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Zusammenfassung 
 

 

Im Rahmen der vorliegenden Doktorarbeit wurden drei experimentelle Untersuchungen 

durchgeführt, um zu verstehen, wie die Zusammensetzung des Erdmantels die Stabilität von 

Mineralen und ihre elastische Eigenschaften bestimmt, und wie diese wiederum die 

seismischen Eigenschaften des tiefen Erdmantels beeinflussen. Die Phasenbeziehungen von 

Calciumsilikat-Perowskit wurden in Hochdruck-Hochtemperaturexperimenten untersucht, um 

den Effekt seiner Bildung auf die Charakteristika der seismischen Diskontinuität bei 520 km 

Tiefe im Erdmantel zu bestimmen. Der Effekt von variabler Zuammensetzung auf die 

Kompressibilität von Magnesiumsilikat-Perowskit wurde untersucht, um die 

geophysikalischen Konsequenzen chemischer Heterogenität im Erdmantel zu verstehen. 

Kalorimetrische Messungen der Granatmischreihe Pyrop-Majorit wurden durchgeführt, um 

grundsätzliche thermodynamische Daten für die Modellierung der Bildungsreaktionen von 

Magnesium- und Calciumsilikat-Perowskit bereitzustellen. 

 

(i) Die Calciumsilikat-Perowskit bildende Reaktion in der Übergangszone des 

Erdmantels: Implikationen für seismische Diskontinuität in der mittleren 

Übergangszone bei 520 km Tiefe. 

 

Globale seismische Beobachtungen zeigen, dass das Auftreten der seismischen Diskontinuität 

bei 520 km Tiefe in der mittleren Mantelübergangszone ein komplexes Erscheinungsbild hat. 

In einigen Regionen des Erdmantels erscheint diese Diskontinuität in zwei Diskontinuitäten in 

leicht unterschiedlichen Tiefen aufgespalten zu sein. Es ist daher vorgeschlagen worden, dass 

unter den Bedingungen der mittleren Übergangszone ausser dem Phasenübergang von 

 9



(Mg,Fe)2SiO4 Wadsleyit zu Ringwoodit auch die Entmischung von Calciumsilikat-Perowskit 

aus Majorit-Granat fähig ist, eine seismische Diskontinuität zu erzeugen. 

Experimente mit der Vielstempelpresse wurden durchgeführt, um das Tiefenintervall 

der Bildungsreaktion von Calciumsilikat-Perowskit als Funktion von Druck, Temperatur und 

Majorit-Granatgehalt zu untersuchen und zu bestimmen, ob sie die beobachtete Aufspaltung 

der seismischen Diskontinuität bei 520 km Tiefe verursachen könnte. Unsere Resultate zeigen, 

dass die Entmischung von Calciumsilikat-Perowskit aus Majorit-Granat eine nicht-lineare 

Funktion des Druckes ist, was in einer relativ hohen Produktion von Calciumsilikat-Perowskit 

über einen schmalen Druckbereich hinweg resultiert. Der berechnete seismische 

Impedanzkontrast für diese Reaktion ist in guter Übereinstimmung  mit seismischen 

Beobachtungen für eine aufgespaltene Diskontinuität bei 520 km Tiefe. Dagegen können 

Temperaturschwankungen im Erdmantel alleine nicht erklären, warum die Diskontinuität bei 

520 km Tiefe in manchen Bereichen des Erdmantel aufgespalten ist und in anderen nicht. Die 

effektive Clapeyron-Steigung der Bildungsreaktion von Calciumsilikat-Perowskit deutet 

darauf hin, dass die Tiefe, bei der sie mit dem Phasenübergang von Wadsleyit zu Ringwoodit 

zusammenfallen würde, sehr viel grösser als 520 km ist, wo auch generell nur eine einzige 

Diskontinuität beobachtet wird. Daher ist die Aufspaltung der Diskontinuität bei 520 km sehr 

wahrscheinlich das Resultat  unterschiedlicher Calciumgehalte des Erdmantels, verursacht 

entweder durch unterschiedliche Mantelfertilität oder unterschiedlich hohe Anteile von  re-

integrierter ozeanischer Kruste. Die Aufspaltung der seismischen Diskontinuität bei 520 km 

Tiefe ist daher ein empfindlicher Indikator der Mantelheterogenität. 

 

 

(ii) Eine Bestimmung der Zustandsgleichung von Magnesiumsilikat-Perowskit 

Einkristallen mit Gehalten von Fe und Al; Implikationen für die elastischen 

Eigenschaften des unteren Erdmantels. 

 

Magnesiumsilikat-Perowskit, die vorherrschende Phase im unteren Erdmantel, enthält 

zusätzlich zu zwei- und dreiwertigem Fe auch signifikante Anteile von Al. Die trivalenten 

Kationen Fe3+ und Al3+ können in die Magnesiumsilikat-Perowskitstruktur entweder durch 

gekoppelte Substitution auf den Mg und Si Positionen oder durch einfache Substitution nur 
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auf den Si Plätze eingebaut werden, wobei im letzteren Fall der Ladungsausgleich durch die 

Bildung von Sauerstoff-Leerstellen hergestellt wird. Bisherige Untersuchungen lieferten keine 

eindeutigen Ergebnisse in Hinsicht auf den Einfluss von Fe3+ und Al3+ auf  die elastischen 

Eigenschaften, sowie darauf, welches der bevorzugte Substitutionsmechanismus unter den 

Bedingungen des unteren Erdmantels ist. Diese Eigenschaften sind aber entscheidend, wenn 

die Konsequenzen chemischer Heterogenität im unteren Erdmantel bestimmt werden sollen. 

 

Messungen der Zustandsgleichung von gut charakterisierten Einkristallen von (Fe,Al)-

MgSiO3-Perowskit mit unterschiedlichen Gehalten von Fe und Al wurden mithilfe von 

Diamantstempelpressen kombiniert mit Röntgendiffraktomtrie durchgeführt. Die Einkristalle 

wurden in Vielstempelpressen bei 25 GPa und 1800-2000°C synthetisiert. Trivalentes Al3+ 

und Fe3+ werden durch den gekoppelten Substitutionsmechanismus eingebaut, wobei die 

Möglichkeit besteht, dass bei niedrigen Fe,Al-Gehalten auch der Einbau mit Hilfe von 

Sauerstoff-Leerstellen stattfindet. Die Kompressibiltät von Magnesiumsilikat-Perowskit steigt 

mit steigendem Gehalt von Fe und Al. Die b-Achse ist am geringsten kompressibel, während 

die a- und c-Achse eine ähnliche Kompressibilität aufweisen. Passt man die 

Kompressionsdaten einer Birch-Murnaghan Zustandsgleichung dritter Ordnung an, ergeben 

sich K' Werte von deutlich über 4, und das Kompressionsmodul erniedrigt sich stark mit dem 

Fe- und Al-Gehalt im Vergleich zu einer Anpassung der Daten an eine Zustandsgleichung 

zweiter Ordnung. Extrapoliert man die Birch Murnaghan Zustandsgleichung dritter Ordnung, 

so ergeben sich keine Dichteunterschiede für den Perowskit durch die Substitution mit Al und 

Fe unter den Bedingungen des unteren Erdmantels. Eine Anpassung dieser Zustandsgleichung 

mit einem K' von 4 jedoch passt besser zu den durch das geophysikalische PREM Modell 

vorhergesagten Dichtewerten. Die Substitutionsreaktion  in 

Magnesiumsilikat-Perowskit erhöht das Volumen von Perowskit relativ stärker als die 

Substitutionreaktionen  oder . Unsere Ergebnisse 

zeigen daher ausserdem, dass die Bildung von metallischem Fe durch Disproportionierung im 

unteren Erdmantel bevorzugt stattfindet, was erklärt, warum die Fe

SiMgAlFe VIVIIIVIVIII
++++ +↔+ 4233

MgVIIIVIII
++ ↔ 22SiMgAlAl VIVIIIVIVIII

++++ +↔+ 4233 Fe

3+ Konzentrationen im 

unteren Erdmantel wahrscheinlich hoch sind. 
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(iii) Eine kalorimetrische Untersuchung der Mg3(Mg,Si)Si3O12(Majorit)-

Mg3Al2Si3O12(Pyrop) Granat-Mischkristallreihe. 

 

Sowohl Magnesium- als auch Calciumsilikat-Perowskit werden im Erdmantel durch 

Reaktionen gebildet, in denen Majorit eine wichtige Rolle spielt. Bei Drucken über 4 GPa 

können sowohl Mg als auch Fe auf der Oktaederpostion in Granat für Al substituiert werden, 

was auch als Majoritsubstitution bezeichnet wird. Diese Substitution kann im 

Phasendiagramm durch die Konode Mg3(Mg,Si)Si3O12(Majorit)-Mg3Al2Si3O12(Pyrop) 

beschrieben werden. Thermodynamische Parameter entlang dieser Granat-Mischkristallreihe 

sind entscheidend für die Modellierung der Bildungsreaktionen von Silikat-Perowskiten. 

 

Die Lösungsenthalpien der Granat-Mischkristallreihe  im System Majorit-Pyrop 

wurden mithilfe der Bleiborat (2PbO.B2O3) Oxid Tropfenlösungs-Kalorimetrie gemessen. Die 

Ergebnisse zeigen, dass, beim Pyrop-Endglied anfangend, die Lösungsenthalpien mit 

steigendem Majorit-Gehalt nicht-linear geringer werden. Ein scharfer Bruch findet sich im 

Verlauf der Kurve der Lösungsenthalpien bei Pyropgehalten zwischen 32 und 24 mol%, was 

nahe an dem symmetrie-brechenden Übergang von kubischer zu tetragonaler Struktur liegt. 

Die thermodynamische Verfeinerung der Daten mithilfe eines regulären, symmetrischen 

Lösungsmodells für die Granat-Mischkristallreihe erlaubt es, die Daten über den kubisch-

tetragonalen Übergang hinweg zu extrapolieren und die Eigenschaften des fiktiven kubischen 

Majorit-Endgliedes zu erhalten, die für die thermodynamischen Berechnungen erforderlich 

sind. Ein Wert von -37 kJ/mol wurde für die Lösungsenthalpie von kubischem Majorit-Granat 

ermittelt, was deutlich niedriger ist als die bisherigen Schätzungen von 5 kJ/mol. Die Daten 

zeigen ausserdem, dass die Mg3(Mg,Si)Si3O12(Majorit)-Mg3Al2Si3O12(Pyrop) 

Mischkristallreihe stark nicht-ideale Mischungseigenschaften hat. 

 

 



 
 
 
 
 
Summary 
 
 
Three experimental investigations have been performed in order to understand how the 

composition of the mantle may influence mineral stability and elastic properties and how 

these may influence seismic properties of the deep mantle. The phase relations of calcium 

perovskite have been studied in high pressure and temperature experiments to examine the 

effect of its formation on seismic discontinuity features at 520 km depth in the mantle. The 

effect of varying composition on the compressibility of magnesium silicate perovskite has 

been examined in order to understand the geophysical consequences of chemical 

heterogeneity in the lower mantle. Calorimetric measurements of the pyrope-majorite 

garnet solid solution have been made to provide essential thermodynamic data for 

modeling the formation reactions of both magnesium and calcium silicate perovskite.  

 

(i) The calcium silicate perovskite forming reaction in the transition zone of the 

Earth’s mantle: implication for the mid-transition zone seismic discontinuity at 

520 km depth. 

 

Global seismic observations show complexity in the appearance of the mid-transition zone 

520 km seismic discontinuity. In some regions of the mantle this discontinuity seems to be 

split into two discontinuities, at slightly different depths. It has been proposed that at mid-

transition zone conditions apart from the (Mg,Fe)2SiO4 wadsleyite to ringwoodite 

transition, the exsolution of calcium silicate perovskite from majorite garnet may be 

capable of producing a seismic discontinuity. 

Multianvil experiments were carried out to investigate the depth interval of the 

calcium perovskite forming reaction as a function of pressure, temperature, and garnet 

majorite content in order to examine if it could cause the observed split in the 520 km 

seismic discontinuity. Our results show the exsolution of calcium perovskite from majorite 
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garnet to be a non-linear function of pressure resulting in formation of a significant 

proportion of calcium perovskite over a narrow depth interval. Calculated impedance 

contrast for this reaction is in good agreement with seismic observations for a split 520 km 

discontinuity. Temperature variation in the mantle alone cannot explain why the 

discontinuity is split in some regions of the mantle but not in others. The effective 

Clapyeron slope of the calcium perovskite forming reaction indicates that the depth at 

which it would converge with that of the wadsleyite to ringwoodite transition is much 

deeper than 520 km, where a single discontinuity is generally observed. Therefore, the 

splitting of the 520 km discontinuity is more likely to result from variability in the Ca 

content of the mantle, either due to varying mantle fertility or due to varying proportions of 

recycled oceanic crust. The split in the 520 km discontinuity is therefore, a sensitive 

indicator of mantle heterogeneity. 

 

(ii) An equation of state study of Fe- and Al-bearing magnesium silicate perovskite 

single crystals; implications for lower mantle elastic properties 

Magnesium silicate perovskite, the dominant phase of the Earth’s lower mantle, contains a 

significant amount of Al in addition to ferric and ferrous iron. Trivalent cations Fe3+ and 

Al3+ may substitute into magnesium silicate perovskite structure either by a coupled 

substitution onto both Mg and Si sites or by substitution onto the Si site with charge 

balance provided by the creation of an oxygen vacancy. Previous studies have been 

inconclusive as to the effects of Fe3+ and Al3+ on the elastic properties of silicate perovskite 

and on the favored substitution mechanism at mantle conditions. Such properties are 

required in order to assess the consequences of chemical heterogeneity in the lower mantle. 

Equation of state measurements were carried out using in-situ single crystal X-ray 

diffraction in a diamond anvil cell on well-characterized (Fe,Al)-MgSiO3 perovskite single 

crystals with varying Fe and Al contents. These crystals were synthesised using a 

multianvil apparatus at 25 GPa and 1800-2000°C. The substitution of trivalent Al3+ and 

Fe3+ is found to occur by a coupled substitution mechanism with the possibility that a 

mechanism involving the creation of oxygen vacancies may only be relevant at low 

trivalent cation concentrations. The compressibility of magnesium silicate perovskite 

increases with increasing incorporation of Fe and Al. The b-axis is least compressible 

while the a and c axes have a similar compressibility. Fitting the compression data to a 3rd 
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order Birch-Murnaghan equation of state, results in values of K' significantly greater than 

4, and causes the bulk modulus to decrease strongly with Al and Fe content compared to 

when a 2nd order equation is employed. Extrapolating using the 3rd order Birch-Murnaghan 

fit shows there to be no effect on perovskite densities as a result of Al and Fe substitution 

at lower mantle conditions. However, a fit considering a K' of 4 provides a better match 

with predicted density for lower mantle when compared to the PREM geophysical model. 

The  substitution in magnesium perovskite increases the 

volume of perovskite more than either the  or  

substitutions. Our results show that the formation of metallic iron through 

disproportionation will be favoured at lower mantle conditions, which explains why Fe

SiMgAlFe VIVIIIVIVIII
++++ +↔+ 4233

SiMgAlAl VIVIIIVIVIII
++++ +↔+ 4233 MgFe VIIIVIII

++ ↔ 22

3+ 

concentrations of the lower mantle are likely to be high.  

(iii) A calorimetric study of the Mg3(Mg,Si)Si3O12(majorite)-Mg3Al2Si3O12(pyrope) 

garnet solid solution. 

Both magnesium and calcium silicate perovskites are formed in the mantle through 

reactions that involve majoritic garnet. At pressures above 4 GPa, both Mg and Fe can 

substitute on to the octahedral Al position in garnet, in what is known as the majorite 

substitution. This substitution can be described by the join Mg3(Mg,Si)Si3O12(majorite)-

Mg3Al2Si3O12(pyrope). Thermodynamic parameters along this garnet solid solution are 

crucial for modeling the formation reactions of silicate perovskites.  

Enthalpies of dissolution of garnet solid-solutions in the system 

Mg3(Mg,Si)Si3O12(majorite)-Mg3Al2Si3O12(pyrope) were measured by lead borate 

(2PbO.B2O3) oxide drop solution calorimetry. Results show that starting from the pyrope 

end member, the enthalpies of dissolution decrease non-linearly with increasing majorite 

content. A sharp break in the slope occurs for the enthalpies of dissolution between pyrope 

contents of 32-mol% and 24-mol%, which is close to the symmetry breaking cubic-

tetragonal transition. Thermodynamic refinement of the data using a symmetric regular 

solution model for the garnet solid solutions enables the data to be extrapolated in 

composition through the cubic-tetragonal transition to obtain the properties of the fictive 

cubic Mg3(Mg,Si)Si3O12(majorite) end member, which is required in thermodynamic 

calculations. A value -37 kJ/mol was obtained for the enthalpy of solution of the fictive 

cubic majorite garnet, which is significantly lower than the previous estimate of 5 kJ/mol. 
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The data also show that the Mg3(Mg,Si)Si3O12(majorite)-Mg3Al2Si3O12(pyrope) solid 

solution has strong non-ideal mixing properties. 

 

 



 

 

 

Chapter 1 

 

Introduction 
 

 

Knowledge of the physical and chemical state of the deep interior of the Earth is the key to 

understanding its evolution and dynamics. Due to limitations in direct sampling of the deep 

Earth, most inferences about its interior must be based on indirect information obtained 

through geophysical and geochemical observations. Experimental data on mineral 

properties at deep mantle conditions become crucial, particularly in interpreting 

geophysical observations and assessing their implications for mantle geochemistry and 

dynamics. 

The mantle represents the largest geochemical reservoir of the silicate Earth, 

comprising about 80% of volume of the total Earth. Our main information on the 

composition of the mantle comes from xenoliths, pieces of the mantle brought to the 

surface of the Earth by volcanic activity, and peridotite massifs, sections of the mantle 

emplaced in the crust by tectonic movements. In addition, the geochemistry of volcanic 

rocks produced at mid-oceanic ridges by partial melting of the mantle aids our 

understanding of mantle composition and a comparison with undifferentiated meteorite 

samples helps to constrain the likely composition of the Earth as a whole. The constancy in 

composition of erupted basaltic magmas with time infers that the bulk composition of the 

mantle may be relatively uniform as expected for a convecting mixed reservoir. Aside from 

a few inclusions in diamonds that may have a deeper origin, samples from the mantle come 

from depths of no more than 200 km. So, inferences about deep mantle structure need to be 

based on geophysical observations. Geophysical observations of the mantle have identified 

a number of globally-observed radial discontinuities that reflect seismic waves. These 

discontinuities are caused by sharp changes in mantle elastic properties and density. Such 
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Chapter 1: Mantle mineralogy 

observations have led to the division of the mantle into an upper mantle, a transition zone 

and a lower mantle, each separated by seismic discontinuities at a particular depth. The 

discontinuities may result from mineral phase transitions in an isochemical mantle but 

changes in the chemical composition of the mantle with depth would also be a possible 

explanation. As different possibilities exist, a range of geophysical observations need to be 

examined to determine the most likely explanation.  

Except for strongly incompatible trace elements that are concentrated in the crust 

and siderophile and chalcophile elements that partition into the core, the mantle is the 

major repository for most elements in the Earth. An understanding of mantle composition 

and its compositional structure has, therefore, great implications for the chemical 

composition of the entire Earth. In addition geophysical observations contain information 

on the temperature of the mantle that can be extracted through comparison with 

experimentally determined measurements. Such information is crucial for understanding 

the dynamics and thermal evolution of the Earth. 

 

1.1.  Mantle mineralogy: inferences from petrological 
observations, seismology and experiments 

 
Xenoliths brought to the surface by kimberlite and alkali basalt magmas in addition to 

abyssal and massif peridotites emplaced in the crust, show that the upper part of the mantle 

is generally an ultramafic rock termed peridotite, which is comprised of the minerals 

olivine, clinopyroxene, orthopyroxene and an Al-bearing phase. At depths shallower than 

70 km, this Al bearing phase is plagioclase, but it transforms to spinel and then garnet with 

increasing depth. The deepest xenoliths, however, generally become entrained from depths 

no deeper than ~200 km. Geophysical techniques, primarily seismology, then become the 

only method for investigating the deeper mantle. Constraints also come from observations 

of the moment of inertia, gravity, heat flow of the Earth and electrical conductivity 

measurements. These geophyiscal observations, however, require interpretation using 

experimentally determined mineral properties and phase equilibria determinations. 

The general approach adopted for deciphering the mineralogy of the mantle is to 

assume that the deep mantle is of a similar composition to the upper mantle as inferred 
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  Chapter 1: Mantle mineralogy 

from peridotite samples and to experimentally determine the mineralogy of this bulk 

composition as a function of depth along an adiabatic thermal gradient. Based on such 

mineralogical models sound velocities are then calculated using available thermoelastic 

parameters and the results are compared with seismic reference models. By examining how 

well seismic velocities in the mantle match the model determinations, the assumptions 

made concerning the chemistry and temperature of the mantle as a function of depth can be 

assessed. 

Even though there are limitations in the existing mineral physics data that inhibit a 

robust interpretation of seismic data, within the uncertainties of the current data a 

reasonable match is found between seismic observations of S and P wave velocities with 

depth and models constructed for a peridotitic mantle composition (Cammarano et al., 

2005). However, seismic tomography has shown that heterogeneities of thermal and 

chemical origin, most likely arising from the presence of subducted lithospheric slabs, exist 

in the mantle. In addition observations of seismic heterogeneity in the lower mantle do not 

seem to be well explained by thermal variations alone (Trampert et al., 2004). Some 

observations have also been interpreted to result from the presence of partial melting in the 

deep mantle (Williams and Garnero, 1996; Karato and Jung, 1998). At pressures > 3 GPa 

such melting is likely to only arise if the mantle is suitably enriched in volatile elements 

like H and C at these depths, which also raises questions as to the degree of chemical 

homogeneity that can be expected in the deep mantle.  

 

Chemical composition of the mantle  
 
Various approaches have been adopted to infer the average chemical composition of the 

mantle. The simplest approach is to assume that the composition of the mantle is the same 

as some pristine peridotite samples e.g., KLB1 etc. recovered at the Earth�s surface. 

Ringwood, (1975) proposed a chemical composition based on recombining basaltic partial 

melt with the refractory mantle residue left behind. At mid-oceanic ridges basalts are 

generated by approximately 10% partial melting of peridotite mantle. Ringwood argued 

that the composition of the pristine mantle, that he termed pyrolite, would be the same as a 

mixture of peridotite melt residue and primitive mid-oceanic ridge basalt (MORB) 

compositions. Rather than assuming a particular residual and basalt composition, as 

Ringwood did, an alternative approach is to examine melt extraction trends in peridotite 
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xenoliths and massifs and extrapolate these trends back to an unmelted precursor (Walter, 

2004). Models also exist based on chondritic meteorite compositions (Allegre et al., 1995; 

Javoy, 1995). These models assume that the bulk Earth formed from chondrite meteorite 

material but that siderophile elements were extracted from this composition to the core 

leaving most major elements in the mantle in chondritic proportions. Because all 

undifferentiated meteorites have higher Si/Mg ratios than the upper mantle, such models 

require an additional reservoir rich in Si to form. Usually it is proposed that Si was 

extracted either to the core or to the lower mantle. Such models are often cited as evidence 

that the lower mantle may have a chemical composition different from that of the upper 

mantle. 

 

Seismic observations of the mantle  
 
Vital constraints can be placed on mantle mineralogy from seismological reference models 

(Travel time-tables of Jefferys and Bullen, 1940; 1066A, 1066B models of Gilbert and 

Dziewonski, 1975; PREM Preliminary Reference Earth Model of Dziewonski and 

Anderson, 1981; IASP 91 model of Kennet and Engdahl, 1991; AK135, Kennet et al., 

1995; Cammarano et al., 2005). Seismic reference models such as the Preliminary 

Reference Earth Model (Dziewonski and Anderson, 1981) provide a radially symmetric 

velocity depth profile of the Earth based on the inversion of body wave travel time data 

and free oscillations of the Earth. In these models velocities in the Earth�s interior are 

refined to a set of polynomial functions that operate over a specified depth interval, with 

the assumption that mantle discontinuities occur at predetermined depths. These 

discontinuity depths have been determined by analyzing seismic waves that are refracted 

by the discontinuity or from seismic waves that are converted from S to P waves, or visa 

versa, at the discontinuity. Information on amplitude of these discontinuity jumps and 

depth interval of velocity change across the discontinuity can also be used to place much 

needed constraints on mantle chemical structure (Stixrude, 1997). 

 

Pyrolite mineralogy as a function of depth 
 
The variation in the proportion of minerals that would crystallize from a pyrolitic bulk 

composition as a function of depth is show in Fig. 1.1 for the top 1000 km of the mantle 
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(Ringwood, 1991). For purposes of discussion this diagram can be conveniently divided 

into two components, which occupy each side of the diagram. On the left side is olivine 

and the higher pressure olivine polymorphs, while the right side is composed of the non-

olivine Si and Al-rich phases of the mantle. Phase transformations in olivine occur with 

increasing pressure over very narrow depth intervals, whereas the phase transitions in non-

olivine phases are gradual and occur over broad depth intervals. At a depth of 410 km, 

(Mg,Fe)2SiO4 olivine transforms to the high-pressure polymorph of wadsleyite β-

(Mg,Fe)2SiO4 which is generally considered to cause the 410 seismic discontinuity that is 

globally observed at this depth. The 410 km seismic discontinuity marks the top of the 

transition zone region of the mantle, so called because a transition in seismic velocity 

gradient occurs within this region. At around 17.5 GPa corresponding to a depth of 520 

km, wadsleyite undergoes an iso-chemical phase transition to ringwoodite, which likely 

causes a weak seismic discontinuity observed regionally at approximately this depth. The 

bottom of the transition zone and top of the lower mantle occurs at 660 km depth, 

(approximately 24 GPa), where ringwoodite breaks down to an assemblage of 

(Mg,Fe)(Si,Al)O3 with the perovskite structure and (Mg,Fe)O magnesiowüstite. This 

transformation causes a strong globally observed seismic discontinuity at this depth. 

Above 3 GPa the non-olivine phases in a pyrolite composition are orthopyroxene 

and clinopyroxene and the Al-rich phase garnet. With increasing pressure, both 

orthopyroxene and clinopyroxene components start to partition into garnet. This results 

from the substitution of Mg, Fe and Si onto the garnet Al octahedral position to create a 

component with pyroxene stoichiometry called majorite {i.e., (Mg,Fe)4Si4O12}. By mid-

transition zone conditions pyroxenes have completely dissolved into the garnet structure 

with garnet having the approximate stoichiometry (Mg,Fe,Ca)3(Mg,Al,Si)2Si3O12. At mid-

transition zone conditions of approximately 18 GPa, CaSiO3 starts to exsolve forming the 
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Figure 1.1 Pyrolite mantle mineralogy as a function of mineral volume fraction and 
depth variation. The small orange and pink region in upper right hand corner 
represents the stability field of feldspar and spinel respectively. Minerals recovered 
from high pressure-high temperature experiments are shown in the insets. Field of 
view of inset is ~200 microns. (With permission from Dr. D. J. Frost) 

 
 
 

separate phase calcium silicate perovskite. At the top of the lower mantle the remaining 

garnet starts to dissolve into magnesium silicate perovskite. By depths of approximately 

750 km in the lower mantle, a pyrolite composition assemblage comprises magnesium 

silicate perovskite, magnesiowüstite and calcium silicate perovskite. This assemblage is 

believed to be stable throughout the bulk of the lower mantle and only at pressures 

corresponding to the D�� layer on top of the core mantle boundary does magnesium silicate 

perovskite transform to a post perovskite polymorph with the structure of CaIrO3 

(Murakami et al., 2004). 
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Mantle Heterogeneity 
 
Though the major element composition of the upper mantle appears to have remained 

uniform over recorded geologic time, trace element and isotopic studies (Sun and 

McDonough, 1989) imply the presence of significant heterogeneities in the basalt source 

region. This may indicate the comparatively more mobile nature of incompatible trace 

elements in comparison to major elements or it may indicate heterogeneities being created 

by the presence of subducted oceanic lithosphere residing in the mantle (Christensen and 

Hofmaan, 1994). It is quite likely that a subducted slab would take a significant length of 

time to be rehomogenized by convective stirring in the mantle (Holzapfel et al., 2005). It 

is, therefore, quite possible that large regions of the mantle are comprised of mechanical 

mixtures of melt-depleted peridotite and subducted oceanic crust on a variety of length 

scales. This will have significant implications for the structure and composition of the 

mantle in addition to its potential effect on geophysical observations.  

 

1.2 Motivation 
 
 
Changes in mantle mineralogy as a result of phase transformations that occur over 

relatively short depth intervals have been found to coincide with major seismic 

discontinuities in the Earth�s mantle as shown in Fig. 1.2. A significant number of 

experimental studies have been devoted to determining the phase relations and physical 

properties of mineral phases associated with major seismic discontinuities such as those at 

410 km (Katsura and Ito, 1989; Irifune and Isshiki, 1998; Kiefer et al., 2001; Frost, 2003; 

Li et al., 1998) and 660 km (Ito and Takahashi, 1989; Shim et al., 2001; Li and Li, 2003). 

Of key interest is to understand how temperature and chemical variations in the mantle 

may affect seismically observable phenomena such as the depth, depth interval and 

amplitude of the discontinuities in addition to the ambient sound velocity and density of 

the mantle. For this experimental data are required on the influence of variable mantle 

chemistry on phase stabilities and elastic properties. 
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Figure 1.2. Pressure-temperature slopes of phase transformations in the Earth�s 
mantle compared with average seismic discontinuity depths (solid vertical lines) for 
the 410 km (in green), 520 km (in blue) and 660 km (in red) and global topography 
(vertical shaded regions). Double curves mark the beginning and end of divariant 
regions for the olivine to wadslyeite and wadsleyite to ringwoodite transformations, 
and the shaded area in the curves show the temperature ranges compatible with 
globally-observed topography of these discontinuities. Individual curves for the 
Mg2SiO4 ringwoodite to perovskite + ferropericalse reaction are shown from different 
studies [1] Irifune et al., (1998) [2] Katsura et al., (2003) [3] Fei et al., 2004 [4] Ito 
and Takahashi, (1989) [5] Shim et al., (2001). (With permission from Dr. D. J. Frost) 

 

The olivine to wadsleyite transformation that causes the 410 km discontinuity 

occurs in the MgO-FeO-SiO2 system and is therefore insensitive to chemical variations 

apart from the Fe/Mg ratio, although large concentrations of H2O may also have an effect 

(Wood 1995; Smyth and Frost, 2002; Frost and Doleĵs, 2007). The 660 km discontinuity, 

on the other hand, is likely to be more affected by variations in chemistry because, in 

addition to the MgO-FeO-SiO2 system, perovskite will also be influenced by the Al2O3 

content of the mantle and the Fe2O3 content. Recent experimental studies have shown that 

Fe2O3 has a strong affinity for magnesium silicate perovskite, which is stabilized by Al in 

the structure as a result of a coupled substitution. Such a substitution mechanism can also 
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affect the elastic properties of perovskite. From this analysis we can expect that the 

formation of magnesium silicate perovskite in the Earth�s mantle is likely to be a complex 

process both physically and chemically. In addition, however, there is evidence that 

seismic heterogeneity in the deep lower mantle may exist and that the observed variations 

are not well correlated with changes in temperature (Trampert et al., 2004). To understand 

and interpret these observations we require information on how chemistry may influence 

the elastic properties of major lower mantle minerals. 

In addition to major seismic discontinuities, minor weak seismic discontinuities are 

also known to exist in the Earth�s interior such as the Hales discontinuity at about 60-90 

km depth, possibly caused by MgAl2O4 spinel transforming to garnet and the Lehmann 

discontinuity at 220 km depth that may mark a change in mantle anisotropy. Another weak 

discontinuity was reported by Shearer, (1990), from the mid-transition zone at 520 km 

depth. This has been considered to be caused by the wadsleyite to ringwoodite transition. 

However, recent findings of Deuss and Woodhouse, (2001) show that this discontinuity is 

split at some locations in the mantle into two distinct discontinuities one closer to 500 km 

and the other at approximately 560 km. The most likely explanation for the occurrence of a 

split in the 520 is that it results from the formation of calcium silicate perovskite (CaSiO3) 

from majoritic garnet, which also occurs in this depth range. Previously the calcium 

silicate perovskite forming reaction had been poorly studied in pressure-temperature space 

and it was hard to constrain the exact pressure and temperature range over which it occurs. 

Studying this reaction is further complicated by the fact that majoritic garnet from which 

CaSiO3 perovskite exsolves is a multi-component solid solution and as such the exsolution 

reaction is likely to be dependent on a significant number of variables. 

 

A number of issues have remained unsolved about perovskite-forming reactions in the 

Earth�s mantle, for which laboratory studies can provide substantial information. For 

instance, 

 

(i) The pressure, temperature and compositional effects on the formation of 

calcium silicate perovskite from majorite garnet have remained unaddressed. 

This exsolution reaction could possibly cause a seismic discontinuity but the 

existing data are insufficient to verify this.  
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(ii) With the experimental observation that perovskite has a strong affinity for Fe3+ 

and that Fe3+ incorporation is coupled to the Al content in perovskite, an 

important question is how Fe3+ partitioning will effect the density of 

magnesium silicate perovskite. There are no systematic studies on the effects of 

varying bulk Fe content on the density and equation of state of Al-bearing 

perovskite. Such data will not only be important in modeling the amplitude of 

the 660 km discontinuity but are also critical for interpreting evidence for 

chemical heterogeneity in the lower mantle. 

(iii) The substitution mechanism of trivalent cations Al3+ and Fe3+ into the 

magnesium silicate perovskite structure remains to be understood and the 

conditions of pressure, temperature and composition where different possible 

substitution mechanisms dominate are unclear. Thermodynamic modeling of 

the stability fields of different substitution mechanisms requires information on 

how they influence the perovskite molar volume, which has not been studied in 

the past.  

(iv) Another aspect important to the study of both magnesium and calcium silicate 

perovskite forming reactions is to constraint the thermodynamic properties of 

the precursor phases of these transformations in order that thermodynamic 

properties of these lower mantle minerals can be determined through modeling 

of phase equilibria data. Only through the development of suitable 

thermodynamic models can experimental results be extrapolated, for example, 

to important lower temperature ranges, where reaction kinetics inhibits 

laboratory experiments. Both perovskite-forming reactions involve garnet and 

will be influenced by the composition of garnet particularly, the Al2O3 content 

of the garnet. Thermodynamic data for the garnet�majorite solid solution is 

crucial to understanding the silicate perovskite forming reactions. Such data 

will also constrain how the thermodynamic properties evolve as garnet 

undergoes a symmetry change from cubic to tetragonal.  
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1.3. Aims of the study 

 
The aims of this research are to experimentally assess the effects of chemistry and 

temperature on the calcium silicate perovskite (CaSiO3) forming reaction and to determine 

the effects of varying chemistry on the density and elastic properties of magnesium silicate 

perovskite (MgSiO3). To achieve this a series of phase equilibria, synthesis and 

compressibility experiments have been performed. A major motivation in this work has 

been to determine the properties required to model phase transformations and seismic 

velocities in the mantle. Mineral transformations at high pressure can be better understood 

using thermodynamic modeling that aids extrapolation to a wide range of conditions and 

helps to constrain important parameters such as high-temperature elastic properties. For 

this reason calorimetric measurements were also performed to independently assess 

thermodynamic parameters for the pyrope-majorite garnet solid solution. 

 

Three experimental investigations were carried out with following aims: 

 

(i) Multianvil experimental study of calcium perovskite forming 

reaction from majorite garnet. 
 

At mid-transition zone depths corresponding to pressures of approximatly 16 GPa, 

the total Ca content of the mantle contained in the majorite garnet phase. With increasing 

pressure however, majoritic garnet reaches saturation in the CaSiO3 component and starts 

to exsolve CaSiO3 perovskite. 
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Figure 1.3. CaO content of majorite garnet in peridotitic (Nishihara and  

Takahashi, 2001) and basaltic (Irifune and Ringwood, 1993) compositions. 

 

 Fig. 1.3, shows the Ca content of majorite as a function of pressure in a peridotitic and 

basaltic bulk composition based on existing data of Nishihara and Takahashi, (2001) and 

Irifune and Ringwood, (1993). The Ca content decreases as CaSiO3 perovskite exsolves 

with pressure. The results of previous studies are clearly quite different. As the bulk iron 

content of both these compositions is similar, the major variables which could possibly 

effect the CaSiO3 solubilty in majorite garnet are pressure, temperature and the garnet 

Al/Si ratio i.e., the majorite content. In chapter 2 of this study the solubility of CaSiO3 in 

majorite garnet as a function of these variables has been determined in high-pressure and 

high-temperature multianvil experiments. From these solubility data the proportion of 

CaSiO3 perovskite formed in the mantle for any plausible mantle bulk composition at any 

pressure and temperature can be calculated. Combining the experimental solubility 

measurements with existing thermodynamic data for CaSiO3 perovskite and garnet, a 

thermodynamic model has been developed to describe the formation of CaSiO3 perovskite. 

In addition, the effect of this CaSiO3 perovskite forming reaction on mantle seismic 

properties has been modeled and is shown to explain the split 520 km discontinuity. 
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(ii) Equation of state study of (Mg,Fe)(Si,Al)MgSiO3 perovskite using 

diamond anvil cell. 
 

Recent studies have indicated that the substitution of Al into (Mg,Fe)(Al,Si)O3 

perovskite is coupled to the Fe3+ regardless of oxygen fugacity and that a significant 

portion of the Fe in lower mantle perovskite is, therefore, likely to be in the Fe3+ state 

(McCammon, 1997; Frost et al., 2004). The effect of this important substitution on density 

and elastic properties are poorly constrained. In chapter 3 of this thesis these effects have 

been systematically investigated by employing single crystal x-ray diffraction in a diamond 

anvil cell. 

Single crystals of suitable size for in-situ X-ray diffraction in a diamond anvil cell 

were synthesized using a multianvil press. Mössbauer spectroscopic and electron energy 

loss spectroscopic measurements were carried out on these crystals to precisely 

characterize the Fe3+ and Fe2+ contents. Samples were compressed to high pressures and 

their unit cell parameters were determined in-situ at room temperature. The results 

constrain the effect of varying iron and aluminum content on the density and elastic 

properties of magnesium silicate perovskite. Implications for seismic observations of the 

deep mantle are examined using these results.  

 

(iii) Drop solution calorimetric measurements on the Mg3(Mg,Si)Si3O12 

(majorite)-Mg3Al2Si3O12 (pyrope) solid solution. 

 

In order to model perovskite-forming reactions, knowledge of the thermodynamic 

properties of the minerals from which perovskites form are essential. In chapter 4 of this 

thesis drop solution calorimetric measurements are described on garnet solid solutions 

which were performed in order to determine the ideality of this solid solution and the 

properties of the Mg3(Mg,Si)Si3O12 majorite end member.  
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Chapter 2 
 
 
The calcium silicate perovskite forming reaction in the 
transition zone of the Earth�s mantle, implications for the 
mid-transition zone seismic discontinuity at 520 km 
depth. 
 
 
2.1 Introduction 
 
 
All the existing mineralogical mantle models consider calcium oxide to be one of the 

important oxide constituents of the Earth�s mantle (Ringwood, 1975; Anderson, 1983; 

Wänke et al., 1984; Allegre et al., 1995). So, the role of calcium bearing mantle phases is 

crucial for understanding mantle dynamics. At mantle conditions, the primary calcium host 

phases with increasing depth, are clinopyroxene, garnet, majorite garnet and calcium 

silicate perovskite respectively (Ringwood, 1991; Canil, 1994). Phase equilibrium studies 

show that at the upper mantle depths, clinopyroxene becomes increasingly soluble in 

majorite garnet with increasing pressure and by the mid-transition depth in the Earth�s 

interior, the mantle�s entire calcium budget is contained in majorite garnet. When this 

high-pressure tetragonal garnet phase becomes saturated in the Ca component at 

approximately 17 GPa, it starts to exsolve calcium silicate perovskite because the solubility 

of calcium oxide (CaO) in majorite garnet starts to decrease with increasing pressure 

(Irifune, 1987; Gasparik, 1990; Fei and Bertka, 1999). From the lower part of the transition 

zone downwards, the amount of calcium perovskite gradually increases with the decreasing 

solubility of CaO in garnet until the majorite garnet becomes virtually CaO free. The 
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formation of calcium silicate perovskite therefore is clearly dependent on the conditions 

where garnet becomes saturated in CaO. 

Throughout the lower mantle calcium silicate perovskite is the dominant CaO 

bearing mineral. The formation of calcium silicate perovskite from garnet in natural 

systems with peridotitic and basaltic compositions occurs at approximately the same 

pressure inspite of differences in bulk CaO content, with basaltic compositions containing 

double the amount of CaO than contained in a peridotitic composition (Irifune and 

Ringwood, 1993; Nisihara and Takahashi, 2001). This clearly implies that the calcium 

solubility in garnet is dependent on some variable also other than pressure. The most likely 

explanation could be that the solubility of CaO in garnet is also dependent on the Al/Si 

ratio of garnet i.e., the proportion of the majorite component in garnet. 

The formation of the dense calcium silicate perovskite mineral in the Earth�s 

interior could cause discontinuities in the speed of sound waves as they pass through the 

interior, which is detectable at the Earth�s surface. Recent seismic observations of the 

transition zone have identified a discontinuity at the mid-transition zone depth of 520 km 

often designated as 520d (520 km seismic discontinuity) (Shearer, 1990; Shearer, 1996; 

Shearer, 2000; Deuss and Woodhouse, 2001; Gilbert et al., 2003; van der Meijde et al., 

2005; Deuss et al., 2006). This discontinuity is found to be split into two discontinuities in 

some regions of the mantle, one at an approximately 500 km depth and another at a deeper 

depth of 560 km (Deuss and Woodhouse, 2001). The wadsleyite (β) to ringwoodite (γ) 

transition is often implicated to be the cause of the 520d (Weidner and Wang, 2000). As 

the exsolution of calcium silicate perovskite from majoritic garnet occurs at a similar 

mantle depth, it could also cause a discontinuity and thus result in a double or split 520d 

(Ita and Stixrude, 1992).  

The variability in the depth of these discontinuities could be a strong function of 

change in either temperature or composition between different regions of the mantle. The 

most likely major type of chemical variation in the silicate mantle arises due to 

fractionation of oceanic crust and lithosphere at the mid-oceanic ridges through partial 

melting. The major elements that are fractionated during partial melting are Al, Ca, Si, and 

Na, which become concentrated in the oceanic crust and correspondingly depleted in the 

lithosphere (Walter, 2003). These components are eventually recycled back to the mantle 

by subduction of oceanic crust. Ongoing convective stirring in the mantle may homogenize 

these chemically distinct domains, although this may take a significant period of time for 
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homogenization to achieve local chemical equilibrium (van Keken, 2002; Holzapfel, 

2005). However, if these chemically-distinct domains tend to accumulate due to density or 

rheological contrasts, it may led to formation of long-term heterogeneities in the mantle 

that are resistant to homogenization (Tackeley et al., 1993; Christensen and Hofmann, 

1994; Helffrich and Wood, 2001). 

The major global seismic discontinuities at 410 km and 660 km depths in the 

Earth�s mantle correspond to phase transformation involving olivine {α-(Mg,Fe)2SiO4} to 

its high pressure polymorph of wadsleyite {β-(Mg,Fe)2SiO4} and ringwoodite {γ-

(Mg,Fe)2SiO4} breaking down to magnesiowüstite and magnesium silicate perovskite  

respectively (Hellfrich and Wood, 2001). As these phases do not involve components like 

Ca and Al, which are significantly fractionated in the mantle, discontinuities arising due to 

these phase transformations tell us little about likely chemical variations in the mantle. 

However, a seismic discontinuity like that of 520d which may as well arise due to 

exsolution of calcium perovskite from majorite garnet involving components like Ca and 

Al, would be very sensitive to large scale mantle chemical heterogeneities; such as those 

that might result from the presence of significant proportions of remnant subducted oceanic 

crust in the mantle as the Ca and Al component are significantly fractionated at mid-

oceanic ridges.  

As majorite garnet is a multi-component solid solution, the exsolution reaction of 

calcium perovskite from majorite garnet is perceived to be quite complex. Existing data 

(Irifune and Ringwood, 1993; Gasparik, 1996; Nishihara and Takahashi, 2001; Litasov and 

Ohtani, 2005) on this reaction are not sufficiently consistent for modeling this reaction 

over the range of pressure, temperature and bulk composition relevant for the mantle. 

Moreover, the pressure interval between experiments in existing studies is not narrow 

enough to accurately describe the shape of the emerging calcium perovskite stability field. 

The exsolution of calcium silicate perovskite for a range of mantle compositions 

was studied in the present work using high-pressure and high-temperature multianvil 

experiments. The solubility of CaSiO3 in garnet was measured as a function of garnet 

majorite content between 17 and 23 GPa in the temperature range 1200-1600°C in order to 

ascertain with high precision, how the depth interval of this reaction compares to the 

wadsleyite to ringwoodite transition and whether this reaction could occur over a narrow 

enough pressure interval to cause an observable seismic discontinuity. 
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2.2. Experimental Details 
 
2.2.1 Synthesis experiments 
 
2.2.1.1 Starting composition synthesis  

 
When we consider major types of mantle rocks such as a peridotite or basalt, the major 

type of chemical variation in garnets of these rocks arises due to the substitution of the 

majorite component i.e., (Si, Mg) becoming incorporated into the octahedral Al position in 

the garnet structure. For this reason we choose four Ca-free garnet compositions on the 

(Mg,Fe)4SiO12(majorite) - (Mg,Fe)3Al2Si3O12(pyrope) join for starting materials (Table 

2.1). As can be seen in the Fig. 2.1, a normal mantle peridotitic garnet will be more 

majoritic than a garnet from a subducted basaltic composition, which has been recycled 

back to the mantle. Glasses were synthesized out of reagent grade oxide mixtures of SiO2, 

Al2O3, Fe2O3 and MgO by fusing them at 1600°C in a 1-atmosphere furnace followed by 

rapid quenching in water. Glasses were analyzed for chemical composition by electron 

microprobe analysis using a point beam operating in wavelength dispersive mode at 15nA 

and 15kV. Quench recovered glasses were ground to powders and in order to reduce Fe3+ 

content of the glasses to Fe2+, the glass powders were reduced in a CO2/H2 gas mixing 

furnace, at a gas composition of 04/06 H2/CO2 (an approximate fO2 of 2 log units above 

iron-wüstite buffer) at 650°C for a day. Mössbauer analysis was performed on the reduced 

glass powders that confirmed the absence of Fe3+ in the glass powders. (Details on 

characterization techniques are discussed in next section). 

 

Table 2.1: Chemical composition of the starting oxide mixes for garnet glass synthesis based on 12 
oxygens per formula unit. 

 

Composition    SiO2    Al2O3    FeO    MgO       Total    Si      Al       Fe     Mg          ∑Cations 

Peridotite 53.0      9.2        5.3       33.5       100     3.63   0.74   0.3       3.33          8 

Basalt    48.3     17.4       4.8       29.5       100     3.3     1.4     0.274   3.026        8 

Pyrope   43.9     24.9       4.4       26.8       100     3        2        0.249   2.751        8 

Majorite 54.8     6.2        5.5        33.5       100     3.75   0.5     0.311   3.439        8 
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Figure 2.1: The glass starting compositions used in the present study 
are shown plotted on the majorite�pyrope solid solution join as a 
function of Mg number. 

 
 
In order to measure the solubility of Ca in the garnet at high pressure these glass 

powders were saturated in the CaSiO3 component by adding wollastonite (CaSiO3). The 

wollastonite phase was synthesized from an oxide mixture of calcium carbonate (CaCO3) 

and silica (SiO2) powder. The CaCO3 was first decarbonated for 24 hrs at 225°C in a 1-

atmosphere furnace. The oxide mixture of decarbonated CaCO3 and SiO2 was than placed 

in a 1-atmosphere furnace for 16 ½ hours at 1000°C. This furnace temperature was 

scheduled to heat slowly at a rate of 2°C per minute, which ensured slow release of any 

remaining CO2 from the sample. These samples were reground and again fused in a 1-

atmosphere furnace at 1300°C in successive stages over 48 hours duration in total to 

finally crystallise wollastonite. Powder X-ray diffraction was employed to confirm the 

synthesis of wollastonite. 

 

2.2.1.2 Pressure calibrant synthesis 
 

Precise pressure determination is of utmost importance in our study. Therefore, in addition 

to using the normal oil pressure calibration for our multianvil experiments, we also used 

in-situ pressure calibration by including an olivine sample in all our experimental runs. 

Olivine compositions were synthesized from stoichiometric reagent grade oxide mixes of 

SiO2, MgO and Fe2O3. After thorough grinding of oxide mixture, pellets were made out of 
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these mixtures, that were reduced in a CO2/CO gas-mixing furnace at an fO2 of 14.1, log 

units at 1000-1200°C depending on the Fe concentration of the samples. After three 

successive steps, each of 24 hours of reduction and rehomogenization by crushing and 

grinding, finally homogeneous olivine crystallized. Powder x-ray diffraction on the product 

phases mixed with Si powder as an internal standard was used for phase identification. 

(Details of the characterization techniques mentioned herein are discussed in section 2.3.) 

 

2.2.2 Multianvil experimental study 
 
2.2.2.1 Multianvil technique 
 

Over the past 20 years use of multianvil apparatus for high-pressure, high-temperature 

experiments simulating mantle conditions have increased manifold and a number of 

publications have reviewed this technique and its applications (Kawai and Endo, 1970; 

Walker et al., 1990; Rubie, 1993; Rubie et al., 1993; Irifune, 2002; Frost et al., 2004; 

Keppler and Frost, 2005). 

A multianvil press works on the concept of reduction of area (A) by applying a 

constant force (F), thereby increasing the pressure (P) according to the relation P = F/A. 

Essentially, in a multianvil apparatus, a hydraulic press generates an uniaxial force which 

is exerted onto a set of 6 steel anvil, which is referred to as the first stage anvils. Two 

variations of first stage anvil design are known, a split sphere or a spilt cylinder. This set of 

6 anvils creates a cubic volume that is filled with a set of eight cubes (either of tungsten 

carbide or sintered diamond) with truncated corners, which functions as the second stage 

anvils. These truncated anvils create an octahedral pressure chamber. In this pressure 

chamber fits in the pressure cell usually an octahedra of MgO containing the sample, 

which is compressed to the required pressure. A hole is drilled in the MgO octahedra for 

insertion of a tubular resistance heater, usually made of graphite, metal foils (inconel, 

platinum, rhenium) or LaCrO3. Stepped heaters, where thickness of the heater wall is 

increased in the central portion are also used sometimes to reduce thermal gradients across 

the large sample volumes. Sleeves of insulating material usually ZrO2 are placed around 

the heater to prevent excessive heat transport to the tungsten carbide anvils. Experimental 

sample is placed in the center of the pressure assembly and separated from the heater by an 

MgO sleeve. MgO spacers fill up the space above and below the sample capsule. The top 
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MgO spacer has a hole for insertion of thermocouple with an alumina tube for temperature 

measurements. Pyrophyllite gaskets are used for supporting the truncations and for 

pressure sealing the high-pressure chamber. The maximum pressure achievable is 

dependent on the force applied by the hydraulic press, the truncation edge length of the 

second stage anvils, the edge length of the MgO pressure cell and ultimately by the 

strength and hardness of the tungsten carbide. 

For our experimental investigations in the present work we have used different 

multianvil apparatus with varied designs located at the Bayerisches Geoinstitut. For our 

high-pressure studies we have employed different pressure assemblies i.e., different 

truncation edge lengths of the cubes and different octahedron edge lengths suiting our 

experimental pressure requirements. We have used tungsten carbide (WC) anvils as the 

second stage anvils from the commercial suppliers Toshiba (Japan) and Widia (Germany). 

WC cubes were isolated from the steel anvils by epoxy sheets and copper foils were used 

for contact between the pressure assembly (detail description of pressure assembly used in 

our study is given in section 2.2.2.2) and the first stage steel anvils. A thermocouple was 

inserted into the pressure assembly for temperature measurements and a copper coil 

protected the thermocouple in the gasket region (Fig. 2.2). A eurotherm controller 

converted the thermocouple e.m.f. to temperature.  
 

 
 
Figure. 2.2: Details of a multianvil apparatus and the experimental set up. On the left is a 
schematic view showing how the six inner anvils create a cubic space where the 8 tungsten carbide 
inner anvils fit in containing the pressure cell and directions of application of force. On the left a 
photograph showing the tungsten carbide anvil set up for an experiment. The MgO pressure 
medium can be seen placed inside the octahedral cavity formed by truncated tungsten carbide (WC) 
anvils. Out of the set of eight WC cubes, two cubes are not shown here to show the MgO octahedra 
inside. 
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2.2.2.2 Multianvil experiments 
 

Multianvil experiments were performed in the pressure and temperature range of 17-23 

GPa and 1200-1600°C, to constrain the CaSiO3 perovskite forming reaction as a function 

of composition in the mid-transition zone of the Earth�s mantle. 

 

Initial experimental considerations  
 

Initially, for our multianvil experiments we mixed the Ca-free garnet glass powder and the 

CaSiO3 wollastonite in a 1:1 ratio on a trail basis. The first experiment was conducted at 

1400°C for duration of 24 hours; on analysis of the run products we saw clear zones in the 

garnets showing that the experiment had not reached equilibrium (Fig 2.3 A). This led us 

to increase the experimental duration to 48 hours, which did not improve the equilibrium 

kinetics. We therefore, increased the experimental temperature to 1600°C. The run product 

showed a clear lack of CaSiO3 for reaction with the garnet (Fig 2.3 B). So we finally chose 

a starting mixture of Ca-free garnet glass and CaSiO3 wollastonite in a 1:2 ratio (Fig 2.3 

C), where we could clearly observe garnet in equilibrium with calcium perovskite.  

 

Garnet Garnet Ca-Pv

Ca-Pv GarnetCa-Pv

10µm
10µm

(A) (B) (C)

 
 

Figure. 2.3: Secondary and back-scattered electron images of different experimental run samples 
(A) Zonation in majorite garnet showing disequilibrium in a preliminary experiment. (B). Lack of 
CaSiO3 for further diffusion into majorite garnet. (C). Majorite garnet and calcium perovskite (Ca-
Pv) in equilibrium. During the experiment CaSiO3 diffuses into the garnet until it becomes 
saturated in this component. 

 

For the capsule material we initially tried an Al2O3 four-hole sleeve in which we 

placed the starting compositions in each hole. It reacted away at experimental temperatures 

and there was huge contamination from the capsule material into the starting materials (Fig 

2.4 A). Then we tried a molybdenum (Mo) rod with spark eroded sample chambers for the 
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capsule; in this case the Fe of the starting compositions diffused into the capsule material. 

Finally, rhenium rod with spark-eroded sample chambers for the capsule material proved 

to be the right choice because it was stable at high temperatures and had no effect on the 

sample composition. 
 

Al2O3

Al O  capsule2 3

 reacted away

Mo capsule Re capsule

100 µm 100µm 100µm(A) (B) (C)

 
 

Figure 2.4: Different capsule materials tried out for our multianvil experiments (A) Alumina four 
hole sleeve which reacted away and only one sample could be recovered that too had 
contamination of Al2O3, (B) Mo (molybdenum) capsule made out of 1 mm diameter Mo rod with 
five spark eroded holes and (C) Shown here is a radial section through the high-pressure assembly 
the outer pressure medium and furnace with an inner four chamber Re (rhenium) capsule (white). 
Three sample chambers contain garnet plus Ca-perovskite assemblages (which appear lighter), 
while one sample chamber contains a (Mg,Fe)2SiO4 pressure calibrant sample (darker). 

 

Multianvil experiments were carried out using multianvil presses of 1000-ton and 

1200-ton axial compression capacities for this study. Experiments were carried out using 

10/5 and 10/4 pressure assemblies i.e., using a Cr2O3 doped MgO octahedra of 10 mm edge 

length in combination with tungsten carbide cubes with 5 or 4 mm truncation edge lengths. 

A semi-conducting LaCrO3 resistance furnace provided the electrical heating and the 

sample temperature was monitored using a W3%Re-W25%Re thermocouple, that was 

inserted axially into the furnace (Fig 2.5). The sample capsule was made out of 1mm long 

Re rod, that was spark eroded to produce four to five sample chambers each about 250 

microns in diameter (Fig 2.4.C). The multi-chambered capsule allows us to run at least 

three of the garnet glass plus CaSiO3 starting materials with different majorite components 

(i.e., Al/Si ratios) in three chambers in a single experimental run along with a 

(Mg,Fe)2SiO4 powder in another chamber for pressure calibration. A Re disc of 0.025 mm 

thickness and an alumina disc of 0.2 mm thickness successively covered the upper surface 

of the sample capsule to avoid reaction with the thermocouple. Experiments were first 

compressed to the desired load and were subsequently heated to the required temperature 

for at least 24 hours. Experiments were quenched by cutting the power supply to the 
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furnace. Decompression of the experiment was usually performed over a period of 17 

hours.  

 

 
 

Copper coil
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MgO sleeve
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 schematic diagram of a 10/4 pressure assembly used for multianvil 
f the present study, showing an axial cross section through the 
4 assembly = 10 mm MgO octahedron edge length and 4 mm tungsten 
ion edge length). 

xperiments the starting glass plus CaSiO3 mixture crystallized as 

ilicate perovskite and CaSiO3 dissolved by diffusion into the garnet. 

lubility as a function of pressure, temperature and composition. When 

became saturated in the Ca component, it started to exsolve Ca-

asing pressure. As the garnet diffusion was found to be slow, we tried 

periments. We did an experiment where we chose the basaltic garnet 

tion and mixed it with about 5-mol% of two different fluxes B2O3 and 

mbered Re capsule allowed us to put these two fluxed compositions 

mbers along with a composition without flux and a pressure calibrant 

bers in the same experiment. Experiment was carried out at 19.5 GPa 

1400°C. Analysis of the experimental run product showed that the 

Cl flux showed no enhancement in CaO solubility in the garnets, 
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instead it crystallized NaCl crystals. However, the one with the B2O3 flux showed 

significantly enhanced reaction in comparison with the same composition without any flux. 

This indicated that the B2O3 generated melt at the experimental temperature that promoted 

equilibrium. So, all the subsequent experiments were fluxed with 5-mol% of B2O3. This 

increased the rate of reaction considerably at 1600°C and 1400°C but reaction at 1200°C 

was still far too slow for equilibrium to be achieved on a feasible time scale. 

 

Reversal experiments 
 

To ensure that we achieved equilibrium in our experiments, reversal experiments were 

performed using Ca-bearing garnets as the starting material. For this we chose the 

maximum calcium-bearing garnet compositions from our forward runs. High purity oxide 

powders of CaO, Fe2O3, MgO, Al2O3 were mixed in the proper stoichiometric proportions 

and fused at 1600°C in a furnace and rapidly quenched in water to produce the desired 

glass phase. Glass powders were reduced under conditions similar to those used for the 

other glass powders (see section 2.2.1) and were characterized by Mössbauer analysis.  

Syntheses of the Ca-bearing garnets were carried out using a 5000-ton multianvil 

press, where large sample volumes could be utilized. Experiments were performed using 

15 mm edge length truncated tungsten carbide cubes, which compressed a 25 mm edge 

length Cr doped MgO octahedra containing the sample capsule jacketed by an MgO spacer 

and a LaCrO3 furnace. Sample capsules of 3.5 mm in length and 2 mm in diameter were 

made out of Re foil, which was in contact with a Re75%W25%-W3%Re97% 

thermocouple for temperature measurements. Garnets were crystallized at 15 GPa and 

1600°C within an experimental duration of 1.5 hours. Phase identification was carried out 

using powder x-ray diffraction.  

 

Table 2.2: Reversal Ca �bearing garnet glass compositions in cation proportions based on 12 
oxygen per formula unit as determined from electron microprobe analysis. 

 

Composition  Si Al Fe Mg Ca  ∑Cations 

Ca-Peridotite   3.62 0.65 0.31 2.66 0.80  8 

Ca-Basalt  3.37 1.06 0.29 2.32 1.04  8 

Ca-Pyrope  3.27 1.34 0.27 1.99  1.20  8 

Ca-Majorite  3.67 0.49 0.35 2.83 0.76  8 
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Reversal experiments were carried out in the pressure range of 20-23 GPa at 

1600°C for duration of 24 hours. Reversal experiments too were fluxed with B2O3 for 

promoting reaction kinetics. 

 The recovered run samples were mounted in epoxy resin and polished on the 

surface that was perpendicular to the axial direction of the furnace and close to the 

thermocouple. Samples were analyzed using Raman spectroscopy and composition of the 

observed phases was determined using an electron microprobe. Some of the samples were 

made into thin sections for analysis with transmission electron microscopy (TEM) to check 

for the possible incorporation of boron in the garnet phase. (See Appendix A, Table A 1 for 

list of phases observed during each experimental run). 

 

2.3 Characterization and analytical techniques employed 
in this study 

 
 
Powder x-ray diffraction 
 
X-ray diffraction for phase identification has been a common characterizing technique 

since discovery of X-ray by Roentgen. The diffraction mechanism is governed by the 

Bragg�s equation nλ = 2dsinθ, where λ is the wavelength of the radiation and d is the 

spacing between two parallel lattice planes and θ is the glancing angle of incidence and 

reflection on the lattice planes. This means that the unit cell parameters of a crystal will 

determine the d spacing for that crystal so the 2θ values for a particular X- ray wavelength 

will be characteristic of its crystal structure. 

The crystallization of the olivines used for pressure calibration, the wollastonite 

sample and the Ca bearing garnets for reversal experiments was confirmed by X-ray 

powder diffraction. This technique could detect the presence of minor amount of undesired 

phases along with the sample. Characterizations were carried out using a Siemens D-5000 

diffractometer operating in reflection mode with Cu Kα1,2 radiation. Data were recorded in 

the 2θ range of 10°-120°, with a step size of 0.02° and counting time of 4 seconds per step. 

Silicon (NBS 640b, a = 5.43088Å) was used as an internal standard. The measured peaks 

were calibrated using the Si peaks. Identification of the phase was carried out using the 
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Stoe WinXPow software by matching the observed diffraction peaks with that of the 

reported peaks for the concerned phase as in the database. 

 

Mössbauer Spectroscopy 
 

Mössbauer spectroscopy was employed in this study for determining the oxidation state of 

Fe in starting glass compositions. In Mössbauer spectroscopy, a radioactive source 

provides a monochromatic γ radiation, which is allowed to pass through the sample 

(absorber). As this γ radiation has exactly the same energy needed to excite the nuclei in 

the sample it leads to a resonant vibration. To maintain this resonance the source is moved 

relative to the sample, which shifts the energy of the emitted γ radiation based on the 

Doppler effect. If resonance absorption takes place a detector behind the sample records 

the count rate as a function of source velocity in (mm /sec), which is the Mössbauer 

spectrum. Workers like Amthauer et al., (2004) and McCammon, (2004) have reviewed 

details of this technique. 

The conventional Mössbauer spectroscopy technique was adopted for checking the 

oxidation state of Fe in the reduced garnet glass starting compositions. The quenched 

glasses were crushed to fine powder and were mounted on a sample holder of 12 mm 

diameter, which accounts for about 5 mgFe/cm2 absorber thickness. The Mössbauer 

spectra were recorded at room temperature for durations of 1-2 days in transmission mode 

on a constant acceleration Mössbauer spectrometer with a nominal 1.85 GBq 57Co source 

in a 6µ Rh matrix. The velocity scale was calibrated relative to 25 µm α-Fe foil using the 

positions certified for National Bureau of Standards standard reference material 1541, line 

width of 0.28 mm/s for the outer lines of α-Fe obtained at room temperature. Mössbauer 

spectra of the glasses were fitted using the commercially available fitting program 

RECOIL written by K. Lagarec and D. Rancourt (distributed by Intelligent Scientific 

Applications Inc., Canada), which is based on an extended Voigt based analytic line shape 

assuming a Gaussian distribution for Fe oxidation states (Fig. 2.6) 
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Figure. 2.6: Mössbauer spectra of majorite garnet glass st
Shown here are the spectra collected before reduction (u
reduction (lower one) of the glass powder in CO2/H2 gas m
can be clearly observed to be reduced after treatment in 
(see section 2.2.2.1). 
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Electron microprobe analysis (EPMA) 
 

In this technique a finely focused electron beam is directed at high velocity on a sample to 

be analyzed. As the electrons impinge upon the sample at high velocity they penetrate a 

volume of the sample whereby the incident higher energy electrons displace the inner shell 

electrons of the constituent atoms of the sample. Inner shell vacancies so created will be 

filled by electrons from outer shell generating characteristic X-rays in the process. These 

characteristic X-rays are analyzed by a crystal spectrometer (wavelength dispersive mode) 

or by an energy dispersive analysis system (Heinrich and Newbury, 1991; Reed, 1996) 

In the wavelength dispersive mode as used in the present study, the crystal diffracts 

the various wavelength values of impinging electrons according to Bragg�s law. The 

intensity and position of each spectral line was recorded in an electronic counting device, 

which was than compared with that of a standard having the same elemental make up to 

obtain quantitative analysis. 

The concentrations of major elements in the quenched glass starting compositions 

and in the quench recovered run products of high pressure multianvil experiments were 

determined using the JEOL JXA-8200 WD/ED combined microanalyzer at the Bayerisches 

Geoinstitut, which is equipped with 5 wavelength dispersive spectrometers. The standard 

conditions and the measurement conditions for the present study are tabulated in Table.2.3. 

 

Table 2.3: Electron microprobe analysis conditions used in the present study. Abbreviations: TAP 
(Thallium acid pthalate), PETH (Pentaerythritol high), LIF (Lithium fluoride), P (Peak), B 
(Background) 

 
Elements    Crystals Standards Accln. voltage    Probe current    Count time (Secs) 

                                                                      kV                    nA      P B 

Mg  TAP Enstatite  15  15  20 10 

Si  TAP Andradite  15  15  20 10 

Ca  PETH  Andradite   15  15  20 10 

Al   TAP Spinel   15  15  20 10 

Fe LIF Fe metal   15  15  20 10 
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The glass samples used as starting materials with size variation from 1 to 2 mm and 

the octahedra (about 5 mm in diameter) recovered from the multianvil experiments were 

mounted in epoxy blocks of 25 mm diameter. Rough polishing of the samples was carried 

out with silicon carbide paper (150-4000 gem) and further fine polishing was done with ¼ 

micron diamond paste. Samples were then coated with carbon to a thickness of about 11 

nm to avoid charging on the surface. Glasses, majorite garnet and calcium perovskite were 

analyzed at an acceleration voltage of 15 kV, probe current of 15 nA and 20 seconds of 

counting time at peak position and 10 seconds of background count. A point beam was 

employed which has an interaction surface of about 1 µm. All the phases were stable under 

these conditions and quantitative analyses were within a relative statistical deviation of 

2%. 

 

Transmission electron microscopy  
 

This technique works on the principle that when a specimen is thin enough, high-energy 

electrons can pass through it (Williams and Carter, 1996). As boron was used as flux in our 

multianvil experiments to increase the reaction kinetics, it was essential to check whether 

the boron became incorporated into the majorite garnet structure during the experiments, 

because this could affect the solubility of Ca in the majorite garnet. As electron energy loss 

spectroscopy (EELS) is sensitive to a detection limit of as low as 1-mol% of elements we 

chose this technique for boron detection. 

For this the microprobe samples embedded in epoxy were made into thin sections 

of about 30µm thickness. Thin section was glued to a glass slide using a glue, which 

dissolves in acetone. Mo square mesh of 100mesh size were glued on top of thin section 

such that the regions of interest are in the center of the mesh. After this the meshed thin 

section is recovered by dissolving the glue in acetone. Further thinning of the sample was 

carried out using Ar+ ion beam in a Gatan dual ion mill model 600, at an angle of 14°, 4kV 

acceleration voltage and 1 mA beam current. At the end of thinning process the 

acceleration voltage was reduced to 3.5 kV to reduce beam damage. Usually thinning was 

continued till interference fringes were visible on the edges on inspection by optical 

microscope, which was about 35 hours in total. Samples were than coated with amorphous 

carbon about 5 nm using the BAL-TEC, ME020 coating system to avoid charging on the 
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surface. TEM imaging and EELS measurements were performed on a Philips CM20FEG 

analytical transmission electron microscope operating at 200 kV equipped with a parallel 

electron energy loss spectrometer. EELS spectra were collected in diffraction mode. No 

boron k-edge was observed as expected at around 186 eV (Fig. 2.7) 

 

 
 

Figure 2.7: EELS spectra of the basaltic garnet composition collected to check for 
boron incorporation in its structure, as can be seen in the spectra there is no boron 
peak observed as expected at 186 eV. 

 

 

Secondary electron microscopy (SEM) 
 

In this technique, a focused beam of electrons is either scanned across a specimen resulting 

in the generation of secondary electrons, back scattered electrons and also auger electrons. 

In case of the secondary electrons, as they are emitted from the surfacial atoms of the 

sample, a quick image of the area where the electron beam is focused is produced. Sample 

morphology determines the contrast in the image. Moreover, X-rays are also generated in 

this process as the electron beam interacts with atoms of the sample causing transitions in 

the electron shells. The emitted X-rays have characteristic energies of the parent elements 

and detection and measurement of the energy spectrum allows a rapid qualitative elemental 

analysis, a technique usually known as energy dispersive x-ray spectroscopy (EDX) (Reed, 

1996). 
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In the present study, the SEM technique was used on a routine basis for imaging the 

high-pressure, high-temperature multianvil run products that had been polished after being 

embedded in epoxy resin and with carbon coating to reduce charging on the surface 

(similar to that for EPMA analysis) at an acceleration voltage of 20 KeV and with different 

magnifications.  

 

Raman spectroscopy 
 

This spectroscopic method is based on the inelastic scattering of light called the Raman 

effect. When light is allowed to interact with a specimen, it excites the constituent 

molecules, which subsequently scatter the light. Most of this scattered light has a similar 

wavelength as the incident light while some of it is scattered with a different wavelength. 

This inelastically scattered light is the Raman scatter, which results from the changed 

molecular motions of the sample. The difference in energy between the incident light and 

Raman scattered light is equal to the energy of the scattering molecule and will be 

characteristic of a molecule and its environment in a specimen. By plotting the energy 

difference and the intensity of scattered light we obtain a Raman spectrum (Nasdala et al., 

2004). 

In the present study we used a LABRAM Raman spectrometer with a He-Ne laser 

with the 632 nm red line excitation for phase identification of our experimental run 

products. This was especially useful in case of our pressure calibrants where we could 

easily distinguish between the (Mg,Fe)2SiO4 polymorphs using this technique. Raman 

spectra were collected at ambient temperature with an instrumental resolution of 2 cm-1 for 

the peak positions. By comparing the obtained spectra with the relevant standard Raman 

data available for the mineral phase from the literature we carried out the phase 

identification (Fig. 2.8) 
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Figure 2.8: Raman spectra of wadsleyite and ringwoodite as crystallized by the in-situ pressure 
calibrants of our experiments. Phase identification was carried out by comparing these spectra with 
the existing Raman spectra from the literature for the concerned phase. 

 

2.4. Results 
 
 
During the high pressure experiments the garnet glass and CaSiO3 compositions 

crystallized rapidly to garnet and perovskite respectively and CaSiO3 was dissolved into 

the garnet during the heating period. Experimental durations of at least 24 hours ensured 

equilibrium compositions at 1600°C at lower pressures. However, in some cases at higher 

pressures, the inner cores of garnet remained unequilbrated but equilibrium was achieved 

in the rims with the aid of the B2O3 flux as mentioned in the experimental section. As 

discussed earlier, equilibrium was crosschecked by analyzing the reversal experiments in 

which Ca-bearing garnets exsolved Ca perovskite at high pressure. We had equilibrium in 

our experiments because for a given pressure the extent of CaO solubility in the garnet 

phase after CaSiO3 exsolution converged to the same values as obtained in the forward 

runs within experimental error. At 1400°C, high Ca-bearing garnet was formed up to 

pressure of ~20 GPa, beyond which Ca contents in the garnet declined drastically. Time 

studies indicated that equilibrium was not achieved at these conditions; a possible 

explanation could be that at these conditions the B2O3 flux crystallized. In the case of 

experiments at 1200°C, even the fluxed experiments failed to reach equilibrium on a time 

scale of 48 hours. Longer duration requirements were not feasible. 

During the experiments the (Mg,Fe)2SiO4 olivine pressure calibrant crystallized to 

form co-existing high-pressure phases. Pressure was determined from the 

Mg2SiO4(forsterite)-Fe2SiO4(fayalite) phase diagram using the field of coexistence 
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between (Mg,Fe)2SiO4 and (Mg,Fe)O magnesiowüstite plus stishovite (SiO2) (Fig. 

2.9). This divariant region extends from the Fe2SiO4 ringwoodite to magnesiowüstite plus 

stishovite transformation at approximately 16 GPa to 23 GPa with the Fe/(Fe+Mg) ratio of 

both ringwoodite and magnesiowüstite (when coexisting with stishovite) decreasing with 

increasing pressure. This reaction has been well studied (Matsuzaka et al., 2000; Frost et 

al., 2001; Frost, 2003a). The Fe/(Fe+Mg) ratio of ringwoodite for example decreases by 

approximately 10% per GPa. As we can determine this ratio with an accuracy of 

approximately 1%, this gave us a precision in pressure determination of 0.1 GPa. A 

previous study had shown that the bulk Fe concentration of magnesiowüstite could be 

apparently high if ferric Fe is present. We calculated the pressure using the ringwoodite Fe 

concentration and used the phase relations previously determined at a similar oxygen 

fugacity (Frost et al., 2001; Frost, 2003a). In this way we calibrated accurately the pressure 

of Ca-perovksite formation relative to the pressure of phase transformations in the 

Mg2SiO4-Fe2SiO4 system (Frost et al., 2001; Frost, 2003b). The absolute error in pressure 

depends on determinations of end member phase transitions used to construct the existing 

Mg2SiO4-Fe2SiO4 phase diagram which are difficult to assess but could be up to 1 GPa. 

Our study relied more on the high precision of pressures determined relative to the 

Mg2SiO4-Fe2SiO4 phase diagram, rather than on accuracy in absolute pressure.  

When the magnesiowüstite grains were too small in our experiments to get a 

reliable analysis, the pressure was determined using the ringwoodite Fe/(Fe+Mg) ratio 

alone. In those cases where a poorly chosen Fe/(Fe+Mg) ratio of the starting olivine 

composition led to crystallization of a single phase ringwoodite, pressure was determined 

from the oil pressure of the multianvil experiment. In experiments where the pressure was 

measured, the determined pressure showed excellent relationship with the multianvil oil 

pressure. The relative uncertainty using this calibration curve in comparison to pressures 

determined from phase relations in Mg2SiO4-Fe2SiO4 system was approximately ± 0.5 

GPa. In some of our experiments the pressure calibrants even crystallized in the stability 

field of perovskite plus magnesiowüstite and stishovite (Run No.S3478, S3784), see 

Appendix A, Table A.2 for the perovskite compositions. Experimental results are given in 

Table 2.4,where the relative pressure errors were calculated using the mismatch between 

the analysed Fe contents of ringwoodite and magnesiowüstite compared with the phase 

diagram of Frost et al., (2001). 
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Figure 2.9: Phase relations in the Mg2SiO4-Fe2SiO4 system between 16-

26 GPa at 1600 oC (Frost et al., 2001) used for calculating the pressures in 
our experiments. Olivine pressure calibrants during experiments crystallized 
into its corresponding high pressures phases of ringwoodite, 
magnesiowüstite and stishovite. From probe data we determined the 
Fe/Fe+Mg ratio of coexisting ringwoodite and magnesiowüstite after 
correction for ferric iron content (Frost, 2003a). By plotting the Fe/Fe+Mg 
values as shown marked by stars we could exactly determine the pressure in 
each of our experiments. 
 

 

Table 2.4: Experimental results for garnet compositions recovered from multianvil experiments as 
determined by electron microprobe analysis for different experimental runs. Results are listed as 
peridotite, basalt, pyrope and majorite based on the different garnet starting compositions as listed 
in table 2.1.Listed here are the experimental run numbers, pressures in GPa for each experiment 
determined as described in text and the cation proportions of the garnet compositions calculated 
based on 12 oxygen per formula unit. Data in Ring (ringwoodite) and MW (magnesiowüstite) 
columns are the Fe/Fe+Mg ratios used for calculation of pressure as described in text. (See 
Appendix A, Table A.3 for the probe data of all experimental runs) 
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Run no. Pressure Si Al Fe Mg Ca Total Ring MW 
1600°C (in GPa)         
Pyrope          
S3550 19.2(3) 3.41(2) 1.08(4) 0.21(1) 2.25(6) 1.10(4) 8.050 0.626(3) 0.937641 
S3549 19.9(2) 3.12(1) 1.52(2) 0.17(2) 2.25(5) 0.90(5) 8.038 0.542(3) 0.87(3) 
S3470 18.8(5) 3.32(5) 1.36(4) 0.05(2) 2.03(8) 1.22(1) 7.993   
S3475 22.6(5) 3.11(6) 1.82(6) 0.207(6) 2.47(6) 0.37(3) 7.982   
S3478 23(5) 3.09(2) 1.77(3) 0.28(5) 2.56(6) 0.32(3) 8.023   
S3484 22.3(5) 3.08(5) 1.81(5) 0.24(7) 2.57(7) 0.30(7) 8.011 0.36(2)  
S3490 21.4(5) 3.10(5) 1.76(9) 0.23(1) 2.47(6) 0.44(1) 8.013   
          
Basalt          
S3551 20.4(3) 3.33(6) 1.11(7) 0.1(1) 2.94(8) 0.61(4) 8.096 0.496(2) 0.88(2) 
S3550 19.2(3) 3.29(2) 1.36(4) 0.178(9) 1.90(6) 1.27(7) 8.023 0.626(3) 0.937641 
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S3549 19.9(2) 3.38(1) 1.14(3) 0.16(2) 2.70(3) 0.65(3) 8.044 0.542(3) 0.87(3) 
S3548 19.5(2) 3.41(2) 1.04(3) 0.30(2) 2.56(3) 0.75(3) 8.068 0.605(5) 0.863(4) 
S3547 19.5(5) 3.45(2) 1.04(2) 0.21(1) 2.58(5) 0.74(4) 8.020 0.592(2) 0.844(6) 
S3764 21.2(3) 3.34(3) 1.26(2) 0.21(2) 2.85(6) 0.35(1) 8.021 0.426(5) 0.73(1) 
S3757 20.7(5) 3.36(3) 1.29(4) 0.199(8) 2.65(3) 0.47(3) 7.990 0.469(2) 0.774(6) 
S3783 22.3(2) 3.34(2) 1.31(2) 0.262(7) 2.81(4) 0.29(1) 8.010 0.350(4) 0.71(5) 
S3657 19.9(3) 3.38(2) 1.01(5) 0.44(1) 2.62(5) 0.64(2) 8.108 0.545(3) 0.88(1) 
S3655 19.9(5) 3.36(5) 1.25(7) 0.39(3) 2.40(6) 0.62(4) 8.018   
S3655 19.9(5) 3.42(1) 1.04(3) 0.24(3) 2.77(9) 0.58(2) 8.060   
S3460 18.5(5) 3.502(7) 1.06(2) 0.049(4) 2.22(6) 1.12(3) 7.970   
S3470 18.8(5) 3.44(2) 1.09(1) 0.03(7) 2.37(3) 1.05(2) 8.006   
S3478 23(5) 3.30(2) 1.33(3) 0.25(1) 2.89(6) 0.24(2) 8.028   
S3480 22.1(5) 3.47(5) 1.16(7) 0.27(2) 2.67(4) 0.37(3) 7.950 0.380(5)  
S3484 22.3(5) 3.33(3) 1.34(2) 0.20(6) 2.93(3) 0.188(7) 8.000 0.36(2)  
S3498 21.4(5) 3.33(5) 1.28(9) 0.276(8) 2.80(6) 0.34(3) 8.031 0.28(2)  
          
          
          
Peridotite          
S3551 20.4(3) 3.54(4) 0.87(8) 0.26(3) 2.9(1) 0.44(8) 8.022 0.496(2) 0.88(2) 
S3550 19.2(3) 3.62(2) 0.70(3) 0.22(8) 2.58(3) 0.92(3) 8.030 0.626(3) 0.937641 
S3549 19.9(2) 3.58(1) 0.76(2) 0.11(4) 3.04(2) 0.54(2) 8.033 0.542(3) 0.87(3) 
S3548 19.5(2) 3.61(1) 0.68(3) 0.23(2) 2.93(4) 0.59(3)8 8.051 0.605(5) 0.863(4) 
S3547 19.5(5) 3.57(2) 0.77(3) 0.167(8) 2.88(5) 0.63(2) 8.037 0.592(2) 0.844(6) 
S3764 21.2(3) 3.60(3) 0.80(2) 0.28(3) 3.02(2) 0.283(1) 8.000 0.426(5) 0.73(1) 
S3757 20.7(5) 3.65(1) 0.69(1) 0.24(5) 3.082(4) 0.322(1) 7.998 0.469(2) 0.774(6) 
S3784 23.5(4) 3.60(2) 0.68(9) 0.31(4) 3.4(1) 0.054(1) 8.061 0.545(3) 0.88(1) 
S3460 18.5(5) 3.67(4) 0.63(3) 0.10(2) 2.79(7) 0.81(5) 8.010   
S3470 18.8(5) 3.664(3) 0.683(5) 0.05(2) 2.75(3) 0.84(3) 7.994   
S3475 22.6(5) 3.62(2) 0.791(2) 0.28(1) 3.21(5) 0.08(2) 7.984   
          
Majorite          
S3460 18.5(5) 3.78(4) 0.47(2) 0.098(9) 2.97(6) 0.65(4) 7.979   
S3470 18.8(5) 3.77(1) 0.49(1) 0.034(5) 2.87(7) 0.81(3) 7.985   
          
Reversals          
S3784 23.5(4) 3.15(1) 1.68(3) 0.26(2) 2.59(6 0.30(4) 8.000 0.545(3) 0.88(1) 
S3538 17.9(5) 3.24(5) 1.36(5) 0.05(2) 2.82(7) 0.57(6) 8.067   
S3543 18.4(5) 3.14(6) 1.57(6) 0.16(3) 2.63(4) 0.55(5) 8.069   
S3515 19.8(5) 3.41(2) 1.08(2) 0.22(7) 2.42(3) 1.01(4) 8.042   
S3521 20.7(5) 3.55(4) 0.87(4) 0.33(2) 2.77(6) 0.48(4) 8.008   
S3523 20.8(5) 3.40(2) 1.18(3) 0.23(1) 2.53(2) 0.63(2) 8.015 0.464(3)  
          
1400°C          
Pyrope          
S3611 18.1(5) 3.17(3) 1.61(7) 0.144(7) 2.01(3) 1.08(5) 8.023   
S3614 18.6(5) 3.15(3) 1.56(5) 0.197(6) 2.09(6) 1.055(5) 8.064   
H2370 19.5(5) 3.10(6) 1.75(9) 0.236(5) 2.35(5) 0.58(4) 8.020 0.60(1) 0.93(1) 
H2375 17.9(5) 3.24(1) 1.46(4) 0.200(5) 2.00(3) 1.11(3) 8.025   
H2241 19.6(5) 3.12(4) 1.76(6) 0.19(1) 2.41(5) 0.51(3) 7.996   
          
Basalt          
S3611 18.1(5) 3.301(8) 1.31(2) 0.199(4) 2.12(2) 1.11(2) 8.044   
S3614 18.6(5) 3.33(2) 1.17(4) 0.223(7) 2.49(2) 0.86(2) 8.080   
H2375 17.9(5) 3.40(3) 1.13(7) 0.223(8) 2.22(6) 1.04(3) 8.028   
          
Peridotite          
S3614 18.6(5) 3.56(1) 0.69(2) 0.263(7) 2.91(4) 0.66(4) 8.090   
S3611 18.1(5) 3.60(3) 0.71(5) 0.26(5) 2.68(4) 0.78(4) 8.042   
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The Ca contents of garnet in equilibrium with Ca-perovskite at 1600°C and at 

1400°C are shown in Fig. 2.10 (A) and (B). Data for all the reversal experiments at 1600°C 

are shown in Fig. 2.10(A). It was observed from the experimental data at 1600°C that the 

solubility of the Ca in garnet in equilibrium with calcium perovskite decreases with 

pressure. However, the Ca solubility increases with the garnet majorite content (i.e., Al/Si 

ratio) at a given pressure. This implies that the CaO saturation or the initiation of CaSiO3 

exsolution will occur at a higher CaO content with decreasing majorite component in 

majorite garnet at transition zone pressure-temperature conditions. Low Al/Si ratios of 

about 0.7 are representative of garnets formed in peridotitic bulk compositions, while 

higher values of about 1.4 are those for garnets formed in a basaltic composition.  

Experimental data at 1400°C also showed a similar Ca solubility trend in garnet, 

i.e., CaO solubility in the majorite garnet composition decreases with increasing majorite 

component Al/Si+Mg. However, there is a small but distinguishable decrease in the Ca 

solubility compared with results obtained at 1600°C.  

As Fe is also an important component in transition zone phases we carried out a 

few experiments to observe the effect of varying Fe concentration on the CaO solubility in 

the garnets in equilibrium with calcium perovskite. For this we mixed our fluxed starting 

compositions with a powder of 5-mol% Forsterite 80 composition, which is a relevant 

composition for the mantle depth at which this reaction takes place. We placed one iron-

bearing sample along with a normal starting composition in a single run using the multi-

chambered capsule. On analysis of the experimental run products no significant change in 

the CaO solubility was observed compared with that of the starting samples without 

additional mixing of Fe. 
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Figure 2.10. Experimental results for the Ca-content of garnet in equilibrium with Ca-
perovskite as a function of pressure (A) at 1600°C and (B) at 1400°C. Symbols refer to 
starting compositions with different garnet majorite proportions named after the rock 
types in which the garnets would occur. Al (pfu) refers to the Al content per garnet 
formula unit, i.e. Al (pfu) = 2 refers to the formula (Mg,Fe)3Al2SiO12. These Al contents 
only reflect the starting material because the Al content is lowered during the 
experiments. Reversals were performed using presynthesised Ca-bearing garnets as 
starting materials. The curve in (A) shows the calculated Ca content of garnet for a rock 
of peridotite composition based on peridotite composition from McDonough and Sun, 
(1995). For discussion on the peridotite model see section 2.5. 
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2.4.1 Thermodynamic modeling 
 

The exsolution of calcium silicate perovskite from majorite garnet can be described by the 

following reaction  

Ca3Al2Si3O12+3/4(Mg,Fe)4Si4O12 = 3 CaSiO3 + (Mg,Fe)3Al2Si3O12                 [1] 

Garnet                  Garnet                    Perovskite         Garnet 

where, the grossular component in the garnet exsolves to form calcium silicate perovskite, 

which leaves the garnet increasingly aluminium rich and combined with the majorite 

component, produces pyrope.  

The experimental results were fitted to a thermodynamic model based on reaction 

[1]. The important variables in this fit are the volume change of the reaction and the non-

ideal mixing parameters for majoritic garnet. Because the data cover a range of garnet-

majorite compositions, this model was used to calculate the exsolution of CaSiO3 over a 

range of bulk compositions relevant for the mantle. This also allowed our results to be 

extrapolated to lower temperatures at which slow kinetics inhibited the achievement of 

equilibrium in experiments. 

At equilibrium conditions the standard state free energy change  for reaction 

[1] is related to the activities of the reacting components by the equation,  

0
,TPG∆
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where R is the gas constant, K is the equilibrium constant and  is the activity of 

component i in garnet. In order to estimate activities it was assumed that Ca mixes only on 

the dodecahedral site in garnet and that Fe behaves identically to Mg. The activity of 

CaSiO

Gt
ia

3 is unity whereas the activities of the garnet components are described by 
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nAl, nCa and nFe are element proportions in garnet based on 12 oxygen formula units and 

γ is the activity coefficient. Si and Mg are therefore assumed to be locally ordered on the 

octahedral site.  

The activity coefficients (γ) were first determined using a four-component 

symmetric solution model that include terms for the non-ideality of majorite mixing. 

However, all majorite terms, which were refined in the fitting, were very small and were 

therefore ignored. A ternary symmetric solution model was then used that accounted for 

non-ideality resulting from Mg, Ca and Fe mixing only on the dodecahedral site, i.e., 

( )WWWXXWXWX CaFeMgFeMgCaFeCaMgFeMgCa

Gt

OSiAlMg FeCaRT −+++=
22

12323
lnγ    [9] 

( )WWWXXWXWX MgFeCaFeMgCaFeMgCaFeMgCa

Gt

OSiAlCa FeMgRT −+++=
22

12323
lnγ    [10] 

where W are Margules interaction parameters. The following values were used based on 

published values (O�Neill and Wood, 1979; Frost, 2003b). 

300=W MgFe
 J/mol        [11] 

2000=W CaFe
 J/mol        [12] 

 

Although many studies show the pyrope-grossular solid solution to have significant 

asymmetric excess enthalpy, entropy and volume properties, extrapolation of the many 

published models to pressures in excess of 20 GPa and 1873K yields wildly disparate 

activity coefficients. We therefore have no option but to treat WMgCa as an adjustable 

parameter but the range of Ca contents covered by our data makes an asymmetric fit 

unconstrained and unnecessary for our purposes. Therefore, we refine symmetric terms for 

WMgCa but constrain them to vary over a range predefined from literature values to get, 

PW MgCa
3008000 +=  J/mol       [13] 

where P is in GPa.  
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Fig. 2.11, shows the RTlnK calculated from the experimental data using the activity 

model. The data were fited in a least squares refinement to an equation for that 

gave,  

0
,TPG∆

PTG TP 12560773.261407630
, −+−=∆  J/mol     [14] 

with T in K and P in GPa. 

As  is the standard Gibbs free energy change of the pure components at pressure and 

temperature, this can be simply described in terms of entropy, enthalpy and volume 

changes by, 

0
,TPG∆

VPSTHG TP ∆+∆−∆=∆ 0
,        [15] 

We fit the calculated values for the -RTlnK term to equation [15] .The volume change of 

equation [1] is determined as 12.56 cm3 mol-1 which is very reasonable given the volumes 

and equation of state properties of the phases involved  
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Figure. 2.11: A plot of RTlnK as defined in equation (2) as a function of 
pressure. Data from various starting compositions at 1600°C are indicated, 
while pyrope, basaltic and peridotitic compositions are plotted together at 
1400°C. Fitted curves for  described using equation (14) are shown at 
both temperatures. 

0
,TPG∆

 

 57



Chapter 2: Discussion 

2.5. Discussion 
 
 
The garnet Ca content calculated for a fertile mantle peridotite composition based on the 

peridotite composition from McDonough and Sun, (1995) is shown by the solid curve in 

Fig. 2.10, along with the experimental results at 1600°C. Initially, as all the Ca is contained 

in the garnet, so the Ca content in garnet is constant with pressure. Above 19 GPa the 

garnet CaSiO3 solubility limit is reached and the exsolution of CaSiO3 begins quite sharply 

with increasing pressure, causing the garnet Ca content to decrease. However as CaSiO3 

exsolves, the residual garnet becomes more Al rich and thus the CaSiO3 exsolution starts to 

level off. The exsolution reaction is therefore inherently non-linear with pressure. 

We calculated the proportion of Ca-perovskite formed in a rock of peridotitic 

composition and also that in a rock of mid-oceanic ridge basalt (MORB) composition as 

shown in Fig. 2.12. As the calcium content of the MORB composition is higher than that 

of a peridotitic composition, the garnet in a MORB composition reaches saturation at lower 

pressures than in the peridotitic composition. The saturation point is affected by the MORB 

garnet having a higher Al content, which shifts the Ca saturation to higher pressures. As 

the exsolution reaction is inherently non-linear, the formation of Ca perovskite occurs over 

an extensive pressure interval and is complete only when the garnet itself transforms to 

magnesium silicate perovskite. Such non-linear transformations are however known to be 

capable of causing seismic discontinuities, because a significant amount of Ca perovskite 

is formed over an initial narrow pressure interval. Seismic waves would only be reflected 

off the initial gradient in sound velocity even though the entire reaction occurs over a depth 

interval of more than 60 km (Helffrich and Wood, 1996; Stixrude, 1997). 
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Figure. 2.12: The volumetric proportion of Ca perovskite that would 
form in rocks of peridotite and mid�oceanic ridge basalt composition 
as a function of pressure as calculated based on the thermodynamic 
model described in the text (see section 2.3.1). 
 

 
For basaltic bulk compositions at certain conditions the exsolution of Ca-perovskite 

also involves a number of other phases, the stability fields of which are mutually 

influenced. As indicated by Eq. [1], as Ca-perovskite exolves with pressure, the garnet 

Al/Si ratio increases. For Al-rich lithologies such as basalts, the garnet Al content will 

reach that of the pyrope end member (i.e., 2 Al cations per formula unit) at pressures above 

23 GPa. At these conditions the continued exsolution of Ca-perovskite from garnet 

requires the formation of an additional Al-rich phase. In this study the investigated garnet 

Al contents were always below 2 formula units and such a phase was not observed. In 

many previous studies the NAL phase (new aluminium rich phase) with the approximate 

formula Na(Mg,Fe)2Al5SiO12 has been identified at these conditions (Hirose and Fei, 2002; 

Litasov and Ohtani, 2005) and, therefore, serves this purpose. This argument implies that 

the formation of the NAL phase is controlled by the garnet Al/Si ratio, as it should only 

form at pressures where garnet has obtained the pyrope stoichiometry as a result of Ca-

perovskite exsolution. The presence of Na in NAL, however, may act to stabilize this 

phase in the presence of garnet with Al contents slightly below 2 formula units, as 

observed in some studies (Hirose and Fei, 2002; Litasov and Ohtani, 2005). At pressures 

higher than 25 GPa the NAL phase is reported to transform to a phase termed CF (calcium 
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ferrite structure), which has a composition approximately on the join NaAlSiO4-MgAl2O4 

(Hirose and Fei, 2002; Litasov and Ohtani, 2005). 

Most oceanic basalt bulk compositions are more SiO2-rich than compositions in the 

MgSiO3-CaSiO3-Al2O3 system and stishovite therefore coexists with garnet and Ca-

perovskite at mid-transition zone conditions (Irifune, 1994; Litasov and Ohtani, 2005). At 

high temperatures (>1600°C) a phase termed CAS (calcium-alumino-silicate) with the 

approximate formula CaAl4Si2O11 has been observed (Irifune, 1994; Hirose and Fei, 2002; 

Litasov and Ohtani, 2005) which can be understood to form through the reaction. 

2Ca3Al2Si3O12 + SiO2 = CaAl4Si2O11 + 5CaSiO3    (11)  

  Garnet            stishovite       CAS          perovskite 

This reaction also contributes to the exsolution of CaSiO3 perovskite from basaltic bulk 

compositions at temperatures above 1600°C (Litasov and Ohtani, 2005). 

We have combined existing experimental results and mineral physics data 

(Sinogeikin and Bass, 2001; Sinogeikin et al., 2001; Li et al. 2006) to estimate the density 

and sound velocity changes for fertile peridotite and mid-oceanic ridge basalt compositions 

in the region of 520 km as shown in Fig. 2.13. The data employed were taken both from 

theoretical ab-initio calculations and also from experimental work for our calculations 

(Table 2.5). Volume at high-pressure and temperature were calculated using a third order 

Birch-Murnaghan equation of state and S-wave velocities were calculated following the 

procedure described in Akaogi et al., (2002). Although significant uncertainty remains in 

the extrapolation of mineral physical parameters to the pressures and temperatures of 

interest, recent ab-initio calculations (e.g., Li et al., 2006) have improved such estimates. 

The aim of this calculation is to illustrate the likely difference in velocity contrast expected 

for the wadsleyite-ringwoodite transformation and for the exsolution of Ca-perovskite and 

not to arrive at an accurate absolute velocity profile. With this defense and for the sake of 

simplicity the presence of stishovite has not been included in calculations for the MORB 

composition. The formation of NAL and CAS phases should be limited to high 

temperatures (>1600°C) and pressures (>23 GPa) respectively and will, therefore, not 

influence the curves shown in Fig. 2.13. 

For fertile peridotite at 1400°C, the wadsleyite-ringwoodite transition produces a 

relatively strong discontinuity between 505-530 km, whereas the formation of Ca-

perovskite creates a break in slope at approximately 540 km followed by a region with a 

higher velocity gradient which curves back towards the ambient transition zone gradient 
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over a depth of approximately 60 km. A similar situation occurs at 1600oC but because the 

Clapeyron slope of the wadsleyite-ringwoodite transition is steeper (0.005 GPa K-1) than 

that of the Ca-perovskite reaction (0.002 GPa K-1) the two discontinuities merge at 

approximately 560 km. Both discontinuities contribute to a generally steep gradient in 

seismic velocity in the lower part of the transition zone, which is a feature in common with 

seismic reference models (Dziewonski and Anderson, 1981). 

 

Table 2.5. Elasticity data used for calculating density and S-wave velocity at high pressure and 
temperature. Wad (wadsleyite), Ring (ringwoodite), Perov (perovskite), V (molar volume) α0, α1, 
α2 (thermal expansion coefficient and its derivatives related by the equation α(T) = α0+α1T+α2/T2), 
K0 (bulk modulus), K' (pressure derivative of bulk modulus), G (shear modulus), G' (pressure 
derivative of shear modulus). 
Sources: Mg2SiO4 Wad (Jackson and Rigden, 1996; Li et al., 1998;Cammarano et al., 2003), Ring 
(Meng et al., 1994; Matsuzaka et al., 2000; Sinogeikin and Bass, 2002;Cammarano et al., 2003); 
Fe2SiO4 Wad (Fei et al., 1991), Ring (Sato, 1977; Masuzaka et al., 2000); Mg4Si4O12 garnet 
(Akaogi et al., 2002; Sinogeikin and Bass, 2001; Sinogeikin and Bass, 2002); Mg3Al2Si3O12 garnet 
(Sinogeikin and Bass, 2001; Sinogeikin and Bass, 2002; Akaogi et al., 2002; Cammarano et al., 
2003); Ca3Al2Si3O12 garnet (Conrad et al., 1999; Sinogeikin and Bass, 2001; Sinogeikin and Bass, 
2002; Akaogi et al., 2002; Cammarano et al., 2003;); Fe3Al2Si3O12 garnet (Skinner ,1966;Akaogi et 
al., 1998; Sinogeikin and Bass, 2002; Jiang et al., 2004);CaSiO3 perov (Li et al., 2006). 
 

 

 

 V 
cm3/ 
mol 

α0 
(x105) 

α1 
(x109) 

α2 Ko 
(GPa) 

K� dK/dT 
(GPaK-1) 

G 
(GPa) 

G� dG/dT 
(GPaK-1) 

Mg2SiO4 Wad 40.51 2.85 3.20 0 174 4 -0.019 121-28xFe 1.3 -0.017 
Fe2SiO4 Wad 43.15 2.32 7.12 -0.243 166 4 -0.0215    
Mg2SiO4 Ring 39.48 2.448 4.056 -0.6029 182 4 -0.027 112-40xFe 1.5 -0.016 
Fe2SiO4 Ring 41.86 2.455 3.59 -0.3703 197 4 -0.0284    
Mg4Si4O12 Garnet 113.88 2.87 2.89 -0.5443 162 4.2 -0.02 85 1.4 -0.0092 
Mg3Al2Si3O12 Garnet 113.19 2.87 2.89 -0.5443 169 4.2 -0.02 94 1.3 -0.0092 
Ca3Al2Si3O12 Garnet 125.31 2.87 2.89 -0.5443 165 5.4 -0.02 107 1.3 -0.0092 
Fe3Al2Si3O12 Garnet 115.44 1.78 1.21 -0.5071 176 5.5 -0.0277 95.6 1.4 -0.0092 
CaSiO3 Perov 27.45 3.22 6.88 0 236 4 -0.036 135 1.28 -0.01 
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Figure. 2.13. (A) Density and (B) shear wave velocity calculated along 
isotherms for fertile peridotite composition and MORB compositions as a 
function of depth. The phase proportions are calculated using a thermodynamic 
model fit to the experimental data in addition to auxiliary thermodynamic data 
for the (Mg,Fe)2SiO4 β-γ phase transformation (Mastuzaka et al., 2000; Frost, 
2003). For the peridotite composition, two shaded discontinuities can be 
observed resulting from the wadsleyite-ringwoodite (shallower) and the garnet-
Ca-perovskite reaction. For the MORB composition only the Ca-perovskite 
reaction occurs. As the Ca-perovskite reaction is non-linear and its seismically 
observable depth interval is hard to assess, the shaded region is shown for the 
same depth interval as the β-γ transition for comparison. The percent density 
and S-wave velocity jumps resulting from both the β-γ and Ca-perovskite 
reactions are shown as calculated over the shaded regions. PREM S-wave 
velocities are also shown for comparison. 
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As the majority of observations of the 520 km discontinuity have been made with 

studies of long-period underside SS reflections (Shearer, 1990; Shearer, 1996; Deuss and 

Woodhouse, 2001), where the amplitude, i.e., the visibility of the reflected waves will 

depend on the S impedance contrast ∆(ρVs), where ρ is density and Vs is the shaer wave 

velocity. The wadsleyite-ringwoodite transition occurs over a depth interval of 

approximately 25 km with a ∆(ρVs) of 3.6 %. The seismically observable effective depth 

interval of the Ca-perovskite reaction is harder to determine and the reflectivity will vary 

with the frequency of seismic waves (Stixrude, 1997; Li et al., 2006). However, we can 

make a simple comparison by calculating ∆(ρVs) over the same depth interval as the 

wadsleyite to ringwoodite transition which gives a value of 1.5 % for impedence contrast.. 

These impedance contrasts are in excellent agreement with those that have been proposed 

for the split 520 km discontinuities (Deuss and Woodhouse, 2001). 

The regional variability in the appearance of a split and single 520 km discontinuity 

can be potentially explained by variations in mantle temperature. As a result of the 

effective Clapeyron slope of the wadsleyite-ringwoodite being steeper than that of the Ca-

perovskite formatting reaction, the two transformations would merge to form an apparently 

single discontinuity at temperatures of approximately 1600°C. At lower temperatures 

(1400°C), on the other hand, two discontinuities would be observed. This may explain 

some of the observations but it is not completely consistent with the general behavior, 

which is that a discontinuity at approximately 520-530 km splits in some regions into a 

shallower (500 km) and a deeper (560 km) branch (Deuss and Woodhouse, 2001). If this 

were a result of temperature variation alone it would imply that the Clapeyron slope of the 

Ca-perovskite reaction is negative, whereas in fact both reactions have positive slopes (Fig 

2.14). In addition, our results show that the two discontinuities would merge at a 

significantly greater depth (∼560 km) than the ~520 km depth that is typically reported for 

a single discontinuity (Flanagan and Shearer, 1996). 
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Figure. 2.14: Comparison of the transition pressure for wadsleyite-ringwoodite 
and majorite-Ca-perovskite as function of mantle temperatures of 1400°C and 
1600°C showing positive Clapeyron slopes as represented by the solid lines for 
both the reaction. The closed circles are the transition mid points for 
wadsleyite-ringwoodite based on work of Frost, (2003) and the open squares are 
the transition mid points for the majorite to Ca-perovskite from the present 
experimental study. 
 
 
A more consistent explanation is that in many regions where only a single 520 km 

discontinuity is observed the Ca-perovskite reaction is invisible because the Ca content of 

the mantle is too low i.e., the region has undergone partial melting at the surface at some 

point in its history and is depleted in a fertile component. A strong 560 reflection, on the 

other hand, would indicate the presence of fertile mantle or mantle that contains a 

significant component of recycled MORB crust. The impedance contrast for the Ca-

perovskite reaction in MORB is 2.8 %. As no wadsleyite to ringwoodite transition occurs 

in MORB, mantle with an enriched recycled MORB component would have a weaker 510 

discontinuity but a much stronger reflection at approximately 560 km, in line with some of 

the observations. 

The 520 km discontinuity becomes uplifted to approximately 500 km as it splits, 

which based on the Clapeyron slope of the wadsleyite to ringwoodite transition implies 

local mantle temperatures that are cooler by at least 100°. As these regions also display a 

strong Ca-perovskite transition a good explanation for the splitting would be that it occurs 

in areas that contain significant amounts of subducted oceanic crust. If subducted slabs 

descend at high angle directly into the lower mantle these regions would not be expected to 
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be nearly as globally extensive as they appear to be. However, the widespread 

splitting of 520 would be easily explained if subducted material is accumulating at the base 

of the transition zone, as a result of either density or rheological contrast with the lower 

mantle (Christensen, 1997; Karason and van der Hilst, 2000), creating relatively cool flat-

lying regions rich in oceanic crust.  

 

2.6. Conclusions 
 
Our experimental data support the hypothesis that the wadsleyite to ringwoodite transition 

and the Ca-perovskite forming reactions could produce two distinct discontinuities 

between 500 and 560 km. The presence and amplitude of a discontinuity at approximately 

560 km will be sensitive to the Ca-content of the mantle and will consequently be an 

indicator for the presence of fertile mantle or mantle enriched in recycled oceanic crust. 

This is, therefore, the first mantle discontinuity to be identified that is sensitive to the main 

type of large-scale chemical heterogeneity expected in the Earth�s mantle. The observed 

variability in 520 km seismic discontinuity splitting indicates that the mantle at this depth 

may be heterogeneous over quite extensive regions.  

On considering the geographical distribution of the split 520 km seismic 

discontinuity, it is observed that Deuss and Woodhouse, (2001), in their seismological 

study reported the presence of a distinctly split 520 km seismic discontinuity from traces 

across North America, the East Pacific region, Indonesia and in the areas around the North 

African Shield. Like wise, Gilbert et al., (2003) also reported a split 520 km seismic 

discontinuity in areas beneath the Colorado Plateau, the Basin and Range province and the 

Rocky Mountains in the North Western United States. These regions are all undoubtedly 

sites of modern day or past subduction. Therefore, a correlation can be drawn supporting 

our idea of enrichment of Ca in the mantle by subduction of oceanic lithosphere beneath 

continental plates from the geographical distribution of the observed split 520 km seismic 

discontinuity. Further studies into the variability and splitting shown by the 520 km 

seismic discontinuity will provide key insights into the circulation of subducted crust and 

the lateral distribution of chemical heterogeneity in the transition zone.  
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Chapter 3 
 

The compressibility of (Fe,Al)-bearing magnesium silicate 
perovskite determined by single-crystal X-ray diffraction: 
implications for lower mantle properties. 
 
3.1 Introduction 
 
The transformation of (Mg,Fe)2SiO4 ringwoodite to (Mg,Fe)SiO3 perovskite and (Mg,Fe)O 

magnesiowüstite marks the beginning of the lower mantle. This transition is the likely 

cause of the 670 km seismic discontinuity (Ringwood and Major, 1967). At depths below 

670 km, (Mg,Fe)SiO3 perovskite becomes the dominant mantle constituent, accounting for 

approximately 80 volume percent of the Earth�s lower mantle. Our understanding of the 

structure and temperature of the lower mantle is mainly based mainly on the comparison of 

seismic wave velocities with model calculations for wave velocities of mineral 

assemblages at lower mantle conditions. The reliability of such a comparison depends on 

the accuracy of experimental and theoretical estimates for mineral elastic properties at the 

conditions of the deep mantle. A complete knowledge of the elastic properties of 

(Mg,Fe)SiO3 perovskite over the range of pressure, temperature and composition likely 

encompassed by the lower mantle is, therefore, a prerequisite for constraining the physical 

and chemical properties of the lower mantle. Because the lower mantle comprises the bulk 

of the silicate Earth, knowledge of its composition and temperature is vital to our 

understanding of the Earth�s composition as a whole and mantle dynamics in general. 

Perovskite-type compounds have ABX3 stoichiometry and are characterised by a 

network of BX6 corner-sharing octahedra. In the ideal perovskite structure the octahedral 

framework forms a cubic array and the A cations occupy the large 12-fold coordinated site. 
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This structure is cubic and has the space group mPm3 . The majority of perovskite 

structures, however, including (Mg,Fe)SiO3 perovskite, are distorted derivatives of the 

cubic structure. The most common type of distortion, as in the case of (Mg,Fe)SiO3 

perovskite, arises when the size of the A-cation is too small for the 12-fold site. To 

accommodate such cations the octahedra tilt about the pseudocubic axes, in this way the A-

X bond-lengths are no longer all equal with a consequent change of the A-site coordination 

and reduction in symmetry from the cubic arystotype. Octahedral tilting in perovskite has 

been discussed in details by several authors (see for example Glazer, 1972, 1975; Megaw, 

1973; Woodward 1997; Howard and Stokes, 1998). (Mg,Fe)SiO3 perovskite has an 

orthorhombic symmetry (space group Pbnm) due to the tilting of the BO6 framework 

which brings some oxygens closer to the A cations, resulting in a lowering of coordination 

of the A cations from [XII] to [VIII] fold (Fig. 3.1). The A site of (Mg,Fe)SiO3 perovskite 

is mainly occupied by divalent Mg and Fe cations and the B site by Si. Divalent Fe 

substitutes for Mg up to approximately 25 % into the A site at conditions compatible with 

the top of the Earth�s lower mantle, causing a slight expansion of the structure and a 

decrease in distortion (Ross and Hazen, 1989; Ross and Hazen, 1990; Hemley and Cohen, 

1992).  

 

Bx6 octahedra

A cation

a
b

c

 
 

Figure. 3.1: Distorted orthorhombic MgSiO3 perovskite structure, 
showing corner shared BX6 octahedra with dodecahedral A cation 
site. 
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Octahedral tilt angles can be estimated using unit cell dimensions. For 

orthorhombic Pbnm perovskites, with no distortion of the BX6 octahedra, three tilt angles 

can be defined (following the notation of Zhao et al., 1993a,b). These angles, θ, φ, and Φ  

represent rotations of the octahedra about the pseudo-cubic axes [110], [001] and [111] 

respectively and can be calculated according to the following equations: 

ba /cos =θ         (1) 

ca /2cos =φ         (2) 

bca /2cos 2=Φ         (3) 

Although the unit cell dimension method normally underestimates the tilt angles, as real 

octahedra are typically slightly distorted, it is still very useful when the atomic coordinates 

of orthorhombic perovskites are not known. 

Trivalent cations also substitute into (Mg,Fe)SiO3 perovskite although the 

substitution mechanism may vary depending on the cation and on pressure and 

temperature. There is evidence, for example, that Al enters the structure through a coupled 

substitution onto both A and B sites (Stebbins et al., 2001). Other workers, however, have 

raised the possibility that Al may replace Si on the octahedral B site with charge balance 

provided by the creation of an oxygen vacancy (Navrosky, 1999). Certainly at pressures 

>30 GPa a coupled substitution seems to occur with up to 25 % substitution of an AlAlO3 

component being possible (Walter et a., 2004). Al substitution causes the octahedral 

distortion to increase (Hemley and Cohen, 1993). 

It was recently established experimentally that a significant portion of Fe in Al-

bearing (Mg,Fe)SiO3 perovskite is in the ferric (Fe3+) state (McCammon, 1997). Support 

that this may also be the case in the lower mantle comes from the analyses of high ferric Fe 

contents in mineral inclusions trapped in diamonds that appear to have originally had the 

perovskite structure (Harte et al., 1999). Experimental studies have also shown that the 

Fe3+/∑Fe ratio in magnesium silicate perovskite is strongly correlated with Al content 

(Wood and Rubie, 1996; McCammon, 1997; Frost and Langenhorst, 2002; Lauterbach et 

al., 2000; McCammon et al., 2004). Such a strong coupling would imply that a coupled 

substitution takes place. Richmond and Brodholt, (1998) performed computer simulations 

to examine the energy associated with various trivalent cation substitution mechanisms i.e.,  
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Si4+[VI]  +  Mg2+[VIII]↔Al3+[VI]  +  Fe3+[VIII]    (4) 

 

2Si4+[VI]  +  O2-↔2Fe3+[VI]  +  V0       (5) 
 

2Si4+[VI]  +  O2-↔2Al3+[VI]  +  V0      (6) 

 

These authors reported that the coupled substitution mechanism (4), where Al substitutions 

onto the Si site and Fe3+ onto the Mg site, is more energetically favourable than the oxygen 

vacancy mechanisms (5) and (6). 

The incorporation of Al and the resulting stabilization of Fe3+ in the perovskite 

structure can potentially affect its elastic properties (Navrotsky et al., 2003). A number of 

observations of seismic anomalies in the lower mantle have been attributed to chemical 

heterogeneity (Trampert, 2004) and there are a number of possibilities as to how Al and Fe 

concentrations could vary in the lower mantle. In order to understanding the origin of 

seismic anomalies in the lower mantle a complete understanding of how cation 

substitutions influence the elastic properties of (Mg,Fe,)SiO3 perovskite is required. 

Values for the bulk modulus of end member MgSiO3 perovskite determined using 

static compression and dynamic techniques such as Brillouin scattering, cover a range of 

250-265 GPa with K' normally fixed at 4 (Andrault et al., 2001; Daniel et al., 2001; Walter 

et al., 2004; Yagi et al., 2004; Walter et al., 2006). Studies of (Mg,Fe,)SiO3 perovskite 

indicate values in a similar range (Knittle and Jeanloz, 1987; Mao et al., 1991).Studies on 

the effect of Al substitution on the elastic propoerties of MgSiO3 perovskite, however, are 

far more inconclusive. A number of studies have shown that Al substitution causes a 

decrease in the bulk modulus of perovskite (Zhang and Weidner, 1999; Kubo et al., 2000; 

Daniel et al., 2001; Yagi et al., 2004). Some studies indicate an increase in the bulk 

modulus (Andrault et al. 2001; Ono et al., 2004), while several others indicate that there is 

no change in the bulk modulus with Al incorporation (Yagi et al., 2004; Jackson et al., 

2004; Li et al., 2005). This discrepancy observed in elastic property behaviour might be 

attributed to different substitution mechanisms operating over different pressure or Al 

concentration ranges. On the other hand it may result from partial amorphisation following 

sample synthesis or from the use of different measurement techniques. Aside from the 

discrepancies in these previous studies it is likely that in the Earth the presence of Fe3+ 

together with Al will affect quite differently the behaviour of perovskite in comparison 
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with Fe-free samples. To date there are no studies that have specifically examined 

the effect of varying perovskite Fe3+ content and bulk iron concentration on the elastic 

properties of Al-bearing (Mg,Fe,)SiO3 perovskite.  

In this study single-crystal X-ray diffraction experiments have been performed at 

room temperature in a diamond anvil cell (DAC) to determine the equation of state 

parameters of well-characterized samples of Fe and Al-bearing perovskite, with different 

Fe3+ contents.  

 

3.2 Experimental details 
 
3.2.1 Starting materials 
 
Three starting compositions were employed for the synthesis of perovskite single crystals 

in this study (Table 3.1). The alumina contents of these compositions were fixed to a value 

of 5 wt %, considered to be typical for perovskite in the lower mantle, while the bulk Fe 

concentration was varied. 

 

Table 3.1 The glass starting compositions in wt % oxide and cation proportion used for Fe and Al-
bearing perovskite synthesis. Cation proportions are calculated based on 3 oxygens per formula 
unit. 

No. SiO2 MgO FeO Al2O3 Total Si Mg Fe Al Total X Fe 
              
1 54.58 36.64 3.63 5.15 100 0.929 0.935 0.052 0.103 2.019 0.05 
2 52.96 35.13 6.76 5.17 100.02 0.916 0.911 0.097 0.105 2.031 0.1 
 3 52.8 32.07 10.09 5.1 100.06 0.925 0.843 0.147 0.1052 2.021 0.15 

 
 

Starting powders of high-purity SiO2, MgO, Al2O3 and Fe2O3 were ground together 

in the proportions indicated in Table 3.1, then placed in a Pt crucible and fused in air at 

1600°C for 15 minutes. The crucible was than rapidly quenched in water to produce a 

silicate glass. The glass was ground to a powder, then pelletised and reduced in a CO2-H2 

gas-mixing furnace maintained at an fO2 of approximately 2 log units above the iron-

wüstite buffer at 650°C for 24 hours. The low temperatures prevented the glass from 

crystallizing. Compositional characterization of the glasses was performed using an 

electron microprobe. The analysis conditions were the same as listed in Chapter 2 section 
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2.3. Mössbauer analysis on the glass powders confirmed the complete reduction of Fe2O3 

to FeO. 

 

3.2.2 Multianvil synthesis experiments  
 
The glasses were transformed to perovskite using a multi-anvil press at 25 GPa and 1800-

2000°C. Multi-anvil experiments were performed using a pressure medium of Cr2O3 doped 

MgO octahedra of 8 mm edge length in combination with tungsten carbide cubes with 3 

mm truncation edge lengths. The pressure assembly employed in this study is as shown in 

Fig. 3.2. The reduced glass powders were packed into Re or Au gold foil capsules of 2 mm 

length and 1 mm diameter. The heating duration of the experiments was varied from an 

hour to ten minutes and experiments were quenched by cutting the power supply. No 

thermocouple was employed in the experiments but instead a previous calibration of 

temperature versus power was used to provide an estimate of the temperature. It has been 

found that in many experiments where a thermocouple was employed, it has led to leakage 

of partial melt from the capsule and failure of the experiment due to damage caused by 

compaction of the capsule by the hard Al2O3 thermocouple sleeve. The presence of small 

degree partial melts is key to the growth of large single crystals. In experiment H2369, 

melting occurred due to the high temperatures and high Fe content, while in run H2438, 

H2O was added to flux melting (See Appendix B Table B.1 for run details). 
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MgO + 5 wt% Cr O octahedra  2 3  

ZrO sleeve2 

LaCrO  furnace3

MgO sleeve

Sample in a metal foil capsule

MgO rod

 
 

Figure 3.2: The 8/3 multianvil pressure assembly used for multianvil 
synthesis experiments (not to scale) as described in the text.  

 

For the crystals of the compositions with XFe = 0.10 (Crystal 1, Run no. H2369) 

and 0.15 (Crystal 2, Run no. H2438) we recovered single crystals of size up to a 

maximum of 150 microns in length on decompression of the experiment as shown in Fig. 

3.3 (A) and (B). As H2O was used as flux in the synthesis of Crystal 1, FTIR (Fourier 

transform infra red) spectroscopic measurements were carried out on these perovskite 

crystals to check for the presence of water. No evidence for the incorporation of OH- in the 

perovskite sample was detected, in accordance with previous measurements (Bolfan-

Casanova et al., 2000). 
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Pv
Stish

Pv

Pv

Phase D

Phase D (A) (B) (C)

 
Figure. 3.3 Back-scattered and secondary electron image of the three crystals used for this 
diamond anvil cell compression study: (A) Perovskite (Crystal 1) coexisting with Phase-D; (B) 
Perovskite (Crystal 2) coexisting with stishovite and (C) A single crystal of perovskite (Crystal 3) 
coexisting with Phase D. 
 

A number of attempts were made to synthesis large perovskite crystals using bulk 

composition No. 1 (XFe = 0.05) in Table 3.1. Although a number of perovskite samples 

were synthesised e.g., Crystal 4, the size and quality of all crystals were unsuitable for 

single crystal X-ray diffraction analysis in the diamond anvil cell (see Appendix B Table 

B.1). In most cases this composition produced only tiny crystal aggregates (< 20 µm). H2O 

was employed as a flux in a number of such experiments, but had little effect. 

Experimental temperatures were varied between 1500-2000°C; at higher temperatures, 

however, the furnace of the experiment would become unstable possibly due to interaction 

with H2 lost from the H2O-bearing sample. The duration of the experiments was also 

varied from 10 minutes to more than hour to allow time for crystal growth. In some 

experiments temperatures were initially raised to ensure significant melting of the sample 

and then cooled over a duration of half an hour to promote growth of a small number of 

nucleated crystals. From such experiments several crystals of approximately 80 to 90 

microns in length were recovered. However, they presented only weak and broad reflection 

profiles when analysed by X-ray diffraction and were, therefore, inadequate for DAC 

experiments. It was, however, possible to characterize the iron content of these crystals by 

Mössbauer spectroscopy and analyze their composition by electron microprobe. 

The perovskite Crystal 3 (Fig. 3.3, (C) upper right corner in grey) was produced in 

another study performed to synthesize hydrous Phase D (Frost, 2006). The starting 

composition was an oxide mixture of Mg(OH)2, Al(OH)3, Fe2O3 and SiO2 in the 

stoichiometric proportion required for the Phase D {(Mg,Fe)(Si,Al)2O6H2} composition. A 

7/3 multi-anvil pressure assembly was used for the experiment with a Pt capsule. The 

experiment was perfromed at 25 GPa and 1100°C for 2 hours. The run product contained a 
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single perovskite crystal of approximately 250 microns in length and smaller 

crystals of Phase D. 

Recovered sample capsules were cut open using a razor blade and the crystal 

assemblage was examined under a binocular microscope in order to identify crystals of a 

suitable size. Once appropriate crystals were identified and separated, half of the remaining 

sample was embedded in epoxy for compositional analysis. The compositions of the 

crystals (Table 3.2) were determined by electron microprobe analysis with conditions and 

standards as reported in Chapter 2 (section 2.3). 

 

Table 3.2 The cation proportion of perovskite crystal compositions as determined using EPMA 
based on 3 oxygen per formula unit. The Fe3+/ΣFe ratios were determined by Mössbauer 
spectroscopy and Electron energy loss spectroscopy measurements (see section 3.2.3). 
 
Crystal  Mg  Fe  Al  Si Total  Fe3+/ΣFe 
1  0.968  0.074  0.045  0.936 2.024  0.48 
2  0.872  0.131  0.113  0.892 2.007  0.68 
3  0.758  0.233  0.162  0.836 1.989  0.8 
4  0.925  0.040  0.096  0.926 2.014  0.58 

 

 

3.2.3 Quantification of perovskite Fe3+/∑Fe ratios 
 

Mössbauer spectroscopy 
 
After microprobe analysis the perovskite crystal aggregates representative of Crystals 1, 2 

and 4 were analyzed by Mössbauer spectroscopy to determine the Fe3+/∑Fe ratios using 

the milliprobe technique. This technique allows spectra to be collected from spot sizes of 

the order of 100 µm (McCammon, 1998). The epoxy resin mounts containing the samples 

were thinned down into disks with a thickness of 150 µm, which corresponds to an 

absorber thickness of ~5mg Fe/cm2. The perovskite aggregates were masked with a Ta foil 

of 25 µm thickness with a 500 µm hole. 

Mössbauer spectra were collected at room temperature over one to three days 

duration in transmission mode on a constant acceleration Mössbauer spectrometer using a 

nominal 370 -MBq 57Co high specific activity source in a 12 µm Rh matrix point source. 

The velocity scale calibration was performed relative to 25 µm α-Fe foil using the 

positions certified by the National Bureau of Standards standard reference material 
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no.1541. The commercially available fitting program NORMOS written by R.A. Brand 

(distributed by Wissenschaftliche Elektronik GmbH, Germany) was used to fit the 

collected spectra to Lorentzian lineshapes. The values for Fe3+/∑Fe were calculated based 

on relative area ratios corrected for thickness effects and differences in the recoil free 

fraction. The fitted spectrum for Crystal 2 is shown in Fig. 3.4. 

 

 

 

Fe2+

Fe3+

 

Figure.3.4: Mössbauer spectra showing relative intensity ratios of 
Fe3+ and Fe2+ in crystal 2.The doublet near the 1 mm/sec (1) is the 
one for Fe3+ and the other doublet is for Fe2+. Fe3+/∑Fe is 
determined based on the relative areas of Fe3+ doublet. 
 

 
 
Transmission electron microscopy 
 
A chip of Crystal 3 was examined using a transmission electron microscope (TEM) 

principally to determine the Fe3+/∑Fe ratio using electron energy loss spectroscopy 

(EELS). The crystal chip was mounted on a glass slide using dissolvable glue and polished 

down to a thickness of 13µm. After dissolving the glue, the crystal was then picked from 

the glass slide using a needle and placed on a Mo mesh (Fig. 3.5 A). Thinning of the 

sample was performed using an Ar+ ion beam in a Gatan dual ion mill model 600, at an 

angle of 13° with a 4 kV acceleration voltage and 1 mA beam current. At the end of 

thinning process the acceleration voltage was reduced to 3.5 kV and incidence angle to 11° 
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to reduce beam damage. The sample was cooled throughout this process using liquid 

nitrogen, in order to avoid beam damage. Thirty hours were required to thin the sample to 

electron transparency, with a thickness of approximately 10 nm (Fig. 3.5 C). The sample 

was than coated with 5 nm of amorphous carbon to prevent charging on the surface using a 

BAL-TEC, ME020 coating system.  

 

 

(B)

 
 

Figure. 3.5: Optical microscope images of crystal 3 during Ar ion thinning on a Mo mesh: (A) 
Crystal before Ar thinning (B) during Ar thinning and (C) after Ar thinning. 
 
 
 

TEM imaging and EELS measurements were performed using a Philips CM-

20FEG analytical transmission electron microscope operating at 200 kV, equipped with a 

parallel electron energy loss spectrometer (PEELS Gatan 666) and an energy dispersive x-

ray spectrometer (NORAN Vantage EDX system). A stationary unfocussed beam of 5 nm 

spot size was used for EDX and EELS. To reduce beam damage during irradiation the 

sample was cooled to liquid nitrogen temperatures using a Gatan cooling stage. ELNES 

(electron energy-loss near-edge structure) spectra of the Fe L 2,3 edge were collected in 

diffraction mode with convergence and collection semi-angles of α = 8 mrad and β = 2.7 

mrad and an energy dispersion of 0.1ev per channel. A typical Fe-L 2,3-edge ELNES spectra of 

Crystal 3 is shown in Fig. 3.6. The width of the zero loss peak at half height was ca. 0.8 eV. 

Quantification of the spectra was performed following the method of van Aken et al., 

(1998) using an empirically calibrated universal curve. EDXS spectra were collected with 

100 sec live times and were quantified according to the procedure of van Cappellen and 

Doukhan (1994). 

   77



   
Chapter 3: Crystal compositions 

=

 
 

Figure. 3.6: A typical Fe-L 2,3-edge ELNES of Crystal 3. The spectrum has 
been gain normalized, background subtracted and deconvoluted using the 
low-loss spectra. The Fe3+/∑Fe ratio was determined using the technique 
described by van Aken et al., (1998). 

 

 

3.2.4 Crystal compositions 

 
The exact crystal compositions accounting for the Fe3+/∑Fe ratio and normalizing to two 

cations are: 

 

Crystal 1: 

 (Mg2+0.95,Fe3+0.03,Fe2+0.03)(Si4+0.93,Al3+0.045)O2.97  

  

Crystal 2: 

 (Mg2+0.86,Fe3+0.08,Fe2+0.04)(Si4+0.89,Al3+0.11)O3 

 

Crystal 3: 

 (Mg2+0.76,Fe3+0.17,Fe2+0.05)(Si4+0.85,Al3+0.16)O3 

 

Crystal 4: 

 (Mg2+0.94,Fe3+0.02,Fe2+0.02)(Si4+0.92,Al3+0.09)O2.98 
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A linear increase in Fe3+/ΣFe with increasing Al content can be observed for the 

crystals used in this study as shown in Fig. 3.7. This translates to a slightly non-linear 

increase in Fe3+ formula units with Al, as observed in the study of Frost and Langenhorst, 

(2002). It is important to note that while both Fe3+ and Fe2+contents increase with the Al 

content of the crystals, the increase in Fe2+ is relatively minor. The Fe3+/ΣFe ratio is not 

strongly correlated with the total Fe iron content. Iron oxidation state does not seem to be 

affected by oxygen fugacity as we had used different capsule materials such as Au, Pt and 

Re and water as a flux in two of our runs, which would have imposed different redox 

conditions.  

 

0.00 0.04 0.08 0.12 0.16
20

40

60

80

100

Fe
3+

/ Σ
 F

e(
%

)

Al composition (atoms per formula unit)

Crystal 1

Crystal 4

Crystal 2

Crystal 3

 
 

Figure. 3.7: Relation between Al content and Fe3+/ΣFe ratio for (Fe,Al)-MgSiO3 
perovskites synthesized in this study. Fe3+/ΣFe ratios were determined using 
Mössbauer spectroscopy and Electron energy loss spectroscopy at room temperature 
and liquid nitrogen temperature respectively. 

 

 

The three trivalent cation substitution mechanisms for silicate perovskite are shown 

in the ternary diagram of Fig. 3.8, on which the 4 perovskite crystal compositions of the 

present study have been plotted. The oxygen vacancy and the coupled substitution 

mechanisms are described by equations (5), (6) and (4). The third mechanism, for which 

   79



   
Chapter 3: DAC experiments 

there is little evidence, would produce an oxygen excess composition due to Fe3+ or Al3+ 

substitution for Mg2+ or Fe2+. As can be seen in Fig. 3.8, crystals 2 and 3 plot along the 

charge coupled substitution mechanism join. Crystals 1 and 4, however, which have the 

lowest trivalent cation contents, plot between the charge coupled and the oxygen vacancy 

join. Oxygen vacancies are also indicated by the formulas for these perovskite crystals that 

contain less than 3 oxygens when normalized to 2 cations.  
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Figure. 3.8: A ternary concentration plot with the axes MgO + FeO, Al2O3+Fe2O3 and 
SiO2 showing the compositions of the (Fe,Al) MgSiO3crystals used in the present study 
in relation to different possible substitution mechanisms.  

 
 
 
3.3 Diamond anvil cell compression experiments 
 
3.3.1 Basics of diamond anvil cell single crystal compression 
technique 
 
In this study, a BGI-design diamond anvil cell (Allan et al., 1996) has been employed to 

perform static compression experiments. For the high-pressure experiments a single crystal 

is placed in a hole drilled through a hardened metal foil (gasket), which is indented 
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between two opposed diamond anvils with flat parallel faces. This produces a pressure 

chamber as shown in Fig.3.9. A pressure calibrant is placed along side the sample for 

pressure determination within the chamber and the free volume in the pressure chamber is 

filled with a pressure-transmitting fluid for maintaining hydrostatic conditions. Pressure is 

applied to the sample by mechanically pressing the diamonds together and single crystal 

diffraction lines are recorded using a 4-circle diffractometer. Details of the technique can 

be found in Miletich et al., (2000) and Miletich, (2005). 

 

 
Figure. 3.9: A schematic sectional view of diamond anvil cell as is  
used for our compression study. 

 

 

3.3.2 Compression experiments: 
 

Single crystals with well-defined habits were selected by careful observation under an 

optical microscope. Most crystals were too opaque to base this selection on extinction and 

transparency. The final selection of the crystals was performed by checking the reflection 

intensity and peak profiles using a Huber single crystal diffractometer. 

 

Single crystals with dimensions of approximately 120 µm x 80µm x 20 µm 

(Crystal 1), 130 µm x 100 µm x 50 µm (Crystal 2), and 120 µm x 90µm x 30 µm 
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(Crystal 3) were loaded into a diamond anvil cell sample chamber drilled into a steel 

(T301) plate gasket pre-indented down to 90 µm depth. Diamonds with 600 µm culets 

were employed and the sample chamber was 300 µm in diameter. Quartz was used as an 

internal pressure calibrant and a 4:1 mixture of methanol:ethanol was used as the pressure 

transmitting medium for our study. The unit cell parameters were determined at ambient 

temperature at various pressures up to 9.16 GPa for Crystal 1, 7.10 GPa for Crystal 2 and 

6.97 GPa for Crystal 3 on a Huber four-circle diffractometer (non-monochromatised MoKα 

radiation) using the 8-position centring procedure according to King and Finger (1979) and 

Angel et al., (2000). The maximum pressure reached during each experiment was 

determined by failure of the gasket and consequent loss of the perovskite single-crystals, 

therefore it was not possible to collect data during decompression. The centring procedure 

and vector least square refinement of the unit cell constants were performed by SINGLE04 

software according to the protocol of Ralph and Finger, (1982) and Angel et al., (2000). 

The unit cell data at different pressures are tabulated in Table 3.3.  

 

Table 3.3. Unit-cell lattice parameters for (Fe, Al)- MgSiO3 single crystals. Standard 
deviations are in parentheses in terms of least units cited. 
 
         P (GPa)                 a(Å)                       b(Å)                    c(Å)                     V((Å) 

Crystal 1 

        0.00010(1)          4.78638(19)          4.94261(16)           6.9188(4)          163.680(12) 

        0.295(6)              4.7844(2)              4.94052(19)           6.9161(5)          163.479(15) 

        1.063(6)              4.77899(18)          4.93630(15)           6.9085(4)          162.976(12) 

        1.982(7)              4.7732(2)              4.9310(2)               6.8995(6)          162.392(17) 

        2.818(9)              4.7674(2)              4.9265(3)               6.8916(6)          161.860(18) 

        3.991(11)            4.7595(2)              4.9198(3)               6.8800(8)          161.10(2) 

       4.611(11)            4.7558(2)               4.9165(2)              6.8748(6)          160.747(19) 

        6.501(10)            4.7441(2)               4.9066(2)              6.8574(7)          159.62(2) 

        7.944(10)            4.73509(18)           4.89956(16)          6.8453(5)          158.810(14) 

        8.785(18)            4.7306(4)               4.8953(4)              6.8376(10)        158.34(3) 

        9.16(2)                4.7284(4)               4.8934(3)              6.8342(9)          158.13(3) 

Crystal 2 
        0.00010(1)         4.79239(14)           4.95152(11)           6.9343(4)          164.548(11) 

        0.350(5)             4.79005(15)           4.94953(11)           6.9311(5)          164.327(13) 
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        0.681(5)             4.78789(16)           4.9480(2)               6.9278(6)          164.123(16) 

        1.204(4)             4.78423(18)           4.94443(15)           6.9222(6)          163.747(15) 

        1.685(4)             4.78099(14)           4.94197(15)           6.9179(6)          163.455(14) 

        2.455(5)             4.77571(15)           4.93737(15)           6.9100(5)          162.933(13) 

        3.491(6)             4.76913(11)           4.93217(14)           6.9005(5)          162.315(12) 

        4.728(7)             4.76121(16)           4.92566(17)           6.8893(6)          161.568(15) 

        5.420(6)             4.75672(9)             4.92167(9)             6.8825(4)          161.127(9) 

        6.429(9)             4.75072(12)           4.91680(10)           6.8734(4)          160.552(10) 

        6.910(8)             4.74773(9)             4.91416(9)             6.8695(3)          160.272(9) 

        7.101(9)             4.74647(13)           4.91332(12)           6.8682(4)          160.173(12) 

Crystal 3 

        In air                   4.79977(10)           4.97947(9)            6.98054(11)      166.837(5) 

        0.00010(1)          4.79978(10)           4.97961(11)          6.9799(3)          166.826(10) 

        0.396(4)              4.79701(11)           4.97753(13)          6.9756(4)          166.558(11) 

        0.513(5)              4.79639(12)           4.97699(14)          6.9745(4)          166.492(11) 

        0.745(5)              4.79465(14)           4.97563(16)          6.9718(5)          166.321(14) 

        1.176(5)              4.79181(13)           4.97311(16)          6.9671(4)          166.029(13) 

        1.510(5)              4.78929(17)           4.97096(18)          6.9634(6)          165.781(17) 

        1.943(5)              4.78665(14)           4.96852(16)          6.9591(5)          165.504(14) 

        2.334(5)              4.78420(13)           4.96607(14)          6.9545(4)          165.231(12) 

        2.756(7)              4.78122(13)           4.96370(16)          6.9502(4)          164.950(12) 

        3.302(7)              4.77772(13)           4.96071(13)          6.9447(4)          164.596(11) 

        4.285(7)              4.77151(11)           4.95556(12)          6.9346(4)          163.973(10) 

        4.540(8)              4.76976(12)           4.95431(12)          6.9323(4)          163.817(10) 

        4.930(7)              4.76740(12)           4.95202(13)          6.9283(4)          163.566(11) 

        5.463(7)              4.76404(11)           4.94915(13)          6.9231(4)          163.232(11) 

       5.969(9)               4.76110(18)           4.9465(2)              6.9188(6)          162.942(17) 

        6.423(8)              4.75831(12)           4.94434(13)          6.9145(4)          162.674(11) 

        6.729(8)              4.75623(13)           4.94286(14)          6.9115(4)          162.486(12) 

         6.968(8)             4.7550(2)               4.9420(3)              6.9089(8)          162.36(2) 
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3.4 Equation of state results 
 

3.4.1. Theoretical background 
 
The incompressibility of a material is expressed in terms of its bulk modulus K, which is 

defined as K = -V(δP/δV). The bulk modulus is also a function of pressure and can be 

described by the pressure derivative K' = δK/δP and potentially also K'' = δ2K/δP2. Static 

compression measurements are performed at constant temperature and are therefore 

described using the isothermal bulk modulus K0. Compression in the Earth, however, is not 

isothermal but adiabatic and is therefore described using the adiabatic bulk modulus (KS). 

The relationship between the isothermal and adiabatic bulk moduli is 

 

 KS = K0 (1+αγT)         (7) 

 

where γ is the Gruneisen parameter and α is the thermal expansion coefficient. 

 

The relationship between volume and pressure is described using an equation of 

state (EoS). A number of EoS formulations exist (Angel, 2000; Duffy and Wang, 2000) but 

the most commonly used, particularly to describe experimental data on the compression of 

minerals, is the Birch�Murnaghan equation of state (Birch, 1947). This is based on the 

assumption that the strain energy of a solid undergoing compression can be expressed as a 

Taylor expansion of the Eulerian strain fE = [(V0/V)2/3-1]/2. Expansion to the fourth-order 

in fE gives the Birch-Murnaghan EoS: 

 

P = 3K0fE (1+2fE) 5/2{1+3/2(K' �4)fE +3/2{K0K'' + (K'- 4)(K' �3)+35/9} fE 
2} (8) 

 

However, for most type of materials this EoS is truncated at the second order in strain, 

which requires K' to be fixed to 4 or at the third-order in strain which requires the 

coefficient of fE
2 to be zero with an implied value of K'' = -1/K0(3- K')(4- K')+35/9} 

(Anderson, 1995). 
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3.4.2 Unit cell lattice parameter variations with pressure  
 

The changes in unit cell volume as a function of pressure for all three crystals are shown in 

Fig.3.10, where the relative volume (V/V0) is the volume normalized to the ambient 

pressure volume. The maximum pressure of each experiment is constrained by the point 

where the gasket starts to fail and diffraction lines are broadened. This occurred at slightly 

different pressures in each of the three experiments with crystal 1 achieving the highest 

pressure of just above 9 GPa. For comparison, data for pure MgSiO3 perovskite 

(Vanpeteghem et al., 2006) and MgSiO3 perovskite with 5-mol% Al2O3 (Zhang and 

Weidner, 1999) are also plotted in Fig. 3.10.  
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Figure. 3.10:Unit cell volume variation of (Fe,Al)-MgSiO3 single crystals as a 
function of pressure for the 3 crystals of present study. The solid curve represents the 
volume variation of pure MgSiO3 of Vanpeteghem et al., (2006) and the dotted 
curve has been calculated using the EoS parameters reported for a MgSiO3 
perovskite with 5-mol % Al2O3 by Zhang and Weidner, (1999).  
 
 

Although the differences between the P-V data collected in this study and those of 

MgSiO3 perovskite (Vanpeteghem et al., 2006) are very small, there is a slight increase in 

compressibility with increasing Fe content. In addition, the Fe and Al-bearing perovskites 
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synthesised in this study are less compressible than the Fe-free Al-bearing perovskite 

studied by Zhang and Weidner, (1999).  

The axial compressibilities a/a0, b/b0, c/c0 of all the three crystals as a function of 

pressure are shown in Fig. 3.11. The axial compression is anisotropic with the b-axis being 

the least compressible. For Crystal 1 (XFe = 0.07) and Crystal 2 (XFe = 0.13) the axial 

compressibilities of the a and c axes are virtually identical and are very close to those of 

pure MgSiO3 perovskite (Vanpeteghem et al., 2006). For Crystal 3 (XFe = 0.24) the 

difference in compressibility between the a and c axes is larger, with a-axis being less 

compressible than c-axis. As a consequence, the axial ratio c/a remains constant for Crystal 

1 at 1.445 and for Crystal 2 at 1.446, whereas it decreases with pressure for Crystal 3. The 

b/a axial ratio instead increases with pressure for all three crystals. The axial 

compressibilities reported for the Fe-free Al bearing perovskites by Zhang and Weidner 

(1999) show the a-axis to be slightly more compressible than the c-axis. This suggests that 

there is a different mechanism by which Al is substituted into the perovskite structure in 

the absence or in the presence of Fe.  
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Figure 3.11. Axial compressibilities of the (Fe,Al)-MgSiO3 perovskite 
single crystals. The solid curves are the 3rd-order Birch Murnaghan EoS 
fits to the data: (a) Crystal 1, XFe = 0.07 (b) Crystal 2, XFe = 0.13 and (c) 
Crystal 3, XFe = 0.24. 

 
3.4.3 FE-fE plots and EoS parameters 
 
A normalised stress, defined as FE  = P/3fE (1+2 fE)5/2 has been plotted versus the Eulerian 

strain fE for each crystal (Fig. 3.12) in order to have a visual assessment of the order of the 

Birch-Murnaghan EoS required to fit the compression data (Angel, 2000).  
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Figure. 3.12 FE-fE plots based on the Birch-Murnaghan EoS for (Fe,Al)-MgSiO3 
perovskite single crystals. The values of V0 used to calculate the finite strain are 
those measured at 1 bar. The open circles shown in the FE-fE plot of Crystal 3, are 
the finite strain values calculated with volume of the crystal determined in air 
(Equations for the weighted fits are mentioned in the text). 
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Weighted linear fits to data points for the three crystals indicate a positive slope, 

which implies that K' is greater than 4. For comparison, weighted horizontal linear fits 

(implying K' = 4) also are shown in Fig. 3.12, although in this case we observe an increase 

of the chi-square. In the case of Crystal 3 the FE-fE data do not define a straight line, 

suggesting that a fourth-order truncation of the Birch-Murnaghan EoS might be 

considered. However, it has been shown (Angel, 2000) that such curvature for small 

strains, i.e., for data collected at low pressures, is often due to a wrong value of V0 being 

used in the calculation of the Eulerian strain. If the value of the volume measured with 

crystal 3 glued on a glass fibre (i.e., in air, Table 3.3), instead of that measured with the 

same crystal in the DAC is used to calculate the F-f plot, linear behaviour is obtained (Fig. 

3.12, Crystal 3 open circles). Moreover, the intercept on the F axis is equal to the bulk 

modulus, K0, value and can hence be used to assess the goodness of the EoS fit procedure. 

F-f plots have been calculated also for the individual crystal axes and are shown in Fig. 

3.13 indicating positive slope. Since the FE-fE plots (Fig. 3.12) suggest that K' is larger than 

4 for all three crystals, the P-V data have been fitted with a 3rd order Birch�Murnaghan 

EoS using the Eosfit52 program (Angel, 2000). However, for comparison with data present 

in the literature, fitted practically uniquely with K' fixed to the value of 4, a 2nd order 

Birch�Murnaghan EoS has also been used. A linearised Birch-Murnaghan EoS 

(implemented in the Eosfit52 software) in which the cube of a unit-cell axis is used instead 

of the volume has been used to fit the unit cell a, b and c parameters of the three crystals. 

The bulk moduli so obtained are 00 31 β=K , where β0 is the axial compressibility. The 

resulting equation of state parameters are reported in Table 3.4. The values obtained are in 

good agreement with those obtained from the linear fits of the FE-fE plots. 
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Figure. 3.13 FE-fE plots based on the Birch-Murnaghan EoS for 
individual crystal axes of the three (Fe,Al)-MgSiO3 perovskite single 
crystals of the present study. Equations for the weighted fits are 
mentioned in text below. 
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Equations for the weighted fits shown in the FE-fE plots of volumes and crystal axes for 

crystal 1, 2 and 3 in Figs. 3.12 and 3.13 are as follows: 

 
Crystal 1 
 
For volume data FE = 243(2) + 375(243) fE 
Horizontal line FE = 246.9(6) 
 
a-axis FE(a) = 230(3) + 124(294) fE (a)  
b-axis FE(b) = 274(4) + 1470(513) fE(b)  
c-axis FE(c) = 231(5) + 20(522) fE (c)  
 
Crystal 2 
 
For volume data FE = 245(2) + 352(272) fE  
Horizontal line FE = 248.7(5) 
 
a-axis FE (a) = 231(2) + 107(262) fE (a)  
b-axis FE (b) = 283(3) + 1025(436) fE (b)  
c-axis FE (c) = 229(5) + 275(583) fE (c)  
 
Crystal 3 
 
For volume data FE  = 237(1) + 604(211) fE  
Horizontal line FE = 241.0(4) 
 
a-axis FE (a) = 231(2) + 250(204) fE (a)  
b-axis FE (b) = 281(3) + 953(408) fE (b)  
c-axis FE (c) = 212(1) + 65(196) fE (c) 
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Table 3.4: Birch-Murnaghan equation of state parameters for (Fe,Al)-MgSiO3 perovskite single 
crystals of present study. (Abbreviations: BM II = Birch-Murnaghan 2nd order equation of state and 
BM III = Birch-Murnaghan 3rd order equation of state.) 
 
                             Crystal 1                        Crystal 2                         Crystal 3 
 

BM II (K’ fixed to 4) 
 
a0 (Å)                    4.78637(10)                     4.79241(7)                             4.79974(5) 

K0(a) GPa             231.1(9)                           232.0(6)                                 233.6(5) 

 
b0 (Å)                    4.94233(10)                     4.95143(10)                           4.97963(9) 
K0(b) GPa              291(1)                                288(1)                                287(1) 
 
c0 (Å)                     6.9189(3)                         6.9343(2)                              6.98035(11) 
K0(c) GPa              231(1)                                232(1)                                 210.9(8) 
 
V0 (Å3)                   163.673(7)                     164.547(7)                            166.831(5) 
K0 (GPa)                247.4(7)                          248.8(7)                                240.6(6) 
 

BM III 
 
a0(Å)                     4.78643(13)                      4.79247(10)                         4.79979(7) 

K0(a)GPa              229(3)                                229(2)                                 231(2) 

K'                          4.6(7)                                 4.7(7)                                  4.7(6) 

 
b0(Å)                     4.94251(12)                     4.95156(11)                          4.97976(10) 
K0(b)GPa              276(4)                                282(5)                                 278(4) 
K'                          7(1)                                     7(1)                                   7(1) 
 
c0(Å)                     6.9189(3)                          6.9345(3)                             6.98051(10) 
K0(c)GPa              231(6)                                227(6)                                200(3) 
K'                          4(1)                                     5(1)                                    8(1) 
 
V0(Å3)                   163.681(9)                        163.688(9)                           166.840(4) 
K0(GPa)                243(3)                               240(2)                                  234(2) 
K'                          5.0(7)                                 6.1(6)                                  6.5(5) 
 
. 
 

The results reported in Table 3.4 are consistent with an increase in compressibility 

of the perovskite structure with increasing Fe and Al content as already shown in Fig. 3.10. 

This increase is due to softening in the c direction. A major difference between the results 

presented in this study and those reported in the literature is the indication that, at least for 

Fe-Al-bearing perovskite, K' is larger than 4 and increases with increasing Fe and Al 

content. A comparison between the bulk moduli obtained in this study and those reported 
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in the literature for Al- and Fe-bearing MgSiO3 perovskites is shown in Fig. 3.14. There is 

a clear discrepancy among all these data, which may be attributed to the different 

techniques and different synthesis conditions used.  
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Figure. 3.14 Comparison of bulk moduli of Al- and Fe-bearing perovskite plotted as 
a function of total trivalent cation (Al and Fe) content. Open data points are for Fe-
free Al-rich samples; filled circle is for pure MgSiO3 perovskite; stars are for the 
crystals of this study containing both Fe3+ and Al3+.  
 

 
 

In particular, the results of this study are in contrast to the only other study on the 

compressibility of (Al,Fe)-bearing MgSiO3 perovskite (Andrault et al., 2001), which 

reports a stiffening of the perovskite structure with the incorporation of Al and Fe. 

However, Andrault et al., (2001) annealed their powdered sample by laser heating between 

data collections, so one cannot exclude that such annealing could have changed the 

chemical or physical state of the sample between measurements. The softening observed 

for our samples cannot be ascribed to the presence of oxygen vacancies, because only 

crystal 1 requires a very small concentration of vacancies for charge balance. This suggests 

that Al and Fe substitution modifies the deformation mechanism of the A and B sites of 

MgSiO3 perovskite, causing an increase in the polyhedral compressibility. However, 

accurate structural data obtained at high-pressure are required to confirm this hypothesis. 
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3.4.4 Octahedral tilting 
 

The variations of the octahedral tilting θ, φ, and Φ with pressure have been calculated from 

the unit cell lattice parameters according to equations (1-3) and are reported in Figs. 3.15-

17. The θ angle (Fig. 3.15) shows a clear dependence on composition, suggesting that 

distortion around the pseudocubic [110] axis increases with increasing Fe content. 

However, it also increases uniformly with pressure independently of the crystal 

composition. The tilting angle φ (the distortion around the pseudocubic [001] axis) shows a 

similar dependence on composition at room pressure; the angle remains almost constant 

with increasing pressure for pure MgSiO3 and for very low amounts of Fe and Al 

substitution (Crystal 1 and 2), whereas it decreases with increasing pressure for crystal 3 

(Fig. 3.16). This supports the suggestion that there is a change in the deformation 

mechanism of the A and B sites of the perovskite structure in order to accommodate 

significant amounts of Fe and Al.  
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Figure. 3.15: Variation of θ tilting angle as a function of Fe content in (Fe,Al)-
MgSiO3 perovskites with pressure. MgSiO3 data are from Vanpeteghem et al., 
(2006). 
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Figure. 3.16. Effect of pressure and Fe content on the octahedral tilting φ 
in (Fe,Al)-MgSiO3 perovskites. MgSiO3 data are from Vanpeteghen et al., 
(2006). 

 

The tilting angle Φ (the distortion around the pseudocubic [111] axis) increases with 

increasing Fe content and with increasing pressure (Fig. 3.17). However, due to the 

combined effect of the other tilting angle, the slope as a function of pressure of crystal 3 is 

shallower than for pure MgSiO3 perovskite and for crystals 1 and 2. From these results we 

can conclude that, at lower mantle conditions perovskite will continue to be in the distorted 

orthorhombic structure even after incorporation of Fe and Al. 
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Figure 3.17: Distortion angle Φ for (Fe,Al)-MgSiO3 perovskites as a function of 
composition and pressure. The orthorhombic distortion is found to increase with 
increasing pressure for all compositions. Pure MgSiO3 data are also plotted for a 
comparison from Vanpeteghem et al., (2006). 
 

 

 

3.5.Discussion 
 
3.5.1 The Elasticity of the Earth’s lower mantle 
 
Assuming a pyrolite bulk mantle composition, the Earth�s lower mantle should be 

composed of approximately 80-volume % magnesium silicate perovskite coexisting with 

magnesiowüstite and calcium silicate perovskite. Comparison of seismically-inferred 

properties for the lower mantle with model properties based on measured bulk and shear 

moduli for such a mantle assemblage provides the best test for the composition and 

temperature of the lower mantle. 

The elasticity data determined from single crystal compression experiments have 

been combined with existing thermoelastic data in order to calculate the variation in 

density and bulk modulus over the depth range of 670�2571 km, which covers the entire 

lower mantle excluding the D�� low velocity zone. A number of studies have reported 

thermoelastic properties for silicate perovskite from experiments conducted at 

simultaneous high pressure and temperature (Mao et al., 1991; Yeganeh�Haeri, 1991; 
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Wang et al., 1994; Utsumi et .al, 1995; Funamori et al., 1996; Fiquet et al., 1998; Fiquet et 

al., 2000). For these calculations we have used the high temperature properties from the 

data set of Funamori et al., (1996) [ K0,T = 261 GPa, K'0,T = 4, (dK/dT)P =-0.028 Gpa K-1 , 

α0 = 1.98*10-5 K-1, α1 = 0.82*10-8 K-2 and α2 = -0.47(K)] which were determined for 

MgSiO3 perovskite. The room pressure volume (V0) at high temperature was calculated 

using thermal expansion coefficients and the equation 

∫=
T

TTT dTVV
298

0,0,,0 exp α        (9) 

In view of the lack of high-temperature elastic property data for Al-bearing 

perovskites and the limited data for Fe-bearing perovskites, we have no option but to 

assume that they are the same as for the MgSiO3 end member. Mao et al., (1991) proposed 

that thermal expansivitites of pure and Fe-bearing perovskite were similar, but that the 

temperature dependence of the bulk modulus of Fe-bearing perovskite was greater, i.e., 

(dK/dT)P = -6.3*10-2 Gpa K-1. In order to examine this proposal we have also made 

calculations assuming the value of (dK/dT)P reported by Mao et al., (1991). Almost all 

previous studies on elastic properties of MgSiO3 perovskite have fitted the experimental 

data assuming a second order Birch-Murnaghan equation of state, i.e., with K' fixed at 4. 

Our data, however, provide strong evidence that, at higher Al and Fe concentrations a 

third-order Birch-Murnaghan equation of state is required with a K' higher than 4. To 

obtain an overview of how fixing K' to 4 and K' > 4 can effect calculated lower mantle 

properties; calculations have been performed using both 2nd and 3rd order fits to our data 

set. All the calculations were performed along the adiabatic geotherm of Brown and 

Shankland, (1981) fixed at 1873 K for a depth of 670 km. 

 

Densities calculated along an adiabatic temperature gradient for the three crystals 

are shown as a function of pressure in the mantle in Fig. 3.18. When K' is fixed at 4 and 

(dk/dT)P = -0.028 GPa K-1 (Funamori et al., 1996), there is a clear increase in density with 

increasing Fe and Al concentration at lower mantle conditions. Densities for Crystals 1 and 

2 are only slightly larger than those calculated for MgSiO3 perovskite throughout most of 

the lower mantle. However, the slightly lower bulk moduli of Crystals 1 and 2 means that 

their densities become smaller than MgSiO3 perovskite close to the core mantle boundary. 

The difference in densities between Crystals 1 and 2 also decreases throughout the lower 

mantle due to the minor differences in their bulk moduli. The density of Crystal 3, which 
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has the highest Fe content remains significantly larger than the other two crystals 

throughout the lower mantle even though it has a lower bulk modulus. When (dK/dT)P = -

0.063 GPa/K, as proposed by Mao et al., (1991), is employed for this calculation, the effect 

of Fe and Al on densities in the lower mantle becomes much stronger as a result of the bulk 

moduli being lower. The Preliminary Reference Earth Model (PREM), (Dziewonski and 

Anderson, 1981), density curve is quite consistent with a monomineralic perovskite lower 

mantle, but a perfect match would only be obtained if the lower mantle increased in Fe 

content towards the base. Based on similar comparisons, previous studies have argued that 

the lower mantle may have a higher Si/Mg ratio than the upper mantle and therefore be 

composed mostly of perovskite (Anderson et al., 1995). Large payoffs exist, however, 

between the value of (dK/dT)P used and the proportion of coexisting magnesiowüstite in 

the modelled assemblage (Fiquet et al., 1998). 

As discussed previously, the compression data reported in this chapter are actually 

consistent with values of K' >4 for Fe and Al bearing perovskite, and K' was also found to 

increase with increasing Fe content. In the lower panel of Fig. 3.18 density calculations 

have been performed using the results of the 3rd order Birch-Murnaghan equation of state 

fits. The result is a much smaller change in density in the lower mantle, compared to room 

pressure, as a result of Fe and Al substitution, due to the higher values of K' which make 

Fe-rich perovskites less compressible at lower mantle conditions. Very large changes in Fe 

concentration in the lower portion of the lower mantle would be required to match the 

changing slope of the PREM density curve when K' > 4. 
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Figure 3.18: Density profiles calculated for the three crystals with K' = 4 and > 4 
as determined from the compression data of this study. Two (dk/dT)P values were 
used for comparison as stated in the text. PREM data of Dziewonski and Anderson, 
(1981) and pure MgSiO3 density calculated based on compression data of 
Vanpeteghem et al., (2006), are also plotted for comparison. 

 

 

 

We have also calculated KT, the bulk modulus at pressure and temperature, for 

the three crystals of this study, using the equation: 

 

K T,0= K 298,0 + (dKT,0/dT)P(T-298)       (10) 
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where, KT,0 is the bulk modulus at temperature, K298,0 is the bulk modulus at ambient 

conditions and (dKT,0/dT)P is the temperature derivative of the bulk modulus, taken from 

either Funamori et al., (1996) or Mao et al., (1991), and the equation 

 

K T= K T,0 + (dKT,0/dP)TP      (11) 

 

where (dKT,0/dP)T is the pressure derivative of the bulk modulus. An estimate for the value 

of KT for the lower mantle can be obtained from PREM KS (the adiabatic bulk modulus) 

estimates using the equation: 

 

KT=KS/(1+αγT)         (12) 

 

where, α is the thermal expansivity and γ is the gruneisen parameter, values of which are 

tabulated for the lower mantle in Brown and Shankland, (1981). 

Regardless of the value of (dKT,0/dT)P employed, KT curves calculated for 

perovskite samples assuming K' > 4 display a much greater divergence as a function of 

composition than when K' is assumed to be 4 (Fig. 3.19). This is the opposite behaviour 

from that observed for densities, where the greatest effect of Fe content occurs for K' = 4. 

Very large changes in Fe content would be required, on the other hand, to influence KT in 

the lower mantle if K' = 4. In addition, the slope of the PREM value of KT is shallower 

than those calculated for the three crystals of this study if K' > 4, which means that Fe 

contents would have to decrease in the lower portion of the lower mantle to be consistent 

with the PREM slope. Again this is the opposite conclusion to that obtained based on 

density. KT determinations with K' > 4 are much higher at the base of the mantle compared 

with PREM and provide a poor fit to the observations compared to when K' = 4. The 

addition of magnesiowüstite to the model assemblage would reduce KT but not by more 

than 10 % (Fiquet et al., 1998). Under these circumstances, values of K' = 4 and (dk/dT)P = 

-0.028 GPa K-1 give the best agreement with the PREM value of KT for lower mantle. 
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Figure 3.19: Comparison of bulk modulus KT(P) profiles along with PREM lower mantle 
model (Dziewonski and Anderson, 1981) along the temperature profile of Brown and 
Shankland, (1981). Bulk modulus of MgSiO3 is also plotted for a comparison based on data 
of Vanpeteghem et al., (2006). KT profile for the three crystals calculated using (dk/dT)P of 
�0.028 GPa K-1 and -0.063 GPa K-1 values as reported by Funamori et al., (1996) for a 
MgSiO3 composition and Mao et al., (1991) for a Fe-bearing MgSiO3 composition both for 
a K' of 4 and K' > 4 as obtained in this study by 3rd order Birch-Murnaghan fit. 
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3.5.2 The effect of pressure on perovskite substitution. OAlFe VIVIII 3
33 ++

 
Experimental observations indicate (Frost et al., 2004) that even at the lowest plausible 

oxygen fugacity for the lower mantle, (Fe,Mg)(Al,Si)O3 perovskite contains a significant 

Fe3+ content (Fe3+/∑Fe > 0.5). As the upper mantle has a very low Fe3+/∑Fe ratio (<0.03) 

two possible scenarios for the redox state of the lower mantle can be proposed: either the 

lower mantle is more oxidized than the upper mantle or at lower mantle conditions Fe2+ is 

oxidised to Fe3+ by some agent also present in the bulk mantle. Evidence for whole mantle 

convection contradicts the first possibility, as it would have been impossible to maintain a 

low Fe3+/∑Fe ratio in the upper mantle if it were mixed through geologic time with a 

highly oxidised lower mantle reservoir. Although the second possibility is therefore more 

likely, none of the oxidising agents active in the upper mantle (e.g., CO2, SO2) are 

abundant enough to produce the required Fe3+ contents. In the absence of such an agent, 

disproportionation of FeO i.e.,  

 

3FeO = Fe+Fe2O3.         (13) 

 

becomes the only mechanism capable of producing Fe3+ in sufficient abundance. Frost et 

al., (2004) showed experimentally that about 1 wt % of Fe metal would be required to 

balance the Fe3+ requirement of perovskite at 25 GPa within a pyrolitic lower mantle bulk 

composition. 

 

The equilibrium between (Fe,Mg)(Al,Si)O3 perovskite and Fe metal can be 

described by the equation:  

 

AlAlO3   +   3FeO   =    Fe     + 2AlFeO3     (14) 
 
Perovskite      Mw      Metal    Perovskite 
 

where, Mw is magnesiowüstite. Frost et al., (2004) measured high concentrations of the 

AlFeO3 component in perovskite in equilibrium with metallic Fe and concluded that this 

equilibrium must be shifted strongly to the right at conditions compatible with the top of 
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the lower mantle. By assessing the effect of  ( ), 

 ( Fe ) and  ( Fe ) 

substitutions on the volume of (Fe,Mg)(Al,Si)O

OAlAl VIVIII 3
33 ++

Fe

SiMgAlAl VIVIIIVIVIII
++++ +↔+ 4233

OSiVIVIII 3
42 ++ MgVIIIVIII

++ ↔ 22OAlFe VIVIII 3
33 ++ SiMgAl VIVIIIVIVIII

++++ +↔+ 4233

3 perovskite, it should be possible to 

determine whether disproportionation of FeO will be favoured at the higher-pressure 

conditions of the deep lower mantle. The volume and compression results presented in this 

chapter provide data that help to understand the likely volume effect. 
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Figure 3.20. Effect of , ,  substitutions on 
the molar volume of magnesium silicate perovskite. 

OSiFe VIVIII 3
42 ++ OAlAl VIVIII 3

33 ++ OAlFe VIVIII 3
33 ++

 
 
 

Fig. 3.20 shows the change in molar volume of MgSiO3 perovskite as a function of 

possible substitution mechanisms determined using room pressure volume data from this 

and previous studies. The addition of  and  components have 

similar effects on the molar volume of perovskite with the former having a slightly greater 

effect.  

OAlAl VIVIII 3
33 ++ OSiFe VIVIII 3

42 ++
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Although the perovskite samples synthesised in this study have high Fe3+/ΣFe 

ratios, all samples contain Fe2+ and therefore do not lie on a compositional join between 

MgSiO3 and . All single crystals synthesised in this study also contain 4-mol 

% of , which is indicated by the figure in brackets next to each data point. 

These data show that in comparison to  and  substitutions the 

(Fe,Mg)(Al,Si)O

OAlFe VIVIII 3
33 ++

OSiVI 3
4+FeVIII

2+

OAlVI 3
3+

OSiVI 3
4+

OAlAl VIVIII 3
33 ++

3

OSiFe VIVIII 3
42 ++

SiFeVIII
2+

3 perovskites have larger molar volumes. The only sample with a 

composition on the MgSiO3- join is that synthesised by Nishio-Hamane et al., 

(2005) at approximately 50 GPa in a diamond anvil cell. Although the Fe

OAlFe VIVIII
33 ++

OSiVIVIII 3
42 ++

3+ content was not 

independently confirmed, it was assumed to be the same as that of the staring composition. 

The volume of this sample is smaller than the sample synthesised in our study at a similar 

content and a trend starts to emerge particularly when the volumes and 

 contents of (Fe,Mg)(Al,Si)O

FeVIII
3+

FeVIII
2+

3 perovskite samples synthesised by 

Vanpeteghem et al., (2006) are also considered. Increasing the  content of 

(Fe,Mg)(Al,Si)O

OVI 3
4+

3 perovskite samples increases their molar volumes dramatically. In other 

words, the substitution of into Al-free perovskite has a smaller effect on molar 

volume than when it substitutes into Al-bearing perovsktie. As perovskite must contain Al 

in the lower mantle the large effect on the molar volume should make Fe

Fe

2+ substitution in 

perovskite unfavourable with increasing pressure.  

 

Using data in Fig. 3.20 and compression data from this study and the literature 

(Fei, 1996; Walter et al., 2004) the molar volume change of the equilibrium (eq. 14), at 

pressures of the lower mantle is calculated to be approximately �2 cm3/mol. This implies 

that disproportionation of FeO should be favoured with increasing pressure and therefore is 

likely to take place throughout the perovskite-bearing region of the lower mantle. In 

addition, however, the large effect on the perovskite molar volume of 

substitution into (Fe,Mg)(Al,Si)OOSiFe VIVIII 3
42 ++

3 perovskite should drive Fe2+ out of 

perovskite with increasing pressure and into magnesiowüstite. This should cause 

perovskite to decrease in total Fe content with pressure but to become more Fe3+ rich. 

Some support of this can be found in the fact that while in this study it was not possible to 

synthesise pure Fe3+ bearing perovskite at 25 GPa, as attempted in the synthesis of crystal 
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3 which contained only Fe3+ in the starting composition, this was possible in the 

study of Nishio-Hamane et al., (2005) performed at approximately 50 GPa. 

 

 

3.6 Conclusions 
 

The substitution Al and Fe3+ into MgSiO3 perovskite occurs by a coupled substitution 

mechanism with the possibility that small concentrations of oxygen vacancies are present 

only at low trivalent cation concentrations. 

Static compression measurements show that the substitution of Al and Fe into 

MgSiO3 perovskite increases the compressibility. The axial compression is anisotropic 

with the b axis being the least compressible, and a and c axes having virtually identical 

compressibilities. Axial compressibilities of Fe-free Al-bearing perovskites (Zhang and 

Weidner, 1999) show the a axis to be slightly more compressible than the c axis implying 

that there is a different mechanism by which Al is substituted into the perovskite structure 

in the absence or in the presence of Fe.  

Fitting the data to a 2nd order Birch-Murnaghan EoS (K' = 4) gives values for the 

bulk modulus that decrease from 247 to 240 GPa as the Fe content increases from 0.12 to 

0.22 formula units. These values are lower than the value of 253 GPa reported for MgSiO3 

perovskite (Vanpeteghem et al., 2006) based on single crystal determinations. However, f-

F plot analyses indicate that a 3rd order Birch- Murnaghan fit to the data is statistically 

justified. These fits indicate a larger drop in bulk modulus with Fe and Al substitution from 

243 to 234 GPa and an increase in K' from 5 to 6.5. The decrease in bulk modulus likely 

arises from an increase in polyhedral compressibility. 

Combining these data with thermoelastic data from the literature indicates that 

perovskite densities calculated along a lower mantle geotherm are insensitive to Fe-Al 

substitution if the 3rd order Birch- Murnaghan fit to the data is employed. The resulting 

values of K' from this fit which are >4 provide a poor fit to the estimated bulk modulus of 

the lower mantle. If on the other hand the 2nd order Birch- Murnaghan fit is employed the 

calculated densities when compared to PREM are consistent with an increase in Fe-Al 

substitution in the lower portions of the lower mantle. 
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Substitution of  and components into perovskite cause 

smaller changes in volume than substitution. However, the volume data 

presented in this chapter indicate that substitution into an Al-bearing 

perovskite has a much greater influence on perovskite volume than when perovskite is Al-

free. Such a mechanism will make Fe

OAlAl VIVIII 3
33 ++

Fe

OSiFe VIVIII 3
42 ++

OVI 3
3+

OSiFe VIVIII
42 ++

AlVIII
3+

3

2+ substitution into perovskite less favourable with 

increasing pressure.  

Using density and compression data from this chapter in addition to literature data 

the volume change for the FeO disproportionation reaction,  

 

AlAlO3   +   3FeO   =    Fe     + 2AlFeO3.  

Perovskite      Mw      Metal    Perovskite 

 

is calculated to be �2 cm3/mol. This implies that the formation of metallic Fe through 

disproportionation should remain energetically favourable throughout the perovskite-

bearing region of the lower mantle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
Chapter 4 
 
 
 
A calorimetric study of the Mg3(Mg,Si)Si3O12(majorite)-
Mg3Al2Si3O12(pyrope) garnet solid solution 
 
 

4.1 Introduction 

 

A significant number of experimental studies have been performed to determine the 

pressures and temperatures of mineral transformations in the mantle in order for them to be 

compared with seismic velocity observations. However, at pressures greater than 10 GPa 

most phase equilibria studies suffer from a lack of both precision and accuracy in pressure 

and temperature determination. In addition, at temperatures compatible with large regions 

of the mantle the attainment of chemical equilibrium in phase equilibria studies can be 

difficult if not impossible on realistic time scales. The thermodynamic description of a 

mineral transformation is, therefore, very important as it can be used to extrapolate 

experimental data over wide ranges of conditions with good theoretical justification. An 

effective approach is to fit phase boundaries determined in phase equilibria studies using 

thermodynamic equations describing the stability of the transforming phases (Akaogi et 

al., 1987; Akaogi et al., 1999). The thermodynamic data that are refined in such a fit are 

not, however, uniquely determined from a single reaction boundary and the uncertainties 

in the fitting can be reduced if thermodynamic parameters can be independently 

determined. Calorimetry is a vital technique for providing independent determinations of 

thermodynamic parameters, particularly enthalpies and heat capacities. For 

transformations involving multi-component solid solutions this becomes even more 
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important because non-ideality of mixing becomes an additional parameter to constrain, 

that can impart fine topology to phase boundaries. Such topology is on the limit of what 

can be determined in phase equilibria studies but is still important for the interpretation of 

seismic reflection data (Stixrude, 1997). 

Garnet is a major constituent of the upper mantle, transition zone and the top 

region of the lower mantle. Over this range of stability, spanning from 2-28 GPa, garnet 

compositions change significantly as a result of reactions between other phases of the 

mantle. At shallow upper mantle conditions, garnet is a solid solution with major element 

substitutions that are described by the formula (Mg,Fe,Ca)3Al2Si3O12. However, above 

approximately 4 GPa substitution of Mg, Fe and Si onto the octahedrally-coordinated Al 

site occurs causing MgSiO3 and FeSiO3 pyroxene components to dissolve into the garnet 

structure as majorite components (Ringwood, 1967; Akaogi and Akimoto, 1977; 

Ringwood, 1991). These transitions can be described by the garnet systems Mg3Al2Si3O12-

Mg4Si4O12 and Fe3Al2Si3O12-Fe4Si4O12. There is no evidence that Ca enters the Al site. 

Ordering of Mg and Si on the octahedral sites leads to a symmetry breaking transition 

from cubic to tetragonal for garnets with molar Mg4Si4O12 contents of >80%. Tetragonal 

garnets are unlikely to exist in the Earth, as Al contents in most mantle rocks are too high; 

in addition it has been proposed that the ordering transition may occur during temperature 

quenching, while at mantle temperatures cubic symmetry is attained (Hatch and Ghose, 

1989; Heinemann et al., 1996). 

Thermodynamic data for the garnet-majorite solid solution are particularly 

important as reaction rates involving garnet are extremely slow (Kubo et al., 2002) and 

equilibrium is therefore very difficult to achieve in phase equilibria experiments. In 

addition because the pyroxene to garnet transition is smeared out over a large pressure 

range, thermodynamic parameters describing non-ideality of the garnet solid solution 

become strongly correlated with volumetric properties describing the effect of pressure on 

garnet stability. An independent determination of non-ideality of the 

Mg3Al2Si3O12(pyrope)-Mg4Si4O12(majorite) solid solution by calorimetry would greatly 

aid the separation of these effects. An important parameter for calculations of the garnet 

solid solution stability is the enthalpy of the fictive cubic Mg4Si4O12 garnet end member, 

which can be obtained if solid solution data on cubic garnets can be extrapolated in 

composition beyond the cubic-tetragonal transition to the Al-free axis. Currently, however 
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calorimetric data are insufficient particularly near the cubic-tetragonal transition, to 

perform this extrapolation reliably. 

Previous studies to determine thermodynamic properties of the Mg3Al2Si3O12-

Mg4Si4O12 garnet solid solution can be divided into calorimetric studies (Akaogi et al., 

1987; Yusa et al., 1993; Akaogi and Ito, 1999), atomistic calculations (Vinograd et al, 

2006a; Vinogard et al., 2006b) and thermodynamic assessments of phase equilibria data 

(Gasaprik 2003; Fabrichanaya, 2004). Akaogi et al., (1987) and Yusa et al., (1993) 

reported 5 enthalpies of dissolution for Mg3Al2Si3O12-Mg4Si4O12 garnets including both 

end members using drop calorimetry. These data show the solid solution enthalpies to 

exhibit nearly ideal behavior and extrapolation to the cubic Mg4Si4O12 garnet end member 

gives a solution enthalpy of 1±7 kJ/mol, which is lower than the measured value for the 

tetragonal end member 20.4±5 kJ/mol. In the recent atomistic study of Vinograd et al., 

(2006a), however, significant excess properties are reported with large deviations from 

ideality similar in magnitude to those reported for Mg3Al2Si3O12-Ca3Al2Si3O12 garnets 

(Haselton and Newton, 1980). The long range ordering was shown to be a high-

temperature feature with disordered Mg4Si4O12 cubic garnet predicted to be stable only 

above 3500 K. 

In this study we have measured the enthalpy of dissolution of garnet solid solutions 

in the system Mg3(Mg,Si)Si3O12-Mg3Al2Si3O12 by lead borate drop solution calorimetry 

under controlled oxygen fugacity. Samples were synthesized using a large volume 5000-

ton multianvil press so that large sample volumes ensured that a number of calorimetric 

drop measurements could be performed on each sample. We use these data to assess the 

ideality of this solid solution and estimate the enthalpy of solution of the fictive cubic 

Mg4Si4O12 garnet end member. 

 

 

4.2 Starting material synthesis 
 
Glasses of Mg4Si4O12 and Mg3Al2Si3O12 composition were fabricated from mixtures of 

reagent grade SiO2, MgO and Al2O3 by fusing them in a Pt crucible placed in a 1-

atmosphere furnace at 1600-1700°C for durations of 15-30 minutes. The recovered liquids 

were quenched rapidly by placing the crucible in water. Glasses were then reground and 

refused to ensure homogeneity, which was checked by analyzing mounted chips using the 
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electron microprobe. By grinding these two glass compositions in varying proportions 

seven more glass-starting compositions with 10, 15, 20, 30, 40, and 80 mol% pyrope were 

prepared.  

 

4.2.1.Piston-cylinder synthesis experiment 
 

Mg3Al2Si3O12 pyrope was synthesized at 3 GPa and 1200°C using a piston cylinder 

apparatus (Boyd and England, 1960). A 1/2-inch talc–pyrex pressure assembly was used 

for the experiment (Fig. 4.1). This assembly consists of a talc sleeve surrounding a pyrex 

tube, which acts as the pressure-transmitting medium, and an inner graphite furnace for 

resistive heating. Finely ground glass powder of pyrope composition was loaded into a 

platinum capsule that had been previously welded closed at one end, along with 1-mol % 

water. After loading, the capsule was carefully closed at the other end by welding. The 

capsule was placed inside the furnace in a sintered Al2O3 sleeve with extra space above 

and below the capsule filled by Al2O3 plugs as shown in Fig. 4.1. The assembly was 

inserted into the pressure chamber of the piston cylinder bomb with a steel piston ring at 

its base. On the top of the assembly a steel plug was inserted within a pyrophyllite sleeve. 

A hole in the plug allowed a thermocouple inside an alumina sleeve to be inserted for 

temperature monitoring. Temperature was measured using WRe75-W3Re type B 

thermocouple. After the bomb was placed inside the press, pressure was increased to a 

value 10% below the desired value before the sample was heated to 1200°C. After the final 

temperature was attained the pressure was raised to 3 GPa. Experiments were heated for 

durations of 24 hours and quenched by cutting the power to the furnace. 
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Figure. 4.1: A schematic diagram of ½ inch talc-pyrex piston cylinder assembly  
(left) and steel pulg (right) used in this study. 
  
 

 
4.2.2 Multianvil synthesis experiment 
 

Majoritic garnet compositions were synthesized from glass starting mixtures using a large 

volume multianvil in conjunction with a 5000-ton press. The specially designed multianvil 

employs eight 54 mm edge length tungsten carbide anvils, which are compressed with a 

series of outer hard steel anvils in a split cylinder configuration (Frost et al., 2004). 18 mm 

edge length Cr2O3-doped MgO octahedra were used as pressure media with anvil 

truncations of either 11 mm or 8 mm depending on the pressure range. A box furnace 

assembly was designed to maximize the sample volume. A schematic diagram of this 

assembly is shown in Fig. 4.2. The garnet glass powders were packed into Re foil capsules 

of 3 mm diameter and 3 mm long. Capsules were placed at the center of a cylindrical 

LaCr2O3 furnace inside an MgO sleeve. The capsule filled almost the entire length of the 

furnace with additional disks of LaCr2O3 closing the furnace top and bottom. The furnace 

occupies only the central third of the assembly and makes electrical contact with the cubes 

via cylindrical molybdenum electrodes. A W3%Re-W25%Re thermocouple inside an 
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MgO ceramic is inserted from one side of the assembly through the molybdenum 

electrode, so that the junction is located just above the sample. Synthesis experiments were 

performed between 17-20 GPa and 1000-1600°C (Table 4.1). The pressure calibration 

curves of Frost et al., (2004) were adopted for determination of pressure in our 

experiments. The heating duration varied from one to three hours and samples were 

quenched by cutting the power supply to the furnace. 

 

Cr doped MgO pressure medium
ZrO  sleeve2

 Re capsule 
LaCrO furnace3 

MgO sleeve
LaCrO  disc3

MgO disc

MgO rod
MgO sleeve

Molybdenum sleeve

Thermocouple
Al O2 3

Copper coil

 

 

Figure. 4.2: A diagrammatic representation of the box furnace assembly is shown here. 
The sample was contained in a Re capsule as shown surrounded by a MgO sleeve and a 
LaCr2O3 furnace. The molybdenum tubes serve as contacts for heating. This set up 
ensures low thermal gradient in the large sample volume. 

Table 4.1: Synthesis conditions for calorimetric samples used in this study. Piston cylinder and a 
multianvil press were used to synthesise them. The unit cell parameters determined by powder X-
ray diffraction (as discussed later in this section), for garnets are also listed here. Garnets with 
cubic symmetry have a=b=c and for tetragonal symmetry have a = b ≠ c where a, b, c are crystal 
axes so, as a and b axes are equal, only, a and c are listed here.  

Run no.       Composition      Pressure      Pressure        Temperature     Unit cell parameters (in Å units) 
                                                assembly        GPa                      °C                         a-axis                 c-axis 
 
Z493          Py 40        18/8  19  1000  11.476   
Z494          Py 20        18/8  19  1600  11.483   
Z496          Py 10        18/8  18  1600  11.497  11.457 
Z501          Py 30        18/8  17  1600  11.484 
Z507          Majorite       18/8  19.5  1750  11.517  11.433 
Z508          Py 80                 18/11 17.5  1200  11.463 
Z525          Py 15        18/8  18  1400  11.482 
PC          Pyrope       1/2inch 3   1200  11.460 
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Small chips of the recovered samples were embedded in epoxy resin for 

quantitative chemical analysis using a JEOL JXA-8200 WD/ED electron microprobe 

operating in wavelength dispersive mode with a point beam at 15 nA current and 15 kV. 

Standards employed were andradite for Si, spinel for Al and enstatite for Mg (for details 

on operating conditions see Table 2.3 of Chapter 2). The determined compositions are 

listed in Table 4.2. 

Table 4.2: The cation composition of the garnet starting materials as analyzed by electron 
microprobe calculated based on 12 oxygen per formula unit. Abbreviation Maj. (majorite) and 
Pyr. (pyrope). 

Composition  Si Mg Al Total      Maj. content          Pyr. content 

Pyrope  3.007 2.974 2.007 7.989  0.007  0.993 

Pyrope 80  3.224 3.133 1.611 7.970  0.224  0.776 

Pyrope 40  3.606 3.548 0.827 7.980  0.605  0.394 

Pyrope 30  3.677 3.689 0.638 8.004  0.677  0.323 

Pyrope 20  3.755 3.828 0.442 8.024  0.755  0.245 

Pyrope 15  3.867 3.783 0.321 7.972  0.867  0.133 

Pyrope 10  3.897 3.846 0.240 7.983  0.897  0.103 

Majorite  4.025 3.95 0 7.974  1.025  0 

 

The remaining portion of each sample was ground to a powder and a portion of 

this powder, which is presumed to have been representative of the entire sample, was 

characterized by X-ray powder diffraction. The samples were mixed with a small amount 

of Si as an internal standard (NBS standard number 640b). X-ray diffraction was 

performed using a Philips X’Pert Pro X–ray diffractometer operating in reflection mode; 

using Co Kα radiation with an wavelength of 1.78892 Å selected using a focused 

monochromator. The diffraction conditions were set to a step size of 0.2°, a step time of 

1000s with scan speed of 0.0002°/sec with a rotating platform rotating at 1 rotation per 

second. The data were collected over a 2θ range of 20-120°. Cell parameter refinements 

were performed using the GSAS software package (see Table 4.1). Obtained Cell 

parameters are plotted in Fig. 4.3. No phases other than cubic or tetragonal garnet were 
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detected. The cubic to tetragonal garnet transition was observed at slightly 

lower pyrope contents (< 13 %) than in the study of Heinemann et al., (1997). 

 

Figure 4.3: Refined cell parameters of the garnet compositions in the majorite–pyrope 
join after synthesis in multi-anvil and piston cylinder (filled squares). The cell parameters 
as reported by Heinemann et al., 1997 along the majorite–pyrope join are plotted (solid 
triangles) for comparison. They reported the stability field of tetragonal garnets to 
commence from the Maj 80 composition; however our Maj 0.867 still appears to be a cubic 
garnet. This discrepancy may be attributed to differences in the synthesis conditions.  

 

4.3 Calorimetric measurements 
  

4.3.1 Basic principals 
 
A calorimeter measures the change in heat associated with the change of state of a sample. 

A number of calorimetric methods have been employed in Earth sciences to provide basic 

thermodynamic data. Thermophysical measurements such as low temperature adiabatic 

calorimetry or differential scanning calorimetry (Akaogi, 1990; Navrotsky, 1997; 

Navrotsky, 2004) are used to determine heat capacities as a function of temperature, which 

are also required to determine the standard entropy of a phase. Thermochemical or reaction 

calorimetry, on the other hand, provides a measurement of the enthalpy of a reaction, 

which can be combined with other reaction enthalpies to give the heat of formation of a 
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compound. A widely used type of reaction calorimetry is to measure the heat of dissolution 

as a sample dissolves in a solvent, either an acid or an oxide melt, to infinite dilution. 

There are two methods by which this can be accomplished, which deviate with respect to 

the initial temperature of the sample. In solution calorimetry the initial temperature of the 

sample is identical to that of the solvent before dissolution. In drop solution calorimetry the 

sample is initially at room temperature and is dropped into the high-temperature solvent. In 

this study drop solution calorimetry using an oxide melt was employed. This was deemed 

more suitable because the recovered metastable high-pressure phases could potentially 

breakdown during the high temperature equilibration stage (at ~700°C) of solution 

calorimetry. It should be noted, however, that in previous studies solution calorimenty has 

been extensively employed to measure solution enthalpies of high-pressure phases (Akaogi 

et al., 1987; Yusa et al., 1993; Akaogi and Ito, 1999). 

 

4.3.2 Enthalpy measurements 
 
A twin calvet type microcalorimeter, based on the design described by Kleppa, (1976), 

installed at Gakushuin University, Tokyo, was used for our calorimetric measurements. It 

consisted of two sample chambers each of which was surrounded by a thermopile of Pt-

Pt10Rh thermocouples. The thermopiles were connected in opposition inside a massive 

kanthal block. The block was maintained at 978 K by heaters situated outside of the block 

(Fig. 4.4). The e.m.f. from the thermopile after amplification was recorded using an 

electronic integretar, which gave a graphical representation of the heat flow of the 

experiment (see Fig. 4.6) and a numerical value of the area under calorimetric peak after 

processing.  
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Thermopile
Calorimetric block

 
 

Figure. 4.4 A Twin Calvet type microcaloirmeter of the type described 
 by Kleppa, (1976) as used in this study. 
 

 

2PbO.B2O3 was used as the solvent in our experiments. A single batch of solvent 

was made by mixing PbO and H3BO3 in a 1:1 molar proportion. The mixture was initially 

heated in a 1-atmosphere furnace at 1073 K for 30 minutes. The quenched glass was 

rehomogenised by grinding and remelted at 1323 K for one and half hours to ensure 

dehydration (Charlu et al., 1975).  

For each experiment 5 grams of 2PbO.B2O3 glass were measured into each of two 

Pt tubes, one for each sample chamber of the calorimeter, and melted in a furnace at 700°C 

for an hour. Each tube was placed into one of the calorimeter sample chambers housed in a 

second Pt tube jacketed by a silica glass tube inside an inconel tube. The inconel tube was 

inserted into the calorimeter prior to the beginning of each experiment and was allowed to 

reach thermal equilibrium as indicated by a stable base line from the thermopiles. Ar gas 

was bubbled through the solvent at a flow rate of 5 cm3/minute in order to hasten 

dissolution by stirring as shown in Fig. 4.5. The sample pellets of about 3 mg weight were 

made using a miniature pellet press and were dropped from room temperature into the 

2PbO.B2O3 solvent at 978 K. Drops were alternated between the two samples chambers. 

Heat was either absorbed or liberated during the reaction and the thermopiles detected the 

change of temperature between the sample chamber and the kanthal block. The liberated 
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heat gives rise to a calorimetric peak, which dies out exponentially to the original baseline 

with time as heat is transferred from the sample chamber to the block (Fig. 4.6). The 

recorded heat change is equal to the heat content of the sample plus the enthalpy of 

solution at the temperature of the calorimeter. The pyrope-rich samples were dissolved 

within an hour of dropping into the solvent; however, the majorite rich compositions 

required approximately 1.5 hours for complete dissolution. When the calorimetric peak 

dies out and gets back to the original base line the sample is considered to be totally 

dissolved. 

 

 

Pt Gas tube

Inconel tube

SiO  glass tube2

Pt test tube cover

Pt test tube

2 PbO.B O   flux2 3

Sample pallet 

Ar gas bubbling Ar gas bubbling

 

 
Figure 4.5: A schematic diagram showing the set of the sample chambers used for drop solution 
calorimetric technique. Ar gas was bubbled through the sample chambers for hastening dissolution. 
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Figure 4.6. A drop solution calorimetric curve of the pyrope composition showing the 
evolving heat of dissolution as a function of time. Each peak represents a drop solution 
run and are marked exothermic and endothermic peaks for distinction of heat flow 
values obtained from left and right sample chambers of the calorimeter (see Fig. 4.4). 
By integrating the area under the peaks, heat  of dissolution associated with each run is 
determined. 
 
 

The heat effect is proportional to the area under the calorimetric peak but the 

proportionality factor must be calibrated. This calibration factor was determined for each 

sample chamber using Al2O3 as a known standard. Pellets of Al2O3 of approximately 3 mg 

were dropped into 5 gm of lead borate solvent. The integrated heat content of Al2O3 

dissolution was compared with the standard ∆Hd-sol of Al2O3 of 106.73 kJ/mol to give 

calibration factors of 0.875 + 0.01 J/mol for the left-side and 0.896 + 0.01 J/mol for the 

right-side sample chambers (Table 4.3).  
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Table 4.3: Calibration factor calculation using Al2O3 pellets. (Abbreviations: observed H is the 
observed heat, ∆H is the enthalpy of solution and S is the calibration factor). 

 

Left Side       

Run No. Al2O3  mass / g Al2O3 /mol Observed H / J Observed H/ KJ ∆H of Al2O3 / KJ.mol-1 S 
1 0.003253333 3.1908E-05 3.0124 0.0030124 94.41003578 0.884568873 
2 0.003303333 3.2398E-05 3.0242 0.0030242 93.34524406 0.874592374 
3 0.00337 3.3052E-05 3.0815 0.0030815 93.23229125 0.87353407 
4 0.003186667 3.1254E-05 2.9089 0.0029089 93.07354171 0.872046676 
5 0.00346 3.3935E-05 3.1445 0.0031445 92.66368916 0.868206588 
6 0.003286667 3.2235E-05 3.0253 0.0030253 93.8527221 0.879347157 
7 0.003333333 3.2692E-05 3.1171 0.0031171 95.34678993 0.893345732 

8 0.0034 3.3346E-05 3.061 0.003061 91.79488853 0.860066416 

      Average calibration factor 0.875713486 

Right side       

Run No. Al2O3  mass / g Al2O3 /mol Observed H / J Observed H/ KJ ∆H of Al2O3 / KJ.mol-1 S 

1 0.00325 3.1875E-05 3.0643 0.0030643 96.13510532 0.900731803 
2 0.003526667 3.4588E-05 3.3203 0.0033203 95.99464319 0.899415752 
3 0.003216667 3.1548E-05 3.0454 0.0030454 96.53223712 0.904452704 
4 0.003353333 3.2888E-05 3.1942 0.0031942 97.12241338 0.909982323 
5 0.00328 3.2169E-05 3.0046 0.0030046 93.40000628 0.875105465 
6 0.00344 3.3738E-05 3.2499 0.0032499 96.32646916 0.902524774 
7 0.00339 3.3248E-05 3.2332 0.0032332 97.24492779 0.911130214 
8 0.003306667 3.2431E-05 3.0598 0.0030598 94.34887131 0.883995796 
9 0.00325 3.1875E-05 3.0179 0.0030179 94.67941597 0.887092813 

10 0.00316 3.0992E-05 2.9567 0.0029567 95.40129389 0.893856403 

     Average calibration factor 0.896828805 

 

 
 
 
4.4 Results 

The measured drop solution enthalpies (∆H d-sol) of majorite-pyrope garnets are reported 

in Table 4.4. Due to the size of the synthesized samples a number of drops of 

approximately 3 mg each could be performed for each sample and the final ∆H d-sol is 

therefore the average of between 3-6 drops. 
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Table 4.4: Drop solution enthalpies of Mg3(Mg,Si)Si3O12 (majorite)-Mg3Al2Si3O12 (pyrope) solid 
solution join in 2PbO.B2O3 at 978K, where Pyx is the pyrope composition determined from 
electromicrprobe, ∆H d-sol is the enthalpy of dissolution. 

Mass (g)                                 ∆H d-sol (kJ /mol)                Mass (g)                ∆H d-sol (kJ /mol) 

Py 0.993 Py 0.776 

0.00270 406.6921  0.00259 344.5220 
0.00251 420.5045  0.00278 344.6312 
0.00296 396.3194  0.00282 358.7211 
0.00253 388.5248   
0.00313 400.6793   
0.00281 405.9892    
 Av. 403.118 ± 8.085                                    Av. 349.291 ± 8.166 
Py 0.394 Py 0.323 
 
0.00296 307.8711 0.00262 290.4055 
0.00287 308.38 0.00255 286.598 
0.00273 308.292 0.00281 292.6601 
0.00261 292.6617 0.00270 303.6652 
0.00273 291.9788 0.00289 294.4718 
0.00273 301.6067  
                                    Av. 301.798 ± 5.796                                     Av. 293.472 ± 5.083  
 
Mass (g)                                ∆H d-sol (kJ /mol)               Mass (g)                     ∆H d-sol (kJ /mol) 

Py 0.245 Py 0.133 
 
0.00261 214.3883 0.00299 252.4929 
0.00256 230.8846 0.00268 241.8 
0.00256 222.8271 0.00260 237.4546 
0.00264 232.6677 0.00258 247.6614 
0.00253 221.0675 
 Av. 224.3688 ± 5.989                                    Av. 245.8522 ± 7.131 
Py 0.103 Maj  
0.00257 281.2224 0.00257                    244.5810 
0.00261 265.012 0.00261                    245.6691 
0.00276 260.9722 0.00276                    234.0641 
0.00289 260.8478 0.00279                    254.2783 
0.00283 266.1986 0.00283                    212.1408 
 Av. 266.251 ± 6.881              Av. 238.146 ± 12.968 

 

 

The enthalpies of dissolution are plotted in Fig 4.7. The data show a negative deviation 

from a straight line joining the two end members. This implies that the mixing properties 

of the solid solution deviate positively from ideality. From the pyrope end member the 
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enthalpies decrease non linearly with decreasing pyrope content, however, between a 

pyrope content of 0.32 and 0.24 a strong break in slope occurs and enthalpies start to 

increase before a final decrease occurs at the majorite end member. 
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Figure. 4.7: Enthalpies of dissolution of Mg3(Mg,Si)Si3O12-Mg3Al2Si3O12 garnets 
in 2PbO.B2O3 solvent at 978K. 

 
 
 
 
The drop dissolution enthalpy (∆H d-sol) can be written as,  

 

∫+∆=∆Η
− 978

298
.dtCpH

solsold      (1) 

 

where, ∆H sol is the enthalpy of solution and the integral term accounts for the change in 

heat required to raise the temperature of the sample from room temperature to that of the 

solvent. Values for the integral term are 298 kJ/mol for pyrope (Robie et al., 1978) and 297 

kJ/mol for majorite (Yusa et al., 1993) and it is assumed that this value varies linearly 

across the solid solution. The uncertainty in this correction is of the order of 1 kJ/mol. 

Values of ∆H sol are more useful for comparing with previous measurements and for 

calculating enthalpy changes for mineral reactions.  
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Figure 4.8: The ∆H sol of Mg3(Mg,Si)Si3O12-Mg3Al2Si3O12 garnets determined in this 
study compared with the results of Yusa et al., (1993) for the same solid solutions and 
results of Newton et al., (1977) for the Ca3Al2Si3O12-Mg3Al2Si3O12 (grossular-pyrope) 
solid solution. Symmetric solution fits have been made to all data, excluding data with 
X pyrope <0.3 for this study. 

 

 

Fig. 4.8 shows ∆H sol at 978 K calculated from values of ∆H d-sol using equation (1).  Also 

shown are data on the same solid solution from Yusa et al., (1993), for which solution 

calorimetry was employed, and data on the Ca3Al2Si3O12-Mg3Al2Si3O12 grossular-pyrope 

solid solution from Newton et al., (1977) that also employed solution calorimetry. The data 

from this study deviate significantly from values reported by Yusa et al., (1993). Although 

values determined for the pyrope endmember are in excellent agreement, with decreasing 

pyrope content the enthalpies decrease much more strongly in this study and values for the 

majorite end member are approximately 80 kJ/mol lower. 

 

4.5 Discussion 
 
The strong change in slope exhibited by the data at pyrope contents < 30 % may be related 

to the cubic/tetragonal phase transformation and therefore to long range ordering of Si and 
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Mg on the octahedral site.  However, there tetragonal symmetry was not detected in the X-

ray diffraction analyses of the 25 % pyrope sample and in fact clear tetragonal splitting 

was observed only in the sample with 10 % pyrope. The 25 % pyrope sample appears to be 

particularly anomalous and one possibility is that the sample contained some contaminant. 

However, all samples were ground entirely and, while only a portion of the powder was 

then analyzed with x-ray diffraction, this powder should have been representative of the 

entire sample and no peaks corresponding to a contaminant were detected. Interestingly, 

the most likely contaminant, pyroxene, would have driven the enthalpies in the opposite 

direction. Although further study is required it seems likely that the changes in slope at 

pyrope contents <30 % results from different states of order in the recovered samples. As 

the samples were synthesized at different conditions variations in the state of order may 

have occurred. In addition because large multianvil assemblies were used to produce 

significant sample volumes the cooling rates during quenching could have been slower 

compared with those in smaller assemblies used by Yusa et al., (1993).  

The data at pyrope contents >30% fall on a single curve even through they were 

also synthesized over a range of conditions. It seems unlikely that the deviation between 

these data and those of Yusa et al., (1993) also results from ordering, as the proportion of 

Si and Mg cations on the octahedral sites is small and pyrope concentrations are far away 

from the cubic tetragonal transition. A further possibility is that the deviation from the data 

of Yusa et al., (1993) results from their use of solution calorimetry where the sample is 

first equilibrated at 978 K for many hours before dropping it into the solvent. Back reaction 

or amphorphisation during this stage would have raised the determined enthalpies. Without 

further study, however, this is hard to demonstrate conclusively. 

The excess enthalpy of mixing Hxs can be calculated using Thompson’s (1967) 

symmetric regular solution model for the garnet solid solutions in the system 

Mg3(Mg,Fe)Si3O12-Mg3Al2Si3O12 . 

We have, 

 
XSideal

sol
calc

sd HHH ∆−∆=∆ −                 (2) 

 

where, HXS = 2WHXMaj(1-XMaj)                   (3) 

 
and     
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Pyr
solMaj

Maj
solmaj

ideal
sd HXHXH ∆−+∆=∆ − )1(              (4) 

 
  

where, XB is the mole fraction of the pyrope component and WH is the interaction 

parameter for mixing on one cation site i.e., (Mg,Si)↔ Al and  and are the 

enthalpies of drop solution of the pyrope garnet and the majorite garnet respectively. 

Fitting the Yusa et al., (1993) data in this way and refining and W

Pyrope
SolH∆

Maj
SolH

Maj
SolH∆

H

∆

Maj
Sol

H gives values of 

20 kJ/mol and 22 kJ/mol respectively. The fitting of data from our study can be performed 

in a number of ways, depending on assumptions made  for the value of∆ . If 

only data with pyrope contents >30 % are employed and both and W

H∆ Maj
Sol

H∆

H are refined, values 

of 3 and 88 kJ/mol are obtained respectively, while if we assume the measured  

from this study of –59 kJ/mol and refine only W

Maj
Sol

H we obtain a value of 11 kJ/mol for the 

later. However, with this second approach the fit to the data at >30% pyrope is quite poor 

as all curvature is removed. These two fits demonstrate the two possible conclusions that 

either Mg3(Mg,Si)Si3O12-Mg3Al2Si3O12 garnet enthalpies deviate strongly from ideality or 

that the enthalpy of the fictive cubic Mg3(Mg,Si)Si3O12 garnet is much lower than 

previously estimated. The first conclusion provides a much better fit to the data and a 

compromise between the two conclusions can be obtained by refining WH for the highest 

value of ∆  that still fits within the error bars of all data with pyrope contents >30 %. 

This fit, shown in Fig. 4.8 results in values for   and W

Maj
SolH

Maj
SolH∆ H of –37 kJ/mol and 38 

kJ/mol respectively. For comparison the grossular-pyrope solid solution that is often 

considered one of the more non-ideal garnet solid solutions has a single site WH of 14 

kJ/mol. Fig. 4.9 shows excess enthalpies from this study compared with the fit shown in 

Fig. 4.8 and the fit for the data of Yusa et al., (1993).  
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Figure 4.9: Excess enthalpies of mixing for garnet solid solutions. Polynomial fit 
shown for this study is the same as that indicated in Fig 4.8 with WH = 38 kJ/mol 
and a solution enthalpy of the fictive cubic Mg4Si4O12 garnet of –37 kJ/mol. The 
best polynomial fit through the Yusa et al., (1993) data are shown for 
comparison. 

 
 
 
 
4.6 Conclusions 
 
 
In this chapter enthalpies of drop solution have been measured for Mg3(Mg,Si)Si3O12-

Mg3Al2Si3O12 garnets which have been found to be substantially lower than estimates from 

previous studies. Scatter in the data for garnets with low pyrope contents (<30 %) may 

result from varying states of Mg, Si ordering in the synthesized samples. However not all 

variations can be explained in this manner and the data imply that there is either a large 

positive enthalpy of mixing in this solid solution or that the enthalpy of the fictive 

Mg4Si4O12 cubic garnet end member is substantially lower than previously determined. 

The first possibility provides a better fit to the experimental data although a compromise 
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between these two possibilities is more likely. Significant deviations from ideality for 

Mg3(Mg,Si)Si3O12-Mg3Al2Si3O12 garnets have been proposed based on atomistic 

calculations (Vinograd et al., 2006) and the possibility that previous solution calorimetry 

measurements suffered from thermal relaxation or back reaction (Yusa et al., 1993) makes 

this a realistic possibility. Aside from performing more measurements to verify these 

results, to employ these data at mantle temperatures requires information on the excess 

entropy term WS because WG= WH-TWS. In the past WS has been considered to be ideal for 

this solid solution, however deviations from ideality observed for WH are most likely also 

reflected in WS, which can be determined from heat capacity measurements on 

Mg3(Mg,Si)Si3O12-Mg3Al2Si3O12 garnets. 
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Chapter 5 
 
 

Conclusions  
 
 

The work in this thesis has been performed in order to interpret seismic observations of the 

mantle and understand them in terms of possible chemical variations. For this purpose a 

number of mantle properties have been studied as a function of plausible chemical 

variation. In the Earth�s transition zone such variation may result from the accumulation of 

subducted oceanic crustal material causing Ca and Al enrichments. In the lower mantle, 

primordial material may be Fe rich or subducted material may form magnesium silicate 

perovskite, which is Fe and Al rich. By studying the effects of chemical variation on phase 

stabilities and elastic properties we can compare synthetic models based on the results with 

seismic data for sound velocities or seismic discontinuity depths. 

In this thesis it has been demonstrated that the formation of Ca-perovskite may 

cause a high-pressure branch to be observable in the 520 km seismic discontinuity, which 

is normally associated with the wadsleyite to ringwoodite transition. Significant constraints 

can, therefore, be placed on mantle composition by studying the formation reaction of Ca-

perovskite from majorite garnet in high-pressure and high-temperature experiments using 

various bulk mantle compositions. A thermodynamic approach was adopted to model this 

reaction in order to extrapolate our experimental results over the entire range of plausible 

mantle temperatures and compositions. The experimental and thermodynamic modeling 

results show that the formation of Ca-perovskite from majorite garnet occurs as a non-

linear function of depth. Therefore, a significant amount of calcium perovskite will be 

formed over a narrow depth interval in the mantle. Calculation of the sound velocities for 

 127



Chapter 5: Conclusions 

this exsolution reaction at mid-transition zone conditions, using mineral physics data, show 

that the impedance contrast for the initial perovskite exsolution is of a suitable magnitude 

to cause a discontinuity. Therefore, coupled with the wadsleyite-ringwoodite transition, 

two discontinuities are, possible and are consistent with the observed split in the 520 km 

seismic discontinuity. However, why the discontinuity should appear split in some regions 

of the Earth and not in others is shown not to be a function of temperature. Although 

temperature would tend to merge the two discontinuities together it would do so only at 

depths much deeper than where a single discontinuity is actually observed. What is more 

likely is that a single discontinuity is observed in regions where the Ca content of the 

mantle is low but in regions rich in Ca, such as those containing significant recycled 

oceanic crust, two discontinuities would be observed. Our findings allow regional seismic 

observations of this splitting in the 520 km discontinuity to be used as a probe for this 

major type of mantle heterogeneity in the mantle. This study is, therefore, the first report of 

a deep mantle seismic discontinuity, which can be used as a sensitive indicator of mantle 

chemical heterogeneity.  

Changes in the elastic properties of magnesium silicate perovskite have been 

examined as a function of the incorporation of ferric Fe and Al in the structure, using 

diamond anvil cell compression and single-crystal X-ray diffraction techniques. 

Compression experiments on Al-and Fe-bearing magnesium silicate perovskites show that 

Fe and Al incorporation makes the magnesium silicate perovskite structure more 

compressible. The Al3+ and Fe3+ substitution in magnesium perovskite will mostly occur 

via a coupled substitution mechanism at mantle conditions; however at low trivalent cation 

concentrations a small proportion of oxygen vacancies may form. A third order Birch�

Murnaghan fit of the compression data yields a bulk modulus which decreases from 243 to 

234 GPa with increasing Fe and Al content with a rise in K' from 5 to 6.5, which can be 

attributed to an increase in polyhedral compressibility. On consideration of the effects of 

possible substitution mechanisms on molar volumes of Al-and Fe-bearing magnesium 

silicate perovskite, it has been observed that in magnesium silicate perovskites existing at 

lower mantle conditions the substitution of the  component will be 

energetically less favoured. Our results show that disproportionation of Fe is energetically 

favorable in the lower mantle conditions which would result in the enrichment of Fe

OSiFe VIVIII 3
42 ++

3+ at 

lower mantle conditions.  
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Slow kinetics of silicate reactions inhibits the attainment of equilibrium under 

feasible experimental conditions at lower temperatures. Consequently, the experimental 

results are generally extrapolated to lower temperatures using suitable thermodynamic 

models. Uncertainties in such models can be reduced considerably, if thermodynamic 

parameters used for such fits are independently determined as has been done in our study 

of the pyrope-majorite solid solution using the drop solution calorimetric technique. 

Enthalpies of solution along the majorite�pyrope join obtained from drop solution 

calorimetry show a significant deviation from ideality. The enthalpy of dissolution 

decreases non-linearly for compositions below 30mol% pyrope due to a symmetry change 

from cubic to tetragonal. The values of drop solution enthalpies on majorite�pyrope join 

are significantly lower than previous estimates. An estimation of the excess properties 

using a symmetric regular solution model gives a value of WH {interaction parameter of 

mixing on one cation site in garnet i.e., (Mg,Si)↔Al} of 38 kJ/mol and a solution enthalpy 

of the fictive cubic majorite garnet of �37 kJ/mol. This would mean a large positive 

enthalpy of mixing along this solid solution join. 

This thesis work emphasizes how a combination of complimentary experimental 

techniques can lead to a robust assessment of the deep interior of the Earth and contributes 

to a better understanding of the evolution of the Earth.  

 

Further work 
 

During the course of this thesis a number of points have become obvious where 

further experimental studies would benefit our understanding of the silicate perovskite 

forming reactions. 

A correlation was observed between the seismically determined geographical 

distribution of the split 520 km discontinuity with modern and past subduction zones as 

mentioned in chapter 2. This supports our idea of Ca-enrichment in the mantle via 

subduction of oceanic crust, which would lead to the formation of Ca-perovskite causing 

the second discontinuity in the 520 km region. So, further geophysical studies into the 

splitting and variability of the 520 km seismic discontinuity combined with our 

interpretation will allow us to scale lateral distribution of mantle heterogeneity on a variety 

of scales and will provide significant insights into the circulation of subducted oceanic 

lithosphere in the mantle. Furthermore as the oceanic basalt bulk compositions are rich in 
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the SiO2 component, additional phase equilibria studies involving the formation of Ca-

perovskite from Ca2SiO4 and CaSi2O5 will lead to better constraints on the thermodynamic 

modeling of the Ca-perovskite forming reaction. As very little thermodynamic data exist 

for calcium silicate perovskite, another important aspect will be to collect high quality 

calorimetric data on Ca2SiO4 and CaSi2O5 to aid in the calculation of calcium perovskite 

thermodynamic properties from its formation reaction. 

Our study of the equation of state of Al- and Fe-bearing magnesium silicate 

perovskite single crystals was performed at ambient temperature up to pressures of 10 GPa. 

It was observed in our study that even though a K' value greater than 4 was obtained from 

our results, a calculation of KT for lower mantle conditions with a K' = 4, provides a better 

fit to the predicted lower mantle bulk modulus. Given this discrepancy, it is necessary to 

extend the equation of state study to pressure-temperature range relevant for mantle 

conditions in order to better quantify the changes in elastic property at those conditions due 

to Al and Fe incorporation in the magnesium silicate structure. This will be possible, using 

a gas loading of the diamond anvil cell for compression experiments, which would provide 

hydrostatic conditions to higher pressures. In addition, a powder x-ray diffraction equation 

of state study could be carried out using a high intensity synchrotron X-ray source, in case 

of failure in producing suitable single crystals. Another important objective would be to 

carry out crystal structural refinement studies using single crystal X-ray diffraction, 

provided we can synthesize single crystals of suitable size possibly twin-free, for a better 

understanding of the substitution mechanism of cations in different crystal structural sites. 

For the calorimetric measurements on the pyrope�majorite join, it will be important 

to reproduce the heat of dissolution data for the majorite-rich compositions, where a strong 

scatter in data has been observed by our study, in order to confirm whether there is an 

effect of ordering of Mg and Si on the octahedral site related to synthesis conditions. A 

thorough assessment of the ordering of Mg and Si for the majorite-rich compositions can 

be carried out using a Raman spectroscopic study or a 27Al-NMR study on these majorite-

rich compositions. In addition, in order to employ our thermodynamic data at mantle 

temperatures, information on the excess entropy term will be required. This can be 

determined by heat capacity measurements along the majorite�pyrope join by employing 

differential scanning calorimetry or the recently-devised PPMS (Physical Properties 

Measurement System) calorimetric technique. 
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Table A.1: Details of run numbers and phases observed. Abbreviations: Pd (peridotitic 
composition), Baslt (basaltic composition), Pyr (pyrope composition), Fo (forsterite 
composition), Pd gt (perdotitic garnet), Baslt gt. (basaltic garnet), Pyr gt (pyrope garnet), Maj gt 
(majoritic garnet), Ca-Pv (calcium perovskite), Al–phase (a non-stoichometric unknown phase 
with Al), Ring (ringwoodite), Mw (magnesiowüstite), Stish (stishovite), Oliv (olivine), 
Pyrx.(pyroxene), Peri (periclase),Wad (wadsleyite), Pd (peridotite), Pv (perovskite),Ca-Pd ,Ca-
Baslt, (all Ca bearing reversal compositions), Ca-Pd gt, Ca-baslt Gt.(reversal phases with Ca) 

  

Run no. Pressure Starting compositions                      Phases observed 

                       (GPa) 

 
1400°C 
 
H2375  17.9             Pd, Baslt, Pyr, Fo20   Pd gt + Ca-Pv, Baslt gt +Ca-Pv, 

                                                 Pyr gt + Ca-Pv, Ring + Mw + Stish. 
S3611  18.1             Pd, Baslt, Pyr, Fo20  Pd gt + Ca-Pv, Baslt gt +Ca-Pv, 

                                                                        Pyr gt + Ca-Pv, Ring + Mw + Stish 
S3614   18.6             Pd, Baslt, Pyr, Fo20  Pd gt + Ca-Pv, Baslt gt +Ca-Pv, 

                                                                           Pyr gt + Ca-Pv, Ring + Mw + Stish 
H2370    19.5             Pd, Baslt, Pyr, Fo20  Pd gt + Ca-Pv, Baslt gt +Ca-Pv, 

                                                                        Pyr gt + Ca-Pv, Ring + Mw + Stish 
H2241       19.6             Pd, Baslt, Pyr, Fo20  Pd gt + Ca-Pv, Baslt gt +Ca-Pv, 

                                                                   Pyr gt + Ca-Pv, Ring + Mw + Stish 
 

 
 
1600°C 

 
S3460  18.              Pd, Baslt, Maj, Fo90  Pd gt + Ca-Pv, Baslt gt,  

                                                                      Maj gt + Ca-Pv, Wad 
S3470  18.8            Pd, Baslt, Pyr, Fo30  Pd gt + Ca-Pv, Baslt gt + Ca-Pv 

                                                                   Pyx + Wad 
S3550  19.2            Pd, Baslt, Pyr, Fo30  Pd gt + Ca-Pv, Baslt gt + Ca-Pv 

                                                                   Pyr Gt + Ca-Pv, Ring + Mw + Stish 
S3548  19.5            Pd, Baslt, Fo30  Pd gt + Ca-Pv, Baslt gt +  

                                                           Ca-Pv, Ring + Mw + Stish 
S3547  19.5            Pd, Baslt, Fo30  Pd gt + Ca-Pv, Baslt gt + Ca-   Pv,  
                                                                         Ring + Mw + Stish 
S3549   19.9            Pd, Baslt, Pyr, Fo30  Pd gt + Ca-Pv, Baslt gt + Ca-Pv 

                                                                   Pyr Gt, Ring + Mw + Stish 
S3657  19.9       Baslt, F090 + Baslt, Fo30 Baslt gt + Ca-Pv, Baslt gt + Ca-Pv  

                                                                        + Oliv, Mw + Pyrx + Stish + Wad 
S3655 19.9            Baslt, F090 + Baslt  Baslt gt + Ca-Pv, Baslt gt + Ca-Pv  

                                                                      + Oliv. 
S3551  20.4            Pd, Baslt, Pyr, Fo30  Pd gt + Ca-Pv, Baslt gt + Ca-Pv 

                                                                   Pyr Gt + Ca-Pv, Ring + Mw + Stish 
S3757 20.7            Pd, Baslt, Fo30; Fo50  Pd gt + Ca-Pv, Baslt gt + Ca-Pv, 
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                                                                Ring + Mw + Stish, Ring + Mw + stish 
S3480  22.1            Pd, Baslt, Pyr, Fo30

  Pd gt+ Ca-Pv +Al –Phase, Baslt gt, 
                                                                  + Ca-Pv + Al phase, Ring +Stish 

S3764 21.2            Pd, Baslt, Fo30  Pd gt + Ca-Pv, Baslt gt + Ca-Pv, 
                                                            Ring + Mw + Stish 

S3498  21.4            Pd, Baslt, Pyr, Fo30
   Pd gt + Ca-Pv, Baslt gt + Ca-Pv 

                                                                  Pyr gt + Al phase+ Ca-Pv, Ring + 
                                                                    Mw + Stish 

S3783 22.3             Pd, Baslt, Maj, Fo70  Pd gt +Ca-Pv, Baslt gt + Ca-Pv, 
                                                                    Ring + Mw + Stish + Pyrx. 

S3484 22.3             Pd, Ca-Baslt, Pyr, Fo30  Pd gt +Ca-Pv + Peri,  
                                                                       Ca-Baslt gt + Ca-Pv, Pyr gt + Ca-Pv,  
                                                                      Ring + Mw  

S3475  22.6             Pd, Baslt, Pyr, Maj  Pd gt + Ca-Pv, Baslt gt + Ca-Pv, 
                                                                 Pyr Gt + Ca-Pv, Maj gt + Ca-Pv 

S3478 23                Pd, Baslt, Fo30            Pd gt + Ca-Pv, Baslt gt + Ca- Pv, + Gt + 
Ca-Pv, Pv + Mw + Stish 

S3784  23.5             Pd, Ca-Baslt, Fo70, Pd  Pd gt +Ca-Pv, Ca-Baslt gt + Ca-Pv 
                                                                                 Mw + Pv, Stish + Mw +Pv + Cor 
 

 
 

 
Reversals (1600°C) 
 
S3538 17.95           Baslt, Ca Baslt, Fo30 Baslt gt + Pyx, Ca-Pd gt + Ca-Pv, 

                                                                 Pyx + Wad 
S3543  18.4             Baslt, Ca Baslt, Fo30 Baslt gt + Pyx, Ca-Pd gt + Ca-Pv 

                                                                       Pyx +Wad +Mw 
S3515  19.8             Baslt, Ca Baslt, Fo30, Fo98    Baslt gt + Ca-Pv, Ca-Baslt gt +  

                                                                             Ca-Pv, Ring +Wad + Mw, Wad 
S3521  20.7             Pd, Ca Pd, Fo30                     Pd gt +Ca-Pv, Ca-Pd gt + Ca-Pv 

                                                                              Ring + Mw 
S3523  20.8             Pd, Ca-Pd, Ca-Baslt, Fo30     Pd gt + Ca-Pv + Al-phase +Ca-Pd 

                                                                               gt + Ca-Pv, Ring +Stish 
S3784 23.5             Pd, Ca-Baslt, Fo70, Pd      Pd gt +Ca-Pv, Ca-Baslt gt + Ca-Pv, 

                                                                               Mw + Pv, Stish + Mw +Pv + Cor 
 
 
 
 

Table A.2: Electron microprobe data of the perovskites crystallized from the pressure calibrants in 
multi anvil experiments calculated based on 3 oxygens per formula unit. Fo30 (Forsterite 30), Fo70 
(Forsterite 70) 
 
Run no.     Pressure calibrant   Pressure            Si                   Mg                   Fe             Total 
 S3478              Fo30               23 GPa            0.961              0.763              0.310           2.034 
 S3784              Fo70               23.5 GPa         0.962              0.899              0.171           2.031 
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Table A.3: Electron microprobe data for all the experimental runs before processing of data. All 
the concentrations are in wt% oxide. (A) for experiments at 1600°C, (B) for experiments at 
1400°C and (C) for reversal experiments. Results are listed as peridotite, basalt, pyrope and 
majorite based on the different garnet starting compositions as listed in table 2.1. (Abbreviation 
Pd gt–peridotitic garnet, Ca-Pv-calcium perovskite, Baslt gt-basaltic garnet, Maj gt –majoritic 
garnet, Pyr gt- pyrope garnet, Fo90-forsterite 90 composition, Fo50-forsterite 50 composition, Fo30-
forsterite 30 composition, (Mg,Fe)O-magnesiowüstite, SiO2-stishovite, 

 
(A) Runs at 1600°C. 

 
 
(Run no. Composition Phases SiO2 MgO FeO CaO Al2O3 Total 

    observed             

         

S3460 Peridotite Pd gt 52.92 24.96 1.71 11.10 7.82 98.49 

  Ca-Pv 59.54 10.71 0.77 16.88 3.12 91.03 

         

 Basalt Baslt gt 49.31 21.02 0.83 14.81 12.70 98.66 

         

 Majorite Maj gt 54.51 28.92 1.68 8.36 5.79 99.26 

  Ca -Pv 47.89 0.09 0.00 44.03 0.01 92.02 

         

  Fo 90 Olivine 42.18 56.04 2.32 0.02 0.10 100.66 

         

S3470 Peridotite Pd gt 53.26 25.98 1.12 11.21 8.26 99.82 

  Ca-Pv 49.25 6.34 0.58 38.21 1.74 96.13 

         

 Basalt Baslt gt 49.17 22.74 0.55 14.09 13.23 99.77 

         

 Pyrope Pyr gt 46.97 19.24 0.82 16.16 16.30 99.48 

  Ca-Pv 49.68 0.75 0.03 43.66 0.58 94.71 

         

  Fo 90 Olivine 42.08 56.53 1.71 0.00 0.10 100.43 

         

S3550 Peridotite Pd gt 50.26 23.90 3.67 11.91 8.26 98.01 

  Ca-Pv 50.08 0.17 0.10 47.33 0.08 97.77 

         

 Basalt Baslt gt 45.55 17.47 2.95 16.70 16.06 98.73 

  Ca-Pv 47.57 2.16 0.42 43.91 1.84 95.89 

         

 Pyrope Pyr gt 47.39 20.84 3.49 14.30 12.83 98.84 

  Ca-Pv 49.34 0.78 0.23 46.39 0.55 97.29 

         

 Fo30 olivine 32.87 17.17 51.65 0.01 0.05 101.76 

  (Mg,Fe)O 1.22 3.34 89.81 0.07 0.30 94.74 

    SiO2 98.20 0.27 2.06 0.01 0.21 100.75 

         

S3548 Peridotite Pd gt 51.49 27.95 3.90 7.95 8.33 99.62 

 Ca-Pv 49.20 0.20 0.10 46.98 0.07 96.56 

         

 Basalt Baslt gt 47.90 24.00 5.07 9.83 12.45 99.25 

133



         

 Fo30 olivine 33.86 17.88 49.40 0.02 0.05 101.21 

  (Mg,Fe)O 3.68 8.78 85.02 0.02 0.04 97.54 

    SiO2 98.83 0.63 2.40 0.01 0.08 101.95 

         

S3547 Peridotite Pd gt 51.11 27.53 2.87 8.44 9.38 99.32 

  Ca-Pv 50.24 0.13 0.06 47.51 0.07 98.00 

         

 Basalt Baslt gt 48.58 24.21 3.56 9.72 12.46 98.55 

  Ca-Pv 46.68 0.62 0.24 46.01 0.57 94.12 

         

 Fo30 olivine 33.66 18.91 49.39 0.00 0.05 102.02 

  (Mg,Fe)O 2.93 9.40 87.59 0.00 0.07 99.98 

    SiO2 96.86 0.18 1.62 0.01 0.19 98.87 

         

S3549 Peridotite Pd gt 50.47 28.51 1.81 7.08 9.17 97.04 

  Ca-Pv 45.78 1.70 0.22 44.84 0.84 93.38 

         

 Basalt Baslt gt 47.46 25.27 2.70 8.55 13.60 97.58 

  Ca-Pv 48.52 0.36 0.10 46.44 0.10 95.52 

         

 Pyrope Pyr gt 44.08 20.65 2.82 11.52 17.84 96.91 

         

         

 Fo30 olivine 33.65 21.30 45.37 0.00 0.06 100.39 

  (Mg,Fe)O 1.08 7.40 87.90 0.02 0.17 96.57 

    SiO2 95.05 0.39 3.64 0.01 0.03 99.11 

         

S3657 Basalt Basltic maj 43.46 12.43 34.93 2.89 4.52 100.36 

  Ca-Pv 48.27 0.35 0.30 46.38 0.33 95.62 

         

 Fe+ basalt Baslt gt 46.85 24.20 7.38 8.28 11.92 98.63 

  Ca-Pv 48.04 0.19 0.12 46.26 0.32 94.93 

         

 Fo30 olivine 33.67 21.25 45.76 0.00 0.06 100.75 

  (Mg,Fe)O 2.84 4.62 86.96 0.06 0.38 94.87 

    SiO2 72.70 5.19 17.46 0.01 0.08 95.44 

         

S3655 Fe+ basallt Baslt gt 44.01 21.00 6.10 7.59 13.97 92.67 

         

 Basalt Baslt gt 48.48 26.19 4.02 7.73 12.57 98.99 

  Ca-Pv 47.90 1.78 0.61 45.29 0.11 97.02 

         

 Fo30 olivine 37.05 32.64 30.89 0.00 0.03 100.61 

  (Mg,Fe)O       

    SiO2 99.07 0.08 0.72 0.00 0.02 99.89 

         

S3551 Peridotite Pd gt 50.14 27.43 4.46 5.82 10.48 98.33 

  Ca-Pv 48.22 0.23 0.16 46.70 0.57 95.88 

         

 Basalt Baslt gt 46.41 27.00 1.73 7.95 14.18 97.27 
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  Ca-Pv 39.42 0.92 0.24 43.37 3.69 87.64 

         

 Pyrope Pyr gt 45.03 21.99 3.80 9.54 18.46 98.82 

  Ca-Pv 50.29 0.50 0.16 47.27 0.67 98.89 

         

 Fo30 olivine 34.64 24.08 42.60 0.01 0.06 101.38 

  (Mg,Fe)O 5.32 5.44 82.80 0.04 0.37 93.96 

    SiO2 94.77 1.42 4.41 0.02 0.06 100.67 

         

S3480 Peridotite Pd gt 53.91 28.18 4.23 4.92 8.64 99.88 

  Ca-pv 51.35 0.07 0.03 50.05 0.03 101.53 

         

 Basalt Baslt gt 50.82 25.90 4.62 5.35 13.73 100.42 

  Ca-Pv 50.85 0.09 0.09 49.40 0.05 100.48 

         

 Pyrope Pyr gt 46.51 19.56 8.61 8.77 16.70 100.15 

  Ca-Pv 50.21 0.18 0.34 49.42 0.43 100.58 

         

 Fo 50 Olivine 37.98 29.59 32.44 0.00 0.07 100.07 

    SiO2 101.54 0.05 0.54 0.02 0.03 102.17 

         

S3498 Peridotite Pd gt 53.22 32.12 5.44 0.71 9.53 101.02 

  Ca-pv 51.29 0.70 0.18 45.56 0.26 97.98 

         

         

 Basalt Baslt gt 48.00 27.10 4.76 4.66 15.64 100.16 

  Ca-Pv 50.54 0.31 0.11 45.32 0.22 96.50 

         

 Pyrope Pyr gt 45.16 24.71 3.95 5.38 21.49 100.68 

  Ca-Pv 50.52 0.20 0.09 45.82 0.10 96.73 

         

 Fo 50 Olivine 38.72 37.48 26.17 0.00 0.08 102.46 

    (Mg,Fe)O 6.21 12.41 70.20 0.14 0.73 89.69 

         

S3484 Peridotite Pd gt 52.31 33.49 3.00 0.89 9.24 98.93 

  Ca-pv 53.01 1.76 0.12 42.10 0.49 97.48 

         

 Basalt Baslt gt 47.63 28.78 3.44 2.38 16.66 98.88 

  Ca-Pv 51.29 0.23 0.09 46.93 0.09 98.63 

         

 Pyrope Pyr gt 44.03 25.42 3.84 2.04 23.32 98.64 

  Ca-Pv 49.31 1.60 0.33 45.24 1.43 97.91 

         

 Fo 50 Olivine 37.01 30.79 31.97 0.00 0.09 99.87 

    (Mg;Fe)O 0.71 21.41 75.89 0.00 0.12 98.13 

         

S3475 Peridotite Pd gt 53.23 31.49 5.09 0.86 9.61 100.27 

  Ca-Pv 48.06 6.17 1.13 35.97 2.09 93.42 

         

 Basalt Baslt gt 49.03 27.26 3.28 3.03 17.03 99.62 

  Ca-Pv 46.97 0.43 0.15 45.41 0.72 93.68 
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 Majorite Maj gt 49.32 16.34 2.41 21.32 7.36 96.75 

  Ca -Pv 49.06 0.96 0.20 44.84 0.58 95.64 

         

 Pyrope Pyr gt 44.96 24.00 3.58 5.04 22.35 99.94 

    Ca-Pv 42.84 0.52 0.26 44.77 2.38 90.77 

         

S3478 Peridotite Pd gt 51.90 33.15 5.20 0.20 9.09 99.53 

  Ca-pv 48.86 0.15 0.11 46.80 0.08 96.00 

         

 Basalt Baslt gt 47.40 28.31 4.42 2.96 16.32 99.41 

  Ca-Pv 42.92 0.95 0.41 45.06 2.56 91.89 

         

 Pyrope Pyr gt 44.22 24.56 4.81 4.28 21.55 99.41 

  Ca-Pv 45.29 1.30 0.58 44.21 2.20 93.58 

         

 Fo 50 Pv 51.19 27.09 19.74 0.24 1.92 100.19 

  (Mg,Fe)0 0.38 20.28 78.75 0.00 0.10 99.51 

    SiO2 97.62 0.37 2.18 0.00 0.02 100.19 

         

S3757 Peridotite Pd gt 52.37 29.20 4.14 4.48 8.42 98.61 

  Ca-pv 47.99 0.39 0.25 45.93 0.73 95.29 

         

 Basalt Baslt gt 47.64 24.98 3.36 6.26 15.54 97.78 

  Ca-Pv 44.64 1.13 0.49 43.13 1.16 90.55 

         

 Fo50 Olivine 34.19 26.74 39.20 0.02 0.10 100.25 

  (Mg,Fe)0 0.22 14.33 82.58 0.02 0.09 97.23 

  SiO2 79.56 7.10 12.08 0.02 0.17 98.93 

         

 Fo 30 Olivine 35.04 25.43 40.32 0.01 0.07 100.86 

  (Mg,Fe)0 0.94 13.63 84.07 0.01 0.08 98.73 

    SiO2 94.94 1.56 3.37 0.02 0.21 100.10 

         

S3764 Peridotite Pd gt 52.70 28.41 4.82 3.67 9.60 99.19 

  Ca-pv 48.12 1.14 0.19 43.70 0.96 94.11 

         

 Basalt Baslt gt 48.06 27.32 3.58 4.68 15.44 99.09 

  Ca-Pv 49.43 0.04 0.04 46.96 0.03 96.50 

         

         

 Fo30 Olivine 35.64 27.84 37.14 0.00 0.09 100.70 

  (Mg,Fe)0 1.98 17.16 80.91 0.01 0.10 100.16 

    SiO2 90.05 4.11 7.14 0.00 0.25 101.56 

         

S3784 Peridotite Pd gt 51.46 32.16 4.87 0.50 10.17 99.15 

  Ca-pv 49.83 0.29 0.13 46.69 0.26 97.19 

         

 Fo70 (Mg,Fe)0 6.90 29.88 64.18 0.04 0.01 101.01 

  Pv 55.18 34.70 11.18 0.16 0.08 101.30 
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S3783 Peridotite Pd gt 51.34 30.92 5.77 1.45 9.39 98.87 

  Ca-Pv 49.22 0.58 0.19 45.07 0.36 95.43 

         

 Basalt Baslt gt 50.28 15.75 2.98 23.26 4.87 97.15 

  Ca-Pv 48.47 0.24 0.13 44.60 0.29 93.72 

         

 Majorite Maj gt 49.83 11.87 2.27 28.60 3.73 96.29 

  Ca-Pv 49.04 0.16 0.08 45.60 0.11 94.99 

         

 Fo70 Olivine 37.18 32.30 31.24 0.00 0.07 100.79 

  (Mg,Fe)0 8.31 12.62 74.94 0.11 0.60 96.58 

    SiO2 91.16 1.26 3.35 0.02 0.15 95.93 

 

(B) Runs at 1400°C 

 

Run no. Composition Phases SiO2 MgO FeO CaO Al2O3 Total 
    observed             
         
S3611 Pyrope Pyr gt 44.92 18.91 2.48 14.50 19.34 100.14 
  Ca-Pv 48.94 0.44 0.12 45.83 0.45 95.78 
         
 Basalt Basalt gt 46.66 19.99 3.38 14.66 15.74 100.42 
  Ca-Pv 49.61 0.93 0.18 46.22 0.50 97.43 
         
 Peridotite Pd gt 51.22 26.26 4.36 9.21 8.56 99.61 
    Ca- Pv 49.55 0.19 0.12 47.35 0.05 97.26 
         
S3614 Pyrope Pyr gt 44.15 19.66 3.29 13.64 18.79 99.53 
  Ca-Pv 48.32 0.22 0.12 47.13 0.38 96.18 
         
 Basalt  Basalt gt 47.00 23.50 3.77 11.35 14.07 99.69 
  Ca-Pv 48.49 0.28 0.12 47.16 0.36 96.41 
         
 Peridotite Pd gt 50.74 27.91 4.54 8.60 8.24 100.03 
    Ca- Pv 49.20 0.11 0.11 47.41 0.13 96.96 
         
H2375 Pyrope Pyr gt 45.21 18.65 3.23 14.01 17.93 99.02 
  Ca-Pv 50.21 0.10 0.06 46.94 0.08 97.39 
         
 Basalt Basalt gt 47.46 20.57 3.73 13.36 13.67 98.79 
    Ca-Pv 48.97 0.18 0.13 46.71 0.17 96.15 
         
H2370 Pyrope Pyr 44.03 23.22 4.08 6.33 22.52 100.18 
  Ca-Pv 50.22 0.07 0.09 47.55 0.06 97.99 
         
 Fo 30 olivine 33.45 20.65 51.13 0.01 0.04 105.28 
  (Mg,Fe)O 0.75 3.24 93.06 0.10 0.31 97.46 
    SiO2 94.96 0.53 2.74 0.15 0.16 98.54 
         
H2241 Pyrope Pyr gt 44.04 22.89 3.25 6.31 21.20 97.68 
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(C) Reversal runs at 1600°C 

 

Run no. Composition Phases SiO2 MgO FeO CaO Al2O3 Total 
    observed             
         
S3538 Ca-basalt Ca-baslt gt 44.76 25.91 0.88 7.44 16.02 95.00 

         

S3543 Ca-basalt Ca-baslt gt 43.36 24.25 2.65 7.11 18.41 95.78 

         

S3515 Ca-basalt Ca-baslt gt 48.26 28.28 4.15 2.67 17.00 100.37 

    Ca-Pv 42.96 1.99 0.50 43.16 0.93 89.54 

         

S3521 Ca-Peridotite Ca-Pd gt 53.18 32.04 4.87 0.74 8.99 99.82 

         

S3523 Ca-basalt Ca-baslt gt 48.75 24.30 4.08 8.45 14.39 99.97 

    Ca-Pv 42.85 12.67 2.18 24.56 8.93 91.19 

         
S3784 Ca-basalt Ca-baslt gt 46.26 23.36 4.19 4.91 19.01 97.73 

         

 

 



Appendix B 
 
 
Table B.1: Run details of the perovskite single crystal synthesis using multianvil press (see table 
3.2 for crystal compositions). The run numbers marked with stars produced the sample with 
suitable size for compression experiments. For crystal 4 we could only produced tiny crystal 
aggregates, which were not suitable for compression experiments. (Details in Chapter 3) 
 
 
Run no. Pressure  Pressure Temperature Capsule Duration 

Assembly GPa  °C 
 
Crystal 1 
 
H2351  8/3  25  2000  Re  10 minutes 
H2363  8/3  25  2000-1900 Re  1 hr 
H2369*  8/3  25  2000  Re  ½ hr 
 
Crystal 2 
(fluxed with H2O) 
 
H2417  8/3  25  1900-1800 Au  Blow out  
H2428  8/3  25  ~1550  Au  45 minutes 
H2430  8/3  25  1700  Au  5 minutes 
H2428  8/3  25  1700  Au  1 hr 
H2438*  8/3  25  1800  Au  10 minutes 
 
Crystal 3 
 
S3602*  7/3  25  1100  Pt  2 hrs 
 
Crystal 4 
(fluxed with H2O) 
 
H2454  8/3  25  1800  Au  20 minutes 
H2460  8/3  25  1900  Au  10 minutes 
H2491  8/3  25  1900  Au  15 minutes 
H2496  8/3  25  1950  Au  15 minutes 
H2536  8/3  25  ~1975  Au  10 minutes 
H2538  8/3  25  ~1920  Au  10 minutes 
H2563  8/3  25  2000  Au  5 minutes 
H2565  8/3  25  1900  Au  5 minutes 
H2569  8/3  25  1900-1700 Au  1 hr 
H2528  8/3  25  ~1600  Au  1hr 
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