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Abstract 

A detailed and comprehensive description of the state of the art in the field of 
flood forecasting opens this work. Advantages and shortcomings of currently 
available methods are identified and discussed. Amongst others, one important 
aspect considers the most exigent weak point of today’s forecasting systems: 
The representation of all the fundamentally different event specific patterns of 
flood formation with one single set of model parameters. The study exemplarily 
proposes an alternative for overcoming this restriction by taking into account the 
different process characteristics of flood events via a dynamic parameterisation 
strategy. Other fundamental shortcomings in current approaches especially 
restrict the potential for real time flash flood forecasting, namely the 
considerable computational requirements together with the rather cumbersome 
operation of reliable physically based hydrologic models. The new PAI-OFF 
methodology (Process Modelling and Artificial Intelligence for Online Flood 
Forecasting) considers these problems and offers a way out of the general 
dilemma. It combines the reliability and predictive power of physically based, 
hydrologic models with the operational advantages of artificial intelligence. 
These operational advantages feature extremely low computation times, absolute 
robustness and straightforward operation. Such qualities easily allow for 
predicting flash floods in small catchments taking into account precipitation 
forecasts, whilst extremely basic computational requirements open the way for 
online Monte Carlo analysis of the forecast uncertainty. The study encompasses 
a detailed analysis of hydrological modeling and a problem specific artificial 
intelligence approach in the form of artificial neural networks, which build the 
PAI-OFF methodology. Herein, the synthesis of process modelling and artificial 
neural networks is achieved by a special training procedure. It optimizes the 
network according to the patterns of possible catchment reaction to rainstorms. 
This information is provided by means of a physically based catchment model, 
thus freeing the artificial neural network from its constriction to the range of 
observed data – the classical reason for unsatisfactory predictive power of net-
based approaches. Instead, the PAI-OFF-net learns to portray the dominant 
process controls of flood formation in the considered catchment, allowing for a 
reliable predictive performance. The work ends with an exemplary forecasting 
of the 2002 flood in a 1700 km² East German watershed.  



Zusammenfassung 

Eine umfassende Analyse der bestehenden Hochwasservorhersagesysteme 
beleuchtet Vorteile und Schwachpunkte heutzutage angewandter Ansätze. Dabei 
fällt besonders auf, dass in aktuellen Hochwasservorhersagemodellen nur ein 
einziger Parametersatz zur Beschreibung der vielfältigen Muster der Hoch-
wasserentstehung verwendet wird. Die Arbeit begegnet diesem strukturellen 
Schwachpunkt mit einem alternativen Ansatz der Modellparametrisierung. Die 
damit mögliche Verwendung multipler Parametersätze in einem Modell erlaubt 
die Integration grundlegend verschiedenen Muster der Hochwasserentstehung in 
einem Modell. Weitere Schwachpunkte der aktuellen Hochwasservorhersage 
erschweren derzeitig den operationellen Echtzeiteinsatz, besonders die langen 
Rechenzeiten der detaillierten prozessbeschreibenden Modelle und deren 
komplizierte Anwendung. Die neue PAI-OFF Methodik (Process Modelling and 
Artificial Intelligence for Online Flood Forecasting) bietet einen Ausweg aus 
dieser generellen Problematik. PAI-OFF vereinigt die Zuverlässigkeit und 
Prognosefähigkeit detaillierter, physikalisch begründeter Prozessmodellierung 
mit den Vorteilen künstlicher neuronaler Netze. Letztere zeichnen sich 
insbesondere durch einfache Handhabung und enorm kurze Rechenzeiten in der 
Anwendung aus. Somit entsteht ein schnelles, robustes und trotzdem 
zuverlässiges Modell, welches die Online-Betrachtung von Vorhersage-
unsicherheiten mittels Monte-Carlo-Simulationen erlaubt. Die Synthese der 
physikalisch fundierten Modelle mit künstlichen neuronalen Netzen wird durch 
eine spezielle Trainingsstrategie möglich. Dabei werden die Netze nicht mehr – 
wie bisher üblich – anhand historischer Daten trainiert. Das PAI-OFF-Netz lernt 
stattdessen die allen möglichen Hochwasserentstehungsmustern zugrunde 
liegende Prozessdynamik, welche mit den physikalisch fundierten Modellen 
beschrieben wird. Somit entsteht ein zuverlässig vorhersagefähiges Modell für 
den operativen Einsatz, welches beispielhaft zur Vorhersage des August-
hochwassers 2002 am Pegel Kriebstein im Osterzgebirge angewendet wird. 
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1 Flash flood forecasting: A challenging task 

Flash floods represent one of the most common and dangerous natural hazards. 
However, the menace arising from flash floods worldwide is often not clearly 
addressed in the media and lacks public awareness. The true dimension of this 
jeopardy becomes clear from the 30-year average of mortality caused by natural 
hazards in the United States: More than 120 people are killed by flood events 
each year. The National Weather Service (2004) states that the majority of the 
flood related casualties in the United States are the result of flash floods. This is 
roughly double the death toll of the second most dangerous natural disaster: 
Hurricanes.  

Flash floods are characteristic for small to medium sized catchments. Usually, 
they are a consequence of severe rainstorms. Regarding the total volume, flash 
floods are often much smaller than inundations. Nonetheless, due to the 
immense flow velocities and steep gradients, flash floods pose the most serious 
threat to human life.  

The definition of flash flood is rather soft. The term “flash” reflects a rapid 
response to the causative event, with rising water levels in the drainage network 
reaching their peak within minutes to a few hours of the onset of the event. A 
threshold of approximately 6 hours often is used to distinguish a flash flood 
from a slow-rising flood (Mogil et al; 1978; Georgakakos, 1986; Gruntfest and 
Huber, 1991; Polger et al, 1994; National Weather Service, 2004b). The 
internationally agreed definitions of flash floods leave an ample scope for 
interpretation. Symptomatically, the American Meteorological Society (2000) 
defines: A flash flood is a flood that rises and falls quite rapidly with little or no 
advance warning, usually the result of intense rainfall over a relatively small 
area. In this study, flash floods cover events which reach their peak flow less 
than 24 hours after the onset.  
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1.1 Restrictions and benefits of flash flood forecasting 

Mountainous catchment areas - with their steep slopes and short flow paths, high 
non linearity and pronounced dynamics - restrict the performance of current 
flood forecasting models and, thus, only allow for short warning periods. 
Generally, whenever the minimum required forecast horizon necessary for the 
implementation of a flood management intervention is shorter than the 
hydrological response time of the considered catchment, hydraulic routing 
models can be employed to predict discharge from upstream gauging stations. In 
this case, the prediction benefits from the accurate portrayal of flood wave 
propagation arising from the solution of the Saint-Venant equations. This is a 
very reliable way of forecasting, but unfortunately, when dealing with small- 
and medium-sized watersheds, the lead-time provided by the hydraulic models is 
often insufficient to allow for the implementation of protective measures. 
Moreover, most small watersheds lack upstream gauges, ruling out the above 
mentioned forecasting approach. Extending the lead time to a period, which 
allows for an effective reaction to the forecast requires taking into consideration 
a quantitative precipitation forecast and a detailed and physically based 
description of the important rainfall runoff processes. Therefore rainfall-runoff 
models are the means of choice. If the forecasting starts on the basis of 
measured rainfall, the gain in lead-time is a function of various processes, e.g. 
interception, surface water storage, soil storage, surface water travel times and 
flood wave propagation in river channels. When the lead-time is still insufficient 
-  this is generally the case in small and steep catchments - radar-based now-
casting and/or quantitative precipitation forecast allow for prolonging the lead-
time significantly. Here, the drawback is the inclusion of the precipitation 
forecast uncertainty. Online evaluation of this uncertainty requires an extremely 
fast forecasting model.  

In the effort of anticipating flash flood related damage to human lives and 
economic goods, constructional flood retention is the most frequently applied 
measure. It is a very effective and save way to reduce flood impact on human 
society if a timely flood forecasting can be used to optimally control artificial 
flood retention structures. Constructional flood retention requires major 
investment if rare flood events are to be held back by dams and reservoirs. 
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Nonetheless, there is no absolute protection from constructive measures if 
extremely rare events occur.  

Especially in cases of extreme flash flood events, more efficient flood 
forecasting systems are of primary importance. Prolonging the warning periods 
enables the affected people to safeguard their belongings as well as their lives in 
case of a devastating event. One of the most evident advantages of flood 
forecasting systems is their low cost. Besides, they are environmentally friendly 
because they do not interfere with the natural dynamics of a watershed 
environment. A valuable and gratuitous side-effect of forecasting and 
communicating the forecast is the strengthening of awareness for the nature of 
flash floods throughout the whole society. While the overall system for reducing 
casualties caused by storms, including not only forecasts and warnings but also 
public preparedness, has improved steadily since the 1950s and continues to be 
developed, the comparable flash flood warning system has not experienced the 
same amount of progress (Doswell et al 1996). This statement well portrays the 
situation around the globe and clearly shows the necessity to improve our 
understanding of the natural processes governing a flood event in order to push 
forward the development of more efficient flood forecasting systems. The most 
crucial drawback of actually available flood warning systems is their short lead-
time. In order to reduce the risk for human life, prolongation of the warning 
period is urgently needed.  

The following section of this work comprises a general presentation of the 
current developments in the field of flood modelling from the various classical 
approaches to tentative alternatives. 
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1.2 Flash flood forecasting: Current practice and research 
efforts 

The two focal points of recent scientific effort to improve flood forecasting are:  

 Classical modelling approaches, which rely on routing, rainfall runoff 
modelling and probabilistic methods in the context of flood forecasting.  

 Artificial neural networks. They are being investigated as a fast and 
reliable means of flood forecasting.  

This section comprises the development of flood prediction techniques from the 
basics to highly sophisticated models. 

Classical modelling approaches: 

The development and adaptation of classical concepts in order to enhance flood 
prediction has been a field of major research activities. Approaches based on 
routing alone are normally not well-suited for flash flood forecasting. 
Nevertheless, in order to gain a complete view of the available methods, this 
class of models is briefly treated in the following.  

Approaches based on improved routing: 

Barbero et al (2001) mainly consider the wave propagation in streams for their 
flood forecasting system. They employ hydrodynamic numerical modelling 
together with a simplistic rainfall-runoff model in a rather large catchment, 
without giving exact details on the computational requirements. In the view of 
the possibly considerable CPU execution times when dealing with complex 
rivers and their interaction with tributaries, the numerical experience necessary 
for operating the system together with the risk of failing convergence seems to 
represent a hurdle for a routine real time operation. Moreover, being aware of 
the limited extrapolation performance as regards simplistic rainfall runoff 
modelling, this process most probably needs more attention, especially for 
rapidly reacting smaller to medium sized catchments. 

Tate and Cauwenberghs (2005) describe a flood forecasting system which has 
been lately implemented in the Belgian Demer basin. It is built upon a 
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combination of a simplistic, bucket type rainfall-runoff module and a kinetic 
description of the flood wave propagation. This system is an example for an 
approach which mainly relies upon an optimal updating scheme. The modules 
themselves are likely too simplistic to allow for a reliable extrapolation into the 
range of extreme floods. 

As the approaches based on flood routing are not suited to extend the lead-time 
in fast responding catchments the focus is turned to methods relying on detailed 
rainfall-runoff modelling in order to improve the forecast performance.  

Approaches based on rainfall-runoff models:  

Ludwig et al (2006) present a tool for operational flood forecasting. This system 
is used for flood forecasting in Baden-Württemberg, a federal state of Germany. 
It is based on the LARSIM model and is well suited for predicting the expected 
value of flood peaks in catchments where updating with reliable upstream gauge 
information is possible.  

Meetschen and Simmer (2006) propose to use radar data for operational flood 
forecasting. Their now-casting based system yield promising results. It is not 
suited for being used in combination with rainfall forecasts yet. This restricts the 
use of this approach in fast responding, small catchments. 

Liu and Todini (2002) consider a quantitative precipitation forecast in their 
TOPKAPI flood forecast model. It is one of the best-suited models for flood 
prediction available today. Yet, with a typical TOPKAPI application, it is 
impossible to correctly portray the highly variable process dynamics over the 
whole range of possible flood patterns. This is mainly due to the restriction to 
only one parameter set per model application. This weakness of portraying 
dynamic processes represents the classical shortcoming of state of the art 
rainfall-runoff models in hydrology and is likewise affecting all of the 
approaches described in the following.  

Luce et al (2006) present a classical approach for online flood forecasting, using 
the LARSIM model. Their system is based on updating internal state variables 
and performs excellently for downstream gauges of large rivers. As many other 
researchers, they use a single set of parameters to describe the whole runoff 
spectrum, trying to integrate moderate and extreme flood events. This, in 



6  1 Flash flood forecasting: A challenging task 

combination with the rough approach of LARSIM, inevitably leads to 
shortcomings in rare event forecasting. As the system performance is depending 
on updating, it is not suited for headwater catchments and watersheds which are 
characterized by short travel times.  

Rabuffetti and Barbero (2005) use a conceptual model to forecast floods in a 
mesoscale Alpine catchment. The model structure does not allow for detailed 
results from small headwaters. They justify their lumped approach with too long 
simulation times of high-resolution models. This statement emanates from 
Michaud and Sorooshian (1994) and Beven (1989). Todini (1996) reports 
similar drawbacks of detailed physically based models.  

These publications lead to a similar conclusion. The computer power currently 
available is not sufficient to operate a detailed, distributed and physically based 
online flood forecasting system in environments which do not allow for updating 
procedures with measured flow or rainfall data. This fact is even more 
compelling if the evaluation of forecast uncertainty is desired. In order to 
overcome this general problem, alternative ways have been emphasised lately. 
One of the proposed answers to the problem of limited computer power is the 
use of probabilistic approaches. 

Probabilistic approaches: 

Researchers have endeavoured to simplify and evaluate flood forecasting in 
order to satisfy needs of watershed management operators. Within this frame, 
Krzysztofowicz (1999, 2002), Krzysztofowicz and Kelly (2000) and Kelly and 
Krzysztofowicz (2000) propose probabilistic evaluation of river stage 
forecasting in headwaters. They show that Bayesian analysis of uncertainties is a 
possible way for estimating precipitation and hydrologic model uncertainty in 
the context of flood forecasting. Their contributions are applicable to any kind 
of forecasting system, but they do not aim at improving the forecast in terms of 
speed, better process representation or more suitable parameterisation 
(reliability).  

In order to facilitate operational decision making in the case of flood defence, 
Martina et al (2006) propose to circumvent online flood forecasting models with 
the help of a threshold based critical rainfall rate. The presented approach is 
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easy to use and fast. Despite the innovative approach, their forecast considerably 
looses predictive power if the forecast lead-time exceeds 6 hours and their false 
alarm rate surpasses 50 % for a forecast horizon of 12 hours. This might be due 
to the employed TOPKAPI model and the historical time series used to derive 
the threshold values. However, the forecast performance is not satisfying the 
needs of a distinct enhancement of currently available flood forecasting systems. 

Forecasting approaches based on artificial neural networks:  

Trying to get around the inconveniences of highly sophisticated numerical 
approaches (simulation duration, data requirements), a considerable amount of 
research has been invested for adapting the theory of artificial neural networks 
(ANN) – also referred to as neural nets - to flood modelling and forecasting 
during the last 10 years. This is mainly motivated by the principal advantage of 
neural nets: Once they are trained they are extremely easy to use and outperform 
classical models by far in terms of simulation speed. General aspects concerning 
artificial neural networks and their role in hydrology are concisely reviewed in 
(ASCE 1 and ASCE 2, 2000). Apart from this basic work, a vast number of 
detailed publications describe the advances in the field of applying neural nets to 
hydrological modelling: 

Kothyari and Garde (1991) developed a regression model for predicting the 
annual runoff volume from the annual rainfall, basin area, average temperature, 
and vegetation cover. Sajikumar and Thandaveswara (1996) demonstrated the 
supremacy of the multilayer feed forward neural network (MLFN) over the 
regression model in terms of predictive power for the same data.  

Halff et al (1993) applied a three layer net to portray hydrographs recorded by 
the U. S. Geological survey (USGS) at Bellvue, Washington. They used 
observed rainfall hyetographs as inputs. Their net consisted of five nodes in the 
hidden layer. A total of five storms were considered. On a rotation basis, data 
from four storms were used for training, while data from the fifth storm were 
used for testing the network performance.  

Hjelmfelt and Wang (1993) developed a neural network based on the unit 
hydrograph theory. Using linear superposition, a composite runoff hydrograph 
for a watershed was developed by the appropriate summation of a unit 
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hydrograph ordinate and the corresponding runoff excesses. The numbers of 
neurons in the input and hidden layers were kept constant. Rainfall and runoff 
data from 24 large storm events were chosen from Goodwater creek Watershed 
(12.2 km²) in central Missouri to train and test their neural network with 
promising results. 

Zhu et al (1994) predicted the flood hydrograph in Butter Creek, New York. 
Online predictions with neural nets outside the range of training data lead to 
poor results. With increasing forecast lead-time, neural network performance 
deteriorated. The nets were able to perform better than the autoregressive 
moving average models (ARMA) compared in this study. 

Bonafe et al (1994) assessed the performance of a neural network in forecasting 
daily mean flow of the upper Tiber river, Italy. The previous day discharge, 
daily precipitation, daily mean temperature, total rainfall of the previous five 
days and mean temperature of the previous ten days were selected for net input. 
They concluded that the multi layer nets were able to yield much better 
performance than ARMA models.  

Smith and Eli (1995) applied a back propagation neural network model to 
predict peak discharge and peak time for a hypothetical watershed. Linear or 
non-linear reservoir models generate data sets for training and validation. By 
representing the watershed as a grid of cells, it was possible for the authors to 
incorporate the spatial and temporal distribution of rainfall into the neural net 
model. They trained the neural network to map a time series rainfall patterns. 
Discharge series are modelled using a discrete Fourier series fit of the rainfall 
hydrograph.  

These first approaches towards using artificial neural networks in hydrology do 
not directly yield practical benefit for flood forecasting, nevertheless the results 
pointed out the promising potential of the neural network approach at the time of 
publication. Thus more effort was made in order to harness the neural networks 
for hydrological modelling and forecasting purposes. Among the numerous 
attempts the following are the most interesting: 

Hsu et al (1995) lead the way to single step predictions of stream flow 
employing a 3-layer network. Hsu et al (1997) further develop the potential of 



1.2 Flash flood forecasting: Current practice and research efforts 9 

recurrent neural approaches in the context of hydrological modelling. 
Castellano–Mendez (2004) compared a forecast algorithm on the basis of the 
ARMA concept (Box-Jenkins 1976) with a multi-layer net based forecast 
strategy. For daily single step runoff predictions he found the non-linear multi-
layer net performing better than the linear ARMA approach. 

Dawson and Wilby (1998) used a three-layer back propagation network to 
determine runoff from the catchments of the rivers Ambers and Mole. The two 
catchments are of nearly equal size (about 140 km²). Observed flow data and 
mean historical rainfall data serve as inputs in their study. Their results show 
that nets perform similar to an existing model on less input information. 

Tokar and Johnson (1999) reported that an artificial neural net model yields 
higher training and testing accuracy when compared with regression and simple 
conceptual models. Their aim was to predict daily discharge for the Little 
Patuxent River, Maryland. Daily precipitation, temperature, and snowmelt 
equivalent served as inputs in their study. It was found that the selection of 
training data had a great impact on the accuracy of the prediction. The authors 
trained and tested their nets with wet, dry and average-year data respectively as 
well as combination of these in order to illustrate the impact of the training 
series on network performance. The net that was trained on wet and dry year 
data had the highest prediction accuracy. The length of the training data had a 
much smaller impact on network performance than types of training data.  

Zealand et al (1999) described the potential of neural nets for the short term 
forecasting of stream flow. Their work explored the capabilities of artificial 
neural networks and compared their performance to conventional approaches 
used to forecast stream flow. Nets were examined for sensitivity with respect to 
the type of input data as well as the number and the size of the hidden layers. 
The test of their net approach was realized for a part of the Winnipeg River in 
northwest Ontario, Canada. Forecasting was conducted on a catchment area of 
approximately 20,000 km², using quarter weekly time intervals. A very close fit 
was obtained during the training phase and the developed neural network model 
consistently outperformed a conventional model during the verification (testing) 
phase for all of the four forecast lead-times considered.  
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Tokar and Markus (2000) compared neural network models with traditional 
conceptual models for the purpose of predicting watershed runoff as a function 
of rainfall, snow water equivalent and temperature. They applied neural network 
technique to model watershed runoff in three basins with different climatic and 
physiographic characteristics. In the Fraser River watershed monthly stream 
flow was modelled with artificial neural nets and compared to a conceptual 
water balance model (Watbal). The net technique was used to model the daily 
rainfall-runoff process and was compared to the Sacramento soil moisture 
accounting model in the Raccoon River watershed. The daily rainfall-runoff 
process was modelled in the Little Patuxent River basin with a neural network. 
Here the training and testing results were compared to those the simple 
conceptual rainfall-runoff model (SCRR). Their initial results indicate that 
artificial neural nets are powerful tools for modelling the precipitation-runoff 
process for various time scales, topography, and climate patterns. 

In an attempt to overcome the limited extrapolation capacity of neural networks, 
Imrie et al (2000) use different activation functions for the output layer of their 
multi layer net. They show that a cubic polynomial function performs better than 
linear and sigmoid functions for their validation data set. However, they restrict 
their statement to one attribute of one event (maximal flow within the validation 
dataset). This seems questionable if the models purpose is focused on prediction 
instead of analysis of defined sections of hydrographs. Furthermore, the use of 
different output layer transfer functions does not impact on the quality of the 
training. A neural networks performance is only as good as its training database. 
If there are not enough sampling points for the net the various transformations in 
the output layer can help improving single applications, but do not cure the 
syndrome of nets trained on limited or unrepresentative data. 

Hu et al (2001) have tried to enhance their multi.-layer net based river stage 
modelling approach by training various nets for different parts of the observed 
flow. Therefore they divided the flow spectrum in low, medium and high flows. 
This approach takes advantage of the closer distance of sampling points each of 
the nets is trained on. This consequently leads to better training and 
generalisation performance of the three networks. The advantage of this 
approach - driven by observed values - has to be paid for by the specialisation of 
each of the three nets. They make use of very restricted data only, thus training 
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of a restricted part of the flow dynamics hinders the application potential for the 
forecast over the whole range of flows. It remains unclear if the modelling 
approach can be transferred to the much more complex task of rainfall runoff 
prediction on the highly dynamic hourly time step.  

Earlier, Zhang and Govindaraju (2000) had presented a similar approach for 
rainfall runoff prediction on the monthly time step. They had trained various so-
called expert networks, each being used to portray a certain range of stream 
flows. Then a “gating network” represents the output of the expert networks 
depending on the actual state of the process. This methodology works well for 
monthly predictions, where highly dynamic flow components do not play a 
decisive role. It uses very simplistic input information and it might therefore be 
difficult to predict flash floods on the basis of this approach.  

Hettiarachchi et al (2005) try to improve the forecast ability of their multi-layer 
net by incorporating an estimated maximum flood (EMF) in the training data set. 
This leads consequently to better validation results if the EMF hydrograph is 
contained in the validation data set. However, this evaluation strategy has little 
significance because it focuses on just one sampling point (the EMF), ignoring 
the range of all possible flows between the observed and the EMF. Their net 
evaluates five input vectors only: Two antecedent flows, the actual rainfall rate 
and two antecedent rainfall features. It is questionable weather a network 
provided with such scarce information is able to reproduce the flow dynamics 
over a wide range of possible realisations.  

Cigizoglu (2003) used ARMA models to generate synthetic series. These data 
are incorporated into the training database of neural networks to increase the 
predictive ability. The method was applied to the monthly mean river flow data 
of a station in Turkey with good results. The extension of input and output data 
sets in the training stage improves the accuracy of forecasting based on artificial 
neural nets. Introducing periodicity components in the input layer also increases 
the forecasting accuracy of neural networks. 

Laio et al (2003) compared two different non-linear models, non-linear 
prediction and artificial neural networks for multivariate forecasting of the water 
stages of river Tanaro, Italy. Very good results are reported for both methods. 
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However, non-linear prediction performs slightly better for short lead times (1-6 
h) while the situation is reverse for longer forecast horizons. 

Dawson and Wilby (2001) provide a good review regarding neural networks and 
their application with respect to rainfall runoff modelling. Sajikumar and 
Thandaveswara (1999) and also Shamseldin (1997) tried to predict flood waves 
using neural nets which are trained exclusively by observed rainfall runoff data. 
Notwithstanding the fact that their results were more than satisfactory as far as 
the phenomena to be predicted remained in the range of the observations, their 
approach cannot be used for general flood forecasting. This emanates from the 
poor extrapolations capacities of nets which are tellingly characterized by the 
statement of Minns and Hall (1996): “artificial neural networks are a prisoner 
of their training data”. As observations practically never cover the full range of 
possible flood peaks, such a completely empirical approach is doomed to failure 
as regards reliable flood forecasting.  

Comparative research has been carried out on various net types in view of their 
respective abilities to predict discharge time series (Hsu et al 2002). Bruen and 
Yang (2005) used functional networks which were recently introduced as an 
alternative for real time flood forecasting. They applied two types of functional 
network models, separable and associative networks to forecast discharge for 
different lead-times. They compared their results with a conventional artificial 
neural network model, an ARMA model and a simple baseline model in three 
catchments. Results show that functional networks are flexible and comparable 
in performance to artificial neural networks. Their results were obtained with 
only the most simple structure of functional networks and they recommend that 
the use of complex forms of functional networks might further improve the 
forecast. 

Foka (1999) uses polynomial neural networks (PoNN) for discharge modelling. 
His attempt focuses on relatively small numbers of input vectors (up to a few 
time steps back into the past only) as well as high-degree polynomials (up to 
7.th degree). This makes the adaptation of the polynomial nets easier, but 
weakens the ability to generalize, which in turn spoils the predictive power of 
the approach.  
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Further attempts aim at improving the potential forecast performance of neural 
networks by combining different net types with methods of time series analysis 
or fuzzy logic approaches (Rajurkar and Nayak et al, 2004). Kang and Kang 
(2006) compare the performance of several different multi-layer feed forward 
neural networks with the Grey-model. However, the nets in their study are 
exclusively trained with historical data, rendering the extrapolation beyond 
observed events impossible. Further, the forecast horizon is restricted to 6 hours. 
All together, this makes their study a valuable contribution towards the 
understanding of watershed specific neural network architecture, but their work 
does not contain new developments towards the operational use of neural 
networks in flood forecasting.  

Unfortunately current strategies are all built upon purely empirical approaches 
and, thus, feature the same shortcomings – i.e. they cannot reliably predict a rare 
extreme flood event if it is not part of the training data. Schmitz et al (2005) as 
well as Cullmann et al (2006) aim to offer a way out of this dilemma. They 
comprehensively enlarge the training database by exploiting catchment specific 
topographic and soil hydraulic properties with the help of detailed hydrological 
catchment modelling. Following these lines they achieve first promising results 
regarding flood forecasting in a small catchment. However, their multi-layer net 
approach did not turn out to work fully stable under all conditions – an effect 
which was observed to aggravate with growing catchment area.  

Summary: 

Analysing the research effort so far leads to the awareness that all of the 
aforementioned classical approaches are confronted with two general obstacles 
limiting model performance in the context of flood forecasting. The first hurdle 
is the “singular parameter set problem”. It reflects the failure to adequately 
portray the different patterns of flood formation with one singular model 
parameter set. This shortcoming prevents actual systems from accurately 
describing the whole range of natural processes governing the flood formation 
(infiltration excess flow, soil water movement etc.). The second reason that 
impedes more reliable forecasts is referred to as uncertainty. Predictive 
uncertainty has been the focus of a vast number of studies during the last decade 
(Freer, 1996; Beven, 1992; Beven and Freer, 2001; Christiaens, 2002; 
Prudhomme, 2003; Butts et al 2004; Beven 2005). There are two main sources 
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of uncertainty in real-time flood forecasting: The input data (measured or 
predicted), and the hydrological models (Krzysztofowicz 1999). The 
hydrological model uncertainty originates from the “degree of ability” of the 
different models transforming the input data into the flood forecast. The 
different types of input data uncertainty are:  

1. The measurement uncertainty, which is mainly related to spatial 
distribution and dynamics of rainfall fields;  

2. The meteorological forecasting uncertainty, arising from the possibility 
of extending the forecasting horizon beyond the response time of the 
physical system by means of quantitative precipitation forecast. 

Recapitulating this review leads to evident consequences:  

Simple bucket type models are fast, but not suitable for extrapolating the 
forecast into the range of extreme event patterns due to the lack of fidelity to the 
governing hydrological processes. 

Physically based distributed models well portray the dynamics of flood 
formation, even for extreme events. However, one single set of the many 
parameters of these complex models is not enough to describe all naturally 
occurring flood patterns. Furthermore, the process information inherent to these 
models is inversely proportional to their application speed, i.e. better models are 
slower, best models are the slowest. 

Models based on artificial neural networks are fast and reliable. Nevertheless, 
they are not suited for extrapolating beyond the range of their training data. This 
makes forecasting all potential extreme event patterns impossible if the training 
database exclusively consists of observed data. 

The way out of this cul-de-sac is a combination of the advantages of neural 
networks (speed, easy application) with the advantages of physically based, 
detailed hydrological models (predictive ability). 
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1.3 Overcoming the obstacles of state of the art flash flood 
forecasting 

In response to the deficiencies emerging from the analysis of existing flood 
forecasting models and as an answer to the shortcomings illustrated above, the 
main objective of this study is the development of a new approach for online 
flood forecasting especially suited for fast reacting catchments. The proposed 
PAI-OFF (Process modelling and artificial intelligence in the context of flood 
forecasting) methodology builds upon catchment specific hydrological and 
meteorological data, physically based catchment modelling, and artificial 
intelligence. Thus, PAI-OFF offers an alternative to the limited extrapolation 
capacity of a flood forecasting system based upon either simplistic hydrologic 
approaches or on neural networks trained solely on the basis of historical data. 
These types of models make the prediction of very rare - or even unobserved - 
flood events unreliable (e.g. Minns and Hall, 1996). The main contribution of 
this work consists of: 

Setting up a detailed distributed hydrological catchment model that guarantees 
the portrayal of the rainfall-runoff process by a parameterisation strategy, which 
introduces additional knowledge about event specific characteristics into the 
calibration procedure. This allows for taking into account the different dominant 
processes governing the whole range of naturally occurring patterns of flood 
formation. This is a clear advantage in comparison to the classical way of 
parameterising catchment models, where the focus is set on determining one 
best (or equifinal) set of parameters. This latter strategy always implies the 
averaging of model process representation in that one set of calibrated 
parameters describes the best average fit of the different concerned calibration 
events (implying the loss of process sharpness for the calibrated parameters).  

Developing an artificial neural network which is capable of adequately 
representing all important rainfall-runoff processes in the flash flood context. 

Synthesising the representation of the physical processes inherent to the 
catchment model with the artificial neural network on the basis of a 
comprehensive database which includes all the catchment specific response 
patterns to rainstorm events depending on watershed internal preconditions. The 
result is a custom-made artificial neural network forecasting system. This model 
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is extremely fast, incorporates various parameterisations and thus opens the way 
for online uncertainty estimation on the basis of ensemble forecasts. 

The presented work takes full advantage of artificial intelligence in the form of 
neural networks without loosing the physical meaning of the processes 
dominating flash floods. Therefore, the following sections 2 and 3 encompass 
the basics of flash flood modelling, considering process models and neural 
network based strategies respectively. Section 4 is a detailed description of the 
PAI-OFF methodology. 
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2 Foundations of hydrological modelling in the 
context of online flash flood forecasting 

Process-oriented models are assumed to portray system dynamics even beyond 
the range of calibration data. Due to the fact that the required input data are not 
always completely available and model structures are only a crude description of 
the natural processes, model parameters need to be calibrated. The 
parameterisation of hydrological models has been the subject of enormous 
scientific effort throughout the last decades (Gupta et al 1994; Gupta and Dawdy 
1995; Post and Jakeman 1996) The results of these studies contribute a valuable 
share to our general understanding of parameterisation of both conceptual and 
process models and substantiate the awareness that model parameterisation is 
the key to setting up a reliable hydrological model.  

Considering this, a selected hydrological model is studied in order to improve 
the principles of successful parameterisation in the context of flash flood 
forecasting in this chapter. It is essential to carefully choose the model in order 
to incorporate as much process knowledge as possible. This statement is based 
on the awareness that more process information makes operating the model - 
even under conditions that have not yet been observed - more reliable. Therefore 
the vast number of existing catchment models is already restricted to physically 
based and distributed approaches. Lumped models and purely conceptual 
approaches do not fulfil the requirements of fidelity to the natural processes and 
therefore do not yield enough extrapolation capacity to portray extreme events. 
In the following, three distributed rainfall-runoff models are briefly described. 
One of them is selected and evaluated with a basic sensitivity analysis in a first 
step. On the basis of the insights from this study, a more advanced approach of 
parameter identification is employed to gain further information about 
meaningful model parameter ranges and eventual relations of optimal parameter 
sets to internal state variables such as the catchment pre-event wetness index. In 
a next step, an automatic calibration approach is used to optimise model 
parameters for 36 separate events. These parameter sets are then statistically 
analysed for a potential link to a priori knowledge concerning the event pre-
conditions and characteristics. The conclusions from these exercises lead to a 
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new parameterisation strategy. It allows for taking into account different classes 
of flood events. Thus the set-up of hydrological models can be improved by 
skilfully including additional, event class specific information into the 
calibration procedure. 

Model description and selection: 

The TOPMODEL approach (Beven and Kirkby, 1979; Beven et al, 1995) 
allows for distributed modelling of hydrological processes, but needs heavy 
calibration of parameters which mostly lack physical interpretability. The 
integration of topographic information within the model structure allows for the 
simulation of the spatial distribution of soil water content and groundwater 
levels. The variable source area concept leads to a dynamic distinction between 
fast saturation excess overland flow (Cappus, 1960; Dunne and Black, 1970) and 
slow subsurface flow. The model has been used in numerous applications during 
the last years (Beven, 1997). However, as emphasized by Beven (1997), several 
simplifications and assumptions restrict the physical basis of TOPMODEL and 
require that the model is used with care, especially in the context of different 
spatial scales or time steps. These shortcomings are documented and described 
in detail in Liu and Todini (2001). The TOPMODEL approach has therefore 
been excluded for further use within this study. 

The TOPKAPI (TOPographic Kinematic APproximation and Integration) 
model (Todini, 1996; Ciarapica and Todini, 1998; Ciarapica and Todini, 2002; 
Liu and Todini, 2001) is a conceptual rainfall-runoff model integrating 
physically meaningful parameters. It was developed as a result of the critical 
analysis of TOPMODEL and the Stanford Watershed Model (Crawford and 
Linsley, 1966) with the aim of: 

• Exploiting the potential of distributed models based upon physically 
meaningful parameters (Abbott et al 1986; Beven, 1989); 

• Incorporating the possibility of obtaining a lumped version of the same 
model, by integration of the processes over increasing size domains, 
avoiding recalibration during the application of the model at increasing 
spatial scale - from hill slope to catchment - (Todini, 1995).  
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The model is based upon the assumption that the horizontal soil internal flow, 
overland flow and channel flow can be approximated by means of a kinetic 
wave model. Two versions of the TOPKAPI model are available, namely the 
distributed version and the lumped version. In the distributed TOPKAPI model, 
the point assumption is integrated up to a finite pixel dimension, thus 
transforming the original differential equation into a non-linear reservoir 
equation based upon physically meaningful parameters (Liu and Todini, 2001). 
The TOPKAPI model has been tested extensively in the preliminary phase of 
this dissertation. Unfortunately the documentation of the model is very poor, the 
property of calibration parameters is not described and the source code of the 
model is not available. The model input and output interfaces are unclear 
without further documentation. Even a close contact to the developers of this 
model did not clarify all doubts; this finally led to the exclusion of the model 
from the catchment hydrologic studies which are part of this work. 

WaSiM-ETH/6.4 (in the further referred to as WaSiM) (Schulla 1997) is a 
distributed, grid-based model. It has been successfully used in various studies on 
mountain hydrology in the Swiss Alps (Gurtz 1999; Gurtz 2003). The main 
components of the model are:  

• Interpolation of meteorological input data (Schulla and Jasper1999) 

• Topography based radiation correction 

• Interception storage and evaporation 

• Evapotranspiration (Monteith 1965) 

• Snow accumulation and snowmelt (Braun 1985, Anderson 1973) 

• Glacier melt (Hock 1999, Badoux 1999) 

• Infiltration and surface runoff formation (Green and Ampt 1911) 

• Soil water storage, percolation, interflow formation 

• Soil moisture loss by vegetation activity 

• Groundwater recharge  

• Runoff formation, concentration and discharge routing 

The soil module of WaSiM determines the infiltration of water and the surface 
runoff formation according to Green and Ampt (1911) using the two-step model 
approach (Peschke 1987). The vertical flow of water in the unsaturated zone 
(percolation) is calculated by means of the discrete 1D-Richards equation. 
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Interflow is generated in different soil layers depending on the suction, the 
drainable water content, the hydraulic conductivity and gradient as well as the 
flow density.  

The WaSiM model has been chosen for the model parameter analysis in this 
study because its physically based unsaturated zone module maintains the 
characteristic physics of dynamic rainfall-runoff processes even for unobserved 
events. This is especially important for correctly portraying the pre-event 
catchment conditions. WaSiM is therefore – amongst the available models - one 
of the best suited for extrapolation into the range of extreme flood events.  

2.1 Basic sensitivity analysis for model parameterisation 

A sensitivity analysis is carried out in order to deepen the understanding of 
model sensitivity to input parameter changes described in Schulla (1997). A 
univariate analysis according to Benaman (2002) evaluates the sensitivity with 
respect to a set of reference parameters. The focus is set on identifying and 
interpreting the most sensitive parameters affecting runoff formation. Therefore 
the study concentrates on the soil water module of WaSiM. 

2.1.1 Study area and data 

The study is carried out in the watershed of the Schwarze Pockau River at 
Zöblitz gauging station. The catchment covers the northern slopes of the Ore 
Mountains in Eastern Germany from about 1000 MSL down to 450 MSL. 
Roughly 40 % of the watershed is covered by forest whilst the agriculturally 
used area accounts for about 30 %, the rest being fallow. The basin hydrology is 
near natural state; there are no major human impacts to the flow dynamics. The 
Bük 200 is the basis for soil classification and the Van Genuchten parameters 
are derived according to the AG Boden (2005). The land use data is taken from 
Corine (2000). The meteorological data used in the study consists of 1 km grids 
of precipitation, temperature, wind speed, air humidity and global radiation. The 
data is interpolated from meteorological stations using external drift kriging for 
precipitation and temperature and ordinary kriging for the other input data. 
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The analysis is carried out for a summer flood that occurred in 1983. This event 
has a return period of about 20 years. In the analysis 201 hourly time steps are 
evaluated starting from the 3rd of August 1983, 2:00 am.  

2.1.2 Parameters, methodology and results of the analysis 

In a first step the model is checked for a realistic representation of the various 
model generated flow components for the reference parameters, i.e. it is assured 
that interflow (generated from the soil module) and direct runoff (as a result of 
the Green and Ampt model) both exhibit realistic values for the reference model. 
In figure 1 these components reflect the characteristics of the considered 1983 
flood event. After a very dry summer period a heavy rainfall hits the watershed. 
The reference model well portrays the first reaction of the watershed in the form 
of direct runoff. This can be interpreted with the first hydrophobic reaction of 
the very dry soil surface. After some time, the soil surface is wet and 
precipitation starts to infiltrate. At this stage the runoff is dominated by 
interflow. The base flow is constantly low. This is also typical for periods at the 
end of a long and dry phase in the test watershed. All in all, the model well 
represents the dynamics of the event and all the model inherent flow 
components are correctly representing the test hydrograph. WaSiM is now used 
for stepwise univariate sensitivity analysis with respect to the reference model.  
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figure 1: Flow components of the reference model 
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The model parameters considered for the analysis are listed in table 1. This table 
also contains the reference model parameter set and the range of the parameter 
variation as well as the step for the uniform distribution of the test parameters.  

table 1: Parameters used in the sensitivity analysis 

Parameter Reference Range Step Model impact 

dr [-] 4.2 1-20 0.2 Scaling of interflow 

Ki [h] 4 2-50 0.5 Storage of interflow 

Kd[h] 15 1-33 0.5 Storage of direct runoff 

krec[-] 0.1 0.05-0.99 0.01 Soil hydraulic conductivity gradient 

thick [m] 0.6 0.15-1.5 0.05 Numerical soil parameter 

 

WaSiM transforms rainfall into runoff according to the scheme shown in figure 
2. Here, three exemplary soil water compartments receive infiltration from the 
Green and Ampt approach. This module is also used to determine the direct 
runoff Qd in the model. Qd is then routed via a flow-time grid and finally 
projected cell-wise to the watershed outlet by means of a simple bucket type 
function (equation 1). The recession coefficient of this function is Kd.  

Kdt
i eQdQd /

1
Δ−

− ⋅=  (equation 1) 

Where Qd is the direct runoff and Qd(i-1) is the runoff in the preceding time 
step ∆t. The soil water movement through the layers is modelled by means of the 
discrete form of the Richards-equation:   

outin qq
z
q

−=
Δ
Δ

=
Δ
ΔΘ

t
 (equation 2) 

 
Here ∆Θ denotes the change in soil water content, ∆t defines the time step, ∆q is 
the change in specific flux. The fluxes qin  and qout  characterize the influx and  
efflux from the specific soil layer respectively. Finally, ∆z defines the thickness 
of the soil layer. This last parameter is equal to the parameter thick in the 
analysis. The Van-Genuchten parameters used for the solution of the Richards 
equation are used as fixed values in this study. This allows for focusing the 
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analysis of model sensitivity to the more conceptual parameters listed in Table 
1. Each soil layer produces interflow (Qifl) according to (equation 3), which is 
cell-wise scaled with dr.  

βtan)( ⋅⋅Δ⋅Θ= drzkQ msifl  (equation 3) 

where: ks = hydraulic conductivity 
Θm = Water content of the specific layer 
dr = scalar  
β = local slope 
 

The interflow is again projected to the watershed outlet by means of the flow-
time grid and a second bucket type function. Herein, Ki represents the recession 
coefficient in analogy to (equation 1, Kd). The parameter krec ranges between 0 
and 1. It describes the gradient of the soil hydraulic conductivity within each of 
the soil layers to account for integral conductivities of partly saturated layers 
(three in figure 2), i.e. the saturated soil hydraulic conductivity is multiplied 
with krec to reduce the saturated conductivity to an “effective” soil layer 
conductivity. The soil layers are topping the compartment from which base flow 
is generated by means of a simple, empirical approach. This approach is not 
affecting the modeling in the context of flood forecasting, therefore it is not 
further mentioned in the context of this study. More details about WaSiM are 
documented in Schulla (1997). 
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figure 2: Scheme of the WaSiM soil module with location of impact of model 
parameters (bold) 

The range of the test parameter variation (table 1) is set according to values 
published by Schulla (1997). In the cases of missing reference (Ki, Kd) realistic 
maximum values for the test catchment were chosen on the basis of analysing 
the recession phase of direct runoff and interflow components of observed 
events. The parameter thick is a numerical parameter and has to be chosen 
according to model numerical stability criteria (equation 2). It is used in this 
context for comparative purposes only. 

Benaman (2002) explains that if the analysis outputs vary significantly for a 
specific parameter, then the output is sensitive to the specification of the input 
distribution of the test parameter, and hence this parameter should be defined 
with care. As a relatively simple deterministic measure, a sensitivity coefficient 
can be used to describe the magnitude of change in an output variable V per unit 
change in the magnitude of an input parameter value P from its base value P0. 
The model sensitivity to a variation of the considered parameter is proportional 
to the value of the index, that means the closer the index to 0, the smaller is the 
sensitivity. Let Si be the sensitivity index for an output variable V with respect to 
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a change ΔP in the value of the input variable P from its base value P0. Noting 
that the value of the output V(P) is a function of P, the sensitivity index is 
defined as: 

P2
P)-V(P-P)P( 00

Δ
ΔΔ+

=
VSi   (equation 4) 

The sensitivity index is calculated for each of the test parameters considering the 
peak flow values. This reflects the importance of correctly portraying the peak 
flow rates in flash flood forecasting applications. In addition to Benaman 
(2002), a second sensitivity measure describes the mean absolute sensitivity 
(MV). This index is calculated once for the whole event [MV(201)] and once for 
the 101 first time steps [MV(101)]. This latter index describes the model only 
for the rising flood wave and the peak flow area. The two mean sensitivity 
measures are expressed as:  
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The results of the sensitivity analysis are shown in table 2 and figures 3 through 
7. From table 2 it becomes clear that the calculation of various sensitivity 
measures may lead to contradictory results. Specifically, thick is the most 
sensitive parameter for all sensitivity measures, whilst krec is the least sensitive 
parameter if the mean absolute sensitivity measure over the whole period is 
considered. This contrasts the fact that krec is more sensitive than Ki and Kd for 
the peak value sensitivity index. Generally, the mean absolute sensitivity 
measure for the first 101 time steps is smaller than the mean absolute measure 
for the whole period. The exception to this rule is krec. This contradiction can be 
explained with differing regions of impact of the two sensitivity measures. The 
mean sensitivity index for the first 101 time steps gives more weight to the 
rising limb of the event. The recession phase is only accounted for by the mean 
sensitivity index covering the whole period As krec has impact on exactly this 
recession phase alone, it can only be evaluated properly with the index covering 
the whole period.  
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table 2: Sensitivity criteria for the test parameters  

Parameter Peak sensitivity 
index 

Mean absolute 
sensitivity 

Mean absolute 
sensitivity 

 Si MV(201) MV(101) 

dr [-] 0.023 0.01 0.02 

Ki [h] -0.006 0.0036 0.0049 

Kd[h] 0.0009 0.0042 0.083 

krec[-] 0.003 0.0016 0.001 

thick [m] -0.070 0.355 0.699 

 

More valuable information is inherent to the graphs themselves (figure 3,4,5,6,7) 
and should be evaluated to complete the information obtained by means of the 
sensitivity measures.  
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figure 3: Model sensitivity with respect to the parameter dr 

From figure 3 we learn, that dr is a most important parameter for model 
calibration. It influences the hydrograph strongly over the whole test period. 
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figure 4: Model sensitivity with respect to the parameter Ki 

Ki and Kd are meaningful where the corresponding flow components dominate 
the hydrograph, e.g. the first little peak is very sensitive to Kd (figure 5). This is 
also expressed by the high value of the mean sensitivity index for the first 101 
time steps (table 2). The main peak is more sensitive to Ki (figure 4), although 
this does not become clear at first sight from the sensitivity measures alone. This 
reveals another weak point of the simple sensitivity measures. They are 
subjected to changes of process dynamics throughout the considered test phase. 
This becomes clear if figure 1 and figure 5 are jointly considered. For the test 
event, direct runoff is only dominating the first peak of the hydrograph. If the 
sensitivity indices are calculated for periods without direct runoff, the numerator 
of the equations becomes 0. This is obvious humbug and might mislead the 
interpretation of a simple sensitivity analysis.   
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figure 5: Model sensitivity with respect to the parameter Kd 
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figure 6: Model sensitivity with respect to the parameter krec 

It therefore becomes especially tricky to evaluate simple sensitivity measures if 
various events or long time series are used in the analysis. The krec-graph shows 
the least sensitivity for the parameter variation. This holds for the whole range 
of the test period. The graph is shown in figure 6 and reveals that the most 
sensitive interval of this parameter is the second half of the test period where the 
recession phase is portrayed. As the special emphasis in flood forecasting is on 
the rising limb of the event and the main peak, the parameter is not of crucial 
importance for modelling in the context of flood warning. The graph shown in 
figure 7 reveals that the parameter thick is extremely sensitive, but as it 
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represents the segmentation of the soil for numerical purposes (equation 2) in 
the course of the solution of the Richards-equation it cannot be calibrated freely 
without putting at risk the model stability. Here an inexperienced user might get 
caught in a trap if only the sensitivity index is evaluated without taking into 
account the real meaning of the parameter. 

 

figure 7: Model sensitivity with respect to the parameter thick 

2.1.3 Summarized results of the basic sensitivity analysis 

The simple sensitivity analysis leads to general results for the test parameters: 
The parameter krec is not of first choice if the characteristics of rising flood 
events is the main task of a modelling study. The model is very sensitive to dr, 
Ki and Kd where the dominant processes are portrayed by interflow and direct 
runoff respectively.  

A fundamental conclusion drawn from the study is: 

 The simple sensitivity analysis only allows for roughly understanding the 
model sensitivity. Calculating different measures may lead to babylonic 
results, especially if the dominant processes change throughout the test 
period. The basic sensitivity analysis must always be judged with care 
and should be completed by a detailed check of the respective sensitivity 
graphs. 
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Taking into account this awareness, the results of the simple sensitivity analysis 
for just one single event seem inadequate to serve as the basis of setting up a 
flood forecast system which is expected to reliably portray all kinds of flood 
formation patterns. 

As a consequence, DYNIA (dynamic identifiability analysis) is applied to 
WaSiM results in the following section. This approach allows for further 
investigating on the model parameter behaviour for different hydrologic 
conditions.

2.2 Model parameter identifiability in the light of dominant 
hydrological processes 

For continuous simulations - as required in the forecast context - the optimum 
parameter set may change in time concurrently to variations in boundary 
conditions and process characteristics (Wriedt and Rode 2006). The event-based 
or subset-specific variance of best model parameter sets may result from 
uncertainty of input data, observation data, and equifinality of the system 
(Beven and Binley 1992). However, these parameter changes may also result 
from systematic changes of system behaviour, revealing model structural 
weakness caused by inadequate process representation or the failure of a single 
parameter set to fully portray rainfall-runoff dynamics for all types of flood 
events within a certain model structure. In this case, systematic relations of 
parameter optima and state variables exist. To approach this problem, it is 
necessary to shed light on the transient characteristics of best parameter sets and 
to link systematic changes to corresponding criteria (state variables). 
Determining the appropriate model parameters in relation to these transient 
dominant process controls has apparently not been sufficiently addressed by the 
research community and seems to be a major hurdle in the way towards a more 
successful online flash flood forecasting approach.  

The DYNIA (Dynamic Identifiability Analysis) method presented by Wagener 
et al (2003) is a proposal to ease the identification of suitable parameter sets in 
the context of transient hydrological processes. It allows to trace temporal 
evolution of optimum model parameters and to relate parameter changes to state 
variables and process characteristics. 
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Thanks to these features, DYNIA is the perfect means for further investigating 
the model parameter sensitivity in the light of the hydrological process. 

2.2.1 Study area and DYNIA methodology  

The Rietholzbach catchment is analysed in this section, the watershed has been 
chosen in order to reduce the perturbing impact of data heterogeneity. It is a 
well-observed test catchment of the ETH Zürich, which drains a 3.18 km² hilly 
pre-alpine watershed. The average precipitation is 1600 mm per year, generating 
a mean annual runoff of 1046 mm. It is located in North-Eastern Switzerland, in 
the centre of the Thur basin with elevations ranging from 681 MSL to 938 MSL. 
The land use mainly consists of pasture (73%), the rest is covered by forest 
(23%) including some few settlement areas. The various soil types reach from 
gley soils to more permeable brown soils and regosols with relatively large soil 
water storage capacities. The catchment is equipped with a meteorological 
station, continuous time domain reflectometry (TDR) soil moisture 
measurements, a lysimeter, and a well-defined runoff profile at Rietholzbach 
gauging station. Data sets for the meteorological input parameters (temperature, 
humidity, wind, global radiation and precipitation) as well as flow data at the 
catchment outlet are available for the period 1981 through 1999. A calibrated 
WASIM version published in Schulla 1997; Schulla and Jasper 2001; Gurtz et al 
2003 serves as a reference for simultaneously evaluating up to three parameters 
affecting the runoff formation of WaSiM.  

Wagener et al (2003) developed the DYNIA algorithm (figure 8) as an extension 
of the regionalized sensitivity analysis (Spear and Hornberger 1980; Hornberger 
and Spear 1981). The analysis is based on a Monte-Carlo-Simulation (Buslenko 
and Schreider 1964) of parameters of the rainfall-runoff model. 
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figure 8: Simplified flow chart of DYNIA steps for a 3 parameter analysis. 

The considered parameters are either drawn by pure chance from within a 
specified parameter range, or by means of the Latin Hybercube method (Iman 
and Conover 1982). This latter approach is a fine way to economize on 
simulation time by assuring that the whole parameter range is sampled, whilst 
parameter realisations which are too similar are avoided (they do not yield 
additional information). Only the best 10% of simulations, according to an 
appropriate support measure (here: sum of absolute errors, SAE), are included in 
the analysis (figure 8). This pre-selection eases the interpretation of the 
considerable number of Monte-Carlo-Simulation results without loosing the 
important information on parameter identifiability. The basic idea is to calculate 
the probability distribution of the model parameters of the 10 % best simulations 
for each model time step within a specified time frame (moving window). The 
results are visualized in a 2D plot of parameter values vs. time, where the 
parameter probability density is shaded in a grey scale (the darker, the better is 
the identifiability).  

In this study, additionally to the conventional DYNIA method, a modified 
approach is used to ease the visual assessment of state dependent changes of 
optimum model parameters ranges. In this modification proposed by Wriedt and 
Rode (2006), the data are re-ordered against an observed state variable, instead 
of using the original time series. This allows for running the DYNIA algorithm 
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for parameter combinations ordered by discharge or any other characteristic 
feature of interest. 

2.2.2 Data, parameters and results 

The DYNIA analysis requires a continuous simulation. The number of Monte-
Carlo-Simulations and the high temporal resolution (1h) result in a considerable 
computation time of WaSiM, restricting the total simulation period to one 
calendar year. The hydrological catchment behaviour is evaluated from 
01.04.1994 – 31.10.1994. This restriction to the summer period allows for 
analysing the runoff formation processes without the interference of snow 
storage and snow melt processes. WaSiM portrays these processes separately in 
the snow-module. The Monte-Carlo-Simulation is carried out using the set of the 
three most sensitive model parameters that have been identified in the basic 
sensitivity analysis (section 2.1). The considered parameters are controlling the 
direct runoff (Kd) and the interflow formation (Ki, dr). 1000 parameter sets are 
sampled from the parameter space (table 3) using a Latin Hypercube approach. 
The list of parameters and the associated parameter range is given in table 3. A 
window size of 101 hours is applied in the DYNIA analysis. Different objective 
functions (Sum of absolute errors – SAE, Nash-Sutcliffe efficiency – NSE and 
Index of Agreement – IoA) serve for generally characterizing the model 
accuracy.  

table 3: Parameters included in the Monte-Carlo-Simulation 

Parameter Description Calibrated Value Range 

Kd [h] Recession constant for direct runoff 4 1–20  

Ki [h] Recession constant for interflow 8 1–20  

dr [-] “Drainage density”, controls interflow 6 1–20  

 

The parameter sets (table 4) used in the Monte-Carlo-Simulation show varying 
ability to portray the observed hydrograph (figure 9). The range between best 
and worst simulation is 0.18-0.80 for the Nash-Sutcliffe-efficiency If only the 
best 10% simulations are considered, the Nash-Sutcliffe ranges between 0.75-
0.80 for worst and best simulations respectively. The dotty plots (figure 10) 
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suggest that the reference parameters (Ki = 4, Kd = 8, dr = 6) quite well describe 
the catchment hydrological response to rainfall. Most interesting is that the sum 
of the absolute error (figure 10) is related to the parameter dr. The lower margin 
of the dotty plot for dr shows a distinct behaviour over the parameter space. It 
therefore seems reasonable to not only confirm the results of the simple 
sensitivity analysis in that dr is a sensitive parameter, but it even seems possible 
to explain the parameter in the context of the hydrological process. For the 
parameters Ki and Kd, the shape of the scatter clouds (figure 10) do not suggest 
a clear functional relation between the sum of absolute errors and the parameter 
values, the overall identifiability is low. This also falls in with the insights of the 
simple sensitivity analysis. During the course of the Monte-Carlo-Simulations, 
there are presumably times without direct runoff. So here the parameter Kd fails 
to identifiably describe a portion of the discharge. 

table 4: Error criteria for the best and worst parameter sets 

Error criteria Best set Worst set 

Sum of absolute errors [m³/s] 175 445 

Index of Agreement [-] 0.94 0.79 

Nash-Sutcliffe-efficiency [-] 0.80 0.18 
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figure 9: Precipitation and runoff time series, cumulated runoff for observed data, 
best and worst simulation of Monte-Carlo-Simulation 1 and DYNIA optimum 
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figure 10: Dotty plots of the parameter space Kd, Ki and dr for the sum of 
absolute errors (best parameters marked with grey dots) 
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The classical DYNIA method for the test period, plotted for the parameter dr, 
leads to the result shown in figure 11. Areas of high parameter identifiability 
(characterized by darker grey shades) alternate with periods where the parameter 
is almost not identifiable. It is difficult to capture the relation between the 
parameter and the discharge from this classical depiction of the DYNIA result. 
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figure 11: The evolution of identifiability of dr along the test hydrograph 

In figure 12 the DYNIA analysis for the parameter dr is reordered according to 
the discharge volume, i.e. the abscissa of the graph is sorted by discharge. This 
figure easily reveals a strong relation of dr and the observed discharge. The 
lowest discharges are considered first and the graph evolutes towards the highest 
discharge values for higher time steps to the right end side. This is visualized by 
means of the blue discharge function in figure 12. The low flow periods to the 
left of the graph in figure 12 generally coincide with dr parameter values below 
5 (the dark grey shades concentrate near the upper end of the ordinate). This 
period is interrupted by various sections (time steps 500 to 2000 hours), where 
dr is best identifiable at values between 10 and 20. These fluctuations in 
parameter identifiability are attributed to reordering the results of the Monte-
Carlo-Simulations. The parameter dr is highly identifiable already at the 
beginning of flood events, where the flow is still negligible, thus provoking the 
high parameter values even for low discharges. For runoff values of 1mm (time 
steps > 3500), the lower confidence limit increases from 0 to 3, while the upper 
dr limit is found at 15 (time steps 4000-4800 hours). For runoff data > 2mm, dr 
confidence limits cover the entire parameter range; the parameter is not clearly 
identifiable. In general terms: The optimum parameter range shifts towards 
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higher values with increasing discharge, but this coincides with increasing 
uncertainty for the highest discharges. 
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figure 12: dr parameter plot for time series reordered by observed discharge. 

2.2.3 Summary of the DYNIA analysis: 

The DYNIA analysis does not reveal any clear relations for Ki and Kd. As Kd 
controls fast surface runoff, increased identifiability is limited to single runoff 
peaks. When low flow situations prevail, Kd does not affect runoff, high 
uncertainty dominates the parameter values. Ki is characterized by a similar 
behaviour (figure 10). Neither for Ki nor Kd, system state variables correlate 
significantly, when applying reordered data series. 

The observed relation of dr and discharge can be interpreted from a process-
oriented view. As stated before, observed discharge can be taken as an 
integrative measure of the catchment wetness state. Soil moisture conditions 
considerably influence connectivity of subsurface flow pathways and the 
conductivity of the soil matrix: The hydraulic conductivity of matrix flow is 
directly related to soil water content and increases considerably with soil 
moisture above field capacity; preferential flow paths and highly conductive 
areas are linked with increasing soil moisture. This results in the fact that more 
lateral subsurface flow occurs in wet soils.  

The general conclusion from this investigation of model parameter behaviour is: 
As each and every model is bound to the underlying assumptions and concepts, 
model parameter fidelity to the natural processes varies greatly over the course 
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of the hydrograph. This insight is based on the examination of figure 12. The dr 
parameter value is clearly depending on the observed discharge. Online flood 
forecasting suffers from a serious deficiency if just one set of model parameters 
describes the whole range of possible flood events. Variable parameter sets 
should therefore form the basis of improved flood forecasting. Despite the 
awareness that it is difficult to link best model parameters to a priori criteria, a 
further attempt evaluates the optimised parameters resulting from an automatic 
calibration approach statistically. Along these lines, more evidence for model 
parameterisation in the flood forecasting context is sought. 

2.3 Relating model parameters to a priori knowledge of event 
pre conditions and characteristics  

This section concentrates on linking optimal model parameters to a priori 
knowledge about the basin pre-event condition and/or the event characteristics 
for different patterns of flood formation. Therefore, event-based calibration 
leads to a number of optimal parameter sets, which are statistically analysed in 
the context of criteria describing the aforementioned characteristics. If best 
model parameters and criteria derived from a priori knowledge exhibit strong 
statistical links, this knowledge can be used for enhancing model 
parameterisation. In this study the Rietholzbach catchment (described in the 
preceding section) serves as test catchment. The reasons for this are: A reliable 
meteorological database is available. The considerable number of flood events 
and the good quality of the observed flow data ease the evaluation of parameter 
sensitivity.  

2.3.1 Data and automatic calibration strategy 

For the calibration study, 36 rainstorm events are chosen from the available 
database covering the years 1981 through 1999 (table 25 in appendix 1). Eight 
selected criteria describe the watershed pre-event condition and the 
characteristics of each rainstorm: The parameter Duration refers to the absolute 
length of the rainfall event. Peak denotes the peak rainfall rate, whilst Volume is 
the absolute volume of the rainstorm. Form is a combined parameter where the 
peak rainfall rate is divided by the absolute volume. TI is equivalent to the time 
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to rainfall peak divided by the peak intensity, this parameters describes the 
dynamics during the onset of the rainfall event. TL is a parameter describing the 
watershed retention and the rainfall characteristics by the time difference in 
rainfall and runoff peaks. This parameter cannot be calculated from a priori 
knowledge alone, but it serves for visually ensuring the consistency of the other 
parameter/criteria combinations. It is mentioned here in order to give a complete 
view of the considered criteria. PF is an exponential function describing the 14-
day pre-event rainfall. MPI denotes the mean precipitation intensity for the 
corresponding event. Model calibration in this section is based on PEST 
(Parameter ESTimation). This package allows for automatic non-linear 
parameter estimation (Skahill and Doherty 2006).  

Two approaches for parameter estimation are implemented in PEST; both 
methods try to minimize an objective function that is represented by least 
squares. The standard method uses the Gauss-Marquardt-Levenberg (GML) 
algorithm. This method is fast and stable as it switches between the steepest 
gradient search and the Gauß-Newton approach, depending on a scalar of the 
identity matrix (details in Mohamed and Walsh 1986). The drawback of this 
method is that it might “get stuck” in local minima, depending on the surface of 
the error and the start values for the optimisation run. The second method 
available in PEST is the global SCEUA search algorithm (DUAN et al 1992). 
This algorithm is capable of finding the global minimum of the objective 
function. It requires substantially more effort in terms of CPU time. 

The pest set-up for automatic calibration is event based. WaSiM is calibrated for 
each of the 36 events independently, allowing at least four months for model 
warm-up (Cullmann et al 2006). This ensures that initial WaSiM conditions do 
not interfere with the evaluation of the calibrated parameters. 

In order to check if PEST is reliably converging to the global minimum the 
shuffled complex evolution method (SCEUA) is tested against Gauss-
Marquardt-Levenberg with various start values. This test is performed with data 
for event No. 4 (table 25 in appendix 1), which is chosen because its 
characteristic criteria are near to the mean criteria of all events. It is therefore 
considered a representative event well suited for a performance test of the PEST 
algorithms. 
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The results of this preliminary test are shown in table 5: They confirm the stable 
optimisation capability of both SCEUA and GML methods for the parameters 
considered with the start values used and the parameter ranges covered in this 
study. The difference in optimised parameters is marginal and leads to further 
employ GML as the standard method (GML is significantly faster than SCEUA). 
The optimised parameters for the test event listed in table 5 are close to the 
calibrated parameters used in section 2.2 (Kd = 4, Ki = 8, dr = 6). This confirms 
the representative characteristics of the test event used for checking out the 
convergence of the PEST optimisation. The error surface shown in figure 13 
supports this statement. For a wide parameter range it shows a relatively smooth 
behaviour. Within the “near optimal” range, which is zoomed on the left side of 
figure 13, the gradient is also quite smooth and thus allows for using the GML 
method. 

table 5: Test of convergence for the optimisation strategy. The variant adopted for 
the further testing is bold.  

Method Start Value Parameter Range Optimised Parameter 

 Kd Ki dr Kd Ki dr Kd Ki dr 

 [h] [h] [-] [h] [h] [-] [h] [h] [-] 

SCEUA * * * 1-40 1-40 1-40 3.84 9.73 6.11 

SCEUA * * * 1-107 1-107 1-107 3.84 9.73 6.11 

GML 2 8 4 1-107 1-107 1-107 3.89 9.72 6.11 

GML 2 6 4 1-60 1-40 1-80 3.89 9.72 6.11 

GML 35.9 27.3 29.9 1-40 1-40 1-40 3.89 9.72 6.11 

*70 random points in parameter space 
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figure 13: Error surface of the parameters Kd and dr using SCE automatic 
parameter estimation 

2.3.2 Automatic calibration and statistical analysis of the resulting 
parameters 

The parameter estimation presented here is characterized by large upper 
boundaries (the variant used in this study is shaded in table 5). Nevertheless the 
optimal parameters for the 36 events listed in table 6 concentrate in the range of 
1-100. Most optimisations yield small errors in the peak flow rooted mean 
square error (RSME) shown in the table. Some realisations for the parameter dr 
exhibit values of 200 and more, this often coincides with one or two of the other 
parameters drifting towards the lower boundary. In such cases of “extreme” 
parameter combinations, erratic input/flow data and/or model structural 
deficiencies lead to questionable realisations of the investigated parameters. This 
is also expressed by the extreme RMSE of these events. Therefore the parameter 
combinations of events 9, 12 and 22 are excluded from the further analysis of 
the results. 
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table 6: Results of automatic parameter estimation for the considered events. 

Event Year dr Ki Kd RMSE 
[%] 

Event Year dr Ki Kd RMSE 
[%] 

1 1981 3.00 3.60 52.40 0.14 19 1994 9.00 20.50 1.60 0.01 

2 1982 1.00 1.00 2.50 15.87 20 1994 8.50 4.90 1.40 0.10 

3 1982 72.80 1.40 177.00 1.49 21 1994 5.70 5.80 1.40 0.16 

4 1984 6.10 9.70 3.90 0.00 22 1994 225.90 1.00 2.20 16.26 

5 1984 8.00 20.50 2.10 0.01 23 1994 82.30 4.80 35.40 0.63 

6 1985 2.50 2.10 6.70 0.01 24 1994 1.00 5.20 1.00 0.00 

7 1985 35.40 17.70 1.00 0.00 25 1994 18.30 1.00 1.00 0.07 

8 1986 5.70 14.00 4.30 0.17 26 1994 15.30 1.00 1.50 0.00 

9 1986 105.20 1.00 3.50 14.32 27 1994 20.00 3.30 4.40 0.00 

10 1987 22.80 3.40 165.70 0.22 28 1994 5.00 10.00 2.10 0.00 

11 1987 5.00 10.00 2.00 0.16 29 1994 2.30 7.90 2.70 0.00 

12 1989 235.00 1.00 1.00 4.51 30 1994 1.90 2.80 4.20 0.00 

13 1990 4.90 2.70 6.30 0.09 31 1994 5.70 10.40 4.40 0.00 

14 1991 5.90 15.80 4.20 0.13 32 1994 21.00 7.50 8.50 0.00 

15 1991 7.30 14.60 6.00 0.25 33 1995 5.10 11.20 1.00 0.04 

16 1993 14.10 1.00 8.00 0.36 34 1995 6.10 7.90 2.10 0.00 

17 1993 1.00 6.90 3.70 0.09 35 1996 5.00 42.80 2.10 0.01 

18 1993 1.50 14.40 7.60 0.01 36 1999 12.50 3.70 1.00 2.26 

 

The results shown in table 6 are analysed for eventual dependencies of optimal 
parameter sets on seven of the eight chosen characteristic criteria listed in table 
25 (appendix 1). TL is excluded from the analysis because it is unsuitable for a 
predictive description of event characteristics (it is only known after the event 
has already taken place). This criterion had been used for a visual check in order 
to detect if any information regarding the rainfall-runoff transformation is not 
accounted for by the other seven criteria which can be calculated from 
precipitation forecast alone. It proved impossible to detect a satisfying 
regression or functional relationship between the parameters in table 6 and the 
criteria, thus quantitative statements about the setting of model parameters 
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according to a priori knowledge seems difficult. This partly confirms the 
findings of the DYNIA analysis described in section 2.2., here, no rule could be 
found for describing the parameters Ki and Kd by means of the actual discharge. 
To nevertheless judge weather the optimised parameters yield qualitative 
information that can be deduced from the characteristic criteria, the latter are 
divided into three equal classes each, namely: Low, medium and high.  

ANOVA (analysis of variance) is first selected to investigate possible relations 
of criteria classes and optimised parameters. In preliminary examinations, a 
check of homogeneity of variances was applied to all the parameters and 
criteria. This test was negative for all parameters. Due to this general rejection 
of the assumption of homogeneity of variances, ANOVA cannot be applied. 
Instead, the Mann-Whitney-U test is used to interpret the results of the 
optimised parameter dr and the eventual dependencies on classes of 
characteristic criteria. The non parametric Man-Whitney-U test has less 
statistical power than ANOVA, but is accepts inhomogeneous variances. With 
this test, it is possible to compare two criteria classes, concerning their mean and 
median values for dr. It measures how much the average rank of one class 
differs from the average rank of another class. The parameter dr is selected for 
this analysis because visual control of box plots for the classes indicated a 
possible relation between the three criteria classes and the parameters only for 
dr. Ki and Kd, just like in the DYNIA analysis, seem unsuitable for being linked 
to a priori knowledge, even in the simplified form of classified criteria. To avoid 
the effect of possible parameter interaction within the best sets, the optimisation 
is repeated for the parameter dr alone. Fixed values of Ki = 10 and Kd = 4 are 
assumed. (optimised parameters for the typical event in table 5). The results of 
this second parameter estimation are shown in table 7. The RSME is calculated 
for the peak flow value. The results of this optimisation resemble the results for 
three free parameters listed in table 6 - with the exception of event 25. Ki and Kd 
are forced to the lower boundary in the three parameter optimisation. Lacking 
this possibility with fixed Ki and Kd in the second run, the RMSE decreases 
notably. Some of the error criteria are lower in table 7 than for the 
corresponding event in table 6. Where this difference is significant, one 
parameter is forced to the lower boundary or one parameter is set to a very high 
value. This effect might reflect the existence of local minima for events which 
cannot be easily modelled with a meaningful parameter range. Small differences 
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in RMSE can be attributed to rounding effects or early stopping of the 
optimisation algorithm.  

The optimal parameter means and medians for the classified criteria are shown 
in table 8. The parameter means do not reveal general trends in relation to the 
classified criteria. However, when observing the medians, highest dr values 
coincide with the highest criteria classes. Only for TI this is not the case. That is 
a consequence of the peak flow intensity in the denominator of TI. It therefore 
behaves inversely proportional to the other criteria and what seems to be a 
deviant behaviour at first sight turns out to confirm the general trend. 

table 7: Results of the optimisation of dr with fixed Ki and Kd 

Event. Year dr RMSE Event. Year dr RMSE Event. Year dr RMSE

1 1981 3.43 0.04 13 1990 10.58 0.07 25 1994 17.5 18.40 

2 1982 1 15.73 14 1991 7.7 0.09 26 1994 33.81 0.00 

3 1982 39.46 1.23 15 1991 11.58 0.17 27 1994 19.97 0.00 

4 1984 6.18 0.00 16 1993 16 0.19 28 1994 4.61 0.00 

5 1984 21.84 0.01 17 1993 1.41 0.24 29 1994 1.58 0.00 

6 1985 6 0.00 18 1993 8.46 0.00 30 1994 2.53 0.00 

7 1985 24.2 0.01 19 1994 5.95 0.02 31 1994 8.05 0.00 

8 1986 9.92 0.12 20 1994 2.53 0.18 32 1994 32.03 0.00 

9 1986 82.93 13.54 21 1994 2.06 0.22 33 1995 1 0.93 

10 1987 13.57 0.09 22 1994 33.62 7.36 34 1995 3.76 0.03 

11 1987 16.61 0.28 23 1994 26.15 0.00 35 1996 3.32 0.04 

12 1989 249.32 4.55 24 1994 1 0.21 36 1999 5.65 2.69 
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table 8: Mean and median of dr values of the grouped characteristic criteria 

dr Duration 

 [h] 

Peak  

[mm/h] 

Volume 

[mm] 

Form  

[h] 

TI  

  [mm] 

TL     

  [h] 

PF    

[mm] 

Low 12 16.4 13.4 13.4 13.6 6.7 14.5 

Medium 14.6 5.7 15.3 15.3 6.6 3 8.1 Mean 

High 11.9 14.7 8.4 8.5 17 6.6 14.4 

Low 5.7 6.7 5.1 5 8.5 5.9 5.9 

Medium 5.6 5 7.3 7.3 5.7 5.4 5.7 Median 

High 6.1 9.3 7.4 7.4 6 5.9 5.8 

 

table 9: Results of the Mann-Whitney-U test 

Criterion Classes σ [-] Criterion Classes σ [-] 

low/med. 0.85 low/med. 0.38 
Duration 

med./high 0.67 
TI. 

med./high 0.45 

low/med. 0.15 low/med. 0.84 Peak. 
med./high 0.13 

PF 
med./high 0.81 

low/med. 0.2 low/med. 1.0 Volume 
med./high 0.34 

MPI 
med./high 0.49 

low/med. 0.19 
Form. 

med./high 0.34 
 

 

The results of the Man-Whitney-U test are summarized in table 9. It shows the 
statistical power σ for low/medium and medium/high classes. Generally, it holds 
that for growing σ, the statistical power decreases. It is of minor interest for 
parameter characterisation if the low and high classes show any statistically 
robust behaviour, therefore they are not included in the table. From this test we 
learn, that the peak rainfall rate shows the most powerful statistical link to dr. If 
we assume a 15 % confidence level (σ < 0,15), the difference between the 
medium and high classes are statistically significant. With a median of dr = 9.3 
the high peak rainfall class exhibits the highest overall value for dr, i.e. the 
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higher the peak rainfall, the larger is the optimal dr. This result must be seen 
cautiously in the light of an extremely low dr value for the middle container of 
the peak classification. This probably reflects the non-linear behaviour of model 
errors with respect to the process representation inherent in the modules of 
WaSiM. For a more clear statement further research is needed. But even – if we 
would assume that the middle container is not representative and replace it by 
the lower container - the difference between the low and high containers is still 
significant at a statistical level, confirming the general conclusions made here. 
The differences between low and medium classes become significant for Peak, 
Volume and Form on the 20 % confidence level. Form is a parameter evaluating 
Peak and Volume jointly. From this second result of the Man-Whitney-U test 
another general conclusion yields: The more voluminous the rainstorm event is, 
the larger is the optimal parameter dr.  

2.3.3 Summarized findings of the statistical analysis of optimised 
parameters 

A considerable span of best parameter sets for the event based calibration is 
observed for the different classes of pre-event conditions, characterized by eight 
selected criteria. It was impossible to find quantitative functional relations 
linking the parameters dr, Ki and Kd to the chosen criteria by means of the 
calibration study. For the investigated catchment it is therefore impossible to 
derive a priori best parameters with the aid of functions taking into account the 
chosen criteria. On the other hand, a more detailed study focusing on dr revealed 
that there is a distinct qualitative relation between the event characteristics and 
the best parameter. For the case of peak rainfall intensity, this relation is strong 
and can be statistically proven. The positive relation between dr and the 
classified criteria describing the volume of the rainstorm is also notable (table 
24 in appendix 1). Generally, applying statistics to calibrated parameters can 
lead to an improved understanding of the degree of dependency of model 
parameter sets to criteria derived from widely available information. This gives 
a means of assessing model weaknesses regarding the sensitivity to 
characteristic inputs -e.g. rainstorms of different intensities, but equal volumes- 
not accounted for by singular sets of parameters.  
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2.4 Consequences of model parameter investigation 

The results of the basic analysis (section 2.1) are: 

 Ki and Kd are sensitive where the respective processes of interflow and 
direct runoff dominate the hydrograph; 

 krec and thick are not well suited for model calibration in the flash flood 
forecasting context; 

 dr is a very sensitive parameter well suited for calibration purposes. 

The more detailed DYNIA sensitivity analysis (section 2.2) reveals: 

 The parameters Ki and Kd are difficult to identify over the course of the 
hydrograph. It seems hard to link them to information about the pre-
event condition or the observed discharge; 

 In spite the considerable uncertainty characterizing dr for the highest 
discharges, it is generally a well identifiable parameter and positively 
related to the observed discharge.  

The automatic parameter estimation and statistical analysis (section 2.3) 
results in the statements: 

 The optimal value of dr is linked to the peak rainfall rate and the volume 
of the concerned rainfall event; 

 This relation only becomes clear for classified criteria describing event 
characteristics and watershed pre-event characteristics.  

DYNIA and the automatic calibration are based on the same catchment with 
the same data. For the 1994 DYNIA period, 13 events have been calibrated 
separately in section 2.3. It is therefore possible to directly compare the 
results of DYNIA with the parameters resulting from the automatic 
calibration. The graph in figure 14 reveals that in some few cases the highest 
DYNIA parameter identifiability differs significantly from automatically 
calibrated parameters for single events. 
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figure 14: DYNIA parameter identifiability compared to the optimal dr values 
from automatic calibration  

A possible explanation for this is the DYNIA window size, which might level 
out peak errors in parameter identifiability. However, from the figure it also 
becomes clear that in most cases high DYNIA parameter identifiability 
coincides with the results of event based optimisation. The results are generally 
coherent and confirm the qualitative dependency of model parameters on the 
specific hydrological characteristics of the modelled event/period. 

As a consequence of this awareness a new parameterisation strategy for online 
flood forecasting models is sought. To this end, it is favourable to introduce 
qualitative information regarding the dominant hydrological process into the 
calibration procedure of models. Here it is important to avoid merely adding 
more events for calibration purposes: This is but a quantitative improvement of 
the calibration. Such a step always has to be paid for by a loss in predictive 
performance for rare cases (the extreme flood events). Instead, the use of 
multiple parameter sets for different classes of flood formation characteristics is 
the way forward. In the next section, such an approach is exemplarily 
developed. 
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2.5 A new approach for model parameterisation: Considering 
the specific relevant characteristics of different flood types 

The preceding chapters lead to the awareness, that state of the art hydrological 
models cannot satisfactorily portray the whole spectrum of naturally occurring 
runoff formation patterns with a singular set of parameters. Nevertheless, the 
singular parameter set represents the “classical” way for modelling rainfall-
runoff processes in the context of flood forecasting today. In this chapter, a new 
approach for model parameterisation offers the possibility to introduce 
additional information about basically different flood types into the model set-
up. WaSiM is used for an exemplary investigation, comparing the performance 
of the singular parameter set modelling approach with the results of the new 
strategy. The study is carried out in the catchment of the Schwarze Pockau River 
at Zöblitz gauging station. The area and data used here are described in section 
2.1. First, a singular event is calibrated and then validated using periods not 
considered in the calibration process. This is put side by side to the new 
approach: dynamic parameterisation. In this approach, the basin specific flood 
patterns are divided into two classes on the basis of the magnitude of the flood 
peak. This classification reflects the experience (sections 2.2 and 2.3). that best 
model parameters depend on volume and intensity of the event and vary for 
different classes of flood formation. For each class, one event is used for 
calibration. Next, the model is executed for all validation data with both 
parameterisations. The results of this “double” model application are then 
superposed by means of a sigmoid function to form one single hydrograph.  

Section 5.2 of this study confirms this approach on broader basis. In that section 
the same strategy is applied to another catchment (10 times larger) with 
comparable results for 13 events in two classes. 

WaSiM is used for single events with a model warming period of 4 months 
according to Cullmann et al 2006. This ensures that the model internal state 
initial conditions do not interfere with the evaluation of the calibration and 
validation performance. The events used in this section are shown in table 10. 
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table 10: Flood events at Zöblitz gauging station 

Event Nr. Date Peak Flow [m³/s] 

1 20.06. - 01.08.1958 34.04 

2 02.05. – 23.05.1978 23.65 

3 18.07 – 08.08.1980 30.46 

4 29.07 – 26.08.1983 27.59 

5 27.05 – 01.07.1995 24.00 

6 29.06 – 27.07.1996 15.05 

7 07.03 – 04.04.1998 22.58 

2.5.1 The singular parameter set approach  

The 1983 flood event is chosen for calibration. It is a typical flood event 
triggered by an advective rainfall field. The manual calibration procedure 
concentrates on the processes describing the flood formation. The corresponding 
model parameters are dr, Ki and Kd. Their impact on the WaSiM runoff 
formation module is shown in figure 2. The calibration procedure leads to the 
result shown in figure 15. The model well portrays the observed hydrograph. 
The first peak is underestimated, but the model well describes the main peak 
(the most important feature for a flood forecasting system) and recession phase 
of the event. The calibrated parameters are: Kd = 9, Ki = 16, dr = 37. The model 
is now validated with the events not used in the calibration (events 1-3 and 5-7 
in table 10). The validation performance for the peak values is visualized in 
figure 16. The model slightly under-predicts most of the events. 1995 is an 
exception from this rule. Here the observed discharge is smaller than the 
modelled. The largest errors occur for the 1980 and 1998 events with a relative 
peak error of 6.6 % and 4.6 % respectively. The fact that the overall relative 
validation error is only 2,8 % leads to the awareness that at least the 1980 event 
– relative peak error is more than 200% compared to the average - is not well 
portrayed by the model. A way of improving the model performance for the 
1980 event without losing the good fit for the rest of the events is therefore 
sought after in the next section.  
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figure 15: Manual calibration for the 1983 flood event at Zöblitz gauging station 
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figure 16: Singular parameter set calibration and validation performance of 
WaSiM for various peak flow values 

2.5.2 The improved strategy: Dynamic parameterisation. 

Two of the three events with the worst validation performances for the singular 
parameter set approach are characterized by one common property. These events 



52  2 Foundations of hydrological modelling in the context of online flash flood forecasting 

are the largest in terms of the peak discharge values. Most likely these two 
events are governed by processes that are not of predominating importance for 
the 1983 event which has been used for calibration. This explains the poor 
validation performance. Therefore these two events (1958 and 1980) are 
separated from the rest of the events which are remaining untouched in the 
following process of setting up the dynamic parameterisation. The 1958 event is 
recalibrated and the model performance is validated with the 1980 event. The 
model performance for these two events (table 11) shows that the error is 
reduced for both events in the recalibrated version. For 1958 this is a truism 
because the event is calibrated. More important is that the relative peak error for 
1980 significantly decreases from 6.64 % to 1.98 %. This is - besides their 
higher peaks - another strong indicator for the fact that these two events differ 
from the rest in terms of the dominating processes. For the 1998 event no such 
relation was found. It is most likely that the poor performance for this event is 
the consequence of input data quality. This result recommends taking into 
consideration the specific characteristics of flood events, originating from 
basically different patterns of flood formation.  

table 11: Relative peak errors for 1958 and 1980 events for the singular parameter 
set and “dynamic” approach respectively 

Relative Peak Error [%] 

Event Validation “singular” Recalibration Validation “dynamic” 
1958 1.59 0.2 - 

1980 6.64 –» 1.98 

 

Considering various flood types for model calibration yields a principal 
disadvantage: The model has to be run simultaneously for all parameter sets. 
The drawbacks are obvious: Longer CPU times and various model results which 
may lead to confusion and difficulties in the evaluation. In the exemplary case, 
two completely different time series result from the two considered classes: One 
for the 1983 parameterisation and the other for the 1958 event parameter set. 
This is inconvenient because the operator has to decide which model results are 
representative during the forecast. A new task arises: the results of the model 
runs have to be appropriately merged to characterise an unequivocal flood 
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hydrograph (Q) for all considered events. Fusing the output of the two model 
parameterisations with a sigmoid-type function (figure 17) solves the task. The 
exact formula used in this study is defined as: 

Qe*WeQn*WnQ +=  (equation 7) 

with Wn = the weight for the smaller event class (1983) model output 

Qn = discharge of the model calibrated for the smaller event class 

We = the weight for the extreme event class (1958) model output 

Qe = discharge of the model calibrated for the extreme event class 
 

The weights for the merging process are defined: 

Λ
Ρ−

−
+

= Qe

e
We

1

1

 (equation 8) 

WeWn −= 1   (equation 9) 

with Ρ = the threshold for the parameterisation. This parameter defines the 
intersection of the merging sigmoid. It can be interpreted as the threshold 
between the extensions of validity of the two model parameterizations. For the 
application with the test data P = 30 m³/s marks the transition point between the 
two parameterisations. Λ is the parameter which defines the steepness of the 
sigmoid. With increasing Λ the sigmoid becomes shallower arched. For our 
application we use a steep sigmoid (Λ = 0.4). This allows for sharply 
distinguishing between the two event classes.  

The model performance for calibration and validation of the univocal model is 
shown in figure 18. The comparison with figure 16 reveals significant model 
improvement in portraying the peak flow. The relative RMSE for the peak flow 
is 2.6 % for the singular parameter set, while the dynamic model parameteris-
ation approach yields 1.8 % RMSE for the validation. 
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figure 17: Exemplary sigmoid function for the merging of different 
parameterisations 
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figure 18: Validation and calibration performance of merged model 
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This result, confirmed by the successful application of the dynamic 
parameterisation in section 5.2, recommends the strategy as a general means for 
improving model set-up in the context of flash flood forecasting.  With the help 
of this new parameterisation strategy it is possible to describe the flood 
formation process with multiple parameter sets. If more than the two sets shown 
here are used, a multiple sigmoid function or a fuzzy weighting system can be 
used for the merging process. 
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3 Portraying rainfall-runoff processes by artificial 
neural networks 

Various types of artificial neural networks are currently being applied for 
rainfall-runoff modelling purposes (section 1.2). After first introducing the most 
widely used class of artificial neural netwoks - the multi layer feed forward net -  
this chapter explains polynomial neural networks. The focus is set to the 
structure of both net types as well as their specific training procedures. 

3.1 Multi Layer Feed Forward Nets 

Multi layer feed forward nets (MLFN) are widely applied for rainfall-runoff 
modelling. As outlined in section 1.2, they have been introduced into the flood 
forecasting context in the 1990`s. Lately, Schmitz et al (2005) and Cullmann et 
al (2006) promoted this net type in their flood forecasting approach. This study 
evaluates their performance for flash flood forecasting . 

3.1.1 Principles of multi layer nets 

The principal functioning (figure 19) of multi layer nets is based on the neurons 
in the hidden and output layers. They transform their respective inputs to outputs 
through two separate stages. First, for each neuron, each of its inputs is 
multiplied by the corresponding weight (w) and secondly, the total sum of these 
products plus a constant known as bias (b) yields the node output in the hidden 
and output layers. 



3.1 Multi Layer Feed Forward Nets 57 

  

  
O k   

X 1      

 X 2   

X i   

 X n  

i 

j k 

     b1 

   bj 

   bj 

   bk

X 1   

X i   
  

   X n  
  

   Sj

 

W 11  

W11

W ji Wkj 

W j1  

W ji  
  

W jn  
  

 f (.) 

Summation 
function

bj

Transfer  
function

Input Hidden Output 

W mn  

   Yj

1   

2   

i   

m   

n 

SF

 

figure 19: Typical three-layer network structure (top) and operating scheme 
(bottom) 

An elementary neuron with n inputs is shown in the lower part figure 19. Each 
input is weighted with an appropriate w. The sum of the weighted inputs and the 
bias forms the input to the transfer function f (.). Any differentiable transfer 
function f (.) is suited to generate output. The output S from the jth node in the 
hidden layer - after the summation operation - is defined as follows: 

1

n

j ji i j
j

S W X b
=

= +∑
 (equation 10) 
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with: n = Number of elements in the vector  

Xi = the input signal from ith  node  

Wji = MLFN weights  

bj  = MLFN bias 

 

Then the net output Yj from the jth output node is: 

( )j jY f S=    (equation 11) 

3.1.2 Structure of multi layer neural networks 

Network geometry determines the number of connection weights and how these 

are arranged. Generally, a fix number of hidden layers is defined and the number 

of nodes in each layer is then chosen. It has been shown that three layer 

networks (1 input -1 hidden - 1 output) with sigmoid transfer functions in the 

hidden layer and linear transfer functions in the output layer can approximate 

virtually any function of interest to any degree of accuracy, provided that a 

sufficient number of neurons are available in the hidden layer (Hornik et al, 

1989).  

The number of nodes in the input layer is determined by the number of input 

vectors, whereas the number of nodes in the output layer equals the number of 

model outputs. The critical aspect is the choice of the number of nodes in the 

hidden layers and hence the number of connection weights. The importance of 

finding a balance between having sufficient free parameters (weights) to enable 

representation of the function to be approximated and having too many free 

parameters, which can result in over-fitting, is well known and has been 

discussed widely in the literature (e.g. Maren et al, 1990; Rojas, 1996). The 

number of hidden layer nodes significantly influences the performance of a 

network: with too few nodes the network will approximate poorly, while with 

too many nodes it will over-fit the training data. Consequently, an optimally 

designed hidden layer geometry 
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 Reduces the computational effort necessary for training the net;  

  Ensures the best possible generalization performance;  

  Avoids the problem of over fitting;  

No unified theory exists for determining optimal network geometry. In the 

present study three layer feed forward networks are used. Following Hornik et 

al, (1989), this ensures the required net performance in the flood forecasting 

context. The number of input neurons equals the number of input vectors while 

one fixed node represents the model output.  

The transfer function converts the effective incoming signal of node j, Sj 

(equation 11) into the output signal (Yj). Multi layer nets typically use sigmoid 

transfer functions in the hidden layers. These functions are often called 

“squashing” functions, since they compress an infinite input range into a finite [-

1; 1] output range. In this study, non-linear bipolar tan-sigmoid transfer 

functions are used for hidden layer nodes (equation 12), whereas linear transfer 

functions are characterizing the output layer node.  

( ) 2 1
1 exp jj sf S −= −
+   (equation 12) 

with: , jS  = input  

( )jf S  = output of the transfer function.   
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figure 20: tan-sigmoid function (equation 12) used in the study 

The characteristics of the tan-sigmoid function are: 

 Upper and lower bounds exist; 

 It is monotonically increasing; 

 It is continuous and differentiable everywhere.  

The simple linear transfer function used for the output layer of the MLFN is 
expressed as: 

( )j jf S S=
  (equation 13) 

with: jS  = input  

3.1.3 Training of multi layer nets 

The optimisation of the multi layer network weights is known as ‘training’ or 

‘learning’. This process can be compared to the parameter estimation phase of 

conventional models. The aim is to find a global solution to what is typically a 

highly non-linear optimisation problem (White, 1989). Therefore, the general 

theory of non-linear optimisation just seems to be the method of choice 
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(Battiti 1992). The suitability of a particular method is generally a compromise 

between computational cost and training performance (Parisi et al, 1996).  

There are numerous approaches for network training. The most popular 
algorithms are based on supervised training, which has also been used in the 
present study. Paradigms of supervised learning include error-correction 
learning, reinforcement learning and stochastic learning. An important issue 
concerning supervised learning is the problem of error convergence, i.e., the 
minimization of the objective function. The aim is to determine a set of weights 
which minimizes the mean square error. One well-known method, which is 
common to many learning paradigms, is the least mean square convergence, 
which was adopted in the present study.  

After a careful and thorough investigation of different training algorithms, the 
Levenberg-Marquardt back-propagation algorithm (Hagan et al, 1994), was 
chosen for optimising the weight and bias parameters during the training 
process. It is a quick and stable second order non-linear least square technique 
(Toth et al, 2000).  

The Levenberg–Marquardt algorithm is a modification of the classic Newton 
algorithm for finding an optimal solution to a minimization problem. It is 
designed to approach second-order training speed and accuracy without having 
to compute the Hessian matrix. The Hessian matrix contains second derivatives 
of the network errors with respect to the network weights, while the Jacobian 
matrix contains first derivatives of the network error matrix with respect to 
weights. If the performance function has the form of a sum of squares (as is 
typical in training feed-forward networks), then the Hessian matrix can be 
approximated as: 

H = JTJ   (equation 14) 

with: J = the Jacobian matrix and H = the Hessian matrix 

and the gradient can be computed as: 

g = JT e  (equation 15) 

with: e = a matrix of network errors.  
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3.2 Polynomial Neural Nets 

Shin and Gosh (1992), Foka (1999) and Ma and Khorasani (2005) employ 
PoNN (Polynomial Neural Networks) for time series prediction and achieve 
promising results. Their work points towards the possibility of using polynomial 
nets as a Taylor approximation of the rainfall-runoff function. Consequently, 
this work tests polynomial nets for their potential applicability in the flood 
forecasting context. In the following, “characteristic feature” describes an input 
vector to a net, containing important information about the rainfall-runoff 
process. A more detailed description of characteristic features is given in section 
4. A general description of polynomial neural networks follows: 

3.2.1 Fundamentals of polynomial neural networks 

The overall polynomial approximation of the predicted discharge Q at the 
considered catchment outlet is described in this section. The polynomial 
network is a feed-forward network with a single hidden layer. The output of the 
"hidden" layer is the product of the input terms while the output of the network 
is the weighted sum of these products (figure 21). Polynomial nets have only 
one layer of adaptive weights, this results in a very effective training with short 
CPU times compared to the classical multi layer nets. 

 

figure 21: Scheme of a polynomial net with [x1…x3] = input vectors, [p1….p3] = 
hidden layer, [w1….w3] = hidden layer weights, Q = output 
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The output of the network is given by: 

∑
=

=
N

i

iipwQ
1    (equation 16) 

with: Q = PoNN output (discharge) 

iw = linear weights of the PoNN (determined in the training) 
ip  = product vectors 

N = number of product vectors (3 in figure 21) 

The PoNN product vectors result from a permutation of the inputs x (figure 21). 
They are exemplarily derived for a third degree PoNN according to: 

c
m

b
l

a
k xxxp =

  (equation 17) 

with: x = input for k = [1…N], l = [1…N], m = [1…N]. The exponents a, b, c, 

are all elements of [0; 3]. 

The power a, b, c of equation 17 satisfies the criterion : 

gcba ≤++  (equation 18) 

with:g = degree of the polynomial applied.  

Usually the use of second or third degree polynomials is sufficient to guarantee 
a satisfactory forecast ability of the PoNN. In this case a+b+c ≤ 3 sets the frame 
for the definition of product vectors, i.e. three features are simply multiplied or 
one feature² is multiplied with another feature, or just one feature³ is used. The 
PoNN transforms the input vectors directly into the flood forecast for a pre-
defined river gauge at the catchment outlet. However, the total number of 
product vectors rises rapidly when high degree polynomials or a large number of 
input vectors are used. This is easily understood from the relation expressed in 
equation 19. Here N rises rapidly with increasing g or n.  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

g
gn

N
  (equation 19) 
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3.2.2 Training of polynomial nets 

Stepwise serial regression (SSR) is a new algorithm which has been especially 
developed for the training of polynomial nets in the rainfall runoff context 
(Görner et al 2006). It consists of a combination of regression methods using 
both Efroymson`s algorithm as described in Miller (1999) and stepwise 
regression presented in Meyer-Brötz and Schürmann (1970). In the training 
process of the PoNN, first all possible product vectors p are calculated by means 
of permutation of the all characteristic features (equation 17). These vectors are 
then stored in the vector matrix P. The training process of the PoNN essentially 
consists of optimising the net structure and weights. This is achieved by the 
transformation of P, into a new - much smaller - optimised matrix O, i.e. O 
represents the structure of the trained net. The corresponding linear weights wi of 
the optimised vectors p of O are determined by SSR. Herein, the general 
estimator for the target value Δ(x) is defined as follows: 

∑
=

+=Δ
n

i
ii0 xwwx)(

1  (equation 20) 

with: w = weight and x = regressor 

Minimizing the objective function in the selection process (the deviation of 
target value and the dependant variable (Δx)) can be expressed as follows: 

Minx)]²}(z{[E ⇒Δ−  (equation 21) 

The training process itself starts with the selection of the first n of N vectors of 
the vector matrix P. These vectors represent the initial matrix O, which is yet to 
be optimised. Now the iterative optimisation (training) is ready for start: The 
stepwise regression arranges the n vectors in O with respect to reducing of the 
total error (MSE of observed and modelled flow). I.e. the first vector is the most 
important for the description of Q, the second vector is the second most 
important and so on and so forth. This process is also known as maximum 
scatter minimisation. The criterion for the scatter minimisation (ΔR) is 
calculated from the nth Element in O according to: 

 
)Odiagonal(E

)zx(ER ii

∈
=Δ

 (equation 22) 
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with: )zx(E ii = element xz 

)Odiagonal(E ∈  = diagonal element in O 

Based on this ranking, the worst 30 % of the vectors are rejected and not 
considered further. Now vectors from P are drawn to fill the places of the 
rejected vectors in O. Again, the n vectors are ranked and reduced by rejection 
of the least 30%. This procedure is repeated until all p in P are pruned to the n 
optimal vectors of O. Thus, the training consecutively runs through the total 
amount of all the product vectors p. The key advantage of this training method is 
the information content of the features, which, contrary to the classical MLFN, 
can be interpreted in a physically meaningful way. The optimal size of O is a 
function of the catchment characteristics and described in section 3.4.  

 

figure 22: The first two training steps of serial regression polynomial net training 
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3.3 Problem specific comparative analysis of multi layer net 
and polynomial network structures 

To determine the optimal net structure in the context of flood forecasting, 
preliminary testing involves the comparison the two methods considered. 

• Multi layer feed forward nets are a widely applied type. Their adoption 
to flood forecasting has been promoted by Schmitz et al (2005) and 
Cullmann et al (2006) 

• Polynomial neural nets have been proposed for river discharge modelling 
by Foka (1999) 

The two different net types are compared at Kriebstein gauging station. This 
gauge is the outlet of a 1757 km² flash flood prone catchment, situated in the 
East German ore mountain range, a more detailed description of the area is 
presented in chapter 5.1. The tested three layer net is generated according to the 
principles laid out in Schmitz et al (2005). It is trained with the strategy 
presented in section 3.1.3. The three layer net is fed with 30 input vectors 
containing information about rainfall, temperature and pre-event state of the 
watershed. The polynomial network is used with the same input vectors, it is 
generated and trained according to the standard procedures described in section 
3.2. The testing is carried out with a lead-time of 24 hours for both net types. 
The input vectors are derived from data consisting of 1 km² grids of 
precipitation, air humidity, wind speed, global radiation and temperature. 47 
years of data are available for hourly time steps. These data are transformed into 
runoff by a calibrated WaSiM model. The ability to portray this runoff is the 
evaluation criterion used in this study. All the 47 years of input data have been 
used to discriminate between the methods concerning training speed, operational 
speed, stability, forecast reliability, and easiness of model set up. The 
approaches are trained on 80 % of the available data, whilst 20% of the database 
is reserved for validation purposes. 
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Multi layer nets Polynomial nets

 

figure 23: Comparison of architectures multi layer net – polynomial net 

A scheme shows the principles of the two approaches (figure 23). The 
architecture is generally different, but some parallels exist and ease direct 
comparison in the tests. The number of input neurons of the multi layer net 
equals the number of characteristic features used to portray the rainfall runoff 
process for the considered watershed. For the polynomial net, the input 
information consists of the same characteristic features, permutated according to 
the polynomial degree. The processing of the input information is solved in the 
hidden layer of the three layer net. This layer consists of a number of hidden 
neurons. Extensive testing is necessary to determine the optimal number of the 
hidden layers. The number of hidden neurons of an multi layer net can be 
compared to the number of products used for the forecast in the polynomial net. 
This value is found by optimisation procedures. The output of both polynomial 
and multi layer nets is one-dimensional; it consists of the flow at the considered 
lead-time.  

As a first result of the tests, figure 24 shows that the Nash-Sutcliffe efficiency of 
the validation period varies significantly depending on the number of hidden 
layer nodes in the multi layer net. The result indicates that the predictive power 
of the MLFN is unstable for varying net architectures. This is not only the case 
for the Nash-Sutcliffe efficiency, but also proves for the mean square error in 
[%] of the total flow during the validation period, shown in figure 25. The 
behaviour of the forecast performance criterion is unforeseeable for increasing 
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numbers of hidden layer nodes. As the performance depends strongly on the 
input vectors and weights, this behaviour is characteristic for each watershed. 
This attribute poses a serious hurdle in the way of easy general application of a 
MLFN based flood forecasting system because for each watershed this 
preliminary and tedious testing would have to be repeated. 

0.95
0.955
0.96

0.965
0.97

0.975
0.98

0.985
0.99

10 11 12 13 14 15 16 17 18 19 20 21

Number of neurons in hidden layer

N
SE

validation

 

figure 24: Nash-Sutcliffe efficiency for the test data set versus number of neurons 
in hidden layer for a 24 h lead-time prediction with the three layer net 
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figure 25: Mean square error for the test data set versus number of neurons in 
hidden layer for a 24 h lead-time prediction with the three layer net 

As explained above (figure 23), the number of product vectors used in the 
polynomial net can be compared to the number of hidden layer neurons of a 
multi layer network. This number impacts on the predictive power of the 
polynomial net. However, the generalisation performance of a polynomial net is 
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a clearly defined function of the number of product vectors employed. This 
allows for easily defining the net structure in the general set up of a polynomial 
net for different catchments. For the polynomial net, the validation graph in 
figure 26 illustrates how the predictive performance rises with increasing 
number of product vectors. It reaches an optimum, which is a plateau in the test 
case (vector numbers ranging from 120 to about 450). Generally the optimal 
configuration is the one which fully describes the dynamics with the least 
number of product vectors. The optimum is a function of effort (increasing 
numbers of vectors lead to more computational effort) and predictive reliability. 
The optimal set up may be readapted for each new forecasting task according to 
the users requirements and resources. Generally, increasing the number of 
deployed product vectors improves the nets training results. Obviously, the 
ability to generalize decreases if over-fitting characterises the system. This is 
visualized in figure 26, where product vector numbers > 550 show significant 
loss in the Nash-Sutcliffe efficiency (NSE) for the validation period (predictive 
ability). Again, this is confirmed by a similar behaviour of the mean square error 
MSE (figure 27). 
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figure 26: Nash-Sutcliffe efficiency for training and test data versus number of 
product vectors for a  24 h lead-time prediction with the  polynomial net 
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figure 27: Mean square error for training and test data versus number of product 
vectors for a  24 h lead-time prediction with the  polynomial net.  

In a second test, optimal 3 layer net architectures are compared to a 3rd grade 
PoNN encompassing 220 product vectors. The number of product vectors 
guarantees both good training results and a stable predictive performance (figure 
27). The architecture of the multi layer nets is separately optimised for each 
lead-time. This results in the varying number of hidden layer neurons listed in 
column 2 of table 12. The optimal number of hidden neurons of the multi layer 
net varies between 14 and 16 (figure 24). For the optimal multi layer 
architectures, the Nash-Sutcliffe efficiency decreases with increasing forecast 
lead-time, i.e. the predictive power of the multi layer net decreases when longer 
lead times are considered (table 12). Contrary to this finding, polynomial nets 
are characterized by a stable forecast performance (Nash-Sutcliffe efficiency) 
with increasing lead-times. Obviously, this is a vitally important aspect and 
suggests preferring polynomial nets to multi layer nets in the flood forecasting 
context. This second test also reveals that the training time is constant for 
polynomial nets. In contrast, multi layer nets exhibit very inhomogeneous 
training times (table 12). The mean multi layer training time is double the time 
needed to train polynomial nets. The forecast CPU requirements, which is most 
important for the operational applicability is the same for the two methods.  
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table 12: Training performance of multi layer and polynomial nets 

 Multi layer net Polynomial net 

Lead-time Nr. hidden 
layer nodes 

Training 
[min] 

NSE Grade/ Nr. of 
features 

Training 
[min] 

NSE 

6 14 111 0,97 3/220 45 0,97 

12 14 26 0,93 3/220 45 0,98 

18 16 111 0,86 3/220 45 0,98 

24 14 237 0,85 3/220 45 0,97 

36 15 28 0,86 3/220 45 0,97 

48 16 34 0,84 3/220 45 0,97 

Mean 15 90 0,88 3/220 45 0,97 

 

The general results of the testing are: The predictive power of polynomial nets is 
superior to the one of classical multi layer feed forward neural networks. 
Polynomial nets are easy to set up because of the clear relationship between 
structure and performance (figure 27). Their fast and stable training, together 
with moderate operational CPU requirements (table 12) allow for a general and 
easy application of polynomial net based forecast tools. The comparative testing 
identifies polynomial nets as the method of choice for the set up of online flood 
forecasting applications. The convincing ground for this statement is the stable 
performance criterion of the polynomial net based system for increasing lead-
times. This characteristic is of paramount importance for a reliable forecast and 
will become more and more important in the future as rainfall forecasts will 
become more and more accurate.  
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3.4 Optimal polynomial network forecast strategy for flash 
floods 

In this section three tests serve as a means for defining the optimal net structure 
in terms of the power of the polynomial, the best forecast strategy and the 
training data requirements. All the tests are based on the 585 km² catchment of 
the Freiberger Mulde at Nossen gauging station. In the catchment, the 
agriculturally used area dominates, up to 30 % of the catchment are covered 
with forests. The travel time within the catchment is approximately 18 hours. 
The tests have been conducted at Nossen gauge to ensure a good predictive 
performance even for smaller catchments and show the general nature of the 
PAI-OFF approach proposed in the next chapter. The meteorological and runoff 
database is analogue to the one used in the preceding chapter. 

The first test evaluates the dimensionality of the polynomial approach. The net 
is used in a second as well as a third degree approach, i.e. it is tested for a+b+c 
= 2 and a+b+c = 3 for equation 18. The result of this test is depicted in figure 
28. The blue dots mark the performance of the second degree net. The green 
third degree approach (figure 28) clearly outperforms the second degree 
approach for all lead times. Based on this finding, polynomial nets are generally 
used in the third degree in the further testing and application.  
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figure 28: Testing for the optimal polynomial degree (Nash-Sutcliffe efficiency) 
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It is principally possible to forecast either the absolute flow at the desired lead 
time or the flow increment that separates the actual discharge from the flow at 
the lead time (figure 29). The forecasting approach developed in this section 
adheres to the strategy of incremental predictions for lead-times less than 12 
hours. The calculation of the forecast at time t for time t + Δt (lead-time 
increment) considers the flow increments ΔQ with respect to the actual 
discharge at time t. For lead-times of more than 12 hours, the prediction does not 
principally depend on differences to the actual flow any more. Therefore it is 
favourable to directly predicts the flow Q for lead-times > 12h. This principle is 
shown in figure 29. In this figure, the green flow refers to the delta prognosis for 
up to 12 hours while the blue flow is the absolute value prediction used for 
longer lead-times.  

The strategy described above is derived from a sensitivity analysis of the Nash-
Sutcliffe criteria of both Q and ΔQ prediction for lead-times of up to 48 hours. 
The result of this analysis is shown in figure 30, where the green dots represent 
the results for ΔQ, while blue denotes results for Q. 
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figure 29: Prediction strategy for Q and ΔQ respectively. 

It can easily be noticed that for longer lead-times the blue squares, denoting the 
validation performance for the direct flow prediction, stay in the range of 0.98 
while the green squares of the ΔQ validation performance criterion steadily 
decrease – down to values below 0.97. This difference is small, but nevertheless 
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significant as the Nash-Sutcliffe efficiency is calculated over a period of 47 
years. For smaller lead times, the green validation squares of the delta method 
yield better results than the direct prediction of Q.  
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figure 30: Prediction strategy: Q versus ΔQ (Nash-Stutcliffe-Efficiency) 
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figure 31: Prediction strategy: Q versus ΔQ (Mean square error) 

In figure 31, a zoom on the first 7 lead time increments of the test confirms the 
statements made earlier. For short lead times < 12 h the mean square error of the 
ΔQ prediction strategy clearly outperforms the direct prediction of Q. 
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A further important feature in the set-up of the polynomial net is the size of the 
training database. In a third test, this size has been varied from 10 to 47 years. 
20 % of the training database is always reserved for testing the predictive power. 
One year of test data comprises a rough average of 20 flood events. The Nash-
Sutcliffe efficiency yields excellent values for training databases with 20 years 
of input data. But if the mean square error is additionally considered, it becomes 
clearly visible, that the predictive power best if more than 40 years of data (600 
events) are used in the training of the polynomial network. 
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figure 32: Effect of the size of the training database on training and validation 
criteria (Nash-Sutcliffe efficiency and mean square error) 
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4 The PAI-OFF flash flood forecasting methodology 

PAI-OFF (Process modelling and artificial intelligence for online flash flood 
forecasting) is a new methodology for improved online flash flood forecasting. 
The approach is founded on the adequate incorporation of the catchment specific 
flood relevant processes into a neural network. It covers both hydrological 
history - describing the catchment pre-event conditions - and specific rainstorm 
characteristics. These are the crucial foundations of any successful online flood 
forecasting. Various parameter sets have to be taken into account for accurately 
forecasting all the naturally occurring patterns of flood formation (section 2.5). 
From the many flood forecasting models analysed in section 1.2 we have learnt 
that highly accurate distributed process models are - amongst other drawbacks - 
too slow for improving the forecast in terms of lead time and/or a closer 
examination of the forecast uncertainty. Artificial neural network based 
approaches are fast enough, but if they are exclusively trained with historical 
data, they lack predictive power and fail to accurately forecast unseen extreme 
events.  

Offering a way out of the dilemma, PAI-OFF combines the two approaches, 
transfusing the predictive power of physically based models into a fast and 
robust polynomial network based flash flood forecasting tool. The polynomial 
approach is chosen on the basis of the findings of sections 3.4 and 3.3. The 
combination of physically based process modelling and the polynomial neural 
network is achieved by training the net on the basis of a comprehensive 
database, containing all possible patterns of natural flood formation and all 
important pre-event conditions. This database is built by means of the physically 
based model. Therefore, all flood prone meteorological constellations are 
collected. They form the input side of the database. These data are then 
transformed into the corresponding runoff by means of a dynamically 
parameterised, physically based catchment model. This runoff data represents 
the output side of the polynomial networks training database (consider section 
4.5 for further details about the database). Consequently, the trained polynomial 
net comprises the physically based models fidelity to the process for all patterns 
of flood formation and all the possible pre-event conditions. In the operational 
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phase, the trained PoNN substitutes the catchment model with implicit adequate 
parameter sets for all possible constellations of flood formation. PAI-OFF is 
easy to use and extremely fast. It therefore allows for analysing the forecast 
uncertainty by online Monte-Carlo simulations. This becomes possible because 
PAI-OFF is about 500 times faster than a classical hydrological model. 

 

figure 33: Flow chart of the PAI-OFF methodology 
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Summarizing the three step preparatory phase:  

1. The first step of the PAI-OFF methodology consists in setting up a 
physically based catchment model of the considered watershed. For this 
purpose, any sound and reliable hydrological model may principally be 
used; 

2. After successful validation for a specific catchment, the physically based 
model is used for simulating the whole range of physically possible, 
flood relevant meteorological/hydrological situations which are 
meaningful for flood formation and propagation in the area (figure 33). 
The input (rainfall) and obtained output (flood discharge) values – 
together with the corresponding pre-event (initial) hydrologic catchment 
conditions – reflect the hydrologic behaviour of the catchment; 

3. In the third step the polynomial neural network is trained to portray the 
complete hydrological process information considering the rainfall-
runoff transformation. Here the incorporation of watershed pre-event 
conditions plays a key role for correctly portraying all the patterns of 
flood formation contained in the database.  

The PAI-OFF flood forecast is a single step process once the polynomial net is 
trained (figure 33, operation). Generally, as all other neural network based 
solutions, the polynomial net used in PAI-OFF requires a number of input 
vectors (characteristic features). These selected features provide the net with the 
necessary information for the flood forecast (figure 33, user input). The purpose 
of feature selection is choosing information that fully portrays the dynamics of 
rainfall-runoff processes in the watershed. Generally, for any kind of 
hydrological model, it is desirable to use as much information as possible. 
Polynomial neural nets are also obeying this rule. For operational online flood 
forecasting though, input data has to be integrated and transformed into 
characteristic features for several reasons: One motivation is the sheer 
dimensionality of distributed meteorological input data. Handling high-
resolution (e.g. 1 km²) grid based meteorological data would result in an 
enormous effort organizing the database and feeding the input vectors to the net 
This would lead to computing times foiling the general advantage of PAI-OFF: 
the fast forecast. Instead, relevant features are carefully selected, integrating the 
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data whilst keeping the information content. With this strategy, the number of 
net inputs can be kept at a minimum. This directly leads to the second reason for 
integrating input data: The number of input vectors is inversely proportional to 
the predictive power of any neural network based solution, i.e. more input = 
worse validation performance of the net. The strategy of integrating data in 
meaningful characteristic features helps improving the operational performance 
of the system. A third reason for this strategy is reducing redundant data in the 
training process. The training process is significantly slowed if redundant data 
has to be trained. The characteristic features cover the two most important 
aspects considering rainfall runoff dynamics: pre-event state of the catchment as 
well as precipitation as the dominant driving force. This information is usually 
derived from observations made before the oncoming event. The most important 
features contain information about predicted precipitation in terms of intensity, 
duration and location. In PAI-OFF, the characteristic features are divided in two 
classes (figure 34): The state features are used for describing the pre-event state 
of the catchment and the hydrologic response features characterise the runoff 
formation process as a result of precipitation input. 

 

figure 34: Basic working principles of the polynomial net rainfall-runoff module  
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These two types of characteristic features are jointly processed in the course of 
the forecast by permutation (equation 17).  

It is important that these vectors must exclusively consist of data which is 
commonly available (e.g. at water management agencies or flood alarm centers) 
in order to guarantee the overall applicability of the PAI-OFF methodology. In 
the following sections the hydrologic response features as well as state features 
are described in detail. 

4.1 Hydrologic Response Features (HRF)  

Hydrologic response features (figure 34) allow for incorporating hydrologic 
process knowledge into the net by explicitly taking into account the mechanisms 
of the catchment specific potential flow paths. So far, neural network based 
approaches have always been used as lumped models in rainfall runoff 
modelling. By means of the hydrologic response features, it is now possible to 
train the polynomial nets not only on the basis of observed/simulated 
input/output relationships (lumped model) but also with some pre-processed 
hydrologic evidence. Operating the nets with this hydrologic “expert 
knowledge” –which is included for the specific catchment during the set up of 
PAI-OFF - allows for the portrayal of high resolution input data and results in a 
substantial overall improvement of the predictive performance. The hydrologic 
response features lead to a better portrayal of rainfall patterns and the predicted 
movement of rainstorm fields over the catchment. They are offered with a given 
positive or negative time lag and to the power 2 and 3 in the training process. 
This is relevant, because the hydrologic response features can thus account for 
non-linear response characteristics of the area.  

Determining hydrologic response features requires subdividing the catchment 
into areas of similar response time with respect to the basin outlet – the so-called 
area of similar hydrologic responses (AHR). In the operational PAI-OFF system 
each area of similar hydrologic response bears one hydrologic response feature. 
For each of the zones, a typical convolution kernel is evaluated on the basis of 
simulations of characteristic storm scenarios with the catchment model. Thus, 
the potential runoff contribution of these zones to the total flow at the watershed 
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outlet is already pre-described by the convolution kernel assigned to each area of 
similar hydrologic response.  
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figure 35: Incorporation of hydrologic response features into the PAI-OFF net 

The determination of the appropriate HRF for a given catchment is realized 
during the catchment modelling preparatory phase (figure 33): 

The delineation of the area of similar hydrologic responses starts with the time-
area (isochrone principle) method. It is generally used to derive a discharge 
hydrograph from a given excess rainfall hyetograph.   
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figure 36: Schematic subdivision of a watershed by means of the isochrone method 

In figure 36, a plan view sketches an exemplary watershed with 4 travel time 
zones of 5 hours each. The procedure of travel time determination is well 
documented in Ponce (1989) and McCuen (1998). Further details are explained 
in Maidment (1993). He gives an example of the time-area model using grid 
based digital elevation models (DEM).  

So far, the catchment is divided in zones of equal response times. Zones A3 and 
A4 in figure 36 represent the catchment areas of both rivers. This is 
contradictory to the principles of similar hydrologic response, because the 
reaction of areas attributed to different rivers might be totally different for a 
natural catchment. The zones of similar travel times are therefore further 
subdivided according to the river network.  
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figure 37: Exemplary areas of similar hydrologic response 

This leads directly to the areas of similar hydrologic response shown in figure 
37. Once the areas of similar hydrologic response are defined, 300 rainstorm 
events from the training database are selected according to the following 
criterion: The events must have a minimum discharge with a return period of 20 
to 25 years. These events form the kernel database, which is used to stimulate all 
hydrologic response areas separately. The calibrated catchment model is used to 
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transform the rainfall stimuli into runoff. A standard Duhamel-integration 
followed by minimum square deviation regression (Dyck and Peschke, 1995) is 
performed on this data and leads directly to the deterministic response kernel 
(figure 38). This resulting kernel is likely to be too rough for direct use as input 
for the PoNN training. Therefore a Gaussian filter is used to transform this 
deterministic kernel into a smooth analytical function according to equation 20: 

n

t i t i
i n

S W X +
=−

= ∑  (equation 23) 

withSt = smoothed function 

 Xt = original time series 

Wi, i= weights 

The Gaussian filter characteristics are that the weights equal the ordinates of an 

appropriate Gaussian probability density function (Mitchell et al 1966). The 
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with: 0 k N≤ ≤  and 2α ≥ , whereα  is the reciprocal of the standard deviation and N 
is the filter length. 

Generally, the length of the filter is inversely related to the value of α , a larger 
value of α  produces a narrow filter length. For the purpose of filtering the 
deterministic response kernels, the following characteristics are used: filter 
length (N) = 5 and standard deviation = 0.65. The figure 38, depicts a hydrologic 
response kernel typically used in PAI-OFF . The green function is the exemplary 
result of a regression with more than 150 events. The kernel is rough, especially 
for flow times > 30h. The analytical kernel (red function in figure 38) allows for 
a smooth training of the PoNN. 
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figure 38: hydrologic response feature kernel (functional-analytical) 

For all areas of similar hydrologic responses, one unit hydrograph type kernel is 
used to determine the hydrologic response feature (figure 35), characterizing the 
catchments response to precipitation. Each hydrologic response feature is 
calculated according to: 

∑
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   (equation 25) 

with: P = Precipitation at time t and l = actual lag (time step) 

L = maximum lag defining the temporal extension of the considered feature 

The parameter l (actual time lag) equals the number of considered time steps 
within the total length L of the feature, it is 2 for a time 2 hours before the start 
time of the forecast. L is a parameter that controls how much of the preceding 
history of an event is taken into account. It is defined in the set-up phase of PAI-
OFF and then remains constant for any operational purpose. The minimal length 
L is defined as the maximal process memory. If this is unknown, it can be found 
during the training process by means of the stepwise serial regression. 

)(lK   yields: 
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 (equation 26) 

with the parameters c, K1, K2, N derived by regression from the kernel database, 
L0 represents the travel time from the flow time zone outlet to the reference 
gauge. All of the features (hydrological response features and state features) are 
denoted by F(t0) in the following. This reflects their equal treatment in the 
training of the net when they are permutated according to equation 4. 

4.2 State Features (SF) 

The formation of flood events is influenced by the hydrological and 
meteorological history of the catchment prior to a flood event, this is also known 
as pre-event state of the watershed. In PAI-OFF, the state features account for 
these catchment pre-conditions. They are selected according to basic 
hydrological principles. One of the most fundamental hydrological rules says: 
the discharge is the most reliable indicator for the basin internal state. This rule 
is integrated in PAI-OFF by means of various state features derived from the 
measured discharge.  

Features derived from the observed discharge: 

The discrete actual discharge is used as a feature: 

)t(Q)t(F 00 =  (equation 27) 

with Q(t0) = actual flow at time t0 

Furthermore, the mean runoff in a defined time period is related to the basin 
internal state. The corresponding feature is the mean runoff in the interval 
{ }Lt,t −00 , which writes as: 
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 (equation 28) 

with: l = actual lag and L =.maximum lag, spanning { }Lt,t −00   
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Here L can be used for introducing various spans for the features. It can be 
advantageous to employ various mean runoff features for the PAI-OFF net, e.g. 
one for a mean flow over the last three days, one for the mean flow over the last 
week and a third one for the mean monthly flow. This is allows for taking into 
account the specific internal hydrologic pathways of the considered catchment 
during the setting up of PAI-OFF.  

As the observed discharge is most influenced by the conditions that prevailed 
just before the event, a weighted mean is introduced in PAI-OFF. It gives most 
importance to the discharges just before t0: 

∑

∑

=

−

=

−
−

=
L

L

e

e)t(Q
)t(F

0

0
0

0

l

l

l

l

l

τ

τ

 (equation 29) 

with: τ  = constant denoting the initial time step for the weighting in hours. This 
constant reflects the length of hydrologic memory of the catchment. It becomes 
thus possible to distinguish catchments with highly dynamic runoff processes 
from catchments with inert hydrological processes. If the user does not have 
access to such kind of information, the parameter can be optimized by means of 
stepwise serial regression during the set up of PAI-OFF.  

Equation 29 results in a weighted mean. But, for flood forecasting it is essential 
to evaluate information about the gradient of the flow too. To this end, a special 
feature based on the Lagrange interpolation polynomial allows considering the 
gradient over the 5 preceding discrete values, starting from the actual flow. It is 
calculated as: 

 

5))0Q(t124)0Q(t753)0Q(t2002)0Q(t3001)0Q(t300)0Q(t137(
60
1)0F(t −+−−−+−−−+−=  

  (equation 30) 

Extreme flows are an additional valuable indicator for evaluating the catchment 
internal state history within the interval{ }Lt,t −00 . PAI-OFF therefore allows 

for incorporating this information by the state features for low and high flow: 
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Another important source of information describing the basin internal state is the 
precipitation history. Consequently, a significant number of state features are 
based on observed precipitation:  

Features derived from observed precipitation: 

The mean precipitation in the interval { }Lt,t −00  yields information about the 

state of wetness of the considered catchment. It is calculated with: 

∑
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with: P = actual precipitation at time t0 

In analogy to the weighted discharge, a feature allows for describing 
precipitation as a function of time to underline the importance of the last time 
steps before the onset of the event: 
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 (equation 34) 

The reaction of a watershed to precipitation input depends strongly on the 
temporal distribution of the precipitation intensity. I.e. the discharge from a 
watershed that receives 30 mm in 3 equal shares of 10 mm differs a lot from that 
of a watershed which is stimulated by a 5 mm, 20 mm, 5 mm rainfall 
distribution. This simple rule also applies for the basin state description. 
Consequently, the relation of peak and mean values in the interval { }Lt,t −00  is 

evaluated in PAI-OFF: 
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 (equation 35) 

So far, the precipitation based features describe the wetness state of the 
catchment by mean values and the relation of peak to mean values. The temporal 
distribution of the rainfall volume within the considered pre-event period yields 
additional information. It makes a great difference if the previous history of the 
considered event is characterized by more or less equally distributed 
precipitation or by periods of intense rainfall or dryness. The number of time 
steps with precipitation ≥ threshold Θ  in { }Lt,t −00  reveals information about 

the density of the preceding rainfall: 
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Long dry periods influence the basin internal state. Consequently the basin 
response to a rainstorm after a long dry period differs greatly from the reaction 
caused by an event hitting the catchment under normal conditions. The time 
steps without precipitation are weighted for the interval{ }Lt,t −00 . 
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with: kd  = length of period k without precipitation  

Last but not least, the precipitation peak value of the preceding history might 
have a significant influence on the formation of a flood event. Thus a feature 
allows for taking into account the filtered and weighted peak rainfall in the 
interval{ }Lt,t −00 . 
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Apart from discharge and precipitation, other factors influence the hydrological 
state of a catchment. Evapotranspiration drains the soils of catchments and 
might therefore be an important factor controlling the onset of a flood event. 
PAI-OFF consequently offers the possibility to directly include information on 
global radiation and air humidity for portraying this process.  

Features based on global radiation: 

Global radiation is the driving force of evapotranspiration. To this end is 
considered in two features. The mean feature and the weighted mean feature 
according to equations 40 and 41. 

∑
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 (equation 41) 

where G(t) denotes the global radiation at time t.  

Features based on air humidity: 

In PAI-OFF air humidity is represented by means of two features in analogy to 
the global radiation:  
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 (equation 43) 

M(t) denotes the relative air humidity. This parameter may be replaced by the 
vapour pressure in case this data is more easily accessible. 

  



90  4 The PAI-OFF flash flood forecasting methodology 

Features based on the vegetation period:  

The vegetation activity represents another important aspect for correctly 
portraying catchment pre-event conditions is. It influences the flood formation 
in two ways: It affects evapotranspiration and it changes the basin properties 
with respect to interception and overland flow resistance. Vegetation activity is 
defined as a function where 0 is no activity and 1 represents full vegetation 
activity. This function reflects specific characteristics of the considered 
catchment, not only with respect to the climatic conditions, but also regarding 
human impact on the catchment state, such as deforestation, mining or 
agricultural practices. An exemplary function is depicted in figure 39.  
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figure 39: Exemplary vegetation activity function for a typical East German 
mountainous watershed 

PAI-OFF offers three features for characterizing the vegetation activity : 

The discrete actual value, where V(t) = the vegetation index [0;1] at time t: 

)t(V)t(F 00 =  (equation 44) 

The mean activity in the interval { }Lt,t −00 : 
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The weighted activity: 

∑
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  (equation 46) 

Features derived from measured temperature: 

Without accounting for temperature, PAI-OFF would not be able to model the 
snowfall, snow storage and snowmelt process. The possibility to include this 
information is offered by means of two relevant features:  

Mean temperature in the interval { }Lt,t −00 : 
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Weighted mean with exponential kernel: 
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 (equation 48) 

T(t) is the temperature at time t. 

The listed features encompass all the relevant processes in a typical Central 
European medium range mountainous watershed. Thus, it is possible to transfer 
the PAI-OFF methodology to any catchment with the same characteristics. If 
PAI-OFF is used in catchments with different basic rainfall-runoff 
characteristics, features can be adapted in the course of the set-up of the system 
(e.g. it might be favorable to increase the total feature length for flat catchments 
with deep soils. PAI-OFF thus reflects the longer hydrological memory of such 
catchments). If this is not leading to a satisfactory performance, new features 
can be used for exploiting available flood relevant data routinely recorded in 
order to include the important specific information of the catchment. This 
applies for example for plain catchments in Northern Germany. Here, the runoff 
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process is influenced by water exfiltrating from the shallow groundwater 
storage. Additional features like e.g. groundwater depth can provide the 
necessary additional information. For the application in different climatic zones 
it is important to adapt the vegetation activity. The scheme shown in figure 40 
demonstrates the incorporation of state features for the whole catchment and 
additional features from two orographic zones (OroZone 1 and OroZone 2) into 
the PAI-OFF system. (Orographic zones are explained in the following section)  
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figure 40: Incorporation of state features into the PAI-OFF net  

4.3 General feature selection strategy 

Input vector selection is one of the key points of the PAI-OFF methodology. The 
PoNN includes the recorded information which is relevant for the flood 
formation in the considered catchment via the characteristic features. Generally, 
the considered watershed characterizes the input vector selection process. i.e. the 
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selection has to match the specifics of each modelled catchment. A 
comprehensive proceeding encompasses the principles of selecting 
representative features for any type of watershed, guaranteeing the overall 
applicability of the PAI-OFF methodology: 

The selection process is a three-step procedure: The first step allows for 
considering important basic response characteristics at the entire basin scale, i.e. 
it covers the entire range of possible flood formation patterns in the whole 
catchment. Here precipitation and temperature as well as the observed discharge 
time series play the key role. These data yield integral information about the 
current state of the basin and its impact on the potential flood formation in 
reaction to a rainstorm. Consequently, a wide frame of features considering 
mean flows, low flow indices etc. is best suited for this first step.  

In a second step, the study area is divided to consider sub basin scale 
hydrological particularities, again with the focus on characterizing the pre-event 
conditions. Therefore the orographic zones are delineated. An orographic zone is 
a part of the considered watershed which is defined by similar characteristic 
attributes. These attributes can vary according to the location of the catchment 
and the catchment characteristics, i.e. in a mountainous catchment the 
orographic zones are most likely to be defined according to elevation bands 
whereas in more uniform terrain the orientation might play the key role. The 
zones allow for taking into consideration special conditions of the watershed– 
i.e.orographic rainfall due to a mountain ridge within the basin etc.. The zones 
are particularly important if the rainfall-runoff process is distinctly influenced 
by the temperature regime, i.e., the processes of snow storage and snow melt 
affect the flood formation. Within the orographic zones, characteristic state 
features are derived by the formulae listed in the preceding section.  

In a last step the watershed is divided into areas of similar hydrologic response. 
Within these zones precipitation is converted to hydrologic response features 
according to the procedure described in section 4.1. This opens the possibility to 
incorporate catchment specific flow paths into the neural network. 

Generally it is not always indicated to use all the potential features in the net 
training process. On the contrary, if some features contain redundant 
information, it is best to eliminate these before the training process starts. This 
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makes the training faster and enhances the predictive power. Such a selection is 
always made in the set-up process. It is achieved by a preliminary application of 
the stepwise serial regression presented in chapter 3.2. Therefore, all features are 
offered to the regression. Then the ones which are contributing most to 
minimizing the objective function (equation 22) are selected for further use. If 
ΔR (equation 21) does not clearly reveal a threshold value for discriminating 
between important and redundant features, a semi-logarithmical graphical 
evaluation can help detecting the important features. 

4.4 Pre-processing of relevant input information 

Like all other neural networks, polynomial nets are sensitive to the data input 
characteristics (Kaastra and Boyd, 1995). Data pre-processing can have a 
significant effect on the model performance as different vectors span different 
ranges. Ensuring that all features receive equal attention during the training 
process (Maier and Dandy 2000) can be achieved by standardisation.  

For all datasets considered in the PAI-OFF methodology, all characteristic 
features are normalized linearly in the range of [0,1] before the training. The 
normalization is based on the following standard equation: 

minmax

mini
norm

XX
XXX
−
−

=
 (equation 49) 

with:  X norm = the normalized variable 

Xi  = the variable 

X min = the minimum value of the related variable 

X max = the maximum value of the related variable 

4.5 Operational principles of PAI-OFF  

The operation of PAI-OFF is easy, fast and reliable. A key point to ensure this 
quality is a comprehensive training database covering all possible types of flood 
formation patterns and all flood relevant catchment pre-event conditions. The 



4.5 Operational principles of PAI-OFF 95 

training database consists of two parts: the meteorological scenarios (input) as 
well as the runoff (output) section. The most important input data are 
precipitation and temperature, but generally, taking into account additional data 
(e.g. global radiation, wind speed, air humidity) allows for a more detailed 
portrayal of the catchment internal state. The PAI-OFF database consists of 
continuous hourly data for all the meteorological parameters. This data must be 
provided preliminary to the set up phase. The available meteorological data is 
typically a collection of observed events or periods. Usually, this does - by far - 
not satisfy the requirements of a comprehensive database. Therefore, a 
combination of historical data and synthetic rainfall events can be used to 
enlarge the database and fill “gaps” in the range of unobserved extreme 
precipitation events. To this end, PAI-OFF offers a characteristic rainfall 
generator (see appendix 2). With this tool, synthetic rainfall events can be 
inserted into existing time series of precipitation data. A prerequisite for the 
generation of precipitation events is a comprehensive meteorological 
characterisation of the considered watershed. This is necessary to provide the 
rainfall generator with the catchment specific information that is required to 
produce the precipitation events for the database. In detail the information 
provided to the generator are: maximum possible hourly rainfall rate, volume of 
the rainfall event, duration of the rainfall event, distribution and distribution 
characteristics of the rainfall (uniform, normal, skewness, noise), extension of 
advective events, path and speed of convective events (figure 63, appendix 2). 
Once the observed plus the generated events cover the whole range of possible 
flood patterns, the validated catchment model is transforming the meteorological 
section of the database to the output section. For each rainfall scenario an output 
vector characterizes the catchment response in the form of a discharge 
hydrograph at the basin outlet. According to flash flood characteristics, it is 
important that the time step of the data base be in hourly - or a finer resolution. 
If the available resolution is coarser, downscaling has to be employed to 
transform the data. A detailed description of data disaggregation goes beyond 
the scope of this work.  For rainfall Lanza et al, 2001; Gyasi-Agyei, 2005; 
Sivakumar et al, 2001; Pegram and Clothier, 2001; Mackay et al, 2001; 
Koutsoyiannis and Onof, 2001 present a vast range of applicable approaches.  
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figure 41: Principle structure of the training database. 

In figure 41 the structure of the database is exemplarily shown for 5 scenarios. 
The database consists of n pairs of meteorological scenarios and the 
corresponding runoff scenarios. Here, the number n depends on the result of the 
meteorological characterisation; it is the number of all possible, meaningful 
scenarios of rainfall and other meteorological variables influencing the runoff 
formation. As a result of the complexity of the processes involved, n results in 
values >1000 scenarios for a typical Middle European mountainous watershed. 
The vectors in the meteorological scenarios of figure 41 can be interpreted as 
different input parameters (i.e. precipitation, temperature, air humidity, etc.). 
The right hand side of the figure represents the catchment reaction, which is 
different for each input scenario. The established input and output sections of 
the training database subsequently serve for training the Polynomial Neural 
Network (PoNN) according to section 3.2. 
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5 Test application: Online flood forecasting at 
Kriebstein gauging station 

The system performance is tested in this section. The target is predicting the 
2002 flood with a peak flow error of less than 10 %. This flood is the largest 
event ever recorded at the gauging station. In figure 42 Kriebstein dam is shown 
under normal flow conditions. In the right fore of the picture, the spillways are 
active, inundating the power station during the 2002 flood. The dam is located 
about three km upstream of Kriebstein gauging station, the reference gauge of 
this application (figure 45). 

 

figure 42: Kriebstein dam during the 2002 flood event (www.wikimedia.de/ 
www.doebelnerleben.de) 

5.1 Study area 

Kriebstein catchment area is situated in the East German Ore Mountains 
(coordinates: 51°04´- 50°23´ north; 12°47´ - 13°41´ east), it covers 1757 km². 
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The ridge of the mountain range - running from southwest to northeast - 
represents the upper boundary to the south of the watershed (figure 43). The 
catchment and consequently the flow direction are predominantly aligned from 
south to north. Two major rivers characterize the catchment. The eastern parts of 
the catchment are drained by the Flöha river, the Zschopaus main tributary. It 
merges with the Zschopau river after 75 km river length. The Zschopau river has 
a total length of 115 km to the gauging station in Kriebstein, the outlet of the 
considered area.  

 

figure 43: The digital elevation model (left) and the slope distribution (right) of the 
test catchment 

Characteristic flow figures are given in table 13 for two headwater gauging 
stations of the main stem and the most important tributary. These two headwater 
catchments account for almost 60 % of the total catchment size and largely 
dominate the runoff formation process of the catchment. In the table, the 
characteristic flows are also given as standardized values for a 600 km² 
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catchment size for better comparison of the two sub-catchments. The two 
catchments exhibit a very similar characteristic flow pattern. Only the absolute 
flows vary slightly due to the more pronounced conditioning of this figure by 
local rainfall distributions for the considered event.  

table 13: Flow characteristics for the headwaters of Flöha (Borstendorf gauge, 644 
km”) and Zschopau (Hopfgarten gauge, 529 km² )as well as the standardized 600 
km² catchment. 

 Zschopau 
[m³/s] 

Zschopau 600 km² 
[m³/s] 

Flöha 
[m³/s] 

Flöha 600 km² 
[m³/s] 

Absolute low flow 0.1 0.1 0.2 0.2 

Mean low flow 1.4 1.6 1.67 1.6 

Mean annual flow 7.9 9.0 9.2 8.5 

Mean winter flow 9.7 11.0 11.2 10.4 

Mean summer flow 6.2 7.0 7.1 6.6 

Mean high flow 81.2 92.1 91.3 85.1 

Absolute high flow 420 476.4 540 503.1 

 

Meteorology 

Mean annual precipitation in the catchment ranges from 600 to 1200 mm. The 
higher rates are caused by orographic precipitation near the Ore Mountain ridge. 
This is due to the strong tailback effects observed when the predominant 
westerly winds hit the mountains. The lower rates are observed in the northern 
part of the watershed, which is quite flat and does not benefit from orographic 
precipitation. The lowest monthly precipitation is recorded in February and 
November. Highest rainfall rates are measured in July, when most solar energy 
is available for intensive convective precipitation. From April throughout 
September, nine heavy precipitation events occur on a monthly average. 
Depending on altitude and exposition, the snow coverage ranges from 25 to 200 
cm in average for the winter months. The snow cover might last from November 
throughout April on higher and northerly exposed surface areas. Mean 
temperature is around 10°C in the lower areas of the catchment. This figure falls 
to about 6°C in areas near the ridge. For the vegetation period the temperatures 
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average between 14 and 17°C. table14 exhibits the means monthly temperatures 
of for Fichtelberg a station representative for the high catchment areas. The 
corresponding evaporation rates range from 300 mm/a to 600mm/a, this is 
roughly half of the precipitation quote. 

table 14: Mean monthly temperatures of Fichtelberg station (1992-1998). 

°C Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

Fichtelberg -3.55 -3.13 3.78 8.43 11.68 16.50 15.23 14.78 11.50 3.50 -0.13 -0.95

 

Geology and morphology 

The Ore Mountains emerged as a result of the alpidic formation, when high 
pressure was exerted by the North American continental drift. As a result of the 
alpidic block massive, constantly eroded by the rivers, the Ore Mountains today 
present themselves as a furrowed plateau gently inclined from north to south. 
The southern part of the watershed is steeper (15%), while the northern part of 
the catchment only exhibits slopes of around 3 %. The bedrock of the Ore 
Mountains consists of by gneiss, mica slates and granite. Near the ridge, at 
altitudes around 900 MSL, the slope abates; elevated plains favour the 
development of fens. Valleys with steep slopes and broad bottoms characterize 
typical landscapes. In the lower reaches, the valleys open up, the floodplains 
broaden and the slopes are less steep. 

Soils 

Characteristic soils of the Zschopau catchment are dominated by silt, loam and 
clay. The soils are largely a product of gneiss weathering. In the upper regions 
soil depth varies from a few cm to about 1m. The thin soil layers are mainly 
attributed to the steep slopes of the upper valleys. Thick soil layers can be found 
in valley bottoms and on elevated plains. Soil depths of more than 3m can be 
found in the lower parts of the catchment. The main soil types are: silt (42%), 
clay sand (37%), 21% sandy loam and -marginal- organic soils in fens. In the 
northern parts of the catchment the fraction of clay and silt increases. For a 
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better understanding of the soil morphology, the lithofazies are illustrated in 
figure 44. 

 

figure 44: Landuse (left) and Lithofazies (right) of the test catchment 

Landuse 

Agriculture is the dominant landuse in the catchment, it accounts for 64 % of the 
area (figure 44). On high or steep areas stock farming prevails. In the lower, 
warmer and gently shaped parts crop farming is the predominant agricultural 
characteristic. The later accounts for about 80 % of the agricultural activities 
within the watershed. Roughly 5 % of the catchment is covered by human 
settlements. 29 % is attributed to forest. Here again a pronounced dependency 
on the altitude divides lower deciduous and mixed forests from the purely 
coniferous stands on the high catchment areas. The effective root zone in the 
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forests reaches down to 90 cm. This values is somewhat higher for crop stands 
with up to 120 cm. 

 

figure 45: Zschopau (mean flow) at Kriebstein gauge cross section (in flow 
direction).  

5.2 Hydrological catchment modelling 

The WaSiM model is used to describe the basin response characteristics for the 
test application. The catchment model is set up according to the dynamic 
parameterisation strategy (described in section 2.5.2). 

5.2.1 Data and model structure 

Consistent meteorological data is available for the years 1953 throughout 1999 
for the whole catchment on a 1 km² grid. This data includes precipitation, 
temperature, wind speed, global radiation and relative air humidity. WaSiM is 
driven by this data. Wind speed, global radiation and air humidity are used 
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exclusively in the Penman evaporation module. The temperature additionally 
serves to run the snow module. Furthermore soil and landuse grids are required 
to run WaSiM. This data is derived from the Bük 200 and Corine (2000) 
respectively. Runoff data is available for the events shown in table 15 at 
Kriebstein gauge 

table 15: Available runoff events for model testing (events with hourly measured 
data are italic). 

02.07 – 06.08.1954 01.01 - 03.02.1968 02.05 - 23.05.1978 14.03 - 25.04.1988 

01.01 - 20.05.1955 28.03 - 19.05.1969 18.07 - 08.08.1980 01.01 - 06.02.1989 

01.07 - 02.09.1955 06.04 - 01.06.1970 17.03 - 27.03.1981 29.06 - 20.07.1992 

19.07 - 09.08.1957 06.03 - 21.05.1973 01.01 - 26.02.1982 08.03 - 29.03.1993 

20.06 - 01.08.1958 10.01 - 07.02.1974 29.07 - 26.08.1983 27.05 - 01.07.1995 

14.10 - 25.11.1960 01.12 - 31.12.1974 23.05 - 13.06.1986 26.08 - 16.09.1995 

05.03 - 06.06.1965 04.01 - 29.01.1975 01.01 - 16.01.1987 29.06 - 27.07.1996 

16.01 - 24.02.1967 25.07 - 22.08.1977 30.01 - 24.04.1987 07.03 - 04.04.1998 

10.03 - 20.04.1968    

 

For thorough modelling, events with hourly raw data quality are considered 
exclusively. This fact significantly reduces the number of available events. The 
suitable events are shaded in table 15. One exception is made here. The late 
1974 event is included in the parameterisation study because of its exceptional 
tempestuousness.  

WaSiM is set up following the natural structure of 17 subcatchments (figure 46). 
Seven of these subcatchments are equipped with gauges (table 16). This 
structure also allows for a distributed “internal” validation of the catchment 
model whenever data is available. Where possible, all available runoff data of 
the subcatchments are used in the calibration process of the model. 
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figure 46: Schematic illustration of the 17 subcatchments and 7 gauging stations 
used in the study 

table16: Gauged subcatchments of the study area 

Nr. Gauging station River Area [km²] 

1 Kriebstein UP Zschopau 1757 

2 Hetzdorf Flöha 760 

3 Borstendorf Flöha 644 

4 Hopfgarten Zschopau 529 

5 Pockau1 Flöha 385 

6 Streckewalde Peßnitz 206 

7 Zöblitz Schwarze Pockau 129 

 

5.2.2 Model performance for a singular parameter set in the test 
catchment  

The event data shown in table 15 has been checked for a consistent model input 
data quality. After this check only 13 events remained for the testing. The events 
are shown in figure 48. The 1996 event is automatically calibrated minimizing 
the rooted mean square error of observed and modeled peak flows with the aid 
of the SCEUA-method. A number of 40 different start values was used to avoid 
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“getting stuck” in a local minimum during the optimization process. The 1996 
event has been selected because it is a typical medium-sized event. It was caused 
by advective rainfall and possesses no singular characteristics. It is therefore 
well suited for calibration purposes. The performance of the calibrated model is 
shown for all the available internal gauging stations in figure 47. 
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figure 47: Calibrated WaSiM performance for 1996 

The time lag at Kriebstein gauge catches the eye at first sight. It is most 
probably due to the erroneous interpolation of rainfall data for the lower part of 
the catchment. The headwaters are less exposed to this source of error as shown 
in figure 47. The validation of the calibrated model is shown in figure 48. 
Validation of the smaller and medium sized events yields a convincing 
agreement between observed and modelled flow peaks at Kriebstein gauging 
station as long as the model is validated for similar maximum peak discharges. 
For the four highest events of figure 48 the model calibration leads to 
unsatisfactory validation results.  
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table 17: Mean relative peak error of the 12 validated events 

All events Large events Small events 

Mean relative peak error [%] 36 78 15 

In table 17 the visual interpretation of figure 48 is confirmed. The RSME for the 
four largest events is more than 5 times higher than the validation error criterion 
of the eight smaller flood events. This outcome is not surprising if we recall that 
singular model parameter sets are not able to account for all possible types of 
event characteristics. The processes dominating extreme floods are different 
than the governing processes of common floods. The model is calibrated for the 
1996 event, the optimal model parameter set reflects the specifics of this rather 
common flood event with a return period of ~ 15 years. Therefore the model 
completely fails to represent the extreme floods with return periods > 30 years. 
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figure 48: Calibration and validation performance of the singular parameter set 
for small events.  

WaSiM As a consequence of the awareness that an approach based on a singular 
parameter set is unattractive for flood forecasting the dynamic calibration 
strategy (section 2.5.2) is introduced for the test application: 



5.2 Hydrological catchment modelling 107 

5.2.3 Dynamic parameterisation for the test application 

As described above, it is extremely difficult, if not impossible to describe the 
whole spectrum of flood events with one single model parameter set. For 
modelling the discharge at Kriebstein, the considered events have therefore been 
divided into two classes. Separation criteria are the peak discharge rates. The 
first class comprises common flood events up to a return period of about 20 to 
25 years. The second class of events represents the “extreme” floods, it 
comprises the four highest events ever recorded (the flood events which could 
not be validated successfully with a single parameter set type of model in 5.2.2). 
For the two classes, two WaSiM models are calibrated and validated separately. 
The parameter set for the common event class was calibrated for the flood event 
in the summer of 1996, according to the procedure described in 5.2.2. The 
extreme flood parameter set was calibrated for the 2002 flood event and 
validated for the three other data sets (1954, 1958 and 1974). The calibration 
criterion is the weighted sum of the timing error (measured-modelled) of the 
peak discharge and the RMSE of the peak discharge value. This criterion 
reflects the basic purpose of flood forecasting: Human life and material values 
are to be protected from loss or damage due to flood events by the earliest 
possible warning in terms of the timing and magnitude of a dangerous event.  

The calibration performance of the model describing the extreme flood events is 
shown in figure 49. The slight deviations in the rising limbs between observed 
and modelled hydrographs are the result of inadequate input data interpolation, 
not covering the first little “pre-peak”. The systematic underestimation in the 
falling limb of the hydrograph is not covered by the calibration criterion and can 
therefore not be addressed with this parameter set. However, this does not 
interfere with the aim of predicting the rise and the peak of the considered flood 
events. Here, the calibration is excellent and robust in the context of the 
convincing peak fit for all the sub basins. The performance of the 
parameterisation for the common events is not shown, it is equal to the singular 
parameter set performance and shown in figure 48. 
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figure 49 WaSiM performance for the 2002 extreme event at the 7 gauging stations 
(calibration) 

Validation the extreme class parametrisation leads to the results shown in figure 
50. The events 1954 and 1974 are well portrayed with a mean relative peak error 
of about 10%. The validation of the 1958 event is of poorer quality. Taking into 
consideration the poor data situation and the difficulty to re-check the input data 
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this result can not be explained satisfactorily. Nevertheless, the theory about the 
bad data quality of the 1958 event is supported by the validation performance of 
the singular parameter set WaSiM. Here also, the 1958 event is heavily over-
predicted.  
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figure 50: Calibration (red) and validation (green) for extreme events for the 
dynamic method. 

At this stage the principle of sigmoidal weighting (described in section 2.5.2) is 
applied to merge the results of the different parameter sets. An exemplary event 
from the extreme class is shown in figure 51. It can be seen that the merged 
model for this event (the dark blue line) well follows the parameterisation for 
the extreme event class for the peak flow. In the recession phase, when the 
observed flow falls back into the range of the small event class calibration this 
becomes more dominant in the merged model. 
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figure 51: Sigmoid-merged hydrograph of the 1954 event  

The excellent validation results for all events are shown in table 18 and in figure 
52. The overall relative peak error is decreasing from 36 % to 16 % when 
applying the strategy of dynamic parameters. This is a direct consequence of the 
additional process information introduced into the calibration of the extreme 
class of events. For this class the peak error decreases from 78 % to 15 %. For 
completing this statement, figure 66 in appendix 4 shows the calibration and 
validation performance of the extreme event parameter set for all 13 events used 
in this study. The overall relative peak error of this approach is 31 %. This is 
somewhat smaller than the value given for the small class, but it has to be seen 
in the light of the very large errors for the few extreme events occurring for the 
small class parameter validation. Nevertheless, this result confirms the statement 
that the dynamic parameter set is superior to singular set with respect to the 
ability to correctly portray different types of flood peaks.  

table 18: statistical errors of the 11 validated events. 

All events Large events Small events 

Mean relative peak error [%] 16 25 15 
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figure 52: Dynamic calibration (red  and validation (blue) Kuerlb 

This application clearly shows the potential of the dynamic parameterisation and 
recommends this strategy for the generation of the PAI-OFF net training 
database described in the following section. 

5.3 Training database  

The training data base is built according to the procedure described in section 
4.5. First, the meteorological data is prepared. Here, 47 years of measured wind 
speed, relative air humidity, temperature, sunshine duration and precipitation 
data are kriged to a 1km² grid that covers the whole catchment. This data serves 
as a framework for the generation of the rainstorms, which are inserted into the 
natural precipitation time series. Because the test application adheres to the 
dynamic calibration approach described in section 2.5.2, this process is executed 
twice for all of the 1757 cells of the investigated area. The data set for modelling 
the common class parameter set contains events of up to 25 years return period. 
The extreme class parameter data set consists of rainstorm data which lead to 
flood event with a return period > 25 years. The database now consists of two 
sets of 47 years of meteorological data; this leads to a total of 94 years (823440 
hourly time steps) on the input side of the training database. Advective as well 
as convective storms are taken into account in the database. These events are 
generated for given rainfall intensities and storm durations on the basis of the 
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probable maximum precipitation of the area (DWD 1997). The rainstorm 
scenarios mirror the catchment typical meteorological behaviour, i.e. the 
parameters of the generated rainfall hydrograph which portray the local situation 
with respect to: 

 The event shape and skewness;  
 The drift direction and velocity of advective storm events; 
 The location of the rainstorm centre and the radius of convective events. 

Basic details of the precipitation generator are described in appendix 2. The 
most important features of the generated precipitation series are shown in table 
19. Here the main difference between the normal and extreme set is the 
generated number of events per year. This arises from the simple fact that the 
extreme events are characterized by much longer recession phases. No further 
events are inserted into these periods because this would lead to an unrealistic 
soil moisture state of the catchment for the training data. The total training data 
comprises less than the 823440 potential time steps resulting from the two 
model parameterisation variants for 47 years of hourly data. This is a result of 
concentrating this exemplary study to summer flood events. This practical 
approach allows for a faster training, whilst the forecast performance for the test 
flood does not suffer from the restriction to the snow-free periods, because it 
occurred in August.  

table 19: Characteristics of the two generated precipitation series. 

Series Years Nr. of 
years 

Events per 
year 

Total nr. 
events 

Total training 
time steps 

Normal 1953-99 47 28-30 1351 240264 

Extreme 1953-99 47 13-18 345 236656 

∑ - 94 - 1696 476920 

 

In the second step of setting up the database WaSiM is used to transform the 
meteorological input data to the corresponding hydrograph according to figure 
41. Because of the rapid catchment response to rain storm events (especially in 
the steep upper parts of the catchment) we use a time step of 1 hour for all 
processes involved. This refers especially to rainfall series, wind velocity, 



5.4 Characteristic features for the Kriebstein polynomial net 113 

radiation, temperature and air humidity. The transient character of seasonal 
variation with respect to plant growth and its impact on soil water dynamics and 
evapotranspiration is taken into account by dividing the year into four distinct 
vegetation periods. The soil hydraulic parameters originate from the official soil 
map of the area (Bük 200) and the land use data was derived from Corine 
(2000). The Zschopau river down to Kriebstein is characterized by a steep 
bottom slope without backwater effects, which allows employing the translation 
– diffusion approach for the flood routing. As it has been discussed in section 
2.5.2 it is not feasible to operate a model with a single set of parameters in the 
context of reliable flood forecasting. Therefore, this test application takes full 
advantage of using the strategy of dynamic calibration. The result of the two 
WaSiM model runs (one for the extreme meteorological data set with the 
extreme class parameter set and one for the common data and parameters set) is 
then merged according to equation 7. Now the training database is fully 
established and the characteristic input vectors have to be defined in order to 
train the polynomial neural network. 

5.4 Characteristic features for the Kriebstein polynomial net 

This section describes the selection of input for the net training. All the possible 
features described in section 4 are tested by means of the stepwise serial 
regression method used also for training the net. With this method it is easy to 
discriminate the important features from redundant information. As illustrated in 
section 4.3, the feature selection process starts with characteristic features 
representing the entire test watershed. For Kriebstein the result of stepwise serial 
regression yields the features listed in table 20. In the second step, the catchment 
it is divided into orographic zones. This is necessary because the temperature 
and precipitation regimes vary with the height above mean seal level. For the 
test watershed three orographic zones (OroZone) are used. Their delineation is 
based on a well-balanced representation of different characteristic temperature 
zones in the model by means of elevation band thresholds. This approach results 
in the Orozone 10000, which covers the area below 400 MSL OroZone 10400 
reaches from 400 to 800 MSL, and the uppermost OroZone 10800 represents the 
parts of the watershed with heights > 800 MSL. 



114  5 Test application: Online flood forecasting at Kriebstein gauging station 

table 20: State features covering the whole catchment in the test application 

Number Description 

1 Mean actual precipitation for the whole catchment 

2 Mean monthly precipitation for the whole catchment 

3 Vegetation activity index 

4 Absolute monthly low flow 

5 Absolute monthly peak flow 

6 Mean weekly flow for the whole catchment 

7 Monthly mean flow 

8 Gradient of flow over the last 6 hours 

9 Actual flow at Kriebstein gauge 

 

figure 53: Kriebstein: digital elevation model (left) and orographic zones (right) 
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The features for the zones are again evaluated by means of stepwise serial 
regression. In table 21, the significant features are listed for all zones. 

table 21: Orographic zones based state features used in the test application of PAI-
OFF for Kriebstein gauging station.  

Number PAI-OFF internal 
code 

Description 

10 WMN10000 Mean weekly precipitation in OroZone 10000 

11 WMN10400 Mean weekly precipitation in OroZone 10400 

12 WMN10800 Mean weekly precipitation in OroZone 10800 

13 WMT10000 Mean weekly temperature in OroZone 10000 

14 WMT10400 Mean weekly temperature in OroZone 10400 

15 WMT10800 Mean weekly temperature in OroZone 10800 

16 TMT10000 Mean daily temperature in OroZone 10000 

17 TMT10400 Mean daily temperature in OroZone 10400 

18 TMT10800 Mean daily temperature in OroZone 10800 

 

It is eye-catching, that the stepwise serial selection of relevant state features 
(tables 20 and 21) only identifies features based on precipitation and 
temperature. These two processes are of overarching importance for the flood 
formation. One exception from this rule is the vegetation activity index, which is 
a significant source of information for the polynomial net in the test catchment. 
It is unnecessary to incorporate humidity and global radiation as input features 
into the forecasting system for the test site. The vegetation activity alone is 
suitable to describe the effects of transient climatic characteristics for the 
catchment, thus portraying the annual changes in the catchment. This is a typical 
phenomenon for the latitude of the test catchment. The vegetation activity is a 
mirror of global radiation. It also correlates with the dynamics of the daily 
humidity dynamics.  

The third step divides the watershed into area of similar hydrologic responses 
(AHR). This is done on the basis of overland flow times (figure 54) calculated 
according to Schulla (1997). The travel times are then combined in groups 
starting from points along the channels in the catchment (table 23). Kriebstein 
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gauge is the first outlet of a area of similar hydrologic response. The other zones 
are then defined one by one moving up the channel network. The criterion 
herein is the formation of groups with not more than 4 hours internal flow time 
difference. This holds for all area of similar hydrologic responses except the 
one, which is situated just above the catchment outlet. This area of similar 
hydrologic response comprises eight hours instead of four. This is due to the 
relatively smooth topology, where overland flow is inert.  

 

figure 54: Travel time (left) and areas of similar hydrologic response (right) for 
the test watershed 

For each area of  similar hydrologic response, one hydrologic response feature is 
determined according to the standard procedure described in section 4.1. The 
relevant features are listed in table 22. 
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table 22: Hydrologic response features used in the test application of PAI-OFF for 
Kriebstein gauging station. 

Number Description 

1 Hydrologic response feature for area 801 

2 Hydrologic response feature for area 1202 

3 Hydrologic response feature for area 1203 

4 Hydrologic response feature for area 1604 

5 Hydrologic response feature for area 1606 

6 Hydrologic response feature for area 1607 

7 Hydrologic response feature for area 1608 

8 Hydrologic response feature for area 1609 

9 Hydrologic response feature for area 1610 

10 Hydrologic response feature for area 2005 

11 Hydrologic response feature for area 2011 

12 Hydrologic response feature for area 2012 

13 Hydrologic response feature for area 2013 

 

After all the characteristic features are available, the product vectors are derived 
by permuting the total of the state and hydrologic response features by means of 
equation 17. The total number of possible permutations is restricted in the 
operational PAI-OFF by a simple rule (trimming): The combination of state 
features and hydrologic response features of differing subcatchments is 
suppressed. This trimming is based on to the fact that combining the hydrologic 
characteristics of a certain sub basin with the mean temperature of a far away 
and disconnected area does not yield any meaningful process information. In 
spite of this technique, the total number of vectors employed is still considerable 
(table 24). 
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table 23: Mean travel time of similar hydrologic response areas of  figure 54 

Time Travel Zone Travel Time (h) Time Travel Zone Travel Time (h) 

Zone 0801 08 Zone 1608 16 

Zone 1202 12 Zone 1609 16 

Zone 1203 12 Zone 1610 16 

Zone 1604 16 Zone 2011 20 

Zone 2005 20 Zone 2012 20 

Zone 1606 16 Zone 2013 20 

Zone 1607 16   

 

In the net training the hydrologic response features are used in the “raw” form p 
as well as in the powered forms p² and p³. The application of the powered 
hydrologic response features improves both training (43 % MSE) and validation 
(38% MSE) of the PoNN if compared to the lagged kernels described Schmitz et 
al (2006). The set of features in the training contains i = 18 state features and j = 
13 „raw“ hydrologic response features (39 hydrologic response features when 
the powered features are counted). Appendix 3 contains a tableau of the features 
used in the application. The possible combinations for three state features and 
three hydrologic response features are exemplarily visualized in figure 65 
(appendix 3). 

table 24: Number of product vectors used in the training 

Product vectors Trimmed product vectors

45599 14957 

 

All of the PAI-OFF features are now available. Together with the database 
described earlier they are the basis of the PoNN training with stepwise serial 
regression. 
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5.5 PAI-OFF Training 

The training is performed using data from 1953-1971 and 1982-1999. This 
equals a total of 1060 flood events, describing all the possible flood formation 
constellations in the test catchment. The years 1972-1981 are excluded from the 
training and used for testing (validation) the predictive performance only. The 
validation part of the database consists of 150 flood events. The training in this 
test application adheres to the principles described in section 3.2. A separate 
PoNN is trained for each pair lead-time step from 2 to 48 hours separately. This 
results in 24 training loops for 24 separate nets. Each loop employs stepwise 
serial regression to train the matrix O, which encompasses 180 product vectors 
in the test case. In this section the focus is on determining how well the PAI-
OFF PoNN portrays the hydrological catchment model. 

Evaluating the PoNN performance with the part of the database, which is 
reserved for validation, gives evidence about the predictive performance of the 
final operating system. To this end, three criteria are used. The first criterion is 
the dimensionless Nash-Sutcliffe-Efficiency. It is one of the most commonly 
used measures to assess the predictive power of hydrological models. A second 
criterion (figure 55) is the peak-to-peak error (PPE), calculated from the 
database output and the predictions of PAI-OFF. This relative error describes the 
mean difference between the peak flow values for all the events used in the 
validation process. And last but not least, the PPT describes the error in the peak 
timing in hours. 
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figure 55 Error criteria used to evaluate the predictive power of the PoNN 

The training results shown in figure 57 are excellent, the Nash-Sutcliffe yields 
values > 0,97. This also holds for the validation period which encompass the 
events not used in the training process (figure 57). This result confirms the 
overall predictive power of the approach.  
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figure 56: Training and validation of the net (Nash-Sutcliffe-Efficiency). 

The Peak-to-Peak Error, which is evaluated in figure 57, allows for a more 
detailed view the flood peaks. The picture reveals a slight underestimation of the 
peak flows for lead times > 10h. For shorter lead times the peaks are slightly 
overestimated. Nevertheless, as the mean relative error does not exceed 4%, the 
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PoNN fulfils the requirements of a reliable flood forecasting system in terms of 
the ability to correctly predict the peak flow. 

In figure 58 the peak-to-peak times are evaluated. The overall behaviour of this 
error criterion well correlates with peak flow error (PPE). The figure reveals that 
the net predicts early peaks for lead times > 15, while for smaller lead times the 
net tends to predict late peaks. The mean error is less than 1h for all of the 
trained lead times. As the systems time step in the test application is one hour, 
the peak-to-peak time error of the system is negligible for the test events. All 
criteria considered, the system is able to predict the peaks at the right time with 
the desired accuracy. 
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figure 57:Training and validation of the net (peak to peak error). 
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figure 58: Training and validation of the net (peak to peak time). 
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The résumé of this training and evaluation is: The system is well trained and 
able to generalise in the context of the database which consists of training and 
validation events generated with WaSiM. In the next step, an observed extreme 
flood event is predicted with PAI-OFF in order to put the system to the test in 
the context of applicability to real data.  

5.6 PAI-OFF application: Predicting the 2002 flood event 

The system is used to predict the 2002 flood event, which did not feature in the 
training process. The aim is to predict the peak flow rate with less than 10 % 
relative error. Focus is set to long lead times (24h, 36h and 48h), because these 
are the key to a timely warning. Furthermore, the catchment has a travel time of 
about one day. This makes it desirable to test the performance for lead times ≥ 
24 hours. The forecast is separately given for the considered lead times. No 
updating or other corrective features are used, the forecast is a straight forward 
single step operation. This is the key to online Monte-Carlo evaluation of model 
uncertainty. A model which is constantly updated cannot be used for this 
purpose, because updating procedures usually interfere with internal state 
variables - such as water content of a storage – and therefore do not consistently 
predict over a whole forecast period.  

In figure 59 the results are given for the 24 hour lead time forecast. The PAI-
OFF prediction slightly under-estimates the peak flow, but stays within the 10 % 
confidence limits for the high discharge periods of the test flood. 
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figure 59: Forecast performance of the 2002 flood event at Kriebstein gauging 
station for 24 hours lead time 

 This predictive performance holds also for the 36 hour forecast (figure 60). For 
this lead time, PAI-OFF slightly-over-predicts the peak flow, but again satisfies 
the 10 % error criterion. It is also notable how well the system is able to portray 
the recession phase of the event. This must be emphasized in the light of the fact 
that the test application abstains from updating procedures. 
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figure 60: Forecast performance of the 2002 flood event at Kriebstein gauging 
station for 36 hours lead time 



124  5 Test application: Online flood forecasting at Kriebstein gauging station 

Finally, figure 61 gives the picture of the 48 hour lead time prediction. The peak 
flow relative error for the forecast is only 4.3 %. At first sight it seems 
astonishingly that the 48 hour forecast outperforms the forecast for shorter lead 
times. The latter show peak errors close to the 10 % confidence limits. But 
really, this result confirms the stability and  predictive power of the PAI-OFF. 
approach for increasing lead times.  
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figure 61 Forecast performance of the 2002 flood event at Kriebstein gauging 
station for 48 hours lead time 

Figure 63 allows for another view on the forecast performance for the 48 hour 
lead time. The four days with highest discharge of the 2002 flood event are 
separated and then sorted in descending order. It can be seen how well the 
forecast portrays the high discharges. Only when the discharge falls below 200 
m³/s, PAI-OFF under-predicts the observed flow slightly. 
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figure 62: 48h forecast sorted by discharge 

The fact that the forecast with the shortest lead-time (24h) is not better than the 
forecast with 48 hours supports the features selected here. They fully describe 
the governing processes, even for a real, unseen event. In the case of an 
application with precipitation forecast from e.g. the MM5 climate-model, the 
longer lead times might show a higher error due to the larger uncertainty in the 
meteorological forecast. Here the uncertainty arising from precipitation data is 
the same for all lead times. The differences between observed and predicted 
flows in the rising and especially the falling limb of the hydrograph are a result 
of the training strategy, which concentrates on the best possible portrayal of the 
peak flows. The results have to be seen in the light that there is no updating of 
whatever kind involved. 

Summarizing the convincing forecasts for the 2002 event yields:  

 The 10 % error criterion is satisfied for all lead times; 

 The flood dynamics is very well portrayed over the whole event without 
model updating; 

 PAI-OFF is a robust tool with excellent predictive power. 
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6 Résumé 

Flash floods are amongst the most dangerous natural hazards. Nevertheless, until 
now, current research effort did not lead to an approach mastering this 
phenomenon in the context of online forecasting (section 1.2). This is due to the 
contradiction that fast conceptual models are likely too simplistic to be used for 
extrapolation into the range of extreme flood events. Detailed, physically based 
models are maintaining more fidelity to the process, even in the context of 
predicting unseen extreme events. Unfortunately they are too slow for online 
forecasting, especially if the uncertainty of the forecast is to be taken into 
account by Monte Carlo analysis. For both conceptual and physically based 
models it is difficult, if not impossible, to find one singular set of parameters 
describing the full range of flood patterns occurring in a natural catchment.  

To address this dilemma, dynamic parameterisation, an alternative way for 
model calibration is developed in the study. The considered flood events are 
therefore classified according to the dominating processes mirrored by the peak 
flow rates. WaSiM-ETH is calibrated for the different event classes separately, 
thus reflecting the specific process characteristics of the classes. Results of the 
various model runs are then merged with a sigmoidal weighting approach to 
form an unequivocal hydrograph. This significantly improves the overall model 
performance for the peak flow rate. For the exemplary application in the 129 
km² catchment of the Schwarze Pockau River at Zöblitz gauge (section 2.5.2), 
this approach improves the overall performance from 2.6 % to 1.8 % for the 
peak error. Kriebstein gauge (the catchment is 10 times larger) is modeled in 
section 5.2.3. Here the same strategy allows for a reducing the mean peak 
RSME from 36% to 16%. The results for the smaller catchment are generally 
better than for the larger catchment. This is a consequence of the different data 
quality for the catchments. The convincing ability to reduce the peak error in 
both applications allows for a general use of this method in the context of flood 
modeling. Integrating various parameter sets for all important patterns of flood 
formation in a watershed becomes thus possible.  



6 Résumé 127 

Artificial neural networks have been proposed as an alternative to the tedious 
application of detailed, physically based model, but until now, no efficient 
strategy has been proposed to overcome the fact that they are restricted to the 
range of their training data. This training data typically consists of observed time 
series which do not encompass all the possible patterns of flood formation. This 
prevents the nets from accurately predicting extreme floods.  

PAI-OFF (Process Modelling and Artificial Intelligence for Online Flood 
Forecasting) is overcoming the above mentioned general restrictions and 
shortcomings of both hydrological models and neural networks. It is presented 
in chapter 2 of this work. This new methodology is based on a synthesis of 
physically based catchment modelling and artificial neural networks in the form 
of polynomial neural networks. Exploiting the advantages of the two modeling 
approaches allows for complying with the most important requirements of flash 
flood forecasting: low computation times, complete robustness and a 
straightforward operation alongside high predictive reliability. The PAI-OFF 
set-up is a three step process: First the considered catchment is described by 
means of a physically based, distributed process model. This model is 
thoroughly calibrated and validated according to the strategy described in 
chapter 2. The model is then used to transform all possible meteorological flood 
prone scenarios into the catchments integral response: the runoff. The 
meteorological input data, together with the corresponding runoff time series, 
form are used to build a data base. This data base characterizes the catchment in 
all flood relevant situations, taking into account the basin internal preconditions. 
It serves for training a polynomial neural network by means of the characteristic 
features described in section 4. Once the net is trained it can be easily employed 
for online flood forecasting. The outstanding computational efficiency of the 
PoNN (less than half a second per forecast), together with the new approach for 
parameterising the catchment model described in section 2.5.2 yield two 
advantages outperforming the currently available models:  

 In PAI-OFF different model parameter sets can be considered in the set-
up process. This capability of merging different process representations 
in one fast single operational system makes PAI-OFF unique, offering a 
possible way to the future generation of hydrological models. It allows 
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for specifically considering different types of flood formation patterns in 
one model. 

 The immense speed of the forecast allows for online Monte Carlo 
scenarios. PAI-OFF is thus capable of evaluating the meteorological 
uncertainty online as the event approaches. 

In the last chapter of this work, a test application confirms the predictive power 
of the PAI-OFF methodology in the 1700 km² Kriebstein test catchment. The 
system is used to forecast the 2002 flood at Kriebstein gauge for lead times of 
24, 36 and 48 hours respectively. The target is to predict the observed flow with 
a relative peak error of less than 10 %. PAI-OFF impressively meets this 
requirement for all three lead times, proving its predictive power not only for 
synthetic data but also for a real extreme flood event which was not part of the 
training data. 
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Abbreviations:  

AMS   American Meteorological Society 

ANN   Artificial neural network 

ANOVA  Analysis of variance 

ASCE   American Society of Civil Engineers 

CPU   Central processing unit 

DEM   Digital elevation model 

DYNIA  Dynamic identifiability analysis 

HRF   Hydrologic response feature 

GML    Gauß-Marquardt-Levenberg 

IoA   Index of agreement 

LM   Levenberg-Marquardt 

LMS   Least mean square 

MCS   Monte Carlo-Simulations  

MLFN   Multi layer feed forward neural network 

MSE   Mean square error 

MSL   Meters above mean sea level. 

NSE   Nash-Sutcliffe efficiency 

PAI-OFF  Process modelling and artificial intelligence for online flood 
forecasting 

PEST   Parameter Estimation 

PoNN   Polynomial neural network 

RMSE   Rooted mean square error 

SAE   Sum of absolute errors 

SCE   Shuffled complex evolution  

SCEUA  Shuffled complex evolution  

SF     State feature 

AHR   Area of similar hydrologic response 
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Symbols: 

a    Exponent for permutation 

b    Exponent for permutation 

B    Bias 

c    Exponent for permutation 

kd     Length of period k without precipitation [h] 

dr    WaSiM parameter scaling the interflow 

Duration  Criterion for describing rainfall events [h] 

e    A matrix of network errors 

f (.)    Transfer function 

)t(F 0    Feature at reference time 0t  

Form   Criterion for describing rainfall events [h] 

g    Degree of the polynomial applied 

)t,y,x(G    Global radiation as a function of space (x,y) and time (t) 

H    The Hessian matrix 

J    The Jacobian matrix 

K0    Reference input parameter value of simple sensitivity analysis 

Kd    Direct runoff parameter in WaSiM [h] 

Ki    Interflow parameter in WaSiM [h] 

krec Parameter in WaSiM controlling the gradient of hydraulic 
conductivity 

l     Actual Lag [h] 

L     Maximum lag, defining the interval  { }Ltt −00 , [h] 

)t,y,x(M   Relative air humidity as a function of space (x, y) and time (t) 

MPI   Criterion for describing rainfall events [mm/h] 

Mv(x)   Mean Sensitivity for period x 

n    Number 
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N    Number of product vectors 

O    Optimized vector matrix 

p    Product vector 

Po    Input parameter of simple sensitivity analysis 

Ρ    Vector matrix of net training 

)t,y,x(P   Precipitation as a function of space (x, y) and time (t) 

Peak   Criterion for describing rainfall events [mm/h] 

PF    Criterion for describing rainfall events [mm] 

)t(PG     Mean precipitation for entire watershed as a function of time (t) 

)t(PO    Mean precipitation for orographic zone as a function of time (t) 

)t(PL   Mean precipitation for the area of similar hydrologic response as 
a function of time (t) 

Q    Runoff [mm or m³/s] 

Qe    Extreme model output [mm or m³/s] 

Qn    Normal model output [mm or m³/s] 

)t(Q    Flow at the considered gauge as a function of time (t) 

Si    Sensitivity index of simple sensitivity analysis 

St    Smoothed function 

)t,y,x(T   Temperature as a function of space (x, y) and time (t) 

TI    Criterion for describing rainfall events [mm] 

TL    Criterion for describing catchment retention [h] 

thick   Parameter in WaSiM 

)t(V    Vegetation activity as a function of time (t) 

V    Output variable of simple sensitivity analysis 

Volume  Criterion for describing rainfall events [mm] 

W    Weight 

We    Weight for extreme parameters  
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Wji    MLFN weights  

Wn    Weight for normal parameters  

Yj    The output of jth node of a MLFN 

X    Regressor 

Xi    The input signal to ith  node of a MLFN  

X norm  The normalized variable 

X min   The minimum value of the related variable 

X max   The maximum value of the related variable 

ΔR    Scatter minimisation  

Λ     Sigmoid parameter (steepness) 

Θ     Threshold value 

σ    Confidence level for the Man-Withney-U test 
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table 25: Events used in the calibration study. 

Event Year Duration 
[h] 

Peak 
[mm/h] 

Volume 
[mm] 

Form  
[h] 

TI   
[mm] 

TL      
[h] 

PF   
[mm] 

MPI 
[mm] 

1 1981 38 6.34 55.78 0.11 2.68 4.00 43.05 1.47 

2 1982 9 10.70 16.02 0.67 0.47 1.00 69.25 1.78 

3 1982 6 16.57 37.99 0.44 0.12 3.00 29.46 6.33 

4 1984 14 6.08 46.39 0.13 0.66 10.00 22.38 3.31 

5 1984 16 13.07 53.78 0.24 0.15 6.00 31.15 3.36 

6 1985 14 3.46 25.83 0.13 1.45 1.00 82.41 1.84 

7 1985 21 6.57 64.67 0.10 1.07 5.00 29.92 3.08 

8 1986 10 7.62 36.55 0.21 0.92 3.00 76.98 3.65 

9 1986 5 24.34 41.54 0.59 0.08 1.00 18.47 8.31 

10 1987 11 6.40 27.59 0.23 0.63 2.00 59.64 2.51 

11 1987 8 22.19 32.16 0.69 0.18 2.00 24.40 4.02 

12 1989 6 11.33 12.70 0.89 0.44 1.00 27.36 2.12 

13 1990 8 8.29 40.69 0.20 0.72 2.00 26.74 5.09 

14 1991 18 6.95 56.91 0.12 1.44 3.00 41.00 3.16 

15 1991 18 5.46 35.65 0.15 0.73 3.00 73.80 1.98 

16 1993 2 15.60 16.83 0.93 0.13 2.00 40.51 8.42 

17 1993 13 23.28 84.41 0.28 0.22 4.00 17.68 6.49 

18 1993 24 6.68 62.29 0.11 1.65 7.00 41.01 2.60 

19 1994 27 11.38 93.47 0.12 0.44 8.00 20.72 3.46 

20 1994 8 2.25 32.96 0.07 2.22 3.00 68.30 4.12 

21 1994 10 8.05 30.74 0.26 0.50 1.00 56.06 3.07 

22 1994 9 32.75 73.56 0.45 0.09 4.00 15.02 8.17 
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23 1994 14 4.33 17.61 0.25 1.62 1.00 97.44 1.26 

24 1994 5 14.66 28.26 0.52 0.07 1.00 47.21 5.65 

25 1994 2 11.47 13.75 0.83 0.09 1.00 64.63 6.88 

26 1994 10 12.79 34.69 0.37 0.31 1.00 12.75 3.47 

27 1994 30 7.48 45.13 0.17 2.01 2.00 42.92 1.50 

28 1994 12 7.31 31.80 0.23 0.82 3.00 41.28 2.65 

29 1994 8 7.52 25.76 0.29 0.67 2.00 32.65 3.22 

30 1994 10 7.04 33.55 0.21 0.57 4.00 45.95 3.36 

31 1994 23 6.81 48.68 0.14 0.73 1.00 11.78 2.12 

32 1994 28 3.96 43.87 0.09 6.07 2.00 39.57 1.57 

33 1995 14 13.31 41.68 0.32 0.45 1.00 31.96 2.98 

34 1995 26 6.94 38.74 0.18 1.87 2.00 85.70 1.49 

35 1996 23 10.35 65.27 0.16 0.68 1.00 33.00 2.84 

36 1999 11 13.24 55.21 0.24 0.45 1.00 47.68 5.02 
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The rainfall generator 

The rainfall generator is a development of Görner et al (2006). It is grid based 
and able to generate rainfall fields of any size. The generator works on an hourly 
time step. The principal functionality can be best described on the basis of figure 
63. The settings are described at the right hand side of the figure. First the 
overall duration is specified. Then the volume for this duration is set by means 
of the return period. This information is the result of the meteorological 
catchment analysis. A break can separate the events that are generated, 
according to the setting chosen. Then parameters of the distributions follow: 
type, skewness, maximum value and noise.  

The generator is able to produce both advective and convective rainfall fields. 
This is set with a simple radio button.   

Rainfall events are generated according to the following principles resulting 
from a detailed analysis of the meteorological characteristics of historical flood 
events: 
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figure 63: PAI-OFF rainfall generator GUI. 
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1) The rainfall distribution in the basin is dependent on the height above mean 
sea level. Therefore the generated precipitation P(x,y,t) is a function of height.  

),,()],(1[),,( 12 tyxPyxhfhftyxP K∗∗+=  (equation 50) 

 
with: )t,y,x(PK = local precipitation from DWD (1997) 

2hf =height factor for specific events with: )2hf0( 2 ≤≤  
)y,x(hf1 =local height differentiation according to: 

1000/]500)y,x(H[)y,x(hf1 −=  (equation 51)  

where: )y,x(H =mean height [m] of cell (x,y)  

2) Convective storms are generated in the form of ellipses. The axes of these 
rainfall fields are defined by:  

direction: 0: Main axis is aligned east-west 

1,57: Main axis is aligned south-north 

eccentricity: direction = 0 yields: 

eccentricity < 1:main axis in south-north direction 

eccentricity = 1:circle 

eccentricity > 1:main axis in east-west direction 

radius:= ½ * diameter of the secondary axis 

A single time step of a convective rainstorm is exemplarily shown in figure 64. 
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figure 64: Convective rainstorm over the southern part of the considered 
catchment. 
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The features used in the test application: 

In the following denotation of the polynomial G, the degree of state features and 
hydrologic response features is separated by a “+”. The following combinations 
are permuted with equation 17.  

G 1+0    I
1iin10 |SP ==  

G 0+3    J
1jjn01 |FP =Δ=  

      J
1j

2
jn02 |FP =Δ=∪  

      J
1j

3
jn03 |FP =Δ=∪  

G 1+3    J
0j

I
0ijin11 ||FSP ==Δ=  

      J
1j

I
1i

2
jin12 ||FSP ==Δ=∪  

      J
1j

I
1i

3
jin13 ||FSP ==Δ=∪ . 

G 2+3    J
0j

I
ik

I
0ijkin21 |||FSSP ===Δ=  

      J
1j

I
ik

I
1i

2
jkin22 |||FSSP ===Δ=∪  

      J
1j

I
ik

I
1i

3
jkin23 |||FSSP ===Δ=∪  

G 3+3    J
0j

I
km

I
ik

I
0ijmkin31 ||||FSSSP ====Δ=  

      J
1j

I
km

I
ik

I
1i

2
jmkin32 ||||FSSSP ====Δ=∪  

      J
1j

I
km

I
ik

I
1i

3
jmkin33 ||||FSSSP ====Δ=∪  



Appendix 3 

 

figure 65: Tableau of the possible perturbation of features according to 
equation14. 
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figure 66: Calibration and validation performance of the singular parameter set 
for large events. 
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