates for large values, thereby shifting
the particles to higher momenta.

For typical realistic dispersion parameters like mentioned above the effect of dis-
persion can be neglected in the first order in the following studies.
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Figure 5.3: Phase space distribution function with an injection power law (Eq. (5.6))
extending to xmax = 106 GV for q = 1.8 and different ratios of the momentum
to the spatial diffusion time scale Tf/T0. The upper flat dotted curve is the
approximation (5.7) for small x, the two lower steeper dashed curves are the
approximations (5.8) for large x for the cases Tf/T0 = 10 and Tf/T0 = 1.
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Figure 5.4: Phase space distribution function for q = 1.8 and a source function (5.6)
extending to xmax = 106 GV, but with varying β. The curves are calculated
for two different time scale ratios. Again the upper dotted curve is yielded
with Eq. (5.7) for small x and Tf/T0 = 0.1 and the lower steeper dashed curves
(5.8) approximate the three cases for Tf/T0 = 1 for large x.
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Figure 5.5: Source distribution with dispersion as in Eq. (5.11) with σ = 0.25 and σ =
0.55, and < β >= 1.75. Additionally drawn is the result for a single power
law (Eq. (5.6)) with β = 1.75.



Chapter 6

The Spatial Source Function

As a first approximation a cylindrical and subsequently a more realistic
spatial source function for the supernova remnants (refer to Subsection
2.1.2) are introduced. The spatial source function is inserted into Eq.
(4.5):

cmn =
∫ L

0
dr r

∫ H

−H
dz Q1(r, z)tmn(r, z) . (6.1)

6.1 Cylindrical Spatial Source Function

For the spatial distribution of the cosmic ray sources for a crude approximation we
make the assumption that it is homogeneous in the galactic disk in a cylinder with
radius r0 < L and a height 2z0 < 2H (cf. Fig. 4.1), so it can be described by a
double Heaviside function θ with a medium spatial density Q1,0:

Q1(r, z) = Q1,0 θ(r0 − r) θ(z0 − |z|) . (6.2)

The integrals separate, and cmn is calculated as follows:

cmn = Q1,0

√
2√

HLJ1(yn)

∫ r0

0
dr rJ0

(
yn
L
r
)∫ z0

−z0
dz cos

(
2m− 1

2H
πz
)

. (6.3)

With the substitution z′ = 2m−1
2H

πz we get:

cmn = Q1,0

√
2√

HLJ1(yn)

2H

(2m− 1)π

∫ r0

0
dr rJ0

(
yn
L
r
) ∫ z′0

−z′0
dz′ cos z′ (6.4)

and thus
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cmn = Q1,0
2
√

2
√
H

LJ1(yn)(2m− 1)π
2 sin

(
2m− 1

2H
πz0

) ∫ r0

0
dr rJ0

(
yn
L
r
)

. (6.5)

According to [Magnus et al. 1966], chapter 3.8.1 one obtains for the radial integral:

∫

dz zν+1Jν(z) = zν+1Jν+1(z) . (6.6)

Here for ν = 0:

∫ r0

0
dr rJ0

(
yn
L
r
)

r′= yn
L
r

=

(

L

yn

)2 ∫ r′0

0
dr′ r′J0(r

′)

=

(

r0
L

yn

)

[J1(r
′)]
r′0
0 (6.7)

=

(

r0
L

yn

)

J1

(
yn
L
r0

)

with J1(0) = 0 . (6.8)

For the coefficients follows:

cmn = Q1,0

4
√

2
√
H r0J1

(
yn
L
r0
)

J1(yn)yn(2m− 1)π
sin

(

(2m− 1)π

2H
z0

)

. (6.9)

6.1.1 Normalization

The following condition should hold:

2π
∫ L

0
dr r

∫ H

−H
Q1(r, z)

!
= 1 (6.10)

Q1,02π
∫ r0

0
dr r

∫ z0

−z0
dz = Q1,02πz0r

2
0 . (6.11)

The normalization factor is the reciprocal value of the cylinder volume:

Q1,0 =
1

2πz0r2
0

. (6.12)
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6.1.2 Phase Space Distribution Function for Different

Volumes and Different Number of Terms in the Sum

In Fig. 6.1 we have plotted the processed phase space distribution function for dif-
ferent spatial injection source functions.

Figure 6.1: Phase space distribution function for different spatial source functions.

If the sources are surrounding the solar system, like in the galactic disc case or
the halo case, more particles can reach the solar system by diffusion and can be
measured at the position of the earth. The shapes of the spectra remain the same.

Fig. 6.2 shows f (Eq. (4.1)) for different number of terms of the eigenvalue ex-
pansion. Taking into account more than mmax = nmax = 3 terms of the double sum
is not necessary, because of the fast convergence of the sum.

6.2 Realistic Spatial Source Function

Now we refine the model and follow a more general ansatz for the spatial distribution
function:
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Figure 6.2: Phase space distribution function for different number of terms of the eigen-
value expansion.

Q1(r, z) = Q1,0θ(r0 − r)θ(z0 − |z|)
(
r

rs

)a

e−b
r−rs
rs e

−c |z|
zk . (6.13)

Here rs is the radius of the position of the solar system, zk is a constant and a, b
and c are free parameters of the model. At the radius r0 and the half-height z0 the
source distribution cuts off.

Typical values are:

a = 1.7, b = 3.3, c = 1, zk = 200pc, (6.14)

taken from [Strong & Moskalenko 1998], where the radial values have been adopted
by [Case & Bhattacharya 1996], which are similar to the values chosen by
[Case & Bhattacharya 1998]. Other radial parameter sets stem from
[Stecker & Jones 1977]:

a = 1.20, b = −6.44, (6.15)

and from [Lyne et al. 1985]:
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a = 0.6, b = 1.20, (6.16)

cited in [Webber et al. 1992].

We again only consider a cylindrical symmetry and neglect the correlation of galac-
tic supernova remnants and spiral arms; for this topic refer to [Li et al. 1991].

For the coefficients of the eigenvalue expansion we now have to calculate the follow-
ing two integrals:

1.

I1 :=
∫ r0

0
dr rJ0

(
yn
L
r
)(

r

rs

)a

e−b
r
rs (6.17)

and

2.

I2 :=
∫ z0

−z0
dz cos

(

(2m− 1)π

2H
z

)

e
−c |z|

zk . (6.18)

6.2.1 The Radial Integral

The evaluation of the integral I1 is known, if the upper limit converges to infinity
(see [Gradshteyn & Ryzhik 1994] (6.621).1 ):

∫ ∞

0
dt tµe−βtJν(αt) = Γ(ν + µ+ 1)(β2 + α2)−

1
2
µ− 1

2P−ν
µ

[

β(β2 + α2)−
1
2

]

. (6.19)

Here P−ν
µ are the associated Legendre functions of the first kind; for our case ν = 0.

This limit serves as a test for the numerical calculations. If generating numeri-
cally the limit ”infinity” at the upper boundary, it provides the same result as the
direct calculation of the right hand side.

6.2.2 The z-integral

The integrand of I2 is an even function of z, thus we can write:
∫ z0

−z0
dz... = 2

∫ z0

0
dz... . (6.20)

The integral has the form
∫

dx ea
′x cos(b′x) (6.21)
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with a′ := −c/zk and b′ = (2m−1)π
2H

and can be solved by considering the integrand
as a complex function:

∫

dxea
′x cos(b′x) = Re

∫

dx ea
′xeib

′x

= Re
∫

dx e(a
′+ib′)x

= Re
(

1

a′ + ib′

[

e(a
′+ib′)x

])

= Re

(

a′ − ib′

a′2 + b′2

[

e(a
′+ib′)x

]
)

= Re

(

ea
′x

a′2 + b′2
(a′ − ib′)(cos(b′x) + i sin(b′x))

)

=
ea

′x

a′2 + b′2
(a′ cos(b′x) + b′ sin(b′x)) . (6.22)

This agrees with [Gradshteyn & Ryzhik 1994] (2.663).3.

6.2.3 Normalization

Normalizing means:

2π
∫ L

0
dr r

∫ H

−H
dz Q1,0θ(r0 − r)θ(z0 − |z|)

(
r

rs

)a

e−b
r−rs
rs e

−c |z|
zk

= Q1,02π
eb

ras

∫ r0

0
dr ra+1e−b

r
rs

∫ z0

−z0
dz e

−c |z|
zk

!
= 1 . (6.23)

The z-integral gives:

Iz = −2
zk
c

[

e
−c z0

zk − 1
]

. (6.24)

The radial integral has to be solved numerically. So the normalization factor can be
noted as

Q1,0 =
1

Iz 2π e
b

ras

∫ r0
0 drra+1e−b

r
rs

. (6.25)



Chapter 7

Calculating Spectra and

Comparison With Data

Now we introduce spatial and momentum diffusion coefficients determin-
ing the eigenvalues φmn, which will be examined for different parameters.
After taking into account solar modulation, we fit the calculated spectra to
the data for protons (no catastrophic losses) for different parameter sets
by computing the eigenfunction sum solution (4.1) with the momentum
integrals (4.27), including the Green’s functions (4.29), and by using the
realistic spatial source function and the eigenfunction coefficients derived
in Chapter 6.

7.1 Diffusion Coefficients and the Corresponding

Eigenvalues

The diffusion coefficients for a mixture of slab Alfvén waves and fast magnetosonic
waves (cf. Subsection 2.3.1) with a Kolmogorov-type power law spectrum - already
used in Chapter 4 - read [Schlickeiser 2001]

κ0κ(p̃) = K1(αp̃)
2−q (7.1)

D(p̃) = D1α
q−2p̃q (7.2)

where

K1 =
2

3

η(q)c

(2 − q)(4 − q)

(
vA
c

)2−q
(7.3)

and
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D1 =
3

2

v2
A

q(q + 2)cη(q)
ln(c/vA) (7.4)

with

η(q) =
3

2π(q − 1)

(
B0

δB

)2 ( c

eB0

)2−q
k1−q
min . (7.5)

Here, vA is the Alfvén velocity, kmin is the minimum wave number of the turbulence,
B0 is the magnitude of the background magnetic field and δB the typical strength
of the plasma waves. c is the speed of light, e the elementary charge.

In Chapter 4 we have introduced the ratio of the momentum to the spatial dif-
fusion time scale including the eigenvalues (Eq. (4.25) with α = 1 for protons):

φmn =
Tf
Tmn

(7.6)

= (mpc)
2(2−q)K1

D1

(

y2
n

L2
+

(2m− 1)2π2

4H2

)

= (mpc)
2(2−q)

2
3
η(q)c

(
vA
c

)2−q
q(q + 2)cη(q)

(2 − q)(4 − q)3
2
v2
A ln(c/vA)

(

y2
n

L2
+

(2m− 1)2π2

4H2

)

= (mpc)
2(2−q)

(
2

3

)2 q(q + 2)

(2 − q)(4 − q)

(
c
vA

)q

ln
(
c
vA

)η(q)2

(

y2
n

L2
+

(2m− 1)2π2

4H2

)

.

Here we have inserted the above listed formulas for the diffusion coefficients.

7.1.1 Typical Values

The Value of η

Typical values of the parameters for η are e.g.:

kmin ≈ 10−18 cm−1 corresponding to a scale length of lmax ≈ 1 pc ≈ 3.1 · 1018 cm,
(7.7)

as it is mentioned in Subsection 2.3.1.
The magnetic field strength is of the order of (cf. Section 2.3):

B0 ≈ 3 µG and δB ≈ 0.9 µG −→ δB

B0
≈ 0.3 . (7.8)

With the constants
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c ≈ 3 · 1010 cm
s (7.9)

and

e ≈ 4.8 · 10−10 g1/2 cm3/2 s−1 (7.10)

we get typically with q = 1.8:

η(1.8) ≈ 2.0 · 1020 gq−2 cmq−1 s2−q . (7.11)

The Value of vA

The Alfvén velocity is calculated by

vA =
B0

√

4π(mp +me)ne
≈ 2.18 · 1011

(
B0

1 G

)(
ne

1 cm−3

)− 1
2 cm

s (7.12)

(mp and me are the proton and the electron mass, respectively, and ne is the electron
density), where with typical values for the interstellar medium (refer to Section 2.3)

ne ≈ 0.1 cm−3 (7.13)

and

B0 ≈ 3 · 10−6 G (7.14)

the value

vA ≈ 7 · 105 cm
s (7.15)

is obtained.

The Resulting Value for φ11

With an assumed halo radius of

L = 15000 pc , (7.16)

an assumed half-height of the halo

H = 10000 pc (7.17)

and with the zero of the Bessel function

y1 ≈ 2.4 , (7.18)
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the value

φ11 ≈ 0.1 (7.19)

is obtained as the first eigenvalue.

7.1.2 Eigenvalues for Variation of the Parameters

In the following the ratios of the time scales, i. e. the eigenvalues, subject to the
different parameters are listed:

q = 1.8, B0 = 3 · 10−6 G, vA = 7 · 105 cm/s, kmin = 10−18 cm−1

m = 1, n = 1 m = 1, n = 2 m = 2, n = 1 m = 2, n = 2

H = 10 kpc, L = 15 kpc 0.14 0.45 0.69 1.00
H = 10 kpc, L = 20 kpc 0.11 0.23 0.67 0.81
H = 15 kpc, L = 15 kpc 0.10 0.41 0.35 0.65
H = 15 kpc, L = 20 kpc 0.07 0.24 0.32 0.45

Table 7.1: Eigenvalues φmn for different halo sizes.

q = 1.8, H = 10 kpc, L = 15 kpc, vA = 7 · 105 cm/s, kmin = 10−18 cm−1

m = 1, n = 1 m = 1, n = 2 m = 2, n = 1 m = 2, n = 2

B0 = 1 · 10−6 G 0.027 0.086 0.13 0.19
B0 = 3 · 10−6 G 0.14 0.45 0.69 1.00
B0 = 10 · 10−6 G 10.7 34.1 52.7 76.1

Table 7.2: Eigenvalues φmn for different strengths of the background magnetic field.

q = 1.8, H = 10 kpc, L = 15 kpc, B0 = 3 · 10−6 G, kmin = 10−18 cm−1

m = 1, n = 1 m = 1, n = 2 m = 2, n = 1 m = 2, n = 2

vA = 1 · 105 cm/s 3.95 12.5 19.4 28.0
vA = 7 · 105 cm/s 0.14 0.45 0.69 1.00
vA = 15 · 105 cm/s 0.38 0.12 0.19 0.27

Table 7.3: Eigenvalues φmn for different Alfvén velocities.
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q = 1.8, H = 10 kpc, L = 15 kpc, B0 = 3 · 10−6 G, vA = 7 · 105 cm/s

m = 1, n = 1 m = 1, n = 2 m = 2, n = 1 m = 2, n = 2

kmin = 10−17 cm−1 0.035 0.11 0.17 0.25
kmin = 10−18 cm−1 0.14 0.45 0.69 1.00
kmin = 10−19 cm−1 5.59 17.8 27.5 39.7

Table 7.4: Eigenvalues φmn for different minimum turbulence wave numbers.

H = 10 kpc, L = 15 kpc, B0 = 3 · 10−6 G, vA = 7 · 105 cm/s, kmin = 10−18 cm−1

m = 1, n = 1 m = 1, n = 2 m = 2, n = 1 m = 2, n = 2

q = 1.6 0.000046 0.00015 0.00023 0.00033
q = 1.8 0.14 0.45 0.69 1.00
q = 1.9 11.5 36.57 56.6 81.6

Table 7.5: Eigenvalues φmn for different spectral indices of the wave spectrum.

From the Tables 7.1 to 7.5 we see that the range of the values of φmn can be strongly
dependent on the parameter sets. Because the parameters are not known exactly,
it is also possible to vary only φmn alone, the ratio of the two diffusion time scales.

7.2 Solar Modulation

The galactic cosmic rays are influenced by the solar wind when they enter the
heliosphere, as we discussed already in 2.1.1. This modulation on their flight through
the heliosphere (cf. [Gleeson & Axford 1968]) is taken into account to first order by
the following simple rule deduced by the so called ”force field approximation”, where
one assumes that the particles move through an electric field with a potential φSM :

ΦIM = ΦTOA

(

pIM
pTOA

)2

(7.20)

where

pTOA = pIM − ZeφSM . (7.21)

Here, ΦIM and ΦTOA are the flux of galactic cosmic rays in the interstellar medium
and at the top of the atmosphere, respectively, and pIM and pTOA are the momen-
tum of galactic cosmic rays at the same locations. Z is the charge number of the
cosmic rays and e is the electron charge.
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φSM is the solar modulation parameter, measured by neutron monitors (refer to
Subsection 2.2.3) at the corresponding time. The respective modulation parameters
for the data sets listed below are used to model the influence of the heliosphere.

7.3 Data Sets Used

In the following, we use data sets from measured proton spectra at the top of
the atmosphere from different experiments, balloon-borne and ground-based (cf.
Section 2.2). In Table 7.6 the considered experiments are listed. From List 2.1 we
take only in consideration data sets of recent experiments. The balloon experiments
cover the low energy regime, while the airshower arrays measure the cosmic rays at
higher energies (cf. Table 2.2). A mediator of both energy ranges is the balloon-borne
mission JACEE. The symbols are used in the subsequent figures.

Symbol Experiment Type Publication Energy range for protons
Star IMAX Balloon [Menn et al. 2000] 0.2-200 GeV
Diamond BESS Balloon [Wang et al. 2002] 0.2-10 GeV
Cross BESS Balloon [Sanuki et al. 2000] 1-120 GeV
Square CAPRICE Balloon [Boezio et al. 1999] 0.4-200 GeV
Plus JACEE Balloon [Asakimori et al. 1998] 20-800 TeV
Triangle TIBET Airshower array [Amenomori et al. 2000] 200-1000 TeV

Table 7.6: Data sets used for measured proton spectra.

7.4 Comparison of the Calculated Spectra With

Data

Now we have completed all preparations to calculate the proton spectra with the
realistic spatial source function from Chapter 6 and for a power law momentum
injection function (see Chapter 5) and can compare the results with the above-
mentioned data sets.

The effect of solar modulation is taken into account in the way described in Sec-
tion 7.2.

In order to avoid boundary effects, we set the lower momentum limit of the injection
power law to xmin = 0.01 GV. The graphs in this section are plotted for momenta
higher than 1 GeV, because in this regime the relative contribution of cosmic rays
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originating from the sun is small. The maximum momentum of the particles injected
by, for example, supernovae is assumed to be in the order of xmax = 106 GV (cf.
Subsection 2.1.2).

The position of the solar system in the galaxy is taken to be as z = 0 pc and
r = 8500 pc (refer to [Alves 2000]). For the galactic halo dimensions the values
L = 15 kpc and H = 10 kpc are inserted and for the galactic disk boundary we take
r0 = 15 kpc and z0 = 0.5 kpc.

In the following graphs the isotropic phase space distribution function f(x)x2 is
plotted after multiplying it with x2.5 to flatten the graphs and to better recognize
the features.

As we have seen in Chapter 6, the restriction of the number of eigenvalue terms
to mmax = nmax = 3, i. e. to 9 terms, is sufficient and results in a reasonable calcu-
lation time.

Figure 7.1: Calculated spectra for a power law momentum source function for different
turbulence spectral indices q in comparison with data. The parameters used
are: β = 2.4, xmin = 0.01 GV, xmax = 106 GV, mmax = nmax = 3.

In Fig. 7.1 we compare the spectra for different spectral indices q of the turbu-
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lence spectrum, where we used the eigenvalues for a mixture of slab Alfvén waves
and fast magnetosonic waves as introduced in Section 7.1.

From the results we can state a very strong dependence of q, because q does not
only enter in the argument of the Bessel functions I and K but also enters in the
eigenvalues φmn.

To filter out this strong q-dependence of the eigenvalue φmn in Fig. 7.2 we ad-
just kmin (occuring in the parameter η, cf. Eq. (7.5)) in all cases such that the ratio
of the momentum diffusion time and the spatial diffusion time is set equal at 1 GV
for different q.

Figure 7.2: Phase space distribution function f(x)x4.5 for different turbulence spectral
indices q. kmin was adjusted such that the ratio of the momentum diffusion
time and the spatial diffusion time is set equal at 1 GV for the three cases
of different q. The parameters used are: β = 2.4, xmin = 0.01 GV, xmax =
106 GV, mmax = nmax = 3.

The best fit in both of the above cases we find for q = 1.9, especially in the low
energy range, but the fit for higher energies is not very good, especially the steepness
of the graph differs from that of the data.
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In the energy region close to 1 GV we register the influence of the solar modu-
lation. The solar wind pushes away the low energy galactic cosmic rays.

Now we vary the spectral index β of the initial momentum spectrum. The re-
sults we obtain are drawn in Fig. 7.3.

Here the best values are β = 2.35 − 2.4.

Figure 7.3: Calculated spectra for a power law momentum source function for different
source spectral indices β. The parameters used are: q = 1.9, xmin = 0.01 GV,
xmax = 106 GV, mmax = nmax = 3.

If we regard the eigenvalue φ11 =: φ as a free parameter, we obtain Fig. 7.4 for
q = 1.6 and Fig. 7.5 for q = 1.9 for the first term of the eigenvalue expansion.

In the first case, φ has to be greater than 30, in the second case φ ≈ 5.

Fig. 7.4 with q = 1.6 provides a steepness of the resulting spectrum for large x
as

f(x)x2 ∼ x−2.75 , (7.22)

as it should be, according to Eq. (5.8) but the fit does not apply to small values of
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Figure 7.4: Calculated spectra for a power law momentum source function and different
φ11 =: φ in comparison with data. The parameters used are: β = 2.35,
q = 1.6, xmin = 0.01 GV, xmax = 106 GV, mmax = nmax = 1.

x. The power law index 2.75 is in agreement with the measured proton spectrum
below the knee, cf. for example [Wiebel-Sooth et al. 1998] with a power law index
for the proton spectrum measured at the earth of 2.77 ± 0.02.

An inspection of Fig. 7.5 shows, that we get a better fit for small x with q = 1.9
and β = 2.35, but now, the curve does not match the large values of x appropriately.

The strong influence of the spatial source function is represented in Fig. 7.6.

The more realistic source function introduced in Chapter 6 allows a substantial
better fit to the data.

In Fig. 7.7 we compare the calculation with only one eigenvalue term with the
calculation with more terms of the sum (mmax = nmax = 3 means 9 terms) to
demonstrate that the first term is the dominant one.
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Figure 7.5: Calculated spectra for a power law momentum source function and different
φ11 =: φ in comparison with data. The parameters used are: β = 2.35,
q = 1.9, xmin = 0.01 GV, xmax = 106 GV, mmax = nmax = 1.

7.4.1 Discussion of the results

In conclusion, it can be stated that the best data fit for a mixture of slab Alfvén
waves and fast magnetosonic waves is obtained for the parameters q = 1.9 and
β ≈ 2.4. For smaller values of q we have some orders of magnitude differences to
the data.

If we filter out the effect of the q-dependence in the eigenvalues φmn, and thus
do not consider diffusion coefficients for special wave modes, q = 1.9 and β ≈ 2.35
are also the best choice in the low energy regime, where the spectrum is still influ-
enced by the solar wind. Contrary, the parameters q = 1.6 and β ≈ 2.35 provide
the expected steepness of the spectrum above about 100 GV, like it has been ap-
proximated in Chapter 5. The value β ≈ 2.35 is in good agreement with the value
of β ≈ 2.4 provided by purely numerical models of other groups, which take into
account stochastic reacceleration (cf. Subsection 2.1.2). [Jones et al. 2001], for ex-
ample, give a value range of β = 2.3 − 2.4. The value q = 1.6 is in the order of the
Kolmogorov index, as introduced in Subsection 2.3.1. This value is also consistent
with results by the groups [Heinbach & Simon 1995] and [Jones et al. 2001], which
in contrast use numerical models.



90

Figure 7.6: Calculated spectra for a power law momentum source function and different
spatial source functions in comparison with data. The parameters used are:
β = 2.35, q = 1.9, xmin = 0.01 GV, xmax = 106 GV, mmax = nmax = 3.

Other groups have fitted different values for q, like, for example, in the numerical
treatment of [Maurin et al. 2002]. The value of the turbulence index is an important
open question, which is still under debate. In some studies the Kolmogorov index
is inserted as a fixed value into the model, like e. g. in [Seo & Ptuskin 1994], and is
not treated as a free fit parameter, like in this work.

The ratio of the momentum and the spatial time scale φ11 can be fixed only if
we consider the eigenvalue expansion to first order, because for more terms of the
sum we have a respective number of eigenvalues φmn. For q = 1.6, φ has to be at
least larger than 30, for q = 1.9 we get a value of φ ≈ 5.

A good fit for the whole energy range can not be achieved in this model so far.
But pay attention: The differences of the calculated curves and the data sets also
seem to be larger, because of the chosen scaling factor of x2.5 in the plots of the
spectra.

Including a source function with a realistic distribution of supernova remnants, the
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Figure 7.7: Calculated spectra for a power law momentum source function and different
mmax, nmax in comparison with data. The parameters used are: β = 2.35,
q = 1.9, xmin = 0.01 GV, xmax = 106 GV, φ = 5.

potential sources of galactic cosmic rays, improves the fit of the data considerably.

Calculating only one term of the eigenvalue expansion is often sufficient, because
the deviations due to the other parameters like q and β are much larger. This first
order approximation corresponds to the leaky box model.

The eigenvalues and, thus, the ratios of the momentum and the spatial time scale
are very sensitive to the parameters used for the interstellar medium, which are not
known exactly. Especially the influence of the spectral index q to the momentum
turbulence is large, which we used here as a free parameter.

By considering the aspect of the knee feature in the energy spectrum of the hadronic
cosmic rays, we can infer from the studies presented above, that for a mixture of
slab Alfvén waves and fast magnetosonic waves the spectrum for protons breaks off
relatively sharp at the maximum injection rigidity (here 106 GV) for larger turbu-
lence spectral indices (q ≈ 1.9), in contrast to smaller q, where we reach rididities
several magnitudes higher than the maximum injection momentum (up to 109 GV
for q = 1.6). For nuclei with higher Z, like iron (Z = 56), the energy that can be
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achieved, is higher, because E = Z R. But for nuclei with Z > 1 we have to take
into account catastrophic losses, which we do in the next chapter. The total cosmic
ray spectrum is a superposition of all cosmic ray nuclei, which enter proportional to
their abundance, i. e. respective the chemical composition. So, for larger momenta
the heavy nuclei dominate the knee of the energy spectrum, but their fraction in
comparison to hydrogen is smaller.



Chapter 8

The Confluent Hypergeometric

Functions and the Associated

Momentum Integral

The momentum solution of the transport equation for nuclei including
catastrophic losses consists of integrals over the confluent hypergeomet-
ric functions M and U instead of the modified Bessel functions, which
we dealt with in the preceeding chapters. To treat the integrals we first
describe some properties and some representations of the M and U func-
tions, which can be used for a computer calculation.

The reason why for this case the numerical calculations of the exact
momentum integrals fail if inserting a momentum injection power law
function are discussed subsequently.

An attempt to simplify the analytical and numerical situation by inter-
changing the integrals in the momentum double integral for a momentum
power law does not succeed, and in order to make progress we have to
approximate the integrals. In the last section the approximations are
derived in the same way as in the I-K-case for a power law injection
function.

From Chapter 4 we repeat for survey the momentum solution with catastrophic
losses

fmn(x) = Tfα
χ
∫ ∞

0
dx0x

2
0q(x0)Gmn(x, x0) (8.1)

with the Green’s function
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Gmn(x, x0) =
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√
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.(8.2)

Some properties of the Gamma function Γ can be found in Appendix G.

8.1 Representations for M and U

In this section we list the different representations for the functions M and U : the
integral representations, a series for M , a formula for U using M and the confluent
hypergeometric functions expressed in terms of the Whittaker functions.

In the literature the M-function is sometimes also denoted by 1F1.

M(a, b, x) and U(a, b, x) are independent solutions of Kummer’s differential equa-
tion:

x
d2f(x)

dx2
+ (b− x)

df(x)

dx
− af(x) = 0 (8.3)

In general, the variable x can be complex.

8.1.1 Integral Representations

The integral representations are defined for the parameters b > a > 0
(see [Abramowitz & Stegun 1984] (12.2.1) and (12.2.5)):

M(a, b, x) =
Γ(b)

Γ(b− a)Γ(a)

∫ 1

0
dt extta−1(1 − t)b−a−1 (8.4)

U(a, b, x) =
1

Γ(a)

∫ ∞

0
dt e−xtta−1(1 + t)b−a−1 . (8.5)

8.1.2 A Series for M

A series for M is found e. g. in [Abramowitz & Stegun 1984] (13.1.2)
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M(a, b, x) =
∞∑

n=0

(a)nx
n

(b)nn!
(8.6)

where Pochhammer’s symbol (see Eq. G.7) is defined as

(a)n = a(a+ 1)(a+ 2)...(a + n− 1), (a)0 = 1 . (8.7)

We have to pay attention to negative integer values of b: if one factor (b + m) in
the denominator of a term of the sum is 0, that is for b = −m, m ∈ {0, 1, ..., n− 1},
then there emerges a pole in the series.

8.1.3 Another Formula for U Including M

U can be determined if M is known by using the expression
(cf. [Abramowitz & Stegun 1984] (13.1.3))

U(a, b, x) =
π

sin(πb)

[

M(a, b, x)

Γ(1 + a− b)Γ(b)
− x1−bM(1 + a− b, 2 − b, x)

Γ(a)Γ(2 − b)

]

(8.8)

or, equivalently, in another form (see [Gradshteyn & Ryzhik 1994] (9.210).2):

U(a, b, x) =
Γ(1 − b)

Γ(a− b+ 1)
M(a, b, x) +

Γ(b− 1)

Γ(a)
x1−bM(1 + a− b, 2 − b, x) . (8.9)

To transform both formulas into each other the following two relations must hold:

π

sin(πb)

1

Γ(b)
= Γ(1 − b) (8.10)

and

− π

sin(πb)

1

Γ(2 − b)
= Γ(b− 1) . (8.11)

With (G.5) for the Gamma function we confirm the correctness of the first equation

Γ(b)Γ(1 − b) = π csc(πb) =
π

sin(πb)
(8.12)

and using additionally the recurrence relation (G.4) the second equation also is
fulfilled:

Γ(b− 1) = − 1

Γ(2 − b)
Γ(b)Γ(1 − b) (8.13)
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−Γ(b− 1) =
1

(1 − b)Γ(1 − b)
(b− 1)Γ(b− 1)Γ(1 − b) . (8.14)

One has to be careful, because poles of the Gamma function in the formula for U
occur for (1−b) ∈ {0,−1,−2, ...} and (b−1) ∈ {0,−1,−2, ...}, that means for b ∈ �

.

Poles of the second M-function in the formula for U arise for the condition (2− b+
m) = 0 for m ∈ IN, in other words for b ∈ {−2,−3, ...}.

For any given parameter set the combination of the diverging terms in U has to
be investigated in detail.

8.1.4 Representations With Whittaker Functions

The relations between the Whittaker functions Mµ, ν and Wµ, ν and the confluent
hypergeometric functionsM and U , respectively, read (see [Abramowitz & Stegun 1984]
(13.1.32) and (13.1.33)):

Mµ,ν(x) = e−
1
2
xx

1
2
+νM

(
1

2
+ ν − µ, 1 + 2ν, x

)

(8.15)

Wµ,ν(x) = e−
1
2
xx

1
2
+νU

(
1

2
+ ν − µ, 1 + 2ν, x

)

. (8.16)

For the inverse transformation we get

M(a, b, x) = x−
b
2e

1
2
xM b

2
−a, b−1

2
(x) (8.17)

and analogously

U(a, b, x) = x−
b
2 e

1
2
xW b

2
−a, b−1

2
(x) . (8.18)

8.2 On Calculating the Confluent Hypergeomet-

ric Functions and the Associated Momentum

Integral

8.2.1 The Functions M and U for Some Parameter Sets

Figs. 8.1 and 8.2 show the M-function for different parameter sets, chosen such
that the graphs can be drawn properly and avoiding singularities in the formulas
for calculating the confluent hypergeometric functions. (For realistic parameter sets
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the functions M and U are far too steep or too flat, so that one cannot investigate
the characteristic properties by the respective graphs.)
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Figure 8.1: The M(a, b, x)-
function for the
parameter a=1.1.
Black: M(1.1,1.5,x),
blue: M(1.1,2.5,x),
green: M(1.1,3.5,x),
red: M(1.1,4.5,x).
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Figure 8.2: The M(a, b, x)-
function for the
parameter b=1.5.
Black: M(1.1,1.5,x),
blue: M(2.1,1.5,x),
green: M(3.1,1.5,x),
red: M(4.1,1.5,x).
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Figure 8.3: The U(a, b, x)-function
for the parameter
a=1.1.
Black: U(1.1,1.5,x),
blue: U(1.1,2.5,x),
green: U(1.1,3.5,x),
red: U(1.1,4.5,x).
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Figure 8.4: The U(a, b, x)-function
for the parameter
b=1.5.
Black: U(1.1,1.5,x),
blue: U(2.1,1.5,x),
green: U(3.1,1.5,x),
red: U(4.1,1.5,x).
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In the first figure the first parameter a of M(a, b, x) is fixed and b varies, in the
second figure b is fixed. For the same parameter sets the U -function is plotted in
Figs. 8.3 and 8.4 where a is fixed and b changes as parameters of U(a, b, x) and vice
versa, respectively.

For x → ∞ the M-functions approach infinity and the U -functions converge to
zero.

8.2.2 Numerical Consistency Checks and Problems

Calculation With the Integral Representations

To verify the correctness of the numerical calculations of the M- and U -functions
by their integral representations (8.4) and (8.5), they are compared with the values
provided by the asymptotic formulas (F.10) and (F.11) for M and U , respectively.
The results agree sufficiently and also consistency checks between the Maple and
FORTRAN code integral calculations are satisfactory with numerical differences
smaller than 10−6.

So, the integrals calculated individually seem to be correct, but if implementing
them in the Maple programm code for the whole momentum integral, the computer
is not able to provide a result. For some required parameter sets numerical problems
occur also with the FORTRAN integration routines.

Calculations With the M-series and the U-formula

Using the M-series (8.6) we have to take into account about 150 terms for a suf-
ficient approximation (better then 10−6; for about 100 terms the approximation is
too bad), but we get problems in Maple with such large sums.

Applying the formula (8.8) for U , if we take care of the singularities, like it is men-
tioned in Section 8.1.3, a very high numerical accuracy is needed to yield correct
results, because for parameter sets for our problems the formula (8.8) is a difference
of two very large numbers which has to result in a very small number. These dif-
ficulties explain also the totally different numerical results in Maple for U if using
different methods for its determination, like the integral representation (8.5), the
formula (8.8) for U and the expressions with the Whittaker functions (8.18). An
increase of the accuracy in Maple is possible but results in a very large computing
time. And still the problem with the M-series remains.

We have to emphasize, that the these problems are of purely numerical nature
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and there exist no mathematical reasons why the integrals and series should not
converge. They behave smoothly in the considered parameter ranges.

8.2.3 Interchanging the Integrations for a Power Law Mo-

mentum Injection Function

In this subsection we try to simplify the integrations by interchanging the integration
of the integral representations of the M and the U functions and the momentum
integration for the special case of a power law momentum injection function. Our
aim is to treat the integrations partially analytical and to cast them into a form,
which can be handled better by the computer code:

fmn(x) ∼
∫ x

0
dx0x

2
0q(x0)exp

[

−
√
φmn(x

χ + xχ0 )

χ

]

U

(

3

2χ
+

ψ

2χ
√
φmn

,
3

χ
,
2
√
φmnx

χ

χ

)

M

(

3

2χ
+

ψ

2χ
√
φmn

,
3

χ
,
2
√
φmnx

χ
0

χ

)

+
∫ ∞

x
dx0 ...

∼ U

(

3

2χ
+

ψ

2χ
√
φmn

,
3

χ
,
2
√
φmnx

χ

χ

)

exp

(

−
√
φmn
χ

xχ
)

∫ x

0
dx0x

−β
0 exp

(

−
√
φmn
χ

xχ0

)

M

(

a, b,
2
√
φmnx

χ
0

χ

)

+M(..., ...xχ) exp(...xχ)
∫ ∞

x
dx0x

−β
0 exp(...xχ0 )U(..., ...xχ0 )

∼ U(..., xχ) exp(...xχ)
∫ x

0
dx0x

−β
0 exp

(

−
√
φmn
χ

xχ0

)
∫ 1

0
dt exp

(

2
√
φmnx

χ
0

χ
t

)

ta−1(1 − t)b−a−1

+M(..., ...xχ) exp(...xχ)
∫ ∞

x
dx0 ...

∼ U(..., xχ) exp(...xχ)
∫ 1

0
dt

[
∫ x

0
dx0x

−β
0 exp

(

xχ0

√
φmn
χ

(2t− 1)

)]

ta−1(1 − t)b−a−1

+M(..., ...xχ) exp(...xχ)
∫ ∞

x
dx0 ... .

The integral to be solved is of the form

I :=
∫ x

0
dx0x

−β
0 exp (δxχ0 ) . (8.19)

with



100

δ :=

√
φmn
χ

(2t− 1) (8.20)

The substitution

y = δxχ0 ⇔ x0 =
(
y

δ

) 1
χ

, dx0 =
dy

δχxχ−1
0

(8.21)

leads to

I =
1

δχ

∫

dy
(
y

δ

) 1−χ−β
χ

exp(y)

=
1

χδ
1−β
χ

∫ δxχ

0
dy y

1−χ−β
χ exp(y) . (8.22)

According to [Gradshteyn & Ryzhik 1994] (3.381).1
∫ u

0
dx xν−1 exp(−µx) = µ−νγ(ν, µu) with Re ν > 0 (8.23)

we try to apply the definition [Gradshteyn & Ryzhik 1994](8.350).1 of the incom-
plete Gamma function (cf. Section G.1)

γ(α, x) =
∫ x

0
dt tα−1 exp(−t) , (8.24)

here with µ = −1 and ν = 1−χ−β
χ

+ 1 = 1−β
χ

. But with our typical values for β (cf.

Chapter 7) and χ (χ = q − 2, q < 2) we get ν < 0, so we cannot use the incomplete
Gamma function.

The numerical calculations with the computer for the case of interchanged inte-
grations fail again, too.

Now another way is to calculate analytical approximations for special momentum
injection functions, which we will do in the following.

8.2.4 Approximations of the Momentum Solution With

Catastrophic Losses for a Power Law Injection Func-

tion

The momentum integral for catastrophic losses can be analytically approximated for
the different momentum regimes if we insert a power law momentum source function
(see Appendix F):
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fmn(x) '
q0Tfα

χ

β − 1

(2
√
φmn)

3
χ
−1

χ
3
χ

(
3
χ
− 1

) x1−β
min

(
x

xc

)χ−3

(8.25)

for x� xc (case 1 (Eq. F.22) and 2 (Eq. F.35)) and

fmn(x) '
4q0Tfα

χ(2
√
φmn)

3
χ
−1

χ
3
χ

+1
xχ+3
c x−(β+2+χ) (8.26)

for x � xc (case 3 (Eq. F.44) and 4 (Eq. F.47)) containing the characteristic mo-
mentum

xc :=

(

χ

2
√
φmn

) 1
χ

. (8.27)

Comparing with the respective approximations (5.7), (5.8) and (5.9) in Chapter 5
for the momentum integral omitting catastrophic losses we discover the same be-
haviour. The characteristic parameter ψ for the catastrophic losses does not emerge
in the final terms any more. The approximation is too crude.

Again, above the maximum injection momentum xmax all spectra cut off expo-
nentially, independent of the source index β (see Appendix F.50):

fmn(x) ∼ e−
1
2(

x
xc

)
χ

x
− 3

2
+ ψ

2
√
φmn . (8.28)
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Chapter 9

Summary and Discussion

In this work we investigated the analytical solutions of the stationary transport
equation for galactic cosmic rays. The focus is laid on the influence of the spatial
diffusion and the stochastic reacceleration by plasma waves existing in the interstel-
lar medium.

The solution of the transport equation can be formulated as an infinite double
sum of spatial and momentum eigenfunctions, where spatial and momentum source
functions enter in the respective integrals. We assume initial power law momentum
source spectra, which could result from shock acceleration of nuclei in supernova
remnants. The Green’s function for the case of no catastrophic losses contains the
I- and K-Bessel functions, and the Green’s function with consideration of spallation
contains the confluent hypergeometric functions M and U .

To test the solution itself and our newly developed computer code for the final
integrals, we made some theoretical and numerical consistency checks. Analytical
approximations for the momentum integral for small and large momenta for the case
of a power law source spectrum were provided and compared to the numerically cal-
culated complete momentum solutions. For small momenta p the isotropic phase
space distribution function f is proportional to p−q−1, and for large momenta the
initial power law spectrum p−β−2 is steepened by an exponent 2 − q, where q is the
spectral index of the turbulence. It was shown that for larger indices q the stochas-
tic momentum diffusion can accelerate particles to higher momenta, exceeding the
upper momentum injection limit by several orders of magnitude. Besides, there is
a competition between the spatial and momentum diffusion process: for a smaller
momentum diffusion time scale more high energetic particles are produced, as we
expected. The steepness of the initial source spectrum is reflected in the resulting
momentum spectra. If we assume a perhaps more realistic source spectrum with a
dispersive index, as a consequence of a sample of supernova remnants with different
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power law indices, the calculations show a slightly flatter spectrum for large mo-
menta. This is only a secondary effect so that the assumption of a simple power law
spectrum is sufficient for the subsequent calculations.

In the spatial part of the solution we inserted a realistic spatial supernova rem-
nant distribution and calculated the integrals partially analytical. For a good ap-
proximation it is sufficient to take only the first 9 terms of the infinite double sum
(mmax = nmax = 3).

Then we made an assumption for the galactic turbulence by inserting diffusion
coefficients for a mixture of slab Alfvén waves and fast magnetosonic waves and cal-
culated some typical eigenvalues. The eigenvalues vary depending on the different
astrophysical parameters, like the halo dimensions, the background magnetic field,
the Alfvén velocity, the minimum turbulence wave number or the spectral index of
the wave spectrum. The influence of the latter turned out to be very strong.

After having taken into account solar modulation, the proton spectra with no catas-
trophic losses were calculated for different parameter sets and compared to recent
data from balloon and airshower array experiments. Again, a very strong depen-
dence on the turbulence spectral index q could be stated because it emerges in the
eigenvalues φmn as a consequence of our specific assumption of the diffusion coef-
ficients. We could filter out this effect by adjusting the ratio of the momentum
diffusion time to the spatial diffusion time to be equal at 1 GeV. Filtered or not,
the value q = 1.9 gives the best fit, while for smaller values of q we have some
orders of magnitude differences to the data. The discrepancy at higher energies is
unfortunately growing, in contrast to the low energy regime, where the spectrum
is bent by the solar wind. The best-fit values for the supernova power law source
spectral index are β = 2.35 − 2.4, which is in good agreement with other models
taking into account stochastic reacceleration (cf. [Drury et al. 2001]). If the eigen-
value φ11 =: φ itself is taken as a free parameter, the ratio of the momentum and
the spatial diffusion time scale, φ has to be at least larger than approximately 30 for
q = 1.6 and φ ≈ 5 for q = 1.9. The fit for the Kolmogorov-like spectral index q = 1.6
provides a spectral index of the processed spectrum of -2.75 above 100 GV, as it can
be found in the literature. But again, the fit for small momenta is not convincing.
In that region a better fit is provided with q = 1.9. We could also show that a real-
istic spatial source function better explains the data. All in all, the eigenvalues and,
thus, the ratios of the momentum and the spatial time scales are very sensitive to the
parameters used for the interstellar medium, which, however, are not known exactly.

One important aspect that could explain the fact that the fit does not apply to the
whole energy range is the missing fill up of the primary proton spectra by secondary
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protons in our model. The secondary protons emerge in the spallation processes of
heavier nuclei with the interstellar medium. This could, in principle, be taken into
account by respective transport equations with catastrophic loss terms, consequently
we discussed the treatment of the solution of these type of equations. The confluent
hypergeometric functions enter into the Green’s function of this solution. These
functions and the corresponding momentum integrals are very difficult to handle
for the required values of the physical parameters so that we encounter invincible
purely numerical problems. Again, for a power law momentum source function, the
analytical asymptotic cases were presented, but the functions turn out to be similar
to the cases without catastrophic losses. This first-order approximation seems to be
too crude, because the characteristic catastrophic loss time scale Tc does not occur
in the resulting formulas any more. A second-order approximation, however, is very
difficult to calculate.

For a complete description of all measured cosmic ray spectra, in principle, one has
to solve a system of cascading transport equations, where the spallation products
of nuclei with atomic number A enter as additional source terms in the transport
equations for nuclei with lower A. Moreover, radioactive losses have to be taken
into account. For a detailed calculation of the spallation term an explicit spatial gas
distribution is required, with a density that is different in the galactic disk and in
the halo.

Some other explanations for the discrepancy between theory and data in some energy
regimes may be the neglect of spatial and momentum convection terms and of contin-
uous losses. By taking into account these terms, the advantage of an analytical treat-
ment of the transport equation then probably has to be dropped, and it remains only
the possibility of a direct numerical solution of the differential equation, like it has
been done by [Heinbach & Simon 1995],[Simon et al. 1986], [Seo & Ptuskin 1994],
[Strong & Moskalenko 1998],[Moskalenko et al. 1998], [Jones et al. 2001] and
[Maurin et al. 2002], who have also considered stochastic reacceleration.

For some special cases three-dimensional analytical calculations are possible for a
non-stationary transport equation, like it is shown in [Büsching 2004], but in the
work cited stochastic acceleration had to be neglected. Instead, the approximation
of a homogeneous source distribution has been replaced by discrete sources and a
purely numerical solution of the transport equation was necessary.

Because of the lack of in situ measurements it remains unclear, which modes of
plasma waves are dominating in the interstellar medium. In the recent publica-
tion of [Shalchi et al. 2003], also a different behaviour of the diffusion coefficients at
small energies has been stated. In [Lerche & Schlickeiser 2001] a modification of the
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momentum diffusion coefficient is calculated for strongly anisotropic magnetohydro-
dynamic turbulence. [Schlickeiser 2004] discussed a spatial diffusion coefficient of
the form

κ ∼
{

p0 , p ≤ pc
p2 , p > pc

(9.1)

instead of κ ∼ p2−q as done in the present work, and a momentum diffusion coeffi-
cient of the form

A2 ∼
{

p2 , p ≤ pc
p0 , p > pc

(9.2)

instead of A2 ∼ pq, for a critical momentum pc ≈ 4 · Z · 1015 eV/c. Then for p ≤ pc
we obtain the solution of the transport equation for the case q = 2, as presented in
Appendix D, and the case p > pc results in

f ∼ exp

(

− p

p1

)2

U




3

4
+ 4,

3

2
, 2

(

p

p1

)2


 . (9.3)

Here again U is a confluent hypergeometric function and p1 = const.

The condition of the turbulence spectrum being a power law across the whole wave
number region has also to be confirmed more convincingly. We are not able to mea-
sure the plasma turbulence directly, therefore the connection between the detected
electron densities and the wave number distribution needs further investigations.

Finally, a detection of TeV photon spectra of supernova remnants by existing and
future experiments, which can only be explained by high energetic primary nuclei,
gives the chance to fix the nowadays not exactly known form of the initial momen-
tum source spectra.

In conclusion, in the present work we establish for the first time fits of cosmic ray
proton data by calculating the integrals of the analytical eigenfunction sum solution
of the transport equation, including reacceleration by interstellar plasma waves, re-
alistic spatial source distributions and solar modulation. Different fit parameters,
like the spectral index of the supernova remnants, the spectral index of the plasma
turbulence and the ratio of the momentum diffusion time scale and the spatial dif-
fusion time scale are obtained by taking into account 9 terms of the eigenfunction
sum, which could be shown to be a sufficient approximation. Additionally, we pro-
vide analytical approximations of the momentum integrals for power law momentum
injection functions, which are good momentum distribution approximations for the
assumed primary sources of galactic cosmic rays, the supernova remnants.



Appendix A

Calculating the Solution of the

Transport Equation Without

Catastrophic Losses

In this chapter we calculate the solution of the transport equation, in our
case (see Eq. (3.54))

L~xf(~x, p) + Lpf(~x, p) = −Q1(~x)
Q2(p)

κ(p)
(A.1)

by applying the ”scattering time method” (see [Wang & Schlickeiser 1987]).

A.1 The Scattering Time Method

For separating the equation in two differential equations we introduce two new
functions T and F and a new variable u by f(x, ~p) =

∫∞
0 du F (p, u)T (~x, u):

∫ ∞

0
du F (p, u)L~xT (~x, u) +

∫ ∞

0
du T (~x, u)LpF (p, u) = −Q1(~x)

Q2(p)

κ(p)
. (A.2)

Now we claim that L~xT and LpF have to be partial derivatives of T and F respec-
tively; thus one gets two new differential equations with the variables ~x and u resp.
p and u. The solution is provided subsequently with an exponential ansatz.

∂T (~x, u)

∂u
= L~xT (~x, u) (A.3)
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∂F (p, u)

∂u
= LpF (p, u) (A.4)

After inserting into Eq. (A.2) the integrals cancel by applying partial integration to
the first term of the left hand side

[FT ]∞0 −
∫

du
∂F

∂u
T +

∫

du T
∂F

∂u
︸ ︷︷ ︸

=0

= −Q1(~x)
Q2(p)

κ(p)
, (A.5)

and one gets the boundary conditions for F and T :

F (p, u→ ∞)T (~x, u→ ∞) − F (p, u = 0)T (~x, u = 0) = −Q1(~x)
Q2(p)

κ(p)
. (A.6)

After fixing F (p, u→ ∞)T (~x, u→ ∞) = 0 it remains

F (p, u = 0) = +
Q2(p)

κ(p)
(A.7)

and

T (~x, u = 0) = +Q1(~x) . (A.8)

[Lerche & Schlickeiser 1988] point out, that the scattering time method can be ap-
plied also to a more general form of the source term, like a sum

S(~x, p) =
∑

i

Q1,i(~x)Q2,i(p) (A.9)

or even a continuous formulation

S(~x, p) =
∫

duQ1(u, ~x)Q2(u, p) . (A.10)

A.2 The Spatial Problem

We have to solve Eq. (A.3):

∂T (~x, u)

∂u
= L~xT (~x, u) . (A.11)
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For the confinement region of the galactic cosmic rays, the halo, we assume a cylin-
drical disk with radius L and half-height H . At its edge the particles can escape
(”free-escape boundary conditions”) and outside the phase space distribution func-
tion therefore is zero:

f(r ≥ L, z, p) = f(r, z ≥ H, p) = f(r, z ≤ −H, p) = 0 . (A.12)

These properties are transferred subsequently to the spatial function T . From this
later also follow the homogeneous boundary conditions for the solution of the spatial
differential equation.

After introducing cylindrical coordinates (in the following we use ∂x instead of ∂
∂x

)

~∇2 =
(

1

r
∂rr∂r +

1

r2
∂2
φ + ∂2

z

)

(A.13)

we assume additionally no φ dependence, that means a cylindrical symmetry of the
galaxy:

L~x = Lz,r = κ0

(
1

r
∂rr∂r + ∂2

z

)

. (A.14)

We can solve the differential equation

∂T (r, z, u)

∂u
= Lr,zT (r, z, u) (A.15)

with a combination of a separation and a series ansatz:

T (r, z, u) =
∞∑

m=1

∞∑

n=1

cmntmn(r, z)e
−λ2

mnu . (A.16)

From the scattering time method stems the constraint (cf. Eq. (A.8))

T (r, z, u = 0) = +Q1(r, z) , (A.17)

which will be used later to fix the coefficients cmn.

Eq. (A.16) inserted in the differential equation gives

−λ2
mnT (r, z, u) = Lr,zT (r, z, u) (A.18)

⇔
∞∑

m=1

∞∑

n=1

cmne
−λ2

mnu
[

Lr,z + λ2
mn

]

tmn(r, z) = 0 . (A.19)
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Shall the sum be zero for all possible values of r and z, after dividing by κ0 and with

the definition of the eigenvalues α2
mn := λ2

mn

κ0
it follows an infinite set of differential

equations for the functions tmn(r, z) indexed with m and n:

[
1

r
∂rr∂r + ∂2

z + α2
mn

]

tmn(r, z) = 0 . (A.20)

This equation can be separated in terms depending on z and r:

[(
1

r
∂rr∂r + α2

n

)

tn(r)
]

tm(z) +
[(

∂2
z + α2

m

)

tm(z)
]

tn(r) = 0 (A.21)

with the product ansatz

tmn(r, z) := tm(z)tn(r) (A.22)

and

α2
mn := α2

m + α2
n , (A.23)

and tn and tm obey the two independent differential equations

[

∂rr∂r + α2
nr
]

tn(r) = 0 (A.24)

as well as

[

∂2
z + α2

m

]

tm(z) = 0 . (A.25)

A.2.1 Solution of the Radial Part

The first Eq. (A.24) is an ordinary differential equation of second order with variable
coefficients:

[

∂rr∂r + α2
nr
]

tn(r) = 0 (A.26)

⇐⇒
[

r∂2
r + ∂r + α2

nr
]

tn(r) = 0 (A.27)

⇐⇒
[

∂2
r +

1

r
∂r + α2

n

]

tn(r) = 0 . (A.28)

In general one gets as a solution of a differential equation of the form

w
′′

(z) − 2ν − 1

z
w

′

(z) + λ2w(z) = 0 (A.29)
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according to [Abramowitz & Stegun 1984] (9.1.51) the functions w(z) = zνCν(λz)
with Cν ∈ {Jν , Yν , H(1)

ν , H(2)
ν }, whereas Jν and Yν are Bessel functions of the 1. and

2. kind, respectively, and Hν are Hankel functions, each of order ν.
For ν = 0 the solution functions read:

w(z) = z0C0(λz) . (A.30)

With the boundary condition C0(αnr)|r=L = 0 (from Eq. (A.12)) here it follows:

tn(r) = AnJ0(αnr) (A.31)

with

αn =
yn
L

, (A.32)

wherein yn are the zeros of the Bessel function J0.

Determination of the Normalization Constants

The orthonormalization condition is applied to Eq. (A.31) to fix the constants An:

AnAn′

∫ L

0
dr r J0(αnr)J0(αn′r)

!
= δnn′ . (A.33)

αn = yn/L and the substitution r′ = r/L provides an integral from 0 to 1:

n = n′ : A2
nL

2
∫ 1

0
dr′r′J2

0 (ynr
′)

!
= 1 . (A.34)

According to [Abramowitz & Stegun 1984] (11.4.5) (with b = 0) holds generally

∫ 1

0
dt t Jν(αnt)Jν(αn′t) =

{

0 ; n 6= n′, ν > −1
1
2
[J

′

ν(αn)]
2 ; n = n′, ν > −1

. (A.35)

Here we have ν = 0 and, therefore, according to [Abramowitz & Stegun 1984]
(9.1.28): J

′

0(z) = −J1(z), thus

1

2
A2
nL

2J2
1 (yn)

!
= 1 (A.36)

An =

√
2

LJ1(yn)
. (A.37)
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A.2.2 Solution of the z-part

Eq. (A.25) is a linear ordinary differential equation namely the oscillator equation:

[

∂2
z + α2

m

]

tm(z) = 0 . (A.38)

By the requirement of the z-symmetry follows immediately

tm(z) = Am cos(αmz) . (A.39)

The eigenvalues are yielded again from the boundary conditions, which here read
tm(z = H) = tm(z = −H) = 0:

αm =
(2m− 1)π/2

H
. (A.40)

Determination of the Normalization Constants

As for the radial part we claim for the amplitudes:

AmAm′

∫ H

−H
dz cos (αmz) cos (αm′z)

!
= δmm′ . (A.41)

m = m′ : A2
m

∫ H

−H
dz cos2 (αmz)

= A2
m

[

1

2
z +

1

4αm
sin

(

(2m− 1)π

H
z

)]H

−H

= A2
mH

!
= 1 (A.42)

In the second step we have used [Bronstein & Semendjajew 1989].

So

Am =
1√
H

. (A.43)
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A.2.3 The Complete Spatial Solution

With the results of the previous section we obtain for the solutions of the spatial
equations

tmn(r, z) =

√
2√

HLJ1(yn)
cos

(

(2m− 1)π

2H
z

)

J0

(
yn
L
r
)

. (A.44)

and the eigenvalues provided by Eqs. (A.32) und (A.40)

λ2
mn := κ0 α

2
mn (A.45)

= κ0

(

α2
n + α2

m

)

(A.46)

= κ0

(

y2
n

L2
+

(2m− 1)2π2

4H2

)

. (A.47)

The coefficients in

T (r, z, u) =
∞∑

m=1

∞∑

n=1

cmntmn(r, z)e
−λ2

mnu (A.48)

can be determined by the side condition (A.8) of the scattering time method:

T (r, z, u = 0) = Q1(r, z) (A.49)

∞∑

m=1

∞∑

n=1

cmntmn(r, z) = Q1(r, z) . (A.50)

Because the tmn form an orthonormal eigenfunction system we obtain the cmn by
projection:

∞∑

m=1

∞∑

n=1

cmn 〈tmn(r, z)|tm′n′(r, z)〉
︸ ︷︷ ︸

δmnm′n′

= 〈Q1(r, z)|tm′n′(r, z)〉 . (A.51)

Explicitely that means (after renaming m′ and n′ to m and n):

cmn =
∫ L

0
dr r

∫ H

−H
dz Q1(r, z)tmn(r, z) . (A.52)

In the convolution enter the boundary values L and H and the spatial source dis-
tribution, which has to be put in an explicit form for a given problem.
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A.3 The Momentum Problem

If the differential equation in the momentum space (A.4)

∂F (p, u)

∂u
= LpF (p, u) (A.53)

is multiplied with T and if the resulting equation is integrated over u

∫ ∞

0
du T (r, z, u)LpF (p, u) =

∫ ∞

0
du T (r, z, u)

∂F (p, u)

∂u
(A.54)

and if the ansatz (A.16) is inserted, then follows:

∞∑

m=1

∞∑

n=1

cmntmn(r, z)
[

Lp

∫ ∞

0
du e−λ

2
mnuF (p, u)

]

(A.55)

=
∞∑

m=1

∞∑

n=1

cmntmn(r, z)
∫ ∞

0
du

∂F (p, u)

∂u
e−λ

2
mnu (A.56)

part. int.
=

∞∑

m=1

∞∑

n=1

cmntmn(r, z)
{[

F (p, u)e−λ
2
mnu

]u=∞

u=0
+ λ2

mn

∫ ∞

0
du F (p, u)e−λ

2
mnu

}

.

(A.57)
With the boundary condition (A.7) of the scattering time method we get

[

F (p, u)e−λ
2
mnu

]∞

0
= −F (p, 0) = −Q2(p)

κ(p)
; (A.58)

if we introduce in addition the function

Nmn(p) :=
∫ ∞

0
du e−λ

2
mnuF (p, u) (A.59)

the equation can be rewritten as

∞∑

m=1

∞∑

n=1

cmntmn [LpNmn(p)] =
∞∑

m=1

∞∑

n=1

cmntmn

[

−Q2(p)

κ(p)
+ λ2

mnNmn(p)

]

(A.60)

⇐⇒
∞∑

m=1

∞∑

n=1

cmntmn

[

(Lp − λ2
mn)Nmn(p) +

Q2(p)

κ(p)

]

= 0 . (A.61)

The resulting differential equations for the Nmn are:
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(

Lp − λ2
mn

)

Nmn(p) = −Q2(p)

κ(p)
. (A.62)

With the new functions Nmn the phase space distribution function can be written
as:

f(r, z, p) =
∫ ∞

0
du T (r, z, u)F (p, u)

=
∫ ∞

0
du

( ∞∑

m=1

∞∑

n=1

cmntmn(r, z)e
−λ2

mnu

)

F (p, u)

=
∞∑

m=1

∞∑

n=1

cmntmn(r, z)
∫ ∞

0
du e−λ

2
mnuF (p, u)

︸ ︷︷ ︸

=Nmn(p)

(A.63)

f(r, z, p) =
∞∑

m=1

∞∑

n=1

cmntmn(r, z)Nmn(p) . (A.64)

A.3.1 Momentum Solution Without Catastrophic Losses

Explicitly the self-adjoint momentum differential equations in the dimensionless mo-
mentum variable x read for ψ = 0 (see Chapter 4) for the assumed diffusion coeffi-
cients:

[

d

dx

(

x4−χ d

dx

)

− φmnx
2+χ

]

fmn(x) = −Tfαχx2q(x) . (A.65)

The following way to the solution is according to [Mause 1993].

Solution for the Homogeneous Equation

Search for a function gmn, which fulfils the homogeneous differential equation

[

∂x(x
4−χ∂x) − φmnx

χ+2
]

gmn(x) = 0 . (A.66)

(In the following we set ∂x := ∂
∂x

= d
dx

).

The complete solution for gmn we get subsequently as a superposition of two linear
independent solutions H1 and H2:
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gmn(x) = c1H1(x) + c2H2(x) , (A.67)

wherein the momentum boundary conditions H1(x = 0) = 0 and H2(x → ∞) = 0
are fulfilled and from which the Green’s function can be constructed directly (see
[Arfken 1970]):

Gmn(x, x0) = − 1

D

{

H1(x)H2(x0) ; 0 ≤ x ≤ x0 <∞
H1(x0)H2(x) ; 0 < x0 ≤ x <∞ (A.68)

with

D = p0(x)(H1H
′

2 −H
′

1H2)
∣
∣
∣
x=x0

, where p0(x) = x4−χ . (A.69)

At first we perform a transformation of the homogeneous solution with

gmn(x) = xkhmn(x) , (A.70)

where we introduce a new free parameter k.

∂x(x
khmn) = kxk−1hmn + xkh

′

mn (A.71)

x4−χ∂x(x
khmn) = kx3−χ+khmn + x4−χ+kh

′

mn (A.72)

∂x
[

x4−χ∂x(x
khmn)

]

= k(3 − χ+ k)x2−χ+khmn + kx3−χ+kh
′

mn

+(4 − χ+ k)x3−χ+kh
′

mn + x4−χ+kh
′′

mn

= x2−χ+k[x2∂2
x + (k + 4 − χ+ k)

︸ ︷︷ ︸

2k+4−χ

x∂x

+k(3 − χ+ k)]hmn (A.73)

Thus:

x2−χ+k
[

x2∂2
x + (2k + 4 − χ)x∂x + k(3 − χ + k) − φmnx

2χ
]

hmn(x) = 0 . (A.74)

Now we apply a second transformation, this time with the variable x, where another
free parameter is used:

x = tβ (A.75)

=⇒ t = x
1
β . (A.76)

The derivatives read:
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∂

∂x
=

∂t

∂x

∂

∂t

=
1

β
x

1
β
−1 ∂

∂t

=
1

β
t1−β∂t (A.77)

∂

∂x

∂

∂x
=

∂

∂x

[

1

β
x

1
β
−1∂t

]

=
1

β

[

(
1

β
− 1)x

1
β
−2∂t + x

1
β
−1∂x∂t

]

=
1

β

[

1 − β

β
t1−2β∂t +

1

β
t2−2β∂2

t

]

. (A.78)

For the differential equation we get:

tβ(2−χ+k)

[

t2β
(

1 − β

β2
t1−2β∂t +

1

β2
t2−2β∂2

t

)

+(2k + 4 − χ)tβ
1

β
t1−β∂t + k(3 − χ+ k) − φmnt

2βχ

]

hmn(x) = 0 . (A.79)

Cancelling out tβ(2−χ+k) and multiplying with β2 gives:

[

t2∂2
t + ((1 − β)t+ (2k + 4 − χ)βt) ∂t + β2k(3 − χ + k) − β2φmnt

2βχ
]

hmn(x) = 0 .

(A.80)
Because of (1 − β) + β(2k + 4 − χ) = 1 + β(2k + 3 − χ), it follows:

[

t2∂2
t + (1 + β(2k + 3 − χ)) t∂t + β2

(

k(3 − χ+ k) − φmnt
2βχ
)]

hmn(x) = 0 .

(A.81)
Now β and k are fixed such that

2k + 3 − χ = 0 ⇐⇒ k =
χ− 3

2
(A.82)

and

2βχ = 2 ⇐⇒ β =
1

χ
. (A.83)
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With

β2k(3 − χ+ k) =
1

χ2

χ− 3

2

(

3 − χ+
χ− 3

2

)

=
1

χ2

(
χ− 3

2

)(
3 − χ

2

)

= −
(

χ− 3

2χ

)2

(A.84)

we get finally



t2∂2
t + t∂t −

(

χ− 3

2χ

)2

− φmn
χ2

t2



hmn(x) = 0 . (A.85)

Define

ν :=
3 − χ

2χ
(A.86)

and

y :=

√
φmn
χ

t =

√
φmn
χ

x
1
β =

√
φmn
χ

xχ . (A.87)

The differential equation now only contains terms with derivatives of the form yn∂ny ,
which are form-invariant if scaling with constant factors:

[

y2∂2
y + y∂y − (ν2 + y2)

]

hmn(y) = 0 . (A.88)

The solutions of these differential equations consist of modified Bessel functions of
the order ν (see [Abramowitz & Stegun 1984] (9.6.1) and Appendix H):

hmn(y) = c1Iν(y) + c2Kν(y) . (A.89)

The back transformations

gmn(x) = xkhmn(y(x)) mit k =
χ− 3

2
und y(x) =

√
φmn
χ

xχ (A.90)

result in

gmn(x) = c1 x
χ−3

2 I 3−χ
2χ

(√
φmn
χ

xχ
)

︸ ︷︷ ︸

=:H1(x)

+c2 x
χ−3

2 K 3−χ
2χ

(√
φmn
χ

xχ
)

︸ ︷︷ ︸

=:H2(x)

. (A.91)
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The Green’s Function

From that we gain Gmn (cf. Eq. (A.68)):

Gmn(x, x0) = − 1

D

{

H1(x)H2(x0) ; 0 ≤ x ≤ x0 <∞
H1(x0)H2(x) ; 0 < x0 ≤ x <∞ (A.92)

with

D = p0(x)(H1H
′

2 −H
′

1H2)
∣
∣
∣
x=x0

, where p0(x) = x4−χ . (A.93)

Calculating the Wronski-determinant (where we introduce z :=

√
φmn

χ
xχ):

D = x4−χ
{

x
−3+χ

2 Iν(z)∂x
[

x
−3+χ

2 Kν(z)
]

− ∂x
[

x
−3+χ

2 Iν(z)
]

x
−3+χ

2 Kν(z)
}

x=x0

= x4−χx
−3+χ

2

{

Iν(z)
[−3 + χ

2
x

−5+χ
2 Kν(z) + x

−3+χ
2

√

φmnx
χ−1K

′

ν(z)
]

−Kν(z)
[−3 + χ

2
x

−5+χ
2 Iν(z) + x

−3+χ
2

√

φmnx
χ−1I

′

ν(z)
]}

x=x0

= x4−χx−3+χ
√

φmnx
χ−1{ Iν(z)K

′

ν − I
′

ν(z)Kν(z)
︸ ︷︷ ︸

=−W{Kν(z),Iν(z)}=− 1
z

cf. [Abramowitz & Stegun 1984] (9.6.15)

}x=x0

= −xχ
√

φmn
χ√
φmn

x−χ
∣
∣
∣
∣
∣
x=x0

= −χ . (A.94)

In the end the resulting solution of the Green’s function is:

Gmn(x, x0) =
1

χ
x
χ−3

2 x
χ−3

2
0







I 3−χ
2χ

(

√
φmn

χ
xχ)K 3−χ

2χ
(

√
φmn

χ
xχ0 ) ; 0 ≤ x ≤ x0 <∞

I 3−χ
2χ

(

√
φmn

χ
xχ0 )K 3−χ

2χ
(

√
φmn

χ
xχ) ; 0 < x0 ≤ x <∞

.

(A.95)

The Complete Solution fmn

The phase space distribution function then is composed as

fmn(x) = Tfα
χ
∫ ∞

0
dx0x

2
0q(x0)Gmn(x, x0) (A.96)

for a given momentum source function q(x0).
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Appendix B

Inserting the Momentum Solution

Into the Differential Equation

In this chapter we insert the momentum solution into the differential
equation to prove its correctness.

The momentum differential equation for the Green’s function for no catastrophic
losses reads (cf. Eq. 4.28):

d

dx

[

x4−χdGmn(x, x0)

dx

]

−
[

φmnx
2+χ

]

Gmn(x, x0) = −δ(x− x0) . (B.1)

In the following we set as abbreviations φ := φmn and G := Gmn.

Restricted to the region 0 ≤ x ≤ x0 we have obtained the following solution:

G(x, x0) =
1

χ
x
χ−3

2 x
χ−3

2
0 I 3−χ

2χ

(√
φxχ

χ

)

K 3−χ
2χ

(√
φxχ0
χ

)

. (B.2)

For checking the correctness we insert the term subsequently into the differential
equation. The calculations are fully analogous for the region x0 ≤ x <∞.

At first we transform the equation to the new variable z by

x =

(

χ · z√
φ

) 1
χ

, (B.3)

which emerges as argument in the Bessel functions.

Herewith G changes to:
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G(z, x0) =
1

χ
x
χ−3

2
0 Kν

(√
φxχ0
χ

)(

χ√
φ

)−ν

z−νIν(z) (B.4)

with the abbreviation

ν :=
3 − χ

2χ
. (B.5)

The differential element transforms via

d

dx
=
dz

dx

d

dz
=
√

φxχ−1 d

dz
=
√

φ

(

χz√
φ

)χ−1
χ d

dz
. (B.6)

For the first term of the differential equation we obtain:

d

dx

[

x4−χdG(x, x0)

dx

]

=
1

χ
x
χ−3

2
0 Kν

(√
φxχ0
χ

)
√

φ

(

χz√
φ

)χ−1
χ

d

dz





(

χz√
φ

) 4−χ
χ √

φ

(

χz√
φ

)χ−1
χ d

dz





(

χ√
φ

)−ν

z−νIν(z)









=
1

χ
x
χ−3

2
0 Kν

(√
φxχ0
χ

)

φ

(

χ√
φ

) 3χ+1
2χ

z
χ−1
χ

d

dz

[

z
3
χ
d

dz

(

z−νIν(z)
)
]

. (B.7)

Now we consider only the z-dependent part.

For its evaluation we need the following two relations (taken from
[Abramowitz & Stegun 1984] (9.6.28)) for the derivatives of the modified Bessel
functions:

(

1

z

d

dz

)k

[zνIν(z)] = zν−kIν−k(z) (B.8)

(

1

z

d

dz

)k [

z−νIν(z)
]

= z−ν−kIν+k(z) . (B.9)

Here each with k = 1:

z
χ−1
χ

d

dz

[

z
3
χ
d

dz

(

z−νIν(z)
)
]
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= z
χ−1
χ

d

dz

[

z
3
χ z−νIν+1(z)

]

= z
χ−1
χ

d

dz

[

zν+1Iν+1(z)
]

= z
χ−1
χ zν+1Iν(z)

= z
3χ+1
2χ Iν(z) . (B.10)

All together we get:

1. term = φ
1

χ
x
χ−3

2
0 Kν

(√
φxχ0
χ

)(

χ√
φ

) 3χ+1
2χ

z
3χ+1
2χ Iν(z) . (B.11)

The 2. term in the differential equation results in:

−φx2+χG(x, x0)

= −φ 1

χ
x
χ−3

2
0 Kν

(√
φxχ0
χ

)(

χz√
φ

) 2+χ
χ
(

χ√
φ

)χ−3
2χ

z−νIν(z)

= −φ 1

χ
x
χ−3

2
0 Kν

(√
φxχ0
χ

)(

χ√
φ

) 3χ+1
2χ

z
3χ+1
2χ Iν(z) . (B.12)

This second term is identical with the first term except for the sign, and the sum of
both yields zero, as it should be.
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Appendix C

Transition From the Solution

With to That Without

Catastrophic Losses

In this chapter the transition of the M-U-solution with catastrophic losses
to the I-K-solution without catastrophic losses is performed.

The momentum Green’s function with catastrophic losses reads (see section 4.2):

G(x, x0) =

(

2
√
φ
) 3
χ
−1

χ
3
χ

Γ
[

3
2χ

+ ψ

2χ
√
φ

]

Γ
[

3
χ

] exp

[

−
√
φ(xχ + xχ0 )

χ

]

×

×







M
(

3
2χ

+ ψ

2χ
√
φ
, 3
χ
,

2
√
φxχ

χ

)

U
(

3
2χ

+ ψ

2χ
√
φ
, 3
χ
,

2
√
φxχ0
χ

)

; 0 ≤ x ≤ x0

U
(

3
2χ

+ ψ

2χ
√
φ
, 3
χ
,

2
√
φxχ

χ

)

M
(

3
2χ

+ ψ

2χ
√
φ
, 3
χ
,

2
√
φxχ0
χ

)

; x0 ≤ x <∞
. (C.1)

U and M are confluent hypergeometric functions and φ := φmn and G := Gmn.

The time scale for catastrophic losses Tc enters into

ψ ∼ Tf
Tc

(C.2)

and if neglecting these, i.e. Tc → ∞:

ψ = 0 . (C.3)

For this case the Green’s function reduces to
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G(x, x0) =

(

2
√
φ
) 3
χ
−1

χ
3
χ

Γ
[

3
2χ

]

Γ
[

3
χ

] exp

[

−
√
φ(xχ + xχ0 )

χ

]







M
(

3
2χ
, 3
χ
,

2
√
φxχ

χ

)

U
(

3
2χ
, 3
χ
,

2
√
φxχ0
χ

)

; 0 ≤ x ≤ x0

U
(

3
2χ
, 3
χ
,

2
√
φxχ

χ

)

M
(

3
2χ
, 3
χ
,

2
√
φxχ0
χ

)

; x0 ≤ x <∞
. (C.4)

According to [Abramowitz & Stegun 1984] (13.6.3):

M
(

ν +
1

2
, 2ν + 1, 2z

)

= Γ(1 + ν)ez
(

1

2
z
)−ν

Iν(z) (C.5)

and [Abramowitz & Stegun 1984] (13.6.21):

U
(

ν +
1

2
, 2ν + 1, 2z

)

=
1√
π
ez (2z)−ν Kν(z) . (C.6)

we get the modified Bessel functions I and K (cf. Appendix H).
For the functions we deal with here we identify

ν +
1

2
=

3

2χ
→ 2ν + 1 =

3

χ
. (C.7)

Thus:

ν =
1

2

(

3

χ
− 1

)

=
3 − χ

2χ
. (C.8)

In addition:

z =

√
φxχ0
χ

resp.

√
φxχ

χ
. (C.9)

C.1 Calculation for the Region 0 ≤ x ≤ x0

M

(

3

2χ
,
3

χ
,
2
√
φxχ

χ

)

= Γ

[

1

2

(

3

χ
+ 1

)]

e

√
φxχ

χ

(

1

2

√
φxχ

χ

)χ−3
2χ

I 3−χ
2χ

(√
φxχ

χ

)

(C.10)

U

(

3

2χ
,
3

χ
,
2
√
φxχ0
χ

)

=
1√
π
e

√
φx
χ
0

χ

(

2

√
φxχ0
χ

)χ−3
2χ

K 3−χ
2χ

(√
φxχ0
χ

)

(C.11)

We get:
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G(x, x0) =

(

2
√
φ
) 3
χ
−1

χ
3
χ

Γ
[

3
2χ

]

Γ
[

3
χ

] e−
√
φ(xχ+x

χ
0

)

χ e

√
φxχ

χ e

√
φx
χ
0

χ
1√
π

Γ

[

1

2

(

3

χ
+ 1

)]

2−
χ−3
2χ 2

χ−3
2χ

(√
φ

χ

)1− 3
χ

x
χ−3

2 x
χ−3

2
0

I 3−χ
2χ

(√
φxχ

χ

)

K 3−χ
2χ

(√
φxχ0
χ

)

=
2

3
χ
−1

χ

1√
π

Γ
[

3
2χ

]

Γ
[

3
χ

] Γ

[

1

2

(

3

χ
+ 1

)]

x
χ−3

2 x
χ−3

2
0

I 3−χ
2χ

(√
φxχ

χ

)

K 3−χ
2χ

(√
φxχ0
χ

)

. (C.12)

According to [Abramowitz & Stegun 1984] (6.1.18) the relation

Γ(2z) =
1√
2π

22z− 1
2 Γ(z)Γ

(

z +
1

2

)

(C.13)

holds and therewith

Γ(z)

Γ(2z)
=

√
2π 2

1
2
−2z

Γ
(

z + 1
2

) (C.14)

where for the case in question z = 3
2χ

, in particular

Γ( 3
2χ

)

Γ( 3
χ
)

=

√
2π 2

1
2
− 3
χ

Γ
(

1
2

(
3
χ

+ 1
)) . (C.15)

Finally we get:

G(x, x0) =
1

χ
x
χ−3

2 x
χ−3

2
0 I 3−χ

2χ

(√
φxχ

χ

)

K 3−χ
2χ

(√
φxχ0
χ

)

. (C.16)

C.2 The Region x0 ≤ x <∞
Because of the symmetry of G(x, x0) in the variables x and x0 an analogous calcu-
lation for the region x0 ≤ x <∞ can be performed.
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Appendix D

The Special Case q = 2 for the

Momentum Differential Equation

We calculate the solution for the momentum differential equation for the
special case q = 2 of the spectral index.

Starting with the differential equation for the momentum Green’s function (4.28)

[

d

dx

(

x4−χ d

dx

)

− (ψx2 + φmnx
2+χ)

]

Gmn(x, x0) = −δ(x− x0) (D.1)

the corresponding homogeneous equation with χ = 0 is

d

dx

[

x4dgmn(x)

dx

]

− x2 [ψ + φmn] gmn(x) = 0 . (D.2)

Set

a := ψ + φmn . (D.3)

Performing the derivatives and cancelling x2 yields:

[

x2 d
2

dx2
+ 4x

d

dx
− a

]

gmn(x) = 0 . (D.4)

The ansatz

gmn(x) = xα (D.5)

provides

α(α− 1)x2xα−2 + 4αxxα−1 − axα = 0 (D.6)
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and we obtain as a condition for α:

α(α− 1) + 4α− a = α2 + 3α− a = 0 (D.7)

with the solutions

α = −3

2
±
√

9

4
+ a . (D.8)

The complete solution for the homogeneous differential equation then reads:

H(x) = c1H1(x) + c2H2(x) (D.9)

wherein c1 and c2 are constants and

H1,2(x) = x−
3
2
±
√

9
4
+a . (D.10)

The Green’s function for the self-adjoint differential equation is generated by

Gmn(x, x0) = − 1

D

{

H1(x)H2(x0) ; 0 ≤ x ≤ x0 <∞
H1(x0)H2(x) ; 0 < x0 ≤ x <∞ (D.11)

where the Wronski determinant is

D = p0(x)(H1(x)H
′

2(x) −H
′

1(x)H2(x))
∣
∣
∣
x=x0

(D.12)

with

p0(x) = x4 . (D.13)

The calculation of the determinant yields

D =







−3

2
−
√

9

4
+ a



x−
3
2
+
√

9
4
+ax−

5
2
−
√

9
4
+a

−


−3

2
+

√

9

4
+ a



x−
3
2
−
√

9
4
+ax−

5
2
+
√

9
4
+a



 x4

= −2

√

9

4
+ a . (D.14)

Finally, we obtain for the Green’s function:

Gmn(x, x0) =
1

2
√

9
4

+ a







x−
3
2
+
√

9
4
+ax

− 3
2
−
√

9
4
+a

0 ; 0 ≤ x ≤ x0 <∞
x−

3
2
−
√

9
4
+ax

− 3
2
+
√

9
4
+a

0 ; 0 < x0 ≤ x <∞
(D.15)
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Gmn(x, x0) =
(xx0)

− 3
2

2
√

9
4

+ ψ + φmn







(x/x0)
√

9
4
+ψ+φmn ; 0 ≤ x ≤ x0 <∞

(x/x0)
−
√

9
4
+ψ+φmn ; 0 < x0 ≤ x ≤ ∞

.

(D.16)
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Appendix E

Power Law Approximations of the

Momentum Solution Without

Catastrophic Losses

We calculate the approximations of the momentum solution of the phase
space distribution function if inserting a power law momentum injection
function for different momentum regions in the case of no catastrophic
losses, that means ψ = 0.

E.1 Momentum Function for a Power Law Source

With the momentum source function

q(x0) = q0x
−β−2
0 (E.1)

for the region xmin < x0 < xmax follows

fmn(x) = q0 Tf α
χ
∫ xmax

xmin
dx0 x

2
0x

−β−2
0 Gmn(x, x0)

= q0 Tf α
χ 1

χ
x
χ−3

2

{

Kν

[(
x

xc

)χ] ∫ x

xmin
dx0 x

−β+χ−3
2

0 Iν

[(
x0

xc

)χ]

+ Iν

[(
x

xc

)χ] ∫ xmax

x
dx0 x

−β+χ−3
2

0 Kν

[(
x0

xc

)χ]}

(E.2)

with the critical momentum
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xc :=

(

χ√
φmn

) 1
χ

∼
(

Tmn
Tf

) 1
2χ

(E.3)

and

ν :=
3 − χ

2χ
. (E.4)

After the substitution

y =
(
x0

x

)χ

→ x0 = xy
1
χ → dx0 =

1

χ
xy

1
χ
−1dy (E.5)

we get

fmn(x) = q0 Tf α
χ 1

χ2
x
χ−3

2

[

Kν(B)
∫ 1

(xminx )
χ
dy x y

1
χ
−1
(

xy
1
χ

)−β+χ−3
2
Iν(By)

+Iν(B)
∫ (xmaxx )

χ

1
dy...Kν(By)

]

= q0 Tf α
χ 1

χ2
xχ−β−2

[

Kν(B)
∫ 1

(xminx )
χ
dy y−

χ+2β+1
2χ Iν(By)

+ Iν(B)
∫ (xmaxx )

χ

1
dy y−

χ+2β+1
2χ Kν(By)

]

=: q0 Tf α
χ 1

χ2
xχ−β−2(J1 + J2) (E.6)

wherein we have defined

B := B(x) =

√
φmnx

χ

χ
=
(
x

xc

)χ

(E.7)

and in a side calculation we used

x1−β+χ−3
2 x

χ−3
2 = xχ−β−2 (E.8)

and

y
1
χ
−1−β

χ
+χ−3

2χ = y
2−2χ−2β+χ−3

2χ = y−
χ+2β+1

2χ . (E.9)
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E.2 Approximations for Different Regions

The asymptotic expansions of the modified Bessel function are required
(see [Abramowitz & Stegun 1984] (9.6.7), (9.7.1), (9.6.9), (9.7.2)):

Iν(z) '






( 1
2
z)
ν

Γ(ν+1)
; for |z| � 1

ez√
2π z

; for |z| � 1
(E.10)

Kν(z) '






1
2
Γ(ν)

(
1
2
z
)−ν

; for |z| � 1
√

π
2z
e−z ; for |z| � 1

. (E.11)

E.2.1 The Case xmin < x < xmax � xc

First, the integral

J1 = Kν(B)
∫ 1

(xminx )
χ
dy y−

χ+2β+1
2χ Iν(By) (E.12)

is approximated.

Here we have

B � 1 and By ∈
[(
xmin
xc

)χ

;B
]

� 1 (E.13)

and the approximations for I and K provide:

J1 ' 1

2
Γ(ν)

(
1

2
B
)−ν ∫ 1

(xminx )
χ
dy y−

χ+2β+1
2χ

(
1
2
By
)ν

Γ(ν + 1)

=
1

2

Γ(ν)

Γ(ν + 1)

∫ 1

(xminx )
χ
dy y−

χ+2β+1−2χν
2χ . (E.14)

With a side calculation

−χ + 2β + 1 − 2χν

2χ
= −χ+ 2β + 1 − 3 + χ

2χ
= −2χ+ 2β − 2

2χ
=

1 − χ− β

χ
(E.15)

and
1 − χ− β

χ
+ 1 =

1 − β

χ
(E.16)

and Γ(ν + 1) = νΓ(ν) follows:
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J1 =
1

2ν

χ

1 − β

[

y
1−β
χ

]1

(xminx )
χ

=
χ2

(3 − χ)(1 − β)

[

1 −
(
xmin
x

)1−β
]

. (E.17)

Thus:

J1 '
χ2

(3 − χ)(β − 1)

[(
x

xmin

)β−1

− 1

]

. (E.18)

Here β − 1 > 0 for the physical values used in this work.

Analogously follows with

By ∈
[

B;
(
xmax
xc

)χ]

� 1 (E.19)

for the second integral:

J2 '
(

1
2
B
)ν

Γ(ν + 1)

∫ (xmaxx )
χ

1
dy y−

χ+2β+1
2χ

1

2
Γ(ν)

(
1

2
By
)−ν

=
1

2ν

∫ (xmaxx )
χ

1
dy y−

χ+2β+1+2νχ
2χ

=
1

2ν

χ

χ− β − 2

[

y
χ−β−2
χ

](xmaxx )
χ

1

=
χ2

(3 − χ)

1

χ− β − 2

[(
xmax
x

)χ−β−2

− 1

]

(E.20)

with the side calculations

−χ + 2β + 1 + 3 − χ

2χ
= −2β + 4

2χ
= −β + 2

χ
(E.21)

and

−β + 2

χ
+ 1 =

χ− β − 2

χ
. (E.22)

Thus:
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J2 '
χ2

(3 − χ)(β + 2 − χ)

[

1 −
(

x

xmax

)2+β−χ
]

. (E.23)

Here 2 + β − χ > 0 with the physical values used in this work.

With these results we get:

fmn(x) ' q0Tfα
χxχ−β−2 1

3 − χ

{

1

β − 1

[(
x

xmin

)β−1

− 1

]

+
1

β + 2 − χ

[

1 −
(

x

xmax

)2+β−χ
]}

=
q0Tfα

χ

(3 − χ)(β − 1)
xχ−β−2

{(
x

xmin

)β−1

− 1 +
β − 1

β + 2 − χ

[

1 −
(

x

xmax

)2+β−χ
]}

=
q0Tfα

χ

(3 − χ)(β − 1)
xχ−β−2

(
x

xmin

)β−1

{

1 −
(
xmin
x

)β−1

+
β − 1

β + 2 − χ

(
xmin
x

)β−1

− β − 1

β + 2 − χ

x3−χxβ−1
min

x2+β−χ
max

}

=
q0Tfα

χ

(3 − χ)(β − 1)
xχ−β−2

(
x

xmin

)β−1

{

1 − 3 − χ

β + 2 − χ

(
xmin
x

)β−1

− β − 1

β + 2 − χ

x3−χxβ−1
min

x2+β−χ
max

}

. (E.24)

(Here we have β−1, 3−χ and β+2−χ > 0 with the physical values used in this work.)

The last two terms can be neglected in comparison to 1 and it remains:

fmn(x) '
q0Tfα

χ

β − 1

1

3 − χ
x1−β
minx

χ−3 . (E.25)

The obtained spectrum is independent of index β of the injection spectrum, i.e. the
momentum diffusion is the dominating effect.

We compare the result with the approximations involving the M and U functions
(cf. Eq. (F.22)):

fmn(x) =
q0Tfα

χ

β − 1

(

2
√
φmn

) 3
χ
−1

χ
3
χ

(
3
χ
− 1

) x1−β
min

(
x

xc

)χ−3

. (E.26)
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With xc =
(

χ

2
√
φmn

) 1
χ

follows:

fmn(x) =
q0Tfα

χ

β − 1
x1−β
minx

χ−3

(

2
√
φmn

) 3
χ
−1

χ
3
χ

(
3
χ
− 1

)

(

χ

2
√
φmn

) 3
χ
−1

=
q0Tfα

χ

β − 1
x1−β
minx

χ−3 1

χ
(

3
χ
− 1

)

=
q0Tfα

χ

β − 1

1

3 − χ
x1−β
minx

χ−3 . (E.27)

E.2.2 The Case xmin < x� xc � xmax

The integral J1 is calculated like in the previous section because here also B � 1
and By � 1 in the considered region.

The second integral is split into two parts:

J2 =
∫ (xcx )

χ

1
dy...+

∫ (xmaxx )
χ

(xcx )
χ

dy... (E.28)

where the approximations for the first term (=: T1) are executed analogously as for
J2 in the previous section

T1 '
χ2

(3 − χ)(β + 2 − χ)

[

1 −
(
x

xc

)2+β−χ
]

. (E.29)

In the second term (=: T2) the I function is approximated for small B and the K

function for large arguments, because By lies in the interval
[

1;
(
xmax
xc

)χ]

.

T2 '
(

1
2
B
)ν

Γ(ν + 1)

∫ (xmaxx )
χ

(xcx )
χ

dy y−
χ+2β+1

2χ

√

π

2By
e−By

=

√
π

Γ(ν + 1)

(
1

2

)ν+ 1
2

Bν− 1
2

∫ (xmaxx )
χ

(xcx )
χ

dy y−
2χ+2β+1

2χ e−By . (E.30)

The substitution

t = By ⇔ y =
t

B
(E.31)

yields:
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T2 '
√
π

Γ(ν + 1)

(
1

2

)ν+ 1
2

Bν− 1
2
−1+ 2χ+2β+1

2χ

∫ (xmaxxc
)
χ

1
dt t−

2χ+2β+1
2χ e−t

=

√
π

Γ(ν + 1)

(
1

2

)ν+ 1
2

B
3−χ−χ−2χ+2χ+2β+1

2χ

∫ (xmaxxc
)
χ

1
dt ...

=

√
π

Γ(ν + 1)

(
1

2

)ν+ 1
2

B
β−χ+2
χ

∫ (xmaxxc
)
χ

1
dt ... . (E.32)

The remaining integral is of incomplete Gamma function type
(cf. [Abramowitz & Stegun 1984] (6.5.3) and Appendix G.1):

Γ(r, x) =
∫ ∞

x
dt e−ttr−1 = Γ(r) −

∫ x

0
dt e−ttr−1 . (E.33)

For two arbitrary boundaries x1 and x2 follows:

∫ x2

x1

dt e−ttr−1 =
∫ x2

0
dt e−ttr−1 −

∫ x1

0
dt e−ttr−1

= Γ(r) − Γ(r, x2) − Γ(r) + Γ(r, x1)

= Γ(r, x1) − Γ(r, x2) . (E.34)

Here

r := 1 +
−2χ− 2β − 1

2χ
= −2β + 1

2χ
= −β + 1

2

χ
=: −δ . (E.35)

Marginal note: this δ corresponds to the δ of the approximation of the M and U
functions for ψ = 0 (cf. Eq. (F.28)), as it should be.

Therewith:

T2 '
√
π

Γ(ν + 1)

(
1

2

)ν+ 1
2

B
β−χ+2
χ

[

Γ
(

−δ,
(
xmax
xc

)χ)

− Γ (−δ, 1)
]

. (E.36)

For large arguments x the incomplete Gamma function changes to (cf. Section G.1):

Γ(r, x) ' xr−1e−x (E.37)

Here
(
xmax
xc

)χ � 1 and the Gamma function is small.

Because B � 1, the term T2 can be neglected in comparison to term T1. With
x� xc it remains like in the first case:
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fmn(x) '
q0Tfα

χ

β − 1

1

3 − χ
x1−β
minx

χ−3 . (E.38)

E.2.3 The Case xmin � xc � x < xmax

First we consider J2:

J2 = Iν(B)
∫ (xmaxx )

χ

1
dy y−

χ+2β+1
2χ Kν(By) . (E.39)

Here B � 1 and By ∈
[

B;
(
xmax
xc

)χ]� 1, so:

J2 ' eB√
2πB

∫ (xmaxx )
χ

1
dy y−

χ+2β+1
2χ

√

π

2By
e−By

=
1

2

eB

B

∫ (xmaxx )
χ

1
dy y−

χ+2β+1
2χ

− 1
2 e−By

=
1

2B
eB
∫ (xmaxx )

χ

1
dy y−

2χ+2β+1
2χ e−By

=
1

2B
j3 (E.40)

with

j3 := eB
∫ (xmaxx )

χ

1
dy y−

2χ+2β+1
2χ e−By

= eB
∫ (xmaxx )

χ−1

0
dt(t+ 1)−

2χ+2β+1
2χ e−Bte−B (E.41)

where we have substituted t = y − 1. The upper integration limit remains positive.

The main contributions of the integral j3 stem from values, for which the argu-
ments of the exponential function Bt � 1, so for t ≤ 1

B
� 1. t can be neglected in

comparison to 1 and it remains an integral up to the upper limit 1
B

:

j3 '
∫ 1

B

0
dt e−Bt

= − 1

B

[

e−1 − 1
]

' 1

B
. (E.42)
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Thus:

J2 '
1

2

1

B2
. (E.43)

J1 is splitted into two intervals. Here B � 1 and By < 1 for the first integral and
By > 1 for the second integral:

J1 = Kν(B)
∫ 1

(xminx )
χ
dy y−

χ+2β+1
2χ Iν(By)

= Kν(B)

{
∫ (xcx )

χ

(xminx )
χ
dy...+

∫ 1

(xcx )
χ
dy...

}

'
√

π

2B
e−B







∫ 1/B

(xminx )
χ
dy y−

χ+2β+1
2χ

(
1
2
By
)ν

Γ(ν + 1)
+
∫ 1

1/B
dy y−

χ+2β+1
2χ

eBy√
2πBy







=

√
π

2B
e−B







(
1
2
B
)ν

Γ(ν + 1)

χ

1 − β

[

y
1−β
χ

](xcx )
χ

(xminx )
χ

+
1√
2πB

∫ 1

1/B
dy y−

2χ+2β+1
2χ eBy







=

√
π

2B
e−B







(
1
2
B
)ν

Γ(ν + 1)

χ

1 − β

[(
xc
x

)1−β
−
(
xmin
x

)1−β
]

+
eB√
2πB

∫ 1−1/B

0
dt (1 − t)−

2χ+2β+1
2χ e−Bt

}

(E.44)

where in the last step first the integration limits were changed and then t = 1 − y
was replaced. With the second integral we proceed as above with j3.

Then we get:

J1 =

√
π

2B
e−B







(
1
2
B
)ν

Γ(ν + 1)

χ

β − 1

(
xmin
x

)1−β
[

1 −
(
xmin
xc

)β−1
]

+
eB√
2πB

1

B






.

(E.45)
Because of eB � 1 it remains in first order only the last term and it follows:

J1 '
1

2

1

B2
' J2 . (E.46)

Thus:



142

fmn(x) ' q0Tfα
χ 1

χ2
xχ−β−2 1

B2
(E.47)

and with B =

√
φmnxχ

χ
:

fmn(x) ' q0Tfα
χ 1

φmn
x−χ−β−2 . (E.48)

This spectrum is steepened by χ in comparison to the injection spectrum. In this
case the acceleration does not play much a role because typically χ < 1.

Comparison with the results for the calculations with the approximations of the
M and U functions (cf. Eq. (F.44)) gives:

fmn(x) ' q0Tfα
χ

4
(

2
√
φmn

) 3
χ
−1

χ
3
χ

+1
xχ+3
c x−(β+2+χ)

= q0Tfα
χ

4
(

2
√
φmn

) 3
χ
−1

χ
3
χ

+1

χ1+ 3
χ

(

2
√
φmn

) 3
χ

+1
x−(β+2+χ)

= q0Tfα
χ

2
3
χ

+1
(√

φmn
)−2

2
3
χ

+1
x−(β+2+χ)

= q0Tfα
χ 1

φmn
x−(β+2+χ) . (E.49)

E.2.4 The Case xc � xmin < x < xmax

In this case By � 1 and B � 1 in both integrals and for J2 one obtains the same
result as in the section above.

For J1 we get:

J1 = Kν(B)
∫ 1

(xminx )
χ
dy y−

χ+2β+1
2χ Iν(By)

'
√

π

2B
e−B

∫ 1

(xminx )
χ
dy y−

χ+2β+1
2χ

eBy√
2πBy

=
e−B

2B

∫ 1

(xminx )
χ
dy y−

2χ+2β+1
2χ eBy . (E.50)
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Now again the integration limits are interchanged and the substitution y = 1 − t is
performed.

In the end we get like in the third case:

J1 '
1

2

1

B2
' J2 (E.51)

and

fmn(x) ' q0Tfα
χ 1

φmn
x−χ−β−2 . (E.52)

E.2.5 The Case xmax < x

In this case only one integral of the Green’s function remains, which is not a function
of x anymore:

fmn(x) = q0Tfα
χ 1

χ
x
χ−3

2 Kν

(
x

xc

)χ ∫ xmax

xmin
dx0 x

−β+χ−3
2

0 Iν

(
x0

xc

)χ

. (E.53)

The shape of the curve depending on x is given by x
χ−3

2 Kν

(
x
xc

)χ
.

For the case x� xc the approximation of K for large arguments reads:

fmn(x) ∼ x
χ−3

2
e−( x

xc
)
χ

(
x
xc

)χ
2

, (E.54)

hence

fmn(x) ∼ x−
3
2 e−( x

xc
)
χ

. (E.55)
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Appendix F

Power Law Approximations of the

Momentum Solution With

Catastrophic Losses

Now we calculate the approximations of the momentum solution of the
phase space distribution function if inserting a power law momentum
injection function for different momentum regions including catastrophic
losses.

F.1 Momentum Function for a Power Law Source

With the momentum source function

q(x0) = q0x
−β−2
0 (F.1)

for the region xmin < x < xmax follows

fmn(x) = q0 Tf α
χ
∫ xmax

xmin
dx0 x

2
0x

−β−2
0 Gmn(x, x0)

= q0 g0 Tf α
χe−

B
2

[

U(a, b, B)
∫ x

xmin
dx0e

−
√
φmnx

χ
0

χ x−β0 M

(

a, b,
2
√
φmn
χ

xχ0

)

+ M(a, b, B)
∫ xmax

x
dx0e

−
√
φmnx

χ
0

χ x−β0 U

(

a, b,
2
√
φmn
χ

xχ0

)]

(F.2)

with
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g0 :=
(2
√
φmn)

3
χ
−1

χ
3
χ

Γ(a)

Γ(b)
(F.3)

a :=
3

2χ
+

ψ

2χ
√
φmn

(F.4)

b :=
3

χ
(F.5)

B := B(x) =
2
√
φmnx

χ

χ
=
(
x

xc

)χ

(F.6)

xc :=

(

χ

2
√
φmn

) 1
χ

. (F.7)

After the substitution

y =
(
x0

x

)χ

→ x0 = xy
1
χ → dx0 =

1

χ
xy

1
χ
−1dy (F.8)

we get

fmn(x) = q0 g0 Tf α
χ 1

χ
e−

B
2

[

U(a, b, B)
∫ 1

(xminx )
χ
dyxy

1
χ
−1x−βy−

β
χ e−

By
2 M(a, b, By)

+M(a, b, B)
∫ (xmaxx )

χ

1
dy...U(a, b, By)

]

= q0 g0 Tf α
χ 1

χ
x1−βe−

B
2

[

U(a, b, B)
∫ 1

(xminx )
χ
dyy

1−β−χ
χ e−

By
2 M(a, b, By)

+M(a, b, B)
∫ (xmaxx )

χ

1
dyy

1−β−χ
χ e−

By
2 U(a, b, By)

]

=: q0 g0 Tf α
χ 1

χ
x1−βe−

B
2 (J1 + J2) . (F.9)

F.2 Approximations for Different Regions

The asymptotic expansions of the confluent hypergeometric functions are required
(see [Abramowitz & Stegun 1984] (13.5.1), (13.5.2), (13.5.5), (13.5.6)):

M(a, b, z) '
{

1 ; for |z| � 1
Γ(b)
Γ(a)

za−bez ; for |z| � 1
(F.10)
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U(a, b, z) '
{

Γ(b−1)
Γ(a)

z1−b ; for|z| � 1

z−a ; for|z| � 1
. (F.11)

F.2.1 The Case xmin < x < xmax � xc

First the integral

J1 = U(a, b, B)
∫ 1

(xminx )
χ
dy y

1−β−χ
χ e−

By
2 M(a, b, By) (F.12)

is approximated.

Here we have

B � 1 and By ∈
[(
xmin
xc

)χ

;B
]

� 1 (F.13)

and the approximations for M and U as well as e−
By
2 ≈ 1 provide:

J1 ' Γ(b− 1)

Γ(a)
B1−b

∫ 1

(xminx )
χ
dy y

1−β−χ
χ

=
Γ(b− 1)

Γ(a)
B1−b

[

χ

1 − β
y

1−β−χ
χ

+1

]1

(xminx )
χ

=
Γ(b− 1)

Γ(a)
B1−b χ

1 − β

[

1 −
(
xmin
x

)1−β
]

. (F.14)

Thus:

J1 =
χ

β − 1

Γ(b− 1)

Γ(a)

(
x

xc

)χ−3
[(

x

xmin

)β−1

− 1

]

. (F.15)

Here β − 1 > 0 for the physical values used in this work.

Analogously follows with

By ∈
[

B;
(
xmax
xc

)χ]

� 1 (F.16)

and again e−
By
2 ≈ 1 for the second integral:
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J2 = M(a, b, B)
∫ (xmaxx )

χ

1
dy y

1−β−χ
χ e−

By
2 U(a, b, By)

' Γ(b− 1)

Γ(a)

∫ (xmaxx )
χ

1
dy y

1−β−χ
χ (By)1−b

=
Γ(b− 1)

Γ(a)
B1−b

∫ (xmaxx )
χ

1
dy y

1−β−χ+χ−bχ
χ

=
Γ(b− 1)

Γ(a)
B1−b

∫ (xmaxx )
χ

1
dy y−

β+2
χ

=
Γ(b− 1)

Γ(a)

(
x

xc

)χ−3
[

χ

χ− β − 2
y
χ−β−2
χ

](xmaxx )
χ

1

(F.17)

J2 =
χ

β + 2 − χ

Γ(b− 1)

Γ(a)

(
x

xc

)χ−3
[

1 −
(

x

xmax

)β+2−χ
]

. (F.18)

Here β + 2 − χ > 0 for the physical values used in this work.

With these results we get (here also with e−
B
2 ≈ 1):

fmn(x) ' q0Tfα
χ

χ

(2
√
φmn)

3
χ
−1

χ
3
χ

Γ(a)

Γ(b)
x1−β Γ(b− 1)

Γ(a)

(
x

xc

)χ−3 χ

β − 1
[(

x

xmin

)β−1

− 1 +
β − 1

β + 2 − χ

(

1 −
(

x

xmax

)β+2−χ
)]

. (F.19)

With

Γ(a)

Γ(b)

Γ(b− 1)

Γ(a)
=

1

b− 1
=

1
3
χ
− 1

(F.20)

follows:

fmn(x) =
q0Tfα

χ

β − 1

(2
√
φmn)

3
χ
−1

χ
3
χ

(
3
χ
− 1

)

(
x

xc

)χ−3

x1−β
(

x

xmin

)β−1

[

1 −
(
xmin
x

)β−1

+
β − 1

β + 2 − χ

(
xmin
x

)β−1

− β − 1

β + 2 − χ

x3−χxβ−1
min

xβ+2−χ
max

]
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=
q0Tfα

χ

β − 1

(2
√
φmn)

3
χ
−1

χ
3
χ

(
3
χ
− 1

)

(
x

xc

)χ−3

x1−β
min

[

1 − 3 − χ

β + 2 − χ

(
xmin
x

)β−1

− β − 1

β + 2 − χ

x3−χxβ−1
min

xβ+2−χ
max

]

. (F.21)

(Here we have β − 1, 3 − χ and β + 2 − χ > 0 for the physical parameters used in
this work.)

The last two terms can be neglected in comparison to 1 and it remains:

fmn(x) '
q0Tfα

χ

β − 1

(2
√
φmn)

3
χ
−1

χ
3
χ

(
3
χ
− 1

) x1−β
min

(
x

xc

)χ−3

. (F.22)

F.2.2 The Case xmin < x� xc � xmax

The integral J1 is calculated like in the previous section because here also B � 1
and By � 1 in the considered region.

The second integral is split into two parts:

J2 =
∫ (xcx )

χ

1
dy...+

∫ (xmaxx )
χ

(xcx )
χ

dy... (F.23)

where the approximations for the first term (=: T1) are executed analogously as for
J2 in the previous section:

T1 '
χ

β + 2 − χ

Γ(b− 1)

Γ(a)

(
x

xc

)χ−3
[

1 −
(
x

xc

)β+2−χ
]

. (F.24)

In the second term (=: T2) the M function is approximated for small B and the U

function for large arguments, because By lies in the interval
[

1;
(
xmax
xc

)χ]

:

T2 ' B−a
∫ (xmaxx )

χ

(xcx )
χ

dy y
1−β−χ−aχ

χ e−
By
2 . (F.25)

The substitution

t =
By

2
⇔ y =

2t

B
(F.26)

yields:
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T2 = 2B−a−1
∫ 1

2(
xmax
xc

)
χ

1
2

dt
(

2t

B

) 1−β−χ−aχ
χ

e−t

= 2
χ+1−β−χ−aχ

χ B
−aχ−χ−1+β+χ+aχ

χ

∫ 1
2(

xmax
xc

)
χ

1
2

dt t
1−β−χ−aχ

χ e−t

= 2
1−β−aχ

χ B
β−1
χ

∫

dt...

= 2−δ
(
x

xc

)β−1 ∫

dt... (F.27)

with

δ :=
β + aχ− 1

χ
=
β + 3

2
+ ψ

2
√
φmn

− 1

χ
=
β + 1

2
+ ψ

2
√
φmn

χ
. (F.28)

The remaining integral is of incomplete Gamma function type
([Abramowitz & Stegun 1984] (6.5.3) and Appendix G.1):

Γ(r, x) =
∫ ∞

x
dt e−ttr−1 = Γ(r) −

∫ x

0
dt e−ttr−1 . (F.29)

For two arbitrary boundaries x1 and x2 follows:

∫ x2

x1

dt e−ttr−1 =
∫ x2

0
dt e−ttr−1 −

∫ x1

0
dt e−ttr−1

= Γ(r) − Γ(r, x2) − Γ(r) + Γ(r, x1)

= Γ(r, x1) − Γ(r, x2) . (F.30)

Here

r − 1 :=
1 − β − χ− aχ

χ
→ r = −δ . (F.31)

Therewith:

T2 = 2−δ
(
x

xc

)β−1 [

Γ
(

−δ, 1
2

(
xmax
xc

)χ)

− Γ
(

−δ, 1
2

)]

. (F.32)

Altogether:
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J2 =
χ

β + 2 − χ

Γ(b− 1)

Γ(a)

(
x

xc

)χ−3
{

1 −
(
x

xc

)β+2−χ

+ 2−δ
Γ(a)

Γ(b− 1)

β + 2 − χ

χ

(
x

xc

)β+2−χ

[

Γ
(

−δ, 1
2

(
xmax
xc

)χ)

− Γ
(

−δ, 1
2

)]}

. (F.33)

For large arguments x the incomplete Gamma function changes to (cf. Section G.1):

Γ(r, x) ' xr−1e−x . (F.34)

Here
(
xmax
xc

)χ � 1 and the Gamma function is small. Because
(
x
xc

)

� 1, we can
neglect the last three terms in comparison to 1.

It remains like in the first case:

fmn(x) '
q0Tfα

χ

β − 1

(2
√
φmn)

3
χ
−1

χ
3
χ

(
3
χ
− 1

) x1−β
min

(
x

xc

)χ−3

. (F.35)

F.2.3 The Case xmin � xc � x < xmax

First we consider J2:

J2 = M(a, b, B)
∫ (xmaxx )

χ

1
dy y

1−β−χ
χ e−

By
2 U(a, b, By) . (F.36)

Here B � 1 and By ∈
[

B;
(
xmax
xc

)χ]� 1, so:

J2 ' Γ(b)

Γ(a)
Ba−beB

∫ (xmaxx )
χ

1
dy y

1−β−χ
χ e−

By
2 (By)−a

=
Γ(b)

Γ(a)
B−be

B
2 j3 (F.37)

with

j3 := e
B
2

∫ (xmaxx )
χ

1
dy y

1−β−χ−aχ
χ e−

By
2

= e
B
2

∫ (xmaxx )
χ−1

0
dt (t+ 1)

1−β−χ−aχ
χ e−

Bt
2 e−

B
2 (F.38)
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where we have substituted t = y − 1. The upper integration limit remains positive.

The main contributions of the integral j3 stem from values, for which the argu-
ments of the exponential function Bt

2
� 1, so for t ≤ 2

B
� 1. t can be neglected in

comparison to 1 and it remains an integral up to the upper limit 2
B

:

j3 '
∫ 2

B

0
dt e−

Bt
2

= − 2

B

[

e−1 − 1
]

' 2

B
. (F.39)

Thus:

J2 = 2
Γ(b)

Γ(a)
B−b−1e

B
2 . (F.40)

J1 is splitted in two intervals. Here B � 1 and By < 1 for the first integral and
By > 1 for the second integral:

J1 = U(a, b, B)
∫ 1

(xminx )
χ
dy y

1−β−χ
χ e−

By
2 M(a, b, By)

' B−a
{
∫ (xcx )

χ
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χ
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χ
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χ
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χ e−
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2 eByya−b

}
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{

χ
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x

)1−β
−
(
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x

)1−β
]

+
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Γ(a)
Ba−b

∫ 1

(xcx )
χ
dy y

1−β+(a−b−1)χ
χ e

By
2

}

= B−a
{

χ

β − 1

(
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x

)1−β
[

1 −
(
xmin
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)β−1
]

+
Γ(b)

Γ(a)
Ba−be

B
2

∫ 1−(xcx )
χ

0
dt (1 − t)

1−β+(a−b−1)χ
χ e−

Bt
2

}

(F.41)

where in the last step first the integration limits were changed and then t = 1 − y
was replaced. With the second integral we proceed as above with j3.
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Then we get:

J1 ' B−a
{

χ

β − 1

(
xmin
x

)1−β
[

1 −
(
xmin
xc

)β−1
]

+ 2
Γ(b)

Γ(a)
Ba−b−1e

B
2

}

. (F.42)

Because of e
B
2 � 1 it remains in first order only the last term and it follows:

J1 ' 2
Γ(b)

Γ(a)
B−b−1e

B
2 ' J2 . (F.43)

Thus:

fmn(x) '
4q0Tfα

χ(2
√
φmn)

3
χ
−1

χ
3
χ

+1
xχ+3
c x−(β+2+χ) . (F.44)

F.2.4 The Case xc � xmin < x < xmax

In this case By � 1 and B � 1 in both integrals and for J2 one obtains the same
result as in the section above.

For J1 we get:

J1 ' B−a Γ(b)

Γ(a)

∫ 1

(xminx )
χ
dy y

1−β−χ
χ e−

By
2 (By)a−beBy

=
Γ(b)

Γ(a)
B−b

∫ 1

(xminx )
χ
dy y

1−β−χ+(a−b)χ
χ e

By
2 . (F.45)

Now again the integration limits are interchanged and the substitution y = 1 − t is
performed.

In the end we get like in the third case:

J1 ' 2
Γ(b)

Γ(a)
B−b−1e

B
2 ' J2 (F.46)
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and

fmn(x) '
4q0Tfα

χ(2
√
φmn)

3
χ
−1

χ
3
χ

+1
xχ+3
c x−(β+2+χ) . (F.47)

F.2.5 The Case xmax < x

In this case only one integral of the Green’s function remains, which is not a function
of x anymore:

fmn(x) = q0Tfg0α
χe−

B
2 U(a, b, B)

∫ xmax

xmin
dx0 e

−
√
φmnx

χ
0

χ x−β0 M

(

a, b,
2
√
φmn
χ

xχ0

)

.

(F.48)

The shape of the curve depending on x is given by e−
B
2 U(a, b, B).

For the case x� xc the approximation of U for large arguments reads:

fmn(x) ∼ e−
B
2 B−a , (F.49)

hence

fmn(x) ∼ e−
1
2(

x
xc

)
χ

x
− 3

2
+ ψ

2
√
φmn . (F.50)



Appendix G

The Gamma Function

We recall the Gamma function and some of its properties.

The Gamma function for positive arguments can be defined by Euler’s integral (see
[Abramowitz & Stegun 1984] (6.1.1)):

Γ(x) =
∫ ∞

0
dt tz−1e−t (G.1)
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Figure G.1: Plot of the Gamma function.

Omitting the poles of the Gamma function for x = 0,−1,−2, ... (cf. Fig. G.1),
Euler’s formula is also useful (see [Abramowitz & Stegun 1984] (6.1.2)):

Γ(x) = lim
n→∞

n!nx

x(x+ 1)...(x+ n)
(G.2)
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Γ is a continuation of the faculty to real arguments, so for natural numbers the
Gamma function is shortly

Γ(n+ 1) = n! (G.3)

The following recurrence formula often is useful:

Γ(x+ 1) = xΓ(x) (G.4)

and another formula holds:

Γ(x)Γ(1 − x) = −xΓ(−x)Γ(x) = π csc(πx) (G.5)

An asymptotic expansion for x→ ∞ is represented by the famous Stirling’s formula:

Γ(x) ≈ e−xxx−
1
2

√
2π
(

1 +
1

12x
+ ...

)

(G.6)

The Gamma function is connected to Pochhammer’s symbol by

(x)n = x(x+ 1)(x+ 2)...(x+ n− 1) =
Γ(x+ n)

Γ(x)
(G.7)

G.1 Incomplete Gamma Functions

The Gamma function is the sum of the two incomplete Gamma functions

Γ(α) = γ(α, x) + Γ(α, x) (G.8)

with

γ(α, x) :=
∫ x

0
dt tα−1 exp(−t) , α > 0 (G.9)

and

Γ(α, x) :=
∫ ∞

x
dt tα−1 exp(−t) (G.10)

For large arguments we get an asymptotic expansion according to
[Abramowitz & Stegun 1984] (6.5.32):

Γ(α, x) ≈ xα−1e−x
(

1 +
α− 1

x
+

(α− 1)(α− 2)

x2
+ ...

)

(G.11)



Appendix H

The Modified Bessel Functions

We give formulas for the modified Bessel functions and draw some graphs
to illustrate their behaviour.

The Bessel functions I(z) and K(z) are independent solutions of a differential equa-
tion of the form

z2d
2f(z)

dz2
+ z

df(z)

dz
− (z2 + ν2)f(z) = 0 (H.1)

with z and ν in general being complex variables.

Series representations are (cf. [Abramowitz & Stegun 1984] (9.6.10) and (9.6.11))

Iν(z) =
(

1

2
z
)ν ∞∑

k=0

(
1
4
z2
)k

k! Γ(ν + k + 1)
(H.2)

and

Kn(z) =
1

2

(
1

2
z
)−n n−1∑

k=0

(n− k − 1)!

k!

(

−1

4
z2
)k

+ (−1)n+1 ln
(

1

2
z
)

In(z)(H.3)

+(−1)n
1

2

(
1

2
z
)n ∞∑

k=0

(ψ(k + 1) + ψ(n+ k + 1))
(1

4
z2)k

k!(n + k)!

only for integer numbers n. Here ψ is the Digamma function

ψ(z) := Γ′(z)/Γ(z) (H.4)

where we refer to the Gamma function in Appendix G.
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Some integral representations can also be found in [Abramowitz & Stegun 1984]
(9.6.18, 9.6.23):

Iν(z) =
(1

2
z)ν√

πΓ(ν + 1
2
)

∫ π

0
dθ exp(±z cos θ) sin2ν θ (H.5)

=
(1

2
z)ν√

πΓ(ν + 1
2
)

∫ 1

−1
dt (1 − t2)ν−

1
2 exp(±zt) (H.6)

(Re(ν) > −1

2
)

Kν(z) =

√
π(1

2
z)ν

Γ(ν + 1
2
)

∫ ∞

0
dt exp(−z cosh t) sinh2ν t (H.7)

=

√
π(1

2
z)ν

Γ(ν + 1
2
)

∫ ∞

1
dt exp(−zt)(t2 − 1)ν−

1
2 (H.8)

(Re(ν) > −1

2
, |argz| < 1

2
π)

The real I-functions approach infinity as x→ ∞, and the real K-functions converge
to zero for x→ ∞ and have poles at x = 0.
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Figure H.1: The modified Bessel
function I for different
parameters. Black:
I1(x), blue: I2(x),
green: I3(x), red:
I4(x).
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Figure H.2: The modified Bessel
function K for differ-
ent parameters. Black:
K1(x), blue: K2(x),
green: K3(x), red:
K4(x).
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Index of Variables and Functions

Symbol Explanation
a = ψ + φmn (for the case q = 2)

a = 3
2χ

+ ψ

2χ
√
φmn

, parameter of the confluent

hypergeometric functions M and U
a, b, c, zk parameters of the realistic spatial source

function
(a)n Pochhammer’s symbol
A atomic number
A1, A2 = A2(p) momentum diffusion coefficients
An, Am normalization factors for tn(r) and tm(z), re-

spectively
α = A/Z

α = −3
2
±
√

9
4

+ a (for the case q = 2)

α2
mn = α2

m + α2
n = λ2

mn

κ0

b = 3
χ
, parameter of the confluent hypergeo-

metric functions M and U

B(x) =
(
x
xc

)χ

~B(t, ~x) magnetic field

δ ~B(t, ~x), δB magnetic turbulence
B0 background magnetic field
β spectral index of the momentum power law

source spectrum
β free parameter for determination of the mo-

mentum solution without catastrophic losses,
β = 1

χ

c velocity of light
cmn coefficients of the eigenfunction sum for f
χ χ = 2 − q
D determinant
D diffusion coefficient in wave number space
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Dxσxν 25 Fokker-Planck coefficients
D(p̃) = A2(p)/A

2

D1 D(p̃) = D1α
q−2p̃q

δ = −r (r: substitution variable)
δmn, δ(x− x0) discrete and continuous Delta function
e electron charge number
E energy
Emax maximum energy of the particles in a super-

nova shockfront
~E(t, ~x) electric field

δ ~E(t, ~x) electric turbulence
ε charge sign
η(q) parameter in the spatial and momentum dif-

fusion coefficients

f̃ phase space density
fj(t, ~x,~v) phase space distribution function for a parti-

cle j
fa(t, ~x,~v) phase space distribution function for parti-

cles of species a
fa(t, ~x, ~p) relativistic phase space distribution function

for a particle of species a
f(t, ~x, p) isotropic phase space distribution function
fmn(x) = (mpc)

3Fmn(p̃)
δfa(t, ~x, ~p) fa(t, ~x, ~p) − Fa(t, ~x, ~p)
~F flux in wave number space
F (p, u) momentum function separated by the scat-

tering time method
Fa(t, ~x, ~p) < fa(t, ~x, ~p) >
~F force
Fmn(p̃) = A3Nmn(p)
gσ generalized force term
gmn(x) momentum solution with q(x) = 0
Gmn(x, x0) Green’s function
γ Lorentz factor
γ spectral index
γ(α, x) =

∫ x
0 dt t

α−1 exp(−t), incomplete Gamma
function

Gammai damping or growing rate of the waves
Γ(x) Gamma function
Γ(α, x) =

∫∞
x dt tα−1 exp(−t), incomplete Gamma

function
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hmn(x) gmn(x) = xkhmn(x); hmn(y) = c1Iν(y) +
c2Kν(y)

H half-height of the galactic halo
H(x), H1(x), H2(x) solutions of the homogeneous momentum dif-

ferential equation
H(1)
ν (x), H(2)

ν (x) Hankel functions
Iν(x) modified Bessel function of order ν
j3 integral: J2 ' J2(j3)
~j(t, ~x) current of particles
~J(t, ~x) current density
J1, J2 integrals for the power law approximations of

the momentum solution
Jν(x) Bessel function of first kind
k free parameter for determination of the mo-

mentum solution without catastrophic losses,
k = χ−3

2

kmin minimum wave number of turbulence
Kν(x) modified Bessel function of order ν
K1 κ0κ(p̃) = K1(αp̃)

2−q

κzz = κ0κ(p), κXX , κXY , κY Y , κY X spatial diffusion coefficients
L radius of the galaxy halo
Lc.r. luminosity of hadronic cosmic rays
Lc.r.,� cosmic ray luminosity of the sun
L~x spatial operator
Lp momentum operator
λ path length of cosmic rays
λmn eigenvalue of the eigenfunction sum for f
m summation index
mmax maximum summation index
m,m0, mp, me mass, rest mass, proton mass, electron mass
Mg galactic gas mass
MG mass of the galaxy
M� solar mass
M(a, b, x) confluent hypergeometric function
Mµ,ν(x) Whittaker function
µ pitch angle
n summation index
nmax maximum summation index
n particle density
ne electron density
n(t, ~x) particle density
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Nmn(p) momentum functions of the eigenfunction
sum for f

ν = 3−χ
2χ

Ω gyrofrequency
ω2
mn = κ0α

2
mn

ṗ(p, ~x) momentum loss rate
~p, p = |~p| momentum
pIM , pTOA momentum of the galactic cosmic rays in the

interstellar medium resp. at the top of the
atmosphere

Pesc escape probability
P−ν
µ (x) associated Legendre functions of the first

kind
φ azimuth angle of momentum

φmn or only φ =
Tf
Tlm

α2(2−q)

φSM solar modulation parameter
ΦIM ,ΦTOA flux of the galactic cosmic rays in the inter-

stellar medium and at the top of the atmo-
sphere, respectively

ψ =
Tf
Tc
α2−q

q electric charge
q power law index of the wave number distri-

bution of the turbulence spectrum
q(x) = (mpc)

3Q(p̃); momentum source function
q0 normalization factor for q(x)
Q1(~x), Q2(p) source functions, separated in space and mo-

mentum: S(~x, p) = Q1(~x)Q2(p)
Q1,0 normalization factor of the spatial source dis-

tribution
Q(p̃) = A3Q2(p)
r radial spatial coordinate

r substitution variable r = −β+ 1
2

χ
for the power

law approximations of the momentum solu-
tion

r0 radius of the spatial source distribution
rg gyroradius
rs radius of the position of the solar system in

the realistic spatial source function
R rigidity
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~R spatial vector of the guiding center of gyro-
rotating particle with coordinates X, Y , Z

ρ gas density
ρ(t, ~x) charge density
S(t, ~x, ~p), Sa(t, ~x, ~p) source function (of species a)
Si(k) injection or sink term in wave number space
σ dispersion parameter of the dispersive mo-

mentum source function
t time

t = t(x) momentum transformation variable: t = x
1
β

tc.r. lifetime of hadronic cosmic rays
te lifetime of cosmic ray electrons
tmn(~x) = tm(z)tn(r) spatial functions of the eigenfunction sum for

f
T (~x, u) spatial function separated by the scattering

time method
T1, T2 J2 = T1 + T2

Tesc escape time of the galactic cosmic rays from
the galaxy

Tc catastrophic loss time
Tf momentum diffusion time scale
Tmn spatial diffusion time scale
τs(k) spectral energy transfer time scale
θ spherical angle of momentum
U(a, b, x) confluent hypergeometric function
UB energy density of the magnetic field
~v velocity vector
V cosmic ray bulk speed
va Alfvén velocity
wc.r. energy density of hadronic cosmic rays
we energy density of cosmic ray electrons
Wc.r. total energy of hadronic cosmic rays
We total energy of cosmic ray electrons

Wi(~k) spectral density of wave mode i
Wi(k) isotropic spectral density of wave mode i
Wµ,ν(x) Whittaker function
x dimensionless momentum variable x =

p̃/(mpc)
xmin, xmax minimum and maximum momentum variable
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xc characteristic momentum: xc =
(

χ√
φmn

) 1
χ

for ψ = 0 and xc =
(

χ

2
√
φmn

) 1
χ

for ψ 6= 0

xσ coordinates (p, µ, φ,X, Y, Z)
~x space vector with coordinates x, y, z
ξ fraction of energy

y = y(x) = φmn
χ
xχ

yn zeros of Bessel function J0

Yν(x) Bessel function of second kind
z z spatial coordinate

z = z(x) = φmn
χ
xχ

z0 z-coordinate of the spatial source distribu-
tion

Z charge number
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