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Preface

 This study was funded by the Deutsche Forschungsgemeinschaft (DFG) via the International 

Graduate College EUROPROX: Proxies in Earth History, within the subproject 8.3: Rapid redox changes 

across major climate transitions – Impact on the preservation of paleoceanographic proxies. The project 

has been proposed and supervised by PD Dr. Sabine Kasten (Alfred Wegener Institute for Polar and 

Marine Research, Bremerhaven, Germany) and Prof. Dr. Gert J. De Lange (University of Utrecht, The 

Netherlands). The presented work is in review as a dissertation and was mostly conducted in the working 

group Geochemistry and Hydrogeology headed by Prof. Dr. Horst D. Schulz at the Fachbereich 5 – 

Geowissenschaften (Department of Geosciences), University of Bremen, Germany. 

 The main part of the presented work consists of three manuscripts accepted for publication in 

international journals (Chapters 2-4), which are for the most part based on my own sampling, analyses, 

data evaluation and interpretation. The abstracts of two further manuscripts submitted to/in press for  

international journals are attached (Chapters 5, 6), to which I made analytical and interpretational 

contributions as co-author. The separate manuscripts are preceded by an abstract (in English and German) 

summing up the crucial foci of research, and an introduction (Chapter 1) illustrating the current state of 

the discussed topics and the broader scientific context. Following the manuscripts, a conclusion (Chapter 

7) will sum up the most important findings and give a brief outlook and recommendation for further 

investigations. Finally, the many persons who contributed to this work are acknowledged. 
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 Abstract

Abstract

 In the context of present-day changes of atmo-, hydro-, geo- and biosphere processes, there 

is growing interest to decipher rapid paleoenvironmental changes in the geological past. Marine 

deposits  provide valuable insights into paleoenvironmental conditions that prevailed during their 

deposition, if we know how to read the respective signals in the sedimentary record. However, caution 

is demanded as primary signals of past environmental conditions can be altered by postdepositional 

diagenetic processes. In the presented work, we will show the potentials, but also limitations of 

inorganic geochemical proxies to record signals of abrupt paleoenvironmental shifts in the terrestrially 

dominated Late Quaternary deposits of the  Zambesi deep-sea fan (SE African margin), and in a fully 

marine Late Cretaceous black shale succession on Demerara Rise (NW South American margin). 

 

 In Zambesi deep-sea fan sediments, results of magnetic and geochemical analyses document 

a marked diagenetic front in ~5 m sediment depth. At this sulfate/methane transition (SMT), the 

anaerobic oxidation of CH4 by SO4
2- caused a marked alteration of primary sediment signals due to the 

production of HS-, which in turn led to transformation of detrital Fe (oxyhydr)oxides into Fe sulfides 

(mostly pyrite). While this in situ dissolution-precipitation reaction left the bulk Fe record unaffected, 

we observed a peak in sedimentary S, a decrease of ferric Fe minerals and a related drop in magnetic 

susceptibility. In addition, large amounts of previously adsorbed HPO4
2- got released to the pore water 

upon Fe (oxyhydr)oxide dissolution, creating a minimum in bulk sedimentary P. Below the SMT, 

the rapid drawdown of pore water HPO4
2- as well as a solid P enrichment indicate formation of an 

authigenic P mineral. Sequential phosphate extractions suggest that a Fe(II)-phosphate mineral like 

vivianite precipitated below the SMT. 

 By applying Fick´s first law of diffusion and present-day conditions, we calculated the time of 

SMT fixation in its current position necessary to form the observed sedimentary S enrichment and 

P depletion within the SMT to amount to ~10,000 years. Around ~10,000 years B.P. the last Glacial 

to Holocene transition took place, and melting of large continental ice masses caused a major global 

sea level rise. Hence, the Mozambique shelf was largely flooded, most riverine sediment from the 

Zambesi was trapped close to the coastline, and sedimentation rates on the deep-sea fan were reduced 

significantly, leading to a fixation of the SMT at its current position. 

 Quaternary deposits off other large river mouths (e.g. Rio de La Plata, Amazon) show very 

similar geochemical patterns. Thus, rapid changes of sedimentation rates in fluvially influenced 
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continental margin settings may induce drastic diagenetic alterations of primary paleoenvironmental 

signals, especially in particular horizons, long after sediment deposition - and such features might be 

critical for interpreting ancient sediment successions as well. 

 

 Recording very different paleoenvironmental conditions, Late Cretaceous black shales 

deposited during the oceanic anoxic event (OAE) 3 in the Coniacian-Santonian on Demerara Rise are 

of open marine origin. Sediments investigated were obtained from ODP cores drilled at Sites 1259 and 

1261 during Leg 207. As our geochemical and mineralogical analyses of two intervals of similar age 

(nannofossil biozone CC14) from both sites revealed, the sediments mainly consist of CaCO3, marine 

organic matter and clinoptilolite (an alteration product of opal). Significant detrital input was most 

probably prevented by widely flooded continental shelves during the Late Cretaceous greenhouse. Still, 

the depositional regime at the shallower ODP Site 1259 was more significantly affected by turbidites, 

winnowing bottom currents and/or variable detrital sediment sources than at Site 1261, which was 

characterized by steady hemipelagic sedimentation. 

 Bottom waters were anoxic and even sulfidic for thousands of years across large parts of the 

Coniacian-Santonian Demerara Rise, indicated by redox-sensitive trace element records as well as by Fe 

and P speciation. However, despite overall bottom water and sediment oxygen depletion, periods with 

less reducing conditions occurred cyclically and were obviously triggered by astronomical eccentricity 

cycles. Based on our integrated high-resolution data set from two ODP sites representing different 

paleowater depths, and assuming linear sedimentation rates, we established a conceptual model of the 

development of paleoredox conditions during OAE3 at Demerara Rise. 

 High amounts of organic matter were deposited on the Late Cretaceous Demerara Rise, 

leading to progressive oxygen consumption at the sea floor, and microbial sulfate reduction created 

sulfidic conditions in and periodically above the sediment. Periods of sulfidic bottom waters were 

more pronounced and stable at Site 1261. Due to low detrital Fe input, the HS- produced led to nearly 

complete pyritization (diagenetic and syngenetic) of the available ferric Fe, and excess HS- caused 

extensive diagenetic sulfurization of the fresh marine organic matter in the sediment. In addition, a 

secondary coupling of Mo and Ni to sedimentary organic matter was created, while Mn and P were 

leached from the sediment. The very effective P recycling to the water column was probably one of the 

factors sustaining high productivity and organic matter export. 

 Most probably by the incursion of well-oxygenated South Atlantic water masses through the 

progressively opening Equatorial Atlantic Gateway, sulfidic conditions were periodically terminated, 

but nevertheless bottom waters stayed anoxic. Still, a close coupling of Fe and P was created - probably 
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induced by syngenetic formation of Fe (oxyhydr)oxides and adsorption or co-precipitation of HPO4
2- 

to these particles - which caused HPO4
2- removal from the water column and P enrichment in the 

sediment. After the incursion of South Atlantic water masses ceased, anoxic non-sulfidic bottom 

waters gradually turned sulfidic again, recorded by the rapid precipitation of large amounts of Zn and 

Cd sulfides and V hydroxides at low HS- levels, before increasing syn- and diagenetic pyrite formation 

and organic matter sulfurization re-established. 

 

 This study shows that high-resolution records of bulk sedimentary Fe, P, S and redox-sensitive 

trace metals, and in particular sequential Fe and P extractions, have a large potential to trace rapid 

changes in paleoceanographic conditions - but can also reveal diagenetic alteration of the respective 

signals and preclude misinterpretations. Application of these geochemical proxies is proven successful 

in (sub)recent and ancient marine deposits, no matter if these are dominated by terrigenous or marine 

input. In addition, high sampling resolution is emphasized as one of the crucial prerequisites to capture 

sedimentary signals of rapid paleoenvironmental as well as diagenetic changes in their entity. 
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Kurzfassung

 Im Kontext der sich aktuell verändernden atmo-, hydro-, geo- und biosphärischen Prozesse  

besteht ein wachsendes Interesse daran, rasche Umweltveränderungen in der geologischen  Vergangenheit 

zu entschlüsseln. Marine Sedimente können wertvolle Einblicke in die Umweltbedingungen liefern, 

die während ihrer Ablagerung geherrscht haben, sofern wir die jeweiligen Signale in der sedimentären 

Abfolge interpretieren können. Allerdings ist Umsicht geboten, da ursprüngliche Signale vergangener 

Umweltbedingungen durch diagenetische Prozesse nach der Ablagerung verändert werden können. 

In der vorliegenden Arbeit werden wir die Möglichkeiten, aber auch die Grenzen anorganisch-

geochemischer Proxies darstellen,  die Signale abrupter Umweltveränderungen in den terrestrisch 

dominierten, spät-quartären Ablagerungen des Zambesi Tiefsee-Fächers (Kontinentalrand vor 

SE-Afrika) und den vollmarinen, spät-kretazischen Schwarzschiefern auf dem Demerara Rise 

(Kontinentalrand vor NW-Südamerika) aufzuzeichnen. 

 

 In Sedimenten des Zambesi Tiefsee-Fächers dokumentieren die Ergebnisse magnetischer und 

geochemischer Analysen eine markante diagenetische Front in etwa 5 m Sedimenttiefe. An dieser Sulfat-

Methan-Übergangszone (SMT) bedingte die anaerobe Oxidation von CH4 durch SO4
2- eine deutliche 

Veränderung primärer Sedimentsignale durch die Produktion von HS-, welches wiederum zu einer 

Umwandlung detritischer Fe-(Oxyhydr)oxide zu Fe-Sulfiden (meist Pyrit) führt. Während diese in 

situ-Lösungs-/Fällungs-Prozesse auf die Fe-Gesamtgehalte keine Auswirkung hatten, stellten wir einen 

Höchstgehalt an sedimentärem S, eine Abnahme der Fe(III)-Minerale und eine dementsprechende 

Abnahme der magnetischen Suszeptibilität fest. Darüber hinaus wurden als Folge der Fe-(Oxyhydr)oxid-

Lösung große Mengen zuvor adsorbierten HPO4
2- in das Porenwasser freigesetzt, was ein P-Minimum 

in der Festphase erzeugte. Unterhalb der SMT deuten die rapide Abnahme von Porenwasser-Phosphat 

sowie eine Anreicherung von P in der Festphase auf die Bildung einer authigenen P-Mineralphase hin. 

Sequentielle Phosphat-Extraktionen zeigten, dass ein Fe(II)-Phosphat wie Vivianit unterhalb der SMT 

auszufallen scheint. 

 Unter Anwendung des ersten Fick´schen Diffusionsgesetzes und unter Annahme heutiger 

Bedingungen haben wir die Zeit der SMT-Fixierung in ihrer aktuellen Position, die zur Bildung 

der beobachteten S-Anreicherung und P-Abreicherung im Sediment innerhalb der SMT nötig ist, 

auf ca. 10.000 Jahre berechnet. Vor etwa 10.000 Jahren fand der Übergang vom letzten Glazial zum 

Holozän statt, und das Abschmelzen grosser kontinentaler Eismassen führte zu einem bedeutenden 
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globalen Meeresspiegelanstieg. Infolgedessen wurde die Schelfgebiete von Mozambique weitgehend 

überflutet, der grösste Teil der Sedimentfracht des Zambesi wurde küstennah abgefangen, und die 

Sedimentationsraten auf dem Tiefsee-Fächer wurden deutlich vermindert, was zu einer Fixierung der 

SMT in der aktuellen Sedimenttiefe führte. 

 Quartäre Ablagerungen vor anderen großen Flussmündungen (z.B. Rio de La Plata, 

Amazonas) zeigen sehr ähnliche geochemische Muster. Demzufolge können schnelle Änderungen 

der Sedimentationsraten auf fluvial geprägten Kontinentalrändern lange nach Sedimentablagerung zu 

drastischen diagenetischen Überprägungen primärer Umweltsignale führen können, insbesondere in 

spezifischen Sedimentlagen - und solche Merkmale können ebenfalls für die Interpretation älterer 

Sedimentabfolgen von Bedeutung sein. 

 

 Deutlich unterschiedliche Umweltbedingungen sind in spät-kretazischen, offenmarinen 

Schwarzschiefern dokumentiert, die während des Ozeanischen Anoxischen Ereignisses (oceanic 

anoxic event, OAE) 3 im Coniac-Santon auf dem Demerara Rise abgelagert wurden. Die untersuchten 

Sedimente stammen aus ODP-Bohrkernen, die während der Ausfahrt Leg 207 an den Sites 1259 und 

1261 gewonnen wurden. Wie unsere geochemischen und mineralogischen Analysen zweier etwa gleich 

alter Intervalle (Nannofossilien-Biozone CC14) aus beiden Kernen zeigten, bestehen die Sedimente 

grösstenteils aus CaCO3, mariner organischer Substanz und Clinoptilolit (ein Umwandlungsprodukt 

von Opal). Ein nennenswerter detritischer Eintrag wurde höchstwahrscheinlich durch die - während 

des Treibhausklimas in der späten Kreide weitgehend überfluteten - Schelfgebiete verhindert. Dennoch 

war das Ablagerungsmilieu an der vermutlich seichteren ODP Site 1259 stärker durch Trübeströme, 

sortierende Bodenströmungen und/oder variable detritische Liefergebiete beeinflusst als an Site 1261, 

die von gleichmässiger hemipelagischer Sedimentation geprägt war. 

 Während des Coniac-Santon war das Bodenwasser über weite Teile des Demerara Rise über 

Jahrtausende anoxisch und sogar sulfidisch, was durch redox-sensitive Spurenelemente sowie durch 

Fe- und P-Speziation belegt ist. Trotz genereller Sauerstoff-Abreicherung im Bodenwasser und 

Sediment gab es zyklisch auftretende Phasen mit weniger reduzierender Bedingungen, die offenbar 

durch astronomische Exzentrizitäts-Zyklen zeitlich gesteuert wurden. Basierend auf unserem 

hochauflösenden integrierten Datensatz von zwei ODP-Bohrungen, die unterschiedliche Wassertiefen 

repräsentieren, und unter der Annahme linearer Sedimentationsraten, haben wir ein konzeptionelles 

Modell der Entwicklung der Redox-Bedingungen während des OAE3 auf dem Demerara Rise erstellt. 

 Große Mengen organischen Materials wurden auf dem spät-kretazischen Demerara Rise 

abgelagert, was zu fortschreitendem Sauerstoff-Verbrauch am Meeresboden führte, und mikrobielle 



9

 Kurzfassung

Sulfat-Reduktion erzeugte sulfidische Bedingungen unterhalb und zeitweise auch oberhalb der 

Sedimentoberfläche. Phasen mit sulfidischem Bodenwasser waren an der Site 1261 ausgeprägter und 

stabiler. Aufgrund geringen detritischen Fe-Eintrags bewirkte das produzierte HS- eine fast vollständige 

(diagenetische und syngenetische) Pyritisierung des verfügbaren Fe(III), und überschüssiges 

HS- führte im Sediment zu beträchtlicher diagenetischer Sulfurisierung von frischer, mariner 

organischer Substanz. Ausserdem wurde eine sekundäre Bindung von Mo und Ni an sedimentäres 

organisches Material erzeugt, während Mn und P aus dem Sediment ausgelaugt wurden. Die äusserst 

effektive P-Regenerierung in die Wassersäule war möglicherweise einer der Faktoren, die die hohe 

Primärproduktion und den Export organischer Substanz aufrecht erhielten. 

 Vermutlich aufgrund des Einbruchs besser durchlüfteter Wassermassen aus dem Südatlantik 

durch den sich öffnenden „Equatorial Atlantic Gateway“ wurden die sulfidischen Bedingungen 

zeitweise unterbrochen, wobei das Bodenwasser allerdings anoxisch blieb. Trotzdem entstand eine enge 

Kopplung von Fe und P - vermutlich erzeugt durch syngenetische Bildung von Fe-(Oxyhydr)oxiden 

und Phosphat-Adsorption an und/oder Mitfällung mit diesen Fe-(Oxyhydr)oxid-Partikeln -, die 

zu HPO4
2--Abnahme in der Wassersäule und P-Anreicherung im Sediment führte. Nachdem die 

Zufuhr südatlantischen Wassers endete, wurde das anoxischen, nicht-sulfidische Bodenwasser erneut 

sulfidisch, belegt durch rasche Ausfällung großer Mengen von Zn-Sulfid, Cd-Sulfid und V-Hydroxid 

unter niedrigen HS--Gehalten, bevor erneut zunehmende syn- und diagenetische Pyrit-Bildung und 

Sulfurisierung organischer Substanz einsetzte. 

 

 Diese Arbeit belegt, dass hochauflösende Datensätze der Gesamtgehalte von sedimentärem    

Fe, P, S und redox-sensitiven Spurenelementen, und insbesondere sequentielle Fe- und P-Extraktionen, 

ein grosses Potential haben, um schnelle paläozeanograpische Veränderungen nachzuvollziehen 

- aber auch, um diagenetische Umwandlungen der jeweiligen Signale aufzuzeigen und damit 

Fehlinterpretationen vorzubeugen. Die Anwendung dieser Proxies erweist sich in (sub-)rezenten und 

älteren marinen Ablagerungen als erfolgreich, unabhängig davon, ob diese durch terrigenen oder 

marinen Eintrag geprägt sind. Ausserdem wird eine hohe Beprobungsdichte als einer der wichtigsten 

Parameter herausgestellt, um die sedimentären Signale rascher Wechsel von Paläoumwelt- und 

Diagenese-Bedingungen in ihrer Gesamtheit zu erfassen.
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1.1 Motivation and objectives

 Inorganic geochemistry is one of the key disciplines to decipher the record of paleoenvironmental  

conditions stored in marine sediments. Of particular interest are rapid changes of paleoenvironmental 

conditions through time, and the way that such rapid variations are recorded in marine deposits. A 

number of geochemical proxies - measurable properties of sediments genetically related to specific 

environmental parameters - has been established in paleoceanography during the last decades. They 

potentially document e.g. paleoproductivity, nutrient availability, assemblage of primary producers, 

redox conditions in water and sediment (e.g. Wefer et al., 1999). An „ideal proxy“ would comprise 

that one measureable sediment parameter, e.g. a certain chemical element, is exclusively, quantitativly 

and measurably related to one defined environmental parameter. However, nature processes are more 

complex than that, and it has become evident that there is no such thing as an „ideal proxy“. 

 Apart from these genetic limitations of paleoceanographic proxies, there are still many questions 

concerning potential post-depositional alterations of original proxy-parameter relationships. It is a 

major aim of this work to elucidate some of the syn- or post-depositional processes responsible for the 

alteration of these relationships. In particular, during times of extreme paleoenvironmental variations 

- triggered e.g. by plate tectonics, sea-level fluctuations, mixing of different water masses in the oceans, 

variations in continental runoff or primary productivity -, there are significant changes documented 

in the sedimentary records. But also the mode of recording and storing paleoenvironmental signals 

might change, and thus mislead any interpretation. The overall strategy of this study is an integrated 

approach, applying a variety of geochemical methods to establish the most suitable combination of 

measurable parameters. The integration of various proxies - sometimes referred to as multi-proxy 

approach - has the advantage that information obtained from various single proxies may support or 

exclude each other, leading to a more reliable reconstruction of paleoenvironmental conditions.

 In the course of this study, we mostly applied inorganic geochemical methods (pore water and 

bulk sediment composition, speciation of certain chemical components), sometimes combined with 

mineralogical methods as X-ray diffraction (XRD) and scanning electron microscopy (SEM). In detail, 

pore water data yield information about the present geochemical zonation of a sediment and active 

diagenetic fronts (Froelich et al., 1979; Berner, 1981; Schulz et al., 1994), while the solid sediment 

composition rather records the „geochemical history“ of a sediment succession over longer time 

scales, including primary (paleoenvironmental) as well as secondary (diagenetic) signals (Kasten et al., 

2003; Schulz, 2006). Widely applied (paleo)redox proxies for bottom waters and sediments are Fe-S-C 

systematics and redox-sensitive and/or sulfide-forming trace elements. More advanced techniques are 
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sequential extractions of sedimentary Fe and P, giving information about the elements´ speciations in 

the sediment. In the following, I will give a short introduction into the geological settings and time 

slices investigated, discuss the geochemical parameters measured, and the way they may document 

rapid paleoenvironmental changes and diagenetic alterations.

1.2 Geological periods and settings investigated

Late Quaternary Zambesi deep-sea fan

 Located off the coast of Mozambique (SE Africa), the Zambesi deep-sea fan has been a major 

depocentre for the terrigenous sediments delivered by the Zambesi river since the lower Miocene 

(Walford et al., 2005). Its latest very active period has been the last Glacial, when global sea level was 

several 10s of meters lower than today, and exposed shelf areas were bypassed by most of the riverine 

sediment load, resulting in high sedimentation rates on deep-sea fans like the one off the Zambesi 

river (Posamentier and Allen, 1993). Upon melting of large continental ice masses at the onset of the 

Holocene, the rising sea level flooded the Mozambique shelf, and much less sediment reached the deep-

sea fan (Beiersdorf et al., 1980). A similar depositional history has also been described for many other 

river fans worldwide (e.g. Posamentier and Allen, 1993; Einsele, 2000). The Zambesi fan morphology 

is characterized by various channel-and-levee systems, but also by the activity of the strong Agulhas 

Current flowing southward towards the tip of Africa, and its northward countercurrent, giving the 

fan a coast-parallel elongated shape (Walford et al., 2005). Despite its potential to record marine and 

continental climate signals of SE Africa, the Zambesi fan is little investigated compared to other big 

deep-sea fans (e.g. Congo, Niger, Amazon, Bengal, Mississippi, Nile). During RV Meteor cruise 63/1 

in 2005, among others the gravity core GeoB 9309-1 was retrieved and geochemically investigated 

(Chapter 2). The focus of of the study was to infer diagenetic alteration of primary sedimentary signals, 

related to the anaerobic oxidation of methane (AOM) at the sulfate/methane transition (SMT) that has 

been fixed in its current position since the last Glacial/Holocene transition.

Late Cretaceous Demerara Rise

 This submarine, gently dipping plateau off the coast of Suriname and French Guyana was 

drilled during ODP Leg 207 in 2003 to record the development of the eastern tropical Atlantic since 

the Cretaceous (Erbacher et al., 2004; Mosher et al., 2007). As a major task, an extensive Middle to Late 
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Cretaceous black shale succession was revovered, documenting a period of extreme global greenhouse 

conditions that culminated in Oceanic Anoxic Events, OAEs (Schlanger and Jenkyns, 1976; Jenkyns, 

1980). Climatic conditions during OAEs were characterized by high atmospheric pCO2 (e.g. Berner 

and Kothavala, 2001; Bice and Norris, 2002), resulting in ice-poor or -free poles and eustatic sea level 

~250 m higher than today (Haq et al., 1987), high atmosphere and ocean temperatures (Norris et 

al., 2002; Forster et al., 2007) and equator-pole temperature gradients lower than today (Barrera and 

Johnson, 1999; Takashima et al., 2006). Additionally, high CO2 levels induced elevated marine primary 

productivity, high fluxes of organic matter to the sea floor followed by extensive bottom water oxygen 

consumption, anoxic to sulfidic conditions in the lower water column and even in the photic zone (e.g. 

Sinninghe Damsté and Köster, 1998; Kuypers et al., 2002), and wide-spread black shale deposition. 

Another scenario explaining widely anoxic/sulfidic deep Cretaceous oceans is strongly reduced vertical 

water exchange, leading to water column stratification and deep water oxygen depletion even without 

high organic matter export fluxes (e.g. Pedersen and Calvert, 1990; Calvert and Pedersen, 1990; Arthur 

and Sageman, 1994). 

 Regardless of the dominant process, the picture of a stable anoxic deep ocean over millions of 

years is being tackled more and more by recent data indicating rapid, most probably glacio-eustatic sea 

level changes (e.g. Miller et al., 2003; Miller et al., 2005) as well as redox fluctuations (e.g. Beckmann et 

al., 2005a, b; Kolonic et al., 2005; Nederbragt et al., 2007) in the marine realm during OAEs. Also for 

OAE3 (Coniacian-Santonian), astronomically forced redox fluctuations have been reported (Wagner 

et al., 2004; Beckmann et al., 2005a, b), but data from Demerara Rise are still lacking - although 

preliminary investigations of Demerara Rise black shales revealed clear indications for extremely 

oxygen-depleted bottom water conditions, as high organic matter contents and trace metal patterns 

(Erbacher et al., 2004; Böttcher et al., 2006; Hetzel et al., 2006). To close this gap, and also to confirm 

that detailed and integrated geochemical investigations can reveal unique details about paleoredox 

conditions, we investigated OAE3 black shales in high resolution (Chapters 3-5). 

1.3 Marine iron cycling

 The main source of Fe into the oceans is detrital input from the continents (Poulton and 

Raiswell, 2002; Raiswell, 2006). Most detrital Fe-containing minerals are either relatively unreactive 

silicates (e.g. clay minerals, pyroxenes, amphiboles), or Fe (oxyhydr)oxides as ferrihydrite, goethite, 

hematite and lepidocrocite. The latter can be important for biogeochemical processes in the marine 

environment (Cornell and Schwertmann, 1996). Under oxic conditions in the water column, iron is 
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hardly soluble and Fe (oxyhydr)oxides settle to the sea floor (e.g. Byrne and Kester, 1976; Liu and 

Millero, 2002). Upon deposition, Fe (oxyhydr)oxides may get buried in the sediment, although a 

certain part is reductively dissolved with or without microbial support close to the sediment surface 

(e.g. Froelich et al., 1979; Lovley, 1987; Burdige, 1993). In the sedimentary record, they are the main 

carriers of the magnetic signal. However, in the presence of HS-, Fe (oxyhydr)oxides are transformed 

to Fe sulfides (as greigite, mackinawite, pyrite), and this process can occur syn- or diagenetically, i.e. 

in the water column or in the sediment (e.g. Berner, 1984; Morse et al., 1987; Schoonen, 2004; Lyons 

and Severmann, 2006). Therefore, applying sequential Fe extraction techniques is useful to distinguish 

between various sedimentary Fe species (amorphous or crystalline Fe (oxyhydr)oxides, Fe sulfides, 

Fe silicates), and thus between different syn- or post-depositional redox conditions (e.g. Haese et al., 

2000; Poulton and Canfield, 2005). We investigated the biogeochemical cycling of Fe in two different 

continental margin settings, one being dominated by detrital Fe (oxyhydr)oxide input and well-

oxygenated bottom waters (Chapter 2), the other being Fe-limited and characterised by mostly anoxic 

bottom water conditions (Chapters 3-5).

Fig. 1.1: Schematic representation of biogeochemical cycling of S, Fe and P at a sulfate/methane transition 
(SMT; grey bar) and below (blue bar). The left side displays pore water concentration profiles, the rights 
side the diagenetic solid-phase signals. Upward-diffusing CH4 and downward-diffusing SO4

2- are consumed 
via anaerobic oxidation of methane, and HS- is produced. Upward-diffusing Fe2+ partly reacts with HS- to 
form Fe sulfides in the lower SMT. In addition, HS- leads to reductive dissolution of Fe (oxyhydr)oxides 
(Fereact) in the SMT, and authigenic formation of Fe sulfides. This in situ transformation is invisible in the bulk 
sedimentary Fe record, but creates a secondary S enrichment and Fereact depletion in the SMT. The dissolution 
of Fe (oxyhydr)oxides also liberates formerly adsorbed HPO4

2- to the pore water, depleting bulk solid P within 
the SMT. Above the SMT, upward-diffusing HPO4

2- gradually re-adsorbs onto Fe (oxyhydr)oxides. Below the 
SMT (blue bar), downward-diffusing HPO4

2- is precipitated as authigenic P minerals, most probably Fe(II) 
phosphates like vivianite, leading to a secondary solid P enrichment. 
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1.4 Marine phosphorus cycling

 In aquatic systems, P is mainly present as the stable phosphate oxy-anion HPO4
2-, and is 

transported from the continents to the ocean mainly via rivers. Phosphate is not redox-sensitive in 

itself, but is strongly coupled to the redox-dependent cycles of Fe and OM. Fresh Fe (oxyhydr)oxides 

can not only adsorb large amounts of phosphate, but phosphate may also be co-precipitated during Fe 

(oxyhydr)oxide formation. Thus, Fe (oxyhydr)oxides can play a major role for the transport of P to the 

sea floor, and its fate in the sediment (e.g. Feely et al., 1990; Slomp et al., 1996; Poulton and Canfield, 

2006). Another P carrier to the sea floor is marine OM, as marine phytoplankton contains a relatively 

stable amount of P atoms per carbon atom (with a mean C/P ratio of 106:1; Redfield, 1958). Under 

reducing conditions at the sea floor or in the sediment, a decoupling of P from both the Fe and the 

OM cycles takes place: As the Fe-P coupling can only be active if Fe (oxyhydr)oxides are preserved in 

marine waters and sediments under oxic to non-sulfidic conditions, dissolution of Fe (oxyhydr)oxides 

liberates phosphate to the surrounding water (Chapter 2). Additionally, under anoxic conditions 

organic P is regenerated from OM preferentially to organic C (e.g. Ingall et al., 1993; Ingall and Jahnke, 

1997), resulting in low P burial capacities of anoxic sediments and C/Ptotal ratios >106 (review by Algeo 

and Ingall, 2007). This results in high C/Ptotal ratios and low P/Al values preserved in the sedimentary 

record of both sediments deposited under an anoxic water column and sediments affected by diagenetic 

processes around the SMT. If oxic to non-sulfidic conditions prevail in the sediment, both OM- and Fe-

bound P can be at least partly buried - and preserved in the respective speciation - in the sedimentary 

record (as found in Demerara Rise black shales, Chapters 3 and 4). However, in the course of further 

sediment burial, OM- and Fe-bound P is usually (partly or completely) transformed into authigenic 

apatite at greater sediment depth (“sink switching” hypothesis; Delaney, 1998; Filippelli, 2001). 

1.5 Redox-sensitive and/or sulfide-forming trace elements

 The fact that certain trace element species react very sensitive and in a characteristic way to 

redox variations in the ambient sea or pore waters has been used for reconstructing redox conditions 

in recent and ancient sedimentary basins, especially in relation to extensive organic matter deposition 

and sulfide formation in O2-depleted environments (e.g. Algeo and Maynard, 2004; Brumsack, 

2006; Tribovillard et al., 2006). In such oxygen-free to sulfidic environments, widespread black 

shale deposition occurred during certain periods in the Paleozoic and Mesozoic (e.g. the Devonian 

Kupferschiefer, the Jurassic Posidonia Shale and Kimmeridge Clay, and various Cretaceous OAE black 
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Fig. 1.2: Simplified representation of the biogeochemical cycling of S, Fe, P and redox-sensitive trace metals 
Cd, Mo, Ni, V and Zn in a sulfidic to anoxic, non-sulfidic deep ocean. Note that only processes occurring in 
the water column and in relatively shallow sediment depth are displayed. Sulfidic mode: Shallow oxic-anoxic 
interface (OAI); high primary production and organic matter (OM) export to the sea floor; sulfidic bottom 
and intermediate waters; syngenetic framboidal pyrite formation; settling OM scavenges particle-reactive 
thiomolybdates; strong phosphate regeneration from the sediment to the water column; diagenetic sulfurization 
of OM in the sediment by excess HS- production; incorporation of Ni and V into geoporphyrins. Anoxic, non-
sulfidic mode: Deepening of the OAI, lower primary production; reduced OM export to the sea floor; reduced 
HS- production restricting sulfidic conditions and pyrite formation to the sediment; syngenetic formation of 
Fe (oxyhydr)oxide particles at the OAI; phosphate scavenging by and/or co-precipitation with these particles, 
creating a Fe-P coupling and enhanced P burial. Weakly sulfidic mode: Rising OAI; elevated OM export to the 
sea floor; enhanced HS- production in the sediment; evolving weakly sulfidic conditions in the bottom waters; 
rapid precipitation of Cd and Zn sulfides and V hydroxides under low HS- concentrations; (local?) drawdown 
of Cd, V and Zn bottom water concentrations.



16

 Introduction

shales). In modern oceans, anoxic to euxinic water masses are rare and limited to semi-restricted 

basins (e.g. Black Sea, Cariaco Basin, Saanich Inlet, Framvaren) and extreme upwelling regions (e.g. off 

Peru, Namibia, Pakistan). The recognition that certain trace elements are strongly enriched/depleted 

in organic matter-rich deposits in comparison to average marine sediments was the starting point of 

their systematic use as redox proxies. Of great importance for understanding the processes that caused 

the observed element enrichments/depletions, and the paleo-information they could (or could not) 

provide, were comparisons of ancient black shale deposits with modern „analogues“ as far as these exist 

(e.g. Nijenhuis et al., 1999; Brumsack, 2006; Meyers, 2006). Based on these valuable investigations, a 

relatively limited number of trace elements was found to be most valuable as paleoredox proxies. 

 In short, Mn is an element generally depleted under anoxic conditions, while elements like Cd, 

Cu, Mo, Ni, V and Zn are enriched due to formation of organometallic complexes or sulfide minerals 

(e.g. Tribovillard et al., 2006; this work, Chapters 3-6). The degree of enrichment/depletion is usually 

based on the element/Al ratio in a sample, and calculated relative to the respective element/Al ratio 

of a common standard material, e.g. average marine shale (Turekian and Wedepohl, 1961). Although 

such comparisons have to be handled with care, as the composition of any common standard material 

is not necessarily representative for a certain erosional source area (Van der Weijden, 2002), they are 

unproblematic for elements with very high degrees of enrichment/depletion and/or low concentrations 

in the standard material. Still, one has to be aware that redox-sensitive trace metals records may not 

document bottom water and sediment redox conditions during the time of sediment deposition - 

they may also be altered by post-depositional processes as „oxygen burndown“ events, i.e. oxidation 

fronts prograding from the bottom water into the sediment, which may hamper a correct paleoredox 

interpretation (e.g. Wilson et al., 1985; Thomson et al., 1995). 

Tab. 1.1: Simplified overview of 
the behaviour of organic matter 
(OM), the redox-sensitive/ 
sulfide-forming elements Mo, 
Cd, Zn, V, Fe and Mn, and the 
element P under oxic - anoxic, 
non-sulfidic - anoxic, weakly 
sulfidic - sulfidic conditions.

OM bad preservation good preservation, very good preservation,
OM sulfurization

Mo MoO4
2- thiomolybdate

(MoOxS4-x, x = 0-3)

Cd, Zn Cd2+, Zn2+ CdS, ZnS

V HVO4
2-, VO2-, VO(OH)3

-, V2O3, V(OH)3
H2VO4- VO(OH)2

Fe, Mn Fe -/ Mn- Fe2+, Mn2+ Fe2+, FeS FeS2, Mn2+

(oxyhydr)oxides Mn2+

P HPO4
2- sorbed to HPO4

2-

Fe - (oxyhydr)oxides

Oxic
Anoxic,

non-sulfidic
Anoxic,

weakly sulfidic Sulfidic

Blue = dissolved in sea water, red = accumulated in sediment
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Abstract

 The Zambesi deep-sea fan, the largest of its kind along the east African continental margin, 

was a major target of RV Meteor cruise M63/1 in 2005. Gravity core GeoB 9309-1, retrieved from 

1219 m water depth, was investigated for various geophysical (magnetic susceptibility, porosity, color 

reflectance) and geochemical (pore water and sediment geochemistry, Fe and P speciation) properties. 

Onboard and onshore data documented a sulfate/methane transition (SMT) zone at ~450-530 cm 

sediment depth, where the simultaneous consumption of pore water sulfate and methane liberates 

hydrogen sulfide and bicarbonate into the pore space. This leads to characteristic changes in the 

sediment an pore water chemistry, as the reduction of primary iron (oxyhydr)oxides, the precipitation 

of iron sulfides, and the mobilization of iron (oxyhydr)oxide-bound. These chemical processes also 

affect the other sediment properties at the SMT, such as a marked decrease in magnetic susceptibility 

and. Below the SMT, we find a reduction of porosity, possibly due to pore space cementation by 

authigenic minerals. Formation of the observed diagenetic patterns requires a fixation of the SMT 

at this distinct sediment depth for a considerable time - which we calculated to be ~10 000 years 

assuming steady-state conditions -, following a period of rapid upward migration towards this interval. 

We postulate that the worldwide sea-level rise at the last glacial/interglacial transition (~10 000 years 

B.P.) most probably resulted in the fixation of the SMT at its present position, through drastically 
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reduced sediment delivery to the continental slope. In addition, we report an internal redistribution 

of phosphate occurring around the SMT, closely linked to the (de)coupling of sedimentary iron and 

phosphorus, and leaving a characteristic pattern in the solid P record. By phosphate re-adsorption onto 

iron (oxyhydr)oxides above, and formation of authigenic phosphate minerals (e.g. vivianite) below the 

SMT, deep-sea fan deposits can potentially act as long-term sinks for phosphate. 

Keywords: deep-sea fan, early diagenesis, iron, phosphate, susceptibility, anaerobic oxidation of 

methane.

Introduction

 Marine sediments, especially along continental margins, are known to be one of the major 

archives for paleoenvironmental signals. Among others, geochemical as well as magnetic sedimentary 

proxies have often been used for paleoceanographic and paleoclimatic reconstructions (e.g. Müller 

and Suess, 1979; Thompson et al., 1980; Boyle and Keigwin, 1982; Kent, 1982; Canfield and Berner, 

1987; von Dobeneck and Schmieder, 1999; Frederichs et al., 1999; Reitz et al., 2004). The sediment 

composition, however, is generally affected by early diagenetic processes, leading to alteration - and 

possibly misinterpretation - of sedimentary signals. The mostly microbially catalyzed reactions, 

although occurring throughout the sediment column, often leave their imprints within distinct zones 

where dissolution and/or precipitation of minerals takes place. One of the latter is the sulfate/methane 

transition (SMT) zone, where consortia of highly specific microorganisms simultaneously reduce 

downward diffusing sulfate and oxidize methane produced deeper in the sediment (e.g. Reeburgh, 1976; 

Murray et al., 1978; Hoehler et al., 1994; Boetius et al., 2000). This biogeochemical process, referred to 

as the anaerobic oxidation of methane (AOM), can leave a significant imprint not only in the pore water 

chemistry, but also in the solid phase composition. Especially lithogenically dominated sediments rich 

in reactive iron and manganese phases can be substancially altered. As the former are also the main 

carriers of the sedimentary magnetic signal, their alteration affects not only the geochemical, but also 

the magnetostratigraphic and paleomagnetic record (e.g. Karlin and Levi, 1983; Karlin, 1990; Tarduno, 

1994; Garming et al., 2005; Riedinger et al., 2005). In this work, we present results of geochemical and 

geophysical investigations on gravity core GeoB 9309-1 from the Zambesi deep-sea fan, focussing 

on the biogeochemical cycling of iron, sulfur, phosphorus, calcium and manganese at the SMT, and 

to quantify the redistribution of these elements that may lead to secondary signals in the sediment. 

Going one step further, we will discuss our results in comparison with other deep-sea fan deposits to 
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demonstrate the similarity of depositional and diagenetic processes, and evaluate their implications for 

interpreting the sedimentary record. 

Location and geological setting

 The northernmost area studied during RV Meteor cruise M63/1 in January/February 2005 was 

the continental margin off Mozambique, and in particular the Zambesi (or Mozambique) deep-sea fan 

(Fig. 2.1). Its extension of ~1800 x 400 km (Walford et al., 2005) makes it the largest deep-sea fan off 

southern Africa. Sediment is mostly derived from the Zambesi River catchment, which has an average 

elevation of 1009 m (Hay, 1998) and a drainage area of 1.21 - 1.4 x 106 km2 (Walford et al., 2005). 

In terms of Pleistocene sediment accumulation rates, Walford et al. (2005) and Beusen et al. (2005) 

consistently report a total solid sediment 

yield of ~10 t km-2 y-1. In a review on detrital 

sediment fluxes from continents to oceans 

(Hay, 1998), detrital sediment yields of the 

Zambesi estimated by various authors show a 

large variation (16.7 - 77.2 t km-2  y-1), but are 

overall in the same order of magnitude as those 

given for the Nile and Congo rivers. Long-term 

sediment deposition on the continental slope 

off the Zambesi river mouth is governed by 

two main processes. The first is the topographic 

elevation of the drainage area, which is at 

present >1000 m (Summerfield and Hulton, 

1994), most probably due to a zone of active 

upwelling in the mantle („African Superswell“) 

beneath southern Africa (Walford et al., 2005). 

This led to high sediment discharge since the 

Miocene, and especially during the Pleistocene. 

The second factor controlling sedimentation is 

the activity of the Agulhas (or Mozambique) 

Current, a strong western boundary current 

(peak current speeds of ~2.5 m/s; Lutjeharms, 

Fig. 2.1: Schematic map of the working area. The 
black ellipsoid indicates the elongated shape of 
the Pleistocene Zambesi Fan, based on a seismic 
reflection survey (Walford et al., 2005). The star 
marks the approximate position of gravity core GeoB 
9309-1 on the central eastern slope of the fan. 



25

 Diagenetic changes in sediments of the Zambesi deep-sea fan (SW Indian Ocean) 

1996) flowing in southwestern direction through the Mozambique Channel and towards the southern 

tip of Africa. At its confluence with the Atlantic Ocean, part of the warm water masses transported by 

this current are shed into the Atlantic, while another part is retroflected and flows back into the Indian 

Ocean, thereby creating a strong countercurrent flowing below the Agulhas Current backwards along 

the southwest African continental slope (Kolla et al., 1980). As a result, sediment deposited on the 

continental shelf and slope is distributed parallel to the countercurrent direction as a roughly SW-NE-

orientated sediment body (Fig. 2.1). In isochore maps derived from a high-resolution seismic survey 

of the Zambesi fan (Walford et al., 2005), this elongated sediment body is observed in early Miocene 

times for the first time, documenting the initiation of the present Agulhas Current system.

 In comparison to the western African continental margin, its (south)eastern parts - off 

Mozambique, Tanzania and Kenia - are only little investigated from a geological point of view. As a 

result, there are few data available concerning the Quaternary sedimentology and stratigraphy of the 

region investigated. Data on the last glacial and Holocene sea-level history on the Zambesi shelf and 

the western Indian Ocean can be obtained from Beiersdorf et al. (1980) and Camoin et al. (2005), 

respectively. Their 14C age data indicate a sea-level of 60 m below the present one during the late last 

glacial around 10 000 years B.P., followed by a rapid transgression (0.6 - 2.4 m/100 years) during the 

early Holocene, until the present level was reached around 4000 years B.P. As the present shelf break 

is located at water depths of 50-120 m, large parts of the shelf  were exposed during the last glacial.

Systematic studies on marine primary productivity off the Zambesi river mouth, to our knowledge, are 

still lacking. Relatively low carbonate contents have been noticed in most sediment samples taken on 

the Zambesi deep-sea fan (H. Kuhlmann, pers. comm.; < 20 wt.% CaCO3 in GeoB 9309-1, Fig. 2.2), 

indicating low productivity of calcareous plankton in surface waters. Satellite data on global chlorophyll 

distributions in surface waters (e.g. Behrenfeld and Falkowski, 1997) indicate a primary productivity of 

<100 g C m-2 a-1, which is comparable to oligotrophic open ocean settings. 

Materials and Methods

Sampling

 Gravity core GeoB 9309-1 was retrieved from 1219 m water depth east of the Zambesi River 

mouth, on the northeastern part of the fan (Fig. 2.1). After recovery, the gravity core was immediately 

cut into segments of 1 m length. For methane analysis, directly after cutting, 5 ml of sediment were 

taken with a plastic syringe and transferred into 50 ml vials prepared with 20 ml of saturated NaCl 
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solution. After gas-tight sealing, the samples were stored at -20 °C. Subsequently, the 1 m core segments 

were stored and lateron processed in a cooling laboratory under a constant temperature of 4 °C. Within 

one day, the core segments were cut into two halves, and pH and Eh were measured with punch-

in electrodes prior to further sampling (Fig. 2.3 a). Pore water sampling was carried out in 25 cm 

depth resolution under an inert argon atmosphere in a glove box. The Teflon pore water squeezers 

were operated with argon at a gradually increased pressure (maximum 5 bar) and 0.2 μm cellulose 

acetate membrane filters, providing 5 to 20 ml pore water. Solid phase samples were taken every 10 

cm under argon atmosphere with plastic syringes and stored in argon-filled, gas-tight glass bottles at a 

temperature of -20 °C. These solid phase samples are referred to as anoxic samples in the following text. 

In addition, the sedimentary solid phase of core GeoB 9309-1 was continuously sampled with a depth 

resolution of 2 cm at the University of Bremen. The samples were frozen, freeze-dried and ground in 

an agate mortar.

Pore water analysis

 Onboard RV Meteor, the following chemical parameters were measured within a few hours 

after pore water sampling: ammonium, alkalinity, phosphate, iron(II) and hydrogen sulfide (Figs. 2.3 a 

and 2.4). A detailed description of the standard analytical procedures is given by Schulz (2006) and is 

also available on www.geochemie.uni-bremen.de/koelling/index.html. Subsamples of pore water were 

diluted 1:10 with de-ionized water and acidified with 1% HNO3 (diluted 65% HNO3 s.p.) for later 

analysis, except subsamples for sulfate determination. Sulfate was determined by HPLC at the Alfred 

Wegener Institute for Polar and Marine Research in Bremerhaven (Fig. 2.4). All further analyses were 

carried out at the University of Bremen. Pore water cations were determined from the diluted and 

acidified aliquots by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES, Perkin 

Elmer Optima 3300 RL). Measured constituents presented here are Ca, Fe, Mn, and P (Fig. 2.4). 

Methane was analysed using a gas chromatograph (Varian 3400) with splitless injector. After injection 

of 20 μl of gas from the headspace vials, the measured concentrations were calculated relative to total 

sediment. 

Solid phase analysis

 For total dissolution of all sedimentary components, ~50 mg of each sample (2 cm depth 

resolution) were digested with a HNO3/HCl/HF mixture (3 ml, 2 ml and 2 ml, respectively). 
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The digestion was performed within a microwave system (MLS-MEGA II and MLS-Ethos 1600) at up 

to 215 °C and ~20 bar. Subsequently, the acid solution was evaporated to complete dryness. The sample 

was then redissolved and homogenized with 0.5 ml HNO3 and 4.5 ml MilliQ water, and filled up to 50 

ml with MilliQ water. Elemental concentrations of Al, Fe, Mn, P, S, Ti and Zr (Figs. 2.2 and 2.5) were 

analysed in the digestion solutions via ICP-AES. Application of standard reference material (USGS 

standard MAG-1, in-house standard MAX) assured the accuracy of measurements, as their element 

concentrations were within certified ranges. The precision of ICP-AES analyses was better than 3%. 

 A sequential extraction procedure to identify the different iron phases was applied to the anoxic 

sediment samples taken onboard. For the purpose of a quantitative approach, existing extraction 

schemes were slighly modified (Table 2.1; Kostka and Luther, 1994; Haese et al., 2000 and references 

therein). We only applied the ascorbate and dithionite steps, leading to reduction of amorphous Fe-

oxyhydroxies (FeAsc) and crystalline Fe-oxides (FeDith), respectively. These steps are regarded sufficient 

to quantitatively extract the iron phases most reactive towards HS- (Fereact, referring to the sum of both 

extraction steps; Fig. 2.5). Extraction and washing steps were carried out in an argon-flooded glove box 

to prevent any oxidation of sedimentary Fe-sulfides. Each extraction step was followed by a washing 

step with the respective buffer solution (Table 2.1) to recover all of the extracted iron. Extraction 

and washing solutions were analysed via ICP-AES after 1:10 dilution with MilliQ water, respective 

calibration standards were prepared with the corresponding buffer solution. After determination of the 

Step Extracted fraction Extraction procedure (for 25 samples)

I-a (Ascorbate 
extraction step)

Easily reducable 
(amorphous) iron 

oxyhydroxides, iron in 
pore water

200-250 mg of wet anoxic sample, shaken over 20h wth 20ml of 
solution of 30g sodium citrate, 30g sodium bi-carbonate and 600ml 
oxygen-free bi-distilled water (buffer solution), to which 12g ascorbic 
acid was lowly added (degassing of carbon dioxide, final pH 7.5, Eh 
-150mV; extraction solution)

I-b (Washing 
step)

Residuum from I-a, shaken over 2h with 20ml of I-a buffer solution

II-a (Dithionite 
extraction step)

Crystalline iron 
(oxyhydr)oxides

Residuum from I-b, shaken over 4h with 20ml of solution of 42.28g 
sodium citrate, 12ml acetic acid and 600ml oxygen-free bi-distilled 
water (buffer solution), to which 18.02g sodium dithionite was added 
(final pH 4.8, Eh -500mV; extraction solution)

II-b (Washing 
step)

Residuum from II-a, shaken over 2h with 20ml of step II-a buffer 
solution

Table 2.1: Sequential iron extraction scheme (modified after Kostka and Luther, 1994; Haese et al., 1997, 
2000). All extraction steps were performed under anoxic conditions. After each step, the extraction/washing 
solutions were centrifuged and filtered (0.2 μm).
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water contents of the wet samples, concentrations of the extracted fractions were calculated in mg/g of 

dry sediment.

 In order to identify major sedimentary P species at and below the SMT, a sequential phosphate 

extraction procedure was applied to 16 samples from the lowermost part of the core. Note that this 

phosphate extraction, following the methodology of Ruttenberg (1992), is usually not performed on 

anoxic samples or under anoxic conditions. This, however, may have an influence on the operationally 

defined fractions extracted in each step, as will be discussed lateron. Referring to the SEDEX extraction 

scheme of Ruttenberg (1992), modified by de Lange (1992) and Schenau and de Lange (2000), we 

applied three extraction steps (Table 2.2) to distinguish between the loosely sorbed/exchangeable/

carbonate-bound phosphate (Ruttenberg, 1992) plus amorphous apatite/fish debris (Schenau and de 

Lange, 2000), iron (oxyhydr)oxide-bound phosphate, and authigenic apatite, respectively (Fig. 2.6). 

Step Extracted fraction Extraction procedure

I-a (NH4Cl step) Exchangeable/loosely 
sorbed/carbonate-bound 

PO4, fish bones, amorphous 
apatite, pore water PO4

0.5g dry, ground sample, shaken over 12h with 50ml of solution of 
106.98g ammonium chloride in 1l bi-distilled water (pH 7)

I-b (washing 
step)

Residuum from I-a, shaken over 2h with 50ml bi-distilled water

II-a (CDB step) Iron(III)-bound PO4 Residuum from I-b, shaken over 8h of solution of 22.63g sodium 
dithionite, 64.7g sodium citrate, 9.24g sodium bi-carbonate in 1l bi-
distilled water (pH 7.5)

II-b (dithionite 
oxidation step)

Residuum from II-a, 8h reaction with 1ml conc. sulfuric acid in open 
vial; suspension filtered with acid-resistant filter

II-c (washing 
step)

Residuum from II-b, shaken over 2h with 50ml NH4Cl solution (I-a)

II-d (washing 
step)

Residuum from II-c, shaken over 2h with 50ml bi-distilled water

III-a (acetate 
step)

Authigenic apatite Residuum from II-d, shaken over 6h with 50ml of solution of 82.03g 
sodium acetate in 700ml bi-distilled water, brought to pH 4 with acetic 
acid, then filled up with bi-distilled water to 1l volume

III-b (washing 
step)

Residuum from III-a, shaken over 2h with 50ml NH4Cl solution (I-a)

III-c (washing 
step)

Residuum from III-a, shaken over 2h with 50ml NH4Cl solution (I-a)

III-d (washing 
step)

Residuum from III-a, shaken over 2h with 50ml bi-distilled water

Table 2.2: Sequential phosphate extraction scheme (modified after Ruttenberg, 1992; de Lange, 1992; 
Schenau and de Lange, 2000). After each step, the extraction /washing suspension were centrifuged and 
filtered (0.2 μm), if not stated otherwise
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Phosphate concentrations in the respective extraction and washing solutions were determined via ICP-

AES.

 The analysis of inorganic carbon (IC) and total organic carbon (TOC) (Fig. 2.2) was performed 

on the homogenized and freeze-dried samples in a depth resolution of 6 cm. Total carbon (TC) was 

determined using a LECO CS 200 carbon sulfur analyzer. Subsequently, the sediment was decalcified 

with 12.5% HCl, washed twice with MilliQ and dried at 60 °C. The remaining TOC fraction was again 

measured with a LECO CS 200. The CaCO3 content (IC) of the sediment was calculated by applying 

the equation: CaCO3 (%) = (TC - TOC) x 8.33. Marble standards with a C content in the range of 0.5-

12% were applied to track the accuracy of the measurements which was ~ 3%. 

 Physical sediment properties (porosity, colour reflectance, magnetic susceptibility) were 

investigated onboard RV Meteor using an automated core conveyor system (Fig. 2.3 b). The GEOTEK 

multi-sensor core logger works after the non-contact principle. It is equipped with a commercial 

susceptibility meter (Bartington Instruments MS2) with a loop sensor, an electrical conductivity 

measurement tool (to obtain porosity) and a line scanner system with digital image analysis for 

reflectance and colour measurements.

Results and Discussion

Sediment composition

 Core GeoB 9309-1 was taken from an area on the Zambesi fan that has not been part of an 

active channel-levee system for at least the time interval documented in the core (T. Schwenk, pers.

comm.). The muddy hemipelagic sediment of the core appears relatively uniform and homogeneous, 

apart from a thin sandy turbidite layer at ~180 cm sediment depth. At first glance, the sparsity of 

turbidites is unexpected, as continuous detrital input should trigger frequent mass movements and 

turbidite deposition off The Zambesi mouth. However, sedimentary mass movements on the Zambesi 

deep-sea fan are obviously confined to channels that deliver the material to deeper parts of the basin 

(Kolla et al., 1980). Thus, mostly fine-grained sediments of the river plume settle between the active 

channels. Similar findings have been reported from ODP sites on the Congo fan (Wefer et al., 1998) 

and the Amazon fan (Schneider et al., 1997), and from gravity cores taken on the Niger fan (Adegbie 

et al., 1998). Furthermore, Kolla et al. (1980) stated that in sediments of the „Inner Mozambique Fan“ - 

which includes the location of core GeoB 9309-1 - turbidites almost exclusively occur in deposits older 

than 11 000 years, i.e. prior to the Holocene. As reviewed by Wien (2006), the rareness of turbidites in 
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Holocene sediments also fits into the traditional view of mass flow deposition, attributing major phases 

of turbidite emplacement to glacial periods with a low eustatic sea level (Shanmugan and Moiola, 1982; 

Vail et al., 1991; Einsele, 1996).

 The generally grey sediment colour of core GeoB 9309-1 gradually changes downcore from 

light to dark. This colour trend is also documented in total reflectance and red-blue color reflectance 

ratio profiles (Fig. 2.3 b). It is interpreted as the visual expression of both downcore increase of TOC 

(from 0.7 to 1.4 wt%) and decrease of carbonate content (from 18.0 to 3.0 wt%, Fig. 2.2). Carbonate 

contents calculated from IC analysis match the carbonate contents calculated from bulk Ca contents 

obtained by acid digestion procedure (correlation coefficient R2 = 0.97). Thus, CaCO3 seems to be the 

major Ca-containing mineral in the deposits. The overall low carbonate concentrations in core GeoB 

9309-1 (mean of 4.9 wt%) point to a minor importance of marine carbonate productivity or detrital 

carbonate input to the sediment budget. Additionally, high sedimentary contents of Al, Ti and Zr (mean 

of 80.6 g/kg, 5.7 g/kg and 137 ppm, respectively) point at a system dominated by terrigenous input 

(Fig. 2). However, there is only weak linear correlation between these lithogenic elements throughout 

the core (R2 is 0.02 for Al/Ti, 0.06 for Al/Zr, 0.56 for Ti/Zr), implying variable sediment sources and/or 

processes that have been active during or after deposition, e.g. the winnowing activity of northeast-

directed bottom currents (Kolla et al., 1980). The observed enrichments of Ti and Zr above upper 

0 0.1 0.2 0.3 0.4

650

600

550

500

450

400

350

300

250

200

150

100

50

0

4 5 6 7 8

50 60 70 80 90 100 0.4 0.6 0.8 1 1.2 1.4

0 4 8 12 16 20

Zr (g/kg)

Ti (g/kg)

Al (g/kg)

Se
di

m
en

t d
ep

th
 (c

m
)

TOC (wt%)

SMT

CaCO3 (wt%)
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carbon (TOC) contents, all plotted against sediment depth.  
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continental crust values (e.g. Condie, 1993) are most probably linked to heavy mineral placer deposits 

(mainly ilmenite, rutile, zircon) along the Mozambique coastline, adjacent to the Zambesi mouth 

(Beiersdorf et al., 1980; H. Kudrass, pers. comm.). The initial sources of these deposits are Precambrian 

magmatic and metamorphic rocks in the Zambesi catchment area (Kolla et al., 1980; Dürr et al., 2005), 
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namely the Rhodesian and Kaapvaal Cratons and the Mozambique, Limpopo and Zambesi mobile 

belts (Beiersdorf et al., 1980).

 There are striking similarities in the development of carbonate and TOC concentrations of 

core GeoB 9309-1 (Fig. 2.2) with deposits of the Rio de la Plata offshore depocenter (e.g. GeoB 6308-4, 

Riedinger et al., 2005), the Congo fan (e.g. GeoB 1008, Schneider et al., 1997; GeoB 1401, Gingele et 

al., 1998), the Amazon fan (e.g. GeoB 1514-6, Kasten et al., 1998; ODP Site 942, Schlünz et al., 1999) 

and older data from the Mozambique Channel (Kolla et al., 1980). As a common pattern of all these 

sedimentary systems, there is a maximum of calcium carbonate around 50-80 cm depth, followed 

by a rapid downcore decrease within the uppermost 80-200 cm of sediment. The carbonate trend 

in the uppermost 100-200 cm usually anticorrelates with the TOC content. These findings indicate 

similar processes controlling sedimentation patterns, at least during the Quaternary, in deep-sea fans 

worldwide. At site GeoB 9309, below ~90 cm sediment depth, carbonate contents decrease rapidly 

from ~18 wt% to ~3 wt%, and further downcore mostly stay below 5 wt%. Concomitantly, TOC 

contents start to rise at 90 cm sediment depth from ~0.6 wt% to ~1.2 wt% (Fig. 2.2). Based on these 

findings, the position of the last glacial/interglacial transition (Termination I) at site GeoB 9309 is in 

~90 cm sediment depth. Thus, the sedimentation rate to be derived since the last glacial/interglacial 

transition is ~9 cm kyr-1. The downcore shift to carbonate-poor deposits below 90 cm is interpreted as 

a dilution of calcareous material by increased terrigenous input during the last glacial, probably due to 

increased continental erosion and/or increased sediment bypass across the shelf, in combination with 

lower carbonate productivity. Despite the lack of a detailed age model for GeoB 9309-1, 14C data of two 

other gravity cores (Kuhlmann et al., 2007; J. Pätzold, pers. comm.) retrieved in ~500 m water depth 

closer to the Zambesi river mouth confirm the suggestions made above. Sedimentation rates seem to 

drop rapidly from ~100 cm kyr-1 around the Last Glacial Maximum (LGM, ~11 000 years B.P.) to ~20 

cm kyr-1 for the Holocene. The greater water depth and longer distance to the detrital sediment source 

of station GeoB 9309 could explain the lower Holocene sedimentation rates in core GeoB 9309-1, as 

derived from carbonate and TOC records, which are additionally consistent with other submarine 

river fans (see references above). Further, though indirect support for Termination I in core GeoB 

9309-1 at 90 cm sediment depth is given by Kolla et al. (1980). At sites from the „Inner Mozambique 

Fan“, they found almost all turbidites in sediments older than 11 000 years. At site GeoB 9309, the 

only turbidite is found in ~180 cm sediment depth, indicating that Termination I is located above this 

sediment depth.
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Diagenetic processes 

 The sulfate/methane transition (SMT) zone in core GeoB 9309-1 is situated at a sediment depth 

of ~450-530 cm (Figs. 2.3-2.5). The anaerobic oxidation of methane (AOM) is triggering a suite of 

biogeochemical reactions around the SMT that will be discussed lateron. The overall AOM reaction 

can be formulated as:

  CH4 + SO4
2- →  HCO3

- + HS- + H2O                                            (1)

 This process is mediated by a consortium of methane-oxidizing archaea and sulfate-reducing 

bacteria (Boetius et al., 2000; Orphan et al., 2001). Crucial factors controlling the depth location of the 

SMT and the shape of the sulfate profile are the fluxes of sulfate and methane (e.g. Niewöhner et al., 

1998; Hensen et al., 2003; Riedinger et al., 2005) and the sedimentation rate (Riedinger et al., 2005). 

Sulfate is derived from sea water diffusing downward through the sediment pore space. Methane 

originates from deeper parts of the sediment, where it is either produced by microbial degradation of 

organic matter, or by thermal hydrocarbon generation during deeper sediment burial (in the zone of 

metagenesis). The AOM influences the carbonate system of the pore water, leading to higher alkalinity 

and pH (Fig. 2.3 a), and liberates free HS- into the pore water (see eq. (1), Fig. 2.3 a). This not only 

decreases the redox potential of the pore water, but can also have a significant impact on the solid 

sediment composition via several secondary reactions. In the following, processes and products of 

these reactions as detected at site GeoB 9309 will be discussed, based on solid phase and pore water 

data of selected elements (Ca, Fe, Mn, S, P; Fig. 2.4).

Calcium, manganese

 These elements are potentially influenced by early diagenesis around the SMT, but are of minor 

importance in core GeoB 9309-1. 

 Precipitation of authigenic calcium carbonate as a byproduct of AOM (e.g. Bohrmann et 

al., 1998; Peckmann et al., 2001) could neither be detected macroscopically nor via pore water and 

solid phase analyses in core GeoB 9309-1 (Figs. 2.2 and 2.3 a). Obviously, the rates of AOM are low, 

so concentrations of HCO3
- produced are not high enough to induce a significant precipitation of 

authigenic calcium carbonates.

 Manganese, as indicated by pore water data, seems to be affected by free HS- and/or alkalinity 
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(Fig. 2.4). It generally occurs in the sediment as Mn-oxides and -carbonates. The former are primarily 

supplied to the sediment or re-precipitated at the Mn redox boundary. Manganese (oxyhydr)oxides 

on average make up ~30% of bulk Mn in core GeoB 9309-1, as indicated by analyses of Mn in the 

sequential iron extraction solutions. It has been found that Mn oxides can be reduced, dissolved and 

re-precipitated as sulfides and carbonates around the SMT (Böttcher and Huckriede, 1997; Lepland 

and Stevens, 1998). However, solid phase Mn concentrations in core GeoB 9309-1 are in general 
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Fig. 2.4: Pore water concentrations of SO4
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all plotted against sediment depth. 
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considerably lower (2 orders of magnitude) than those of Fe and average around 0.35 g/kg sediment 

(Fig. 2.4). Thus, potential  Mn sulfide precipitation around the SMT is considered to be quantitatively 

of minor importance. Diagenetic Mn sulfides have up to now only been reported from local anoxic 

depressions of the Derugin Basin, Sea of Okhotsk (Derkachev et al., 2007), and in greater detail from 

deposits of the Landsort Deep and Gotland Deep, two oxygen-depleted subbasins of the Baltic Sea 

(Böttcher and Huckriede, 1997; Lepland and Stevens, 1998). In the latter sediments, manganese plays 

an exceptionally important role in the sediment redox system due to its high background concentration 

in combination with relatively low reactive iron in the sediment. However, in Landsort Deep deposits, 

Lepland and Stevens (1998) do not regard manganese availability, but high alkalinity and hydrogen 

sulfide production during extremely reducing conditions in the sediment as limiting factors in Mn 

carbonate and sulfide precipitation, respectively (in contrast to Neumann et al., 2002). Elevated 

alkalinity (up to 30 mmol(eq)/l) and HS- (up to 22 μmol/l) values are also found in GeoB 9309-1 at the 

SMT (Fig. 2.3 a), yet these values are still comparably low, and thus most probably insufficient for a 

manganese precipitation after the Lepland and Stevens model. Furthermore, due to the intermittendly 

anoxic character of the Baltic Sea Deeps as well as to the low reactive iron contents in their deposits, 

it is doubtful whether this postulated formation mechanism for authigenic Mn minerals can be fully 

applied to the Zambesi deep-sea fan sediments. 

 Recently, Riedinger (2005) found distinct solid phase Mn enrichments around the SMT in 

gravity cores from the Argentine Basin. They are likely to consist of Mn sulfides (e.g. alabandite) or 

carbonates (e.g. rhodochrosite), as they were concomitant with significant drawdowns of dissolved Mn 

in pore water and intervals of hydrogen sulfide and bicarbonate production. A similar Mn2+ drawdown 

around the SMT can be observed in the Mn pore water profile of GeoB 9309-1 (Fig. 2.4). The lack of 

a solid phase Mn peak might be due to lower background Mn contents at site GeoB 9309 compared 

to Argentine Basin sediments and/or an in situ transformation of Mn (oxyhydr)oxides into sulfides. 

Another explanation would be that the precipitation process has only been active for a relatively 

short time, too short for the formation of a bulk Mn peak. This is even more probable considering 

that, according to Lepland and Stevens (1998), Mn sulfides have a higher solubility than Fe sulfides. 

Therefore, they only start to form when all chemically reactive iron (oxyhydr)oxides within the HS- 

production zone are already reduced and HS- production continues. In summary, it is  possible that Mn 

sulfides or carbonates have precipitated at the SMT, but in concentrations that do not rise significantly 

above the bulk solid phase Mn signal, thus remain undetectable. 
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Iron 

 The average sedimentary Fe content is ~48 g/kg in core GeoB 9309-1 (Fig. 2.4). This value is 

regarded as typical for tropical-subtropical river deep-sea fan systems, as off the Amazon (e.g. Burns, 

1998) or the Niger (e.g. Dillon and Bleil, 2006). Most iron is probably bound to silicates, but also iron 

(oxyhydr)oxides can make up a significant fraction of total  in Fe sediments dominated by riverine input 

(e.g. Poulton and Raiswell, 2002). Iron (oxyhydr)oxide minerals (e.g. ferrihydrite, goethite, magnetite) 

are prone to biogeochemical reduction, either connected to microbial oxidation of organic matter, or 

- especially at the SMT - driven by hydrogen sulfide. The latter reduction process schematically follows 

the multistage reaction (e.g. Berner, 1984; Canfield, 1989): 

 2FeOOH(s) + HS-
(aq) + 5H+

(aq) → 2Fe2+
(aq) + S0

(s) + 4H2O(aq)     (2)

 Fe3O4 (s) + HS-
(aq) + 7H+

(aq) →  3Fe2+
(aq) + S0

(s) + 4H2O(aq)     (3)

 Fe2+
(aq) + HS-

(aq) → FeS(s) + H+
(aq)        (4)

 FeS(s) + HS-
(g) + H+

(aq) → FeS2 (s) + H2 (g)       (5)

 Apart from the iron monosulfide (eq. (4)) and pyrite (eq. (5)) endmembers, metastable iron 

sulfide phases (e.g. pyrrhotite, greigite) not mentioned above may also occur, especially in sulfide-

limited systems. The „H2S pathway“ (Rickard and Luther, 1997) described above is regarded as 

dominant pyrite formation mechanism in the sediments investigated. The „polysulfide pathway“ 

(Berner, 1970, 1984; Luther, 1991) and the „iron-loss pathway“ (Wilkin and Barnes, 1996) will not 

be discussed here in detail (recent reviews by Schoonen, 2004; Jørgensen and Kasten, 2006). The type 

of iron sulfide formed around the SMT plays a decisive role regarding the magnetic properties of 

the sediment. Generally, most primary iron oxides (e.g. magnetite, maghemite) are ferrimagnetic and 

determine the magnetic susceptibility of a sediment. The iron sulfide phases pyrrhotite and greigite, 

intermediates in the pyrite formation process, are also ferrimagnetic, thus their formation can create a 

secondary enhancement of magnetic susceptibility. Formation of paramagnetic pyrite, however, leads 

to a reduction of the magnetic susceptibility. The latter process is obviously documented at the SMT 

in core GeoB 9309-1, confirming the precipitation of pyrite and a lack of intermediate iron sulfides 

(Fig. 2.5). Finely dispersed pyrite also leads to a darker sediment colour at the SMT compared to the 
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surrounding sediment, as documented in the profile of the red/blue ratio (Fig. 2.3 b). Pyrite formation 

at the SMT is a well-known phenomenon in marine sediments (e.g. Berner, 1984; Canfield, 1989; 

Passier and Dekkers, 2002; Novosel et al., 2005) and also on several riverine slope depocenters (e.g. 

Garming et al., 2005; Riedinger et al., 2005). In these publications, pyrite formation at the SMT is 

indicated by a similar loss of magnetic susceptibility, an enrichment in sedimentary S, but also by 

marked bulk Fe enrichments. However, core GeoB 9309-1 differs from the above-mentioned examples, 

as it does not show a characteristic bulk Fe peak at the SMT (Fig. 2.4). To solve this discrepancy, a 

sequential iron extraction procedure (Table 2.1) was applied to anoxic subsamples taken throughout 

the core, to determine the relative contribution of reactive iron minerals (Fereact.) to bulk solid phase iron 

throughout the core (Haese et al., 2000). In our definition, „reactive“ refers to the reactivity towards 

HS- (Berner, 1984; Canfield, 1989; Poulton et al., 2004). This does usually not equal reactivity in the 

biological sense, which is referred to as „bioavailability“ and generally makes up only a fraction of the 

“chemically reactive” iron pool (Postma, 1993; Hyacinthe et al., 2006). As a result of the sequential 

extraction, iron (oxyhydr)oxides on average make up ~19.2% (ranging from 15.1% to 22.6%) of total 

sedimentary Fe (excluding samples within the SMT), thus a significant fraction. As shown in Figure 

2.5, iron (oxyhydr)oxides have a distinct minimum at the SMT (7.6% to 12.6% of total Fe), parallel 
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38

 Diagenetic changes in sediments of the Zambesi deep-sea fan (SW Indian Ocean) 

to the drop in magnetic susceptibility. This finding is indicative for an in situ transformation of iron 

(oxyhydr)oxides to pyrite at the SMT, without affecting the total sedimentary Fe record. 

Sulfur

 A strong enrichment of sulfur is found at the SMT around ~450-530 cm sediment depth, 

with values 2-3 times higher than background contents (up to 18 g sulfur/kg sediment; Fig. 2.4). The 

sulfate depth profile exhibits an almost linear shape, indicating that a predominant sink occurs at this 

depth, and that a steady state pore water situation at the SMT has nearly been reached. These findings 

are in agreement with data from the Argentine continental margin (Riedinger et al., 2005), where a 

similar steady state has been reached due to low Holocene sedimentation rates (<10 cm/1000 years) 

and subsequent fixation of the SMT since that time. At both the Argentine margin and on the Zambesi 

deep-sea fan, the depth fixation of the SMT followed a period of higher glacial sediment delivery to 

the continental slope, during which the SMT was migrating upward parallel to the respective sediment 

surface. Since the last glacial/interglacial transition ~10 000 years ago, reductive dissolution of iron 

and/or manganese (oxyhydr)oxides and reprecipitation as sulfides (e.g. Kasten et al., 1998) has been 

taking place at the current SMT. However, there are no concomitant enrichments of solid phase Fe, as 

found e.g. by Kasten et al. (1998) on the Amazon Fan and by Riedinger et al. (2005) in the Argentine 

Basin. This is most probably due to in situ dissolution of ferric iron minerals and reprecipitation as 

sulfides, as described above. The amount of sulfur that was fixed in iron sulfides at the SMT can be used 

to calculate for how long the SMT has been fixed in its current position, as will be discussed lateron. 

Apart from the coupling of the iron and sulfur cycles around the SMT, another change in the solid 

phase sulfur profile occurs at ~220 cm depth (Fig. 2.4). Above this depth, sulfur remains at relatively 

constant values of 1-3 g/kg, while below 220 cm sediment depth, S values are generally higher and 

show significant variability (3-8 g/kg). However, as in the scope of this paper we want to focus on 

processes around the SMT, this pattern will not be discussed in more detail.

Phosphorus

 Phosphate is an essential nutrient for all organisms. In aquatic sediments, it is mostly 

incorporated into organic matter and liberated during its biogeochemical degradation. Furthermore, 

phosphate strongly adsorbs onto surfaces of iron (oxyhydr)oxide minerals, thereby creating a strong 

link between the iron and phosphorus cycles (e.g. Slomp et al., 1996 a; Delaney, 1998; Canfield et al., 
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2005), which is also documented at site GeoB 9309. Sequential iron extraction revealed that phosphate 

bound to iron (oxyhydr)oxides (defined here as Preact) makes up on average 51.5% of total sediment 

P (Fig. 2.5). Triggered by the postulated dissolution of primary iron (oxyhydr)oxides around the 

SMT, there is a liberation of formerly surface-bound phosphate into the pore water at the SMT (~80 

μmol/l in Zambesi fan sediments; Figs. 2.3 a, 2.4). Most probably due to phosphate re-adsorption 

to iron (oxyhydr)oxides in the sediment above the SMT, phosphate decreases upward and reaches 

values below detection limit at ~120 cm below the sediment/water interface. The concave-upward 

shape of the PO4
3- pore water profile indicates that this re-adsorption process is taking place not within 

a discrete horizon, but over the whole sediment interval between ~120 and 450 cm. In contrast, there 

is a steep gradient of dissolved phosphate directly below the SMT. Between 500 and 550 cm sediment 

depth, values decrease with a steep gradient from ~80 to 3 μmol/l, or 1.5 μmol/cm. Considering the 

comparably modest upward PO4
3- gradient, a different mechanism than re-adsorption is supposed to 

be the cause for the steep pore water phosphate gradient below the SMT. A possible explanation for this 

effective phosphate sink could be the precipitation of phosphatic minerals like apatite (Ca5(PO4)3(OH, 

F, Cl)) or vivianite (Fe3(PO4)2 8H2O). 

 Solid-phase P data correspond nicely to pore water results (Fig. 2.4), as there is a distinct 

minimum in sedimentary P at the SMT (450 ppm relative to 550 ppm above). Directly below the SMT, 

P contents reach 570 ppm, supporting the postulated precipitation of secondary phosphate minerals. 

Measurements of phosphate in the sequential iron extraction solution, representing the P fraction 

adsorbed onto iron (oxyhydr)oxides, confirm a distinct decrease in the extracted phosphate amount of 

~100 ppm at the SMT (Fig. 2.5). Thus, the observed decrease in bulk solid phase P from 550 to 450 ppm 

can be fully attributed to dissolution of iron (oxyhydr)oxides and concomitant phosphate desorption. 

A further indication for authigenesis below the SMT is the rapid downward porosity decrease (from 

52 to 38%) beneath ~500 cm (Fig. 2.3 b). Precipitation of authigenic minerals could partly seal the 

pore space, as described by Schuffert et al. (1998) in gravity cores taken off Baja California, Mexico. 

However, authigenic phosphate minerals alone cannot cause the observed porosity loss below the 

SMT. Alternatively, the reduced porosity could be attributed to selective compaction, or be a sampling 

artifact. We have no reasons to believe, however, that either of the latter two hypotheses has been the 

case.

 Diagenetic reactions leading to authigenic phosphate precipitation below the SMT have been 

suggested by a number of authors for various locations. In Quaternary sediments recovered during 

ODP Leg 155 on the Amazon deep-sea fan, Burns (1997) described the precipitation of millimeter-

sized vivianite nodules. At Site 944, pore water phosphate concentrations were elevated at the SMT 
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(100-400 μmol/l) and decreased rapidly to around zero below it. According to Burns (1997), the latter 

drawdown of phosphate was probably due to vivianite formation below the SMT. As an explanation 

for the lack of authigenic apatite, Burns (1997) proposed the lack of calcium carbonate surfaces that 

could promote apatite precipitation (deKanel and Morse, 1987). Rasmussen (2000) described early 

diagenetic alumino-phosphate precipitates in Archaean to Cretaceous marine sandstones from 

Australian sedimentary basins. The phosphate minerals identified by means of SEM-EDS and XRD 

(e.g. florencite, crandalite, gorceixite) precipitated onto detrital clay particles within the zones of sulfate 

reduction and methanogenesis, and incorporated significant amounts of Ca, Ba and REEs. Hence, 

Rasmussen (2000) postulated that, in addition to phosphate, elevated concentrations of the respective 

elements must have been available in the pore water during mineral formation. During ODP cruise 

175, Murray et al. (1998) found a strong increase in phosphate at the depth of sulfate depletion in 

Congo Fan sediments, followed by a rapid downward decrease which they unspecifically attributed 

to phosphate uptake into apatite minerals. Schulz et al. (1994) found pore water phosphate patterns 

similar to core GeoB 9309-1 in sediments off the Amazon river (GeoB 1514), and attributed them to 

possible vivianite precipitation. Despite pore water phosphate concentrations ~4 times higher than on 

the Zambesi deep-sea fan (350-500 μmol/l), at both locations phosphate decreased rapidly below the 

SMT, within ~100 cm. 

 To identify the potential phosphate minerals precipitated below the SMT at site GeoB 9309, 

we used two different approaches. First, we applied a sequential extraction procedure after Ruttenberg 

(1992), de Lange (1992) and Schenau and de Lange (2000) to distinguish between major phosphate-

carrying minerals below the SMT (listed in Table 2.2). The extraction results are shown in Figure 

2.6, with the sequential steps (a) NH4Cl solution (exchangeable/loosely sorbed/carbonate-bound P 

plus amorphous apatite/fish bones), (b) CDB solution (P bound to iron (oxyhydr)oxides) and (c) Na-

Acetate solution (authigenic apatite. Comparison of P contents obtained by total digestion to those 

in the sequential extraction solutions shows that from all samples, nearly all sedimentary P (>88%) 

was recovered by the extraction steps applied, implying that other potential sedimentary P fractions 

(as organic matter-bound P, detrital apatite) are of minor importance. The NH4Cl fraction (Fig. 2.6 a) 

shows highest PO4
3- concentrations within the SMT (grey bar), but is strongly decreased and stays on 

a constant level below it. To a minor amount, this may be a relic of elevated pore water phosphate. A 

major contribution of a fast-forming, amorphous apatite precursor to the NH4Cl-extracted fraction 

was proven in sediments under the Arabian Sea oxygen minimum zone (Schenau et al., 2000). The Ca2+ 

pore water profile of core GeoB 9309-1 (Fig. 2.4) does not exhibit a marked sink at the SMT that would 

confirm the precipitation of such a Ca-rich and F-poor mineral. Still, such a sink could be masked by 



41

 Diagenetic changes in sediments of the Zambesi deep-sea fan (SW Indian Ocean) 

concentrations of Ca2+ three orders of magnitude higher than those of PO4
3-. In addition, the NH4Cl 

step was only applied once, so the preferentially extracted mineral might be CaCO3 (Schenau et al., 

2000). Amorphous apatite precursors might not have been extracted completely during this step due 

to saturation of the extraction solution with CaCO3, and might be partly extracted in the following 
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Fig. 2.6: Results of the sequential phosphate extraction procedure for selected samples from 500-620 cm 
sediment depth. Concentrations for phosphate, calcium and iron were measured for the sequential steps (a) 
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Note different scales for concentrations! The position of the SMT is indicated by the grey bar.
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CDB extraction. The CDB-extracted phosphate fraction (Fig. 2.6 b) exhibits the opposite pattern of the 

NH4Cl step, with strongly increasing values below the SMT, and is the overall dominant fraction of the 

three steps applied. The CDB extracted phosphate profile matches well with that of iron, indicating a 

close iron-phosphorus coupling below the SMT. The Na-Acetate step (Fig. 2.6 c) yields no systematically 

higher phosphate values below the SMT than within it and exhibits lowest values of all extraction steps 

applied. Thus, authigenic apatite does not seem to be a quantitatively important phosphate sink. Na-

Acetate-extracted calcium matches well with the respective phosphate profile, reflecting the chemical 

composition of calcium apatite. Iron concentrations were below detection limit. 

 The results of this sequential extraction procedure have to be interpreted with care. The extraction 

scheme is defined for crystalline phases only, masking the possible contribution and composition of 

amorphous P phases. Furthermore, the extraction behaviour of the mineral vivianite has not been 

defined by Ruttenberg (1992), de Lange (1992) and Schenau and de Lange (2000). Freudenthal (1995, 

unpubl. diploma thesis) experimentally investigated the dissolution behaviour of pure, hydrothermal 

vivianite. Although the sequential extraction procedure did not follow Ruttenberg (1992), the findings 

are valuable for our investigations. In theory, as an Fe(II) phosphate, vivianite should dissolve in the 

first, oxidative extraction step (NH4Cl solution in Ruttenberg (1992), NaOAc solution in Freudenthal 

(1995)). However, if samples are not treated under strictly anoxic conditions, vivianite is quickly 

oxidized to blue kertschenite (Nriagu, 1972), which, in turn, is dissolved in the second, reductive 

extraction step (CDB solution of Ruttenberg (1992), HA solution of Freudenthal (1995)). Fagel et al. 

(2005) investigated the formation of vivianite in Lake Baikal sediments, and found that the original 

mineral was quickly oxidized to its amorphous alteration product santabarbaraite (Pratesi et al., 2003). 

Following the established extraction scheme , the phosphate extraction on samples from core GeoB 

9309-1 has been performed under oxic conditions and on finely ground material, suggesting that any 

vivianite originally present must have been completely oxidized, and extracted during the CDB step. 

Since a major fraction of P has been extracted in the CDB step, the vivianite contribution to the bulk 

solid phase phosphorus below the SMT could be significant. 

 The second analytical approach we took was the application of X-ray diffraction (XRD) to  

selected sub-SMT samples of core GeoB 9309-1. This revealed the possible presence of iron-phosphate 

minerals, e.g. koninckite ((Fe, Al)PO4), below the SMT. Vivianite is not expected to be detectable via 

XRD due to its high sensitivity towards oxidation, as described above. However, the detected Fe(III)-

phosphate koninckite is probably an oxidation product of diagenetic vivianite. The fact that apatite 

was not detected via XRD confirms the results of SEDEX, which do not show a significant systematic 

increase of the apatite fraction below the SMT (Fig. 2.6 c). Furthermore, there may be significant 
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amounts of amorphous phosphate phases and/or crystalline phosphate minerals making up less than 

1 wt% of the samples, that simply escaped quantitative XRD detection. 

Position of the SMT and the timing of its migration and fixation

 Based on the geochemical profiles presented above, the SMT at site GeoB 9309 is currently 

situated at a sediment depth of 450-530 cm. This is evident from the sulfate, methane and hydrogen 

sulfide profiles (Figs. 2.2, 2.3), and also documented by magnetic susceptibility, Fereact, and total S (Fig. 

2.5). All diagenetic patterns around the SMT in Zambesi deep-sea fan deposits are very similar to those 

described by Hensen et al. (2003) and Riedinger et al. (2005) for the Rio de la Plata depocenter, thus 

formation processes are believed to be similar in both settings as well. Based on detailed geochemical 

analyses and modelling, Riedinger et al. (2005) found that a period of high sedimentation rates 

(> ~100 cm/1000 years) must have caused a rapid upward migration of the SMT to its present position, 

leaving the underlying deposits largely unaffected by AOM and processes related to it. Subsequently, 

the sedimentation rate must have dropped abruptly to much lower levels (< ~10 cm/1000 years) that 

stayed rather constant until today, fixing the position of the SMT at a distinct position, e.g. in 450-530 

cm sediment depth at site GeoB 9309. In such a case, HS- production is strictly limited to this sediment 

depth since the drop in sedimentation rate ~ 10 000 years ago. Furthermore, the small and sharp pore 

water HS- peak indicates that HS- is consumed rapidly after its production, and thus inhibits diffusion 

out of the discrete reaction zone. This can only be achieved in a system containing high amounts of 

iron (oxyhydr)oxides reactive towards HS-, which is typically the case in depocenters dominated by 

fluvial input. Only when HS- production exceeds the readily dissolvable Fereact, i.e. when the system 

becomes iron-limited, HS- will start diffusing beyond the boundaries of the reaction zone. Considering 

the low HS- concentrations (maximum of 22 μmol/l) and iron (oxyhydr)oxides still being present at the 

SMT, however, this state has not yet been reached at site GeoB 9309 (Figs. 2.3 a and 2.5). 

 With respect to the diagenetic reactions and their traces in the sediment, the questions arising are 

(1) for how long the SMT has been in its actual position to create e.g. the loss of magnetic susceptibility 

and the sulfur enrichment, (2) which processes might have been responsible for its fixation, and (3) 

why the deposits below the SMT are obviously largely unaffected by AOM. To answer the first question, 

we refer to similar findings in the Amazon deep-sea fan and Rio de la Plata depocenter (Kasten et 

al., 1998; Riedinger et al., 2005) and to the derived genetic implications. Assuming a nonsteady-state 

scenario resulting from a drastically reduced sedimentation rate for the Holocene compared to the last 

glacial, Kasten et al. (1998) used the enrichment in solid phase S at the present SMT as a proxy for the 
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duration of SMT fixation. Following their approach, we state that all solid phase S at this depth in excess 

of a certain background value is exclusively in the form of iron sulfides that were produced at the SMT 

via the „H2S pathway“ (Rickard and Luther, 1997; eqs. (2) to (5)). Under the prerequisites of a defined 

S background concentration, a constant low Holocene sedimentation rate (lasting from ~10,000 years 

BP until the present), an estimated porosity for the time of iron sulfide formation, a diffusive sulfate 

flux, a linear sulfate pore water profile and the sediment depth of Termination I, we calculated the time 

needed to create the existing sulfur enrichment using Fick´s first law of diffusion: 

  J = -Φ * Ds * dC/dx         (6)

 J = diffusive flux of sulfate, Φ  = porosity, Ds = sediment diffusion coefficient for sulfate, and 

dC/dx = concentration gradient. For further details concerning the calculation, we refer to Kasten 

et al. (1998). Applying this calculation to core GeoB 9309-1, we defined the diffusion coefficient for 

sulfate in free solution (D0) (165 cm2  yr-1, calculated from values in Schulz (2006), p. 80f), the sediment 

dry bulk density (2.8 g cm-3, as a value for detrital-dominated marine sediments; Breitzke, 2006), the 

temperature (4 °C), the measured mean porosity (55%), the estimated range of sedimentary sulfur 

background contents (2-3 wt%), and the assumed Holocene sedimentation rate (9 cm/1000 years, 

based on the location of Termination I in ~90 cm sediment depth). The resulting time needed to 

produce the observed S enrichment at the SMT is ~10,000 years (9200 and 11 000 years for solid phase 

S background of 3 and 2 wt%, respectively). This indicates that a drastic decrease in sedimentation rate 

at the last glacial/interglacial transition ~10 000 years B.P. has most likely led to a fixation of the SMT 

at its present depth, creating the observed S enrichment and loss in magnetic susceptibility. 

 In addition to the solid phase S enrichment, we used another approach to confirm the importance 

of the last glacial/interglacial transition for processes at the SMT in core GeoB 9309-1. As described 

earlier, pore water phosphate exhibits a steep gradient below the SMT, accompanied by a decrease of 

solid phase P at the SMT and an increase below it. The question arises how much time is needed to 

create the elevated P contents below the SMT, assuming that (1) desorption by iron (oxyhydr)oxide 

dissolution is the only source of phosphate at the SMT, and (2) the downward phosphate flux has been 

constant since the fixation of the SMT. Using a similar calculation as for the S enrichment, we applied 

Fick´s first law of diffusion (eq. 6) to the downward flux of phosphate from the SMT. Sediment dry 

bulk density and temperature were the same as for the solid S enrichment. The diffusion coefficient 

for phosphate in free solution (D0) was set to 115 cm2 yr-1 (calculated from values in Schulz (2006), p. 

80f), the porosity below the SMT to 40-45% (due to uncertainty if the measured mean porosity below 
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the SMT of 39.8% documents the original porosity at this depth), and the sedimentary phosphorus 

background contents to 505 mg/kg. Application of these parameters, depending on the assumed 

porosity, yielded a period of ~6500-10 000 years necessary to create the P enrichment below the SMT, 

which matches well with the time calculated for the S enrichment at the SMT. This is strong indication 

that indeed, iron (oxyhydr)oxide reduction by HS- production at the SMT is triggering P redistribution 

in deposits at site GeoB 9309, and diagenetic processes are linked to decreased sedimentation rate 

since the last glacial/interglacial transition. 

 The abrupt change in sediment delivery to the Zambesi deep-sea fan was most likely initiated 

by variations in eustatic sea level. During the last glacial, sea level was ~120 m (~18 000 years B.P.) to 

~60 m (~11 000 years B.P.) lower than today, so the continental shelf off the Zambesi mouth was largely 

exposed (Beiersdorf et al., 1980; Camoin et al., 2005; Walford et al., 2005). Thus, sediment delivered 

by the Zambesi river could bypass the shelf and was deposited on the Zambesi deep-sea fan, i.e. the 

upper continental slope. At Termination I, melting of polar ice masses induced a rapid sea level rise 

(~2.4 m/100 years after Beiersdorf et al., 1980; ~0.6 m/100 years after Camoin et al., 2005), followed 

by a transgression on the shelf and the creation of new accomodation space. Therefore, the Zambesi 

sediment load was largely trapped on the shelf, leading to a strong decrease of sediment delivery to 

the deep-sea fan. At that time, the SMT was fixed at its present position. It is an astonishing finding 

that the time interval of ~10 000 years calculated for the fixation of the SMT in core GeoB 9309-1 is 

in good agreement with data from the Amazon deep-sea fans (Burns, 1997; Kasten et al., 1998) and 

the Rio de la Plata depocenter (Hensen et al., 2003; Riedinger et al., 2005). We postulate that the same 

sedimentary and diagenetic processes were, and still are, taking place in all three settings, and probably 

in other deep-sea fan deposits as well. 

SMT fixation in deep-sea fan sediments - implications for the oceanic P budget 

 Our results demonstrate that P is strongly affected by diagenetic processes around the SMT. 

As it is regarded as one of the limiting nutrients for marine productivity, its fate in the sediments has 

a deep impact on the global marine P budget. Removal of sea water phosphate is mainly controlled 

by organic matter deposition, authigenic apatite formation and phosphate adsorption onto iron 

(oxyhydr)oxides (e.g. Froelich et al., 1982; Jahnke et al., 1983; Ruttenberg and Berner, 1993; Slomp et 

al., 1996 a, b; Wheat et al., 1996; Kim et al., 1999, Schenau and de Lange, 2000; Schenau et al., 2002; 

Faul et al., 2005). Ruttenberg and Berner (1993) and van der Zee et al. (2002) stated that - under 

oxic bottom water conditions - P burial is very efficient in riverine delta sediments and at the bases 
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of submarine canyons, respectively, due to high sedimentation rates and high iron (oxyhydr)oxide 

contents in these deposits. The results of our study demonstrate that this statement can be extended to 

river-fed deep-sea fans and other slope depocenters, i.e. transitional environments between shelf deltas 

and submarine canyon fans. The crucial parameters for enhanced P burial - high sedimentation rate, 

oxic bottom waters and high sedimentary contents of iron (oxyhydr)oxides - are also met for the last 

glacial upper slope deposits off the Zambesi, Amazon and Rio de la Plata rivers. However, on a longer 

time scale, this P sink has to be regarded as temporary, as iron (oxyhydr)oxides are subject to reductive 

dissolution processes in the sediment, e.g. at the SMT. Fixation of the SMT at a certain sediment depth 

for several thousands of years should therefore result in a gradual release of (part of the) phosphate to 

the pore waters, followed by diffusive transport through the overlying sediment. Ultimately, one might 

expect a phosphate flux from the SMT back into the water column, as described for slope sediments 

from the Argentine Basin (Hensen et al., 2000, 2006), where dissolution of iron (oxyhydr)oxides and 

degradation of organic matter in the iron reduction zone few centimeters below the sediment-water 

interface release phosphate to the pore water (Slomp et al., 1996 a). 

 However, such a phosphate release to the bottom water does not occur at Site GeoB 9309, 

similar to sites on the Amazon and Congo fans (GeoB 1514 and 1401, respectively; Schulz et al., 1994). 

In the studied sediments, there is indeed a significant phosphate source at the SMT, but phosphate is 

removed from the pore water again and does not reach the bottom waters in significant amounts. The 

mechanisms for the removal are most probably (1) re-adsorption onto iron (oxyhydr)oxides above 

the SMT and (2) formation of authigenic P phases below it. This is confirmed by the solid phase P 

profile, documenting a loss of solid P at the SMT (450-530 cm sediment depth), while P contents above 

(200-450 cm) and below (530-620 cm) are elevated above background values (Fig. 2.4). Notably, the 

P enrichment in the interval below the SMT is more than three times higher than above it, indicating 

sub-SMT phosphate mineral precipitation at site GeoB 9309. However, it should be noted that in core 

GeoB 9309-1, apatite is not regarded as the dominant authigenic P mineral occurring below the SMT, as 

it is described for many marine sediments (e.g. Sheldon, 1981; Ruttenberg and Berner, 1993; Filippelli, 

1997; Schuffert et al., 1998; Kim et al., 1999; Schenau et al., 2000; van der Zee et al., 2002; Slomp et al., 

2004). Instead, we postulate the precipitation of authigenic Fe-phosphates like vivianite, or amorphous 

apatite precursor minerals (Schenau et al., 2000). This mechanism of internal phosphate redistribution, 

including diffusive transport of desorbed phosphate out of the SMT, differs from other studies that 

merely state a relatively unspecified in situ transfer of organic matter- and Fe-bound P to authigenic 

apatite upon increasing sediment burial depth (e.g. Heggie et al., 1990; Ruttenberg and Berner, 1993; 

Louchouarn et al., 1997; Schuffert et al., 1998; Kim et al.,1999; Schenau et al., 2000). 
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 By the observed phosphorus redistribution or „sink switching“ processes, contrasting to the 

processes occurring in the suboxic iron reduction zone (Hensen et al., 2000, 2006), depocenters of large 

rivers can effectively bury significant amounts of iron-bound phosphorus even over long time scales. In 

the present oxic state of the whole water and upper sediment column (uppermost ~5 cm, derived from 

the Mn2+ pore water profile of multicorer core GeoB 9309-3, not shown here), the described reactive P 

burial could partly explain the low marine productivity off the Zambesi mouth, as derived from satellite 

data (e.g. Behrenfeld and Falkowski, 1997), in spite of permanent riverine nutrient input. Under the 

precondition of an adequate fluvial input of iron (oxyhydr)oxide particles, surface adsorption of sea 

water and riverine phosphate could outbalance its biological uptake by microorganisms, and thereby 

reduce primary productivity. Verifying this hypothesis, however, would require detailed geochemical 

investigations of sediment trap samples, which are not available in this region.

 Considering the characteristic impact of SMT diagenetic processes on the composition of 

Quaternary sediments of riverine origin in different geographical locations (Zambesi, Amazon, Congo, 

Rio de la Plata) leads to implications for the interpretation of sedimentary signals in other recent and 

fossil deep-sea fan deposits. Features like the characteristic solid phase P pattern found in core GeoB 

9309-1, showing decreased solid P contents at the SMT and increased values below (and, to a lesser 

extend, also above; Fig. 2.4) can be formed at the SMT if it is fixed over a considerable amount of time. 

Interpreting such a diagenetic pattern as a primary sedimentary signal, caused e.g. by variations in 

organic matter-bound or detrital P input, might lead to wrong paleoenvironmental reconstructions. 

We regard it as potentially important for interpretations of solid phase P data from sediment deposited 

off riverine systems, to consider diagenetic P redistribution specifically at the SMT. This could be of 

special importance in sediment cores that cover glacial/interglacial transitions, as the SMT might 

have been fixed at a certain level due to rapid decreases of sedimentation rates. It should further be 

emphasized that the observed „early“ diagenetic overprint of the primary sediment composition was, 

and still is, occuring in sediments that were deposited tens of thousands of years ago, and are now 

situated in several meters sediment depth.

Conclusions

 At site GeoB 9309 on the Zambesi deep-sea fan, anaerobic oxidation of methane (AOM), and 

related early diagenetic processes, have significantly altered the chemical and physical properties of the 

sediment/pore water system and thus the primary sedimentary signals. At the sulfate/methane transition 

(SMT) in ~450-530 cm sediment depth, reductive dissolution of primary iron (oxyhydr)oxides by 
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hydrogen sulfide has resulted in a drop in magnetic susceptibility and in the red/blue color reflectance 

ratio. This is paralleled by a decrease of ferrimagnetic reactive Fe(III) minerals and an increase of 

solid phase sulfur, documenting the formation of paramagnetic pyrite. Drawdown of pore water 

manganese at the SMT suggests precipitation of manganese sulfide or carbonate phases. Reduction of 

iron (oxyhydr)oxides at the SMT has led to liberation of  phosphate to the pore water at this interval. 

Above and below the SMT, pore water phosphate concentrations decrease again, most probably due to 

re-adsorption onto iron (oxyhydr)oxides, and fixation of phosphate as authigenic minerals as vivianite 

or amorphous apatite precursors, respectively. Authigenic apatite is no quantitatively important P sink 

below the SMT. Koninckite, an Fe(III) phosphate, was detected below the SMT and is believed to be 

an oxidation product of the Fe(II) phosphate vivianite, which could be a major contributor to the 

reductively extracted phosphate fraction dominant below the SMT. Thus, despite its remobilization at 

the SMT, phosphate is locked in the sediment, making deep-sea fan sediments an effective P sink. The 

diagenetic patterns observed in GeoB 9309-1 suggest that the SMT has been fixed in its actual position 

for the last ~10 000 years. This is thought to be caused by a drastic decrease in sedimentation rate at the 

last glacial/interglacial transition, triggered by a rapid sea-level rise that shifted the detrital depocenter 

from the deep-sea fan to the shelf. This genetic model has also been inferred from the Late Quaternary 

Amazon and Rio de la Plata continental slope depocenters, and might well be applicable to comparable 

sedimentary environments. 
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 Abstract

 A high-resolution geochemical record of a 120 cm black shale interval deposited during the 

Coniacian-Santonian Oceanic Anoxic Event 3 (ODP Leg 207, Site 1261, Demerara Rise) has been 

constructed to provide detailed insight into rapid changes in deep ocean and sediment paleo-redox 

conditions. High contents of organic matter, sulfur and redox-sensitive trace metals (Cd, Mo, V, Zn), as 

well as continuous lamination, point to deposition under consistently oxygen-free and largely sulfidic 

bottom water conditions. However, rapid and cyclic changes in deep ocean redox are documented 

by short-term (~15-20 ka) intervals with decreased total organic carbon (TOC), S and redox-

sensitive trace metal contents, and in particular pronounced phosphorus peaks (up to 2.5 wt% P) 

associated with elevated Fe oxide contents. Sequential iron and phosphate extractions confirm that P 

is dominantly bound to iron oxides and incorporated into authigenic apatite. Preservation of this Fe-

P coupling in an otherwise sulfidic depositional environment (as indicated by Fe speciation and high 

amounts of sulfurized organic matter) may be unexpected, and provides evidence for temporarily non-

sulfidic bottom waters. However, there is no evidence for deposition under oxic conditions. Instead, 

sulfidic conditions were punctuated by periods of anoxic, non-sulfidic bottom waters. During these 
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periods, phosphate was effectively scavenged during precipitation of iron (oxyhydr)oxides in the upper 

water column, and was subsequently deposited and largely preserved at the sea floor. After ~15-25 

ka, sulfidic bottom water conditions were re-established, leading to the initial precipitation of CdS, 

ZnS and pyrite. Subsequently, increasing concentrations of H2S in the water column led to extensive 

formation of sulfurized organic matter, which effectively scavenged particle-reactive Mo complexes 

(thiomolybdates). At Site 1261, sulfidic bottom waters lasted for ~90-100 ka, followed by another 

period of anoxic, non-sulfidic conditions lasting for ~15-20 ka. The observed cyclicity at the lower 

end of the redox scale may have been triggered by repeated incursions of more oxygenated surface- to 

mid-waters from the South Atlantic resulting in a lowering of the oxic-anoxic chemocline in the water 

column. Alternatively, sea water sulfate might have been stripped by long-lasting high rates of sulfate 

reduction, removing the ultimate source for HS- production.

Keywords: OAE, black shale, iron speciation, phosphorus, trace metals, anoxia.

Introduction

 Of the numerous black shale deposits throughout Earth history (e.g. Brumsack, 1980, 1986; 

Stein et al., 1986; Calvert and Pedersen, 1993; Wignall, 1994; Sageman et al., 2003; Riquier et al., 2006; 

see summary in Negri et al., 2006), some of the most prominent examples were deposited during the 

Mid- to Late Cretaceous as a result of expanded oxygen minimum zones in the oceans. Due to their 

extensive impact on ocean biogeochemistry, the predominance of oxygen-depleted conditions, and 

their relatively abrupt onsets and terminations, these periods of widescale black shale deposition have 

been termed Oceanic Anoxic Events (OAEs) (e.g. Schlanger and Jenkyns, 1976; Jenkyns, 1980). 

Sediment cores through the Coniacian-Santonian OAE3 were retrieved during ODP Leg 207 (Demerara 

Rise off Suriname/French Guyana, equatorial Atlantic; Erbacher et al., 2004) at Site 1261 (Fig. 3.1), 

from the mid Coniacian nannofossil biozone CC14. Previous work on age-equivalent deposits from 

the eastern equatorial Atlantic (Deep Ivory Basin, ODP Site 959) has revealed pronounced precession-

forced cyclicity in geochemical records, implying repetitive and wide-scale changes in surface and 

deep ocean redox, closely related to central African climate and associated runoff (Hofmann, 2003; 

Wagner et al., 2004; Beckmann et al., 2005 a; b). Similar orbital frequencies have not been recognized 

in Coniacian-Santonian sediments at ODP Site 1261 (Flögel et al., in review). This has been attributed 

to a different sensitivity of tropical South America to precessional insolation changes relative to 

central Africa, leading to different runoff patterns on either side of the tropical Equatorial Atlantic and 
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consequently different cycle patterns in the marine sedimentary record (Flögel et al., in review).

 Studies on black shales of different stratigraphic age suggest that changes in climatic, oceanic 

and sedimentary redox conditions can strongly affect the supply and cycling of phosphorus, a limiting 

nutrient for ocean productivity. Previous investigations of P systematics in total organic carbon (TOC)-

rich marine sediments (e.g. Föllmi, 1996; Ingall and Jahnke, 1997; Delaney, 1998; Anderson et al. 2001; 

Filippelli, 2001; Nederbragt et al., 2004; Slomp et al., 2004; Mort et al., 2007; review by Algeo and Ingall, 

2007) have resulted in the following observations: (1) Upon progressive burial, the more labile forms of 

phosphorus (P bound to organic matter and iron oxides) may be partially or completely transformed 

into authigenic apatite (“sink switching”), which serves as the major phosphate carrier following 

early diagenetic transformations; (2) under oxygen-deficient conditions, P released during reductive 

dissolution of iron (oxyhydr)oxides and/or selective organic matter mineralization may diffuse into 

the overlying water column. Under such conditions, preferential regeneration of P from organic matter 

(relative to organic C) may further enhance oceanic productivity, and result in high sedimentary C:P 

ratios (>106:1; Ingall and Jahnke, 1997; Algeo and Ingall, 2007).

 In order to further evaluate these processes, and their significance in terms of responses and 

feedbacks associated with short term changes in ocean redox, high-resolution, multi-proxy geochemical 

records are required through key stratigraphic intervals. The Coniacian-Santonian OAE3 sediments 

Figure 3.1: Paleogeographic map with plate configuration reconstructed for ~86 Ma B.P., with 
Proto-Atlantic in centre (plate tectonic reconstruction generated at http://www.odsn.de/odsn/
services/paleomap/paleomap.html). Continental plates are in light grey, oceans in white. The 
dark grey star marks the position of Demerara Rise. 
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recovered at ODP Site 1261 afford an ideal opportunity for such a detailed approach, as the section 

consists of a continuously laminated (and thus physically undisturbed) black shale interval (Erbacher 

et al., 2004). The cyclic CaCO3 record for nannofossil biozone CC14 (Fig. 3.2) shows spectral peaks at 

the eccentricity bands at ~400 kyr and ~120 kyr, however, little response is observed at the precessional 

band (Flögel et al., in review). 

 Here, we combine high-resolution geochemical records of carbonate, TOC, S and Fe speciation 

and the redox-sensitive/sulfide-forming (RSSF) trace metals Cd, Mo, V and Zn in order to evaluate 

the precise nature of short term fluctuations in deep ocean redox across the chosen section. Our high-

resolution work on Fe-S-C and trace metal systematics builds upon the more general redox evaluation 

of the whole black shale section from ODP Sites 1257-1261, as reported by Böttcher et al. (2006). 

We attempt to refine their findings, which indicated generally sulfidic bottom waters throughout 

Cretaceous black shale deposition at Site 1261 (Böttcher et al., 2006). In addition, we particularly focus 

on the record of bulk sedimentary P and its speciation, in order to provide insight into the nature of P 

cycling during black shale formation.

Material and Methods

 A core interval of ~120 cm thickness (570.2-571.4 mcd; nannofossil biozone CC14), recovered 

during ODP Leg 207 at Site 1261, was sampled in continuous 1 cm resolution. Details on core recovery 

and previous investigations are reported in the Initial Reports and Scientific Results (Erbacher et al., 

2004; Mosher et al., 2007). Age determination was based on a revised nannofossil stratigraphy (Flögel 

et al., in review) for the timescale published in the ODP Leg 207 Initial Reports (Erbacher et al., 2004). 

Based on biostratigraphy, sedimentation rates show little variability across the studied section with 

values of 4.5 mm/ka in biozone CC14.

 The core interval consists of finely laminated black claystone, rare fecal pellets and some 

possible fish debris (Erbacher et al., 2004). Detailed high-resolution composite photographs of the 

core (Fig. 3.2) provide support for preservation of primary laminations across the section. Splits of 

the samples were frozen, freeze-dried and ground. Carbon concentrations were analyzed with a Leco 

CS 200. Carbonate C was determined as the difference between total C and organic C (determined on 

samples pre-treated with 12.5% HCl). Several standards with C contents of 0.5-12% were applied to 

maintain accuracy within a range of 3%. 

 Aliquots of ~50 mg of each sample were subjected to a microwave total digestion procedure, 

completely dissolving the sediment in a mixture of suprapure HF, HCl, and HNO3 at a temperature 
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of ~210°C within pressure-tight teflon cups. Contents of major and minor elements (Al, Fe, P, S, Cd, 

Mo, V, Zn) were measured by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES, 

Perkin-Elmer Optima 3300RL), equipped with a cross-flow nebulizer for major, and with an ultra-

sonic nebulizer for minor element measurements (Schulz, 2006). Standard reference materials (USGS 

standard MAG-1, internal lab standards MAX and CAMAX) were run parallel to the samples. Element 

concentrations were within certified ranges, and relative standard deviations were <3% for all elements 

except for Cd, which was within 5%. We display our total element data normalized to aluminum, 

a procedure applied to correct for dilution by variable biogenic and/or authigenic contributions, in 

particular carbonate. Relative enrichment factors (EFs; see reviews by Brumsack, 2006; Tribovillard et 

al., 2006) were also used to quantify trace metal contents relative to average shale values reported by 

Turekian and Wedepohl (1961). 

 A sequential phosphate extraction procedure (a slightly modified version of SEDEX; Ruttenberg, 

1992; Schenau et al., 2000; Schenau and De Lange, 2000) was applied to selected P-rich samples (core 

interval 570.56-570.64 mcd), to differentiate between the various operationally-defined phosphorus-

bearing phases described in Table 3.1. Phosphorus was measured photometrically (partly automatically 

with Skalar Autoanalyser SA 6250, partly manually with Perkin-Elmer UV/VIS Spectrophotometer 

550SE), with the exception of the second extraction step, where P was measured via ICP-AES         

Step Reagents P component extracted

I 25 ml 2M NH4Cl (pH 7, shake for 4 h), 
repetition up to 20x 

Pvar: Pore water phosphate, amorphous Ca-rich apatite 
precursor mineral, phosphate loosely sorbed to carbonates 
and clay minerals, fish bones (= biogenic hydroxyapatite)

II 25 ml Na-dithionite solution, citrate-
buffered (pH 7.5, shake for 8 h); wash 
with 25 ml 2M NH4Cl (shake for 2 h); 
wash with 25 ml dem. water (shake for 
2 h)

Piron: Phosphate bound to iron (oxyhydr)oxides, including 
secondarily oxidized Fe(II)-phophates as vivianite

III 25 ml 1M Na-acetate solution (pH 4, for 
6 h); wash with 25 ml 2M NH4Cl (shake 
for 2 h); wash with 25 ml dem. water 
(shake for 2 h)

Pauth: Authigenic apatite (CFA, francolite)

IV 25 ml 1M HCl (shake for 24 h); wash 
with 25 ml dem. water (shake for 2 h) 

Pdet: Detrital apatite

V 25 ml 1M HCl (shake for 24 h) after 
ignition at 550°C

Porg: Phosphate bound to organic matter

Table 3.1: Different steps of the applied sequential phosphate extraction, the respective extraction 
solutions and extracted fractions of phosphate. 
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(Perkin-Elmer Optima 3300RL). The total recovery of the sequential extraction, calculated as the sum 

of P extracted from all five steps relative to bulk P, was >85% for all samples. 

 The speciation of iron was determined following the sequential extraction procedure of Poulton 

and Canfield (2005) and the Fe sulfide extraction procedure of Canfield et al. (1986). Together, these 

techniques allow the recognition of seven operationally-defined Fe fractions, listed in Table 3.2. Iron 

in the sequential extraction solutions was measured by Atomic Absorption Spectrometry (AAS), and 

for sulfide phases was determined stoichiometrically following precipitation of the liberated sulfide 

as Ag2S. Replicate extractions indicate a reproducibility of >95% for all stages. Note that the sulfide 

extraction procedure of Canfield et al. (1986) does not include any contribution from organic S. 

However, the Canfield et al. (1986) procedure does extract sulfide from metal sulfides other than Fe, 

but these are generally regarded as negligible relative to Fe sulfides (e.g. Böttcher et al., 2006). In our 

samples, if we assume all Zn and Cd to be present as sulfides (most probably an over-estimation), this 

would represent an average of 2% of the total S pool. Thus, although trace metal sulfides are important, 

their contributions do not have a significant impact on our quantification of Fe present as sulfides.

The phases dissolved during the first three sequential Fe steps react with dissolved sulfide on early 

diagenetic timescales (within months to few years), and are thus considered to be highly reactive 

Step Reagents Fe component extracted

I-a 10 ml 1 M Na-acetate solution (pH 4.5, 
for 24 h in water bath at 50° C)

Fecarb: Iron bound to carbonate, including siderite, ankerite

I-b 10 ml Na-dithionite solution, citrate-
buffered (CDB; pH 4.8, shake for 2 h) 

Feox: Iron bound as (oxyhydr)oxides (e.g. goethite, 
hematite)

I-c 10 ml Ammonium oxalate solution (pH 
3.2; shake for 2 h)

Femag: Iron bound as magnetite

I-d 5 ml 12 N HCl (boiling for 1 min) FePR: Iron bound to sheet silicates

II 5 ml conc. HNO3, ~10 ml conc. HF 
(boiling and evaporating at 120-150° C 
to dryness), redissolution with 5 ml 18% 
HCl

Fetotal: Total iron, including silicates

III-a 8 ml 18% HCl (boiling for 45 min; 
HS- driven out by bubbling with N2, 
precipitated in AgNO3 trap) 

FeAVS: Iron bound as acid-volatile sulfur AVS (e.g. greigite, 
pyrrothite)

III-b ~15 ml CrCl2 solution (boiling for 60 
min; HS- driven out by bubbling with N2, 
precipitated in AgNO3 trap)

FePy: Iron bound as chromium(II)-reducible sulfur CRS 
(pyrite)

Table 3.2: Different steps of the applied sequential iron extraction, the respective extraction 
solutions and extracted fractions of iron.
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towards dissolved sulfide (Canfield et al., 1992; Poulton et al., 2004a). Therefore, when any Fe that has 

been converted to sulfide phases either in the water column or during diagenesis is also considered, 

a highly reactive Fe pool (FeHR; Raiswell and Canfield, 1998; Poulton and Raiswell, 2002) is defined 

(FeHR = Fecarb + Feox + Femag + FeAVS + Fepy). By contrast, Fe released by step 4 (boiling HCl) is only 

reactive towards dissolved sulfide on timescales of 105-106 years (Raiswell and Canfield, 1996) and thus 

defines a poorly reactive Fe pool (FePR). Finally, residual silicate Fe (FeU) is essentially unreactive 

towards dissolved sulfide (FeU = Fetotal – (FeHR + FePR))

Results

Carbonate, TOC and sulfur 

 Carbonate is quantitatively the most significant sediment component over most of the 

investigated interval, with a mean content of ~59 wt% (Fig. 3.2). However, the record is highly variable, 

exhibiting “background” values of 55 to 75 wt% (90 samples), which are punctuated at regular intervals 

by samples with only 20-55 wt% carbonate (26 samples: grey bars in Fig. 3.2). Results of frequency 

analysis identify these breaks in the carbonate record as most probably documenting a ~120 kyr 

cyclicity (Flögel et al., in review). In the high-performance core photographs, these lower carbonate 

layers can readily be recognized by their darker sediment colour (Fig. 3.2), due to weaker dilution of 

the sediment by paler carbonate particles. 

 Total organic carbon and total S contents (Fig. 3.2) also exhibit variable values of ~4-12 wt% 

and ~1-2.5 wt%, respectively, and are closely correlated (R2 = 0.80). However, when normalised to 

Al, intervals with higher TOC and total S contents have the lowest Al-ratios (grey bars). Thus, the 

elevated TOC and total S contents are a result of less dilution by carbonate. A marked cyclicity is also 

evident in the Al-normalised data, whereby TOC/Al and S/Al fluctuate periodically in a sawtooth-like 

pattern with a periodicity of 30-35 cm, resulting in four distinct cycles over the sampled interval. The 

correlation coefficient between Al-normalised TOC and S remains high (R2 = 0.83). Metal sulfides, 

according to the sequential iron extraction applied, account for only ~25% of total sedimentary S (with 

a range of 15-41%), suggesting that a large fraction of the S pool is not associated with metal sulfides 

and is instead most likely associated with organic matter. Assuming all non-sulfidic S is present within 

sulfurized organic matter, the S/C ratio of this organic matter averages ~0.18 (from ~0.13-0.22) and is 

lowest within the carbonate-poor horizons. 
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Redox-sensitive trace metals Cd, Mo, V and Zn 

 The element/Al records of Cd, Mo, V and Zn are characterized by strong variability, and 

systematic enrichment above respective element/Al ratios of average shale (Fig. 3.3, average shale ratios 

indicated by black arrows on the x-axis). Element/Al ratios (ppm/%) are within a range of ~1-25 (mean 

of 7.2) for Cd, ~15-60 (mean of 38.5) for Mo, ~180-730 (mean of 453) for V and ~100-950 (mean of 

333) for Zn. This gives mean EFs of 212 (up to 763) for Cd, 130 (up to 207) for Mo, 32 (up to 47) for 

V, and 32 (up to 87) for Zn. Such EF values are comparable to those reported for the Cenomanian/

Turonian OAE2 black shales from the same ODP Site (Brumsack, 2006). 

 The element/Al records show patterns partly similar to TOC/Al and S/Al (i.e. lowest overall 

values within low-carbonate intervals, indicated by grey bars), and exhibit the same periodicity as for 

TOC and S. However, while Mo/Al correlates well with TOC/Al and S/Al over the whole interval 

(R2 = 0.79 and 0.74, respectively), the equivalent correlation coefficients of Cd, V and Zn are consistently 

<0.1. This discrepancy in element/Al patterns is due to the contrasting asymmetrical distributions of 

Cd, V and Zn compared to Mo, TOC and total S within each cycle (Figs. 3.2 and 3.3).

Figure 3.2: High-resolution core photograph, and sedimentary contents of carbonate, TOC and S 
(wt%); TOC/Al and S/Al  plotted versus core depth (meters composite depth, mcd) of the investigated 
core interval from ODP Site 1261, with continuous sample resolution of 1 cm. Shaded intervals mark 
postulated intervals of anoxic non-sulfidic conditions. Arrow at X-axis of S/Al plot marks respective 
value for average shale (after Turekian and Wedepohl,1961). 
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Phosphorus and iron 

 Profiles of total P and P/Al (Fig. 3.4) exhibit low and remarkably constant background 

concentrations, but with sharp P peaks corresponding to the decreased Al-normalised TOC, total S 

and trace metal data  (Figs. 3.2 and 3.3, grey bars). The P contents of these peaks are ~1.0-2.5 wt.%. The 

core photographs show that P-enriched layers contain whitish, round to elliptical concretions of up to 

several mm in diameter (Fig. 3.2). We infer these to be phosphatic concretions, as they are visible only 

within the P-rich intervals. The TOC/Ptotal ratio, expected to be between 106:1 to 117:1 in marine 

organic matter according to the Redfield ratio (Redfield, 1958), reaches values of up to 300 in the 

P-poor horizons, but approximates zero across the P peaks (Fig. 3.4). In terms of P enrichment relative 

to average shale, the P-rich samples are strongly enriched (EF up to 72), while the remaining samples 

are rather P-depleted (EF<1). 

 Results of the sequential P extraction procedure applied to one of the phosphorus peaks (Fig. 

3.5) reveal that in general, Porg (Step V) is negligible (0.3-1.8 % of total P). Extraction Step I yields         

Figure 3.3: Sedimentary contents of Cd/Al (104), Mo/Al (104), V/Al (104) and Zn/Al (104) plotted versus 
core depth (meters composite depth, mcd) of the investigated core interval from ODP Site 1261, with 
continuous sample resolution of 1 cm. Shaded intervals mark postulated intervals of anoxic non-
sulfidic conditions. Arrows at X-axis mark respective values for average shale (after Turekian and 
Wedepohl,1961). 
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2-5 wt% of bulk P, attributable to either adsorbed P, biogenic hydroxyapatite (i.e. fish bones), or to an 

amorphous, calcium-rich precursor of authigenic apatite (Schenau and De Lange, 2000; Schenau et al., 

2000). However, as the latter is regarded as relatively unstable, we doubt its preservation in sediments 

~86 Ma old and buried to several hundred meters depth. At these depths even opal, an amorphous yet 

comparably stable phase, is quantitatively recrystallized to clinoptilolite (Kastner, 1980; Gingele and 

Schulz, 1993). The Pdet fraction (Step IV) makes up a variable, but rather small P fraction (0.2-9.3 % of 

total P). The overall dominant fractions of the P pool, but with a high level of variability, are the Piron 

(23-66 wt% of total P) and Pauth (16-81 wt% of total P) fractions, respectively. 

 Highly reactive Fe on average accounts for ~59% of total Fe, but with FeHR/Fetotal ratios that vary 

from 0.42 to 0.93 (Fig. 3.6). The lowest FeHR/Fetotal ratios for each of the 4 cycles investigated generally 

occur in association with the periods of elevated P deposition. FePR/Fetotal and FeU/Fetotal ratios also 

show some variation (0.17-0.44 and 0.06-0.58, respectively; Fig. 3.6) over the sampled interval (likely 

due to variations in syngenetic FeHR inputs to the sediment), with average values of 0.21 and 0.39, 

respectively. Within the FeHR pool, sulfide-associated Fe (Fe-S; i.e. FeAVS + Fepy) is the most significant 

fraction, with Fe-S/FeHR average ratios of 0.71 (0.57 to 0.91; Fig. 3.6). The Fe-S/FeHR data show 

some scatter, but pronounced peaks occur immediately prior to each interval of P enrichment, with 

Figure 3.4: Sedimentary contents of total P (g/kg); P/Al ratio, and TOC/Ptotal ratio. Shaded intervals 
mark postulated intervals of anoxic non-sulfidic conditions. The arrow at the X-axis in P/Al marks 
respective value for average shale. In the TOC/Ptotal plot, the dashed line marks the C:P ratio for average 
marine organic matter (106:1, Redfield ratio; Redfield, 1958).
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intermediate to low Fe-S/FeHR ratios found within the actual zones of P enrichment (Fig. 3.6). Fecarb 

comprises 2.4 to 19.3% of the FeHR pool, while Feox and Femag account for 7.7 to 23.1% and 0-5.0% 

of FeHR, respectively. The Feox/FeHR ratio generally increases within the P-enriched horizons, which 

arises due to relative enrichments in Fe oxide contents over these intervals (Fig. 3.6).

Discussion

Iron-Sulfur systematics

 Iron speciation in marine sediments has proven to be a valuable tool for investigating redox 

conditions in a variety of modern (e.g. Canfield et al., 1996; Raiswell and Canfield, 1998; Poulton 

and Raiswell, 2002; Anderson and Raiswell, 2004) and ancient (e.g. Raiswell et al., 2001; Shen et al., 

2002; 2003; Poulton et al., 2004b; Canfield et al., 2007) oceanic settings experiencing different water 

column redox conditions (see review by Lyons and Severmann, 2006). A particular strength of Fe 

speciation is the ability to distinguish between oxic, anoxic sulfidic, and anoxic non-sulfidic water 

column conditions (Poulton et al., 2004b; Canfield et al., 2007), thus allowing a detailed evaluation 

of the nature of ocean redox. In brief, FeHR/Fetotal ratios above 0.38 indicate anoxic bottom water 

Figure 3.5: Cummulative contents of phosphate (g PO4/kg sediment) retained in 
different P-carrying phases within the second P peak (downcore). The respective P-
carrying phases extracted can be depicted from table 1. The dashed line shows the 
bulk phosphate content of the sediment, obtained by acid full digestion.
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conditions, where enrichments in FeHR relative to total Fe occur due to the water column formation 

of either pyrite in sulfidic basins, or non-sulfidized minerals in anoxic non-sulfidic basins (Raiswell et 

al., 2001; Anderson and Raiswell, 2004). The ratio Fe-S/FeHR can then be used to distinguish between 

deposition in sulfidic and anoxic non-sulfidic basins, whereby Fe-S/FeHR ratios in sulfidic basins 

commonly approach 0.8-0.9 (Anderson and Raiswell, 2004; Poulton et al., 2004b; Canfield et al., 2007). 

These techniques are refined from those used to define the original ‘Degree of Pyritization (DOP)’ 

paleoredox indicator (Raiswell et al., 1988), and provide more detail and sensitivity in relation to the 

precise nature of ocean redox.

 Across the entire study section, FeHR/Fetotal ratios are consistently >0.38 (Fig. 3.6), indicating 

bottom water anoxia thoughout. This is in agreement with molecular analyses between 570.60 and 

570.68 mcd within the same core (Beckmann et al., in press). They show lycopane/C31 n-alkane      ratios 

>1, comparable to data reported from surface sediments deposited within the Arabian Sea oxygen 

minimum zone with lycopane/C31 n-alkane ratios >0.5 (Sinninghe Damsté et al., 2003), suggesting 

anoxic conditions. Such redox conditions persisted over much longer time scales than investigated 

in this study, as indicated by constantly enriched redox-sensitive trace element contents throughout 

Figure 3.6: Sedimentary ratios of FeHR/Fetotal, FePR/Fetotal, FeU/Fetotal, representing the contribution of 
iron fractions that are highly reactive, poorly reactive and unreactive towards hydrogen sulfide to bulk 
iron. Fe-S/FeHR ratio, representing the contribution of sulfide-bound iron to the highly reactive iron pool. 
Feox (wt%), sedimentary content of oxide-bound iron. Ratio of Snon-sulfide/Stotal, the contribution of sulfur not 
bound to metal sulfides to the bulk sulfur pool. Shaded intervals mark postulated intervals of anoxic non-
sulfidic conditions.
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nannofossil biozones CC14 and CC15 (Flögel et al., in review). Interpreting Fe-S/FeHR profiles to 

distinguish sulfidic from anoxic non-sulfidic conditions is not always straightforward, as relatively low 

ratios may occur even under sulfidic bottom water conditions if, for example, some Fe oxide minerals 

escape sulfidization during settling through the water column. However, enrichments above 0.8 (when 

combined with elevated FeHR/Fetotal ratios) clearly indicate sulfidic conditions, while values around 0.7 

are more equivocal, and may indicate anoxic non-sulfidic conditions. 

 In the studied section, the Fe speciation data suggest periods of pronounced sulfidic conditions 

in bottom waters, in particular (but not solely) immediately prior to the formation of the P-enriched 

layers, where Fe-S/FeHR ratios tend to be relatively high (Fig. 3.6). Fe-S/FeHR ratios drop markedly in 

the P-enriched horizons, and these intervals correspond to somewhat elevated Fe oxide contents (Fig. 

3.6), no longer supporting sulfidic conditions in these zones. Rather, elevated FeHR/Fetotal combined 

with relatively low Fe-S/FeHR ratios suggest that bottom waters were anoxic and non-sulfidic across 

these intervals, and the elevated Fe oxide (and P) contents likely arose due to the water column 

precipitation of Fe oxides, which may have been a result of expanded oxic conditions in surface waters. 

The observed coupling between Fe speciation and P cycling is only active within relatively short-termed 

periods. For most of the studied section, the coupling of Fe to S, mainly in the form of pyrite (Fig. 3.6), 

is dominant. 

 However, the total sulfide contribution to bulk sedimentary S is only in the range of 15-35 

%, implying that an average of ~75 % of total S is bound to phases other than Fe-sulfides (Fig. 3.6). 

Potential candidates are sulfurized organic matter and various sulfate minerals (e.g. barite). Sulfates 

are regarded as metastable in the black shales of Demerara Rise, as detailed pore water measurements 

(Erbacher et al., 2004) revealed continuous pore water sulfate depletion throughout the black shale 

interval, due to ongoing anaerobic oxidation of methane at its top (Arndt et al., 2006). Additionally, 

maximum estimates of barite sulfur (by assuming all bulk Ba is present as Ba sulfate) results in a 

negligible average barite contribution of ~1 % of total sedimentary S. Thus, diagenetically sulfurized 

organic material is likely the major S pool, as observed for other marine black shales (e.g. Sinninghe 

Damsté and de Leeuw, 1990; Sinninghe Damsté et al., 1998), and in particular (in lower resolution) for 

the whole Cretaceous black shale sequence at Demerara Rise (Böttcher et al., 2006). This is supported 

by a close coupling between non-iron-bound sulfur and TOC (R2 = 0.73; or, if normalized to Al, R2 = 

0.79). Consistently, the S/C ratios are mostly within the range of 0.20-0.29 (average of 0.24). These very 

high S/C values (Raiswell and Berner, 1986) indicate that the sedimentary system was probably iron-

limited with regard to sulfide uptake (with the probable exception of the P-enriched horizons, which 

have somewhat elevated unsulfidized Fe oxide contents; Fig. 3.6). The marine organic matter deposited 
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during OAE3 was highly reactive (Arndt et al., 2005; Meyers et al., 2006) and thus prone to effective 

diagenetic sulfurization, which in combination with iron limitation gives a likely explanation for the 

high S/C values. 

Trace metal systematics  

 Certain trace metals have proven to be particularly diagnostic for anoxic/sulfidic conditions 

during deposition of organic matter-rich sediments (e.g. Calvert and Pedersen, 1993; Jones and 

Manning, 1994; Morford and Emerson, 1999; reviews by Algeo and Maynard, 2004; Brumsack, 2006; 

Tribovillard et al., 2006). In sediments deposited under such extreme conditions, redox-sensitive trace 

metals may be strongly enriched (by factors of >100) in comparison to average marine shale. The 

elements Cd, Mo, V and Zn are regarded as particularly reliable recorders of reducing conditions (e.g. 

Morford and Emerson, 1999; Nameroff et al., 2004; Brumsack, 2006; Tribovillard et al., 2006). 

 Cadmium and zinc exist as free cations (Cd2+ and Zn2+, or CdCl+ and ZnCl+) under oxic 

conditions, and are mainly bound as sulfides (CdS and ZnS) in sediments deposited under sulfidic 

conditions. It is noteworthy, however, that these elements are not strongly incorporated into pyrite, but 

form discrete sulfide minerals (Huerta-Diaz and Morse, 1992). In addition, Morse and Luther (1999) 

found that the formation of CdS and ZnS is faster than, and thus occurs prior to, pyrite formation. Our 

results agree with these observations, as the correlations of Cd and Zn with pyrite-Fe are poor. The 

fact that CdS and ZnS form prior to pyrite in the presence of free sulfide provides an explanation for 

the distinct Cd and Zn peaks directly above their minima (Fig. 3.3). We suggest that periods of anoxic 

non-sulfidic bottom water conditions during deposition of the P-rich intervals resulted in a relatively 

low drawdown of Cd and Zn as sulfides. Subsequently, peaks in Fe-S/FeHR shortly after each P-rich 

horizon (Fig. 3.6) suggest that bottom waters again turned sulfidic. This shift in ocean redox resulted 

in the rapid and extensive removal of Cd and Zn from the water column (in the form of sulfides), 

leading to the observed sharp peaks (Fig. 3.3). A gradual upcore decrease in Cd and Zn is observed 

above each corresponding maximum (Fig. 3.3). However, this does not necessarily suggest a return to 

non-sulfidic conditions, as total S, TOC and Mo contents are consistently rising through these zones 

and are punctuated by periods of elevated Fe-S/FeHR ratios, at least implying sulfidic intervals, if 

not persistent sulfidic conditions, between the P-enriched horizons (Fig. 3.6). We suggest that the 

seawater pool of Cd and Zn was gradually consumed under sulfidic conditions (and it is also likely 

that FeHR was periodically limited, at least in terms of the most reactive Fe oxides, possibly leading to 

the variable Fe-S/FeHR ratios), resulting in the subsequent rise of dissolved sulfide in the lower water 



72

 Redox sensitivity of P cycling during marine black shale formation

column and stimulating early sulfurization of labile organic matter and the subsequent scavenging of 

Mo complexes. 

 Molybdenum displays much stronger enrichment under sulfidic than anoxic conditions (e.g. 

Algeo and Maynard, 2004; Algeo and Lyons, 2006). It has been suggested (Helz et al., 1996; Zheng et al., 

2000; Adelson et al., 2001; Tribovillard et al., 2004) that, beyond a certain H2S concentration threshold 

(activity of free hydrogen sulfide aHS- = 10-3.6-10-4.3 after Helz et al., 1996; ~11 μmol/l H2S after Zheng 

et al., 2000), molybdenum is transformed to particle-reactive thiomolybdate (“thiomolybdate switch”), 

allowing subsequent removal from solution via metal sulfides and organic matter. Thus, under sulfidic 

conditions, sorption of Mo to sinking matter and transport to the sediment surface is expected to be 

much more effective than under anoxic conditions, resulting in higher enrichments. Tribovillard et al. 

(2004) found that Mo was exceptionally enriched in various anoxic sediments due to incorporation 

into sulfurized organic matter, but there was little correlation with pyrite abundance. In our study, the 

data suggest that the deep ocean gradually became limited with respect to the most readily sulfide-

forming metals (Cd, Zn) and the most highly reactive iron (oxyhydr)oxides (e.g. minerals such as 

ferrihydrite relative to hematite; see Canfield et al., 1992; Poulton et al., 2004a). This reduced rates of 

sulfide consumption by metal sulfide formation sufficiently to promote organic matter sulfurization 

and associated thiomolybdate formation and scavenging. The observed gradual upcore increases in 

Mo/Al between each P-rich peak (Fig. 3.3), and the robust relationships between Mo/Al and TOC/Al 

(Figs. 3.2 and 3.3; R2 = 0.79), and Mo/Al and non-sulfide S/Al (not shown here; R2 = 0.71), support this 

mechanism of dynamic trace metal removal. 

 Although vanadium is not included in the systematic studies of Huerta-Diaz and Morse (1992) 

and Morse and Luther III (1999), based on the similarity of its profile to those of Cd and Zn in our 

sample set (Fig. 3.3), it seems likely that a similar mechanism of V enrichment occurs. The fact that 

the V peak is not as sharp, and declines more slowly than Cd and Zn, could be explained by (1) 

the incorporation of some V into another sedimentary fraction (e.g. by formation of organometallic 

ligands, or incorporation into geoporphyrins; Breit and Wanty, 1991; Morford and Emerson, 1999), or 

(2) the higher concentration of V in sea water (comparable to modern sea water values, where V = 2.15 

μg/l, Zn = 0.32 μg/l, Cd = 0.076 μg/l; Whitfield and Turner, 1987), and thus slower consumption by any 

removal mechanism, relative to Cd and Zn. 

 The consistent variations in all proxy parameters clearly suggest rapid changes in bottom water 

redox conditions. Even in the intervals with lowest trace metal, TOC and sulfur contents, however, 

the Al-normalised enrichment factors of Cd, Mo, V and Zn are still (strongly) elevated over average 

shale. This, in combination with FeHR/Fetotal ratios (Fig. 3.6) and a continuous lamination, supports 
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continued anoxia. Neither are there “classical” indications for oxygen “burndown” events (as reported 

from Mediterranean sapropels; Thomson et al., 1995; Van Santvoort et al., 1996), suggesting re-

oxygenation events. We would expect that the effects of such “burndowns” should be visible in the 

organic matter- and/or sulfide-associated trace metals Cd, Mo, V, Zn, which are removed from the 

diagenetically oxidized zone due to organic matter remineralization and sulfide re-oxidation, and re-

precipitate in a typical secondary redox succession deeper in the sediment (e.g. Wilson et al., 1985; 

Thomson et al., 1993). As this is not the case, the geochemical records give no indication of bottom 

water oxygenation at any time over the sampled interval. It remains possible, however, that the redox 

system fluctuated on time scales much lower than resolved by this study. Thus, redox transformations 

were maybe even more dynamic than indicated by our data, and in fact the variations observed in the 

Fe-S/FeHR ratios (Fig. 3.6) for each anoxic interval might imply very rapid transformations between 

euxinic and non-euxinic conditions. Furthermore, there may have been periods where bottom water 

conditions were even suboxic to oxic, but they were too short-lived to be reflected in the geochemical 

record (Algeo and Ingall, 2007). 

Fe and P cycling

 Under oxygen-free conditions, the oceanic and sedimentary coupling of Fe and P is believed to 

be of minor importance, as iron (oxyhydr)oxides are rapidly reduced and dissolved, releasing adsorbed 

phosphate to solution. Furthermore, the regeneration of organic-bound P is also believed to be more 

efficient in anoxic relative to oxic sediments (e.g. Ingall et al., 1993; Ingall and Jahnke, 1997; Anderson 

et al., 2001; Filippelli, 2001; Slomp et al., 2004; Slomp and Van Cappellen, 2007). This explains the P 

depletion relative to average shale throughout most of the investigated interval (Fig. 3.4), as phosphate 

was effectively recycled from organic matter and Fe oxides, and delivered back to the water column. 

Through upwelling of deep water into the photic zone, this dissolved phosphate may then have been 

used to maintain high surface productivity and elevated TOC export to the sediment, thus stabilizing 

sulfidic conditions at the sediment surface. 

 However, the studied section documents periods when this positive anoxia-productivity 

feedback loop was interrupted and P was retained, or even enriched, in the sediment. The sequential 

P extractions (Table 3.1) give detailed information about the dominant P-carrying phases within the 

P peak investigated, providing further insight into the sources and sinks of sedimentary phosphate. 

Overall, we found the extracted fractions from Steps II and III, which is iron-bound P and authigenic 

apatite, to be dominant over the investigated P peak. The other extraction steps together yielded <15 % 
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of total P and are thus only of minor importance.

 The high contents of authigenic apatite (Pauth; extraction step V) in the P-rich samples are not 

surprising, as the transfer of P from more labile P-carrying phases (organic matter, Fe (oxyhydr)oxides, 

hydroxyapatite) into this mineral, makes authigenic apatite the dominant and ultimate oceanic P sink 

with increasing sediment age and burial depth (e.g. Delaney, 1998; Anderson et al., 2001; Slomp and 

Van Cappellen, 2007). Following this “sink switching” mechanism, the preservation of a large fraction 

of P still bound to Fe (oxyhydr)oxides is unexpected in OAE3 black shales ~86 Ma old and buried more 

than 500 m below the sea floor. We suggest that during times of sulfidic bottom waters, scavenging 

and removal of phosphate by adsorption to iron oxides was inhibited by their rapid syn- or diagenetic 

transformation to Fe sulfides, and a large pool of dissolved phosphate was able to build up in the 

deep ocean. As discussed above, however, the redox conditions in the basin repetitively changed from 

sulfidic to anoxic non-sulfidic. Under these conditions, syngenetic Fe (oxyhydr)oxide precipitation at 

the chemocline resulted in P removal in the water column, and subsequent deposition at the sea floor. 

The freshly formed Fe minerals are characterized by a high surface area (e.g. Slomp et al., 1996) and 

high reactivity (e.g. Feely et al., 1990; Poulton and Canfield, 2006) and are thus regarded as particularly 

effective in scavenging phosphate (by adsorption and/or co-precipitation) from the water column. 

During diagenesis, some P was released and subsequently formed apatite during limited sulfidation 

of Fe (oxyhydr)oxides, while some Fe (oxyhydr)oxides escaped sulfidation and retained adsorbed/co-

precipitated phosphate.

Paleoenvironmental implications

 Events of massive P deposition, as periodically evident in the studied core interval, could have 

been triggered by any process that decreases sulfide concentrations in the water column. In the case 

of the Cretaceous Demerara Rise, we regard repetitive periods of enhanced circulation and admixture 

of water masses, in an otherwise stratified oceanic basin with limited vertical water exchange, as the 

most probable explanation for the observed geochemical records. A similar conclusion was drawn by 

Friedrich and Erbacher (2006), based on benthic foraminiferal assemblages at ODP Sites 1257 and 

1259. They argue that during nannofossil biozone CC15, a fluctuation of the oxygen minimum zone at 

the more shallow parts of Demerara Rise occurred, due to establishment of a shallow-water connection 

to the South Atlantic via the Equatorial Atlantic Gateway (Wagner and Pletsch, 1999). During CC17, 

the first deep-water connection was established via this gateway, leading to sea floor ventilation at Site 

1259 (Friedrich and Erbacher, 2006). We assume that similar, though relatively shallow, intrusions 
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of well-oxygenated water from the South Atlantic were responsible for a periodical admixing and 

oxygenation of the shallow to intermediate water masses (but not bottom waters) at Site 1261 as early 

as CC14. Such intrusions of oxygenated water masses would have two combined effects on the ocean-

sediment system: better admixing of nutrients regenerated from the sediment into the zone of primary 

productivity, and downward shifting of the oxic-anoxic chemocline to greater water depths. As a result, 

the observed P-Fe coupling could have become active. 

 The reason for the termination of sulfidic conditions remains unclear. Factors affecting the rate 

of sulfide production via microbial sulfate reduction include the amount of organic matter delivered 

to, and remineralized at, the sea floor; the availablility and replenishment of oxygen at the sea floor; 

and the availability of sulfate. Decreasing organic matter export is often associated with lower primary 

productivity in the photic zone, probably caused by decreased nutrient availability. We indeed find 

a decrease in TOC/Al within the anoxic, non-sulfidic parts of the studied core interval. This may 

document a more efficient organic matter degradation, but also decreased organic matter fluxes to 

the sea floor. The amount of oxygen in the shallow and intermediate water column, governed by the 

penetration depth of oxygenated water, sets an upper boundary to deeper-water sulfidic conditions, as 

sulfide is oxidized and cannot rise into O2-containing waters.In modern anoxic basins as the Black Sea, 

sulfide is even oxidized below oxic surface waters, e.g. by nitrate within the so-called suboxic zone, a 

layer of more than 20 m thickness between upper (oxic) and lower (sulfidic) water masses (e.g. Murray 

et al., 1989; Konovalov et al., 2005). In addition, within an oxic water column, organic matter is more 

effectively remineralized than under sulfidic conditions, leading to lower amounts of reactive organic 

material reaching the sea floor, less material suitable for sulfate reduction, and subsequently a lower 

production of hydrogen sulfide.

 Another explanation for the disappearance of sulfidic deeper water masses could be a significant 

drawdown of sea water sulfate, regarded as nearly unlimited in the modern ocean. However, given 

very high rates of TOC delivery to the sea floor, sulfidic bottom water conditons over time intervals 

of thousands of years, a still rather restricted Equatorial Atlantic Gateway in the Late Cretaceous 

(Wagner and Pletsch, 1999; Friedrich and Erbacher, 2006), and lower sulfate concentrations in the 

Cretaceous oceans relative to today (Hardie, 1996; Horita et al., 2002; Paytan et al., 2004; Wortmann 

and Chernyasky, 2007), the consumption of sea water sulfate by microbial reduction may have exceeded 

its supply via continental erosion. We note that each of the observed P peaks (Fig. 3.4) are preceeded 

by significant peaks in Fe-S/FeHR (although Fe-S/FeHR peaks are not restricted to these horizons; Fig. 

3.6), suggesting that increased drawdown of sulfide at these times may well have had an impact on S 

availability and hence the observed transition to anoxic, non-sulfidic conditions.
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Conclusions

 The high-resolution geochemical records from OAE3 at ODP Site 1261 provide evidence for 

persistant bottom water anoxia. However, abrupt and cyclic changes occurred between sulfidic and 

anoxic non-sulfidic bottom water conditions. Defining the anoxic, non-sulfidic state as the starting 

point of one redox cycle, redox conditions may have progressively changed as follows: Anoxic, non-

sulfidic bottom waters rich in dissolved P and Fe were underlying a relatively expanded oxygenated 

water mass. At the anoxic-oxic chemocline, phosphate adsorption to, and/or co-precipitation with, 

freshly precipitated Fe (oxyhyr)oxides created a close Fe-P coupling. Upon sinking, the P-rich 

iron (oxyhydr)oxide particles were deposited at the sea floor and partly preserved. During these 

anoxic, non-sulfidic conditions, rates of metal (Cd, Fe, V, Zn) sulfide formation and organic matter 

sulfurization were at a relative minimum, but “background” contents of trace metals, FeHR, TOC 

and S remained high relative to average shale. Assuming a linear sedimentation rate (Flögel et al., in 

review), the duration of the anoxic, non-sulfidic mode is estimated as ~15-25 ka. With increasing TOC 

deposition and subsequent higher rates of sulfate reduction, bottom waters then became progressively 

sulfidic, leading to rapid precipitation of Cd, V and Zn sulfides, documented by distinct peaks in these 

elements. As the relatively limited sea water pool of these trace metals became depleted by sulfide 

formation, extensive sulfurization of organic matter took over as the main sulfide removal process. 

This sulfurized organic material then served as a major carrier of Mo (in form of thiomolybdates), 

which was subsequently enriched and, together with S and organic matter, progressively accumulated 

on the sea floor. This redox scenario lasted for ~90-100 ka, before anoxic, non-sulfidic bottom waters 

re-developed, completing one ~120 ka redox cycle. The reasons for the termination of sulfidic bottom 

water conditions at Demerara Rise, with respect to its paleogeographic location ~86 Ma B.P., may have 

been a repetitive input of well-oxygenated water masses from the South Atlantic. This could activate 

the Fe-P coupling, remove phosphate from the upper water column and drawing down primary 

production, TOC export to the sea floor and, thus, sulfide production. Alternatively, extensive and 

persistent sulfate reduction in the semi-restricted Proto-Atlantic could have led to sulfate depletion, 

thereby removing the ultimate sulfur source for sulfide formation.
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Abstract

 Organic carbon-rich shales deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 

were drilled during ODP Leg 207 at Demerara Rise. We present integrated high-resolution geochemical 

records of core intervals from ODP Sites 1259 and 1261 both covering nannofossil biozone CC14. 

Our results reveal systematic variations in marine and detrital sediment contribution, depositional 

processes, and bottom water redox during black shale formation at two locations on Demerara Rise 

in different paleo-water depths. A combination of redox proxies (Fe/S, P/Al, C/P, redox-sensitive 

trace metals Mn, Cd, Mo, Ni, V, Zn) and other analytical approaches (bulk sediment composition, 

P speciation, electron microscopy, X-ray diffraction) evidence anoxic to sulfidic bottom water and 

sediment conditions throughout the deposition of black shale. These extreme redox conditions 

persisted  and were periodically punctuated by short-termed periods with less reducing bottom 

waters irrespective of paleo-water depth. Sediment supply at both sites was generally dominated by 

marine material (carbonate, organic matter, opal) although relationships of detrital proxies as well as 



86

 Geochemical environment of Coniacian-Santonian Demerara Rise

glauconitic horizons support some influence of turbidites, winnowing bottom currents and/or variable 

detritus sources, along with less reducing bottom water at the proposed shallower location (ODP 

Site 1259). At Site 1261, deeper on the continental margin, redox fluctuations were more regular, and 

steady hemipelagic sedimentation sustained the development of mostly undisturbed lamination in 

the sedimentary record. Strong similarities of the studied deposits exist with the stratigraphic older 

Cenomanian-Turonian OAE2 black shale sections at Demerara Rise, suggesting that the primary 

mechanisms controlling continental supply and ocean redox were time-invariant and kept the western 

equatorial Atlantic margin widely anoxic over millions of years.

Keywords: Oceanic anoxic event, trace elements, iron, phosphorus, sediment source, redox changes, 

enrichment factors

Introduction

 Since Schlanger & Jenkyns (1976) introduced the original concept of Oceanic Anoxic Events 

(OAEs), much progress has been made in the understanding of the widespread deposition of organic 

matter (OM)-rich sediments in the Cretaceous Proto-Atlantic and adjacent seas, in particular on the 

dynamics and mechanisms of short-term change in ocean redox. During ODP Leg 207 up to 90 m 

thick Cretaceous black shale deposits, including OAE2 and OAE3 were recovered from Demerara Rise 

(Erbacher et al., 2004; Mosher et al., 2007). Cenomanian-Turonian OAE2 black shales from ODP Leg 

207 have been subject of intensive research (e.g. Erbacher et al., 2005; Friedrich et al., 2006; Hardas and 

Mutterlose, 2006; Musavu-Moussavou and Danelian, 2006; Forster et al., 2007a; Junium and Arthur, 

2007; Nederbragt et al., 2007) whereas far less is known about the development of the later Coniacian-

Santonian OAE3 in this critical area of the tropical North Atlantic (Friedrich and Erbacher, 2006; 

Beckmann et al., in press; März et al., accepted). Given that OAE3 sediments from the adjacent tropical 

African margin (Deep Ivory Basin, ODP Leg 159) revealed spectacular evidence of astronomically 

forced sedimentary and redox cycles directly associated with African climate variability  (Wagner, 

2002; Wagner et al., 2004; Beckmann et al., 2005a, b; Flögel and Wagner, 2006) and the opening of the 

Equatorial Atlantic (Wagner and Pletsch, 1999; Pletsch et al., 2001) there is scope for more detailed 

investigation of this stratigraphic interval at Demerara Rise. 

 First geochemical studies revealed that Demerara Rise black shales are dominated by thermally 

immature marine OM (Meyers et al., 2006; Forster et al., 2007b). Its slow degradation still produces 

methane, which is anaerobically oxidized at the top of the Cretaceous black shale succession via sulfate 
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reduction, resulting in sulfate depletion and long-lasting barite remobilization within the black shale 

succession (Erbacher et al., 2004; Arndt et al., 2006). High degrees of pyritization, but also sulfurized 

OM (Böttcher et al., 2006), overall enrichments of Mo, V, Zn, and Mn depletion (Hetzel et al., 2006) 

indicate overall oxygen-depleted, periodically even sulfidic bottom waters. Overall enrichments of P 

as well as high amounts of Ba (despite diagenetic barite redistribution and formation of diagenetic 

fronts) support enhanced nutrient supply and high productivity during black shale deposition (Hetzel 

et al., 2006; Arndt et al, 2006). We recently explored a broad variety of redox proxies in OAE3 black 

shales at ODP Site 1261. The records are consistent and show cyclic and rapid redox fluctuations from 

sulfidic to anoxic, non-sulfidic conditions in bottom waters (März et al., accepted) obviously triggered 

astronomically by short eccentricity cycles (Flögel et al., in review). 

 In this study we add evidence to the findings of the Cretaceous low latitude Atlantic by applying 

a wide analytical spectrum in high temporal resolution to ODP Sites 1259 and 1261 from Demerara 

Rise. The main goal is to trace changes in deep ocean redox, sediment sources and depositional processes 

along a bathymetric transect across the S-American continental margin. To achieve these goals we 

selected nannofossil biozone CC14 intervals from both sites and applied major and trace element 

geochemistry, P speciation, X-ray diffraction, and scanning electron microscopy. For completeness, 

some of the results presented by März et al. (accepted). are shown here, however, we emphasize that 

this study takes the discussion forward by comparing synchronous stratigraphic intervals from two 

sites, and by adding new information on sediment sources and depositional processes. To place the 

results from OAE3 into wider perspective we compare them with geochemical properties from OAE2 

sections at Demerara Rise, and an average of various OAE2 locations worldwide (Brumsack, 2006).

Material and Methods

 The ODP Leg 207 Sites 1259 and 1261 were drilled on Demerara Rise, in modern water depths 

of 2354 m and 1899 m on the northern and northwestern slope, respectively (Erbacher et al., 2004). For 

this high-resolution study, we chose core intervals from Sites 1259 (499.60 – 500.61 mcd, 101 cm) and 

1261 (570.20 – 571.40 mcd, 120 cm) and sampled them in continuous 1 cm resolution. For comparison 

we selected intervals from the same stratigraphic nannofossil biozone CC14 (Coniacian-Santonian), 

using the nannofossil stratigraphy published by Erbacher et al. (2004) that was recently refined by 

Flögel et al. (in review) for Site 1261 and by Bornemann et al. (2008) for Site 1259. Sedimentation rates 

were ~5.4 mm/ka at Site 1261 (Flögel et al., in review), and ~2-3 mm/ka at Site 1259 (Bornemann et al., 

2008). Thus, both sampled intervals document condensed successions, with sedimentation rates at Site 



88

 Geochemical environment of Coniacian-Santonian Demerara Rise

1261 about twice as high as at Site 1259. Being aware of these differences, our geochemical comparison 

does not aim at layer-to-layer correlation - although both intervals were deposited during nannofossil 

biozone CC14, there might still be a significant offset in time between them. We rather compare both 

sites in terms of general sedimentation patterns and geochemical characteristics of sediments and 

bottom waters.

 Sampling took place at the ODP Core Repository in Bremen, Germany. Sample splits were 

frozen, freeze-dried and ground in an agate mortar. Total organic carbon (TOC) and carbonate contents 

were determined with a Leco CS 200. First, total carbon (TC) was measured. After the sediment was 

decalcified with 12.5% HCl, washed twice and dried at 60°C, TOC content was determined. Finally, 

the CaCO3 content of the sediment was calculated: CaCO3 (%) = (TC - TOC) x 8.33. Several standards 

with C contents between 0.5 and 12% were applied to keep the accuracy of the measurement at >97%. 

 About 50 mg of each sample were subjected to a microwave total acid digestion procedure (3 ml 

HNO3, 2ml HCl and 2 ml HF, heated up to ~210° C in pressure-resistant teflon containers). Major and 

minor elements were measured with an Inductively Coupled Plasma Atomic Emission Spectrometer 

(ICP-AES, Perkin Elmer 3000) in triplicate to assure a standard deviation of <5 %. For details, we refer 

to Schulz (2004) and www.geochemie.uni-bremen.de/koelling/MGCmain.html. 

 A sequential phosphate extraction (modified version of SEDEX, Ruttenberg, 1992; Schenau 

and De Lange, 2000; Schenau et al., 2000) was applied to selected P-rich samples from both sites 

(500.13 – 500.53 mcd at Site 1259 and 570.56 – 570.64 mcd at Site 1261). This method enables us to 

differentiate between various phosphorus-bearing phases in the sediment (Table 1). Extracted P was 

analysed photometrically (Steps I, III-V) or via ICP-AES (Step II).

 X-ray diffraction (XRD) was used to confirm the results of the SEDEX extraction and to reveal 

the general mineralogy of the core sections.  X-ray diffractograms of freeze-dried, ground samples were 

produced with a Philips X’Pert Pro multipurpose diffractometer equipped with a Cu-tube (k“ 1.541, 

45 kV, 40 mA), a fixed divergence slit of 1/4° , a 16 samples changer, a secondary monochromator and 

the X’Celerator detector system. Samples were scanned continuously from 3-85° 2θ, with a calculated 

step size of 0.016° 2θ (calculated time per step 100 seconds). Mineral identification was done with the 

Philips software X’Pert HighScore™, which also gave semi-quantitative values for identified minerals 

(according to their Relative Intensity Ratio values, calculated as ratio of the most intense reflex of 

a specific mineral phase to most intense reflex of pure corundum; “matrix-flushing method” after 

Chung, 1974; Vogt et al., 2002; Bender, 2007).
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 We also applied heavy liquid separation (Franke et al., 2007) to selected samples, extracting the 

mineral fraction with a density of >3.0 g/cm3 (e.g. barite, pyrite, calcium-fluorapatite = CFA). We used 

~0.5-1 g of freeze-dried, homogenized sediment and a Na-polytungstate solution (3.0 g/cm3; ~25 ml per 

sample). Sediment solutions were shaken manually and subsequently dispersed in an ultrasonic bath. 

Suspensions were centrifuged (20 minutes, 4000 rps), and the heavy liquid mirror and supernatant 

fraction (<3.0 g/cm3) were removed with a pipette. The remaining heavy fraction was vacuum-filtered 

(0.2 μm cellulose acetate filters), and washed several times with bi-distilled water. Filtered heavy mineral 

extracts were dispersed in bi-distilled water and centrifuged several times to prevent Na-polytungstate 

contamination. Dried extracts were prepared for Scanning Electron Microscopy (SEM, Philips XL30 

SFEG, 12 kV acceleration voltage). Unconsolidated grains were dispersed onto a carbon sticker on a 

standard Al stub, and covered with a few nm thick carbon layer to prevent surface charging during SEM 

analysis. Secondary electron (SE) and backscattered electron (BSE) detectors were used for imaging. 

For elemental composition of single grains, energy-dispersive X-ray spectroscopy (EDS; e.g. Goldstein 

et al., 1992) was applied and semi-quantification was achieved using the EDAX PhiRhoZ software. All 

elemental spectra were normalized to their respective oxygen maxima.

Step Reagents P component extracted

I 25 ml 2M NH4Cl (pH 7, shake for 4 h), 
repetition up to 20x 

Pvar: Pore water phosphate, amorphous Ca-rich apatite 
precursor mineral, phosphate loosely sorbed to carbonates 
and clay minerals, fish bones (= biogenic hydroxyapatite)

II 25 ml Na-dithionite solution, citrate-
buffered (pH 7.5, shake for 8 h); wash 
with 25 ml 2M NH4Cl (shake for 2 h); 
wash with 25 ml dem. water (shake for 
2 h)

Piron: Phosphate bound to iron (oxyhydr)oxides, including 
secondarily oxidized Fe(II)-phophates as vivianite

III 25 ml 1M Na-acetate solution (pH 4, for 
6 h); wash with 25 ml 2M NH4Cl (shake 
for 2 h); wash with 25 ml dem. water 
(shake for 2 h)

Pauth: Authigenic apatite (CFA, francolite)

IV 25 ml 1M HCl (shake for 24 h); wash 
with 25 ml dem. water (shake for 2 h) 

Pdet: Detrital apatite

V 25 ml 1M HCl (shake for 24 h) after 
ignition at 550°C

Porg: Phosphate bound to organic matter

Table 4.1: Different steps of the applied sequential phosphate extraction, the respective 
extraction solutions and extracted fractions of phosphate. 
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Results

Lithology 

 

 OAE3 sediments at Site 1261 consist of finely laminated black claystone and nannofossil 

claystone (Erbacher et al., 2004). Visual inspection of the Site 1261 biozone CC14 core section revealed 

black intervals of few centimeters thickness containing light, roundish components of up to a few mm 

in diameter. The components are elongate, lense-shaped, and embedded into the stratification and bear 

no signs of physical disturbance throughout the entire study interval. Similarly, biozone CC14  at Site 

1259 displays lamination in the upper ~70 cm of the interval (499.60 – 500.30 mcd), as well as cyclic 

occurence of layers with round to elliptic, whitish components of up to a few mm in size. However, in 

the lower part a glauconitic horizon (Erbacher et al. 2004; here referred to as GH) is visible as a sandy, 

light horizon of ~20 cm thickness, comprising a relatively unsorted framework of white, mm- to cm-

sized grains. Under the light microscope, glauconite grains from the GH appear as green to blue-green 

crystals, fragments or as green-whitish aggregates.

Total organic carbon and carbonate

 The investigated deposits are TOC-rich with lowest values around 3 wt% (Fig. 4.1a). The TOC 

content at Site 1261 is generally higher compared to Site 1259 (average of 7.7 wt% versus 6.1 wt%, 

respectively), as is the TOC/Al ratio (average of 3.6 versus 2.8; Fig. 4.1b) and carbonate-free TOC 

(CFB; average of 18.7 wt% versus 15.8 wt%; not shown here), parameters that both correct for variable 

dilution by biogenic carbonate. The amplitude between TOC maxima and minima is on the order of 

7 wt% at both sites, with values of 4.4-11.7 wt% at Site 1261 and 2.9-10.2 wt% at Site 1259 (Fig. 4.1a), 

without clear repetitive patterns. Different from that, the TOC/Al records show regular cyclic patterns 

at both sites, with the exception of much lower TOC/Al ratios in the lower part of the 1259 section 

(below 500.30 mcd; Fig. 4.1b).

 The carbonate record at Site 1261 displays background values of ~50-70 wt%, interrupted 

by four intervals of 5-10 cm thickness, each with carbonate contents of only 20-30 wt% (Fig. 4.1c), 

coincident with lowest TOC/Al values. In contrast, the carbonate content at Site 1259 does not show 

the same systematic variations, but varies in a more irregular manner between 30-70 wt% (Fig. 4.1c). 

Only in the lowest part of the interval (below 500.48 mcd), carbonate contents reach 70-100 wt%. 
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Detrital elements (Al, K, Mg, Ti, Zr)

 Aluminum is mainly incorporated into detrital silicates in continental margin settings like 

Demerara Rise and thus represents continental input. At Site 1261, background Al values of 15-25 g/kg 

are interrupted by sharp peaks of 35-40 g/kg (Fig. 4.1d). Calculation on CFB, however, removes these 

peaks, and documents negligible fluctuations in Al (CFB; data not shown). A clear anti-correlation 

of Al with carbonate (R2 = 0.91; correlation coefficients always given as linear correlations; Figs. 4.1d, 

4.2a) documents mutual dilution of detrital and biogenic material. At Site 1259, Al contents are within 

a similar range (10-35 g/kg; Fig. 4.1d), but the Al-carbonate relationship is weaker (R2 = 0.59; Fig. 

4.2a). Terrigenous proxy elements bound to the heavy mineral fraction include Ti and Zr. At Site 1261, 

correlation coefficients are R2 = 0.99 for Al with Ti, and R2 = 0.93 with Zr (Figs. 4.2b, c).                        
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Figure 4.1: Chemical composition of ODP Sites 1261, 570.2-571.4 mcd, and 1259, 499.6-500.7 mcd. (a) Total 
organic carbon (TOC, wt%), (b) TOC/Al (%/%), (c) carbonate (wt%), (d) Al (g/kg) versus core depth (meters 
composite depth, mcd). The grey-shaded areas indicate less reducing conditions, the glauconitic horizon 
(GC) is marked by the dotted area.



92

 Geochemical environment of Coniacian-Santonian Demerara Rise

       At Site 1259, the correlation of Al with Ti is strong (R2 = 0.98), but the one of Al with Zr is weaker 

(Figs. 4.2b, c; R2 = 0.63). Typical elements of light silicates apart from Al are K and Mg, but they are also 

present in sea water, and Mg can be incorporated in carbonates. Comparable to Ti and Zr, relationships 

of Al with K and Mg at Site 1261 are strong (R2 = 0.98 for Al with K, 0.94 for Al with Mg; Figs. 4.2d, 

e). At Site 1259, correlations of Al with K and Mg are overall weaker, with R2 = 0.65 for Al with K, and     

R2 = 0.36 for Al with Mg (Figs. 4.2d, e). 
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Figure 4.2: Cross plots of: (a) CaCO3 to Al, (b) Ti to Al, (c) Zr to Al, (d) K to Al, (e) 
Mg to Al, (f) S/Al to TOC/Al for Sites 1259 (dots) and 1261 (crosses), with respective 
linear correlation coefficients (R2, Pearson product-moment correlation coefficient). 
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Redox-sensitive trace elements (Cd, Mn, Mo, Ni, V, Zn)

 The investigated trace elements participate strongly in redox reactions and may become 

authigenically enriched or depleted in sediments deposited under oxygen-free conditions, making 

them frequently applied tracers of paleoredox conditions (e.g. Francois, 1988; Calvert and Pedersen, 

1993; Dean et al., 1997; Morford and Emerson, 1999; recent reviews by Brumsack, 2006; Tribovillard 

et al., 2006). The degree of enrichment/depletion is calculated as enrichment factor (EF) relative to a 

standard material (average shale = AS; Turekian and Wedepohl, 1961):

    EFelement = (element/Al)sample /(element/Al)average shale

The use of AS as reference material may get stressed by non-uniform lithologies in the detrital source 

area (Van der Weijden, 2002), but this potential bias is uncritical for elements with low contents in 

AS and/or strong incorporation into biological or authigenic processes, as the presented trace metals 

(Brumsack, 2006). In the studied core sections we identified two categories of redox-sensitive trace 

elements.

 Manganese: Values of Mn/Al range from ~20-45 ppm/% across the Site 1261 and the upper Site 

1259 interval (above 500.10 mcd). Values of ~60-90 ppm/% are reached in the lowest part of the 1259 

section (below 500.48 mcd; Fig. 4.3a). Still, despite these overall low Mn/Al ratios, the Mn/Al record 

displays a rather strong correlation with carbonate (Fig. 4.4a). At Site 1261, correlation coefficients are 

similar for carbonate-poorer (R2 = 0.78, n = 19) and carbonate-richer (R2 = 0.79, n = 96) samples if the 

carbonate content threshold is set to 55 wt%. Respective correlations  both follow positive trends, but 

with different slopes. At Site 1259, the Mn/Al to carbonate correlation is only high for carbonate-richer 

samples (R2 = 0.74, n = 35; Fig. 4.4b). Average EFs for Mn at Sites 1259 and 1261 are ~0.36 (up to 1.0) 

and ~0.30 (up to 0.49), respectively, indicating Mn depletion throughout the investigated sediment 

intervals (Tab. 4.2; Fig. 4.5). 

 Cadmium, molybdenum, nickel, vanadium, zinc: Throughout the study interval at Site 1261 and 

the upper part at Site 1259 (499.60 – 500.10 mcd) there are cyclic patterns of Cd/Al, Mo/Al, Ni/Al, 

V/Al and Zn/Al (Fig. 4.3b-f). The cycles are documented more clearly at Site 1261 compared to Site 

1259, partly because the latter had a lower sedimentation rate during biozone CC14 (Bornemann et 

al., 2008). Maximum values of Cd/Al, V/Al and Zn/Al ratios are similar at both sites, but Mo/Al and 

Ni/Al maxima are much lower at Site 1259 (Fig. 4.3). As further differences between trace element/

Al profiles at Site 1261, all trace element/Al ratios are lowest within the carbonate-poor layers (grey 

bars), but the positions of the maxima vary. While Cd/Al, V/Al and Zn/Al are highest right above 

the carbonate-poor layers and gradually decrease upsection, Mo/Al and Ni/Al continuously increase 
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upcore and reach maximum values right below the next carbonate-poor layer. Thus, Mo/Al and Ni/Al 

exhibit rather strong correlations with the TOC/Al and S/Al records (R2 = 0.73 to 0.89; Figs. 4.4c-f), 

while there are no significant correlations of Cd/Al, V/Al and Zn/Al with TOC/Al and S/Al (R2 <0.01). 
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Figure 4.3: Chemical composition of ODP Sites 1261, 570.2-571.4 mcd, and 1259, 499.6-500.7 mcd. (a) 
Mn/Al, (b) Cd/Al, (c) Mo/Al, (d) Ni/Al, (e) V/Al, (f) Zn/Al (all as ppm/%) versus core depth (mcd). Arrows at 
X-axis indicate respective element/Al values of average shale (Turekian and Wedepohl, 1961). 
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Site 1259 exhibits the same general trace element/Al patterns, but trace element/Al minima (grey bars) 

do not match with carbonate minima as at Site 1261. Average trace element EFs are within the same 

range at both sites (Tab. 4.2; Fig. 4.5). Notably, even lowest trace element/Al ratios are still (strongly) 

enriched relative to AS (Fig. 4.3b-f; AS values indicated by black arrows on the X-Axis). The GH is 

characterised by consistently lower trace element/Al ratios (Fig. 4.3b-f). 
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Iron and sulfur

 Based on sequential iron extraction data, März et al. (accepted) inferred sulfidic bottom water 

conditions throughout most of the studied interval at Site 1261. Similar to sequential extraction data, 

the Fe/S ratio can be used as indicator for the amount of sulfide-bound Fe - the lower the ratio, the 

more Fe is sulfide-bound. The Fe/S ratio at Site 1261 ranges between 0.4 and 0.9, and highest values 

are reached within the carbonate-poor intervals, from where they gradually decrease upcore (Fig. 

4.6a). Thus, highest Fe/S values coincide with lowest trace metal/Al and TOC/Al values. In the upper 

part of Site 1259 (499.60 – 500.10 mcd), Fe/S correlates with the same parameters as at Site 1261, but                 

Fe/S values are markedly higher (~0.6-1.4), and within the GH, Fe/S reaches maximum values of 2.2 

(Fig. 4.6a). The EF of Fe at Site 1261 is ~0.9 on average, with maxima of ~1.1 (Tab. 4.2). At Site 1259, 

slightly higher average EFs of ~1.3 are observed, but Fe/Al ratios that are consistently >1.0 are mostly 

confined to the GH, where Fe/Al values are consistently >1.0 (maximum values = 3.1; AS value = 0.54; 

Tab. 4.2). Notably, S/Al ratios correlate strongly with TOC/Al at Site 1261(R2 = 0.83; Fig. 4.2f), while 

the respective correlation is much weaker at Site 1259 (R2 = 0.27; Fig. 4.2f). 

Table 4.2: Maximum and mean elemental enrichment factors (EFs) for the investigated intervals 
from ODP Sites 1261 and 1259, Demerara Rise. EFs are calculated from element/Al ratios relative 
to average shale (AS; Turekian and Wedepohl, 1961), and compared to EFs of OAE2 black shales 
from Demerara Rise (1) and various OAE2 location worldwide (2; Brumsack, 2006). 

Mean EF Max. EF Mean EF Max. EF EF of (1) EF of (2)
of 1261 of 1261 of 1259 of 1259 vs. AS vs. AS
vs. AS vs. AS vs. AS vs. AS

Ba/Al 4.78 5.85 3.04 6.39 2.35 3.10

Cd/Al 212 763 298 1004 170 184

Fe/Al 0.88 1.03 1.28 3.14 1.16 1.44

K/Al 0.96 1.03 1.06 1.85 0.86 0.93

Mg/Al 1.12 1.37 1.35 2.49 1.41 1.29

Mn/Al 0.30 0.49 0.36 0.10 0.44 1.29

Mo/Al 130 207 74.2 164 127 208

Ni/Al 10.4 16.1 8.74 13.7 10.6 11.5

P/Al 13.5 71.8 67.2 418 8.80 5.91

S/Al 30.9 38.8 27.5 46.5 _ _

Ti/Al 0.83 0.85 0.84 0.85 1.01 0.96

V/Al 30.7 46.8 32.7 46.8 33.2 18.4

Zn/Al 30.9 86.7 35.1 86.7 22.8 42.5

Zr/Al 0.67 0.80 0.70 0.80 0.83 0.99
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Phosphorus

 At Site 1261, consistently low P contents of <0.1 wt% (75 of 115 samples in total) and P/Al 

ratios of <0.1 are found (Fig. 4.6b). However, pronounced peaks with P contents of up to 2.5 wt% and 

high P/Al ratios (up to ~0.8) cyclically occur within the carbonate-poor layers. At Site 1259, we observe 

P-poor (<0.1 wt%; 22 out of 101 samples) and P-rich layers as well, but their pattern is less regular, P 

peaks are not as distinct, and P/Al ratios are generally higher than at Site 1261 (Fig. 4.6b). Especially 

the GH at Site 1259 (499.60-500.10 mcd) is characterized by P contents of >2.0 wt% (up to 5.2 wt%, 

data not shown), and P/Al ratios of >1.0 (up to 3.3), with higher values at the base of the GH. The TOC 

to bulk P ratios (C/P), which is ~106:1 in average marine biomass (Redfield, 1958), are variable at both 

studied sites. C/P ratios range from 3.0 to 301 at Site 1261, and from 0.57 to 372 at Site 1259 (Fig. 4.6c). 

Generally, highest C/P values coincide with high values of TOC/Al and S/Al, and lowest C/P values 

with P/Al peaks. 

 Results of a sequential phosphate extraction yield information about the P speciation (Figs. 

4.7a, b). The investigated P peak at Site 1261 (8 samples; Fig. 4.7a) and the upper studied P peak at Site 

1259 (7 samples, without GH; Fig. 4.7b) have a similar P speciation: Fish bones (Step I) and OM-bound 

P (Step V) make up a minor fraction of the bulk P pool (<10 %) at both sites. Detrital apatite (Step IV) 
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Figure 4.5: Bar plots displaying mean elemental enrichment factors (EFs; note logarithmic 
scale) of Sites 1259 and 1261, as well as of OAE2 black shale from Demerara Rise (Brumsack, 
2006) and CTBE mean (from various OAE2 locations by Brumsack, 2006), relative to average 
shale (Turekian and Wedepohl, 1961). Dashed lines indicate EFs of 5, 30 and 100. 
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is more significant at Site 1259 (~0-26 %, average of ~9 %) than at Site 1261 (~0.2-9 %, average of ~5 

%). Authigenic apatite (Step III) is clearly the dominant fraction at Site 1259 (~17-87 %, average of ~60 

%), and is also of major importance at Site 1261 (~16-81 %, average of ~43 %). Iron-bound P (Step II) 

is the dominant fraction at Site 1261 (~23-66 %, average of ~49 %), while its contribution to the P pool 

is substantially smaller at Site 1259 (~4-27 %, average of ~17 %). Within the GH at Site 1259 (6 samples; 

Fig. 4.7b), the fish bone and OM-bound P fractions are likewise rather unimportant (<7 %). The sum 

of iron-bound P and authigenic apatite (~6-35 % with ~21 % on average, and ~36-88 % ~with 58 % on 

average, respectively) constitutes the majority of the P pool. In relation to the other P peaks, detrital 

apatite is more significant within the GH (~1-42 %, average of ~22 %). 

SEM and XRD results 

 The majority of particles of the density fraction >3.0 g/cm3 were calcium-fluorapatite (CFA), 

Fe sulfides (mostly pyrite), Zn sulfides and barite. Despite their limited number, the analysed samples 

are considered representative in terms of composition, size and morphology of the dominant heavy 

minerals.

0.4 0.8 1.2 1.6 2 2.4

500.8

500.6

500.4

500.2

500

499.8

499.6

Sedim
ent depth (m

cd)

0.4 0.5 0.6 0.7 0.8 0.9

571.4

571.2

571

570.8

570.6

570.4

570.2

Fe/S (%/%)

Se
di

m
en

t d
ep

th
 (m

cd
)

Site 1261 Site 1259
0 1 2 3 4

500.8

500.6

500.4

500.2

500

499.8

499.6

Sedim
ent depth (m

cd)

0 0.2 0.4 0.6 0.8

571.4

571.2

571

570.8

570.6

570.4

570.2

P/Al (%/%)

Se
di

m
en

t d
ep

th
 (m

cd
)

Site 1261 Site 1259

0 100 200 300 400

500.8

500.6

500.4

500.2

500

499.8

499.6

Sedim
ent depth (m

cd)

0 100 200 300 400

571.4

571.2

571

570.8

570.6

570.4

570.2

C/P (%/%)

Se
di

m
en

t d
ep

th
 (m

cd
)

Site 1261 Site 1259

Figure 4.6: Chemical composition of ODP Sites 
1261, 570.2-571.4 mcd, and 1259, 499.6-500.7 
mcd. (a) Fe/S, (b) P/Al, (c) C/P (all as %/%) 
versus core depth (mcd). Boxes in (b) mark the 
intervals of sequential P extraction. The dashed 
lines (c) indicate the C/P ratio of average marine 
organic plankton (after Redfield, 1958). 
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 Pyrite and other Fe sulfides are frequently observed in all samples, and occur as euhedral or 

cubic crystals of ~2-20 μm in diameter or as framboids of similar size range (Fig. 4.8a). The atomic     

Fe:S ratios of the Fe sulfides range between 1.0 and 0.5 according to the applied quantification software, 

indicating the presence of greigite  and mackinawite next to pyrite. Zinc sulfides were observed in the 

Zn-rich samples (Site 1259, 499.82 and 499.88 mcd) as idiomorphic stochiometric ZnS crystals of 1-5 

μm diameter. Crystals were found either dispersed or in framboid-like aggregates of ~15 μm diameter 

(Figs. 4.8b, c). 

 Barite is present in most of the samples, but rather dispersed, and was observed in the grain size 

range of 2-30 μm. Most of the barites appear as either flat, platy crystals with clear signs of dissolution 

(Fig. 4.9a), or uneven, angular, massive grains with signs of fractures (Fig. 4.9b). The latter are most 

likely fragments of larger grains that were broken into smaller pieces during sediment grinding.

 Apatite grains represent the dominant heavy mineral in the P-rich samples, while they are 

absent in the P-poor ones. They cover a wide range of grain sizes, from few μm to several 100 μm 

in diameter. Irregular aggregates of smaller crystals are most likely of authigenic origin (Fig. 4.9c). 

However, most apatite particles have a massive, compact morphology and partly medium to strong 

rounding, probably due to transportation (Fig. 4.9d). 

Figure 4.7: Cummulative extracted P fractions at (a) Site 1261 (570.56-570.64 mcd) and (b) Site 1259 (500.1-
500.53 mcd) in g PO4/kg sediment versus core depth (mcd). Explanation of extraction steps in Table 1.
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Figure 4.8: SEM micrographs in BSE 
mode and respective elemental spectra 
from representative particles. (a) Fe sulfide 
framboids (1-5); (b) aggregate/framboid 
of idiomorphic Zn-sulfide crystals (1), Na 
feldspar (2), CFA (3, 4); (c) closeup of 
particle 1 in (d), idiomorphic ZnS crystals 
(1-4). EDS spectra numbers correspond to 
the spot analyses of the respective numbered 
particles.
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 In support of the sequential P extraction, large amounts of CFA were detected via structural 

analysis with X-ray diffraction. Other common minerals apart from CFA encountered in all analysed 

samples via X-ray diffraction were calcite (confirming the geochemical analysis) and clinoptilolite 

((Na,K,Ca)2-3Al3(Al,Si)2Si13O36•12(H2O)). Clinoptilolite is one of the most common zeolite minerals 

in marine pelagic sediments, and has previously been described in Cretaceous black shales from the 

North Atlantic (Thurow, 1988). It is formed authigenically by dissolution of amorphous SiO2 (volcanic 

glass, opal tests as Si source) during burial diagenesis (e.g. Kastner, 1980).

Discussion

Terrigenous versus marine sediment input

 Contribution of Al, K, Mg, Ti and Zr at Sites 1259 and 1261 was rather low, with e.g. Al 

constituting only ~1-4 wt% of bulk sediment. Persistent lamination and strong correlation of Al with 

K, Mg, Ti and Zr (R2 >0.9) at Site 1261 support steady sedimentation without bioturbation or mass 

wasting, and probably one single detrital source area. Depositional conditions were different at Site 

1259 as indicated by weaker relationships between the detrital proxy elements. They support repeated 

interruptions of sedimentation by mass wasting or winnowing of light particles (Nederbragt et al., 

2007) and/or change of the detrital source area. A possible explanation for the little continental material 

reaching Sites 1259 and 1261, which are regarded more proximal than the other ODP Leg 207 sites 

(Mosher et al., 2007; Nederbragt et al., 2007), could be the high sea level during deposition, trapping 

most detrital matter on the flooded shelf area, or transport by coast-parallel currents.

 The observed cyclicity of the Al record, particularly at Site 1261, is attributed to variable 

dilution of the detrital signal by biogenic material, in particular by calcium carbonate which constitutes          

~30-70 wt% of bulk sediment at both sites, supporting a strong influence of carbonate productivity 

on sedimentation. X-ray diffraction data from both sites reveal the presence of large amounts of 

clinoptilolite. 

 In Demerara Rise black shales, preservation of siliceous radiolarian tests is generally poor 

(Erbacher et al., 2004; Musavu-Moussavou and Danelian, 2006; Nederbragt et al., 2007), which is most 

probably related to extensive silica diagenesis in these deeply buried sediments (e.g. Kastner, 1980; 

Thurow, 1988). Karpoff et al. (2007) regarded clinoptilolite as a diagnostic proxy for paleoproductivity 

in a Miocene marine setting. We therefore assume that clinoptilolite in the studied samples is 

derived from dissolution-reprecipitation reactions of biogenic silica, and thus indicative of high opal 
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productivity at the Coniacian-Santonian Demerara Rise. A weak anti-correlation of carbonate and 

clinoptilolite is observed suggesting periodic changes in the association of primary producers from 

carbonate to opal assemblages. In further support for elevated marine primary paleoproductivity, 

organic geochemical studies within Cretaceous black shales at Demerara Rise (e.g. Meyers et al., 2006; 

Forster et al., 2007b; Beckmann et al., in press) proved an overall  high contribution of fresh marine 

OM to the bulk sediment.  

 Taking all these results into account we infer a depositional regime at both ODP Sites that was 

dominated by strong biogenic marine input, at least during the Coniacian nannofossil biozone CC14. 

This conclusion is consistent with interpretations for OAE3 black shales from the Deep Ivory Basin 

(ODP Site 959) and OAE2 black shale from the Tarfaya shelf basin off SW Morocco (e.g. Wagner, 2002; 

Wagner et al., 2004; Beckmann et al., 2005a, b). Estimates of paleoproductivity during Demerara Rise 

black shale deposition based on the barite record are hampered by diagenesis. Pore water profiles of 

SO4
2- and Ba2+ (Erbacher et al., 2004) indicate sulfate depletion throughout the black shales at Demerara 

Rise, resulting in barite dissolution in this interval for the last ~86 Ma (Arndt et al., 2006). Despite 

overall Ba enrichment relative to AS in both studied intervals (Fig. 4.5), SEM analyses of samples from 

ODP Sites 1259 and 1261 did not identify any biogenic barite crystals, which are generally smaller than 

the diagenetic ones (0.5-5 μm versus 20-700 μm), and form elliptical or euhedral crystals or aggregates 

(Torres et al., 1996; Paytan et al., 2004; Paytan and Griffith, 2007). Instead, we detected numerous 

(fragments of) most probably diagenetic barite particles (Fig. 4.9a, b). The Ba enrichment and the    

Ba/Al records at both sites (data not shown) therefore document a diagenetic rather than a biogenic 

signal, making their interpretation in terms of paleoproductivity impossible.

Redox-sensitive elements

 Combining records of different redox-sensitive (trace) elements is a well established approach for 

reconstructing past redox conditions. The interpretation of redox-sensitive (trace) metals investigated 

at Demerara Rise will be preceded by a short introduction into its behaviour under variable redox 

conditions. 

Figure 4.9: SEM micrographs in BSE mode and respective elemental spectra from representative 
particles; (a) platy barite crystal showing clear signs of dissolution; (b) angular barite grain, probably 
fragment of larger diagenetic barite aggregates; (c) aggregate of fine CFA crystals (1-4), Fe sulfide with 
clay coating (5); (d) rounded, massive, most probably detrital CFA grain (1), angular CFA particles 
(2, 3), Fe sulfide framboid (4), angular Fe sulfide particle (5). EDS spectra numbers correspond to the 
spot analyses of the respective numbered particles.
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 Manganese: This element has a low solubility in oxic water and forms solid Mn (oxyhydr)oxides. 

While being preserved in oxic sediments, Mn (oxyhydr)oxides are utilized microbially as electron 

acceptor (dissimilatory Mn reduction) under suboxic conditions, leading to liberation of Mn2+ into the 

pore water, and potential reprecipitation at the oxic/suboxic boundary (Froelich et al., 1979; Lovley, 

1991; Burdige, 1993). Below sub- or anoxic waters, Mn2+ is reductively leached from the sediment and, 

due to higher solubility, may reach high concentrations in the water (e.g. Klinkhammer and Bender, 

1980; Lewis and Landing, 1991; Morford and Emerson, 1999). In a stratified anoxic water         body, 

Mn2+/Mn (oxyhydr)oxide cycling can occur at the oxic/anoxic transition, as in the Black Sea or Cariaco 

Basin (Tebo, 1991; Percy et al., in press; Yakushev et al., 2007). At such transitions, Mn (oxyhydr)oxides 

may precipitate and scavenge other particle-reactive trace element species in the water column, and thus 

act as shuttles to the oxygen-depleted sea floor - due to rapid settling of Mn (oxyhydr)oxide particles 

even in anoxic water columns (e.g. Morford et al., 2005; Brumsack, 2006; Tribovillard et al., 2006). In 

an anoxic water body related to an open margin oxygen minimum zone (OMZ), Mn2+ leached from the 

underlying sediment is initially concentrated in OMZ waters, but may partly diffuse out of the OMZ 

(e.g. Klinkhammer and Bender, 1980; Lewis and Luther, 2000; Brumsack, 2006). Manganese leaching 

results to its depletion in the underlying sediment. The significant Mn depletion within the studied 

OAE3 intervals (except for the lowest part of the 1259 interval) indicates sedimentary Mn leaching 

under constantly sub-/anoxic depositional conditions (Fig. 4.5). 

 Despite overall Mn depletion, however, the low amounts of sedimentary Mn appear to be 

bound to carbonate as indicated by a strong correlation between carbonate and Mn/Al at least for 

carbonate-rich samples (Figs. 4.4a, b). This Mn to carbonate coupling is most obvious in the bottom 

part of the 1259 section (below 500.48 mcd; Fig. 4.2a), where both Mn/Al and carbonate reach 

maximum values, implying substantial Mn carbonate formation. The formation of Mn carbonates is 

most probably a diagenetic process close to the sediment surface, where OM degradation and Mn 

(oxyhydr)oxide reduction increase alkalinity and Mn2+ concentration in the pore water (e.g. Baltic 

Sea anoxic deeps; Huckriede and Meischner, 1996; Neumann et al., 2002). However, Brumsack (2006) 

stated that close carbonate-Mn correlation might also be obtained syngenetically by Mn-carbonate 

overgrowths on carbonate tests within a Mn2+-enriched anoxic water body. The latter process could 

have been important during biozone CC14 at Sites 1259 and 1261, as the former mechanism would 

require at least periodically oxic conditions at the sea floor, which is regarded as improbable (see 

discussion below and Beckmann et al., in press; März et al., accepted). Only the layers with strongly 

elevated Mn/Al and carbonate contents at the bottom of 1259 might indicate intermittent and minor 

influence of oxygen. Precipitation of Mn sulfides is generally neglected as Mn sink in black shales, as 
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is Mn incorporation into pyrite or organic phases (Huerta-Diaz and Morse, 1992; Algeo and Maynard, 

2004).

 Cadmium and zinc: These elements are present under oxic to suboxic conditions as soluble 

anions (CdCl+; Zn2+, ZnCl+; Tribovillard et al., 2004). In addition, Cd and Zn are micronutrients 

incorporated into marine plankton biomass, which is also their major carrier to the sea floor (e.g. 

Bruland et al., 1991; Ho, 2006). Already at very low HS- concentrations, Cd and Zn may form sulfides 

(CdS, ZnS) at the sea floor, due to lower solubility products and faster water exchange kinetics than 

other metal (e.g. iron) sulfides (Jacobs and Emerson, 1982; Rosenthal et al., 1995; Morse and Luther, 

1999; Scholz and Neumann, 2007). Indeed, in the studied 1259 and 1261 intervals, Zn and Cd exhibit 

sharp peaks right above their minima (Figs. 4.3b, f), most probably documenting precipitation as CdS, 

and ZnS under weakly sulfidic bottom waters (Morse and Luther, 1999; März et al., accepted). This 

assumption is assured by SEM detection of pure idiomorphic ZnS crystals (Figs. 4.8c, d). In samples 

with high Zn contents, also Fe sulfides were observed which do not contain Cd and Zn, supporting that 

incorporation of these trace elements into pyrite is negligable (Huerta-Diaz and Morse, 1992; Scholz 

and Neumann, 2007). In addition, weak correlations of Cd/Al and Zn/Al with both TOC/Al and S/Al 

indicate that no significant fraction of sedimentary Cd and Zn is bound to sulfurized OM, despite their 

primary transport pathway to the sea floor via OM.

 Molybdenum and nickel: These elements form soluble anions (Ni2+, NiCl+) or oxy-anions   

(MoO4
2-) under oxic to suboxic conditions. Nickel is also a micronutrient taken up by primary producers 

and transported to the sea floor mainly by OM (e.g. Bruland et al., 1991; Ho, 2006). Molybdenum 

is conservative towards biological processes, but may be strongly coupled to Mn (oxyhydr)oxides, 

which can act as Mo shuttles to the sea floor under non-sulfidic conditions (e.g. Adelson et al., 2001; 

Dellwig et al., 2007). After algal blooms, a transport of Mo to the sea floor via organic macromolecules 

forming in the water column has been reported (e.g. Lunau et al., 2006; Dellwig et al., 2007). In 

sulfidic environments, Mo oxy-anions are transformed to particle-reactive thiomolybdates above a 

certain HS- threshold (“thiomolybdate switch”; Helz et al., 1996; Zheng et al., 2000; Adelson et al., 

2001), and scavenged from the water column by e.g. sinking OM. Different from Mo, incorporation 

into pyrite can be an important Ni sink at higher HS- concentrations in the sediment (Huerta-Diaz 

and Morse, 1992; Algeo and Maynard, 2004). In addition, during OM sulfurization or formation of 

geoporphyrins in sulfidic sediments, a secondary coupling of Ni and Mo to OM can be created (e.g. 

Lewan and Maynard, 1982; Breit and Wanty, 1991; Algeo and Maynard, 2004; Tribovillard et al., 2004). 

The distinct correlations of Mo/Al and Ni/Al not only with TOC/Al, but also with S/Al at Sites 1259 

and 1261 (Figs. 4.4c-f) imply that these trace metals were mainly incorporated into (sulfurized) OM 
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during early diagenesis. A close coupling of Mo to sulfurized OM was found by Tribovillard et al. 

(2004) and Algeo and Lyons (2006) in several black shale deposits. In contrast, we assume that Ni was 

rather incorporated into organic tissue as a micronutrient already during primary production and is 

not as strongly related to OM sulfurization as Mo. This is indicated by slightly stronger correlation of 

Ni/Al with TOC/Al than with S/Al at both sites, while Mo/Al is correlated with TOC/Al and S/Al to 

the same degree. 

 Vanadium: Under oxic to suboxic conditions, V is present as an oxy-anion (HVO4
2-, H2VO4

-). 

Manganese (oxyhydr)oxides can play a significant role for its transport to the sea floor (e.g. Wehrli 

and Stumm, 1989; Hastings et al., 1996). However, different from other trace metals, V does not form 

sulfides, but - via a two-step reaction pathway - hydroxyl species (VO(OH)3
-) and insoluble hydroxides 

(VO(OH)2) under anoxic, and insoluble hydroxides (V(OH)3) and oxides (V2O3) under sulfidic 

conditions (e.g. Breit and Wanty, 1991; Tribovillard et al., 2004). Incorporation of V into pyrite under 

sulfidic conditions is regarded as negligible (e.g. Dellwig et al., 2002; Scholz and Neumann, 2007). 

Under sulfidic conditions, V can also be incorporated into geoporphyrins (Lewan and Maynard, 1982; 

Breit and Wanty, 1991), and thus be coupled to OM similar to Ni. At Sites 1259 and 1261, the V/Al 

records (Fig. 4.3e) show patterns intermediate between Cd/Al and Zn/Al on one side, and Mo/Al and 

Ni/Al on the other side, making the V speciation in the studied intervals hard to determine. We suggest 

that precipitation of V (hydr)oxides at relatively low HS- concentrations may have caused the initial 

V/Al peaks paralleled by Cd/Al and Zn/Al, while increasing incorporation of V into geoporphyrins 

could be responsible for keeping V/Al values relatively high (while Cd/Al and Zn/Al rapidly declined) 

even after initial V/Al peak formation (Breit and Wanty, 1991; Algeo and Maynard, 2004). Initial V 

(hydr)oxide formation was probably limiting sedimentary Ni enrichment, as the reduction from V(IV) 

to V(III) at low HS- concentrations is known to inhibit Ni incorporation into geoporphyrins (Lewan, 

1984; Breit and Wanty, 1991). 

 Iron: In oxic water, Fe has a low solubility and is present mainly as solid Fe (oxyhydr)oxides 

(e.g. Byrne and Kester, 1976; Liu and Millero, 2002). Under oxygen- and nitrate-free conditions,           

Fe (oxyhydr)oxides are progressively reduced (Froelich et al., 1979; review by Burdige, 1993), either 

chemically (e.g. Stone and Morgan, 1987; Stumm and Sulzberger, 1992) or biologically (dissimilatory 

iron reduction; e.g. Lovley, 1987; Nealson and Myers, 1992). In both cases, Fe2+ is liberated to the 

surrounding pore water, and re-precipitates as iron (oxyhyr)oxides as soon as nitrate or oxygen is 

available again. If free HS- is present, Fe (oxyhydr)oxides are reduced (e.g. Morse et al., 1987; Yao and 

Millero, 1996) via variable pathways and transformed to Fe sulfides, mostly pyrite (FeS2; e.g. Berner, 

1984; Schoonen, 2004). However, if the pool of the most sulfide-reactive Fe minerals (e.g. ferrihydrite, 
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goethite, hematite; Poulton et al., 2004) is exhausted, HS- may start to react with fresh OM in the 

sediment during OM sulfurization or natural vulcanisation (e.g. Sinninghe Damsté and de Leeuw, 

1990; Sinninghe Damsté et al., 1998). Excess HS- may also diffuse out of the sediment, creating sulfidic 

conditions at the sea floor and in the (lower) water column. 

 Sequential Fe extraction results obtained in an earlier study (März et al., accepted) indicated 

repeated shifts from sulfidic to anoxic, non-sulfidic bottom water conditions at Site 1261. Similar 

information can be obtained from the sedimentary Fe/S ratios, available for both Sites (Fig. 4.6a). 

Periodic increases in Fe/S ratios at Sites 1259 and 1261 indicate higher amounts of non-sulfide-bound 

sedimentary Fe. Indeed, März et al. (accepted) found an increase in Fe-oxides in the intervals with 

highest Fe/S values at Site 1261. Thus, we infer that also Fe/S peaks at Site 1259 document elevated 

amounts of oxide-bound Fe. Co-occurrence of Fe/S peaks with lowest - but compared to AS still enriched 

- trace element/Al, lowest TOC/Al, and highest P/Al values points to less reducing, but still anoxic 

conditions during their formation. Much higher Fe/S ratios within the GH are probably a combined 

effect of elevated Fe-oxide contents (6-35 % of total P bound to Fe-oxides) and the occurrence of 

glauconite ((K,Na)(Fe3+,Al,Mg)2(Si,Al)4O10(OH)2, containing ~20 % Fe). Another finding of März et 

al. (accepted) was that only about 15-35 % of bulk S at Site 1261 are bound to pyrite (see also Böttcher 

et al., 2006). Most of the remaining S fraction is attributed to sulfurized fresh marine OM, indicated 

by a strong TOC-S correlation. However, based on weaker TOC to S correlations at Site 1259, we 

assume that OM and S are not as strongly coupled as at Site 1261, i.e. OM sulfurization was probably 

occurring, but less intense than at Site 1261. The reason for that could be higher input of detrital Fe 

(oxyhydr)oxides, or of more refractory terrigenous OM with a lower potential for HS- formation and 

sulfurization. Concluding, enhanced OM preservation via early diagenetic sulfurization was at least 

partly responsible for the high TOC contents of the studied sediments at both sites.

 Phosphorus: In the ocean, P is mainly present as the stable phosphate oxy-anion HPO4
2-, which 

is not redox-sensitive itself, but strongly coupled to the cycles of Fe and OM. Fresh iron (oxyhydr)oxides 

can not only adsorb large amounts of phosphate ions, but phosphate may also be co-precipitated during 

Fe (oxyhydr)oxide formation. Thus, Fe (oxyhydr)oxides can play a major role in the transport of P to 

the sea floor (e.g. Feely et al., 1990; Slomp et al., 1996; Poulton and Canfield, 2006). Another P carrier 

to the sea floor is marine OM, as marine phytoplankton contains a relatively stable amount of P (with a 

mean C/P ratio of 106:1; Redfield, 1958). Under reducing conditions at the sea floor, a decoupling of P 

from both the Fe and the OM cycles takes place: Dissolution of Fe (oxyhydr)oxides liberates phosphate 

to the surrounding water. Thus, the Fe-P coupling can only be active if iron (oxyhydr)oxides are formed 

in/delivered to marine waters and sediments under oxic to at least anoxic, non-sulfidic conditions 
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(März et al., accepted). Furthermore, under anoxic conditions there is a preferential regeneration of 

organic P from organic material in relation to organic carbon (e.g. Ingall et al., 1993; Ingall and Jahnke, 

1997), resulting in low P burial capacities of anoxic sediments and C/P ratios of >106 (e.g. Anderson et 

al., 2001; review by Algeo and Ingall, 2007). 

 Our bulk sediment P data indicate P depletion over large parts of the investigated intervals, 

resulting in high C/P ratios, and P/Al values lower than AS (Fig. 4.6b, c). This implies a very effective 

regeneration of both Fe (oxyhydr)oxide- and OM-bound P from the sediment under anoxic, probably 

even sulfidic bottom water conditions. However, P/Al enrichments at both sites, with very low C/

P ratios and Fe-bound P as one of the major fractions (Figs. 4.6b, c; 4.7a, b), document conditions 

favorable for P burial, and even (partial) preservation of Fe-oxides (and the Fe-P coupling), in the 

sediment. During these periods, bottom waters are assumed to have been free of HS-, but free of oxygen 

as well, as indicated by TOC, S and redox-sensitive trace metal data (anoxic, non-sulfidic conditions 

according to März et al., accepted). Partial transfer of Fe-bound P, and nearly complete transfer of OM-

bound P, to authigenic apatite is consistent with the “sink switching” hypothesis, i.e. P transfer from 

rather labile binding forms into authigenic apatite as the ultimate oceanic P sink (e.g. Delaney, 1998; 

Filippelli, 2001). The high P content of the GH is probably a mixed signal of originally larger amounts 

of Fe oxide-bound P transformed to the now dominant authigenic CFA, and higher input of older, 

well-crystallized authigenic and/or detrital apatite (Fig. 4.7b). The fact that many of the apatite grains 

identified under the SEM in GH samples are more or less rounded (Fig. 4.9d) points to re-deposition 

or movement of at least part of the apatite grains by bottom currents.

Geochemistry at Sites 1259 and 1261 – Similarities and differences

 

 Comparing quasi age-equivalent records from the two drill sites on Demerara Rise in terms 

of a paleo-water depth transect bears a fundamental complication; Cretaceous water depths may have 

been different than at present due to subsidence and tilting of the Demerara Rise during progressive 

rifting in the South Atlantic since the earliest Cretaceous (Erbacher et al., 2004). In this context,                       

Erbacher et al. (2005) stated that transgressive Cretaceous black shale deposition at Site 1259 started 

later than at all other ODP Leg 207 sites (including Site 1261, where black shales started to develop before 

the OAE2), implying that during the Cretaceous Site 1259 was situated in shallower water depths than 

Site 1261. Also benthic foraminiferal assemblages support that re-oxygenation of the Demerara Rise 

sea floor occurred first at Site 1259 followed by the other ODP Leg 207 sites (Friedrich and Erbacher, 

2006). 
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 Sediment source: From the high-resolution profiles presented in this study, it appears that the 

cyclicity of the carbonate, Al and TOC/Al records, and thus the overall sedimentary input is much 

more regular at Site 1261 compared to Site 1259. Based on Al and carbonate data, we infer that variable 

dilution by marine carbonate was the main process leading to the observed fluctuations in carbonate, 

Al and TOC/Al. Well-preserved mm-scale lamination at Site 1261 excludes physical and biological 

disturbance of the sediment. The strong correlation between all terrigenous “marker elements” such 

as Al, K, Mg, Ti and Zr (Figs. 4.2a-e) implies a stable detrital source area at Site 1261. Terrestrial-

sourced elements (Fe, K, Mg, Ti, Zr) normalized to Al support that the mineralogical composition 

of the detrital source material is close to AS composition (Fig. 4.5), consistent with the findings of 

Hetzel et al. (2006). At Site 1259, however, the terrestrial-sourced elements are overall slightly more 

enriched than at Site 1261 (Tab. 4.2; Fig. 4.5), implying a stronger detrital influence, and thus a more 

proximal location of Site 1259 during the Coniacian-Santonian consistent with Erbacher et al. (2005) 

and Friedrich and Erbacher (2006). Alternatively, the input of marine biogenic carbonate could have 

been lower at Site 1259. The weaker carbonate-Al anti-correlation as well as weaker correlations of the 

detrital elements support that the interplay of marine versus terrigenous dilution was disrupted by 

mass wasting, winnowing of fine particles, and/or varying sources of lithogenic input. The periodic, 

potentially erosional activity of winnowing bottom currents would also offer an explanation for lower 

sedimentation rates at Site 1259 than at Site 1261, where continuous hemipelagic sedimentation is 

documented. The occurrence of glauconitic horizons, as observed at Site 1259, is interpreted by Friedrich 

and Erbacher (2006) and Nederbragt et al. (2007) as an indication for extremely low sedimentation 

rates, possibly periodic erosion due to increased bottom currents at Site 1259. Indeed, coarser grain 

size, enrichment of heavy mineral-bound Zr (data not shown), association of glauconite and detrital 

apatite (identified by sequential P extraction and SEM analysis; Fig. 4.7a; 4.9e), and low carbonate 

contents within the GH support this conclusion. Still, enrichments of K/Al, Mg/Al, and depletion of 

Ti/Al are no typical features of a winnowing horizon, but rather suggest an import of detrital material 

from a different source area with a K- and Mg-richer, but Ti-poorer lithology. Unfortunately we cannot 

be more precise in that respect due to limited knowledge about the detrital source area or related 

drainage systems to Demerara Rise. 

 Redox cycles: Rapid and cyclic bottom water redox fluctuations at Site 1261 were suggested to 

document variations between sulfidic and anoxic, non-sulfidic conditions in an earlier work of März 

et al. (accepted). Comparing the records of Cd/Al, Mo/Al, Ni/Al, V/Al and Zn/Al at Site 1261 and the 

part of 1259 above the GH, the variations from maxima to minima (Fig. 4.3b-f) are similar at both 

sites, despite lower time resolution at Site 1259. Also the respective trace element EFs (Fig. 4.5) are 
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very similar at both sites. This indicates that at least the upper part of Site 1259 (499.60 - 500.10 mcd) 

experienced very similar redox variations as Site 1261. Detection of variable, but overall anoxic redox 

conditions not only at the supposedly shallower Site 1259, but also at the deeper Site 1261 suggests that 

indeed large parts of the continental margin at Demerara Rise were affected by bottom water anoxia 

during OAE3. However, more detailed comparison of redox-sensitive proxy records reveals slight 

differences between both sites. Compared to the four nearly identical redox cycles at Site 1261 (regular 

cyclicity, very similar maximum and minimum element/Al values in each cycle, repetitive “sawtooth” 

patterns), Site 1259 displays more irregular variations, with some element/Al minima (500.15-500.22 

mcd; Fig. 4.3b-f) and maxima (499.92-499.98 mcd; Fig. 4.3b-f) that are less pronounced than expected. 

Thus, we conclude that although redox cyclicity at Site 1259 above the GH was similar to Site 1261, the 

intensity of anoxia/euxinia and the regularity of redox changes were less pronounced. A major difference 

between both sites is the occurrence of the GH horizon at Site 1259 (dotted bar, Figs. 4.1, 4.3, 4.6). The 

relatively low Al ratios of Cd, Ni, Mo, V and Zn throughout the GH (Fig. 3b-f), in combination with 

lower TOC/Al (Fig. 4.1b) and high Fe/S (Fig. 4.3a) ratios point to less reducing conditions during its 

deposition than during the overlying section of Site 1259. In support of this, the P/Al and C/P records 

within the GH show highest (0.6-3.3) respectively lowest (0.3-2.9) values of all samples (Fig. 4.6b, 

c), proving enhanced P retention in the sediment under at least non-sulfidic conditions. In addition, 

~20% of all P measured in the GH is Fe oxide-associated (Fig. 4.7a). We assume that depositional 

conditions during formation of the GH were probably influenced by enhanced bottom current activity, 

introducing less reducing bottom waters and winnowing fine particles. 

 The sediment section below the GH at Site 1259 (below 500.48 mcd) is the only interval 

where Mn/Al reaches values comparable to AS (Fig. 4.3a). This Mn/Al maximum is paralleled by 

highest overall carbonate contents of up to ~100 wt% (Fig. 4.1c). As discussed earlier, Mn carbonate 

formation requires elevated Mn2+ levels in the pore water, which are induced by reductive dissolution 

of Mn (oxyhydr)oxides. Deposition of Mn (oxyhydr)oxides requires periodically oxic bottom water 

conditions. Indeed, less reducing bottom water conditions are implied by relatively low Cd/Al and 

Zn/Al ratios (Fig. 4.3b, f). Also low C/P ratios indicate P burial in the sediment under oxic conditions   

(Fig. 4.6c). However, V/Al and especially Mo/Al and Ni/Al exhibit very high values (Fig. 4.3c-e), 

standing in contrast to oxic conditions. Notably, the trace elements highly enriched below the GH are 

those associated to OM (which is in support of the high TOC/Al values in the respective interval), 

while sulfide-bound Cd and Zn are relatively low. Despite these two contradictory interpretations for 

the interval below the GH, its redox development did obviously not follow the regular systematics as 

the redox cycles above the GH and the ones at Site 1261.



111

 Geochemical environment of Coniacian-Santonian Demerara Rise

 Comparison of EFs at 1259 and 1261 with values reported for the CTBE (Tab. 4.2; Fig. 4.5) 

shows that for most trace elements, EFs are very similar to CTBE black shales at Demerara Rise, 

which were deposited ~10 Ma prior to OAE3, during OAE2. Thus, despite the more limited spatial 

extention of OAE3 (tropical and subtropical North Atlantic), at Demerara Rise both OAEs have 

obviously developed in a similar dramatic way, and are comparable to each other in terms of high OM 

production and/or preservation, low detrital input, and anoxic to sulfidic bottom waters. This supports 

the lower-resolution data of Hetzel et al. (2006), reporting a sediment composition for Demerara Rise 

black shales very similar to our OAE3 data. Böttcher et al. (2007) found very similar Fe-S systematics 

in OAE2 black shales at Demerara Rise, indicating an Fe-limited system, a high degree of pyritization 

and intensive OM sulfurization. We conclude that Middle and Late Cretaceous black shale formation 

at Demerara Rise took place under very similar paleoenvironmental conditions. 

Conclusion

 During Coniacian-Santonian time ODP Sites 1261 and 1259 were dominated by marine 

(calcareous and opal) sedimentation and burial of large amounts of OM, which at least partly related to 

elevated OM preservation by diagenetic OM sulfurization. The presented new geochemical data support 

the conclusion that both sites were affected by similar bottom water redox conditions throughout the 

investigated intervals, which were generally anoxic, and even sulfidic for prolonged periods. However, 

bottom water and sediment redox were subject to relatively rapid and cyclic variations, which occurred 

at both sites. This observation suggests that prevailing redox conditions affected large parts of the 

continental margin at Demerara Rise during OAE3. The sedimentary record documents that redox 

fluctuations were regular in frequency and degree of changes at the deeper Site 1261. At the shallower 

position of Site 1259 sedimentation instead was stronger affected by variations in detrital supply and/or 

winnowing of bottom currents, and probably periodic erosion, together supporting a more proximal 

location. In contrast, steady hemipelagic sedimentation prevailed at Site 1261, consistent with a greater 

water depth. Especially during the formation of the glauconitic horizon at Site 1259, the depositional 

regime was physically disturbed, and bottom waters were most probably better oxygenated. Speciation 

of P indicates that at both sites Fe oxide-bound P and authigenic apatite are the dominant sedimentary 

P species, while detrital apatite seems to be of higher importance within the GH. Only minor P 

contributions are related to fish bones and organic P. Geochemically, the studied OAE3 deposits are 

well-comparable to the CTBE black shales from the same sites, indicating that both anoxic events 

created very similar paleoenvironmental conditions at Demerara Rise.
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 5. Coniacian-Santonian deep ocean anoxia/euxinia inferred from molecular 
and inorganic markers: Results from the Demerara Rise (ODP Leg 207)
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Abstract:

 We investigated Coniacian to early Santonian sediments from ODP site 1261, Demerara Rise, 

using organic, inorganic and molecular methods to reconstruct the development of ocean water 

anoxia/euxinia. High lycopane/n-C31 ratios of up to 4.5 suggest oxygen-depleted conditions in the 

water column for most of the time. Lower ratios (~1) across the early to mid Coniacian transition 

probably mark a period of better oxygenation. In two higher-resolution intervals we observe strong 

enrichment in Zn, concurrent with an increase in the lycopane/n-C31 ratio, identifying the onset of 

euxinic bottom waters, whereas decreases in lycopane/n-C31 ratio and in Ni enrichment characterize 

the termination of sulfidic conditions. Photic zone euxinia (PZE) appears to be restricted to the early 

Coniacian interval, as isorenieratene derivates were exclusively detected in the lowermost part of the 

section, supporting progressive weakening of upwelling intensities from the mid-Coniacian onwards.

Keywords: Oceanic anoxic event 3, black shale, anoxia, euxinia, isorenieratane, lycopane, trace metals, 

Demerara Rise, ODP Site 1261
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6. Are the Kimmeridge Clay deposits affected by “burn-down” events? 
A palynological and geochemical approach
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Abstract

 

 Two independent analytical approaches, palynological and inorganic geochemical, were 

applied to identify potential oxygenation “burn-down” events in the upper Kimmeridge Clay 

Formation (KCF) deposited in the Jurassic Wessex Basin. The KCF interval spanning 121.82-122.72 

m depth was sampled from the Swanworth Quarry 1 borehole (Dorset, UK) at 2.5-5.0 cm resolution. 

Samples were analysed for total organic carbon (TOC), palynofacies components, organic-walled 

dinoflagellate cysts (dinocysts), and concentrations of elements that are known to be productivity- 

and/or nutrient-related (e.g. Cu, P), detrital (e.g. Al, Ti, Zr) and redox-sensitive/sulfide-forming 

(e.g. Fe, Mn, S). Overall, TOC contents exceed 2 wt%, with a maximum of 8.8 wt% at 122.37 cm 

depth and elevated values in the central part of the investigated interval. This interval of relatively 

higher TOC values correlates well with the maximum recovery of marine palynomorph absolute 

abundances and low Al values, suggesting that TOC is primarily of marine organic matter.  As the 

amount of marine palynomorphs and TOC content diminishes from the middle part of the studied 

section upwards, species-specific changes in dinocyst assemblages can be observed.  In particular, 

abundances of Circulodinium spp., Cyclonephelium spp., Sirmiodinium grossi, Senoniasphaera 

jurassica and Systematophora spp. decrease rapidly in comparison to other species, such as 



123

 Kimmeridge Clay palynology and geochemistry

Glossodinium dimorphum and Cribroperidinium sp. 1. Sharp changes in Fe/Al, Mn/Al and S at 

122.37 m depth mark a shift from anoxic/euxinic conditions in the lower and middle part of the 

studied interval to more oxic conditions in its upper part. Such a shift could explain the high TOC 

and marine palynomorphs abundances as a result of better preservation, and the subsequent drop in 

abundances as an effect of a “burn-down”, i.e. organic matter oxidation.  Although the shift in redox-

sensitive elements is very sharp and the major changes in TOC and marine palynomorphs occur at 

the same level, the changes in TOC and marine palynomorphs are gradual and less pronounced. 

We suggest that enhanced organic matter preservation due to anoxic/euxinic conditions was the 

reason for high TOC and marine palynomorphs values in the central part of the studied interval.  

Oxygenation of bottom and pore waters within the sediment was most probably the cause for 

decreasing TOC values and reduced recovery of marine palynomorphs towards the top of the studied 

interval.

Keywords: Kimmeridge Clay Formation, preservation, productivity, palynofacies, organic-walled 

dinoflagellate cysts, trace metals, oxidation front
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7. Conclusions and perspectives

 In this work, we used the great potential of combining different redox-sensitive geochemical 

parameters in combination with high sample resolution. This approach revealed primary and 

diagenetic effects of rapid paleoenvironmental changes on sediment composition in different 

marine depositional regimes and at different times of Earth history. In particular, combining high-

resolution sequential Fe and P extractions gave important and new insights into their biogeochemical 

cycling under various bottom water and sediment redox conditions. Most important amongst our 

findings in terms of paleoredox conditions in the Late Cretaceous deep ocean was the phosphate 

coupling to Fe (oxyhydr)oxides under obviously anoxic bottom water conditions, and in particular 

the preservation of this coupling within deeply buried Late Cretaceous black shales. In addition, 

detailed investigations of redox-sensitive trace element (Cd, Mo, Ni, V, Zn) systematics in these black 

shales not only enabled us to distinguish between subtle variations at the lower end of the bottom 

water redox scale, namely sulfidic and anoxic, non-sulfidic bottom water conditions. They also gave 

interesting insights into coupling of trace elements to different sedimentary phases, i.e. Mo and Ni 

mostly bound to (sulfurized) organic matter, Cd and Zn forming pure sulfides. In Zambesi deep-sea 

fan deposits, the diagenetic re-distribution of Fe(III)-adsorbed phosphate within the sulfate/methane 

transition, and its transformation to authigenic Fe(II)-phosphate minerals as vivianite below it has 

not been described before in such detail. Preliminary findings in continental slope sediments off the 

Amazon and Rio de La Plata show very similar pore water, solid phase and P speciation patterns as 

off the Zambesi, indicating that vivianite precipitation below the SMT might be a globally important 

P sink in such settings. Notably, this focussed P re-distribution at a certain diagenetic front has to be 

recognized as a process different than the rather gradual P „sink switching“ to authigenic apatite in 

marine sediments during deep sediment burial.  

 

 The results of this study lead to some potentially important recommendations for 

investigating rapid paleoclimatic changes in aquatic sediments. A major point is that working 

in high sampling resolution not only in (sub)recent, but also in ancient marine deposits is one 

of the keys to successfully identify sedimentary signals of paleoenvironmental changes in their 

full scope - most of our findings would not have been possible without high sampling resolution. 

However, sampling and studying paleoenvironmental key sections in sedimentary succession in 

high resolution is only sensible if there is already a lower-resolution framework of background 
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information available. Choosing the most suitable interval for a more detailed look is crucial for a 

successful paleoenvironmental interpretation, as applying high-resolution geochemical analyses e.g. 

to a whole ODP core is normally limited by time and money. Another important point to mention is 

that working on deep-sea drill cores - in contrast to outcrop samples - yields sample material usually 

much less affected by external physicochemical processes like weathering, and thus has a much 

higher potential to identify original primary and diagenetic sediment properties.

 Geochemical analyses are usually resting on a basis of elemental concentrations in sediments 

or ionic species in pore waters. In ancient sediments, pore water data are often scarce, and if available, 

they rather document the present-day redox state of a sediment instead of paleoredox conditions. In 

such cases, but also in addition to pore water analyses in (sub)recent sediments, valuable information 

about the speciation (and thus the redox state, reactivity and bioavailability) of certain sediment 

components can be gained by sequential extraction techniques. Especially Fe and P speciation data 

of a sediment can tell a lot about bottom water and sediment redox conditions during its deposition, 

about its post-depositional (diagenetic) redox development, and about authigenic mineral formation. 

In combination with more traditional redox parameters - such as certain trace metal (Cd, Mn, Mo, 

Ni, V, Zn) contents, enrichments or depletions -, a detailed redox scheme can be established that has 

the potential to trace even subtle changes at the lower end of the redox scale, i.e. anoxic non-sulfidic 

versus sulfidic. In addition, the combination of purely inorganic-geochemical analyses with other 

mineralogical and optical techniques as X-ray diffraction or scanning electron microscopy provides a 

more comprehensive picture of a sediment´s primary mineralogy and authigenic mineral formation. 
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