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The cover illustration shows space-time plots of the modeled temperature distribution along a
magnetic loop in the solar corona. The damping length, H,,, of the energy dissipation in the
loop controls the onset of thermal instabilities. Regions of cool, dense plasma result from these
catastrophic cooling events and propagate towards the footpoints of the loop, seen as dark lanes
in the temperature plots. The left and right footpoints of the loop are located at = = 0 Mm and
z = 100 Mm, respectively.
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Abstract

Satellite observations with high spatial and temporal resolution have revealed the highly dynamic
nature of the solar corona and enabled us to study physical processes in the outer atmosphere of our
mother star in great detail. This thesis deals with dynamic processes in coronal loops, i.e. magnetic
structures which may be thought of as the elementary building blocks of the solar corona. Using
computational fluid dynamics as a tool, | calculate time-dependent models of solar coronal loops
in order to address the following questions: Are dynamic processes in coronal loops, such as flows
and transient brightenings, necessarily the result of a time-dependent driving mechanism? Can
various observations of fast downflows be explained by a common mechanism? Which parameters
determine the dynamics of coronal loops?

It is found that coronal loops which are predominantly heated around their footpoints can de-
velop a thermal instability in the upper part of the loop. This instability results in a self-amplifying
“catastrophic cooling” process and leads to the formation of dense, cool plasma condensations.
The first part of the work focuses on plasma condensations in short cool loops, which presumably
constitute the solar transition region, and describes how the catastrophic cooling process leads
to transient brightenings in spectral lines formed in the transition region. In the second part of
the work, the model is extended to larger coronal loops, and the conclusion is reached that the
damping length of the energy dissipation acts as a control parameter of this non-linear system.
While a long damping length results in stable, static loops, damping lengths below a critical value
give rise to a dynamic evolution. The dynamic evolution can be understood on the basis of an
evaporation-condensation cycle: Plasma is first evaporated by coronal heating from the cool and
dense chromosphere into the corona, then condenses in the coronal part of the loop as a result of
thermal instability, drains towards the footpoints of the loop and finally evaporates again. When
applying the catastrophic cooling scenario to long active region loops, | find that the draining pro-
cess is accompanied by fast downflows which can reach flow speeds of up to several 100 km/s.
Also the proper motions of the dense plasma blobs themselves are of the order of 100 km/s, which
offers an explanation for the recent observations of moving bright blobs in coronal loops.

In contrast to earlier models it is suggested that the process of catastrophic cooling does not
have to be initiated by a drastic decrease of the total loop heating but rather results from a loss of
equilibrium at the loop apex as a natural consequence of footpoint-centered heating which can be
constant in time. To obtain a broader picture, a parameter study is carried out which describes the
evolution of coronal loops as a function of different lengths, heating rates and damping lengths. A
connection between the thermal instability in coronal loops and global relaxation oscillations of
stellar coronae is pointed out.



2 Abstract

Zusammenfassung

Satellitenbeobachtungen mit hoher rdumlicher und zeitlicher Auflésung zeigen die dynamische
Natur der Sonnenkorona und ermdglichen uns, physikalische Prozesse in der duleren Atmosphére
der Sonne mit grofRer Genauigkeit zu untersuchen. Die vorliegende Arbeit beschaftigt sich mit
dynamischen Prozessen in koronalen Bogen, d.h. magnetischen Strukturen, die einen wichti-
gen Bestandteil der Sonnenkorona bilden. Zeitabhdngige numerische Modelle koronaler Bogen
werden berechnet, um die folgenden Fragen zu beantworten: \erlangen dynamische Prozesse
in koronalen Bégen, wie z.B. Strdmungen und kurzzeitige Helligkeitsvariationen, notwendiger-
weise nach einem externen Antriebsmechanismus? Konnen unterschiedliche Beobachtungen von
schnellen Abstromungen in koronalen Bdgen mit einem einzigen Mechanismus erkldrt werden?
Welche Parameter bestimmen die Dynamik koronaler Bogen?

Es zeigt sich, dass koronale Bégen, die vorwiegend in der Nahe der FuBpunkte geheizt werden
(worauf sowohl Beobachtungen als auch theoretische Uberlegungen hindeuten) eine thermische
Instabilitdt im oberen Teil des Bogens entwickeln konnen. Diese Instabilitdt hat einen selbstver-
starkenden Kuhlungsprozess (,,catastrophic cooling”) zur Folge, der zur Bildung dichter, kiihler
Plasmakondensationen fiihrt. Der erste Teil dieser Arbeit beschéftigt sich mit Plasmakondensa-
tionen in kleinen magnetischen Bdgen relativ niedriger Temperatur, aus denen sich vermutlich
die solare Ubergangsregion zusammensetzt, und beschreibt, wie der drastische Kiihlungsprozess
zu starken Helligkeitsvariationen in Spektrallinien der Ubergangsregion fiihrt. Im zweiten Teil
der Arbeit werden Modelle fur langere koronale Bogen vorgestellt, die zeigen, dass die Damp-
fungslénge der Energiedissipation im Bogen einen Kontrollparameter dieses nichtlinearen Sys-
tems darstellt. Wahrend eine grofie Dampfungslange stabile, statische Bdgen liefert, fiihren Damp-
fungsléngen unterhalb einer kritischen Schwelle zu einer dynamischen Entwicklung. Diese kann
auf der Basis eines Evaporations-Kondensations-Zyklus verstanden werden: Plasma wird zuerst
durch einen koronalen Heizungsmechanismus von der kiihlen, dichten Chromosphére in die Ko-
rona verdampft, kondensiert dann im koronalen Teil des Bogens in Folge thermischer Instabilitat,
fliet zu den FuBRpunkten des Bogens ab und verdampft schlieRich erneut. Eine Anwendung des
,,catastrophic cooling“-Modells auf lange Bdgen aktiver Regionen zeigt, dass beim Abstrémen
des Plasmas Geschwindigkeiten von mehreren 100 km/s erreicht werden und auch die dichten
Plasmawolken selbst sich mit Geschwindigkeiten von bis zu 100 km/s bewegen. Dies liefert eine
Erklarung fur Beobachtungen von wandernden hellen Strukturen und schnellen Abstromungen in
koronalen Bogen.

Im Gegensatz zu friiheren Modellen legt diese Arbeit nahe, dass der selbstverstarkende Kiih-
lungsprozess nicht durch eine drastische Verringerung der Heizung eines koronalen Bogens an-
getrieben werden muss, sondern vielmehr aus einer thermischen Instabilitdt des Bogens resul-
tiert. Dies ist die naturliche Konsequenz eines vorrangig im unteren Teil des Bogens wirkenden
Heizungsmechanismus, der nicht zeitabhangig sein muss. Um die verschiedenen L&sungsregime
zu lokalisieren, wurde eine Parameterstudie durchgefiihrt, die die Entwicklung koronaler Bogen
in Abhédngigkeit ihrer Ldnge, Heizungsrate und Dampfungslédnge beschreibt. Dabei wird eine
Verbindung zwischen der thermischen Instabilitat in koronalen Bégen und globalen Relaxations-
oszillationen in stellaren Koronen aufgezeigt.



Resymé

Satellittobservasjoner med hgy rom- og tidsopplgsning har avslgrt solkoronaens dynamiske natur,
og har gjort det mulig & studere de fysiske prosessene i solas ytre atmosfeere med hgy presisjon.
Dette arbeidet omhandler de dynamiske prosessene i koronalgkker, d.v.s. magnetiske strukturer
som er en viktig bestanddel av solkoronaen. Tidsavhengige numeriske modeller av koronalgkker
beregnes for & gi svar pa de fglgende sparsmal: Krever dynamiske prosesser i koronalgkker,
f.eks. stramninger og raske intensitetsvariasjoner, ngdvendigvis en ekstern drivmekanisme? Kan
forskjellige observasjoner av raske nedstramninger i koronalgkker forklares med én eneste meka-
nisme? Hvilke parametere bestemmer dynamikken til koronalgkker?

Det viser seg at koronalgkker som oppvarmes i naerheten av fotpunktene kan utvikle en termisk
ustabilitet i den gvre delen av lgkken. Denne ustabliteten har en selvforsterkende kjalingsprosess
(xcatastrophic cooling>) som falge, som farer til at tette, kjglige plasmakondensasjoner utvikles.
Den farste delen av arbeidet omhandler plasmakondensasjoner i sma magnetiske lgkker, som for-
modentlig det solare transisjonslaget bestar av, og beskriver hvordan den dramatiske kjglingspro-
sessen farer til store intensitetsvariasjoner i spektrallinjer som dannes i transisjonslaget. | den
andre delen av arbeidet presenteres modeller av stgrre koronalgkker som viser at dempelengden
til energidissipasjonen i lgkken er en kontrollparameter i dette ikke-linezere systemet. Mens en
stor dempelengde gir stabile, statiske lgkker, farer dempelengder kortere enn en kristisk terskel
til en dynamisk utvikling. Denne utviklingen kan forklares med en evaporasjons-kondensasjons-
syklus: Plasma fordamper farst pa grunn av en koronal oppvarmingsmekanisme fra den kjglige,
tette kromosfzeren til koronaen, kondenserer i den koronale delen av lgkken som falge av ter-
misk ustabilitet, strammer ned til fotpunktene av lgkken og prosessen gjentas. En anvendelse av
<catastrophic cooling>-modellen pa lange lgkker viser at hastigheter pa flere 100 km/s oppnas
ved nedstrgmning av plasma og ogsa at de tette plasmaskyene selv beveger seg med hastigheter
opp til 100 km/s. Det gir en forklaring pa observasjoner av sma, intense strukturer som beveger
seg og raske nedstrgmninger i koronalgkker.

I motsetning til tidligere modeller blir det i dette arbeidet foreslatt at den selvforsterkende kja-
lingsprosessen ikke skyldes en drastisk nedsatt oppvarming av en koronalgkke, men snarere den
termiske ustabiliteten i lgkken. Det er den naturlige konsekvensen av en oppvarmingsmekanisme
som hovedsakelig virker i den lavere delen av en koronalgkke og som kan vare tidsavhengig. For
a lokalisere de forskjellige lgsningsomrader ble en parameterstudie gjennomfart som undersgker
utviklingen av koronalgkker i forhold til deres lengde, oppvarming og dempelengde. Dessuten
pavises en forbindelse mellom den termiske ustabiliteten i koronalgkker og <global relaxation
oscillations> av stellare koronaer.
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1 Introduction

The sun is in many respects a very ordinary star of medium size, age and activity. It is classified as
a star of spectral class G2 V, has a radius of 6.96-10% m, a mass of 1.99-103° kg and a luminosity of
3.8-1026 W (for comparison: the earth has a radius of 6378 km and a mass of 5.97-10%% kg.). What
makes it so important to us is its relative vicinity: At a mean distance of 150 million kilometers
from earth, it is around 100 000 times closer than the next neighboring star, o Centauri. It is the
only star for which a reasonable attempt can be made to resolve the important physical length
scales in order to understand in detail how a star works. Even more important for us is the fact
that the variation of the sun’s irradiance has a measurable impact on the earth’s atmosphere, and
a detailed understanding of the origin and manifestations of solar activity is of vital importance to
assess its role regarding the earth’s climate. In this respect, the variability of the ultraviolet part
of the solar spectrum is of particular interest since the radiation in this wavelength range has a
strong effect on thermal and chemical processes in the earth’s upper atmosphere. The aim of the
following section is to give a brief general introduction to the sun’s atmosphere and to highlight
some of its prominent features. For a thorough and detailed treatment of this subject the reader is
referred to the textbook of Stix (2002).

1.1 The Solar Atmosphere

1.1.1 The Radiative Core and the Convection Zone

In the solar core, nuclear fusion transforms hydrogen into helium at a central temperature of 15.7 -
10% K. This energy is almost entirely produced within the inner 25 % of the radius, which encloses
merely 1.5% of the sun’s volume. In the inner 70 % of the solar radius, energy is transported
by radiation. In the outer shell, where the temperature drops from 2.2 - 106K to an effective
temperature of 5778+3 K, energy is transported by convection. The stratification of the convection
zone is superadiabatic and hence unstable. At the lower boundary of the convection zone, the
convective motions “overshoot” into the stably stratified radiation zone. According to our current
understanding, it is this overshoot region where dynamo processes take place which generate the
sun’s magnetic field. The magnetic field influences and often dominates the physical processes on
all spatial scales of the sun, and manifests itself e.g. by sunspots and coronal loops. Figure 1.1
shows a cut-away view of the sun.

1.1.2 The Photosphere

Almost all radiation from the sun is emitted from the photosphere, a thin layer of several 100 km
thickness which lies at the upper boundary of the convection zone. The photosphere exhibits a
regular pattern of convection cells, the granules, of around 1000 km diameter which change on
the time scale of minutes. Occasionally, the peaceful “quiet sun” is interrupted by dark sunspots.
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Density (kg/m3)

FIGURE 1.1: A cut-away view of the Sun. The tickmarks on the axes illustrate how the temperature and
density vary as a function of the solar radius (Credit: UCB Science Education Gateway).

Sunspots had already been reported in the antique, and also Kepler observed a sunspot in 1607,
but misinterpreted it as a transit of the planet mercury. Shortly after the invention of the telescope,
Fabricius (1611) and Scheiner (1611) announced independently the “discovery” of sunspots. Al-
most 300 years later the astronomer G. E. Hale (Hale 1908a,b) discovered that sunspots possess
strong magnetic fields. In these and also later observations (Hale & Nicholson 1938) he found
that lines in the spectra of sunspots are split due to the Zeeman effect and that this effect could be
used to measure magnetic field strengths. In the center of sunspots he measured field strengths of
several hundred mT (i.e. several thousand Gauss)* which decreased to under hundred mT towards
the boundary of the spots.

According to our current understanding sunspots are formed when magnetic flux concentrations
rise from the bottom of the convection zone and penetrate the photosphere as magnetic loops.
They appear dark because the convective energy transport is hampered by the magnetic field as
the plasma is forced to move along the field lines (Biermann 1941; Alfvén 1942). Figure 1.2 shows
an image of a sunspot, observed in the G-band (A = 430.5 4+ 0.5nm). The dark central region
of the spot, the umbra, is surrounded by the brighter penumbra, which has a complex filamentary
structure and harbors the outward-directed Evershed flow. Further indications of strong magnetic
field in the solar photosphere are the small bright points and structures in the intergranular lanes,
which are particularly prominent in the G-band.

11 Gauss = 10~ Tesla. For historical reasons, magnetic fields are commonly measured in units of Gauss in solar
physics. However, in this thesis SI units will be used throughout.
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Ficure 1.2: A sunspot, observed in the G-band (A = 430.5 £+ 0.5nm) with the Swedish 1-m Solar
Telescope. The dark center, the umbra, is surrounded by the highly structured penumbra. A light-bridge
crosses the lower part of the spot. The area surrounding the spot is covered with convection cells, the
solar granulation. Bright points and structures of presumably magnetic origin are seen in the intergranular
lanes. Image scale: 80”8 x 81”6, corresponding to == 58 000 km %59 000 km (approximately 0.2 % of
the solar disk). The earth would easily fit into the sunspot. Courtesy of L. Rouppe van der \oort.
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1.1.3 The Chromosphere

Going upwards in the solar atmosphere, the photosphere connects to the chromosphere, which has
a mean thickness of 1000 — 2000 km and a temperature of 4000 — 25000 K. It bears its name
(chromosphere: the “colored sphere”) due to the colorful appearance of the solar limb shortly
before and after a total solar eclipse, which originates from the red hydrogen Balmer-« line, often
referred to as H,, at A = 656.3nm. In the so-called flash spectrum strong spectral lines which
are usually seen in absorption in the solar spectrum on the disk appear in emission above the
limb. Figure 1.3 shows an image of an active solar region, observed in the H,, line. This image
shows that the solar chromosphere is already much more structured by the magnetic field than
the photosphere. Movies recorded in this spectral line show that the solar plasma is in constant
motion along thin filamentary paths which outline the magnetic field. In the upper left of the image
a sunspot with a bright light-bridge and an extended superpenumbra is seen, and thin structures
connect this region to another sunspot seen in the lower right. The lower part of the image shows
a filament in absorption as a thin dark structure.

Ficure 1.3: An active solar region, observed in the hydrogen Balmer-« line (A = 656.3nm) with the
Swedish 1-m Solar Telescope. In the upper left a sunspot with a bright light-bridge and an extended
superpenumbra is seen. The lower part of the image shows a filament in absorption as a thin dark
structure. Image scale: 95”6 x 63”0, corresponding to = 69 000 km x45 000 km. Courtesy of L. Rouppe
van der Voort.

The highly dynamic nature of the chromosphere cannot be adequately described by simple strat-
ified atmospheric models. Carlsson & Stein (1995) proposed that the observed enhanced chromo-
spheric emission, which is usually attributed to a temperature rise in the chromosphere, may be
the result of propagating waves without any increase in the mean gas temperature. They showed
that the radiation temperature represents predominantly the peaks in the gas temperature rather
than its mean temperature and concluded that the sun may not have a classical chromosphere in
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the magnetic field-free internetwork regions at all.

1.1.4 The Transition Region

Above the chromosphere, a thin transition region is found. In this transition region, which should
be thought of as a temperature regime rather than a geometric layer, the temperature rises rapidly
from around 25000 K to around 106 K. The transition region thus links the lower atmospheric
layers to the solar corona, where the temperature amounts to several 10° K and can be as high as
107 K. While the convection zone and partly also the solar photosphere are dominated by flows
which are capable of moving regions of strong magnetic flux around, the solar transition region
and corona are dominated by the magnetic field which forces the plasma to move predominantly
along field lines.

The emission from this temperature regime is governed by spectral lines in the extreme ultra-
violet (EUV) range of the solar spectrum. These emission lines originate from various ions at
different temperatures and are thus well suited to probe the structure and dynamics of the transi-
tion region. Figure 1.4 shows the temperature and density stratification in the solar atmosphere
after the semi-empirical one-dimensional model of Vernazza et al. (1981). The approximate for-
mation temperature of several prominent transition region and low coronal lines are indicated by
shaded circles, with wavelengths given in Angstrom.2 The shaded box indicates the source region
of the EUV continuum in the low corona.
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FI1GURE 1.4: Temperature and density stratification in the solar atmosphere after the semi-empirical one-
dimensional model of Vernazza et al. (1981). The approximate formation temperature of several promi-
nent transition region and low coronal lines are indicated by shaded circles, with wavelengths given
in Angstrém. The shaded box indicates the source region of the EUV continuum in the low corona.
Courtesy of H. Peter.

Reeves (1976) found that the chromospheric network which harbors most magnetic flux is clearly
seen in lines formed in the lower transition region, but disappears gradually towards the lower
corona. The model of Gabriel (1976) gave an explanation for this in terms of an expansion of
photospheric magnetic flux tubes towards the corona. The model is based on the fact that the low

21 Angstrom = 0.1 nm
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FI1GURE 1.5: The chromospheric network in the spectral line of C Il (97.7 nm), formed around 7' =
80000 K. The bright network cells have a diameter of around 20000km. The upper right shows a
magnification of one such cell. Very small coronal loops of only several 1000 km length are seen that
straddle the chromospheric network. For comparison, the earth’s size is indicated (raster scan with the
SUMER instrument on SOHO, courtesy of H. Peter).

gas pressure in the corona can no longer confine the magnetic flux so that it expands into so-called
coronal funnels, which are rooted in the chromospheric network and then expand upwards to fill
the entire corona. However, it was shown that for this model an “emission measure problem”
arises, i.e. the emission from low-temperature regions (lower than around 10° K) is strongly un-
derestimated by this model. For this reason, Dowdy et al. (1986) proposed a hierarchy of magnetic
loops with different temperatures which could resolve this problem. Within the last years, this idea
has been supported observationally by raster scans of the SUMER? instrument on SOHO* which
show structures that may be interpreted as cool loops in the network (cf. Fig. 1.5).

UV observations of transition region lines often show line profiles with enhanced wings which
may be interpreted as a two-component emission from a narrow bright component from coronal
loops and a broader weaker component from coronal funnels (Peter 2000). This lead Peter (2001)
to the proposal of a multi-component transition region which is sketched in Fig. 1.6. According
to this picture, the solar transition region is composed of a mixture of closed-field regions, i.e.
small network loops and large loops that connect different patches of the network, and open-field
regions, i.e. coronal funnels which form the base of the solar wind.

1.1.5 The Corona

The most puzzling aspect about the solar corona is its very existence. Naively, one would not
assume that a star with its hot core and a temperature that is steadily decreasing towards its visible
surface may be surrounded by an extremely hot outer shell of several million degrees temperature.

3SUMER is the Solar Ultraviolet Measurements of Emitted Radiation instrument onboard SOHO.
4SOHO: The Solar and Heliospheric Observatory is a joint project of the European Space Agency, ESA, and the
National Aeronautics and Space Administration, NASA.
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FIGURE 1.6: Sketch of the multi-component transition region. Small loops dominate the emission from
the network. Coronal funnels either connect to other network elements or extend outwards to form the
base of the solar wind (after Peter 2001).

It turns out that most stars harbor coronae, but a unique explanation of the processes that heat this
low-density outer region of a star to such high temperatures has not been identified yet. Numerous
heating mechanisms have been proposed, involving heating by different types of waves (sound
waves, magneto-acoustic waves, Alfvén waves), Joule heating by dissipation of electric currents,
and reconnection events such as nanoflares (Parker 1988, 1991). A very promising idea is pro-
vided by the recent numerical models of Gudiksen & Nordlund (2002) and Gudiksen (2004) who
demonstrated explicitly that photospheric motions which shear the magnetic field are capable of
dissipating sufficient energy to heat the corona.

Figure 1.7 shows an image of the solar corona during a total solar eclipse. The emitting plasma
is structured by magnetic field lines which are predominantly radial and guide energetic particles
outwards to form the solar wind. The optical coronal radiation (white-light corona) is traditionally
divided into the F-corona and the K-corona. The F-corona is named after the prominent Fraunhofer
lines seen in the spectrum and stems from light scattered on dust particles. The spectrum of the
K-corona, on the other hand, is highly polarized and arises from Thomson scattering by free
electrons. The letter “K” in K-corona stems from the German “Kontinuum”. Due to the high
thermal speed of the scattering electrons, the spectral lines are smeared out to broad and shallow
dips and only a continuous spectrum is seen. The nature of the corona remained mysterious for
a long time. Several emission lines in the corona had been measured and could not be attributed
to any known atomic transition, so that exotic explanations such as emission from a new element
“coronium” were proposed. Grotrian (1939) was the first who identified two coronal emission
lines at 637.4 nm and 789.2 nm as forbidden transitions of Fe X and Fe X1 and thereby showed that
the solar corona must have a temperature of the order of a million degrees. However, it was only
after EdIén (1942) had identified 19 further lines as forbidden transitions of highly ionized atoms
that the high temperature of the corona was generally recognized.

Observations of the solar corona at EUV and X-ray wavelengths reveal a wealth of different
structures. In general, one can distinguish between open-field regions such as coronal holes and
helmet streamers, and closed-field regions, which are commonly referred to as coronal loops.
These loops will be described in detail in the next section. The open-field regions form the base
of the solar wind, a continuous stream of energetic particles that is accelerated outwards.
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Ficure 1.7: Image of the total solar eclipse in 1991, taken from Mauna Kea, Hawaii. As the moon
masks the solar disk, the highly structured solar corona becomes visible. Around the equator of the sun,
two “helmet streamers” are seen (Credit: High Altitude Observatory/ National Center for Atmospheric
Research, Boulder, CO).

1.1.6 The Solar Wind

The first evidence for the solar wind was inferred from observations of the ion tails of comets.
These tails point roughly in the direction opposite to the sun, but Hoffmeister (1943) noticed a
small systematic difference: The ion tail is inclined by a small angle (less than 5°) with respect
to the solar radius vector, trailing the direction of the comet’s motion around the sun. Biermann
(1951) realized that the radiation pressure of the sun’s radiation field could not account for this de-
viation and proposed a corpuscular radiation instead. This could explain Hoffmeister’s discovery,
and from subsequent measurements it was found that this corpuscular radiation, later named solar
wind, was a particle stream continuously blowing outwards from the sun in all directions.

1.2 Magnetic Loops in the Solar Corona

1.2.1 Theoretical Concept

It has been seen earlier in this chapter that the solar magnetic field plays a dominant role for
the structuring and organization of the plasma in the solar atmosphere. Regions of concentrated
magnetic flux, so-called flux tubes, rise through the convection zone and penetrate through the
photosphere, giving rise to the formation of sunspots and active regions. Such a bundle of mag-
netic field lines exerts a lateral magnetic pressure, pg = B2/2u, on the plasma in which it is
embedded, which has to be balanced by the hydrostatic pressure (or gas pressure), p, of the sur-
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rounding material. In the lower layers of the solar atmosphere, the gas pressure is high so that
regions of concentrated flux are advected by the surrounding plasma flow. Going upwards in the
atmosphere, however, the pressure decreases exponentially while the decrease of the magnetic
field strength follows approximately a power law so that the magnetic field fans out with height
until it eventually fills the whole corona.

A useful parameter to decide whether hydrodynamic or magnetic forces govern the dynamics
of the plasma is the so-called plasma-3, the ratio between the hydrostatic pressure, p, and the
magnetic pressure, ppg:

2
8= g"f : 1.2)

In this expression, pg = 47 - 1077 VsA~m~! is the magnetic permeability of the vacuum and
B denotes the magnetic field strength.®> For 3 < 1, the magnetic forces are much larger than the
gas forces so that the magnetic field dominates the dynamics of the plasma. If, on the other hand,
B > 1, the gas forces reign over the magnetic forces and the magnetic field is advected by the
plasma if there is a gas pressure gradient perpendicular to the magnetic field.

The high temperature of the upper solar atmosphere results in a large number of free electrons
which give rise to a high electrical conductivity. In a similar way the electrons also provide a high
thermal conductivity. If the electrical conductivity is high, the magnetic field is “frozen” in the
plasma (cf. Stix 2002). Combined with the much higher efficiency of thermal conduction parallel
to the magnetic field compared to perpendicular to the field, this explains why the plasma in the
upper transition region and corona traces the structure of the magnetic field. While some field
lines extend radially outwards and form the base of the solar wind, the major part of the field
lines closes back to the solar surface to connect photospheric regions of opposite polarity. If these
bundles of closed field lines are filled with plasma, they become visible through the emission of
radiation, and are referred to as coronal loops.® Coronal loops are observed to be structured down
to the smallest spatial scales which can be observed with the currently available space instruments.
It is therefore probable that the observed loops are composed of smaller-scale structures, which
are often referred to as strands. The corona is filled with loops of very different sizes, ranging
from small inter-network loops of several Mm length to large trans-equatorial loops which can
reach lengths of several 100 Mm.

1.2.2 Observations of Coronal Loops

Impressive drawings of coronal loops after observations in the hydrogen Balmer-«: line above the
solar limb were already made in the 19th century, for example by the Italian astronomer A. Secchi.
An example is given in Fig. 1.8, which already illustrates the dynamic nature of these loops which
will be studied in the course of this thesis. Confined regions of enhanced emission were observed
to fall towards the solar surface, seemingly coming out of nothing. The term coronal rain was
coined to describe these findings.

5 If the velocities are of the order of the sound speed or larger, this plasma-3 may no longer be a relevant parameter.
Instead, it is replaced by a “kinetic” 3 which gives the ratio between the kinetic energy density of the plasma (with
density p and velocity v) and the magnetic pressure: Biin = popv?/B.

5Sometimes the closed magnetic structures themselves are referred to as coronal loops, but since only those structures
can be observed which are emitting light, it seems more reasonable to use the term in the above definition.
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Ficure 1.8: Coronal loops drawn by A. Secchi from spectrohelioscope observations in the hydrogen
Balmer-« line on October 5, 1871. From Young (1895).

With the advent of the satellite era, the solar corona could be imaged from space in ever in-
creasing detail. Analyzing Skylab data, Levine & Withbroe (1977) found that coronal loops may
undergo “dramatic evacuation” on time scales of less than one hour. Since 1996, the Solar and
Heliospheric Observatory, SOHO, has provided us with long uninterrupted time series of both
images and spectra of the sun, and since 1998 the superior spatial resolution of the Transition
Region and Coronal Explorer’, TRACE, (which has a spatial resolution of 1”, corresponding to
roughly 725 km on the sun) revealed even smaller structures in the sun’s outer atmosphere. These
structures are dynamic and are observed to change significantly on time scales down to minutes
and probably less. Figure 1.9 shows a TRACE image of coronal loops, taken in the 17.1 nm pass
band, which is dominated by emission lines from the iron ions Fe X and Fe XI, characteristic of
plasma at a temperature of 1 MK.

Schrijver (2001) analyzed image sequences taken in different spectral passbands with TRACE
and found that loop evacuation occurs frequently after plasma in the upper parts of the loops has
cooled to temperatures around 10° K or below. The cooling process is often accompanied by
emission in the hydrogen Ly, and the C 1V (154.8 nm) lines, developing initially near the loop
top. Thereafter, cool plasma is observed to slide down on both sides of the loop, forming clumps
which move with velocities of up to 100 km/s. The downward acceleration of these plasma clumps
as inferred from these observations is significantly less than the gravitational acceleration on the
solar surface.

Further observational evidence of “blobs” of plasma falling down towards the solar surface
along magnetic field lines is presented by De Groof et al. (2004), based on high-cadence data
taken in the He 1l 30.4 nm band with the Extreme-Ultraviolet Imaging Telescope (EIT) and Big
Bear H, images.

"TRACE is a mission of the Stanford-Lockheed Institute for Space Research, and part of the NASA Small Explorer
program.
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FIGURE 1.9: TRACE image of coronal loops, taken in the 17.1nm pass band, characteristic of plasma at
1 MK.

Using the Coronal Diagnostic Spectrometer (CDS) on SOHO, Kjeldseth-Moe & Brekke (1998)
found that even in quiescent, non-flaring conditions, coronal loops show strong temporal vari-
ability of emission in UV spectral lines and substantial plasma flows. They reported significant
changes of coronal loops over a period of one hour, in particular seen in emission lines in the
temperature range between 7' = 1 — 5 - 10° K. This variability is accompanied by large Doppler
shifts, typically around v = 20 — 100 km/s.

Furthermore, Dere et al. (1989) studied spectra of the CIV lines at 154.8 nm and 155.0 nm,
taken with the rocket-borne High Resolution Telescope and Spectrograph, HRTS. The authors
found non-Gaussian spectral line shapes which they identified as explosive events, accompanied
by velocities of up to 100 km/s for the plasma at a temperature of around 10° K. These observations
indicate dynamics on even smaller spatial scales which are below the current observational limits
of resolution.

1.2.3 Loop Models

The fact that the magnetic field confines the motion of the coronal plasma along field lines facil-
itates the construction of coronal loop models considerably. To a good approximation, a coronal
loop can be modeled as a one-dimensional hydrodynamical system with a parametrized gravita-
tional acceleration along the loop. Due to the insufficient knowledge about the coronal heating
mechanism itself, the energy input into the coronal loop is accomplished by prescribing a heating
function which depends on the assumed heating mechanism and is often parametrized as a func-
tion of distance along the loop. The most crucial aspects for a model are the implementation of
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physically correct boundary conditions at the footpoints of the model, corresponding to the solar
chromosphere, and the resolution of the steep temperature gradient of the solar transition region.

Early modeling attempts consisted of static, symmetric loop models with a prescribed con-
stant pressure along the entire loop and a spatially constant heating. Under these assumptions,
Rosner et al. (1978) derived a scaling law which relates the maximal loop temperature to the pres-
sure and the loop length. This scaling law has been used widely in the last decades for loops of
all sizes and temperatures, although it only applies to loops which have a height which is small
compared to the pressure scale height. Serio et al. (1981) extended this scaling law to loops higher
than the pressure scale height and also parametrized for the first time an exponential energy dis-
sipation function which allowed the heating to be concentrated around the loop’s footpoints. For
energy dissipation scale heights below around 1/4 to 1/6 of the total loop length, the authors found
that stable solutions are possible which have a local temperature minimum at the loop apex, while
for very small energy dissipation scale heights no static solutions were found.

As was already pointed out, however, observations showed from the very beginning strong ev-
idence that coronal loops are inherently dynamic and thus time-dependent models are needed to
obtain a more detailed understanding of their nature. The main energetic agents that determine the
evolution of a loop are thermal conduction, which is proportional to 7%/2- VT, the radiative losses,
which scale approximately with the square of the electron density times a temperature-dependent
radiative loss function that peaks around 7' = 2 — 3 - 10° K, and the coronal heating term. The
interplay between the three terms makes coronal loops react like a thermostat to a changing en-
ergy input: If a hot loop experiences a slight increase in the heating rate, the temperature and the
pressure of the loop plasma increase. In the corona, this will reduce the radiative losses and the
temperature will rise even further. In the chromosphere, on the other hand, the radiative losses will
increase and the chromosphere will cool even further. This results in an even steeper temperature
gradient which leads to an enhanced conductive flux from the corona into the chromosphere. This
excess energy heats up the chromosphere and results in a larger negative pressure gradient towards
the corona, which drives chromospheric plasma in the coronal part of the loop. This process is
called chromospheric evaporation. The evaporated material then increases the density in the coro-
nal part of the loop which in turn increases the radiative losses there. This process continues until a
new balance between the increased heating rate and the adjusted radiative losses of the now hotter
and denser loop is achieved. The opposite process occurs if the heating rate is decreased slightly.
In this case, coronal material cools and flows down towards the chromosphere. This so-called con-
densation results in a new stable loop configuration with a lower temperature and density. It has
become customary to use the term condensation to describe the process of rapid cooling accompa-
nied with a strong density enhancement, although no phase transition in the physical sense takes
place. This is emphasized here since | will use this expression in several occasions throughout this
work.

The dynamical energy balance between the heat flux from the corona into the chromosphere
and the chromospheric evaporation of plasma into the corona adjusts the location of the transition
region and sets the coronal base pressure. Therefore, including a chromosphere in a loop model is
very important, even if this chromosphere is an oversimplified model of the real chromosphere.



1.3 Motivation and Scope of this Work 17

1.3 Motivation and Scope of this Work

The classic interpretation of observations like the “dramatic evacuation” or “catastrophic cooling”
of coronal loops has been so far that drastic changes of the emission from loops or loop systems
occur as a result of strong changes in the total amount of loop heating. In this picture, turning off
the heating of a loop or reducing it significantly leads to catastrophic cooling and draining of the
whole loop. However, it has been discussed by Hood & Priest (1980) whether or not the resulting
cool loops would be stable.

The question arises whether it is actually necessary to impose strong changes of the heating rate
or other quantities to account for the dynamic evolution of coronal loops. In this thesis | investi-
gate this problem using a numerical approach: A coronal loop is modeled as a one-dimensional
hydrodynamical system including heat conduction and self-consistent radiative losses. The coro-
nal heating is parametrized as a function of distance along the loop, which can be used to study the
effect of the spatial energy deposition on the loop’s evolution. By calculating the non-equilibrium
ionization of several atomic species consistently with the hydrodynamic equations, not only can
the total radiative losses be calculated, but also the emission in a large number of optically-thin
emission lines which can then be directly compared with observations. Specifically, | address the
following questions in this thesis:

e Are dynamic processes in coronal loops, such as flows and transient brightenings, necessar-
ily the result of a time-dependent driving mechanism?

e Can recent observations of fast downflows in coronal loops, as reported e.g. by Schrijver
(2001) and De Groof et al. (2004) be explained by a common mechanism?

e Which parameters determine the dynamics of coronal loops?

In the course of this work, I will show that coronal loops can exhibit very dynamic evolution even
under the assumption of a temporally constant energy supply, which proves that no time-dependent
driving mechanism is needed to account for fast downflows and transient brightenings. It is found
that the scale height of the energy dissipation acts as a control parameter of this non-linear system
which determines whether a coronal loop is stable or unstable.

In the next chapter, the equations governing the coronal loop model and the numerical methods
used to solve them will be introduced. Chapter 3 gives an overview over the physical processes in
the solar transition region and corona which lead to emission in the ultraviolet spectral range and
describes how optically-thin spectral lines are synthesized from the model. In Chap. 4 the concepts
of thermal instability in coronal loops and the evaporation-condensation cycle are established and
applied to the evolution of short, cool magnetic loops which presumably constitute the solar tran-
sition region. Numerical calculations are presented which show that, depending on the damping
length of the heating function, plasma condensations can form in these short, cool loops. | will
study the evolution of these loops, discuss static as well as dynamic solutions and finally calculate
the time-dependent emission of transition region lines arising from this model. In Chap. 5, this
concept is applied to longer coronal loops, and it is found that it can account for transient bright-
enings in prominent spectral lines and leads to fast downflows. Chapter 7 reviews the obtained
results in the framework of non-linear systems. It is described how these results compare to the
early model of Kuin & Martens (1982) and the advantages as well as the limitations of simplified
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models are assessed. In Chap. 6 it is shown which implications the evaporation-condensation cy-
cle has for long, hot active region loops and how these findings relate to the recent observations of
De Groof et al. (2004). Finally, Chap. 8 consists of a parameter study which covers a broad range
of loop sizes and heating rates and describes the different types of evolution that coronal loops can
undergo. Apart from outlining the parameter regime in which footpoint-heated loops are inher-
ently dynamic, this chapter compares the results from our time-dependent models to the parameter
study of hydrostatic loop models by Aschwanden et al. (2001). Furthermore, | propose a connec-
tion between the thermal instability in coronal loops and models of global relaxation oscillations
of stellar coronae.



2 Model Equations and their Solution

The numerical code which is used for the calculations in this thesis is a one-dimensional time-
dependent code that solves the hydrodynamic equations of continuity, motion and energy, together
with the ionization rate equations for a given number of atomic species. It has been developed by
V. H. Hansteen (cf. Hansteen 1993) and is based on an implicit conservative upwind method. In
this chapter | will first introduce the model equations, then introduce the numerical methods, partly
following the description given by Korevaar (1989), and finally describe how the model equations
are solved numerically.

2.1 Model Equations

The equations for mass conservation, momentum, energy, and ionization and recombination rates
which are going to be solved read as follows:

e Mass conservation:

0 0
A GO} 21
e Momentum equation:
ov ov 0
P T vy, = 5,0+ A) —pgy, (2.2)
e Energy equation:
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e Rate equations:
816] + 5 (1ijv) = nelnij—1dij—1 = 14 (5 + @4j) + nij10a41] (2.4)

In these equations v denotes the velocity along the curvilinear loop coordinate, z, g the compo-
nent of the gravitational acceleration that is parallel to the magnetic field, @,, the “mechanical”
heating rate which parametrizes the energy supply to the loop, L..q4 the radiative loss rate per unit
volume, and @), a small “opacity heating” term that is included in order to maintain chromospheric
temperatures at roughly 7 000 K. The internal energy, ¢, is calculated as the sum of the thermal and
internal energy including only ionization states since the contribution from the excitation energy is
negligible. The population of the ionization state j of element  is denoted by n;;, while ionization
rates and recombination rates are represented by ¢;; and «;, respectively.



20 2 Model Equations and their Solution

To ensure a continuous solution through the shocks an artificial viscosity term 9A/0z is intro-
duced in Eq. (2.3). Following the treatment of von Neumann & Richtmyer (1950) we write

A~ { %pl?(av/az)Q for (0v/0z) <0,

0 for (Ov/0z) >0, (2:5)

where [, is chosen to be some fraction of the average grid spacing. The artificial viscosity will
result in a shock thickness of order [, while reproducing the correct jump in the dynamic variables,
as well as the correct propagation speed of the shock. The thermal conduction is set to F. =
koT®/2dT /dz (Spitzer 1962) with kg = 1.1 x 10~ Wm~1s 1 K~7/2,

Radiative losses are computed assuming that the plasma is effectively thin. While, ideally, one
should solve the equation of radiative transport in order to calculate the radiative losses, compar-
isons with models where this has been done (Carlsson 2003; Kuin & Poland 1991) indicate that
the errors incurred by assuming effectively thin losses in the Ly, line are not significant to the en-
ergetics of the system in the upper chromosphere and above. Radiative losses are due to collisional
excitation of the various ions comprising the plasma. The elements hydrogen, helium, carbon, oxy-
gen, neon, silicon, and iron have been included in the calculation of the radiative losses, as well
as thermal bremsstrahlung. If computing time is an issue, as it is e.g. the case for very long sim-
ulations or extensive parameter studies, some of the metals can be treated by assuming ionization
equilibrium and then deriving an a priori radiative loss curve as a function of electron temperature.
For the simulations presented in this work, the radiative losses from hydrogen, helium, carbon and
oxygen were computed consistently with full time dependent rate equations, while precalculated
radiative losses were used for neon, silicon and iron, if not otherwise mentioned.

2.2 Implicit Integration Methods

An implicit time integration uses the variables of the solution after the time step as well as at
the beginning of the time step, and then the equations are solved to determine the values of the
variables after the time step. In general this requires simultaneous equations to be solved at each
time step. Implicit methods have several advantages over explicit methods. One advantage is that
they are absolutely stable, regardless of the time step, while explicit methods are absolutely stable
only for time steps smaller than the Courant-Friedrichs-Lewy limit (Courant et al. 1928).* Implicit
methods also prove to work better for very non-linear or stiff problems like the one treated in this
thesis, because information about the variables after the time step is used in the calculation of the
solution. On the contrary, explicit methods are simpler to implement than implicit methods and
use less computing-time per time step. An explicit integration with respect to time uses only the
knowledge of the solution available at the beginning of the time step.

2.2.1 Implicit Integration of First-Order Partial Differential Equations

In general, any set of partial differential equations (PDESs) can be written in the form

0

—x = f(x,1). 2.6

5% = f0x.1) (2.6)

The Courant-Friedrichs-Lewy condition states that the time step times the sound speed must be less than the distance
of the smallest grid spacing in the problem. If this condition is not met, an explicit method is unstable.




2.3 Conservative Methods 21

We associate the independent variable ¢ with time, but any other variable can be used as well.
The vector x consists of NV independent unknown variables. The operator f may contain first
derivatives with respect to other independent variables, such as 9/0x. When f contains no such
derivatives, Eq. (2.6) reduces to a set of ordinary differential equations. In some cases a higher
order differential equation can be reduced to a set of first order differential equations by a suitable
substitution. The numerical integration of the set of PDEs given by Eqg. (2.6) requires discretization
in space and time. One way to discretize these equations is by a finite difference scheme. This
approach was taken in this work, but other methods such as finite elements or spectral methods
exist. If we denote the numerical approximations of x and f at time level ¢t by x™ and f", a
possible discretization of Eq. (2.6) is given by

Xn—|—1 n

— X

At first sight, o = % may appear as the most intuitive choice, but depending on the situation other
values of « can be preferable. Schemes with o« = 0 are called explicit, schemes with & = 1 are
called fully implicit. The special case o = % is called central time differencing. In the numerical
code used in this thesis, « is a free parameter which is set to a = 0.55 unless otherwise mentioned
(in some situations, the fully implicit setting o« = 1.0 is used). For o« ~ 1/2, the integration
scheme is second-order accurate in time, otherwise only first-order accuracy is reached.

2.3 Conservative Methods

The temporal evolution of any fluid may be described by means of differential equations for the
conservation of mass, momentum and energy. A numerical method is called conservative if it uses
these conservation equations explicitly, i.e. the numerical scheme guarantees the conservation of
mass, momentum and energy. In practice this is achieved by dividing the space coordinate into
zones, and by considering the integral values of quantities within each zone rather than the values
at the center of it.

2.4 Upwind Schemes

In the one-dimensional Eulerian description of a fluid there are three characteristic velocities:
v — ¢ v, and v + ¢, where v is the fluid velocity and c is the speed of sound. Information
of the hydrodynamic system is transported at these three velocities. If we would like to model
the temporal evolution of the fluid, it is necessary to know in which direction the information
propagates. For instance, if the fluid is at rest, an equal amount of information streams into both
directions because the characteristic velocities are —c, 0, and c¢. If the flow is supersonic, all
hydrodynamic information propagates in one direction because the three characteristic velocities
are of equal sign. An upwind method is a numerical method that consistently takes into account
the direction of the flow of information.

Let us first consider the simplest case, the first-order upwind scheme. In this scheme, we de-
termine first the direction of the flow at the boundary of a zone. The flux through the boundary
J +1/2 is then set equal to the velocity v,/ at the boundary times the transported quantity
upstream (or upwind) from that boundary, i.e.
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a) b)

j j+1

V2 >0 Vi+2<0

Ficure 2.1: lllustration of the upwind scheme. The direction of the flow speed v determines how the flux
of the quantity F' through th boundary j + 1/2 is calculated.

Yy for vy 19 >0,

fluxj /2 = { vj-H;QFjH for Uj‘+1;2 <0. (2:8)
This is illustrated in Fig. 2.1. The advantage of this scheme is that it is very stable and very
simple. Its disadvantage is that it introduces diffusion errors: If the transported quantity has a
strong gradient, the calculated flux will always be either too small or too large since the scheme is
“upwind-weighted”. An approach to reduce the diffusion error is the transport scheme of Wilson
(1978) which involves averaging of the transported quantity over neighboring zones, followed by
an extrapolation into the upwind zone. This yields a more accurate scheme, but at the expense of
stability: With this scheme it can happen that the volume of fluid transported out of a zone exceeds
the total amount of fluid in this zone.

It would thus be desirable to have a scheme which has a high accuracy and is stable at the
same time. One such scheme is the second-order upwind method of Van Leer (1974), a monotonic
transport scheme which is used in our numerical code to calculate particle and momentum fluxes.

We will follow the treatment of Hawley et al. (1984) to derive the monotonic transport scheme
of Van Leer (1974) by considering the analytic transport equation

of | of

e + v% =0. (2.9)
For simplicity we assume a constant transport velocity, v. For a given initial value distribution
f(z,t0), we establish a finite difference grid, with F; being zone averages of that initial value
function. We can write the discrete version of the transport equation in integral form as

[/:Hl f(x,t)dx] /:H vf(:n,t)dt]

(FI = Flia o)Az + ((0f) 41 — (f)) At = 0, (2.12)

tn+1

+

Tj+1

=0. (2.10)

tn :Ej

This is equivalent to
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where (v f); is a time average, which has the role of the flux through boundary ;. Let

(wf); = 50[Faj ) + Fla 1) (2.12)

where the function F'(x,t,1) is approximately equal to F'(x, t,,) advected over a distance vAt =
oAz, where o = vAt/Ax (assume v > 0) is the Courant number. Thus, we can write

F(zj,tny1) = F(z; — oA, ty). (2.13)

Hence, we are averaging the function F'(z,t) at « = z; at the beginning of the time step and at the
end after advection. Now we move back to the zone center location by replacing F(z ;,,) with
F(mj—l/Q + %Aw,tn)

1 1 1
(vf); = §U|:F(.%'j_1/2 + §A.%' — oAz, ty) + F(wj_1/9 + §Ax,tn)} ) (2.14)

A Taylor expansion of F'(x;_y /5 + %Ax — oAz, t,) and substitution into Eq. (2.14) yields

<’Uf>j =0 |:ij1/2 + %(1 — O')Ajfl/2F:| . (215)

A;_1/9F/Az is the gradient of I centered at j — 1/2. The accuracy of the scheme can vary
depending on the choice of the gradient of F'(x,t). The final difference equation is given by

mn n 1
FJJ:Fll/Q =Ll — U[Fj+1/2 —[Fj_1/2 + 5(1 —0)(Ajy12F — Aj71/2F)] - (2.16)

The real advantage of Van Leer’s scheme is realized when the condition of monotonicity is used in
the definition of the gradient A ;_, /o F: We require that the local slope of the function F(z,t) must
be the same after advection as before advection. Figure 2.2 shows two different discrete functions,
one which is nonmonotonic at the zone boundaries, and one that this monotonic. We thus have to
choose the gradient A;_, /o F" such that monotonicity is maintained at the zone boundaries. Van
Leer finds that the following definition for the slope satisfies this criterion:

2(Fy_1/2=Fj_3/2)(Fjip1/2—Fj_172) .
AjyjpF = - FJ3+1/2,Fj7j3/2 : if (Fj_172 = Fj3/2)(Fjy172 — Fj1/2) >0,
Aj_1F =0 otherwise .
2.17)

2.5 Staggered Grid

Our numerical code uses a staggered grid (see, e.g., Hawley et al. 1984), which means that the
grids on which scalar quantities (like temperature and density) and vector-valued quantities (fluxes,
momentum and velocity) are defined are shifted by half a grid point with respect to each other
(cf. Fig. 2.3). Scalars are located at the center of a zone, while vectors are located at the zone
boundaries. Since the vector-valued quantities are formed out of differences (derivatives) of scalar
quantities, placing a vector-valued quantity centered between two scalar quantities is a natural
choice. Formally, such a centered difference has the advantage of a second-order accuracy as
opposed to the first-order accuracy of a forward or backward difference.
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Fi-l I:J' Fi+l Fi-l I:J' Fi+l
FIGURE 2.2: Three finite difference zones and the distributions F'(z,¢) used to represent the unknown
analytic density distribution. In (a) the function F'(x,t) is nonmonotonic at the boundaries. In (b)
monotonicity has been restored by altering the slope AF/Ax.
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FIGURE 2.3: The staggered grid. Scalar quantities is defined on the upper grid, vector-valued quantities
on the lower grid, which is shifted by half a grid point with respect to the upper one. Scalars are thus
defined in the zone centers, vectors on the zone boundaries. Note that for simplicity the grid cells are
drawn in equal sizes, while the width of the grid cells is in fact variable.

2.6 Boundary Conditions

The proper treatment of boundary conditions is important as the boundaries of the computational
domain must represent the rest of the physical system. The numerical boundaries must not be-
have as physical boundaries, i.e. disturbances moving towards the boundaries of the computa-
tional domain should not be reflected, while information about the physical system outside the
computational domain must pass into it. For example, during the temporal evolution of the loop
model, sound waves are generated. They propagate along the loop and should pass through the
boundaries without reflection. In this code the transparent boundary conditions as described by
Korevaar & van Leer (1988) are implemented where the physical variables are extrapolated out-
side the numerical grid, using the characteristic variables.
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2.7 Conservation Laws on an Adaptive Mesh

In numerical simulations of fluid dynamics, one often encounters the problem that in certain re-
gions of the computational domain the physical variables change much more rapidly than in others.
In our application, the large temperature gradient of the solar transition region and possible shocks
which are moving in the coronal loop have to be resolved, while in other regions the spacing of
the numerical grid may be wider to make the code more efficient in terms of computing-time. To
achieve this goal, adaptive-mesh techniques have proven to be very effective (the terms “mesh”
and “grid” are used synonymously in this work). Unlike Eulerian coordinates, which are fixed
in the laboratory frame, or Lagrangean coordinates (fixed in the moving fluid), an adaptive mesh
is fixed neither in the laboratory frame nor in the fluid but is free to evolve in such a way as to
track significant features in the flow. This facilitates the simulation of shocks and results in ro-
bust computational algorithms. In particular, adaptive-mesh methods allow one to resolve fronts
(e.g. shocks, ionization and radiation fronts) naturally, and are designed to use the grid points effi-
ciently by redistributing them in space in response to the time evolution of the flow. Winkler et al.
(1984) showed that similar to the general Reynolds transport theorem, a mesh transport theorem
can be derived for equations formulated on an adaptive mesh. In this section, the description of
Winkler et al. (1984) is presented in order to motivate this mesh transport theorem.

In an adaptive coordinate system, three different time derivatives have to be distinguished: (1)
the Eulerian derivative, (0/0t), taken with respect to fixed coordinates in the laboratory frame, (2)
the Lagrangean (or comoving) derivative, (D/Dt), taken with respect to a definitive fluid element,
and (3) the adaptive-mesh derivative, (d/dt), taken with respect to fixed values of the adaptive-
mesh coordinates, which, in general, are neither fixed in the laboratory frame nor in the fluid. The
Eulerian fluid velocity is

v = Dr/Dt, (2.18)

where r = r(rg,t) is the position of a definitive point (“molecule”) in the fluid, and the grid
velocity is
Vgrid = dr/dt, (2.19)

where r = r(k,t) is the position of a definitive set of grid coordinates (specified by k). The
relative velocity of the fluid with respect to the adaptive grid is then given by

Viel = V — Vgrid - (2.20)
The Lagrangean and Eulerian derivatives of any quantity f are related by
(Df/Dt) = (0fJot) + (v-V)f, (2.21)
where V denotes the gradient with respect to the lab-frame (Eulerian) coordinates. Analogously,
(df/dt) = (0f/0t) + (Vgria - V) f . (2.22)

If J; denotes the Jacobian of the transformation between the coordinates defining an initial volume
AV ., and the volume dVayia = JpdVy ;4 of the same fluid at a later time, the Euler expansion
formula

D(InJ;)/Dt =V - v (2.23)



26 2 Model Equations and their Solution

can be derived (Aris 1962; Owczarek 1964), which then leads to the Reynolds transport theorem

D 9
D_t (/Vﬂm(i fdvﬂuid> == /Vﬂmd |:8_{ + V. (Vf>:| dvﬂuid . (224)

In this equation, Vguiq is a definitive volume of fluid. In the same way, these theorems can be
extended to the adaptive coordinate system. Writing dV = JdV© to relate an adaptive-mesh
volume dV to its original volume dV'° we obtain the adaptive-mesh expansion formula

d(InJ)/dt =V - Vgia (2.25)

and the adaptive-mesh transport theorem

%( /V de) = /V {%+V-(vgndf)}dv (2.26)

= V%—{dVJr/anvgrid-dS.
In this equation V' denotes a definite volume corresponding to fixed values of the adaptive coordi-
nates, and dS is an outwards-pointing element on the surface 0V of this volume.

It is interesting to note that the transformation to an adaptive coordinate system comprises a
field of local Galilean transformations (Winkler et al. 1984). The frame in which the dependent
variables, i.e. the fluid properties, are measured is not changed, but only the underlying coordinate
system on which the equations are specified. Because the physical quantities are not transformed
to and measured with respect to the moving mesh, the grid velocity can be arbitrarily large. In
particular, the grid velocity may exceed the speed of light without violating physical causality.
In our application to the dynamics of the solar corona, this is of no importance, but the same
adaptive-mesh technique can also be applied to relativistic flows.

2.7.1 Examples

As an example, let us transform some conservation laws to adaptive coordinates. In the following
equations, p denotes density, p pressure and e internal energy.

a) The Lagrangean equation of continuity

(Dp/Dt) = —=p(V - v) (2.27)
transforms into
d
— </ pdV) +/ PVl -dS = 0. (2.28)
de \Jv av
b) Euler’s equation of motion with an external force f
D
Y Vp=pf (2.29)

"Dt
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becomes
d
—</ pvdV> +/ (pv)vrel-dS+/ pn-dS:/ pfdV | (2.30)
dt \ Jy ov ov v

¢) Adiabatic gas energy equation

and the

)]

is written as

jt ( / pedV> /6 V(pe)vrel-dS+ /V p(V-v)dV =0. (2.32)

2.8 Implementation of an Adaptive Grid

Having shown that conservation laws can be formulated on an adaptive grid, a prescription of how
this grid should adapt to changes of the physical system has to be chosen. A simple and effective
way of implementing an adaptive grid for one-dimensional initial value problems was suggested
by Dorfi & Drury (1987) and is used in our numerical code. The idea is that for a given function f,
the data points should be distributed uniformly along the graph of f. This suggests that the desired
resolution of the numerical grid, R, should be given by R = /1 + (df/dx)?. This is generalized

to several functions, f1,..., far, and discretized in the form
1/2
Ry, = 1+Z Z Jikir = ik (2.33)
= j Zk+1 — Rk 7

where Z is a natural length scale (in our case chosen to be the mean grid spacing), F; is a natural
scale associated with the function f;, and f; . = f;(2x). The normalization constant F' is used to
preferentially weight those quantities for which a correct resolution is most important. The grid
density at grid point k& with normalization Z is defined by

cr = Z) (k41 — k) - (2.34)

The idea is to set ¢, o Ry. In practice, information on the variation of the first and second
derivatives and the maximal allowed variation of the grid density with respect to time are included
in the grid equation. Eqg. (2.33) is therefore extended to

af] Z2 anj 9 1/2
Ry, = <1+Z< ( ) JQ(W)J) . (2.35)

To prevent large spatial jumps in the grid density, it is redefined as

&k = cp — oo+ 1)(chy1 — 20 + cp-1) (2.36)
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FIGUre 2.4: Evolution of the grid points with time. The lines track the location of a given grid point
which changes as a result of the dynamic evolution of the coronal loop. In the domain shown here, a
cool plasma condensation forms and moves towards the right, leading to a shock wave when it hits the
transition region. For clarity, only every second point of the numerical grid is plotted.

which constricts the grid density gradient to

o C a+1
<k+1<+.

2.37
l+4a ™ ¢ = « ( )
Furthermore, a time scale 7 is introduced by redefining
L T
Cp = C + E(Ck — &), (2.38)

where the superscript o indicates the value of the grid density at the last time step and At the
length of this time step. The grid will then respond to changes of the corresponding variables with
a characteristic time scale . The final grid equation can then be written as

Ck Ck+1

Re = Reos’ (2.39)
This equation for the grid density is solved simultaneously with the equations for the conservation
of mass, momentum and energy. As an example, Fig. 2.4 displays the numerical grid for a time
interval of the simulation of a coronal loop of 100 Mm length. The left footpoint is located at
z = 0 Mm, the right footpoint at = = 100 Mm. The plot shows that the grid points are initially
concentrated in the transition region close to the footpoints of the loop where the gradients of
temperature, density and pressure are largest. Around ¢ = 28000s, a region of cool and dense
plasma forms and then falls down towards the right side of the loop. In order to resolve the large
gradients around this condensation region, the grid points are redistributed rapidly towards the
center of the loop. They then move downwards (i.e. to the right) with the falling condensation
region and follow it closely during its deceleration around ¢ = 31 000s. When the condensation
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region encounters the dense plasma of the transition region, a shock occurs which is moving
upwards along the loop. Again the grid points adjust rapidly and follow the shock through the
loop around ¢ = 33 000 s. Afterwards, the grid relaxes into a configuration close to its initial state.
For a description of the physical processes, the reader is referred to Chap. 5.

2.9 Solving the Model Equations

Our model contains M coupled partial differential equations for M variables (density, momentum,
energy, ion populations) which are discretized as difference equations on a spatial grid with N
points. In the case of the continuity equation,

op 0

— + — = 2.4
5 T 9, Pv) =0, (2.40)
the discretized equation at the grid point ¢ reads
(' = o)Az + (F (5 o) = F ol 5o ) At = 0. (2.42)

In this equation, F’ denotes an operator to calculate the momentum fluxes. In this code, the mono-
tonic transport scheme of Van Leer (1974) is used which is described in Sect. 2.4. For a given
time t™, the M difference equations at IV grid points are written as a vector f containing M - N
elements:

fou
for

lf Ty
: (2.42)
f PN

foy

I,
We write down the equations in the form f(x™) = 0, where x™ is a given solution at time ¢™. This
solution, i.e. the values of the M variables at N grid points is also written as a vector x with M - N
elements:

n
P1
n
U1

7
x" = | . (2.43)

n
PN
n
UN

TN
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The goal is now to find the solution x™*! at the next time step, t"*!. This is done by means of
the Newton-Raphson method. Assume we have a guess X gyess at t"+1 which is close to the correct
solution. We then perform a Taylor expansion around f(x7L.):

guess
of
F(Kuess + 0%) = £ (Xgiess) + 5+ 0%, (2.44)

where 5x = x" ! —xZ: 11 is the difference between our guessed solution and the correct solution.
Since we have constructed the equations such that f(xgj‘eés + 0x) = f(x) = 0, Eq. (2.44) is
equivalent to
of

— f(xphls) = o 0 (2.45)
This equation is then solved iteratively for 0x. As long as our guess is sufficiently close to the
solution, the inversion of the Jacobian matrix 0f /Ox will converge quadratically. The Jacobian
matrix of /Ox is a (M - N) x (M - N) matrix containing the derivative of each equation with
respect to each variable at each grid point:

%oy 0oy . e . 0oy Ofey . Ofn

op1 ov1 0Ty OpN ovn TN
PO T R
== 9 O on . (2.46)
Ix f f Do Do f Do

Ofry  Ofry .. .. . Oy

op1 ovq TN

However, as only the two neighboring grid points on each side are used to calculate these deriva-
tives, this matrix is very sparse and consists of 5 M x M submatrices in N rows, centered around
the diagonal of of /0x (for the first and the last row only grid points on one side exist so that ghost
cells are used in these cases). This can be illustrated as follows:

Oo0g ..
0000 ..
Ooo0oQgQ
. O0o0o0ooo
of
x| (2.47)
0Oo0ooao ..
Oo0Q0ooo
0o oo
. 000

For example, the box in row Ny and column N, contains the derivatives of all A equations
fii={1,...0ry at grid point Ny with respect to all M variables at grid point V5. For computational
reasons, we solve for the relative corrections rather than for the absolute corrections and therefore
define a vector e = ox/z;tL, and a modified matrix m = 9f /0x - x4kl by multiplying each

column by the respective value of x?F1 . In the case of the velocity, v, we divide by and multiply

guess*
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with the local sound speed, ¢, since the velocity can be zero:

afﬁl afp1 afpl afpl afpl
8—1)1 . pl B/Ul . Csl oo aTl . Tl oo BP—N . pN .. 8TN . TN
Ofo, Ofv, Of oy
8p1 . pl BUI . cSl ... aTl . Tl ... .. e ..
m = : : : : : : : . - (2.48)
dfry dfry Ofry
8p1 . pl BUI . cSl ... ... ... .. .. 8TN . TN

We start with our initial guess, xguggs, and then invert the block-pentadiagonal matrix m to solve
for the relative correction,
e=-m 'f. (2.49)

A new approximated solution is then computed as Xgyess new = Xguess(1 + €), and this procedure
is iterated until the relative correction is smaller than a predefined value, typically of the order of
103, We then proceed to the next time step and iterate again until a sufficiently accurate solution
has been obtained. In order to accelerate the time integration, the size of the consecutive time step
is made dependent on the number of iterations needed to reach convergence for the last time step.
Thus, the size of the time step is controlled efficiently and can be very large if the system is close
to equilibrium and adjusts quickly to smaller values if the values of the physical variables change
drastically, e.g. due to the formation of shocks.
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3 Emission Line Spectroscopy

In the hot plasma of the solar transition region and corona, many different atomic processes can
excite and deexcite atomic energy levels and give rise to ionization and recombination. In this
section | will first list the most important ionization and excitation processes for hot plasmas,
then focus on those important for the solar transition region and corona, and finally describe how
optically-thin emission lines can be calculated from the atomic parameters. To a large extent the
description follows the textbook by Mariska (1992), and the reader is referred to this textbook and
to Beyer & Shevelko (2003) for a more detailed treatment.

3.1 Atomic Processes

The main processes which can change the states of ionization and excitation of atoms and ions are
listed below. The symbol X9+ refers to an g-times ionized atom, and excited states are denoted
by an asterisk.

Radiative excitation (Photoexcitation) takes place if a photon is absorbed and the ion makes a
transition to an excited state, [X 7t]*:

X 4 hy — [XTT)*, (3.2)
Collisional excitation is induced by an electron, e, impacting on ion, X9%:
X0 4 — [X9T]* +e. (3.2)

Photoionization is connected with the ejection of an electron after a photon with energy hv has
been absorbed:
X0 4 hy — XD+ 4 o= (3.3)

Collisional ionization by electron impact releases an additional electron:
X0t 4 e — XD+ 4 90— (3.9)
Three-body recombination is the inverse process to collisional ionization by electron impact:
X pe 46 — [X@DF] 4. (3.5)

Radiative recombination (Photorecombination) is the recombination of an electron and an ion
under the emission of a photon:

X0 4o — XD+ L py (3.6)
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Dielectronic Recombination is a two-step resonance process involving the capture of a free elec-
tron with simultaneous excitation of a bound electron plus a subsequent radiative deexcitation:

Xq+(70) +e — [X(q_1)+(71, nl)|** — X(q_1)+(72, nl) + hv, (3.7

where ~; (i = 0,1,2) denote the electronic core configurations involved. This process is only
possible if the ion X" has at least one bound electron. If it is completely stripped, ¢ = Z,
the only two possibilities for an electron and an ion to recombine while fulfilling momentum and
energy conservation are three-body and radiative recombination.

Autoionization is an alternative decay mode of the doubly excited state in the dielectronic capture
process (3.7) which leads to the emission of an electron:

X0 (y0) + ¢ — [XUDF (g, nl)[™* — X9 (32) + ¢ (3.8)

Free-free emission is produced when an electron interacts with a charged particle X 9+ and makes
a transition from an energy Ej to an energy E releasing a photon of energy hv:

X7 4 e (Ey) — X9 +e (By) + hv. (3.9)

For a Maxwellian velocity distribution of electrons this process is called thermal Bremsstrahlung.
Spontaneous radiative decay is an efficient process by which excited levels are depopulated.*

[XTH]* — X9 + ho. (3.10)

The rate for this process is given by n;A;;, where n; denotes the population of an atomic energy
level j and Aj; is the Einstein coefficient for a spontaneous transition from level j to a lower level
1.

3.1.1 Important Atomic Processes in the Transition Region and Corona

Not all of the mentioned processes are equally important in the solar transition region and corona.
Table 3.1 lists the expressions for the rates with which the different processes take place, together
with characteristic time scales. The given values have been calculated for the C 1V ion at a tem-
perature of 10° K and an electron density of 1016 m—3 and are taken from the textbook of Mariska
(1992). While collisional excitation is very common, only very few ions are excited radiatively
due to the relatively weak solar radiation field at UV wavelengths. For the same reason stimu-
lated emission is negligible, while spontaneous radiative decay is the fastest deexcitation process.
Collisional excitation is important to populate some lines, but in most cases spontaneous radiative
decays are much more efficient in depopulating excited levels.

Most ions in the solar transition region can only be ionized by collisions since the UV radiation
field is too weak to make photoionization efficient, while radiative recombination is the dominat-
ing recombination mechanism. At the low densities of the solar transition region and corona, the
rate for three-body recombination is negligible. Autoionization and dielectronic recombination
can be important for the ionization state of the plasma, but are only effective at higher tempera-
tures. Table 3.1 illustrates the important fact that the characteristic time scales for ionization and
recombination processes are on the order of tens to hundreds of seconds which is much longer
than the time scales for excitation processes.

1n fact, spontaneous emission is not quite spontaneous but can be understood as stimulated emission induced by a
virtual photon.
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Process Rate Characteristic
[m=3s~1]  Time [s]

Collisional excitation nineCi; 2.1073
Collisional deexcitation nneCy; 2-1073
Spontaneous radiative decay 7, Aj; 4-107?
Collisional ionization NeNionGeoll 107
Autoionization NeNionQauto —

Total ionization rate NeNionGiot 107
Radiative recombination NeNionOrad 88
Dielectronic recombination  n.nionqjel

Total recombination rate NeMionCiot 88

TABLE 3.1: Important atomic processes in the solar transition region. The given values have been calcu-
lated for the C IV ion at a temperature of 10° K and an electron density of 10*® m—3. For autoionization
and dielectronic recombination no characteristic time scales are given since these processes are only
effective for C IV at much higher temperatures. After Mariska (1992).

3.2 Formation of Optically-Thin Emission Lines

Let us consider an arbitrary ion which emits a photon of energy hv;; by a spontaneous transition
from an upper level j to a lower level i. The rate for this process to occur in a volume of plasma is
given by the Einstein coefficient, A;;, multiplied by the number density of ions in the upper level,
n;. The volume emissivity, ¢,,, of the plasma for the transition from j to i is then given by

Evji = hl/jiAjZ‘njq)(V) [W m—3 HZil] . (311)

where ¢ (v) denotes the normalized emission profile which will be described in Sect. 3.2.5. Inte-
grating over the emission profile, we obtain the total emissivity:

Eji = thiAjinj [W m*3] . (312)

Due to the low density of the coronal plasma, opacity effects can in most cases be neglected, so
that we can integrate the emission from a given volume of plasma, AV, to obtain a flux at earth,
where R 4 is the sun-earth distance:

1

ji = 47TR124 /Av €ji dv W m_2] . (3.13)
It is sometimes convenient to express the number density of ions in the excited level j in terms of
the other parameters of the solar plasma. Specifically, if we denote the relative population of the
excited level by n;/nion, the relative abundance of the ionic species by nion /nel, the abundance
of the element relative to hydrogen by n/ng = A., and the number density of hydrogen atoms
relative to the number density of electrons by ny /n., we can write

n; nj Nel NH
n] = g fonm re —Ne . (314)
Tion Tel MH Te
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Inserting this relation into Eqn. (3.13) we obtain

hus Ass * Mion
Fj = = / 1ty Tion 4 T, Qv (3.15)
A R%  JAV Nion Mel Te

This equation contains all the parameters necessary to calculate the total flux at the earth (or at the
location of a satellite) for an optically-thin spectral line. The general problem is, however, to infer
the physical state of the observed plasma from the measured flux in a spectral line, since all factors
in the integral depend on the thermodynamic state of the plasma. In order to understand observed
fluxes, one must therefore understand the physical processes which determine the different factors
in this equation.

3.2.1 Excitation and Deexcitation

It was pointed out in the previous section that in the low-density plasma of the outer solar atmo-
sphere, excitation and deexcitation processes generally take place on much shorter time scales than
ionization and recombination processes. We can therefore separate the problem of calculating the
population of excited levels from the problem of calculating the ionization balance. Let us first
consider the population of excited levels.

A given energy level can be both populated by collisional excitation from lower levels and by
collisional deexcitation and spontaneous radiative decay from higher levels. At the same time,
it can also be depopulated by collisional excitation to higher energy levels and by collisional
deexcitation and radiative decay to lower energy levels. To obtain the total population of this
level, we must therefore solve a rate equation which describes the balance between the different
processes.

The collisional transition rate from an energy level i to a level j is given by n;n.C;;, where n;
is the number density of atoms in level i, n. the electron number density, and C;; the collisional
rate coefficient. Radiative transitions from level i to level j take place at a rate of n;A;; (both
transition rates have units of m—3s~1). For each level 7 in the ion, the rate equation reads:

dni

1 = E njneCjZ- — N E neC’ij + E TL]'AJ‘Z' — N E Aij . (316)
J#i J# J>i J<i
coll. excit. coll. deexcit. spont. dec. j—i spont. dec.i—j

To calculate level populations, we require that the sum of the level populations equals the ion
number density,

Nion = Z n; . (317)

The electron collisional rate coefficient, C;;, can be calculated by integrating the cross-section, o5,
for excitations by collisions with electrons of velocity v. over their velocity distribution, f(v.).
The collision rate between lower level ¢ and upper level j then reads

nenicij = neni/ Uz’j(ve)f(ve)dve, (3.18)

Ve,0
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where v, ¢ is the velocity that corresponds to the threshold energy for the transition. Under the
conditions of local thermodynamic equilibrium (LTE), the velocities follow a Maxwell distribu-

tion,
2

flve) =4rm ( 27:7;}3 ) 3/22}2 exp < —27:;1) ) . (3.19)

Collision cross-sections are often expressed in terms of the collision strength €2;;(E.), which is
usually given as a function of the kinetic energy, E., of the exciting electron. The relation between
the two is

ﬂagQij (Ee)

w; e 7
where ag is the Bohr radius and w; is the statistical weight of level i. Combining the previous
expressions, we obtain

(3.20)

Uij =

C, Co /Oo 0, (E) (_E) dE (3.21)
=20 (E) exp , .

Y wik:TeB/Q AE;; Y kT ‘

where AE;; is the threshold energy for the transition and Cy = 8.63 - 1079 is a dimensionless
constant. If one assumes that the collision strength is independent of the incident electron energy,
this equation simplifies to B

. C(]Qij (—AEZJ)

Ci; = exp
K wiTel/ 2 kT,

(3.22)

This approximation can be improved by substituting the energy-independent ©2;; by a thermally-
averaged collisional strength, I';;:

S} .

T;(T,) = /O Qi exp (— fj{) d(lf;{e) , (3.23)
where E; is the energy of the scattered electron relative to the final energy state of the ion. The
collisional deexcitation rates are obtained from the principle of detailed balance, which states
that in thermodynamic equilibrium each microscopic process is balanced by its inverse process.
In the case of collisional excitations and deexcitations, this means that the number of excitations
caused by electrons in the velocity interval [v1,v; + dwy] is balanced by collisional deexcitations
by electrons in the range [va, v + dws], where

1 1
—mo? = §mv§ +AE;;. (3.24)
Applying this principle, one obtains

nenmij (vl)f(vl)vldvl = neniO'ji(’Uz)f(Ug)UQd’Uz . (325)

In thermodynamic equilibrium, the ratio of the level populations can be calculated with the Boltz-

mann equation:
oY <7_AEU> 3.26

n; Wy P kT ’ ( . )
which yields for the collisional deexcitation rate

(3.27)

Cjz‘ = Z—jcij eXp( j) .

kT
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3.2.2 The Two-Level Atom Approximation

For optically allowed, electric dipole transitions the assumption can be made that the population
of the upper level occurs mainly via collisional excitation from the ground state and that the spon-
taneous radiative decay dominates over all other depopulation processes. This assumption is also
called the coronal model approximation. The statistical equilibrium equations (3.16) then reduce
to the two-level atom approximation:

nenCry = A, (3.28)

where [ denotes the lower and « the upper level. Since n.C;, < A,;, the population of the upper
level in negligible in comparison with the ground level, and we may identify the population of the
lower level with the total population of of the radiating ion, n; & ni.,. Then the expression for the
flux in the spectral line reduces to

huy
= MionClru AV | 3.29
! oy /AVn NionCl (3.29)

This simplifies the calculations of line fluxes considerably since we do not have to solve the com-
plete set of level population equations for the specific ion, but only the ionization rate equations. If
we assume that the collision strength is independent of the incident electron energy, Eqns. (3.14)
and (3.22) can be used to obtain

py = v Coni / ng@r”?exp(ﬂ)d‘/, (3.30)
AV Tl KT

where the hydrogen-to-electron number density ratio, n 7 /n., is approximately 0.8. The tempera-
ture dependent terms can be grouped together into a so-called contribution function, G(7'):

Nion —1/2 —hv
G(T) = n—eT / exp(ﬁ) . (3.31)
This function has a sharp peak at a specific temperature because of the strong temperature sensitiv-
ity of the relative ion abundances. The temperature at which G(T") peaks is often referred to as the
formation temperature, 7', of the spectral line. Table 3.2 lists the formation temperatures of sev-
eral transition region lines which will be studied in this work, along with their atomic transitions
and wavelengths.

A [nm] lon  Transition log 7' [K]

62.97 OV 2s21S,—2s2p P, 5.40
10319 OVI 2525y, —2p 2Py 5.50
154.82 CIV 25255 —2p 2Py 5.00
155.08 CIV 252815 —2p 2Py 5.00

TABLE 3.2: Wavelengths, transitions and formation temperatures for some prominent emission lines
formed in the solar transition region. After Mariska (1992).
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3.2.3 lonization

The ion number densities in the low-density plasma of the solar transition region and corona are
determined by a balance between electron impact ionization and radiative and dielectronic recom-
binations. We saw in the previous section that the time scales for ionization and recombination are
of the order of tens to hundreds of seconds, compared to around 103 s for collisional excitation
and deexcitation. Because ionization and recombination proceed so slowly, significant departures
from an equilibrium population of the different ionization stages is possible. Therefore, we have
to solve the ionization rate equations together with the dynamic equations describing the plasma,
which in our case are the hydrodynamic equations, Eqgns. (2.1) - (2.3).

For an ion z of an element with nuclear charge Z, electron impact ionizations to the next ion-
ization stage z + 1 are governed by the ionization rate coefficient, ¢, and recombinations to ion
z — 1 by a total recombination rate coefficient, .. The ionization rate equations thus read:

dn,

E =MNe|Nz—142—1 — nz(Qz + az) +Np1041] - (332)

This equation is complemented by the requirement that the total number density of ions of a given
element is the sum of the number densities of all ionization stages.

3.2.4 Atomic Data

As already stated in Chap. 2, the numerical code used in this work includes atomic models for the
elements hydrogen, helium, carbon, oxygen, neon, silicon, and iron. The ionization and recombi-
nation rates given by Arnaud & Rothenflug (1985) and Shull & van Steenberg (1982) are imple-
mented, and the collisional excitation rates are calculated using the HAO-DIAPER atomic data
package (Judge & Meisner 1994). The collisional excitation rate from the ground state of hydro-
gen to its first excited state is computed from coefficients found in Janev et al. (1987). The spon-
taneous and dielectronic recombination rates are calculated according to Aldrovandi & Pequignot
(1973), and the recombination rates of the hydrogen-like ions were taken from Allen (1973).

3.2.5 The Spectral Line Profile

In an ensemble of atoms, each atom has a velocity & with respect to the observer’s line-of-sight,
which results in a Doppler-broadened emission profile due to the uncorrelated superposition of
their individual motions (applying the principle of detailed balance, this also holds for absorption
profiles). Under the conditions of local thermodynamical equilibrium (LTE), the velocities follow
a Maxwell distribution, which states that the probability of finding an atom with a line-of-sight
velocity ¢ in the interval (¢/,&" 4 d¢’) is given by

1
V7o

where &y = /2kT'/mioy 1S the most probable velocity at a temperature 7" and a mass mie, Of the
radiating ion. With the definition of the Doppler width, Av p, of a spectral line with rest frequency
V0,

W(§)d¢ =

exp| —(&/60)? | de. (3.33)

Avp = 1pép/c, (3.34)
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this velocity distribution leads to a Doppler broadening of

dp(v) exp —(AV/AVD)2] , (3.35)

1
Nz
where Av = v — 1y is the frequency difference with respect to the rest frequency, vy. In gen-
eral the resulting profile function of a spectral line is obtained by a convolution of the Doppler
broadening function with the damping profile, ® ,, of the atomic transition, which has the form of
a Lorentzian. However, for optically-thin spectral lines in the solar corona, this damping profile
is much narrower than the thermal Doppler broadening so that the profile function is to a good
approximation given by the thermal Doppler broadening itself, i.e. ®(v) = ®p(v).

If the emitting plasma is not at rest, the emergent spectral lines are shifted by the Doppler
effect. When one takes into account the projection of a velocity field (here assumed to be a one-
dimensional flow with a velocity v) onto the line-of-sight, 7, the spectral profile at a location z is
given by

O(v,2,m) = exp

B (Ay = uﬁjv(z)/cﬂ , (3.36)

1
VT Avp
where 6 = €, - 7i is the aspect angle, defined by the scalar product of the local vector of the flow
field, €;, and the normalized line-of-sight vector, 7. The emergent intensity of a spectral line in an

optically-thin plasma can then be calculated as

hvy,

80
I(v) = 477/0 O (v)nen,;Crds, (3.37)

where the integration is carried out along the line-of-sight, [0, s¢], parametrized by the path length,
s. In this expression, n. denotes the electron density, n,; the population of the ionization state z
of element %, and Cy,, is the collisional rate. 2

2|t is assumed that the complete volume one is looking at is filled with plasma with the given properties. If this is
not the case, the emergent intensity from a combination of different structures can be calculated by assigning an
appropriate filling factor to each of the constituents.



4 Plasma Condensation in Cool Loops and
its Effect on Transition Region Lines

Abstract

In this chapter, numerical calculations of the condensation of plasma in short coronal loops are
reported which have several interesting physical consequences. Firstly, | propose a connection
between small, cool loops (7" < 10° K), which constitute one of the basic components of the solar
transition region, and prominences, in the sense that the same physical mechanism governs their
dynamics: Namely the onset of instability and runaway cooling due to strong radiative losses.
Secondly, it is shown that the temporal evolution of these loop models exhibits a cyclic pattern
of chromospheric evaporation, condensation, motion of the condensation region to either side of
the loop, and finally loop reheating with a period of 4000 — 8000 s for a loop of 10 Mm length.
Thirdly, transition region lines have been synthesized from these calculations which show strong
periodic intensity variations, making condensation in loops a candidate to account for observed
transient brightenings of solar transition region lines. Remarkably, all these dynamic processes
take place for a heating function which is constant in time and has a simple exponential height
dependence.

4.1 Introduction

Since the era of the Skylab project, loops have been recognized as a vital ingredient in coronal
structure and coronal energetics. Indeed, one could imagine that the corona is entirely composed
of nested loops with varying lengths, temperatures, heating rates, and activity levels. A nested
structure of low-lying cool loops was suggested by Dowdy et al. (1986) to explain the tempera-
ture dependence of the emission measure. Thus, building an understanding of loop energetics is
obviously a desirable objective. There are alternative scenarios for the structure of the transition
region (see, e.g., Mariska 1992). As recent SOHO/SUMER results have shown, however, small
cool loops to constitute one of the basic building blocks of the transition region (Feldman et al.
2000), this chapter will concentrate on the dynamics and energetics of cool loops.

The main components in the energy balance of static loops were identified by Rosner et al.
(1978): They consist of a coronal heating term whose exact form is so far unknown, thermal con-
duction and radiative losses in the loop itself and at the transition region/chromosphere boundary.
Roughly speaking one can understand static loop behavior quite well by assuming that the heat
deposited by the heating mechanism in the corona is largely conducted back towards the chro-
mosphere where it is radiated away. Due to the strong temperature dependence of the thermal
conduction coefficient, this scenario almost invariably leads to apex loop temperatures of roughly
1 MK bounded by a geometrically small transition region as the temperatures fall towards 10% K
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and chromospheric densities at the loop footpoints. Variations in the heating rate are dealt with
in this type of loop by chromospheric evaporation or coronal condensation such that the radiative
losses at the top of the chromosphere balance the thermal conductive flux from above (Hansteen
1993). This behavior is almost independent of the details of the heat deposition — as long as
radiative losses near the loop apex are not an important factor in the energy budget.

Clear as the model above seems, serious difficulties are encountered as soon as loop model
predictions are confronted with the observations themselves. These difficulties are various and
sundry (Mariska 1992) but might be summarized as follows: The differential emission measures
predicted by the models gives a much lower line emission from the lower transition region, below
10° K, than what is observed (alternatively one could say that the line emission from the upper
transition region, above 10° K, is predicted much too high). In addition it is very difficult to
account for the pervasive average redshift of up to 10 km/s seen in lower transition region lines
and blueshifts in the upper transition region and low corona (Peter & Judge 1999).

Several proposals have been put forward to answer the difficulties outlined above. Dowdy et al.
(1986) suggested a two-component transition region, consisting of magnetic funnels and a nested
structure of low-lying, cool coronal loops. This new class of static loop solutions had been dis-
cussed by Antiochos & Noci (1986). Cally & Robb (1991) argued, however, that these cool loop
solutions were unstable, and Cally (1990) proposed turbulent thermal conduction as an alterna-
tive hypothesis to explain the enhanced transition region emission. As for the spectral diagnostics
of transition region lines, loop dynamics due to downward-propagating magneto-acoustic waves
were shown to be a candidate to account for the pervasive redshifts (Hansteen 1993). However, it
was first with the observations by the SOHO and TRACE instruments that the importance of cool
loops and loop dynamics has belatedly come to the foreground. Peter (2000) gives evidence for a
multi-component structure of the transition region, and Feldman et al. (2001) reach the conclusion
that regions of hotter and cooler plasma in the solar atmosphere are essentially disconnected from
each other.

The question that is raised is what implications these new ideas have on our understanding of
the structure and energetics of both cool and hot coronal loops. Obviously a time-dependent heat-
ing will produce a number of dynamic phenomena such as waves or material motions through
evaporation or condensations. But as will be shown below it is also found that within a certain
parameter range of static mechanical energy deposition quite violent dynamics can ensue. Numer-
ous mechanisms of coronal heating have been proposed (e.g. wave heating, nanoflares, magnetic
reconnection), but independent of the detailed process of energy release there is now observational
evidence that coronal loops are predominantly heated at the footpoints (Aschwanden et al. 2000,
2001). With heating concentrated near the loop footpoints it is no longer certain that sufficient
energy to counter radiative losses is deposited near the loop apex. In fact, for such loops static
solutions with a hot midpoint may no longer exist as the radiative loss rate increases strongly in
the loop center when the temperature decreases towards 7" = 2 - 10° K. If the magnetic field topol-
ogy is such that the loop has a dip in the center, footpoint heating can lead to the condensation of
plasma in the loop center and hence give rise to prominence formation (Antiochos et al. 1999). It
was also found by Antiochos et al. (2000) that this type of prominence formation shows a cycle of
formation, motion, and destruction. Recently, it was demonstrated by Karpen et al. (2001) that the
condition of a “dipped” geometry is indeed not a necessary condition for prominence formation
in long loops (their work describes a loop of 340 Mm length). A key element in their prominence
scenario is the large ratio of loop length to the damping length of the heating function, and the
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authors argue that shorter loops with a smaller ratio should therefore behave differently.

In this chapter numerical calculations are presented which show that, depending on the damping
length of the heating function, condensation is also possible in short, cool coronal loops. | study
the evolution of these loops, discuss static as well as dynamic solutions and finally calculate the
time-dependent emission of transition region lines arising from this model.

4.2 Loop Heating

In order to parametrize the energy input into the coronal loop, the energy flux amplitude at the
footpoints of the loop, £, is specified and a mechanical heat flux is assumed that is constant up
to a height z; and then decreases for z > 2 as

F,(2) = Foexp|—(z — 21)/Hp) (4.1)

with a damping length H,,. In the models presented below H,, will be varied between 0.25 and
3.25 Mm. For the mechanical energy flux the value of F,,o = 150 W m~2 is adopted (the same as
the one used by Hansteen & Leer 1995) and z; is set to 1.75 Mm for a loop of 10 Mm length. The
heating rate, i.e. the energy deposition per unit time and unit volume, is given by the divergence
of the energy flux:
A(] dFm(Z) AO Fm(Z)
Gn) ===, = A m,

The plasma- g is assumed to be < 1 and a constant cross section of the loop, i.e. A = Ay = const
is assumed. This parametrization of the heating function was first suggested by Serio et al. (1981)
and seems to be supported by recent observations (Aschwanden et al. 2000, 2001). Special care
was taken to normalize the heating rate to a given energy flux in order to separate effects from
changes of the amplitude of the energy flux to changes in its spatial distribution.

(4.2)

4.3 Results: Condensation due to Thermal Instability

4.3.1 Initial State

The model coronal loop has a total length of 10 Mm, consisting of a semicircular arch of 8 Mm
length and a vertical stretch of 1 Mm length at both ends. Figure 4.1 shows the initial loop con-
figuration. The temperature and density are plotted as a function of distance, z, along the loop.
The total particle density at the base is np.se = 8.8 - 102° m~3. This density corresponds (very)
roughly to a height of h = 605 km above 7500nm = 1 in the Vernazza et al. (1981) quiet sun
model. The ionization degree of hydrogen is ~ 0.3 % at this height and the base temperature is set
t0 Thase = 7000 K.

In the chromosphere, the temperature remains constant while the density falls off exponen-
tially with a scale height of about 190 km until the transition region is encountered at 1.6 Mm.
Here the temperature rises rapidly reaching 10° K at 1.63Mm and 5 - 10° K at 2.81 Mm. The
loop apex temperature is 6.55 - 10° K. Energy losses by radiation are L,,q ~ 10~*Wm~3 in the
coronal and transition region portions of the loop while conductive losses to the top of the chro-
mosphere account for VQ ~ 8 - 10~ Wm~3, i.e. the loop is essentially a “hot loop” in that the
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FIGURE 4.1: Initial configuration: temperature, 7" (left), and particle density, p (right), along the loop with
a total length of 10 Mm.

energetics are dominated by conduction. The sound crossing time for the loop is 7 min and a low-
amplitude acoustic wave is initially bouncing in the coronal portion of the loop between the two
steep temperature gradients. This wave had been triggered by a temporally and spatially localized
energy deposition (nanoflare) in the upper part of the loop. This episodic heating mechanism was
switched off before the start of the simulation, and replaced by the continuous heating function
given by Eq. (4.2). All calculations presented here could have equally well been initialized with
a static loop model, but | decided to start with this perturbed model in order to illustrate that the
formation of recurrent condensations is not only possible when starting from an analytic solution,
but also for dynamic, and therefore more ‘realistic’ circumstances.

4.3.2 Loop Evolution

Starting from the initial loop model, a time-independent heating function is prescribed as given by
Eq. (4.2) with a damping length of H,, = 1.25 Mm, which results in a heating rate at the loop
center that is 15% of the maximal heating rate, @,,(z1). At z = z; = 1.75Mm, the ratio of
mechanical heating to radiative losses is 0.26 at t = 0, while at the loop apex, it is 2.10.

The evolution of the loop temperature, velocity, and density is shown in Fig. 4.2. During the
first 2300 s the loop cools down from Ty, (t = 0) = 6.5 - 10° K to Tyop(t = 900s) = 2 - 105K,
while the density stratification remains roughly constant and the low-amplitude acoustic wave
continues to bounce between the two transition regions. At ¢ = 2300 s there is a sudden change:
The temperature at the loop apex is no longer the maximal loop temperature, and this dip in the
temperature stratification amplifies rapidly. At the same time, a flow towards the cooling loop
apex sets in, which reaches v ~ 2km/s at t = 3200s. Att = 3400s, a clump of cool (104 K)
material with rapidly increasing mass content has formed at the loop apex. This clump, which
I will call the condensation region hereafter, eventually starts moving slowly towards one loop
leg and is accelerated to v ~ 3 km/s before draining into the chromosphere at t = 5300s. As
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Ficure 4.2: Temporal evolution of temperature (left), velocity (center), and density (right) along the
loop. The heating rate for the loop shown is characterized by F,,o = 150 W m~2 and a scale height of

H,, =1.25Mm.
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a result, a weak rebound shock forms on the left side, followed by a phase of chromospheric
evaporation which refills the evacuated loop with plasma. This upflow decreases with time from
v(t = 5400s) ~ 1.5km/s to v(t = 8000s) ~ 0. In the mean time, the apex temperature of the
loop has reached its maximum of Ty« top = 3.4 - 10° K at t = 7200 5. The subsequent decline in
temperature is first slow and then becomes faster towards ¢ = 10000 s. At this time a dip in the
temperature profile forms again at the loop apex, and the whole process repeats.

In the case of the model run shown in Fig. 4.2, a slow magneto-acoustic wave of low amplitude
passes through the loop in the beginning of the simulation and leads to a leftward motion of the
condensation region. Alternatively, an asymmetry of 1% between the deposited energy in both
legs proved to be sufficient to dictate the draining direction: the condensation region then moves
to the side on which less energy is supplied.

4.3.3 Energy Balance Analysis

The formation of the central dip of the temperature stratification results from the concentration of
heating near the footpoints of the loop or, to put it differently, from insufficient heating at the top.
In order to better understand the evolution of the loop, let us consider the energy balance at the
loop apex for a damping length of H,,, = 1.25 Mm. The relevant terms for this are the mechanical
energy supply, @.,,, the radiative losses, L,.q, the adiabatic compression, pVv, and the divergence
of the conductive flux, V F,.. As the density in the coronal part of the loop increases, the mechanical
heating per particle, Q,,,/n., decreases (the ion density, ni.,, equals approximately the electron
density, n.). This is displayed in the top row of Fig. 4.3. At the same time, the radiative losses per
particle, L,.q/n. (Fig. 4.3, center), increase as the temperature drops to 7 = 2 - 10° K, which is
predominantly due to the temperature dependence of the radiative losses.

The time dependence of the total energy balance at the apex is dominated by two interacting
processes, namely the increase of radiative losses and the increase of density. The bottom plot of
Fig. 4.3 shows that, as a result of this interplay, the energy supply at the loop top becomes negative
at t = 2000s, which explains the developing dip in the temperature profile. The simultaneous
decrease of the gas pressure initiates a symmetric flow towards the center of the loop, so that more
and more mass is advected and a condensation region forms. Once the temperature dip has formed
as a consequence of the described loss of equilibrium, a thermal instability sets in as L,.q o n?.
This process of runaway cooling has been described, e.g., by Antiochos & Klimchuk (1991). As
our model loop is of semicircular shape, the configuration with a condensation region located at
the very center of the loop is gravitationally unstable. Therefore, the slightest perturbation forces
the condensation region to move downward in either direction, where it experiences increasing
acceleration as described below.

4.3.4 The Role of the Damping Length

A plausible hypothesis is that the major factor in determining the cyclic behavior of the loop
lies in the damping length, H.,,,, of the heating function because this critically influences the heat
deposition at the loop top. The influence of the damping length on the thermal evolution of the loop
has been studied by varying H,,, from 0.25 Mm to 3.25 Mm and in each case letting the loop model
evolve for 20000s. In Fig. 4.4, the mechanical heating function, @,,(z), is plotted for different
values of H,,. The temporal evolution of the mean loop temperatures, (7'}, is displayed for these
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FIGURE 4.3: Energy balance at the loop apex for a damping length of H,,, = 1.25 Mm. From top to bottom:
electron density, n., mechanical heating per particle, radiative losses per particle, the sum (Q,,, — Lyad —
pVuv — VF,) per particle (negative values mean that the loop apex is losing energy), and the temperature
at the loop top.
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FIGURE 4.4: The mechanical heating function, @, (=), plotted for different values of H,,. Dashed line:
H,, = 1.5Mm, solid linee H,, = 1.25Mm, dotted line: H,, = 1.0 Mm, dash-dotted line: H,, =
0.75Mm, long-dashed line: H,,, = 0.5 Mm.

models in Fig. 4.5. For this plot, the mean temperature is defined as the average temperature over
the central half of the loop, i.e. from z = 2.5Mmto z = 7.5 Mm.

Let us consider the limiting cases first: For short damping lengths of H,, < 0.5 Mm, the loop
decays as not enough energy is deposited in the upper part of the loop to balance the radiative
and conductive losses. In this case the temperature in the loop falls during the first 15000 s to
roughly 10* K and stays at that level for the remainder of the model run, maintained in part by the
”opacity” heating term that is included in order to maintain chromospheric temperatures at roughly
7000 K. On the other hand, for longer damping lengths with H,, > 1.5 Mm, the energy deposition
at the loop center is large enough to sustain a stable loop against radiative and conductive losses
and an average loop temperature of 3.6 - 10° K (for H,,, = 1.5Mm) is reached and maintained
(see Fig. 4.5, dashed). Even longer damping lengths lead to stable loops with slightly higher
temperatures. The regime in between, with intermediate damping lengths of 0.75Mm < H,, <
1.5 Mm, shows the cyclic behavior described above. In these cases, the loop exhibits a dynamic
behavior, triggered by the onset of thermal instability as described in Sect. 4.3.2.

Let us focus on the solid line in Fig. 4.5, for a damping length of H,, = 1.25 Mm. The first
minimum of this curve with (T'),;, = 1.4 - 10° K is attained at ¢+ = 30005, corresponding to
the formation of the condensation region. This is followed by an increase in temperature towards
a temporary plateau at (7") = 1.8 - 10° K. During this phase, the condensation region is moving
down one loop leg, while the top of the loop is already reheating. After the condensation region
has left the loop, the temperature rises rapidly to (T") . = 3.7 - 10° K at t = 7200s. At this
point in time, the net energy supply at the loop top decreases (cf. Sect. 4.3.3), and the loop starts
to cool gradually. When the temperature approaches 7" = 2 - 10° K, the radiative losses increase
strongly which drastically accelerates the cooling process. As a result, a new condensation region
forms, and a second minimum in mean temperature is attained at ¢ = 10800 s. The period of this



4.3 Results: Condensation due to Thermal Instability 49

5x10°

4x10°

3x10°

<T> K]

2x105

1x10°

o

o T T T[T T T[T TT [T

5 10 15 20
t[10%s]

Ficure 4.5: The influence of the damping length, H,,, on the thermal evolution of the loop. Dashed
line H,, = 1.5Mm, solid line: H,, = 1.25Mm, dotted linee H,, = 1.0 Mm, dash-dotted line:
H,, = 0.75Mm, long-dashed line: H,,, = 0.5 Mm.

condensation cycle is P = 7800s.

For the cases of shorter damping lengths, H,,, = 0.75 Mm and H,, = 1.0 Mm, the formation
of a condensation region works qualitatively in the same way. Let us therefore focus on the dif-
ferences: As the heating is more strongly concentrated towards the footpoints of the loop, the net
energy supply per particle at the loop top starts to decrease at an earlier point in time so that the
maximum loop temperature attained is lower, namely Th,.x = 2.2-10° K for H,,, = 0.75 Mm, and
Tmax = 2.6 - 10° K for H,,, = 1.0 Mm compared t0 T}ax = 3.4 - 10° K for H,,, = 1.25 Mm. Due
to the strong radiative losses towards 7" = 2 - 10° K, these loops subsequently also cool faster than
the hotter loop, so that the period of the condensation cycle is shorter than for H,, = 1.25 Mm:
P = 4600s for H,,, = 0.75Mmand P = 41005 for H,, = 1.0 Mm. The cooling rate, AT'/At, in
the temperature range 1.5-10° K < 7' < 2.5-10° K is very similar for all three cases, which allows
the conclusion that the increased period for the damping length of H,,, = 1.25 Mm is mostly due
to the longer duration of loop reheating and loop cooling at temperatures 7' > 2.5 - 10° K. Sim-
ulations for longer and hotter loops (see Chap. 8) support the finding that the cooling phase from
T = Tmax Up to the development of a deep dip in the temperature profile is indeed much longer
than any other phase of the condensation cycle. Table 4.1 summarizes the relevant parameters for
different damping lengths.

It should be noted that for all loops which form a condensation region, the minimum mean
temperature is very similar, (T') i, = 1.4—1.5-10° K. This minimum temperature is attained when
the condensation region has just formed, which happens shortly after the dip in the temperature
profile has developed. At this point in time, the energy balance, as discussed in Sect. 4.3.2, is very
similar for all loops. This is illustrated in Fig. 4.6, which displays the temperature profiles of three
different loops corresponding to the respective minimal mean temperatures. As shown in Fig. 4.5,
the period of the condensation cycle depends on the damping length — the more the heating is
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Hy[Mm] (T min[10° K]

(T)max[10° K] Pls] linestyle

0.5 0.1
0.75 14
1.0 1.5
1.25 1.4
1.5 3.6

0.1
1.8
2.4
3.2
3.6

TABLE 4.1: Loop parameters for different damping lengths, H,,: Minimum mean temperature, (T") min,
maximum mean temperature, (T') ,.x, period of the condensation cycle, P, and corresponding linestyles

in Figs. 4.4 - 4.6.

2.5%x10°

2.0x10°

1.5x10°

TIK]

1.0x10°

5.0x10*

FIGURE 4.6: Temperature profiles of different loops at the time when a condensation region has formed.
Solid line: H,,, = 1.25 Mm, dotted line: H,,, = 1.0 Mm, dash-dotted line: H,,, = 0.75 Mm.
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FI1GURE 4.7: Limit cycle of loop evolution for a damping length of H,, = 1.25Mm (dots) and H,,, =
1.50 Mm (open circles). The phases of evolution are indicated as follows: (1) initial cooling, (Il a)
condensation, (11 b) simultaneous evolution of the hot part of the loop (dashed line), (111) loop reheating
and chromospheric evaporation.

localized near the footpoints, the sooner the thermal instability sets in.

4.3.5 Limit Cycle of Loop Evolution

As pointed out previously, the thermal evolution of the model coronal loop shows periodicity for a
significant parameter range of the damping length. To illustrate this cyclic pattern, Fig. 4.7 shows
the mean density, (p), of the loop as a function of mean loop temperature, (7"). From here on, the
mean values are defined as the average quantities over the region of the loop which lies above the
transition region, bounded by the points where the temperature crosses 7' = 10° K in both loop
legs. The exact choice of this cut-off value does not significantly influence the results and could be
set to any temperature 7" > 2-10% K. In contrast to the convention used in the previous section, this
definition is independent of motions of the chromosphere-transition region boundary, while the
former definition was used to describe the decaying loop together with the other solutions. Figure
4.7 displays the loop evolution for two different damping lengths: For H,, = 1.50 Mm, the loop
approaches a stationary solution (open circles), while for H,,, = 1.25 Mm (dots), the loop enters a
limit cycle after its initial cooling, expressing the fact that the loop evolution becomes independent
of the initial boundary conditions. The evolution can be divided into four parts:

I The 10 Mm loop first cools down from its initial mean temperature of (T) = 5 - 10°K to
(T) ~1.4-10°K.

Il'a The onset of condensation is seen as an increase in the mean density of the loop. The
mean temperature starts to rise again shortly before the condensation region leaves the loop,
which is due to the fact that one side of the loop is already reheating while the condensation
region is moving to the other side. The stage of evolution when the condensation region
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drains from the loop is seen as a sudden drop in density from (p) = 3.6 - 102 kg m~3
to (p) = 1.4-10~'2kg m~3. One point is plotted for each 10 of the evolution, and the
lack of points in this fairly large interval of mean density illustrates that the condensation
region leaves the loop very quickly (but still with a velocity that is much slower the free-fall
velocity of vg = 31.2 km/s for this loop).

Il b As the mean density of the loop during the condensation phase is dominated by the conden-
sation region itself, also the density in the hot part of the loop alone is evaluated: Due to
the formation of a condensation region, the density in the adjacent parts of the coronal loop
decreases which leads to an increase in temperature. The mean values of the hot part of the
loop for this stage of evolution is plotted as a dashed line in Fig. 4.7.

111 After the condensation region has drained, the evacuated loop reheats and chromospheric
matter is evaporated, as indicated by the increase in mean density. When the loop reaches
(T) = 3-10° K, the radiative losses at the loop top are no longer balanced by the energy sup-
ply through mechanical heating, conductive flux, and enthalpy flux, so that the temperature
starts to decrease and the cycle repeats.

Cyclic evolution of coronal loops was studied for the first time by Kuin & Martens (1982). In their
semi-analytical model, they treated the coronal loop as a zero-dimensional system, characterized
by a mean temperature and density, which is coupled to the underlying chromosphere. Depend-
ing on the strength of the coupling, the authors obtained different classes of solutions, namely
solutions converging towards a fixed point and solutions approaching a limit cycle. As the loop
was treated as one zero-dimensional system, however, Kuin & Martens were not able to model
any spatially localized condensation which in our work leads to the upward-arching branch in the
{p)({T)) diagram of Fig. 4.7. Considering the hot coronal part of the loop alone, in contrast, rec-
onciles our spatially resolved loop model with the semi-analytical approach of Kuin & Martens
(cf. Fig. 4.7, dashed line). More details about the work of Kuin & Martens will be given in
Chap. 7.

4.3.6 Remarks on Rayleigh-Taylor Instability

Loop configurations with a density inversion at the center are unstable against Rayleigh-Taylor
instability if Vp - g < 0. The question is: Would a Rayleigh-Taylor instability inhibit the con-
densation of plasma in the upper part of a coronal loop? To estimate the importance of Rayleigh-
Taylor instability compared to the dynamic time scale of our model loop, | followed the work of
Chandrasekhar (1961) and calculated the growth rate, w, of the amplitude of normal modes of the
form A(Z,t) o expli(kzx + kyy) + wt] as a result of a density perturbation near the boundary
between two incompressible, inviscid fluids of uniform densities, p2 and p; (p2 > p1), permeated
by a uniform magnetic field parallel to the direction of the gravitational force. One finds that an
upper limit for the growth rate, w, of the perturbation is given by

L%
e = (/23 = /70 “3)

Inserting typical values for the formation of a condensation region of p; = 3 - 10712 kg m~3,
p2 =4-107'" kgm=3, g = 0.04 - g (corresponding to a width of the condensation region of
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0.2Mm), and By = 1 mT, a time scale of 7" = 27” ~ 22000 s is obtained, which is more than an
order of magnitude larger than the time scale over which the condensation region evolves. | thus
conclude that the onset of Rayleigh-Taylor instability does not fundamentally affect the formation
of the condensation region. It might eventually lead to a dissolution of the condensation region, but
at that stage, this region is already moving towards the loop footpoint, which would also happen
if the condensation region were split up in pieces. Moreover, it was checked that the perturbation
of the loop geometry due to the accumulation of mass in the center of the loop is negligible.

4.3.7 Spectral Signature of Condensation in Transition Region Lines

The fact that the numerical code used in this work self-consistently solves the non-equilibrium ion-
ization rate equations for different atomic species offers the possibility of synthesizing optically-
thin transition region lines. The inclusion of non-equilibrium ionization effects is of vital im-
portance when studying the spectral signature of a plasma in a dynamic state like in the present
case.

Figure 4.8 displays the intensity variations of the lines C IV (154.8 nm, formed at 7'y ~ 1-10° K),
OV (63.0nm, Ty ~ 2.2 - 10° K), and O VI (103.2nm, Ty ~ 3.2 - 10° K) during the evolution of
the loop. The spectral lines are calculated by integrating the emission of the entire loop as seen
vertically from the top, the line widths are given in velocity units. All three lines show periodic
brightenings which have their origin in the condensation process. In the case of the C IV line,
the strong increase in density at the beginning of the condensation results in high radiative losses
and hence an intensity maximum. A second maximum of slightly smaller amplitude is attained
when the condensation region has grown to its maximum, shortly before draining down the loop
leg. Right after the condensation region has left the loop, the intensity is minimal as the loop
is devoid of plasma at this stage. In the following evolution, the intensity gradually increases
as chromospheric evaporation sets in again. In contrast to this, the intensity of the O VI line is
maximal when the temperature is highest as the line is formed around 7" ~ 3.2 - 10° K. When the
condensation sets in and the maximal loop temperature temporarily sinks below 7" = 2 - 10° K,
the intensity in O VI almost drops to zero. The OV line, formed around 7" ~ 2.2 - 10° K, can be
considered as an intermediate case.

For a damping length of H,,, = 1.25 Mm, the C IV total intensity varies between 1.1 W/(m? sr)
and 3.8 W/(m? sr), the OV total intensity varies between 2.0 W/(m? sr) and 6.9 W/(m? sr), while
the O VI total intensity varies between 0.1 W/(m?sr) and 4.8 W/(m?sr). For shorter damping
lengths, the maximum temperatures of the loop are lower which results in a decreased intensity
for lines which are formed at higher temperatures. The O VI line, for example, shows bright
periodic intensity maxima for H,,, = 1.25 Mm, while it is almost invisible for a damping length of
H,, = 0.75 Mm. In contrast to this, the intensity range of the C IV line remains almost unaffected
by a change of the damping length as the maximum loop temperature exceeds in all cases its
formation temperature.

4.4 Discussion

It has been shown in this chapter that cool coronal loops can exhibit inherently dynamic behavior
even under the simple assumption of a mechanical energy flux into the loop that is dissipated expo-
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FIGURE 4.8: From left to right: Space-time plot of the loop temperature and the corresponding variations
of the lines of C IV (154.8 nm), O V (63.0nm), O VI (103.2 nm) for a damping length of H,,, = 1.25 Mm.
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nentially with a given scale height but constant in time. This scenario is interesting in the sense that
no time-dependent driving mechanism is needed to generate transient brightenings in transition re-
gion lines. Simultaneous observations of, e.g., the C 1V (154.8 nm) and the O VI (103.2 nm) lines
would be advantageous in order to verify if this phenomenon is as ubiquitous as it seems. Recent
TRACE observations of Schrijver (2001) indeed show frequent “catastrophic cooling” and evacu-
ation of coronal loops over active regions and enhanced emission of C 1V, developing initially near
the loop top, followed by quick draining. Furthermore, CDS observations by Fredvik (2002) show
localized brightenings in coronal loops in OV (63.0 nm) on the limb which move quickly towards
the solar surface and could be interpreted as cooling plasma close to a condensation region. As
most of these recent observations refer to loops that are about one order of magnitude larger than
those considered here, models for longer loops will be studied in Chaps. 5 and 6. This could also
help to better understand and disentangle loops of different lengths in active regions, as observed,
e.g., by Spadaro et al. (2000).

The fact that the dynamic loop models described in this chapter can show strong emission in
lines formed at 7" < 10° K and at the same time relatively weak emission in lines formed at higher
temperatures seems promising with respect to the outstanding problem that current models predict
an emission measure that is either much lower than the emission observed at 7 < 10° K or much
higher than what is observed at 7 > 10° K. Further observational confirmation of the dynamics
predicted here, preferably concentrating on shorter loops, would lead to a strengthening of the
hypothesis that coronal heating is concentrated towards the footpoints of loops. Such knowledge
would be very useful to limit the number of possible coronal heating mechanisms.
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5 Catastrophic Cooling and High-Speed
Downflows

Abstract

In this chapter the problem of plasma condensation and “catastrophic cooling” in solar coronal
loops of 100 Mm length is addressed. | have carried out numerical calculations of coronal loops
and find several classes of time-dependent solutions (static, periodic, irregular), depending on the
spatial distribution of a temporally constant energy deposition in the loop. Dynamic loops exhibit
recurrent plasma condensations, accompanied by high-speed downflows and transient brightenings
of transition region lines, in good agreement with features observed with TRACE. Furthermore,
these results also offer an explanation for the recent EIT observations of De Groof et al. (2004)
of moving bright blobs in large coronal loops. In contrast to earlier models, it is suggested that
the process of catastrophic cooling is not initiated by a drastic decrease of the total loop heating
but rather results from a loss of equilibrium at the loop apex as a natural consequence of heating
concentrated at the footpoints of the loop, but constant in time.

5.1 Introduction

Recent observations of the solar transition region and corona, especially with the Solar and He-
liospheric Observatory (SOHO) and the Transition Region And Coronal Explorer (TRACE), have
shown that magnetically closed structures in the upper solar atmosphere, commonly referred to as
coronal loops, exhibit intrinsically dynamic behavior. Even in quiescent, non-flaring conditions,
loops show strong temporal variability of emission in UV spectral lines and substantial plasma
flows. An overview of observations of the temporal variability of active region loops with the
Coronal Diagnostic Spectrometer (CDS) is given by Kjeldseth-Moe & Brekke (1998). They re-
port significant changes of coronal loops over a period of one hour, in particular seen in emission
lines in the temperature range between 7' = 1 — 5 - 10° K. This variability is accompanied by
large Doppler shifts, typically around v = 20 — 100 km/s. Recent observations with CDS and the
Extreme ultraviolet Imaging Telescope (EIT) with high temporal cadence (Fredvik 2002, private
communication, De Groof et al. 2004) furthermore reveal spatially localized brightenings in coro-
nal loops, moving rapidly down towards the footpoints of the loops. The fact that coronal loops can
undergo rapid evacuation has been known for decades: Levine & Withbroe (1977), for example,
report Skylab spectroscopic observations, compatible with “dramatic evacuation” of active region
loops triggered by rapid, radiation dominated cooling. A detailed study of “catastrophic cooling”
and evacuation of quiescent coronal loops observed with the TRACE instrument is presented by
Schrijver (2001). He analyzes image sequences taken in different spectral passbands and finds
that loop evacuation occurs frequently after plasma in the upper parts of the loops has cooled to
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transition region or lower temperatures. The cooling process is often accompanied by emission
in Ly, and CIV (154.8 nm), developing initially near the loop top. Thereafter, cool plasma is
observed to slide down on both sides of the loop, forming clumps which move with velocities of
up to 100 km/s. The downward acceleration of these plasma clumps as inferred from these obser-
vations is significantly less than the gravitational acceleration on the solar surface. According to
the observations of Schrijver (2001), this process of dramatic cooling and evacuation is a rather
common one. Further observational evidence of “blobs” of plasma falling down towards the solar
surface along magnetic field lines is presented by De Groof et al. (2004), based on high-cadence
time series of simultaneous EIT (30.4 nm) and Big Bear H,, data.

In this chapter, numerical models of coronal loops are presented which exhibit a wide range of
dynamics using a very simple heating function that is exponentially decreasing with height, but
constant in time. A key feature of these models is the recurrent formation of plasma condensations,
followed by loop evacuation, as described in Chap. 4 and in Miiller et al. (2003), which offers a
unifying explanation for different aspects of recent observations.

5.1.1 Loop Heating

The energy input into the coronal loop is parametrized in the same way as in Chap. 4 by specifying
the energy flux at the footpoints of the loop, F,.o, and assuming a mechanical energy flux that is
constant up to a height z; and then decreases exponentially for z > z; as

Fm(z) = Fno eXp[—(Z - Zl)/Hm] (5.1)

with a damping length H,,. In the models presented below, H,, will be varied between 2 and
12.5 Mm for a loop of 100 Mm length. A mechanical energy flux of F,,,o = ¢ - 150 W/m? is used,
with the normalization constant ¢ = 1/(1 — exp[—(L/2 — z1)/Hp]) and z; = 1.75Mm. The
normalization constant ensures that the total energy input into the loop is the same, irrespective of
the damping length H,,. The heating rate, i.e. the energy deposition per unit time and unit volume,
is given by the divergence of the energy flux, @., = —V F,,. Figure 5.1 displays graphs of the
heating rate for different values of the damping length, H,,. The damping length H,, controls
whether the heating is concentrated near the footpoints or more evenly distributed along the loop.
An exponentially decaying heating function was first suggested by Serio et al. (1981) and seems
to be supported by recent observations (Aschwanden et al. 2000, 2001) as well as by numerical
simulations of Gudiksen & Nordlund (2002).

5.1.2 Initial State

The coronal loop model studied here has a total length of 100 Mm, composed of a semicircular
arch of 98 Mm length and a vertical stretch of 1 Mm length at each end. A static initial state is
obtained by prescribing a large energy dissipation length of H,, = 12.5 Mm, which results in a
loop apex temperature of 7 = 6.8 - 10° K. The temperature along the loop of the initial state is
plotted in Fig. 5.2.
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FIGURE 5.1: Prescribed heating rate for different values of the damping length: H,, = 2 Mm (dotted),
H,, = 3Mm (solid), H,, = 5Mm (dashed), and H,, = 6 Mm (dash-dotted), and H,, = 12.5Mm
(long dashes, heating function for static initial model). The total heat input into the loop is the same for

all cases.
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FIGURE 5.2: Temperature along the coronal loop. Initial state (solid line, H,,, = 12.5Mm) and stable
solution for H,,, = 6 Mm (dotted line).
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5.2 Plasma Condensation due to Thermal Instability

For very short damping lengths of the heating function, solutions with a hot loop apex may no
longer exist due to the insufficient energy supply to the center, i.e. the top of the loop, as shown
by Antiochos et al. (1999), Karpen et al. (2001) and Madller et al. (2003). In this case, a thermal
instability occurs and leads to a runaway cooling process, also called catastrophic cooling, ac-
companied by plasma condensation. This process has been discussed in detail in Chap. 4. Unless
this condensation region is gravitationally supported, for example by means of a dip in the mag-
netic field lines, to maintain a stable prominence-like state, such a configuration is unstable and the
dense condensation region eventually moves down the loop legs and drains through the footpoints.
The depleted loop then reheats quickly as its heat capacity is very low (at this stage there is much
less mass in the loop but the heating remains constant) and is filled again by chromospheric evap-
oration. Exactly how this cycle of plasma condensation, draining, and chromospheric evaporation
is realized depends strongly on the spatial dependence of the energy deposition.

As an illustration, Fig. 5.3 shows three snapshots of the temperature, density and radiative losses
during the catastrophic cooling process: The left panels (t = t;) show the loop as it is cooling
predominantly around the apex as a result of footpoint-centered heating. In this early phase, the
density is still monotonically decreasing with height and the radiative losses around the loop apex
are small. The central panels (¢t = t5) show the loop with a pronounced temperature minimum at
the loop apex. A flow towards the loop apex has developed which is accreting mass and results
in a density inversion. The loop top therefore cools even faster and starts radiating strongly:
catastrophic cooling has set in. The right panels (t = t¢3) finally show how the gravitationally
unstable condensation region falls towards one footpoint. After it has drained, the low-density loop
reheats and the cycle starts again. In Chap. 4, the physical processes leading to this evaporation-
condensation cycle were studied, together with its application to small (L. = 10 Mm) transition
region loops, which can just barely be spatially resolved with the currently available instruments.
This chapter focuses on plasma condensations in longer coronal loops (. = 100 Mm), where
the same process can induce significantly stronger flows and greater variations in the spectral
signature, due to the longer acceleration phase along the loop. More generally, the aim of this
chapter is also to work out the different types of loop evolution that result from different damping
lengths of the heating function.

It is interesting to note that a time-dependent evolution for time-independent heating over short
damping lengths has already been described in a different context by Hearn et al. (1983) and
Korevaar & Hearn (1989). However, they applied their results not to solar coronal loops, but
to open coronal regions surrounding hot stars. A connection of their work to the results presented
here will be pointed out in Chap. 8.

Cyclic evolution of coronal loops was studied for the first time by Kuin & Martens (1982). In
their semi-analytical model, they treated the coronal loop as an integrated system, coupled to the
underlying chromosphere. A comparison of their work with our hydrodynamical simulations is
given in Chaps. 4 and 7.
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FIGure 5.3: lllustration of the formation and fall of a condensation region. Left panels (t = ¢1): Due to
the footpoint-centered heating, the loop cools, predominantly around the apex. In the early phase, the
density is still monotonically decreasing with height. Central panels (¢t = ¢2): A flow towards the loop
apex has developed which is accreting mass and results in a density inversion. The loop top therefore
cools even faster and starts radiating strongly: catastrophic cooling has set in. Right panels (¢t = ¢3): The
condensation region is gravitationally unstable and falls towards one footpoint. After it has drained, the
low-density loop reheats and the cycle starts again.
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FIGURE 5.4: Evolution of mean temperature, (T'), as a function of time, for four different damping lengths
of the heating function: H,, = 2Mm (dotted), H,, = 3Mm (solid), H,, = 5Mm (dashed), H,, =
6 Mm (dash-dotted). For comparison, the long-dashed line shows (T)(t) for a loop model where the
heating is switched off at t = 0.

5.3 Results

5.3.1 Different Types of Loop Evolution

For large damping lengths (H,,, > 6 Mm) and a prescribed energy flux as described in Sect. 5.1.1,
a stable, static loop solution is attained. Figure 5.2 shows the temperature along the loop for
H,,, = 6 Mm, which has a mean temperature of (T") = 5.3 - 10° K. For shorter damping lengths,
when the heating is more concentrated at the footpoints, the loop loses its thermal equilibrium and
exhibits a dynamic evolution. Figure 5.4 shows the mean temperature, (), of a L = 100 Mm
loop as a function of time for damping lengths of H,, = 2,3,5, and 6 Mm. It is found that
for 25Mm < H,, < 6 Mm, the loop shows a periodic variation of (T") due to the evaporation-
condensation cycle as described in Chap. 4. For even shorter damping lengths (H,,, < 2.5 Mm),
the evolution of (T") is irregular and shows intermittency of hot phases and strongly fluctuating
cool phases. This type of intermittent behavior is well-known from chaotic non-linear systems.
For comparison, Fig. 5.4 displays also (T") () for a loop model where the heating is switched off at
t = 0 (long-dashed line). In this case, the loop plasma simply drains on both sides of the loop with
flow speeds of v < 15 km/s, and the loop cools down to chromospheric temperatures without any
plasma condensation forming. Let us examine the different types of dynamic solutions in more

Throughout this work, the mean values are defined as the average quantities over the region of the loop which lies
above the transition region, bounded by the points where the temperature crosses 7 = 10° K in both loop legs (the
exact choice of this cut-off value does not significantly influence the results and could be set to any temperature
T >2-10*K).
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detail to see which phenomena accompany the condensation process. Figure 5.5 displays space-
time diagrams of the loop temperature, 7'(z, t), for H,, = 2,3,5Mm. The left and the center plot
show two different kinds of recurrent formation of plasma condensations:

In the first case (H,, = 5Mm), one condensation region forms at the loop apex and is then
accelerated on its way down, resulting in flow velocities in the wake of the falling plasma blob
of up to v ~ 100 km/s. When this condensation region encounters the transition region near the
loop footpoint, it is strongly decelerated by the pressure gradient of the underlying plasma and
the velocity profile forms a shock front. As the compression is approximately adiabatic, this leads
to a transient heating of the transition region plasma. The direction in which the blob starts to
move is decided by small asymmetries of the pressure around the loop apex. A small increase of
the deposited energy in one loop leg (e.g. 1%) is sufficient to trigger a motion of the blob in the
opposite direction. In Sect. 5.3.4, the velocity profiles of the flow will be discussed in more detail.
A possible connection to the recent observations of falling plasma blobs by De Groof et al. (2004)
will be studied in detail in Chap. 6.

The center plot of Fig. 5.5 shows the second type of recurrent condensations which occurs
if the damping length is slightly reduced with respect to the first case (H,, = 3Mm). Here,
two condensation regions form simultaneously and then drain down both loop legs. Note that in
agreement with the results obtained in Chap. 4 for short loops, the period of the condensation cycle
decreases with decreasing damping length as the loss of equilibrium due to insufficient heating of
the upper part of the loop occurs sooner.

The right panel of Fig. 5.5 shows the most complex evolution of this set of numerical exper-
iments: As the heating is even more concentrated towards the footpoints, the evolution of tem-
perature along the loop with time reflects the persistent battle between loop heating and radiative
cooling: The loop first cools down from its initial state to 7" ~ 1.1-10° K and forms two condensa-
tion regions at ¢ = 8000 s (~ 2.2 h). After these have drained, the loop starts reheating. Due to the
concentration of the heating to low heights, however, not enough energy is deposited in the upper
part of the loop to prevent it from repeated radiative cooling and condensation at ¢ = 12000s.
Att = 19000s, the loop recovers from its catastrophic cooling and enters a quiet, warm phase,
during which the flow speed does not exceed v = 16 km/s. At ¢ = 250005, a new instability sets
in and leads to the formation of two new condensation regions whereupon flow speeds of up to
v = 95 km/s are reached. The reflections of the shock fronts meet near the loop apex and yield to
a transient temperature increase there. At¢ = 30000 s, a new phase of evolution starts: small con-
densation regions are recurrently formed in one leg of the loop, but due to the footpoint-centered
heating function, the loop does not reach temperatures of more than 7" = 3.9 - 10° K before col-
lapsing again. At ¢ = 540005, the loop enters a periodic phase where condensation regions are
recurrently formed in the right loop leg. How long the different phases of loop evolution last is
dependent on small variations in the radiative loss rate. “Chaotic” evolution of the loop for the
entire duration of the longest simulation run (2 - 10°s) was observed when including the non-
equilibrium ionization of only hydrogen and helium, while the loop reached a periodic solution
at ¢t = 540005 (as described above) when also accounting for the non-equilibrium ionization of
carbon and oxygen.
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FIGURE 5.5: Evolution of the temperature along the loop, 7'(z,t), for three different damping lengths
of the heating function: H,, = 5Mm (left), H,, = 3Mm (center), H,, = 2Mm (right). The loop

footpoints are at = =0 and 100 Mm, the apex is at z =50 Mm.
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5.3.2 Classification of Loop Evolution

One way of representing the temporal evolution of coronal loops is in terms of phase diagrams in
(p) — (T) space. Figure 5.6 shows such a phase diagram for a static loop (H,, = 6 Mm, dash-
dotted), a periodically condensing loop (H,, = 3 Mm, solid), and an irregular loop (H,,, = 2 Mm,
dotted). It is seen that the stable loop approaches a fixed point in (p) — (T') space, while the
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FIGURE 5.6: Mean temperature, (T), of the loop, as a function of mean pressure, (p), for a loop of total
length L = 100 Mm. Dotted: H,,, =2 Mm, solid: H,,, =3 Mm, dash-dotted: H,,, =6 Mm.

periodically condensing loop traces out limit cycles. On the other hand, the irregular loop exhibits
a pattern that is composed of a multitude of small intersecting paths, occasionally interrupted by
larger cycles corresponding to the temporarily stable phases of the loop.

5.3.3 Where in a Coronal Loop do Condensation Regions Form?

In the beginning of the cooling process, the evolution of the temperature as a function of loop
length is very similar for the two cases of H,, = 3Mm and H,, = 5Mm. This raises the
question why two condensation regions form in the wing of the loop in one case and only one
central condensation region in the other case, where the heating is less concentrated towards the
footpoints.
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Some Consideration on the Energetics

In order to better understand the formation of the condensation region it is also helpful to study
the deposition and transport of the energy. If the ratio of the damping length to the loop length is
large, stable coronal loops reach the maximum temperature near the loop top. In contrast, stable
loops with a smaller ratio of damping length to loop length reach the peak temperature well below
the apex and have a rather flat temperature profile in the central part of the loop. For instance, a
stable 100 Mm long loop with H,,, = 6 Mm reaches a maximum temperature of 5.9 - 10°> K some
16 Mm above its footpoints, while the central 80 Mm, i.e. most of the loop, show only a 6% change
in temperature, with a local temperature minimum of 5.6 - 10° K at the apex. In this model, the
loop top is not predominately heated by the mechanical heating as defined in Eq. (5.1). The rapid
exponential decrease of the heating can sustain high coronal temperatures only up to some 10 Mm
height above each footpoint. Above that height the plasma is mainly heated by heat conduction.
In an equilibrium situation this leads to a temperature dip at the loop apex. As the heat conduction
is efficient at high temperatures the resulting temperature profile is rather flat in the upper part of
the loop.

If the heating is more and more concentrated to the footpoints (by decreasing H,,), the peak
temperature becomes smaller and occurs at lower heights. This reduces the heat input through heat
conduction into the upper part of the loop, and finally the heat conduction can no longer balance
the radiative losses and catastrophic cooling sets in. This clarifies why the catastrophic drop in
temperature can set in over a very wide range of the loop, basically in the whole region between
the temperature maxima (cf. middle and right panel of Fig. 5.5 and upper left panel of Fig. 5.7).

Off-center Formation of Condensation Regions

The upper left panel of Fig. 5.7 shows the temperature profiles of the H,, = 3 Mm loop for five
different time steps. In the first time step, ¢ = 30000 s, the loop is already in the cooling phase,
and the temperature decreases with time throughout the central part of the loop. The cooling is
dominated by radiation, with total radiative losses of L, = ®(T) - n. - ng ~ ®(T) - n?. The
radiative loss function, ®(7), is determined by the ionization (non-)equilibrium of the model
atoms included in the calculation and is therefore time-dependent. However, if the ionization of
the loop plasma does not depart too strongly from equilibrium, the radiative losses peak around
T =~ 2-10° K, as shown in the upper right panel of Fig. 5.7. This means that plasma of a given
electron density cools more efficiently at 7 = 2-10° K than at 7’ = 4-10° K. On the other hand, the
density enters quadratically into in the radiative loss function, so that a local density enhancement
anywhere leads to a strongly increased cooling. Let us concentrate on the time step ¢ = 31000
(dotted line) and compare the different panels on the left side of Fig. 5.7: It is seen that the total
radiative losses have developed two local maxima in the wings of the loop, which subsequently
lead to local density maxima at ¢ = 33 000 s (dash-dotted line). This initiates the formation of two
condensation regions, as seen by the drastic density increase at later time steps. At the earlier time
t = 31000 s, however, these local maxima are not yet accompanied by local density maxima and
arise at a temperature of 7' ~ 3 - 10° K (right center panel of Fig. 5.7), which is not the location
of the maximum of the radiative loss function, ®(7"). The total radiative losses, L, ~ ®(T) - n?,
however, peak here and hence lead to the formation of lateral condensation regions. The lower
right panel of Fig. 5.7 shows the strong density decrease towards the cooler center of the loop
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FIGURE 5.7: Formation of two simultaneous, lateral condensation regions for H,, = 3Mm. Left pan-
els, as functions of loop length: loop temperature (top), total radiative losses (middle), electron density
(bottom). Right panels, as functions of loop temperature: radiative loss function (top), total radiative
losses (middle), electron density (bottom). The following time steps are plotted: ¢ = 30000 s (solid),
t = 31000 s (dotted), t = 32000 s (dashed), ¢ = 33 000 s (dash-dotted), t = 34 000 s (dash-dot-dotted).
The right panels display only data of the central part of the loop, between the two vertical lines shown
in the upper left panel, for the first 4 time steps. In some cases (dashed and dash-dotted curves in the
middle and lower right panels) two branches are seen because of a slightly different evolution of the two
loop legs.
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which prevents the formation of a central condensation region.

Formation of Central Condensation Regions

Let us now compare the results obtained for a damping length of H,, = 3 Mm with those for
H,,, = 5Mm. In the upper left panel of Fig. 5.8, the temperature profiles of the H,,, = 5 Mm loop
for six different time steps are plotted. As in the previous case, the loop is in its cooling phase,
with a local temperature minimum at the loop apex, and cools fastest around the apex. In contrast
to the H,, = 3Mm case, however, the density gradient, On./dz, near the apex is significantly
shallower than in the previous case. This is due to the larger damping length which means that a
larger fraction of the energy is dissipated higher up in the loop.? Therefore, a local maximum of
the total radiative losses forms at the loop apex at t = 22000s (middle left panel, dotted line).
The middle right panel displays the total radiative losses, L., as a function of temperature, and
it is seen that for T < 4 - 10° K, L,.(T) increases monotonically with decreasing temperature.
Consequently, a local density maximum forms at the loop apex at ¢ = 26 000 s (lower left panel,
dash-dotted line) and evolves by catastrophic cooling into a condensation region.

5.3.4 Formation of a Shock Front

In a hydrostatic configuration, the gravitational force acting on the plasma is balanced by the pres-
sure gradient. As an illustration of a temporarily static phase of the coronal loop with H,,, = 3 Mm,
the upper left panel of Fig. 5.9 shows the component of the gravitational acceleration parallel to
the loop, g|(z), and the acceleration due to the pressure gradient, Vp(z)/p(z), along the coronal
part of the loop at t = 32000 s. It is seen that these two quantities compensate each other, and due
to this equilibrium, the plasma in the loop is nearly static (the velocity is displayed in the upper
right panel). At ¢ = 34400s, however, a loss of equilibrium has occurred and the gravitational
force is no longer balanced by the pressure gradient (lower left panel): In the central part of the
loop, the pressure gradient has dropped to very small values, while close to the footpoints, it is
more than an order of magnitude higher than the gravitational acceleration. The reason why Vp
becomes much smaller in the central part of the loop than in hydrostatic equilibrium is the drastic
decrease of the temperature (cf. Fig. 5.7, upper left panel) which causes a strong decrease in the
pressure. This explains the velocity profile seen in the lower right panel: In the central part of
the loop, the plasma is accelerated to velocities very close to the free-fall speed, indicated by the
dashed line, and then strongly decelerated in the lower parts of the loop, resulting in a characteris-
tic shock profile (Positive values of v denote a flow in the positive z-direction. A downflow in the
left loop leg (z < 50 Mm) is thus characterized by velocities v < 0, while a downflow in the right
loop leg (z > 50 Mm) has velocities v > 0.).

5.3.5 Velocity Profiles and Acceleration of the Condensation Region

In order to compare these results with the velocities and accelerations deduced from observations
of “moving blobs” in coronal loops, | concentrate in this section on the falling condensation region

2The larger damping length also results in a higher temperature in general. When the cooling phase sets in, the
H,,, = 5 Mm loop has amaximum temperature of 7' = 5.8-10° K compared to 7' = 5.2-10° K for the H,,, = 3Mm
loop (cf. also the mean temperatures plotted in Fig. 5.4).
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FIGURE 5.8: Formation of a central condensation region for H,,, = 5 Mm. Left panels, as functions of loop
length: loop temperature (top), total radiative losses (middle), electron density (bottom). Right panels,
as functions of loop temperature: radiative loss function (top), total radiative losses (middle), electron
density (bottom). The following time steps are plotted: ¢ = 20000 s (solid), ¢ = 22000 s (dotted),
t = 24000 s (dashed), ¢ = 26 000 s (dash-dotted), ¢ = 28 000 s (dash-dot-dotted), ¢ = 30 000 s (long
dashes). The right panels display only data of the central part of the loop, between the two vertical lines
shown in the upper left panel, for the first five time steps.
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FIGURE 5.9: Formation of a shock front for H,,, = 3 Mm. Gravitational acceleration, g (z) (dotted), and
acceleration due to the pressure gradient, Vp(z)/p(z) (solid) for ¢ = 320005 (top row) and ¢t = 344005
(bottomrow). In the lower right plot, the free-fall velocity profile is indicated by a dashed line.

around t = 30000s of the simulation run with H,, = 5Mm. Figure 5.10 shows the velocity
profile for ¢ = 31200s (solid line) and a velocity profile corresponding to a free fall of a test
particle along the loop, which has a height of ~ = 33.2 Mm (dashed line). The maximum of the
free-fall velocity is v = v/2gh = 135km/s. Comparing the free-fall velocity profile with the
velocity in the right half of the loop, it is seen that from z = 50 — 70 Mm the flow is faster than free
fall, while it is slower for z = 70 — 100 Mm. The dotted line displays the local sound speed; from
z = 60 — 65 Mm, the flow is supersonic. The fact that v,pex = 50 km/s immediately shows that
there is a force acting on the loop plasma, which turns out to be the pressure force originating from
the pressure difference between the wake of the moving condensation region and the rest of the
loop behind the condensation region, which is located at z = 85 Mm in this plot. In Fig. 5.11 the
velocity and acceleration of the center of the condensation region are plotted as a function of time.
For this purpose, the condensation region is defined as the interval in which the temperature drops
below T' = 10° K (alternatively, a threshold for the density or the radiative losses could be used).
The increasing velocity in the left half of the upper panel shows how the blob is being accelerated
up to v = 33km/s. It can be seen in the lower panel that for ¢ < 295005, the acceleration is
only a little smaller than qp i.e. the free-fall case. After ¢ = 30600s, however, the pressure
of the compressed plasma underneath has become so large (cf. Sect. 5.3.1) that the blob is now
effectively decelerated. At ¢ = 31140s, the blob stops and even bounces 1 Mm upwards before
falling again. After a second deceleration phase the blob drains through the loop’s footpoint at
t = 32840 s. The maximal acceleration of the blob during its fall is a = 54 m/s?.

It has to be stressed that this loop model is one-dimensional, so that in reality the deceleration
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the free-fall velocity from the loop apex at 50 Mm to the right footpoint at 100 Mm (dashed) and the
local sound speed at ¢ = 312005 (dotted lin€).

process may not be as vigorous as in the simulation described here. If the magnetic field is weak,
the enhanced pressure of a region of dense plasma will distort the magnetic field which can lead
to a lateral expansion of the dense plasma and a storage of energy in the surrounding plasma and
magnetic field (Athay & Holzer 1982). Mackay & Galsgaard (2001), on the other hand, carried
out two-dimensional simulations of the evolution of a density enhancement in a stratified atmo-
sphere and found that a sufficiently strong magnetic field enables the density enhancement to
maintain its shape as it falls, and indeed results in the dense blob rebounding several times.

The deceleration of the plasma blob in the model is caused by the same mechanism as proposed
by Schrijver (2001) and yields a blob acceleration which is significantly lower than solar gravity
and is consistent with the values of a = 80 % 30 m/s? reported by Schrijver (2001). The maximal
blob velocities obtained from the simulations shown here are smaller than the maximal velocities
of up to 100 km/s reported by Schrijver (2001) and 60— 110 km/s (De Groof et al. 2004), while the
maximal flow velocities that are obtained (vinax = 75 km/s for H,, = 5 Mm, vy,. = 74 km/s for
H,, = 3Mm, and vy,.x = 128 km/s for H,, = 2 Mm) are of the same order. In the simulations,
the highest flow speeds are reached in the wakes of the falling plasma blobs. However, increasing
the loop length results in a longer acceleration path, so that higher blob velocities are obtained for
loops longer than 100 Mm. Simulations of longer loops where higher blob speeds are reached will
be presented in Chap. 6, together with a comparison with observational data.

5.3.6 Spectral Signature of Catastrophic Cooling and Downflows

As the numerical code used in this work consistently solves the ionization rate equations for dif-
ferent atomic species, the emission of a large number of coronal and transition region spectral
lines can be calculated, including the effects of non-equilibrium ionization. In this context, the
emission in the lines of C IV (154.8 nm, formation temperature Ty ~ 10° K) and OV (63.0nm,
Tp =22 10° K) is of particular interest since the 160 nm passband filter of TRACE is dominated
by C IV emission above the solar limb, and the OV line is frequently observed with SOHO/CDS.
Let us analyze the simulation run with H,, = 5Mm and focus on the same period that was dis-



72 5 Catastrophic Cooling and High-Speed Downflows

40;

blob velocity [km s7]

. 200F . E
& E p El
» E P El
£ E - E|
= 100 F . E
5 E -7 " E|
kS E P i, P
E ) e e f“"’” A
e E * # o 7 El

g E F Pt
8 E 4 E
-100 £ ++++++ acceleration of cond. region et E
; """" gy at location of cond. region E

-200 £ .
28 29 30 31 32

t[10°s]

FIicure 5.11: Velocity (top) and acceleration (bottom) of the condensation region for H,, = 5Mm. The
blob is accelerated by gravity and then slowed down by the pressure of the compressed transition region
plasma underneath. The dashed linein the lower panel shows the effective gravitational acceleration, g/,
at the respective position of the blob.

cussed in the previous section.

Figure 5.12 displays the intensities and mean Doppler shifts, (vp), for C 1V (154.8 nm) and O V
(63.0 nm). Both quantities are integrated over the right half of the loop, excluding the footpoints,
and the Doppler shifts are calculated as seen from above and converted to velocity units. It is seen
in the upper panel that the blob brightens strongly in both spectral lines while falling, and reaches
its maximal intensity shortly before draining through the footpoint. The maximal Doppler shifts
occur around ¢t = 30500s when the blob reaches its maximal velocity. The maximal Doppler
shifts are (vp) = 25 km/s for C1V (154.8 nm) and (vp) = 22 km/s for OV (63.0 nm). Both lines
are redshifted due to the blob’s motion towards the solar surface. Larger maximal Doppler shifts
would result if no averaging over the entire right half of the loop was performed. To visualize
the variation of line shifts and intensity with time, the line profiles of C IV (154.8 nm) and OV
(63.0nm) for different points of time during the fall of the condensation region are plotted in
Fig. 5.13. It is seen that the line profiles are redshifted as the blob falls while the line intensity
increases (cf. Fig. 5.12). The Doppler shifts that would be measured in these lines will of course
depend on the aspect angle that loop is viewed at. In order to calculate Doppler shifts which
can directly be compared with measurements with the CDS instrument on SOHO, one needs to
consider not only the spatial resolution of the instrument, but also the finite temporal resolution
due to the raster-scan process.

For an overview of temperature, velocity and emission for a small part of the simulation run with
H,, = 2Mm, Fig. 5.14 shows a cutout from Fig. 5.5 (right panel), together with the velocity field
and the corresponding emission in the two spectral lines of C 1V (154.8 nm) and OV (63.0 nm).
It is seen that the condensation regions are accompanied by strong transient brightenings in both
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FIGURE 5.13: Line profiles of CIV (154.8nm) and OV (63.0nm) during the fall of the condensation
region (H,, = 5Mm) as seen from above. The flow towards the solar surface results in a redshift
of around 10 km/s and the emission stops abruptly when the condensation region drains through the

footpoint.
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FIGURE 5.14: Formation of two condensation regions in a coronal loop for H,, = 2 Mm. The upper left
plot shows the evolution of temperature along the loop, the upper right plot shows the corresponding
velocities. The lower left plot displays the emission in C IV (154.8 nm), the lower right plot the emission
in OV (63.0nm.)
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FIGURE 5.15: Relative intensity, Iz, —5 Mm/ I, —6 Mm, iN C 1V (154.8nm) at the left (upper panel) and
right (lower panel) footpoints.

lines. As the OV (63.0nm) line is formed at higher temperatures than the C IV (154.8 nm) line,
a small time delay is observed between the occurrence of the brightenings in the two lines. The
wiggles in the path of the condensation region are due to the strong deceleration of the blob by the
transition region plasma (cf. Sect. 5.3.5).

When the condensed plasma blob falls down the leg of the loop, it compresses the underly-
ing plasma, which results in a transient temperature rise of the plasma underneath and a strong
brightening around the footpoint of the loop when the plasma blob encounters the transition re-
gion. Figure 5.15 shows the variation of the emission in C IV (154.8 nm) at the loop footpoints
(z = 2Mm and z = 98 Mm) as a function of time. The intensity from this highly dynamic
model run with H,,, = 5Mm is scaled by the respective intensity from the stable model run for
H,, = 6 Mm (cf. Fig. 5.4). This is done in order to highlight the dynamics in the C IV emission. It
is observed that the intensity at the right footpoint (draining direction of the condensation region,
lower panel) increases for a short time by more than two orders of magnitude and by more than
one order of magnitude at the left footpoint. The latter effect takes place because the rarefaction
wave following the falling condensation region pulls up plasma from the lower transition region
to higher temperatures which leads to the strong transient brightening in the C IV (154.8 nm) line.

5.4 Comparison to Observations and Discussion

Several features of the numerical simulations presented here are in good agreement with recent
observations from different instruments, so that | propose the condensation-evaporation cycle as a
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possible common explanation.

Let us briefly sum up the observational evidence and its analysis: The TRACE observations
of Schrijver (2001) show strong transient brightenings in the spectral lines of Ly, and CIV
(154.8 nm), developing initially near the loop tops. Thereafter cool plasma slides down on both
sides of the loops, forming clumps which move with velocities of up to 100 km/s but show a down-
ward acceleration of 80 4 30 m/s2, significantly less than the solar surface gravity. After a detailed
analysis, Schrijver (2001) concluded that the observed brightenings are due to the radiation of
relatively dense blobs of falling plasma which are “embedded in more tenuous cool matter or in
plasma at a different temperature”. He argued that the reduced acceleration may be caused by the
cooling plasma underneath the radiating blobs which could slow down the fall. Referring to the
work of Mok et al. (1990), he suggested that the observed catastrophic cooling could be explained
by a drastic and fast reduction of the heating scale height which would result in a strong decrease
of the heating at the loop apex.

De Groof et al. (2004) analyzed a high-cadence time series of simultaneous EIT (30.4 nm) and
Big Bear H,, data and found intensity variations in a coronal loop which propagated from the top
towards the footpoint. The measured speeds of the blobs are compatible with a free fall in the
upper part of the loop but are significantly smaller in the lower part of the loop. Testing different
hypotheses concerning the origin of the intensity variations, the authors rejected slow magneto-
acoustic waves as an explanation for the observations. Instead, they favored flowing plasma blobs
to account for the observed intensity variations.

The simulations presented here strongly support catastrophic cooling as the key mechanism to
explain these sets of observations and provide further insight into the physical processes. In con-
trast to the work of Mok et al. (1990), it is now possible to synthesize optically-thin emission lines
forming in the transition region and corona which directly reproduce the transient brightenings in,
e.g., the C1Vv (154.8 nm) line. The suggestion of Schrijver (2001) is proven that the falling plasma
blobs are decelerated by the underlying plasma and a quantitative agreement for the acceleration
of the blobs is obtained. Furthermore, it is found that this region is strongly compressed by the
falling condensation region which leads to a strong transient brightening of the loop footpoint.

The main novelty that these simulations provide, however, is the finding that catastrophic cool-
ing is not necessarily initiated by a sudden decrease of the heating or the heating scale height. |
support the presumption of Schrijver (2001) that a “drastic and fast reduction of the heating scale
height suffices” to trigger the formation of cool condensations. In fact, this is what is happening
in the initial phase of all dynamic loop simulations presented here, when the heating scale height
is instantaneously reduced. Moreover, it is shown that catastrophic cooling does not have to be
the result of a time-dependent heating scale height, but can also result from a slowly evolving
loss of equilibrium at the loop apex as a natural consequence of loop heating predominantly at the
footpoints. On the other hand, it is hardly possible to trigger catastrophic cooling at all by just
decreasing the amount of heating if this decrease is not accompanied by a decrease of the heating
scale height (cf. Sect. 5.3.1).

A small heating scale height rather than a heating function with time-dependent amplitude thus
seems to be the key element for catastrophic cooling. These statements are important as they
show that time-dependent phenomena observed in coronal loops do not demand time-dependent
driving mechanisms (although many of them exist) but can also be the result of basic radiative or
hydrodynamic instabilities.

The question has been raised whether a higher temperature of the loops would significantly alter
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FIGURE 5.16: Evolution of mean temperature, (T')(¢), using an increased mechanical energy flux of
F,.0 = c- 10* W/m?, for four different damping lengths of the heating function: H,,, = 2 Mm (dotted),
H,, = 3Mm (solid), H,,, = 5 Mm (dashed), H,,, = 6 Mm (dash-dotted).

their evolution. An additional set of simulations was therefore carried out where the mechanical
energy flux was increased to F},,qg = c-10* W/m? while keeping all other parameters constant. This
results in a start model with T}, = 2.7 MK and (T") = 2.5 MK and recurrently condensing loops
with maximal temperatures of (7') ,ax = 1.8 — 1.9 MK. The evolution of the mean temperature of
these loop models is displayed in Fig. 5.16. It is seen that the general behavior remains unchanged,
in the sense that loops with a heating scale height below a certain threshold undergo periodic
evolution. Compared to cooler loops with a lower heating rate, the increased heating rate results
in a slight reduction of this threshold value, which is the expected result. It has to be kept in mind
that the loop length also significantly affects the maximal loop temperature so that longer loops
reach much higher temperatures for a given mechanical energy flux.

Comparing the results of the current model with observations, it has to be stressed that the ob-
served blob speeds are significantly smaller than the observed ones and the periods are lower than
the time scale estimated by Schrijver (2001). However, as mentioned in Sect. 5.3.5, simulations
for a L = 300 Mm model loop (which corresponds to the estimated length of the loop analyzed
by De Groof et al. (2004)) yield blob speeds of the order of 100 km/s and periods of up to several
days. A comparison of these results with observational data will be presented in Chap. 6.

In this model the implicit assumption is made that the heating rate is not affected by the
catastrophic cooling, even though the density and gas pressure change significantly while the
condensation sets in (compare, for example, the average pressure in Fig. 5.6 or the density in
Figs. 5.7 and 5.8). However, even during the condensation phase the plasma-3 remains be-
low 0.03 when assuming a reasonable value of 1 mT (10 Gauss) for the magnetic field. Thus,
throughout one deals with a low-3 plasma, where the magnetic field is presumably unperturbed
by the plasma. Therefore, when assuming a magnetically-dominated heating mechanism like flux
braiding (Galsgaard & Nordlund 1996; Gudiksen & Nordlund 2002) one would expect the average
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heating rate to remain constant (and decay exponentially with height), regardless of the dynamic
evolution of the plasma.

5.5 Summary

The model calculations of coronal loops presented in this chapter reproduce observations of catas-
trophic cooling and high-speed downflows, using a very simple, time-independent heating func-
tion. The non-linearity of the energy equation results in a loss of equilibrium which triggers a
highly dynamic loop evolution. No external time-dependent driving mechanism is necessary to
explain rapid cooling and evacuation of loops. Coronal loops can exhibit cyclic behavior, with a
wide range of periods, as well as irregular solutions. The time-dependent emission of optically-
thin spectral lines has been synthesized and directly compared to observations giving a good qual-
itative match to the observed properties of catastrophic cooling of coronal loops.
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Abstract

At high spatial and temporal resolution, coronal loops are observed to have a highly dynamic na-
ture. Recent observations with SOHO and TRACE frequently show localized brightenings “rain-
ing” down towards the solar surface. What is the origin of these features? In this chapter for the
first time a comparison of observed intensity enhancements from an EIT shutterless campaign with
non-equilibrium ionization simulations of coronal loops is presented in order to reveal the physical
processes governing fast flows and localized brightenings. It is shown that catastrophic cooling
around the loop apex as a consequence of footpoint-concentrated heating offers a simple explana-
tion for these observations. An advantage of this model is that no external driving mechanism is
necessary as the dynamics result entirely from the non-linear character of the problem.

6.1 Introduction

The upper solar atmosphere, i.e. the transition region and corona, is highly complex and magnet-
ically structured. Recent space observations, especially with SOHO and TRACE, have revealed
that coronal loops, magnetically closed structures in the upper solar atmosphere, are intrinsically
dynamic, and intensity enhancements (“blobs”) are often seen to propagate along these loops.
As was pointed out in Chap. 5, spectroscopic investigations show that these intensity variations
have different signatures in UV spectral lines formed at different temperatures and exhibit Doppler
shifts of v = 20 — 100 kms~!. Recently, De Groof et al. (2004) observed propagating intensity
variations in the He Il 30.4 nm band with the Extreme-Ultraviolet Imaging Telescope (EIT). The
dominant part of the plasma emitting in this spectral band has temperatures of 7 = 6 — 8 - 10* K.
Plasma seen in this spectral band in higher layers of the solar atmosphere is thus considerably
cooler than its surroundings. This can be the result of plasma draining from a prominence or ma-
terial cooling down after a flare. However, when evidence for these two processes is lacking, the
nature of these intensity variations is difficult to explain. While slow magneto-acoustic waves may
in general account for propagating intensity variations, this explanation of the features observed
in the EIT shutterless campaign from 11 July 2001 was ruled out by De Groof et al. (2004).
Another possible explanation which has been proposed in Chaps. 4 and 5 (see also Miiller et al.
2003; Mller et al. 2004) is the scenario of the “evaporation-condensation cycle”. In the previous
chapters it was shown that localized brightenings can be the result of catastrophic cooling of a loop
which is predominantly heated at the footpoints. The heating leads to an evaporation of plasma
into the coronal loop which then cools rapidly due to a loss of thermal equilibrium. The confined
region of “condensed” plasma subsequently falls down under the effect of gravity in the form
of a cool plasma blob. In Chap. 5 the evolution, speed and spectral signature of these traveling
condensation regions was described, and a possible connection to the recent EIT observations
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was pointed out. Compared to the loops described in Chap. 5, the loop structure seen in the data
from the EIT shutterless campaign is larger (with an estimated loop length of about L = 300 Mm
compared to the L = 100 Mm models of Chap. 5) and the observed blob velocities are higher.
Even so, encouraged by the general features of the model, new simulations were carried out with
changes suggested by the EIT observations. For the models presented here, the loop geometry
inferred from the EIT data was adopted and also a higher heating rate was used to reach apex
temperatures of around 3 MK as suggested, e.g. by TRACE observations of large active region
loops.

6.1.1 Loop Heating

The energy input into the coronal loop is parametrized in the same way as in Chaps. 4 and 5 by
specifying the energy flux at the footpoints of the loop, F,,o, and assuming a mechanical energy
flux that is constant up to a height z; and then decreases exponentially for z > z; as

F(2) = Fpoexp|—(z — 21)/Hp) (6.1)

with a damping length H,,,. In the models presented below, H,, will be varied between 2 and
30 Mm for a loop of L = 300 Mm length. For the mechanical energy flux, F,,o = ¢-10* W/m? will
be used, with the normalization constant ¢ = 1/(1 — exp|—(L/2 — z1)/Hp,]) and z; = 1.75 Mm.
The normalization constant ensures that the total energy input into the loop is constant, irrespective
of the damping length H,,,. The heating rate, i.e. the energy deposition per unit time and unit
volume, is given by the divergence of the energy flux, Q,, = —V F,,. With the damping length
H,, it can be controlled whether the heating is concentrated near the footpoints or is more evenly
distributed along the loop.

6.1.2 Initial State

The coronal loop model studied here has a total length of 300 Mm, composed of a semicircular
arch of 298 Mm length and a vertical stretch of 1 Mm length at each end. A static initial state is
obtained by prescribing a large energy dissipation length of H,, = 30 Mm, which results in a loop
apex temperature of 7' = 3.3 MK. The temperature along the loop of the initial state is plotted in
Fig. 6.1.

6.2 Effect of the Damping Length on the Loop Evolution

6.2.1 Recurrent Condensations in Long Loops

The most important conclusion reached in Chaps. 4 and 5 was the fact that a thermal instability
can give rise to a highly dynamic evolution of solar coronal loops. It was worked out in Chap. 5
that the scale height of the energy dissipation (the so-called damping length) acts as a control
parameter of this non-linear system and determines whether there exists a stable solution. If this is
not the case, thermal non-equilibrium can lead to catastrophic cooling, a self-amplifying process
by which the radiative losses increase strongly over a short time scale, and result in a confined
region of high-density plasma (the condensation region), which then slides down the loop legs due
to gravity.
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FIGURE 6.1: Temperature along the coronal loop. Initial stable state (solid line, H,,, = 30 Mm) and
another stable solution for H,,, = 12 Mm (dashed line).

The maximum velocity of the falling condensation region is determined by its formation height
and the loop plasma underneath the condensation region. It was found in Chap. 5 that the pressure
of the transition region plasma can efficiently slow down the falling “blob” so that its maximum
velocity may be substantially slower than the free-fall speed. Compared to observations of catas-
trophic cooling in coronal loops (Schrijver 2001; De Groof et al. 2004), the results were encour-
aging in the sense that the formation of such high-density regions was indeed possible without
any time-dependent driving mechanism, but not fully satisfying as the deduced blob velocities of
30 — 40 kms~! were lower than the observed ones (up to 100 kms—1).

For the new loops models with L = 300 Mm, Fig. 6.2 displays the mean temperature, (7'), as a
function of time for three different damping lengths. In agreement with the results of Chap. 5, it
is found that the period of the condensation cycle increases with increasing damping length, until
finally a stable solution is reached. For damping lengths close to the limit of stability, the period of
the cycle can become very long. A model with H,,, = 8 Mm was run for 10 days of solar time and
showed a period of P = 4.15 days. Figure 6.3 shows the evolution of the mean temperature, (7',
as a function of mean pressure, (p). In this plot, periodic solutions trace out cycles in (p) — (T')
space while stable solutions reach fixed points. It is seen that also in this parameter regime the
loop evolution can be classified into stable solutions and dynamic solutions.

The main effects of the longer loop length and higher energy flux (with respect to the models
presented in Chap. 5) are as follows: For a given loop length, a higher heating rate leads to a
higher loop temperature and a higher density, while for a fixed energy flux of £,y = 10* W/m?,
the mean loop temperature of stable loops with small damping lengths (H,, < 10 Mm) does not
depend strongly on the loop length. However, the range of damping lengths for which the loops
exhibit recurrent condensations increases with loop length. For more details on the effects of the
different loop parameters on the loop evolution, the reader is referred to Chap. 8.
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FIGURE 6.2: Evolution of mean temperature, (T'), as a function of time, for different damping lengths of
the heating function: H,,, = 2Mm (solid), H,,, = 5 Mm (dotted), and H,,, = 12 Mm (dashed).
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FIGURE 6.3: Mean temperature, (T'), of the loop, as a function of mean pressure, (p), for a loop of total
length . = 300 Mm. Solid line: H,,, = 2 Mm, dotted: H,,, =5Mm, dashed: H,, =12 Mm.
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6.2.2 Slow and Fast Blobs

Having introduced the general characteristics of possible solutions, let us now focus on the evo-
lution of the dynamic solutions with the aim of deducing the speed of the plasma blobs which
result from the catastrophic cooling process. In Fig. 6.4 space-time diagrams of the loop tem-
perature, T'(z,t), are plotted for damping lengths of H,, = 2,3,5Mm. All three models show
the recurrent condensations which have been described in detail in Chap. 5. It was pointed out
in Chap. 5 that the highest velocities occur in the wake of a falling blob where the density is
low. However, for a comparison with observations, the proper motions of the density enhance-
ments themselves have to be calculated. The maximal blob speeds are 48 kms—! for the run with
H,, = 5Mm and 42 kms~" for the run with H,,, = 3 Mm. This shows that the blobs are strongly
decelerated on their way down since the maximal free-fall speed from the loop apeX, hmax, IS
vg = \/QGm@hmax/(r@(r@ + hmax)) = 215kms~1,

I would now like to draw the reader’s attention to the simulation run with 4,, = 2 Mm. Every
time after a condensation region has formed, e.g. around ¢t; = 13h and ¢ = 24h, a second
temperature minimum occurs, and the shallow slope of its motion in the (z,¢)-plane indicates
very high speeds. Figure 6.5 displays the temperature for this part of the simulation, along with
the velocity along the loop. This plot shows that the second condensation is accompanied by very
fast flows of up to 230 km s~ in the wake of the falling blob. Figure 6.6 displays the blob speed as
a function of time for both the first and the second condensation region. While the first blob only
reaches a velocity of around 25 kms~!, the second blob moves with a velocity of up to 90 kms~1.

It is seen that after a short period of nearly free fall (between ¢ = 14.0 — 14.1 h), the blob is
strongly decelerated and even bounces upwards shortly (¢t = 14.2 — 14.3 h). It was pointed out
in Chap. 5 that in the case of a weak magnetic field the deceleration process may in reality not
be as vigorous as in this one-dimensional simulation, because the enhanced pressure of such a
high-density region will distort the magnetic field. However, the findings of Mackay & Galsgaard
(2001) show that a sufficiently strong magnetic field can indeed result in the dense blob rebounding
several times.

6.2.3 Formation of the Second Condensation Region

The phenomenon that a second region of enhanced density can form in the wake of another
condensation region has not been reported before and shall be explained in detail. First of all,
compared to the L = 100 Mm loops studied in Chap. 5 with maximal apex temperatures below
7-10° K, the more strongly heated L = 300 Mm loop models studied here have apex temperatures
of around 3 MK and correspondingly higher pressures. Therefore the formation of a condensation
region, where the temperature drops to around 10* K on a very short time scale, results in a much
higher pressure gradient on both sides of the condensation region. The resulting inflows towards
the pressure minimum collide and produce shocks. These pressure pulses then travel away from
the condensation region to both sides and lead to a transient compression of the loop plasma they
encounter on their way. Even a small compression leads to a noticeable increase of the radiative
losses and these radiative losses in turn give rise to enhanced cooling which results in a local den-
sity maximum. The condition for the formation of a condensation region are herewith fulfilled,
and the density enhancement cools more strongly than its surroundings: catastrophic cooling sets
in.
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FIGURE 6.4: Evolution of the temperature along the loop, 7'(z, t), for three different damping lengths
of the heating function: H,, = 5Mm (left), H,, = 3Mm (center), H,, = 2Mm (right). The loop
footpoints are at = = 0 and 300 Mm, the apex is at z = 150 Mm.
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FIGURE 6.5: Formation of the fast blob. The left plot shows the temperature 7'(z, t) for a damping length
of H,, = 2Mm, the right plot displays the corresponding velocities.
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FIGURE 6.6: Proper motion of the slow blob (dotted lin€) and the fast blob (solid line).



86 6 High-Speed Coronal Rain

This evolution is displayed in Fig. 6.7: At time ¢t; = 46060 s (solid lines), the first condensa-
tion region has formed and appears as a narrow region with strongly decreased temperature and
pressure, and strongly enhanced radiative losses and electron density. At time ¢, (dotted lines), the
condensation region has traveled around 5 Mm to the left, and a temperature and density pertur-
bation is seen to propagate towards the loop apex. At time ¢3 (dashed lines), this perturbation has
led to a local maximum in the radiative losses (indicated by the right black dot and vertical lines),
while the electron density is also perturbed, but does not show a local maximum yet.
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FIGURE 6.7: Formation of the second condensation region. From top to bottom: temperature, pressure,
total radiative losses and electron density along the left half of the loop for t; = 46 060s (solid), to =
46 500s (dotted), t3 = 47720s (dashed) and ¢4 = 50120s (dash-dotted). The black dots mark the
second maximum of the radiative losses which is triggered by the shock front (indicated by vertical
lines) originating from the first condensation region.
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FIGURE 6.8: Radiative losses (top) and pressure (bottom) for two time steps of the simulation. The solid
line in the upper panel shows the enhanced radiation from the first blob, formed around ¢, = 46 000.
The dotted line (¢,; = 50 4605s) has two maxima: the one at z = 10 Mm stems from the first blob which
has moved towards the left footpoint, while the second one at z = 55 Mm indicates the second blob. The
lower panel shows that at the same location, the pressure downstream of the second blob (at ¢5;) is lower
than the pressure downstream of the first blob (at ¢50), which explains its higher speed.

Finally, at time ¢4 (dash-dotted lines), the second condensation sets in, and the second region
of strongly decreased temperature and pressure is accompanied by local maxima of the radiative
losses and electron density (indicated by the left black dot). From the separation of the peaks it
can already be seen that the second condensation region travels much faster than the first one.

What makes this density enhancement travel so much faster than the previous one? Figure 6.8
shows the total radiative losses (to indicate the blobs’ positions) and the pressure for the slow and
the fast blob for two time steps where the blobs are at the same location (z ~ 53 Mm). It is seen
that the pressure downstream the leading blob is significantly higher than the one for the trailing
blob. Therefore, the first blob is more strongly decelerated by the pressure of the underlying
plasma, while the second one can travel in the low-pressure region in the wake of the first one.

6.3 Comparison with Observations

On 11 July 2001 from 16:00 UT until 18:28 UT, an “EIT shutterless campaign” was conducted
which provided 120 high-cadence He Il (30.4 nm) images of the north-eastern quarter disk of the
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FIGURE 6.9: Three difference images taken at 16:27, at 17:09 and at 17:58 UT, in which seven propagating
blobs with enhanced intensity can be identified.

Sun. In this observational program, which is planned every 3 months, the EIT shutter is kept open
for more than 2 hours during which images are taken with a time cadence around 68 seconds.
The sequence of 120 images is interrupted only by two gaps, allowing each for a LASCO C2
image in the framework of the EIT “CME watch program”. Instead of the normal full-disk field
of view (FOV) of EIT, the shutterless program concentrates on a subfield of 416x416 pixels (~
1082” x 1082"), the north-eastern quarter disk in the sequence under analysis.

The most intriguing feature present in the data is an off-limb loop structure of approximately
100 Mm height which shows intensity variations propagating downwards during the whole se-
quence. Figure 6.9 displays three EIT difference images which allowed for the identification of
seven propagating intensity variations (for details, cf. De Groof et al. 2004). Since there was no
evident cause noticeable in the direct neighborhood of this loop, De Groof et al. (2004) studied the
characteristics of the intensity variations propagating downwards in order to find out whether they
could be interpreted as waves or as a flow. A multi-wavelength analysis of the time frame of the
shutterless sequence revealed that the varying loop is unlikely to be flare-related (although a flare
goes off south of the analyzed region) and that the bright blobs consist of cool plasma since they
are only visible in the cool temperature bands of He Il (30.4 nm) and Ha.

The propagating disturbances were analyzed in more detail by outlining the track along which they
move down and investigating the behavior and speed of the bright blobs in a space-time diagram.
Seven blobs were identified, propagating down along the loop track with speeds ranging from 30
to 120 km s~1, increasing in time (see Fig. 6.10). The mean intensity enhancements caused by
the disturbances range from 9 to 38 % or from 23 to 93 % of the background intensity depending
on how the background subtraction is carried out. In order to interpret the intensity variations
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FIGURE 6.10: Top: Measured blob speeds as a function of height over the solar surface, together with
the free-fall speed from a height of 100 Mm. The different symbols mark the different observed blobs.
Bottom: Speed of the fast blob in the simulation with H,,, = 2 Mm. Crosses and asterisks correspond
to two runs with slightly different radiative losses. The solid line indicates a free fall from a height of
100 Mm, the dotted line corresponds to 60 Mm height.

as waves or flows, De Groof et al. (2004) compared the parameters found in the analysis with the
typical parameters of slow magneto-acoustic waves observed in the solar corona. This comparison
led to several anomalies, e.g. the blob speeds which are increasing and definitely higher than the
local sound speed, the amplitudes which substantially exceed the intensity enhancements seen in
waves and the lack of any damping. Last but not least, slow waves are only observed propagat-
ing upwards while the bright blobs that are seen all move downwards. On the other hand, the
hypothesis of falling/flowing plasma concentrations looks more promising.

The upper panel of Fig. 6.10 shows the observed blob speeds as a function of height over the
solar surface, as measured by De Groof et al. (2004). The different symbols correspond to the
different blobs which have been identified. In the upper part of the loop, the measured speeds
are closely related to the theoretical free-fall speed from a height of 100 Mm, especially when
taking into account the uncertainties concerning the projection angle, the curvature of the loop
and the exact loop height. In the lower part of the loop, on the other hand, the speeds clearly
deviate from the free-fall curve. The lower panel of Fig. 6.10 shows the speeds of the fast blobs
from the catastrophic cooling models. It turns out that the exact location where a condensation
region forms depends very sensitively on the radiative losses. In the simulations where the non-
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equilibrium ionization of hydrogen, helium, carbon and oxygen were explicitly included in the
calculations, the blobs formed at around 60 Mm height, while they appeared at greater heights
when a priori radiative loss curves as functions of electron temperature for elements other than
hydrogen and helium were used. The subsequent evolution of the plasma is very similar, therefore
the blob speeds for both cases are plotted in Fig. 6.10, together with the velocity curves for a free
fall from heights of 60 Mm and 100 Mm, respectively.

Despite the fact that the accurate measurement of blob speeds is difficult, especially in the
lower part of the loop, we find at least a qualitative agreement between the observed blob speeds
and those derived from the model. In their early phases the blobs are accelerated to nearly free-fall
speeds as the main force acting on the plasma is the field-line projected component of the solar
gravitational acceleration. As the blobs fall towards the solar surface, however, the speeds deviate
more and more strongly from free fall since the blob is decelerated by the underlying plasma. In
contrast to the model, most of the measured blob speeds do not show a significant decrease towards
the solar surface, but only a strong deviation from free-fall speed. For two blobs, indicated by the
rectangles and diamonds in Fig. 6.10, the speeds indeed decrease slightly in the last data points,
but the number of blobs tracked is too low to make any general statement. Apart from possible
shortcomings of the model, the lack of observations of decreasing speeds towards the solar limb
may also be due to the fact that the loop’s footpoints lie behind the limb or due to the difficulty of
correct background subtraction which is described by De Groof et al. (2004). However, this is to
our knowledge the first model which provides a simple physical mechanism leading to propagating
intensity enhancements which reach velocities of the order of 100 kms—1.

Time-slice diagrams of EIT data set indicate events where fast blobs catch up with blobs at
lower speeds, but further analysis of more data sets is needed to confirm or reject this hypothesis.
High-cadence observations of active regions above the limb in the He 1l (30.4 nm) band, H, or
C 1V (154.8 nm) would help to shed more light onto the distribution of blob speeds as a function of
height above the limb. Observations of blob speeds which are increasing during the first phase of
the fall and then decreasing when the blob approaches the solar limb would strengthen our concept
of falling plasma condensations that are decelerated by the pressure of the transition region. On
the other hand, observations of blobs close to the limb at speeds significantly above 100 kms—!
would indicate that the part of the loop underneath the falling blob has been previously evacuated
by a different process.

6.4 Spectral Signature of Fast Downflows

As already introduced in Chap. 5, spectral lines can be synthesized from the model to study the
spectral signature of the catastrophic cooling process. In addition to the lines of C IV (154.8 nm,
formation temperature Ty ~ 10° K) and OV (63.0nm, T ~ 2.2 - 10° K), also the He Il (30.4 nm,
Ty~ 8- 10* K) line has been synthesized here to facilitate a comparison of the model to the EIT
observations. Figure 6.11 displays the intensities and mean Doppler shifts for all three lines. Both
guantities are integrated over the left half of the loop, excluding the footpoints, and the Doppler
shifts are calculated as seen from above and converted to velocity units. It is seen that both the first
and the second condensation are accompanied by strong transient brightenings in all three spectral
lines. For the first condensation region which forms higher up in the hot part of the loop, the
brightening is strongest for the O V line which has the highest formation temperature of the three
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FIGURE 6.11: Variation of the total intensity (left) and Doppler shifts (right) of the lines of C IV
(154.8nm), OV (63.0nm), and He Il (30.4nm) due to the falling condensation region, integrated over
the left half of the loop.

lines. On the other hand, the second intensity increase around ¢ = 14 h that is due to the second
blob hitting the dense plasma of the cooler lower transition region is strongest for He I1, which is
the line with the lowest formation temperature. The periodic intensity fluctuations between the
formation of the first and the second condensation region, which are seen predominantly in C 1V,
are caused by sound waves which are reflected back and forth between the strong pressure gradient
near the condensation region and the transition region. The corresponding Doppler shifts in the
lower panel reveal the different velocities associated with the two condensation events. While the
integrated Doppler shifts do not exceed 24 kms—! (for C1V), 26 kms~—! (for OV) and 22 kms~*
(for He I1) in the first case, they reach up to 74 kms—!, 98 kms~! and 76 kms—1, respectively, for
the trailing blob. All three lines are redshifted due to the blobs’ motions towards the solar surface.
To visualize the variation of line shifts and intensity with time, Figure 6.12 shows the line profiles
for different points of time during the fall of the second condensation region, starting at¢ = 13.7 h.
The spectral lines are integrated over the left half of the loop, excluding the footpoints, and the
loop is viewed from above. It is seen that the line profiles are strongly redshifted as the blob falls
while the line intensities increase (cf. Fig. 6.11). The Doppler shifts that would be measured in
these lines will of course depend on the aspect angle that loop is viewed at.

6.4.1 Footpoint Brightening

When the condensed plasma blob falls down the leg of the loop, it compresses the underlying
plasma, which results in a transient temperature rise of the plasma underneath and a strong bright-
ening around the footpoint of the loop when the plasma blob encounters the transition region.
Following the description in Sect. 5.3.6, Fig. 6.13 shows the variation of the emission in the C IV
(154.8 nm) line at the loop footpoints (z = 0 — 3Mm and z = 297 — 300 Mm) as a function of
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FIGURE 6.12: Spectral signature of the falling plasma blob. The line profiles of C1V (154.8nm), OV
(63.0nm), and He 11 (30.4 nm) all show transient brightenings and strong redshifts when seen from above.

time. The intensity is scaled by the respective intensity from the initial model with H,,, = 30 Mm
in order to highlight the dynamics in the C IV emission.

Also for these loops it is observed that the intensity at the left footpoint (draining direction of the
condensation region, upper panel) increases for a short time by more than two orders of magnitude
and by more than one order of magnitude at the right footpoint. As has been pointed out before,
the latter effect takes place because the rarefaction wave following the falling condensation region
pulls up plasma from the lower transition region to regions of higher temperatures which leads to
the strong transient brightening in the C 1V (154.8 nm) line.

Figure 6.14 shows the brightening of a falling plasma blob observed with the Big Bear Solar
Telescope in the chromospheric H,, line at A = 656.3 nm. This data was acquired simultaneously
with the EIT data, and the white lines outline the loop observed with EIT in Hell (30.4nm).
Although the time evolution is seen best in movies of this data set, one can identify a faint moving
feature in the lower part of the outlined loop which appears around 17:50 UT and brightens up
shortly before encountering the solar limb. The formation process of the H,, line is complicated
and cannot be treated using the “optically-thin” approximation. However, the strong and localized
emission indicates regions of cool plasma at high densities, so that brightening blobs seen in the
H,, line above the solar limb support our hypothesis of falling plasma blobs.

6.5 Summary

In this chapter, the scenario of the “evaporation-condensation cycle” has been applied for the first
time to models of long active-region loops. It is found that the shocks caused by rapid cooling pro-
cesses in hot loops can trigger further cooling events. The associated condensation regions, blobs
of cool plasma with enhanced density and radiative losses, can subsequently be accelerated to very
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FI1GURE 6.13: Footpoint brightening due to falling plasma blobs. The upper panel shows the relative
intensity in the C 1V (154.8nm) line for the left footpoint of the loop, the lower panel the one for the
right footpoint.

FIGURE 6.14: Brightening of a falling plasma blob observed with the Big Bear Solar Telescope in H,.
The loop structure seen with EIT in He 11 (30.4 nm) is marked by white lines. Courtesy of A. De Groof.
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high velocities. While the leading condensation region is strongly decelerated by the underlying
loop plasma, the trailing blob is traveling in the wake of the leading blob where the pressure is
significantly lower. These blobs are initially traveling with almost free-fall speed and can reach
velocities of the order of 100 kms—! before their deceleration sets in in the lower regions of the
atmosphere. The reason for the higher velocity of these blobs is the lower pressure in the wake
of the leading blob. These fast blobs offer a possible explanation for the recent observations of
propagating intensity enhancements by De Groof et al. (2004) and show that transient brighten-
ings and high-speed downflows with a wide range of speeds can result from catastrophic cooling
in coronal loops.



7 Coronal Loops as Non-Linear Systems

The finding that footpoint-heated coronal loops can undergo catastrophic cooling and exhibit both
stable, periodic and irregular solutions rises the question whether such a system could be reason-
ably modeled by a set of coupled differential equations for a small set of mean variables. Promi-
nent examples for this approach are, e.g., the predator-prey model of Lotka-\olterra, the Lorenz
model (a simplified model for the Rayleigh-Bénard experiment) and the Brusselator model (which
describes simple chemical reactions and was named after a working place of the Nobel price win-
ner I. Prigogine). For a general treatment of this subject the reader is referred to Honerkamp
(1994). In this chapter, a brief summary on attempts to establish such a simplified model is given,
followed by an assessment of the conclusions that can be drawn from them.

Limit cycle solutions in coronal loops were first reported by Kuin & Martens (1982). In their
pioneering work they studied the overall energy balance by integrating the energy equation over
the entire loop length. For simplification, the radiative losses were parametrized as a power law
and a constant heating rate per volume (i.e. no explicit space dependence) was assumed. From
these assumptions, they derived a system of two coupled ordinary differential equations* for the

dimensionless temperature, 7', and dimensionless density, 7:

T 17 _,— = _
T 1=n"Y(T) — fa(T = 1), (7.1)
dm =—1

In these equations, 7 parametrizes time, 1) the radiative losses, f is a factor that accounts for
chromospheric evaporation (set to one in all cases treated by Kuin & Martens (1982)), and «
represents a coupling parameter which is a function of the radiative losses, /(7). The coronal
loop is thus reduced to a zero-dimensional system, characterized by mean values and coupled
to the underlying chromosphere which acts as a heat reservoir. Depending on the value of «a,
either stable solutions or limit cycle solutions are obtained, with periods between several thousand
seconds and about one day. The findings of Kuin & Martens are remarkable in the sense that the
important physical processes, namely chromospheric evaporation, catastrophic cooling, and fast
draining of the loop are accounted for in a fairly simple model. Different solutions of Eqgns. (7.1)
are displayed in Fig. 7.1. Depending on the value of the coupling parameter «, the system shows
either nolinear oscillations (case a and b) or stable static solutions (case ¢). For o = 1.1 (case d)
the evolution depends on the initial conditions and the regimes of stable and periodic solutions are
divided by a separatrix (dashed line).

Some vyears later, their work was heavily criticized by Craig & Schulkes (1985) who tried to
reconcile the Kuin & Martens model with the stability analysis of McClymont & Craig (1985a,b).

YIn the original work of Kuin & Martens (1982) the chromospheric evaporation factor, f, in the first of Eqns. (7.1)
was omitted which was noticed by Craig & Schulkes (1985). However, since f is set to one throughout the work of
Kuin & Martens (1982), this does not affect their results.
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FIGURE 7.1: The solution of Egns. (7.1) in the phase plane of dimensionless temperature and density. The
arrows indicate the time evolution. Case a and b represent oscillating solutions, case ¢ corresponds to a
stable static solution. In case d the evolution depends on the initial conditions and the system can evolve
either into a stable or an oscillating solution. From Kuin & Martens (1982), courtesy P. Martens.

They argued that the coupling factor introduced by Kuin & Martens was unphysical, but showed
that a reconciliation with the work of McClymont & Craig was possible if this coupling parameter
was incorporated correctly. They then found that limit cycles only exist for a coupling parameter
above a critical value and argued that under the assumption of a heating function that is indepen-
dent of the position along the loop this parameter range would be unphysical. In a later work,
Craig (1990) reexamined the problem by using a one-dimensional coronal loop model and stated
that his simulations — which used a constant heating function per unit mass — did not support the
limit cycle hypothesis. According to his model, unstable loops collapse and then form “cool loop
equilibria” at chromospheric temperatures.

An interesting contribution was made some years later by Gomez et al. (1990a,b) but has not
received a lot of attention ever since. They extended the model of Kuin & Martens to a model with
a more detailed treatment of the coupling between the chromosphere and the corona and derived
a set of coupled differential equations for perturbations in the density and pressure. The free
parameters in their model are the loop length, the heating rate, and a parameter v which describes
the amplitude of a discontinuity of the heating rate between the loop base and the corona. For these
equations, a linear stability analysis was carried out, and it was found that for a given loop length
and value of ~ the solution shows a Hopf bifurcation if the heating rate drops below a critical value.
Gomez et al. (1990b) showed furthermore that this Hopf bifurcation is subcritical, which means
that there is no stable solution connecting the two branches of the bifurcation around the critical
point. They estimated a period of the limit cycle of 20 — 30 min and stated that the amplitudes of
their limit cycles were considerably lower than those found by Kuin & Martens (1982).
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From the analysis presented in this thesis, | reach the following conclusions concerning the con-
nection of time-dependent “global” loop models and simplified models in which a coronal loop is
only characterized by mean quantities: Firstly, the importance of the early work of Kuin & Martens
(1982) has to be emphasized. The solutions of the relatively simple set of two coupled differen-
tial equations they deduced can be related to the physical processes of chromospheric evaporation,
condensation and draining, and the physically and observationally important periodic solutions are
found. The criticism concerning the simplicity of the model by Craig & Schulkes (1985) seems
partly justified, but one has to bear in mind that many detailed processes which can already be
accounted for in one-dimensional time-dependent models are necessarily simplified in both ap-
proaches. The finding of Craig (1990) that unstable loops saturate into loops in equilibrium at
chromospheric temperatures may be right under the assumption of a heating mechanism that is
constant per unit mass, but seems misleading without highlighting the fact that it is indeed the
heating function which plays a crucial role regarding the question of stability.

The work presented in this thesis shows that the spatial distribution of a temporally constant
heating function can act as a control parameter of the system. In that respect, it seems questionable
whether more than a correct prediction of the general behavior of the described physical system
can be deduced from simplified models which do not account for any spatial variation of variables
along the loop.
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7 Coronal Loops as Non-Linear Systems




8 Families of Loops: A Parameter Study

8.1 Introduction and Setup

Loops in the solar corona occur at a large range of different sizes, and also the amount and scale
height of the heating are seen to vary. To obtain a better understanding of the regime in which
coronal loops exhibit recurrent condensations due to thermal instability, a set of 100 simulations
of coronal loops was carried out, covering a range of loop lengths, energy fluxes and damping
lengths.

Specifically, loop lengths of L = 100, 150, 200, 250, and 300 Mm, energy fluxes of F.,, = 100,
500, 1000, and 10 000 W/m?, and damping lengths of H,, = 2, 4, 6, 8, and 10 Mm were chosen.
The energy fluxes used span the range indicated by Withbroe & Noyes (1977) who estimated a
total coronal energy loss of 300 W/m? for the quiet sun and up to 10 000 W/m? for active regions.
For each loop length, the simulation was started with a stable loop model with an energy flux of
Fy = 103 W/m? and a damping length of H,, = L /4. Figure 8.1 shows the loop temperature as a
function of loop length for the different start models.

251

T [MK]

FI1GURE 8.1: Loop temperature as a function of loop length for the start models with L = 100 Mm (solid),
L = 150 Mm (dotted), L = 200 Mm (dashed), L = 250 Mm (dash-dotted), and L = 300 Mm (dash-
dot-dotted).

Each simulation was initially run for 10°s, and for some runs the simulation time was ex-
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tended up to 6 - 10° s whenever necessary to identify long periods. The time-integration scheme
was set to fully implicit mode (« = 1) to ensure maximal stability. In order to keep the parameter
study computationally tractable, the non-equilibrium ionization rate for hydrogen and helium were
solved along with the hydrodynamic equations, while the radiative losses for the other elements
were interpolated from precalculated radiative loss curves as a function of electron temperature.
A comparison with simulations in which the non-equilibrium radiative losses for more elements
were included showed that this had some effect on the periods of the condensation cycles and the
absolute values of the physical variables (cf. the models in Chap. 6, where non-equilibrium ioniza-
tion of carbon and oxygen were included), but did not change the class of any solution, i.e. whether
static or dynamic solutions were obtained. Since the goal of this parameter study is to work out
the general character of the solutions for different loop parameters, this approach seemed reason-
able. However, for a detailed study of the time-dependent emission and line shifts originating
from a dynamic loop model, as much information as possible about the atomic processes should
be included.

The simulations presented here are quite demanding in computing-time, since the time steps
have to be temporally as small as 10~*s, e.g. when a condensation region forms. The time needed
to run one of the dynamic simulations for ¢ = 10° s is of the order of 2 CPU days on a machine with
1.15 Ghz Alpha EV7 processors (the HYADES cluster at the ITA Oslo) and around 30% longer on
a machine with 1.8 Ghz AMD Athlon processors (the KABUL cluster at the KIS Freiburg). The
advantage of using an implicit code is that for static solutions, the time steps can be very large, so
that these runs are completed within several hours. The disadvantage is that the matrix inversion
which is part of the implicit scheme is not well-suited for parallelization. However, the large
number of individual simulations which has been carried out could be conveniently distributed
over several CPUs.

8.2 Classes of Solutions and Periods

According to the findings of Chap. 5, the time-dependent evolution of loop models can be grouped
into three different classes: static solutions, periodic solutions, and irregular/chaotic solutions. An
overview of the solution types for all realizations of the model is given in Table 8.1. Static solutions
are denoted by the symbol S, while for periodic solutions the period P is given. The remaining
solutions show irregular/chaotic behavior, indicated by the symbol C. The discrimination between
periodic and irregular solutions is based on the evolution of the loops’ mean temperature, (7°)(¢).
All non-static solutions undergo recurrent condensation, but only those which show a clear pe-
riodic pattern in the mean temperature are classified as “periodic”, while all others are classified
as irregular. It should be noted that some of these solutions may relax into periodic solutions, as
pointed out in Chap. 6. In two cases of the 100 simulations, namely for Fy = 10?2 W/m?, a damp-
ing length of H,, = 2 Mm and loop lengths of L = 250 Mm and 300 Mm, the models cooled down
to very low temperatures and the time steps became exceedingly small, so that no convergence was
reached (indicated by “nc” in Table 8.1). In three other cases, also for loop lengths of L = 250 Mm
and 300 Mm and a damping length of H,, = 2Mm, the time steps became exceedingly small
during the formation of a condensation region before the prescribed simulation time was reached.
In principle, most of these cases can be handled numerically, e.g. by adjusting the weights of the
grid equation and increasing the number of iterations when calculating the ionization rate equa-
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| L[Mm] | Hy, [Mm] [| Fo = 10°Wim? | Fy =5-10°W/m? | Fy = 10° W/m? | Fy = 10° W/m? |

100 2 C P =18200s P =20800s P =20100s
100 4 S P =46800s S S
100 6 S S S S
100 8 S S S S
100 10 S S S S
150 2 C C P =26100s P =25700s
150 4 S P =43700s P =112500s P =38700s
150 6 S S S P =83000s
150 8 S S S S
150 10 S S S S
200 2 C P =18000s C P =23400s
200 4 S P =57500s C P =40300s
200 6 S S S P =59900s
200 8 S S S P =129300s
200 10 S S S S
250 2 nc C C C
250 4 S P =71600s P =112000s C
250 6 S S S P =71600s
250 8 S S S P =285000s
250 10 S S S S
300 2 nc C P =18300s C
300 4 S C P =132200s P =27000s
300 6 S S S P =56300s
300 8 S S S P =178800s
300 10 S S S P =125900s

TABLE 8.1: Solution classes and periods for loop models with different loop lengths, L, damping lengths,
H,,, and energy fluxes, Fy. Static solutions are denoted by S, periodic solutions by P (the period of the
condensation cycle in seconds), and irregular/chaatic solutions by C.

tions. However, since the basic parameters of all simulations of this study should be identical if a
reasonable comparison is to be made, this was not done. A comparison with similar runs with the

next higher damping length indicated that the solutions are very likely irregular.

The main findings of the parameter can be summarized as follows:

e It is found that for energy fluxes of Fy < 10® W/m? and damping lengths of H,,, > 6 Mm,
all loop models are stable. This shows that for loops between L. = 100 — 300 Mm length
and moderate energy fluxes, the limit of thermal instability is not strongly dependent on the
ratio of the damping length to the loop length.

e Furthermore, the period of recurrent condensations for a given energy flux and loop length
grows strongly upon approaching the limit of instability. However, they do not depend
strongly on the loop length, which shows that it is not the time it takes for the condensa-
tion region to drain from the loop which determines the period, but the slower process of
chromospheric evaporation and subsequent cooling of the coronal part of the loop before

the instability sets in.
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e Interesting cases of chaotic/irregular evolution are found for coronal loops with very short
damping lengths, on the order of H,,, = 2 Mm.

e A very high energy flux of Fy = 10* W/m? has two effects. Firstly, it increases the rate of
chromospheric evaporation which results in a higher density in the coronal part of the loop.
This facilitates the formation of a condensation region since the radiative losses scale with
the square of the electron density. As a result, the limit of stability increases to 12 Mm for
L = 300 Mm loops. This phenomenon of overheated loops will be discussed in Sect. 8.4.
On the other hand, a higher total energy flux also results in a higher energy deposition at a
given height. For shorter loops (L = 100 Mm), this prevents the formation of a condensation
region since heat conduction is efficient enough to balance the radiative losses around the
loop apex. This explains why e.g. loops with a damping length of H,, = 4 Mm are stable
for L = 100 Mm, but not for longer loop lengths.

8.3 Temperature and Density Variations

The mean temperature, (7'), of all loop models is shown in Table 8.2. As in the previous chapters,
the mean values are defined as the average quantities over the region of the loop which lies above
the transition region, bounded by the points where the temperature crosses 7" = 10° K in both loop
legs. If a single number is given, this corresponds to a stable solution, while a temperature range
indicates a dynamic (periodic or irregular) solution. To avoid effects of the initial condition on the
temperature ranges, these ranges are calculated using the second half of each simulation run only.

It is seen that for a given energy flux the mean loop temperatures increase as a function of
damping length. This can be easily understood since a deposition of energy at greater heights
results in lower radiative losses (due to the decreased density) and therefore more net heating. For
dynamic solutions, the spread of mean temperatures for a given loop model is large: At a given
point in time, the mean temperature of a dynamic loop can be lower than the mean temperature of
a model with an energy flux Fy which is ten times smaller.

Furthermore, it is seen that a static loop with a given mean temperature can be “produced”
in two different ways: Either with a lower energy flux and a long damping length, or with a
higher energy flux and a shorter damping length. As an illustration, Fig. 8.2 displays the ratios
of temperature, electron density and total radiative losses along two L = 150 Mm loop models
with an apex temperature of Ti,, = 1.1 MK, but different amounts of heating. The first one has
an energy flux of Fy; = 10> W/m? and a damping length of H,,; = 6 Mm, while the second
one has an energy flux of Fp» = 5 - 102 W/m? and a damping length of H,,, » = 10Mm. Itis
by no means surprising that the model with the higher energy flux also radiates more strongly, but
the comparison shows clearly that stable loops with a given apex temperature can be “overdense”
compared to more uniformly heated loops if the heating is concentrated towards the footpoints.
This agrees with the findings of Aschwanden et al. (2001), which will be discussed in Sect. 8.5.
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8.3 Temperature and Density Variations
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FIGURE 8.2: Comparison of two loop models with similar apex temperatures but different electron den-
sities, n., and hence radiative losses, L,. The top panel displays the temperature ratio along two
L = 150Mm loop models, one with an energy flux of Fp» = 5102 W/m? and a damping length
of H,, > = 10 Mm, the other one with F, ; = 103W/m? and H,,, ; = 6 Mm. The middle and lower

panel show the corresponding ratios of electron densities and radiative losses, respectively.
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| LIMm] | Hy, [Mm] [ Fy = 10°Wim? | Fy =5-10°W/m? | Fy = 10°Wim? | Fy = 10" Wim? |

100 2 69-337 214-639 363-928 1000-1804
100 4 465 464-853 965 1730
100 6 541 895 1108 2090
100 8 589 969 1191 2265
100 10 624 1018 1249 2384
150 2 180-241 121-693 54-971 994-1722
150 4 463 379-789 544-1034 1321-1898
150 6 545 900 1103 1489-2191
150 8 598 987 1205 2051
150 10 641 1048 1278 2278
200 2 200-252 216-614 140-847 438-1874
200 4 472 272-771 646-911 1215-1883
200 6 553 897 1094 1448-2096
200 8 608 990 1204 1724-1929
200 10 654 1057 1284 2167
250 2 nc 200-540 184-802 547-1798
250 4 479 303-644 406-962 762-1829
250 6 557 908 1107 1449-1958
250 8 613 1000 1217 1569-2213
250 10 659 1069 1298 2224
300 2 nc 300-558 336-690 491-1543
300 4 478 377-711 860-931 1045-1660
300 6 560 901 1089 1231-2011
300 8 618 997 1207 1454-2127
300 10 665 1068 1293 1572-2291

TABLE 8.2: Mean temperatures in units of 103 K for loop models with different loop lengths, L, damping

lengths, H,,, and energy fluxes, Fj.
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| L[Mm] | Hy, [Mm] || Fo = 10°Wim? | Fy =5-10°W/m? | Fy = 10° W/m? | Fy = 10° W/m? |

100 2 0.43-2.21 3.08-9.69 3.41-16.53 24.53-90.88
100 4 2.66 3.04-9.66 12.92 51.07
100 6 2.60 8.17 12.02 45.64
100 8 2.54 7.85 11.53 43.15
100 10 2.52 7.66 11.20 41.64
150 2 0.59-1.21 0.90-7.02 0.71-12.11 22.73-61.78
150 4 1.96 2.60-7.02 10.81-11.34 26.55-58.56
150 6 2.02 6.17 9.90 24.13-58.22
150 8 1.99 5.96 9.49 46.61
150 10 1.97 5.81 9.22 43.94
200 2 0.42-1.00 1.10-5.61 1.45-9.69 8.74-57.73
200 4 1.42 2.17-5.77 8.59-9.34 21.10-49.34
200 6 1.43 5.26 8.15 22.95-49.04
200 8 1.42 5.12 7.87 41.55-45.64
200 10 1.42 5.02 7.66 38.18
250 2 nc 1.24-4.55 0.86-8.61 0.86-8.61
250 4 1.17 1.86-4.87 2.91-8.06 16.52-65.09
250 6 1.19 4.00 6.52 20.77-49.73
250 8 1.19 3.93 6.35 19.16-43.21
250 10 1.20 3.87 6.21 29.95
300 2 nc 0.85-3.46 1.64-6.40 4.47-39.10
300 4 0.96 1.84-3.76 6.16-6.23 18.08-41.22
300 6 0.96 3.54 6.04 16.63-38.57
300 8 0.96 3.51 5.95 18.02-39.62
300 10 0.97 3.48 5.85 18.11-40.15

TABLE 8.3: Mean electron densities in units of 1014 m=2 for loop models with different loop lengths, L,

damping lengths, H.,,, and energy fluxes, Fy.
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8.4 Overheated Loops

An inspection of the loop models with intermediate damping lengths of H,, = 6 — 8 Mm reveals
another interesting aspect, namely an alternative way of triggering a thermal instability. For all
loop models with L > 150 Mm it is seen that stable solutions are obtained for energy fluxes up to
Fy = 10% W/m?2, while a larger energy flux of Fy = 10* W/m? results in a thermal instability with
recurrent condensations.
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FIGURE 8.3: Energy balance at the loop apex for L = 300 Mm loop models with energy fluxes of Fy =
103 W/m? (dotted lines) and F, = 10* W/m? (solid lines), and a damping length of H,,, = 6 Mm . From
top to bottom: Electron density, n., radiative losses per particle, the sum (—L,,q — pVv — VF,) per
particle (negative values indicate that the loop apex is losing energy), and the temperature at the loop top.

Figure 8.3 shows a comparison of the energy balance at the loop apex for two L = 300 Mm loop
models with a damping length of H,,, = 6 Mm and two different energy fluxes of F; = 10% W/m?
and Fy = 10* W/m?. Both models were started from the static initial model with Fy = 103 W/m?
and a damping length of H,, = L/4 (displayed in Fig. 8.1).
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In the case of the more strongly heated loop (solid lines), the apex temperature rises initially
from Tiop start = 2.1 MK t0 T, = 2.8 MK as a result of the higher energy flux (bottom panel of
Fig. 8.3). However, once the system has adjusted to the increased heating rate, the energy balance
at the loop apex soon becomes negative. This is illustrated in the third panel of Fig. 8.3, where
the sum of the radiative losses, L..q, the adiabatic compression, pVu, and the divergence of the
conductive flux, V F,, are plotted.

On the other hand, the less strongly heated loop (dotted lines) cools down to Ti,, = 1.1 MK
since the energy flux of Fy = 103 W/m? is now dissipated in lower regions of the loop (H,, =
6 Mm compared to H,, = L/4 = 75Mm of the start model) and reaches a static equilibrium
solution with constant radiative losses, temperature and electron density at the loop apex.

For the more strongly heated loop, the apex electron density continuously increases with time
until a thermal instability sets in around ¢ = 60 - 103s. The reason for this is that the enhanced
energy flux, Fy, evaporates continuously chromospheric plasma into the loop while this process
eventually ceases for lower energy fluxes when the loop approaches an equilibrium. This can be
seen in Fig. 8.4 where the mass flux, p - v, at the location z = 20 Mm in the left loop leg is
plotted. It is seen that the mass flux into the coronal part of the loop vanishes after several 103 s
for Fy = 102 W/m? (dotted line), while for £, = 10* W/m? (solid line) it remains at a positive
value of around 2 - 108 kgm~2s~! until the thermal instability sets in around ¢ = 60 - 102 s and
initiates an even stronger upflow in the left loop leg.
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FIGURE 8.4: Mass flux, p - v, at z = 20 Mm into the coronal part of the loop for the two loop models with
energy fluxes of Fy = 102 W/m? (dotted line) and Fy = 10* W/m? (solid line). In the case of the lower
heating rate, chromospheric evaporations stops as the loop approaches an equilibrium configuration,
while the more strongly heated loop is continuously filled. Around ¢ = 60 - 103, a thermal instability
sets in which results in an even higher mass-accretion rate.

This phenomenon is particularly interesting for two reasons: Firstly, it provides an extension of
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the parameter range in which footpoint-centered heating of coronal loops can give rise to thermal
instabilities and dynamic loop evolution. If the energy flux into the transition region and corona is
temporarily enhanced for a given patch of the solar surface, this can trigger a thermal instability
of coronal loops which were stable before. Such a transient increase of the energy flux can for
example be the result of magnetic flux eruption or magnetic reconnection processes.

Secondly, it establishes a connection between thermal instabilities in coronal loops and instabili-
ties and subsequent relaxation oscillations of open coronae. It has been found by Hearn & Vardavas
(1981), Hammer (1982) and Souffrin (1982) that the classical picture of an infinitely extended
corona breaks down when the energy flux exceeds a certain limit which depends on the damping
length over which the energy is dissipated in the corona.

It was suggested by Hearn et al. (1983) that these overheated coronae undergo global relaxation
oscillations, during which an extended corona becomes unstable and collapses into two coronal
shells. The outer shell eventually contracts and absorbs the inner shell so that again one extended
corona is formed which becomes subsequently unstable. This was later confirmed by more de-
tailed time-dependent numerical calculations by Korevaar & Hearn (1989). The parameters used
in their calculations were quite different from the solar case, as they modeled the hot O star ¢ Ori
which has a mass of 44.7 M, a radius of 28.7 R, and an effective temperature of 31 000 K. How-
ever, the general behavior of the two modeled systems is very similar: The increased heating of
lower parts of the corona increases the density in the outer regions which gives rise to enhanced
radiative losses. Above a certain limit, thermal conduction can no longer balance the radiative
losses and the corona collapses. These findings have found additional confirmation by the work
of Tziotziou et al. (1998) who calculated a grid of coronal models for different energy fluxes and
distributions and found that relaxation oscillations occur when the energy input exceeds a certain
limit. Using a different numerical approach, Hammer (1985) computed a large number of hy-
drostatic shell models and localized a boundary line in the parameter space of energy flux and
damping length that separates normal extended coronae from coronal shells. The evaporation-
condensation cycle which has been shown to be a versatile mechanism to explain the dynamic
evolution of coronal loops is very similar to the idea of collapsing and rebuilding coronae.

8.5 Comparison with Hydrostatic Models

A parameter study of 500 hydrostatic loop models with non-uniform heating was carried out by
Aschwanden et al. (2001) and compared to observations with TRACE and EIT. They found that
most of the observed loops could not be explained by the classical “RTV scaling law” (Rosner et al.
1978), which assumes a constant pressure and heating along the loop, because the observed loops
seemed to be nearly isothermal along their coronal segments, showed an enhanced density and
pressure compared to loops with uniform heating, and were visible over a much larger height
range than the hydrostatic scale height.

Their parameter study consisted of a set of 500 models with loop lengths between 8 and 600 Mm
length which all had an apex temperature of 1 MK. They assumed symmetric, static loops, and
solved iteratively for the temperature and pressure distribution along a half-loop. The radiative
losses were parametrized as a function of temperature. Apart from the fixed apex temperature,
the other boundary conditions were a footpoint temperature of 0.1 MK and a vanishing conductive
flux both at the footpoint and the apex. Aschwanden et al. (2001) found that stably stratified loops
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were obtained for long damping lengths, while for short damping lengths (H,, < 6.3 Mm for
a total loop length of L = 100.8 Mm, H,, < 8.0Mm for L = 201 Mm, H,, < 12.6 Mm for
L = 401 Mm), no static solutions could be found numerically. In a narrow regime of intermediate
damping lengths, they found unstably stratified loops with a density inversion at the loop apex.
Comparing the model results with TRACE observations, the authors found that only 30% of the
observed loops were compatible with hydrostatic steady state solutions, and that the best fits were
obtained for damping lengths of H,,, = 12 &+ 5 Mm.

The parameter study presented here is in good agreement with the work of Aschwanden et al.
(2001) and covers the regime where the authors could not find any static solutions, since for the
loops in this regime no equilibrium solutions exist. Therefore, time-dependent models are needed
to obtain any information about this parameter regime.

It should be emphasized for clarification that the argument that footpoint-centered heating leads
to higher loop densities holds for a given apex temperature, and this is not so much because the
heating is centered in the lower parts of the loop but because a larger heat flux is needed to sustain
this specific apex temperature if the energy is dissipated at lower heights.

In contrast to Aschwanden et al. (2001), who derived an empirical relation between the critical
damping length, below which no static solutions exist, and the loop length (H , orit =~ +/(L/2)),
the ensemble of 100 loop models calculated here do not support a simple parametrization of the
critical damping length as the function of loop length, but it is found that the critical damping
length also depends on the energy flux.

The two approaches of solving the hydrostatic equations with parametrized radiative losses on
the one hand, and solving the time-dependent hydrodynamic equations with non-equilibrium ion-
ization on the other hand complement each other. While the first approach makes the calculation
of a very large ensemble of loops feasible, the second approach can cover the regime where no
equilibrium solutions exist.

8.6 Plots of Loop-Averaged Variables

The general time evolution for a large number of loop models can be compared most easily by
plotting different loop-averaged variables, such as the mean temperature, the mean density and the
mean pressure, as a function of time, or by plotting two variables, e.g. (7') and (p), as a function of
each other. Also here the mean values are defined as the average quantities over the region of the
loop which lies above the transition region, bounded by the points where the temperature crosses
T = 10°K in both loop legs. Figures 8.5 — 8.9 show the mean loop temperatures as a function
of time for loop length of L = 100, 150, 200, 250, 300 Mm, respectively, and in Figs. 8.10
— 8.14 the corresponding (7T')((p))-diagrams are displayed. As has been mentioned before, the
periodic evolution of loops appears in the form of limit cycles in the (T")((p))-diagrams, while
static solutions reached fixed points.

Additional plots of the corresponding mean electron densities and mean pressures as a function
of time are given in the appendix in Figs. 8.10 — 8.14 and Figs. A.1 — A.5, respectively.
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8.6.1 Time Evolution of Mean Temperature
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FIGURE 8.5: Mean loop temperature as a function of time for L = 100 Mm loop models and energy
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FIGURE 8.7: Mean loop temperature as a function of time for L = 200 Mm loop
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8.6.2 Pressure-Temperature Diagrams
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9 Recent Multi-Wavelength Observations
of Coronal Loops

The real challenge for any model lies in its confrontation with reality. Since 1996 and 1998, re-
spectively, the two satellites SOHO and TRACE have provided us with various instruments to
study the dynamics of the solar transition region and corona at unprecedented spectral and spatial
resolution. Regarding studies of the dynamic evolution of coronal loops, the strength of SOHO
lies in its spectrometers CDS (the Coronal Diagnostic Spectrometer) and SUMER (the Solar Ul-
traviolet Measurements of Emitted Radiation instrument). The TRACE observatory, on the other
hand, is designed for recording images with a high spatial resolution of 1” with different spectral
filters, sensitive to plasma at different temperatures. The best usage of the available information
is made when one combines the strengths of several instruments by observing the same region on
the sun in different wavelengths, recording both spectra and images.

In order to study plasma condensations, downflows and other time-variable phenomena in ac-
tive region loops, especially at transition region temperatures, a joint observing program with the
SOHO instruments CDS, SUMER, MDI (the Michelson Doppler Imager) and EIT (the Extreme
ultraviolet Imaging Telescope) together with the TRACE instruments was carried out in May 2004.
This program with the acronym JOP 174 was coordinated by T. Fredvik (CDS), O. Kjeldseth-Moe
(CDS), W. Curdt (SUMER), K. Schrijver (TRACE) and T. Tarbell (TRACE). Since the data was
acquired very recently, the data reduction and analysis is currently still in progress, but due to the
timeliness of the goals of this study and its close connection to the models presented in this thesis,
a few preliminary results of this observing campaign are presented here.

Figure 9.1 shows an active region above the limb, imaged by the TRACE instrument in two
different wavelength bands. The left image was taken in the 160.0 nm pass band on 20 May 2004
at 19:10:24 UT. For observations above the solar limb, the emission in this band is dominated by
the spectral lines of C 1V (154.8 nm and 155.0 nm), formed at around 7" ~ 0.1 MK. The right
image (taken on 20 May 2004, 19:10:53 UT) shows the same region on the sun, this time seen in
the 17.1 nm pass band, which contains mainly emission from Fe IX and Fe X at T ~ 0.65 MK and
1 MK, respectively. In both images dark shading corresponds to high intensities and light shading
to low intensities. It is seen that the C IV emission along the different strands of the loop system
is much more “clumpy” than the emission seen in the Fe IX/X image. The latter shows also many
more loop structures throughout the field of view, which are presumably too hot to be seen in the
160.0 nm pass band. An inspection of a time series of TRACE 160.0 nm images reveals that the
structures which outline the loop system are in constant motion. Many of the bright “blobs” appear
in the upper part of the loop system and then fall down along either side of the loop structures.

In order to probe the temperature of the plasma, raster scans of the CDS slit over the active
region were performed. In the normal operation mode it takes 11 min to complete a raster scan
of a 160" x 240" area with the 4” x 240" slit, so that loop dynamics on short time scales cannot
be resolved. For this reason, Terje Fredvik developed a quick scan mode, in which an area of
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FIGURrE 9.1: TRACE images of an active region above the limb. Left: 160.0nm band, dominated by C IV
(154.8nm) and C 1V (155.0nm) at " ~ 0.1 MK when observing off-limb. Right: Fe IX/X (17.1nm)
band (mainly Fe IX and Fe X at 7" ~ 0.65 MK and 1 MK, resp.). Images courtesy of T. Fredvik.

60" x 240" is scanned with the 4” x 240" slit with a step size of 8”, i.e. twice the slit width.
This reduces the time needed to accomplish one scan to approximately 2min. The increased
temporal resolution comes at the expense of lacking spatial information, so that the missing pixel
rows have to be interpolated. However, as the strength of CDS lies in its spectra which sample a
broad temperature range rather than in high spatial resolution, this scanning mode is preferable to
study the dynamics of coronal loops, especially if the observations are accompanied by an imaging
instrument such as TRACE.

Figures 9.2 and 9.3 show four snhapshots of the same active region taken on 20 May 2004 at
19:11:50 UT, 19:59:21 UT, 20:57:05 UT and 21:12:53 UT. The left panels show TRACE images
in the 160.0 nm passband, while the remaining three panels show CDS raster scans in the spec-
tral lines of Hel (58.4 nm, formed around 20000 K), OV (63.0nm, T' =~ 0.23 MK) and Fe XVI
(36.0nm, T' =~ 2.7 MK). Although the time evolution is much better seen in movies of the respec-
tive data sets, Figs. 9.2 and 9.3 illustrate clearly that coronal loops show very dynamic evolution
on short time scales: At 19:11:50 UT the loop system is strongly emitting in the C IV passband,
indicating that the loops are filled with plasma at a temperature around 10° K. Bright “blobs” are
seen to move downwards along the loop structures, often accelerated in the early phase of their
fall. The CDS rasters show localized brightenings as well, but due to the limited spatial resolution
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of the CDS instrument and the undersampling of the rastering process (which causes the vertical
stripes in the rasters) individual structures of the loop system can hardly be resolved. Within the
next 90 min (lower panel of Fig. 9.2 and upper panel of Fig. 9.3) it is observed that the loop system
vanishes almost completely and then “magically” reappears around 15 min later (lower panel of
Fig. 9.3).

A movie of the TRACE images in the 160 nm pass band suggests that plasma drains in “clumps”
through the loop legs, and also the time series of the CDS He I and O V rasters show features which
brighten up while moving downwards. Although the line-of-sight velocities of the plasma are
presumably rather small since we are looking at structures that are oriented largely perpendicular
to the observing direction, future work will include a detailed analysis of the Doppler shifts of
the various lines. In the CDS rasters of the Fe XVI (36.0 nm) line, which is formed at very high
temperatures (7' ~ 2.7 MK), the spatial brightness variations are much weaker, which supports
the conjecture that the localized brightenings are associated with plasma at cooler temperatures.
Figure 9.4 finally shows the relative intensities recorded in one single CDS detector pixel, located
at (x,y) ~ (990", —75"), in four spectral lines which are formed at different temperatures. In this
region, the TRACE movie shows a rather simple, isolated loop structure along which a bright blob
is seen to propagate downwards. It is seen that in the beginning of the time series, the intensity in
the hot Fe XV1 line (36.0 nm, T" ~ 2.7 MK) is high and then drops sharply around 19:00 UT. At
the same time, the relative intensity in Mg IX (36.8 nm, T' =~ 1 MK) rises strongly, reaches a peak
at 19:10 UT and then decreases again. A similar transient rise of the intensity is found for OV
(63.0nm, T ~ 0.23 MK) and O 11l (59.9nm, T ~ 0.1 MK). The intensity peak of OV is shifted
by around 15 min in time with respect to the hotter Mg IX line, while the O 111 peak seems to be
slightly shifted with respect to the OV peak. Although a more detailed analysis is needed, which
is in progress but not part of this work, we note that this observation is consistent with a dense,
cool plasma blob, surrounded by hotter material, which is moving past the detector pixel.

To conclude this section, we state that a first inspection of the new data from the joint observ-
ing program 174 supports the concept of plasma condensation in coronal loops, accompanied by
localized brightenings and fast downflows. The ongoing analysis of these data will help to further
evaluate our hydrodynamic model and to indicate areas where improvement is needed to obtain a
good match between the observations and the model.
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Ficure 9.2: Nearly simultaneous images with TRACE and CDS in different wavelength bands. From
left to right: TRACE 160.0nm band (above the limb mainly C 1V, T' =~ 0.1 MK), CDS Hel (58.4 nm,
T ~ 20000K), CDS OV (63.0nm, T' =~ 0.23 MK), Fe XVI (36.0nm, T' ~ 2.7 MK). The upper image
was taken on 20 May 2004 at 19:11:50UT, the lower one at 19:59:21 UT. The dashed boxes in the
TRACE images indicate the location of the CDS rasters. (Courtesy of T. Fredvik.)
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FIGURE 9.3: Nearly simultaneous images with TRACE and CDS in different wavelength bands. From
left to right: TRACE 160.0nm band (above the limb mainly CIV, T' ~ 0.1 MK), CDS Hel (58.4nm,
T ~ 20000K), CDS OV (63.0nm, T' ~ 0.23 MK), Fe XV1 (36.0nm, T' ~ 2.7 MK). The upper image
was taken on 20 May 2004 at 20:57:05UT, the lower one at 21:12:53UT. The dashed boxes in the
TRACE images indicate the location of the CDS rasters. (Courtesy of T. Fredvik.)
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FIGURE 9.4: Relative intensity as a function of time for four emission lines formed at different tempera-
tures, recorded in one single detector pixel located at (z,y) ~ (990", —75"). The cadence is approxi-
mately 2 minutes. Red: Fe XV1 (36.0nm, T' =~ 2.7 MK), blue: Mg IX (36.8nm, T' =~ 1 MK), black: OV
(63.0nm, T' =~ 0.23 MK), orange: O ll1 (59.9nm, T' ~ 0.1 MK). (Courtesy of T. Fredvik.)



10 Discussion & Outlook

The work presented in this thesis shows that solar coronal loops can evolve very dynamically
even under the assumption of a temporally constant heating if the heating is concentrated close
to the footpoints of the loops. In this case, the non-linearity of the energy equation results in a
loss of equilibrium which triggers a highly dynamic loop evolution. This dynamic evolution can
be understood on the basis of an evaporation-condensation cycle: Plasma is first evaporated by
coronal heating from the cool and dense chromosphere into the corona, then condenses in the
coronal part of the loop as a result of thermal instability, drains towards the footpoints of the
loop and finally evaporates again. In that respect, the term “coronal rain” which has been coined
to describe the phenomenon of plasma blobs which appear at high altitudes of the corona and
then fall towards the solar surface seems very appropriate as the processes of evaporation and
condensation resemble indeed the familiar rain on earth.

The damping length of the energy dissipation in the coronal loop acts as a control parameter
of this non-linear system. For large damping lengths, corresponding to heating which is more
evenly distributed over the loop, static solutions are obtained, while for shorter damping lengths
periodic solutions are found. For very short damping lengths, the evolution of the loop becomes
very complex and irregular.

The dynamic loop scenario is interesting in several aspects: Firstly, it can account for transient
brightenings in transition region lines, originating from small loops which are barely resolved with
the current generation of space instruments. In that respect, simultaneous observations of several
spectral lines which are formed at different temperatures, e.g. C1V (154.8 nm), OV (63.0 nm),
and O VI (103.2 nm) would be advantageous in order to verify if this phenomenon is as common
as it seems. The fact that the dynamic loop models can show strong emission in lines formed at
temperatures below 10° K and at the same time relatively weak emission in lines formed at higher
temperatures seems promising with respect to the outstanding “emission measure problem”, i.e.
the fact that current models cannot account for the increased emission of the solar atmosphere at
cooler temperatures. Secondly, the model calculations shown here can explain recent observations
of catastrophic cooling and high-speed downflows in coronal loops as a result of a coronal heating
mechanism which is concentrated at low heights. It is found that no external time-dependent
driving mechanism is necessary to explain the observed rapid cooling and evacuation of loops. As
the model solves the non-equilibrium rate equations consistently with the dynamic equations, the
time-dependent emission of optically-thin spectral lines can be synthesized and directly compared
to observations. A good match to the observed properties of catastrophic cooling of coronal loops
is found. These results strengthen the hypothesis that coronal heating is concentrated towards the
footpoints of loops. Such knowledge is very useful to limit the number of possible coronal heating
mechanisms.

Future efforts in coronal loop modeling should also focus on models for high-temperature loops
which will be observed with the next generation of EUV and X-ray instruments which are part
of the Solar-B mission and the Solar Dynamics Observatory (SDO). These two space missions
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are scheduled for launch in 2005 and 2008, respectively. Using the most accurate atomic data
available, the time-dependent emission in many different spectral lines should be calculated for
different models , followed by the calculation of the resulting transmission through different filters.
This will be particularly useful for the interpretation of results from imaging instruments with
multiple filters (such as the Atmospheric Imaging Assembly for SDO) and will help to reduce the
ambiguities that one encounters when dealing with filter-ratio techniques.

One of the major challenges in solar physics is the identification of the physical processes which
heat the solar corona. This problem has to be approached from different angles: On the one hand,
detailed numerical magneto-hydrodynamical simulations, preferably in three spatial dimensions,
are needed to investigate the structure of the solar corona and its coupling to the underlying atmo-
spheric layers. On the other hand, observable quantities have to be calculated from the magneto-
hydrodynamic models in order to compare the results of these models with observations. In a
very recent work Peter et al. (2005) calculated for the first time emission-line spectra from the
three-dimensional numerical model of Gudiksen & Nordlund (2002) under the assumption of ion-
ization equilibrium and found strong evidence for magnetic flux braiding mechanism to be the
dominant heating process of the magnetically-closed corona of the sun. Such a forward-modeling
approach is of great use to compare theoretical results with observations and can also be applied
to models of the coronae of other stars. In many cases, however, the solar plasma is not in ion-
ization equilibrium, and the resulting effects should ultimately be included in a comprehensive
model. However, the computational expense of additionally solving the ionization rate equations
in a three-dimensional model of even a small part of the solar corona is currently too high to be
feasible. Thus, innovative approaches are needed to evaluate whether non-equilibrium effects can
be reasonably accounted for in a simplified way. For the time being, the effects of non-equilibrium
ionization can therefore only be studied with models of one spatial dimension. Another advantage
of one-dimensional models is the fact that many more realizations can be carried out in a given
time which makes it possible to explore the parameter space of possible solutions.

As far as an extended comparison of the predictions of this work with observations is concerned,
the analysis of the data acquired in the framework of the Joint Observing Program 174, combined
with ongoing modeling efforts, will provide further insight into the dynamics of solar coronal
loops.
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A Appendix

A.1 Effect of Atomic Composition on Instabilities in Shock
Waves

It is important to note that the onset of instabilities in plasmas depends also on the details of
atomic physics. In this section two examples are given which do not correspond very closely to
the problem modeled in this thesis but seem nevertheless worthwhile to note in a broader context.

Grun et al. (1991) showed in a laboratory experiment that, depending on the ambient gas, the
shock fronts of Taylor-Sedov-type blast waves can be either stable or unstable. In their exper-
iment, a high-power laser pulse was released on a polystyrene foil, which created a blast wave
produced by the expansion of ablation plasma from the foil’s surface. When this experiment was
carried out in a nitrogen-filled chamber, the shock front of the blast wave remained stable, while
an instability set if the chamber was filled with xenon gas. The authors explained this result by the
different adiabatic indices of the two gases: They argued that the lower adiabatic index of xenon
(vxe = 1.06 4+ 0.02) makes the gas radiate more strongly than the neon gas (yxy = 1.34+0.1). Ina
later work Laming & Grun (2002) and Laming & Grun (2003) carried out detailed atomic physics
calculations which could not only explain the previous results of Grun et al. (1991) but also ex-
plained why this instability was not found in other experiments, e.g. by Edwards et al. (2001).
Laming & Grun (2002) argued that the fundamental reason for the stability of blast waves in a
neon gas was not the fact that it is “inherently less radiative” than xenon, but that its radiation is
more suppressed by the electron density than in the case of xenon (the higher density reduces the
radiative cooling rate by electron collisional depopulation of excited levels).

Smith & Rosen (2003) investigated the formation of shocks in interstellar molecular clouds and
found that fast shocks can be unstable because the production of CO and H,O molecules in the
cooling layer alters the cooling function significantly. They found a strong dependence of the
atomic composition of the cloud on the cloud’s stability (an instability only sets in at sufficiently
high C and O abundances) and showed furthermore that cooling layers of hydrodynamic molecular
shocks can exhibit cyclic or even chaotic collapse and reformation.
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A.2 Further Data From the Parameter Study

A.2.1 Time Evolution of Mean Electron Density
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FI1GUrRE A.3: Mean electron density as a function of time for L = 200 Mm loop models and energy fluxes
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FIGURE A.5: Mean electron density as a function of time for L = 300 Mm loop models and energy fluxes
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A.2.2 Time Evolution of Mean Pressure
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A.3 List of Physical Constants

Symbol  Name Value

ao Bohr radius 5.2918 - 10~ "'m

c speed of light 2.9979 - 108 ms—!

G gravitational constant 6.6742 - 10~ m3 kg~ s2
9o solar surface gravity 274ms2

h Planck’s constant 6.626 - 10734 Js

k Boltzmann’s constant 1.3807 - 10723 JK !

Me electron mass 9.1094 - 103! kg

me solar mass 1.9889 - 10%° kg

Ra astronomical unit 1.4960 - 10" m

o solar radius 6.960 - 103 m

Ko Spitzer’s thermal conduction coefficient 1.1-10~'Wm~1s~1 K=7/2

Lo magnetic permeability of the vacuum 47 -107"VsA Im™!
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