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SUMMARY 
Results of thermochronometric investigations comprising 40Ar/39Ar hornblende and 

biotite, titanite and apatite fission track (FT) and apatite (U-Th)/He dating on 102 

basement rock samples from northern Mozambique record a cooling and denudation 

history since Early Palaeozoic times. In the north Mozambican sector, these results 

place new temporal and geometric constraints on the initial rift and subsequent drift 

configuration during the Gondwana supercontinent dispersal as well as on the post 

break-up evolution of the sheared margin of central East Africa. Furthermore, they 

highlight the influence exerted by ductile basement structures of Pan-African age on the 

loci of tectonically active zone and associated denudation since the Late Palaeozoic.  
40Ar/39Ar hornblende and biotite ages range from c. 542 Ma to 456 Ma and c. 

448 Ma to 428 Ma, respectively. They record the cooling from the latest Pan-African 

metamorphic imprint, presumably related to the formation of the Namama Thrust Belt 

at c. 550-500 Ma, at slow rates of about 11°-7°C/Ma from 525°C to 305°C in Early to 

Late Ordovician times. Locally, the thermal influences of syn- to post-tectonic 

granitoid / pegmatite emplacements at about 500-450 Ma delayed cooling. Widespread 

basement cooling to < 350°C occurred in Late Ordovician to Early Silurian times.  

The titanite fission track ages fall into two age groups of c. 378 Ma to 327 Ma and 

c. 284 Ma to 219 Ma. Very slow cooling since the Late Ordovician/Early Silurian at 

rates of < 1°C/Ma to below 275 ± 25°C in the Late Devonian/Early Carboniferous is 

deduced from the older titanite FT ages. It is related to decreasing denudation in 

response to the establishment of pre-Karoo peneplains within central Gondwana. The 

younger titanite FT ages record the cooling of a denuding and approximately E-W 

trending uplifted rift flank whose formation marks the onset of rifting and incipient 

Gondwana disintegration in the Early to Late Permian. Associated crustal extension 

proceeded obliquely to a NW-SE tensional stress field by brittle reactivation of easterly 

trending ductile basement fabrics and presumably, linked to the Zambezi Rift system. 

Titanite FT results indicate ≤ 9-12 km of crust removal since the Permo-Carboniferous.  
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Apatite FT ages vary between c. 169 Ma and 61 Ma whereby ages of ≥ 100 Ma record 

complex, and in part multistage cooling and denudation histories that are generally 

restricted to zones of crustal weakness along the Mozambique Belt yielding northerly 

trending ductile fabrics; along the western Axial Granulite Complex and along the 

present eastern continental margin. Apatite FT data imply that denudation was related to 

brittle reactivation of ductile basement fabrics by rifting, transtension and/or 

transpression along southern Tanganyika-Rukwa-Malawi System and along the Davie 

Fracture Zone at the eastern margin. Modelled time-temperature paths indicate two 

periods of more rapid cooling (c. 5°-3°C/Ma) to below c. 110°C in the Early to Late 

Jurassic and Early to Late Cretaceous. The Early/Middle Jurassic rifting, break-up and 

subsequent seafloor spreading within the Somali and Mozambique basins triggered the 

Jurassic periods, which were accompanied by the deposition of up to 2.5 km of volcanic 

rocks and associated reheating along the eastern margin at about 180-160 Ma. Far field 

stresses linked to global plate reorganizations due to the opening of the Atlantic and 

Indian oceans are accounted for the Cretaceous cooling periods. The apatite FT results 

indicate < 6 km and < 7 km of maximum denudation in the Axial Granulite Complex 

and along the eastern margin since the Jurassic, respectively. Apatite FT ages ≤ 100 Ma 

from the central part of basement record a uniform cooling and denudation pattern. 

Modelled time-temperature paths indicate a more rapid cooling step (c. 5°-3°C/Ma) to 

below c. 110°C in Early to Late Cretaceous times. It is associated with the erosional 

compensation of a potential local base level gradient between the central southern 

basement and its bounding N-S trending zones of contemporaneous crustal extension 

and exhumation to the west and east. These apatite FT results indicate < 4 km of 

denudation since the Cretaceous. In Palaeogene times, a basement reheating to c. 60°C, 

presumably due to heat advection by fluids is inferred from time-temperature models of 

samples located in zones of crustal weakness and is synchronous with the initiation of 

the East African Rift System at c. 30 Ma.   

Apatite (U-Th)/He ages span from 150 Ma to 40 Ma. Results of forward modelled 

time-temperature paths indicate a widespread slow and protracted cooling associated 

with persistent slow denudation from c. 80°C in the Late Cretaceous to subaerial 

conditions (c. 40°C) in Palaeogene/Neogene times. Along the eastern margin and the 
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Lurio Belt, these modelling results corroborate the occurrence of a reheating event 

localized to zones of crustal weakness in the Palaeogene.  
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ZUSAMMENFASSUNG 
Die vorliegende Arbeit präsentiert die Ergebnisse thermochronometrischer Unter-

suchungen, die an 102 Grundgebirgsproben aus Nord-Mosambik durchgeführt wurden. 

Die dabei verwandten Methoden umfassen 40Ar/39Ar Datierungen an Hornblenden und 

Biotiten, Spaltspurdatierungen an Apatiten und Titaniten sowie Apatit-(U-Th)/He 

Altersbestimmungen. Die thermochronologischen Daten stellen eine Aufzeichnung der 

Abkühlungs- und Denundationsgeschichte des Grundgebirges seit dem frühen 

Paläozoikum dar. Sie liefern für das Gebiet von Nord-Mosambik neue zeitliche und 

geometrische Erkenntnisse über die initiale Rift- und anschließende Driftentwicklung 

während des Zerfalls des Gondwana Superkontinents ebenso wie über die 

Entwicklungsgeschichte des ostafrikanischen Transform-Kontinentalrandes nach dem 

Gondwana Aufbruch. Weiterhin geben diese Daten neue Erkenntnisse über den Einfluss 

duktiler, panafrikanischer Strukturtrends auf die Lage und den Verlauf von Zonen 

spröd-tektonischer Aktivität und die damit assoziierte Denundation seit dem späten 

Paläozoikum.       

Die  40Ar/39Ar Datierungen ergaben Alter von ca. 542 bis 456 Ma für Hornblende 

und von ca. 448 bis 428 Ma für Biotit. Sie sind das Resultat einer langsamen Abkühlung 

nach der letzten panafrikanischen Metamorphose um ca. 550-500 Ma, wobei sich diese 

mit Abkühlraten von 11°-7°C/Ma, von 525°C im Unterordovizium auf 305°C im 

Oberordovizium vollzog. Syn- bis post-tektonische Granitoid- und Pegmatitintrusionen 

um 500-450 Ma führten zu einer lokalen Aufheizung und verzögerten die Abkühlung 

des Grundgebirges, so dass eine weitläufige Abkühlung unter 350°C für das Ober-

ordovizium bis beginnendes Silur angenommen werden kann. 

Die Titanit-Spaltspuralter weisen zwei Altersgruppen, eine ältere von ca. 378 bis 

327 Ma und eine jüngere von ca. 284 bis 219 Ma, auf. Die ältere Population deutet auf 

eine sehr langsame Abkühlung (< 1°C/Ma) auf Temperaturen von ≤ 275 ± 25°C vom 

Oberordovizium / frühen Silur bis zum späten Devon / frühen Karbon hin. Sie ist 

assoziiert mit einer verminderten Denudation durch die zunehmende Einebnung 

Zentral-Gondwanas vor dem Beginn des Karoo-Rifting. Im Gegensatz dazu registrierten 
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die jüngeren Titanit-Spaltspuralter die durch Denundation verursachte Abkühlung einer 

annährend E-W verlaufenden Riftflanke. Ihre Heraushebung im Unter-/Oberperm 

markiert das beginnende intra-kontinentale Rifting zwischen Nord-Mozambique und 

der Ost-Antarktis während des einsetzenden Zerfalls Gondwanas. Die Extension der 

Kruste vollzog sich schräg zu einem NW-SE dehnenden Stressfeld und stand vermutlich 

in Verbindung zum Sambesi Riftsystem. Während der Krustenausdünnung kam es zu 

einer spröden Reaktivierung von östlich verlaufenden Foliationsflächen im 

Grundgebirge. Basierend auf den Spaltspuraltern der Titanite wurde eine Denundation 

von maximal 9-12 km an Krustenmaterial seit dem Permo-Karbon ermittelt. 

  Die Apatit-Spaltspuralter variieren zwischen ca. 169 und 61 Ma, wobei Alter von 

≥ 100 Ma eine komplexe und teilweise mehrstufige Abkühlungs- und Denundations-

geschichte anzeigen. Sie treten überwiegend entlang krustaler Schwächzonen, mit 

nördlich verlaufenden, duktilen Strukturtrends im Mozambique Belt auf. Im Unter-

suchungsgebiet sind dies der westliche Axial Granulite Complex und der östliche 

Kontinentalrand. Weiterhin deuten diese Apatit-Spaltspurdaten darauf hin, dass es bei 

der Denudation und Exhumierung des Grundgebirges entlang des südlichen 

Tanganyika-Rukwa-Malawi Systems und entlang der Davie Fracture Zone am östlichen 

Kontinentalrand zu einer spröden Reaktivierung von N-S streichenden duktilen 

Strukturtrends während Phasen von Rifting, Transtension und/oder Transpression kam. 

Die Modellierungen von Zeit-Temperatur-Pfaden ergaben früh bis spät jurassische und 

früh bis spät kretazische Perioden zügigerer Abkühlung (ca. 5°-3°C/Ma) unter ca. 

110°C. Das innerhalb des frühen/mittleren Juras einsetzende und zum Aufbruch des 

Gondwanas führende Rifting, sowie die sich anschließenden Ozeanisierung und 

Bildung des Somali und des Mosambik Beckens sind die Ursachen der jurassischen 

Abkühlungsphasen. Diese wurde von der Ablagerung basaltischer Vulkanite und einer 

damit verbundenen Aufheizung am östlichen Kontinentalrand um ca. 180-160 Ma 

begleitet. Weitreichende Stresseinflüsse globaler Plattenreorganisationen während der 

Öffnungen der Atlantischen und Indischen Ozeane kommen als Auslöser der 

kretazischen Abkühlungsphasen in Betracht. Für den Axial Granulite Complex und den 

östlichen Kontinentalrand deuten die Apatit-Spaltspurdaten auf maximale 

Denundationsbeträge von ≤ 7-6 km seit dem Jura hin. Im zentralen Bereich des 
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Grundgebirges wurden Apatit-Spaltspuralter von ≤ 100 Ma ermittelt, die ein 

einheitliches Abkühlungs- und Denudationsmuster aufweisen. Die Modellierungen ihrer 

Zeit-Temperatur-Pfade ergaben eine Phase zügigerer Abkühlung (ca. 5°-3°C/Ma) unter 

ca. 110°C für die frühe bis späte Kreidezeit. Diese Phase resultierte aus einer erosiven 

Kompensation eines topographischen Gradienten, welcher zwischen dem zentralen Teil 

des Grundgebirges und denen im Westen und Osten angrenzenden, N-S verlaufenden 

Zonen zeitgleicher Krustendehnung und Exhumierung bestand. Für den zentralen 

Bereich des Grundgebirges wurde, basierend auf den Apatit-Spaltspurergebnissen, ein 

Denudationsbetrag von < 4 km seit der Kreide ermittelt. Eine Temperierung des 

Grundgebirges im Paläogen auf ca. 60°C lässt sich aus den Zeit-Temperatur-Pfaden von 

Proben aus krustalen Schwächezonen ableiten. Diese ist vermutlich auf Wärme-

advektion durch die Zirkulation von heißen Fluiden zurückzuführen und fällt zeitlich 

mit der einsetzenden Bildung des Ostafrikanischen Grabens um ca. 30 Ma zusammen. 

    Die Apatit-(U-Th)/He-Analysen erbrachten Alter von ca. 150 bis 40 Ma. Vorwärts 

modellierte Zeit-Temperatur-Pfade dieser Alter lassen auf eine sehr langsame, lang 

andauernde Abkühlung, ausgelöst durch beständig langsame Denundation, von ca. 80°C 

in der späten Kreide auf subaerische Temperaturen von ≤ 40°C im Paläogen / Neogen 

schließen. Entlang des östlichen Kontinentalrandes und des Lurio Belts stützen die 

modellierten Zeit-Temperatur-Pfade eine lokalisierte Temperierung des Grundgebirges 

innerhalb krustaler Schwächezonen im Paläogen.    
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Chapter 1  

INTRODUCTION 

 

1.1 Scope of the thesis 

Since the advent of the concept of plate tectonics it has been become clear to 

geoscientists, that the consolidation and the decay of supercontinents, gigantic 

unifications of vast parts of continental crust, have been associated with major 

geodynamic processes that shaped the appearance of our planet through time. The 

present day plate configuration directly succeeded the disintegration of the Gondwana 

supercontinent in Late Palaeozoic to Mesozoic times.  

Gondwana’s initial disassembly was prominently favoured along the Mozambique 

Belt, a mobile belt that is now exposed over large parts of eastern Africa. The 

Mozambique Belt constitutes the orogenic root of an integral part of the formerly 

c. 8000 km N-S extending intra-Gondwanian East African-Antartic Orogen. This 

Himalayan-type orogen emerged from suturing proto E- and W-Gondwana fragments in 

Late Neoproterozoic/Early Cambrian times. Hence in the geological history of the 

Gondwana supercontinent, the crystalline basement of the East African continental 

margin played a dual role of contrasting tectonic nature. It has been the welding seam 

during its assembly and the locus of failure during its decay.  

Northern Mozambique has been a site of such a dual evolution. Subsequent to the 

Gondwana formation, it was located in the centre of the supercontinent. Today, its 

basement exposes amphibolite to granulite facies high-grade metamorphic rocks of the 

southern Mozambique Belt. Their present marginal position in central East Africa 

clearly denotes the north Mozambican basement rocks as a prominent locus of crustal 

extension, rifting and drifting during Gondwana’s dispersal in the Late Palaeozoic to 

Mesozoic. 
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Very little is known, however, about the earliest rift and subsequent drift evolution in 

the north Mozambican sector. The latest metamorphic imprint on the basement dates in 

the Late Neoproterozoic/Early Cambrian between c. 615-510 Ma. Sedimentary rocks of 

Palaeozoic to Mesozoic age are entirely absent on the north Mozambican basement and 

preclude inferences on the initial Gondwana rifting. Intracontinental rift basins, located 

adjacent to the west of crystalline basement, preserved continental deposits of 

Palaeozoic age. Whereas the fringing rift basins at the eastern continental margin solely 

permit access to mainly marine strata that record the passive continental margin 

evolution since the middle Mesozoic. These sedimentary basins, however, comprise 

discontinuous and very contrasting sedimentary records. They do not provide tight 

constraints on the timing and course of the initial rifting in the vicinity of northern 

Mozambique and, this therefore remains enigmatic.  

Ductile basement fabrics, a heritage of the Gondwana amalgamation, display a broad 

parallelism with the present day outline of the north Mozambican coast that emerged 

from the rift and drift evolution. This could indicate an influence of the basement’s 

ductile structural discontinuities on the geometric setting of the initial rifting. 

Unfortunately, the intensive degree of weathering on the basement likely obscures rift 

related tectonic features and strongly hinders structural analyses to unravel the initial 

rift setting.  

Madagascar’s southward passage along the East African margin in the Mesozoic 

indicates that the separation of E- and W-Gondwana did not simply proceed by pure 

orthogonal rifting. It strongly argues for a rather complex rift and drift setting involving 

transform related tectonics during the margin development in the north Mozambican 

sector.  

 

The outlined geological setting suggests that the basement of the north Mozambican rift 

shoulder is a suited candidate to investigate the timing and the geometric configuration 

of initial rift and subsequent drift evolution of the Gondwana supercontinent within its 

central segment. Due to the failure of traditional methods, thermochronology provides 

at present the only tool to measure the timing and the rates at which rocks approach the 

surface and cool as a result of exhumation. These constraints can be used to derive 
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inferences on the thermo-tectonic and denudation history of the rift shoulder and 

thereby permit the investigation of the initial rift and subsequent drift evolution during 

Gondwana’s disassembly.  

1.2 Research objectives and methods 

This study aims to reconstruct the thermal evolution of the north Mozambican basement 

since its latest metamorphic imprint at c. 615-510 Ma. This knowledge is achieved by 

conducting thermochronometric investigations combining 40Ar/39Ar hornblende and 

biotite, titanite and apatite fission track and apatite (U-Th)/He dating methods on 

basement rocks, which were sampled along a c. 250 km wide E-W traverse across 

northern Mozambique. These relatively well-understood systems have closure 

temperatures ranging from c. 550° to 60°C, making them sensitive to exhumation 

through crustal depths of a few tens to one kilometre. They permit the reconstruction of 

cooling histories, and furthermore, the discrimination between continuous and stepwise 

cooling phases.  

The 40Ar/39Ar hornblende and 40Ar/39Ar biotite methods record the cooling to below 

c. 550°-450°C and c. 350°-300°C, respectively, and are employed to trace the 

basement’s cooling paths subsequent to the latest metamorphism in the late Neo-

proterzoic/Early Cambrian. In addition, they provide a time-temperature anchor point 

for the low temperature fission track and (U-Th)/He analyses. The titanite and apatite 

fission track thermochronometers are sensitive to record cooling over a temperature 

range of 310°-265° ± 10°C and 110°-60° ± 10°C, respectively, probably linked to 

tectonic processes of brittle deformation taking place in the upper continental crust 

(c. 15-2 km). Numerical thermal history modelling of the apatite fission track data is 

used to resolve the cooling history of basement in more detail. Apatite (U-Th)He dating 

records the cooling between c. 80°C and 40°C and could reflect tectonic processes 

within less than 3 km depths. The apatite (U-Th)/He thermochronometer is 

complementary to the apatite fission track analysis. It aids to more tightly constrain the 

cooling to below c. 60°C and permits a more detailed modelling of t-T paths ranging 

from c. 110°C to 40°C. The obtained cooling paths are used to derive inferences on the 

thermo-tectonic evolution of the basement. They thereby aid to constrain the timing of 
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thermo-tectonic events such as e.g. the earliest rifting and to estimate the associated 

amounts of denudation. By evaluating spatial cooling patterns it is aimed to derive 

information on the geometry of initial rift setting. 

A corresponding regional titanite and apatite fission track study by Emmel et al., 

(2004, 2006a, b, c) quantified the cooling and denudation history of an exposed rift 

shoulder in southern central Madagascar. A comparison of the denudation histories of 

the rift shoulders of north Mozambican and southern Madagascar, potentially infers 

information on symmetric or asymmetric rift processes within this sector of the initial 

Gondwana rifting. 

1.3 Outline of thesis 

The following second chapter provides an introduction into the applied thermo-

chronological methods, their relevance regarding geological problems and a 

presentation of the analytical procedures involved. Chapter three comprises the results 

of the 40Ar/39Ar hornblende, 40Ar/39Ar biotite and titanite fission track investigations 

and is currently submitted as:  

 
Daszinnies, M.C., Jacobs, J., Wartho, J-A. and Grantham, G.H, 2006. Post Pan-African thermo-

tectonic evolution of the north Mozambican basement and its implication for the Gondwana 

rifting. Inferences from 40Ar/39Ar hornblende, biotite and titanite fission track dating. 

Geological Society Special Publications. 

 
This paper outlines inferences on the basement’s cooling paths since the latest 

metamorphism and on a thermo-tectonic record of the earliest rifting event in Permian 

times. This chapter also contains the geological setting of the north Mozambican rift 

shoulder. In the fourth chapter, an overview of the tectonic events of global and 

subcontinental scale is given that are important to the rift and drift evolution of central 

East Africa since the Mesozoic. A summery of previous fission track studies, relevant to 

this study, from regions in central Africa and East Antarctica is presented in chapter 

five. The sixth and seventh chapter comprise the presentation and interpretation of the 

apatite and (U-Th)/He analyses, respectively. Their discussion and significance to the 

thermo-tectonic evolution of the north Mozambican basement is depicted in chapter 
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eight. Chapter nine outlines the potential co-evolutionary relations and inferences on the 

modes of crustal extension between the two rift shoulders of northern Mozambique and 

south central Madagascar. The key aspects and results of this thesis are summarized in 

the last chapter. 
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Chapter 2  

THERMOCHRONOLOGICAL METHODS AND ANALYTICS 

 

2.1 40Ar/39Ar dating method 

The 40Ar/39Ar dating method is a derivate of the K/Ar isotope dating and was first 

proposed by Merrihue and Turner (1966). A comprehensive review of the theory and 

method of the 40Ar/39Ar geochronology is given by McDougall and Harrison (1999). 

Of the three naturally occurring potassium isotopes 39K (93.2581 %), 40K (0.01167%) 

and 41K (6.7302 %), 40K is radioactive. It decays into 40Ca (89.52 %) and 40Ar (10.48 %) 

by different decay processes as illustrated in Fig. 2.1. 40Ar represents radiogenic argon 

formed by 40K decay in a mineral, and hence, an age can be calculated by using the 

general isotopic age equation and the quantitatively determined 40Ar/40K ratio. 

For 40Ar/39Ar dating the determination of 40K is based on two facts. First, the 39K/40K 

ratio is a natural constant and second 39K if irradiated with fast neutrons can be 

converted into relatively stable 39Ar (half-life of 269 ± 3 a, Stoenner et al., 1965) by 

capturing a neutron and emitting an electron. The advantage is that both argon isotopes 

can be measured simultaneously by argon gas extraction comprising a mixture of all 

argon isotopes. Compared to K/Ar dating, the 40Ar/39Ar method permits the coeval 

determination of the parent and daughter isotope concentrations on the same mineral 

specimen. 

Generally, 40Ar/39Ar analysis is carried out by the incremental step heating technique, 

permitting argon isotope measurements during subsequent steps of incremental heating 

up to the mineral melting point or until all argon is released from the sample. After 

holding the sample at each particular temperature step, the degassed fraction of argon is 

admitted to a mass spectrometer and the relative abundances of the argon isotopes are 

determined. This provides the argon data necessary for the age calculation.  
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Figure 2.1: Illustration depicts the decay scheme of 40K to 40Ar and 40Ca from McDougall and 
Harrison (1999); e.c. denotes electron capture. 

2.1.1 Argon isotope measurements and age calculation 

The obtained 40Ar/39Ar ratios have to be corrected for several interferences before an 

age can be calculated. Measured levels of mass spectrometer background are corrected 

for by subtracting them from the actual argon isotope determinations and similarly 

blanks in the extraction system are corrected for if necessary. A mass discrimination 

correction factor has to be applied to all measured volumes of argon isotopes if the 

present air 40Ar/36Ar ratio deviates from 295.5 (Nier, 1950).  

Commonly some time elapses between the time of irradiation and actual 40Ar/39Ar 

analysis, therefore 37Ar needs to be decay corrected back to the date of irradiation, due 

to its short half-life of 35.1±0.1 days (Stoenner et al., 1965). As the atmospheric ratio is 

assumed to be 40Ar/36Ar = 295.5 (Nier, 1950), the amount of 40Ar* is obtained by: 
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where indices denote T = total amount measured and A = all measured is assumed to be 

atmospheric.  

Though the conversion from 39K to 39Ar is the major reaction during the fast neutron 

irradiation, small amounts of 36Ar, 37Ar and 39Ar are produced from Ca and 40Ar from 

K. Such interfering reactions have to be accounted for by applying corrections for the 

argon isotopes. Including equation (1) these corrections lead to a 40Ar/39Ar ratio 

calculated by: 
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where indices denote K = neutron induced on potassium and Ca = neutron induced on 

calcium.   

For 40Ar/39Ar dating the standard age equation can be rewritten as: 
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where t = age, λ = decay constant (electron capture) for 40K = 4.962 × 10-10 a-1 (Steiger 

and Jäger, 1977). J is a dimensionless irradiation parameter which is derived from a co-

irradiated mineral age standard and incorporates and accounts for uncertainties about 

and the neutron flux and the neutron capture cross section. The J factor is calculated as:  
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where λ = the total decay constant for 40K = 5.543 × 10-10 a-1 (Dickin, 1995) and  

t = age of the age standard. 

Errors for individual ages are calculated by: 

 

(5)   ( )22

2222
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where F = 40Ar/39ArK and σ = absolute errors related to parameters denoted by indices. 

The latter are generally given as standard deviations (McDougall and Harrison, 1999). 

Errors associated with standard age fluence monitor and the determination of the decay 

constants are neglected by this calculation.  

2.1.2 Theoretical considerations and definitions 

The release of argon isotopes by heating is generally dependant on the temperature, the 

duration of heating, the chemistry and the shape of the mineral specimen, which is 

being analysed. 

In an ideal case, a mineral sample cools very rapidly and undisturbed after its 

crystallization. During degassing, each incremental heating step would release similar 
40Ar/39Ar ratios, i.e. the sample will yield a horizontally flat, plateau-like age spectrum 

(Dalrymple and Lanphere, 1974) and the 40Ar/39Ar age would reflect the timing of a 

crystallization, e.g. igneous event (McDougall and Harrison, 1999). Many geological 

samples are subjected to metamorphic events or to slow cooling after their crystal-

lization, i.e. to processes which exert an influence on the argon retention in the crystal 

or different parts of the crystal. At low temperatures, weakly bound argon isotopes are 

liberated from less retentive sites whereas at higher temperatures stronger bound argon 

is measured. 

Age spectra (e.g. Fig. 3.3) are box plots of the apparent age versus the cumulative % 

of 39ArK released during the step-heating experiment. The width of the box on the X-

axis indicates the % of 39ArK that each heating step contributed, and the width of the box 

on the Y-axis indicates the analytical error of the age for each individual step. As it is 



 
Thermochronological methods and analytics 

 11

standard practice, the age spectra were plotted using the step-heating ages with 

analytical errors only. Within an age spectrum, an age plateau is defined as: 

a) Having three or more continuous steps comprising more than 50 % of the 39Ar 

(Lanphere and Dalrymple, 1978); 

b) The probability of fit of the weighted mean age of the steps is greater than 5 %; 

c) The slope of the error weighted line through the plateau ages is not different 

from zero at 5 % confidence, i.e. steps are concordant within 2 σ; 

d) The ages of the outermost two steps for either side of the plateau must not be 

significantly different at 1.8 σ confidence intervals than the weighted mean 

plateau age (six or more steps only); 

e) The outermost two steps for either side of the plateau must not have non zero 

slopes at 1.8 σ confidence intervals with the same sign if nine or more steps are 

incorporated (Ludwig, 2001). 

A pseudo-plateau age is defined as a plateau age but only contains 40-49.9 % of the 

cumulative % 39Ar, which is marginally below the > 50 % cumulative 39Ar threshold 

that defines a plateau age. If neither plateau nor pseudo-plateau ages were obtained 

weighted mean ages are quoted. The total fusion age is a cumulative age of all 

individual 40Ar/39Ar step releases and it is comparable to the conventional K/Ar age 

(Dalrymple and Lanphere, 1974). 

An age spectra is considered discordant if the age of any gas fraction containing 

more than 3 % of the total 39Ar is not part of the plateau and hence differs by more than 

± 2 σ (Fleck et al., 1977). Concordant age spectra are characteristic for undisturbed 

samples which remain stable during in vacuo step heating. 

Excess radiogenic 40Ar* is defined as the incorporation of 40Ar into samples by other 

processes than by in situ radioactive decay of 40K (Damon, 1968). It is often explained 

by the release 40Ar* from fluid inclusions with low partition coefficients between 

minerals and hydrous fluids (Kelley, 2002). Numerical modelling approaches have 

recently questioned the assumption that rocks are “infinite” argon reservoirs. Excess 

radiogenic 40Ar* in the mineral specimen analysed can be derived from internal build up 
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above the particular isotopic system’s closure temperature and depends on the 

transmissive timescale τT (a bulk system property accounting for bulk effective Argon 

diffusivity and system geometry) and total local sink capacity (TLSC) of a rock (Baxter, 

2003). Quartz in particular, is regarded as a key sink mineral to preserve excess 

radiogenic 40Ar* in enabling a high TLSC and preventing internal build up in rocks and 

hence in the analysed minerals specimen (Baxter, 2003; Baxter et al., 2002). 

During irradiation 39Ar is produced from inferring reactions of 42Ca and 39K within 

the mineral sample. 37Ar entirely results from the conversion of 40Ca and as the 
42Ca/40Ca ratio is constant in nature, measurements of 37Ar concentration permit the 

determination of the amount of 39Ar produced from the reaction of 42Ca. Additionally 
36Ar is produced from decay of 40Ca and can influence the atmospheric correction. 

Therefore the 37ArCa/39ArK ratio is important in 40Ar/39Ar dating and measured during 

step heating experiments in order to evaluate possible chemically mixed phases that 

may relate to alteration, contamination or exsolution (Harrison and Fitz Gerald, 1986). 
37ArCa/39ArK results are presented as box plots (e.g. Fig. 3.3, chapter 3) where the 

fraction 37ArCa is plotted versus the cumulative % of 39ArK released during the step-

heating experiment. The width of the box on the X-axis indicates the % of 39ArK that 

each heating step contributed, and the width of the box on the Y-axis indicates the 

analytical error of the 37ArCa gas fraction for each individual step. 

Inverse isochron diagrams are useful in recognizing the incorporation of atmospheric 

and excess 40Ar in a mineral, which might not be revealed by age spectra plots. Inverse 

isochron diagrams contribute to a better 40Ar/39Ar age interpretation. A comprehensive 

review on the construction and interpretation of inverse isochron diagrams is given by 

Kuiper (2002). 40Ar/39Ar inverse isochron ages are calculated by fitting a negative slope 

line through the data points plotted on a 36Ar/40Ar versus 39Ar/40Ar inverse isochron 

diagram, using York’s algorithm (York, 1969) and assuming an initial “atmospheric” 
40Ar/39Ar ratio of 295.5. This technique yields errors that reflect not only the analytical 

errors of the analysis, but also the geological scatter caused by heterogeneity within the 

sample. Therefore, heterogeneous samples yield scattered data, often with high 

atmospheric argon contents, a high MSWD (Mean Square of Weighted Deviates), and 

high errors on the final ages. Most samples produce inverse isochron ages that reflect 
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simple mixtures of radiogenic and atmospheric components, although some samples can 

exhibit excess argon, reflected by a 40Ar/36Ar intercept value of greater than 295.5 (the 
40Ar/36Ar ratio of the terrestrial atmosphere). The York (1969) algorithm assumes that 

the assigned errors are the only reason for the data points scatter from a straight line. 

Some hydrous phases, such as hornblende and biotite tend to break down during in 

vacuo heating and produce flat age spectra, regardless of the spatial argon distribution  

with the mineral specimen (Gaber et al., 1988).  

From studies of Lee et al. (1991) and Wartho et al. (1991), it is evident that 

hornblende heated in vacuo is unstable and that bulk argon release from hornblende 

correlates with temperatures of its structural decomposition. Argon release from 

hornblende by in vacuo step heating is not a solid-state volume diffusion process (Lee, 

1993). At temperatures below c. 700°-800°C argon is released from hornblendes by 

multipath diffusion (Lee, 1993; Lee et al., 1991), a combined interaction of solid-state 

volume and “short circuit” (SC) diffusion. SC diffusion is the dominating and much 

faster mass transfer process. Here, extended defects (such as vacancies, dislocations, 

micropores etc.) serve as preferential highly diffusive pathways for migrating argon 

isotopes (Lee, 1995; Lo et al., 2000). At temperatures higher than c. 800°C argon 

release from pristine hornblende in vacuo is a complex process, correlated with the 

structural decomposition of the crystal lattice and is considered to be a function of the 

total iron/magnesium ratio, i.e. the argon retentivity of hornblende scales inversely with 

the total iron content (Lee, 1993). As argon is released through crystal lattice 

destabilisation and age gradients present in the crystal lattice are homogenized. 

Significant age spectra disturbances are, therefore, likely to result from degassing of 

impurities or experimental artefacts (Lee, 1993). 

Recent studies have shown that in lower temperature regimes (T < 600°C) argon is 

released from biotite by multipath and dominantly SC diffusion. Thereby argon 

diffusivities and release patterns appear to be related to the biotite composition, i.e. that 

Fe-rich biotite yields higher diffusivities and degasses at lower temperatures than Mg-

rich biotite (Lo et al., 2000). At temperatures above 600°C argon release from pristine 

biotite is strongly correlated with a crystal lattice decomposition-transformation process 
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(Di Vincenzo et al., 2003; Lo et al., 2000). Similar to hornblende argon release from 

biotite by in vacuo step heating is not a solid-state volume diffusion process and 

disturbed age spectra are likely to result from degassing of impurities or experimental 

artefacts. In chloritised biotites humped shaped age spectra have been observed and are 

attributed to 39ArK redistribution by recoil during neutron irradiation and differential 

argon liberation from chlorite and biotite during in vacuo heating (Di Vincenzo et al., 

2003). The effects of 39ArK recoil are particularly significant in fine-grained material of 

less than 100 μm in diameter (McDougall and Harrison, 1999). It has been suggested 

that 39ArK might be implanted by recoil into SC pathways during neutron irradiation 

(e.g. Lo, 2000). 

Therefore, plateau ages of hornblende and biotite can not be unambiguously regarded 

as to reflect the time at which the mineral passes through its closure temperature (Lee, 

1993; Lo et al., 2000).  

Complex multipath (incl. SC diffusion) models are more capable of describing argon 

diffusion within hornblende and biotite than solid-state diffusion models. Unfortunately, 

they require diffusion parameters which due to the instability of the hydrous phases 

during in vacuo incremental heating experiments are either only crudely (e.g. Lo et al., 

2000) or unlikely to be constrained (e.g. Lee, 1993) by 40Ar/39Ar analysis. Single 

domain, intra-crystalline, solid-state volume diffusion is the simplest model explaining 

argon transport in silicates like hornblende and biotite (Grove and Harrison, 1996; 

Harrison, 1981). It possesses, however, predictive values required for thermochronology 

and permits, by employing experimentally determined Arrhenius diffusion parameters 

the calculation of a bulk closure temperature (Dodson, 1973).  

According to Dodson (1973), the diffusional closure temperature (Tc) of a mineral is 

calculated iteratively by: 
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where Ea = activation energy, R = gas constant, A = geometric parameter, a = effective 

diffusion radius, D0 = frequency factor (diffusivity at infinite time) and dT/dt = cooling 

rate. 

2.1.3 Analytical procedures 

From forty-five rock samples thin section were prepared for petrographic inspection. 

Eight samples were finally selected for 40Ar/39Ar analysis. Their main constituents and 

the minerals intergrown/included in the hornblende and biotite specimen are listed in 

Tab. 2.1. All these samples display medium to coarse grained equi-granular textures 

and, excepting samples RMZ 45 and RMZ 13, weak to well developed planar fabrics, 

i.e. foliations.  From optical thin section inspection (10-100x magnification) all samples 

reveal fresh, unaltered, euhedral to subhedral crystals of hornblende (BZ 216, GZ 90, 

PZ 37, RMZ 11, RMZ 13 and RMZ 45) and biotite (GZ 39, RMZ 11, RMZ 13) with 

grain sizes up to 1.5 mm and 1.2 mm, respectively. Except for RMZ 45 all samples 

yield minor amounts of hornblende (< 2-5 %) and biotite (< 3 %) exhibiting intergrowth 

with other mineral phases.  

Table 2.1: Petrographic characteristics of the samples subjected to 40Ar/39Ar analysis 

a accessories and b inclusions are given in parentheses. The abbreviations used for mineral 
specimen: ap – apatite, bio – biotite, carb – carbonates, chl – chlorite, ep – epidot, gt – garnet, 
hbl – hornblende, K-fsp – alkali-feldspar, opk – opake phases, opx – orthopyroxene, plag – 
plagioclase, qtz – quartz, ser – sericite, tit – titanite and zir – zircon. 

Hornblende and biotite grains were extracted from the rock samples by crushing, 

sieving, magnetic separation and hand picking, then cleaned in methanol and then 

followed by deionised water in an ultrasonic bath. The largest grains of c. 0.3 mm were 

Sample No Assamblage
a

Analysed minerals

BZ 216

b

hbl-plag-bio-(tit-opk-ap-ser) amphibolite hbl (opk-tit)

GZ 90 hbl-gt-plag-qtz-(bt-tit-opk) amphibolite hbl (opk-tit-ap)

PZ 37 hbl-plag-opx-qtz-(bt-ap-opk) amphibolite (charnockitic) hbl (opk-ap)

RMZ 11 K-fsp-plag-qtz-hbl-(bio-ser-ap-tit-carb-opk) monzonite hbl (opk)

RMZ 45 plag-K-fsp-qtz-hbl-(bio-car-opk) gneiss

hbl (opk-tit)
bio (zir-opk-tit-ap)

GZ 39 gt-hbl-plag-qtz-bio-op-(ep-ap-tit) amphibolitic gneiss bio (opk-ap)

RMZ 18 qtz-plag-K-fsp-bio-(ap-opk-zir) gneiss bio (opk-zir-ap)

RMZ 13 qtz-plag-K-fsp-hbl-bio-(tit-ap-zir-opk) orthogneiss

Rock type

hbl
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selected from the sieving fraction of 150-315 μm. The mineral separates were wrapped 

individually in aluminium foil packets, and all the samples were loaded into an 

aluminium irradiation package. A biotite age standard Tinto B with the K-Ar age of 

409.24 ± 0.71 Ma (Rex and Guise, 1995) was loaded at 5 mm intervals along the 

package to monitor the neutron flux gradient. The package was Cd-shielded and 

irradiated in the 5C position of the McMaster University Nuclear Reactor, Hamilton, 

Canada, for 90 h.  Upon return, the samples were loaded into an ultra-high vacuum laser 

chamber with a Kovar viewport and baked to 120°C overnight to remove adsorbed 

atmospheric argon from the samples and chamber walls. A 110 W Spectron Laser 

Systems continuous-wave neodymium-yttrium-aluminium-garnet (CW-Nd-YAG) 

(λ = 1064 nm) infra-red laser, fitted with a TEM00 aperture, was used to slowly laser 

step-heat the mineral samples. The laser was fired through a Merchantek computer-

controlled X-Y-Z sample chamber stage and microscope system, fitted with a high-

resolution CCD camera, 6x computer controlled zoom, high magnification objective 

lens, and two light sources for sample illumination. The gases released by laser heating 

were ‘gettered’ using 3 SAES AP10 getter pumps to remove all active gases (CO2, H2O, 

H2, N2, O2, CH4, etc.). The remaining noble gases were equilibrated into a high 

sensitivity mass spectrometer (MAP 215-50), operated at a resolution of 570, and fitted 

with a Balzers SEV 217 multiplier. The automated extraction and data acquisition 

system was computer controlled, using a LabView program. The mean 5 minute 

extraction system blank argon isotope measurements that are obtained during the 

experiments were 1.18 x 10-12, 1.32 x 10-14, 4.65 x 10-15, 6.70 x 10-14, and 1.43 x 10-

14 cm3 (standard temperature and pressure) for 40Ar, 39Ar, 38Ar, 37Ar, and 36Ar 

respectively. The 36Ar, 37Ar, 38Ar, 39Ar and 40Ar isotope analyses were corrected for 

system blanks, the radioactive decay of 37Ar, a mass discrimination of 295.5/281.0 

(1.0516 amu), and minor interference reactions from Ca and K (39Ar/37ArCa = 0.00065, 
36Ar/37ArCa = 0.000255, and 40Ar/39ArK = 0.0015).  

The errors quoted on the ages in the Tabs. 3.1 and 3.2 are 1 sigma and include the 

J value error, and the 40Ar/39Ar ages were calculated using the decay constant of Steiger 

and Jäger, 1977.  The J values and errors are noted on the sample 40Ar/39Ar data table 

(Tab. 3.2).  The argon isotope data presented in this study were undertaken at the 
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Western Australian Argon Isotope Facility, operated by a consortium consisting of 

Curtin University and the University of Western Australia. 

The calculation of the 40Ar/39Ar ages, and plotting of series of age spectra, inverse 

isochron diagrams and 37Ar/39Ar plots were undertaken using ISOPLOT 2.49 (Ludwig, 

2001). In assessing whether all the data fit within the estimated error limits, indices of 

goodness-of-fit are used, including Mean Squared Weighted Deviates (MSWD) 

(McIntyre et al., 1966). MSWD values were calculated for weighted mean ages and 

inverse isochrones with n-1 and n-2 degrees of freedom, respectively. MSWD values 

ranging between 1 and 2.5 are accepted as a meaningful goodness of fit indicators 

(Roddick, 1978). Values of > 1 generally indicate either underestimated errors, or the 

presence of non-analytical scatter. MSWD values of < 1 generally indicate over-

estimated analytical errors. 
40Ar/39Ar inverse isochron ages are quoted with 95 % confidence errors. Weighted 

mean ages were calculated using both the analytical and J value errors on a series of 

pseudo-plateau steps, quoted with their 95 % confidence errors. The total fusion age is  

calculated as an unweighted mean age of all the steps including the analytical and 

J value errors and quoted with its 1 sigma error in the 40Ar/39Ar data tables (Tabs. 3.1 

and 3.2). 

For the calculation of bulk closure temperatures using equation (6) the following 

parameter values were employed for hornblende (Harrison, 1981): Ea = 64 kcal/mol, 

D0 = 0.024 cm2/s, R = 1.9872 cal/(kgK), A = 55 (sphere), a = 0.015 cm (diffusion 

domain is the grain) and for biotite (Grove and Harrison, 1996): Ea = 47.1 kcal/mol, 

D0 = 0.075 cm2/s, R = 1.9872 cal/(kgK), A = 27 (cylinder), a = 0.015cm. The diffusion 

parameters of Cooma biotite with an intermediate composition (Mg/Fe ratio) were 

chosen as no chemistry was determined. Though it should be noted that a slightly higher 

argon retentivity in Fe-rich biotite is possibly related to a higher F content (Grove and 

Harrison, 1996). Some uncertainties exist regarding the diffusional radius of biotite. 

Effective radii of ~ 0.150 mm (Harrison et al., 1985) or of the natural grain size (Hess et 

al., 1993; Hodges et al., 1994) have been advocated, though it has been cautioned that 

multiple domains of varying radii may exist in biotite (Grove and Harrison, 1996; 

McDougall and Harrison, 1999). The natural grain radius has been used in this work.  
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2.2 Fission track dating method 

Over the past years a number of comprehensive reviews of the theory, methods and 

application of fission track dating have been published, such as Gallagher et al., 1998; 

Gleadow et al., 2002; Wagner and Van den Haute, 1992.  

Fission tracks are nuclear damage trails in solids which result from the spontaneous 

or induced nuclear fission of naturally abundant radioactive elements, such as uranium 

and thorium. A widely accepted theory of fission track formation is the "Coulomb 

explosion" or "ion explosion spike" model (Fleischer et al., 1965b; Fleischer et al., 

1975). When for instance a 238U atom in a mineral undergoes spontaneous nuclear 

fission two lighter, positively charged nuclides of different masses are produced, and fly 

off in opposite directions at high velocities with an initial energy of around 

1 MeV/nucleous (Fig 2.2a). Both daughter particles “strip” electrons off the crystal 

lattice while leaving behind positively ionized lattice atoms along their track (Fig 2.2b). 

These positively charged atoms repel each other and thus produce a linear void, the 

fission track in an otherwise coherent and insulating crystal. Fission tracks accumulate 

through geological times (Fig 2.2c) and are randomly distributed in three dimensions 

within the host mineral. Depending on the solid, fission tracks are c. 10-20 μm long 

with a diameter of c. 50 Å and may be observed by transmission electron microscopy 

(Price and Walker, 1962a). Due to a higher chemical reactivity, tracks are routinely 

made optically visible by etching polished internal mineral surfaces and enlarging their 

size (Price and Walker, 1962b). 

The usage of fission reactions for geochronological applications exploits the natural 

abundance of 238U in certain rock forming minerals. Commonly the minerals apatite, 

zircon and titanite are employed, with apatite being the most comprehensively 

investigated specimen.  

Spontaneous decay of 234U, 235U and 232Th generally accounts for less than < 1 % of 

the total spontaneous fission reactions, principally due to lower concentrations and/or 

fission rates than 238U. Thus, all spontaneous tracks are inferred to result from fission of 
238U. By knowing the concentration of 238U, the number of decays and the decay 
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constant of 238U it is often possible to calculate an age since the onset of fission track 

accumulation in a mineral.    

 

Figure 2.2 Schematic illustration of the concept of fission track formation. The spontaneous 
decay of 238U (a) generates two each other repelling, positively charged nuclides, which damage 
the crystal lattice along their flight path and leave behind a fission track (b). These tracks 
accumulate trough time with the mineral specimen (c).  

2.2.1 Fission track age and error calculations 

Conventional radiometric dating methods are based on measured ratios of unstable 

parent to stable daughter isotopes and ages are obtained by derivations of the standard 

age equation: 
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where t = radiometric age, λ = decay constant, D and P are the daughter and parent 

isotope concentrations, respectively. 

In fission track dating the daughter isotope is represented by the spontaneous track 

density of the 238U decay in a mineral. The concentration of 238U can not be directly 
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determined without destroying the investigated specimen. As the 235U/ 238U ratio is 

constant in nature, an induced fission of 235U by thermal neutron irradiation permits the 

determination of an induced track density, the concentration of the 235U and hence the 

concentration of the 238U. Thus fission track dating is based on the counting of 

spontaneous and induced fission track densities and ages are calculated by: 
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where t = fission track age, ρs = spontaneous track density, ρi = induced track density, 

λa = total (alpha and fission) decay constant for 238U = 1.55125 × 10-10 a-1 (Jaffey et al., 

1971), λf = spontaneous fission decay constant for 238U = 8.46 × 10-17 a-1 (Biagazzi, 

1981), I = 235U/ 238U ratio of 7.2527 × 10-3 (Cowan and Adler, 1976), Φ = thermal 

neutron fluence (neutrons per cm2), σ = thermal neutron capture cross section of 
235U = 548.25 × 10-24 barn (Wagner and Van den Haute, 1992) and g = geometry factor 

of 0.5 for the external detector method (e.g. Wagner and Van den Haute, 1992). 

In order to compensate for uncertainties about the spontaneous fission decay constant 

λf (Biagazzi, 1981) and imprecise determinations of the neutron fluence Φ, a zeta (ζ) 

calibration factor (Hurford and Green, 1983) is incorporated to: 

 

(9)   dBρ=Φ  

 

where B = a constant calibration factor that relates the neutron fluence Φ to ρd = induced 

track density of an co-irradiated standard dosimeter glass (e.g. IRMM 540, CN5). 

Substituting equation (9) into equation (8) defines zeta as: 
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Substituting ζ yields an age equation for dating a sample of an unknown age to: 
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The value of the zeta factor is specific for a particular standard glass and is derived 

empirically from fission track determinations on age standards by rearranging (11) to: 
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where tSTD = age of the age standard and (ρs / ρi)STD = corresponding spontaneous and 

induced track density ratio. Usually, zeta factors are calculated 3-10 times for each age 

standard from ideally different irradiations. These factors are than averaged to give an 

error weighted mean zeta. The zeta factor is unique for each observer, irradiation 

facility and microscope. A corresponding standard deviation is obtained by: 
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where σ (tSTD) is the age error of the age standard. Commonly employed age standards 

are Fish Canyon Tuff (27.8 ± 0.2 Ma), Durango (31.4 ± 0.4 Ma), and Mount Dromedary 

Igneous Complex (98.7 ± 0.6 Ma). Details are given in Hurford (1990a, 1990b and 

references therein).  

With the assumption that fission track statistics of track counting will follow a 

Poissonian distribution like radioactive decays, no further source of variation is 

assumed in the measured track densities. According to the “conventional analysis” 

(Green, 1981) the standard deviation St on the fission track age is calculated by: 
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where Ns, Ni, and Nd are the total number of track counts for the spontaneous, induced 

and standard glass track densities, respectively. Sζ = standard deviation of the 

empirically determined calibration factor ζ. 

The usage of the external detector methods (see below) permits the determination of  

ρs/ρi ratios for individual crystals (Gleadow, 1981). It is therefore vital to assess whether 

the obtained range of single grain ages (equation 11) reflect a single or multiple age 

populations or if even other non poissonian sources of errors are present. Extensive and 

comprehensive reviews and discussions on fission track statistics are given by Green 

(1981), Galbraith and Laslett (1993) and references therein. In order to objectively test 

whether there is real variation in single grain ages beyond that expected from track 

counting alone Green (1981) suggested the determination of a χ2 statistic to: 
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where Ns, Ni are the total number of counted spontaneous and induced tracks, 

respectively. Nsj, Nij represent the spontaneous and induced track counts in the  

jth-grain, respectively. 

If the χ2 probability P(χ2) value is > 5 % with (n-1) degrees of freedom (n = number 

of crystals counted), a sample age is derived as a pooled age calculated after equation 

11 with the ρs/ρi ratio being the sum of track counts from all grains. If the χ2 test fails  

[P(χ2) < 5 %], meaning the Poisson distribution is not the only source of variation, a 
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mean age, where ρs/ρi ratio is an arithmetic mean of all individual grain ρs/ρi ratios 

represents a better estimation of the samples FT age.  

In order to reduce the undue influence of grains with very few track counts a central 

age was introduced (Galbraith and Laslett, 1993). It is a weighted mean of the log 

normal distribution of single grain ages with an estimated standard deviation, i.e. age 

dispersion. For sample populations with high P(χ2) values the pooled, mean and central 

ages are equal. The central age (tc) and its associated standard deviation (Stc) are 

calculated by:  
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where η and w are iteratively computed parameters derived from Nsj and Nij. 

A uranium concentration for each mineral grain Ugrain is obtained by: 
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with USTD = uranium concentration of a standard dosimeter glass,  ρd = induced track 

density over the dosimeter glass and ρi = induced track density over the investigated 

grain. 

2.2.2 External Detector Method 

The External Detector Method (EDM) is a routinely applied standard procedure for 

fission track dating. It is usually the preferred dating method as it provides age 

information for individual grains and yields excellent reproducibility (Miller et al., 

1990). The differentiation of intergrain age variability is in particular important for 
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detrital mineral dating from sedimentary rocks but it is also important for the 

application to igneous rocks (O'Sullivan and Parrish, 1995). 

Fig. 2.3 illustrates the steps involved in the EDM fission track dating. Spontaneous 

fission tracks (1) are revealed on a polished internal mineral surface (2) by the 

application of an etchant onto it (3). An external detector, commonly used is mica with 

a low uranium content, is mounted onto the exposed internal mineral surface (4). During 

irradiation with thermal neutrons, fission fragments of 235U induce tracks into the 

mineral grain and the external detector (5). After the irradiation the induced tracks are 

revealed by etching the external detector only. Thereby the external detector displays an 

induced fission track image of a corresponding mineral grain (6).  

 

Figure 2.3: Illustration of the principal steps involved in the external detector method (EDM) 
(Gleadow et al., 2002). Dashed lines indicate unetched fission tracks and triangular spikes 
represent fission tracks revealed and enlarged by an etchant for optical inspection. 

Usually a fission track sample mount comprises 50 to 100 mineral grains, is covered by 

one external detector mica and yields c. 5-25 grains suited for fission track dating. In 

order to determine a fission track age, the spontaneous track density (ρs) is counted in a 

suited mineral grain. By finding the corresponding mirror image area on the external 

detector, the induced track density (ρi) is counted over exactly the same area. The area 

matching is either facilitated by computer-controlled microscope stage systems (e.g. 
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Dumitru, 1993) or by repositioning the external detector back on the sample mount 

(Jonckheere et al., 2003).  

Individual grain ages are calculated by equation (11) and a sample age is derived as a 

central age (equation 18). As the geometry of track registration is different for the 

internal mineral surface (4π) and for the external detector surface (2π) a geometric 

correction factor (g) is applied to the age calculation (equation 8, 11). This factor has a 

value of approximately 0.5 but not exactly as it is affected by small variations in the 

track etching efficiency and the fission track range between the external detector and the 

mineral grain (Gleadow and Lovering, 1977). 

2.2.3 Fission track length and track annealing 

Radiation damage caused by nuclides from fission decay is energetically metastable and 

represents an unstable state of the solid, which fades with time as the originally ordered 

structure gradually becomes restored. Fission track annealing is a temperature 

dependant diffusional process that affects the entire track and to which an Arrhenius 

relationship can be applied (Green et al., 1986; Laslett et al., 1987) (Fig. 2.4): 
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where tr = reaction rate, A = a mineral specific constant, E = activation energy, T = 

absolute temperature and with k being Boltzmann’s constant.  

It should be noted that it has been argued to refuse interpretations for both track 

shortening and reduction of track density by first-order reaction kinetics (Green et al., 

1988b). During annealing tracks retain their linear shape but become shorter until the 

physical damage of the crystal lattice is restored (Fleischer et al., 1965a, b) and when its 

length is reduced to zero the tracks cease to exist. Temperature, time and chemical 

composition are the most dominant factors that control fission track annealing though 

pressure and ionizing radiation may also be important (Fleischer et al., 1965a). 

Consequently fission tracks will continue to shorten until they cool to lower 
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temperatures and the final length of each track represents an integrated record of its 

time-temperature path (Gleadow et al., 2002). 

 

Figure 2.4: Arrhenius plot depicting the extrapolation of experimental annealing data on 
Durango apatite (Green et al. 1985) from laboratory scale to the geological scale (i.e. months to 
millions of years). In this illustration the iso-length contours (solid lines, numbers denote ratio 
between reduced and initial track length) are fitted using the fanning model of Laslett et al. 
(1987), modified after Gleadow et al., 2002. 

The effect of annealing and track reduction has a fundamental influence on fission track 

age. While the track length diminishes, the probability of short track to intersect the 

polished internal surface decreases. As a result the track density at surfaces counted will 

be reduced and so will the obtained fission track age (Green, 1988a; Wagner, 1981). 

This effect becomes obvious by examination of fission track samples from boreholes 

where mineral specific fission track ages and track lengths decrease with increasing 

depth and temperature (Coyle and Wagner, 1998; Gleadow and Duddy, 1981; Naeser 

and Forbes, 1976). Several laboratory experiments were performed to constrain track 
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annealing kinetics and to extrapolate them onto geological time scales for different 

minerals (e.g. Carlson et al., 1999; Laslett et al., 1987; Jonckheere and Wagner, 2000; 

Yamada et al., 1998). The annealing of fission tracks starts at a mineral specific 

temperature and increases non-linearly in degree of fading with temperature. For 

geological timescales (c. 107 a) a temperature range can be defined, termed partial 

annealing zone (PAZ), over which fission tracks are produced and partially annealed. 

Above the upper high temperature threshold tracks will fade completely whereas below 

the lower temperature boundary tracks are permanently retained. Consequently, a 

sample’s track length distribution is the net result of track production and track fading 

over geological times. It is therefore a crucial parameter as its histogram shape, the 

mean track length (MTL) and the standard deviation (SD) reflect the sample’s thermal 

history (Fig. 2.5) (Gleadow et al., 1986). 

 

Figure 2.5: Illustration of three different hypothetical cooling histories (a-c) for apatite samples 
cooling through the temperature interval of 120°-20°C (Gleadow et al., 2002). The resulting 
length distribution histograms are depicted on the right side. Predicted apatite fission track ages, 
mean track lengths and associated standard deviations are given by numbers in the histograms 
from top to bottom, respectively. Example (a) shows a very rapidly cooled sample with an age 
closely approximating the timing of rapid cooling. Cases (b) and (c) depict a slow monotonous 
and a two-stage cooling path with broad, negatively skewed unimodal and bimodal track length 
distributions, respectively.   

The apparent fission track age corresponds to time spans over which the sample has 

resided within the PAZ and at lower temperature regimes. Solely in samples that cooled 
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more rapid and fairly linear through the PAZ, the fission track age will correspond to 

the time of a cooling event (Fig. 2.5).  

Titanite  

The titanite fission track (TFT) thermochronometer is estimated to partially retain fossil 

fission tracks over a temperature range of 310°-265° ± 10°C (Coyle and Wagner, 1998) 

and to record cooling to below 275° ± 25°C for cooling rates of 10°C/Ma (Kohn et al., 

1993). Extrapolations of experimental titanite annealing results to geological time scales 

predicted significantly higher temperature ranges (e.g. see compilation of Wagner and 

Van den Haute, 1992). They were discounted as they were less compatible with 

geological observations from other radiometric dating systems, in particular Rb/Sr and 

K/Ar of biotite (e.g. Kohn et al., 1993).  

Recent annealing experiments (Jonckheere and Wagner, 2000) indicate that the 

reduction of track length and density take place in a complex manner with heating time 

and may be related to coeval annealing of α-recoil-tracks or atomic scale differences in 

the defect structure along the fission track. Still, the relationship between track length 

and track density decrease is similar to that in apatite (Jonckheere and Wagner, 2000). 

Revelation of fission tracks in titanites by etching is none uniform due to the 

anisotropic crystal structure of titanite; i.e. tracks are etched differentely in different 

crystallographic planes and in certain orientations are not revealed at all. As a result the 

spontaneous track density is underestimated (Gleadow, 1978) and no reliable 

information on cooling histories can be derived from the track length distributions. The 

track etching becomes more isotropic with increasing partial metamictisation that 

entails gradual loss of anisotropy towards a more isotropic, glass-like crystal structure 

(Gleadow, 1978). Therefore, fission track lengths are not routinely measured in titanite 

and the interpretation of TFT ages is mainly based on single-grain age distributions and 

their statistics (Galbraith, 1990). 

However, investigations on the influence of radiation damage on the annealing 

behaviour of titanite age standards Mt. Dromedary and Fish Canyon Tuff indicate 

isotropic fossil track revelation even below the level of incipient metamictisation. These 

results suggest that ζ – values obtained from these standards are suitable to date 
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different titanite samples with fossil track densities of 105-106 cm-2 (Enkelmann et al., 

2005). 

Apatite 

Apatite fission track (AFT) analyses from deep drill holes (e.g. Gleadow et al., 1983; 

Naeser and Forbes, 1976) and extrapolation of annealing experiments on Durango 

apatite in geological time scales (Laslett et al., 1987) estimate the apatite PAZ to range 

between 110°-60° ± 10°C (Fig. 2.6). A simplified model suggests a closure temperature 

of c. 100°C for the AFT dating system (e.g. Wagner and Van den Haute, 1992).  

 
Figure 2.6: Left diagram depicts the observed decrease in apparent apatite fission track ages 
(open grey circles) and mean track length (black circles) with increasing depth. Apparent is the 
concave upward form of trend decrease for both, the apparent apatite fission track ages (dashed 
line) and the mean track lengths (black line). Data are compiled from several wells from the 
central Otway Basin, south eastern Australia (Gleadow and Duddy, 1981; Green et al., 1989). 
The illustration to the right displays fission track length distributions, single crystal age 
histograms and single crystal age radial plots (Galbraith, 1990) of four representative samples 
from datasets of the Otway Basin wells, illustrated on the left diagram. The stratigraphic age in 
all samples is c. 120 Ma as shown by the thin gray line on the radial plots. The four samples 
correspond from top to bottom to increasing temperatures and depths. They clearly depict the 
progressive increase in annealing as the mean apparent age (black line on the radial plots) and 
mean track length decrease while the single grain age distribution and the track length 
distribution progressively broaden. The increase of dispersion in single grain ages and track 
length distributions is attributed to differences in apatite annealing kinetics by variable chemical 
composition i.e. Cl/F ratio and annealing anisotropy (Brown et al., 1994; Gallagher et al., 1998; 
Green et al., 1989). Figures modified after Gleadow et al. (2002). 
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The chemical composition of apatite may exert an important control on the track 

annealing rate. In particular influences of the Cl and F proportions have been known for 

some time (Donelick, 1991; Gleadow and Duddy, 1981; Green et al., 1986; O'Sullivan 

and Parrish, 1995). While fluorine-rich apatites, such as Durango typically display 

complete annealing at temperatures of 90°-100°C chlorine-rich apatites are more 

resistant and totally anneal at temperatures around 110°-150°C (Burtner et al., 1994). 

Little is known about the influence of other chemical species on the annealing processes 

such as OH and Mn (Bergmann and Corrigan, 1996; Ravenhurst et al., 1992) or rare 

earth elements, which are significant trace constituents of apatite (Hughes et al., 1991; 

Hurford et al., 2000). Besides chlorine, particularly REE appear to exert influences on 

the annealing behaviour of fluorine-rich apatites and so does in rare cases Sr substituted 

for Ca (Barbarand et al., 2003b). 

Burtner et al. (1994) have related the degree of annealing to composition and to 

etching characteristics of apatite. Etch figures (etch pits) are the two-dimensional cross-

sections of etched tracks intersecting the polished internal crystal surface (Honess, 

1927). Their size and geometry are considered to reflect the apatite’s solubility and thus 

the bulk apatite composition. It has been inferred, that for etch figures, whose long axis 

parallel the crystallographic c-axis (Fig. 2.7a), that their long axis length (termed Dpar) 

scales directly with the chlorine concentration and inversely with fluorine content of 

apatite crystals (Burtner et al., 1994; Donelick, 1993).  

Recently, it has been shown that the degree of fission track annealing rather relates to 

the crystal lattice structure i.e. unit cell parameters, which in turn depends on the bulk 

chemical composition (Barbarand et al., 2003b). The etch pit size is also clearly related 

to crystal structure and hence to the bulk chemical composition and therefore, it 

provides a valuable estimate of the annealing rate of an individual apatite grain 

(Barbarand et al., 2003b). It is important to note that neither etch pit figures nor single 

chemical compositional variables, including the chlorine content, are completely 

reliable and robust predictors for the annealing behaviour. As an example, an increase in 

OH content can result in a large etch pit figure size without an increase in resistance to 

annealing (Ketcham et al., 2000). 
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Figure 2.7: a) Hexagonal etch pit (arrow) in apatite. The perfectly aligned long axis of the etch 
pits parallel the crystallographic c-axis of the apatite, indicated by the dashed lines. This 
alignment provides a reliable assessment of the prismatic surfaces in apatites. b) Transmitted 
light image of apatite with an etched horizontally confined fission track (arrow). 

Another influence on the annealing of randomly orientated fission tracks is given by the 

anisotropy of the apatite crystal lattice itself (Hughes et al., 1990; Sudarsanan and 

Young, 1978). Anion columns in the apatite crystal (Hughes et al., 1990) appear to 

define channels parallel to the crystallographic c-axis, and thereby provide preferential 

pathways for diffusing species (Gleadow et al., 2002). As a consequence fission tracks 

orientated orthogonally to the c-axis anneal more rapidly (Green and Durrani, 1977) 

whereas tracks orientated parallel to the c-axis appear to be influenced by less favoured 

diffusion in the lattice and hence anneal more slowly. The track length distribution of an 

apatite crystal ranges between these two extremes and the annealing anisotropy 

becomes more obvious as annealing takes place (Wagner and Van den haute, 1992). 

Polished internal surfaces orientated parallel to the c-axis display the entire angular 

spectrum (Green et al., 1986). Therefore track lengths are measured in planes parallel to 

c-axis and solely horizontally confined tracks (Fig. 2.7b), i.e. tracks that run parallel to 

and due not intersect with the polished internal surface are chosen (Gleadow et al., 

1986). Confined tracks are revealed by etchant percolating through cross-cutting 

fractures (tincle = track in cleavage) or tracks (tint = track in track), though only the 

latter are used for track length measurements (Barbarand et al., 2003a). Further 

comprehensive descriptions on the investigations of crystallographic induced 

anisotropic annealing, length-bias in track shortening and their effects on fission track 

ages are given by Green (1988); Donelick et al. (1990, 1999) and Donelick (1991).  
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2.2.4 Modelling of t-T paths from apatite fission track data 

Advances in the quantitative descriptions of the annealing behaviour of apatite fission 

tracks led to the development of numerical models for extracting quantitative 

information on the thermal history of a rock sample from apatite fission track data. In 

principle isothermal annealing algorithms are adopted in fission track data modelling. 

They conventionally describe fanning linear contours of constant annealing on the 

Arrhenius plots (fanning Arrhenius model, e.g. Fig 2.4) and relate track length reduction 

r to temperature T (K) and annealing time t (s) in a form like: 
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where r = l/l0 is the ratio of the annealed (l) to unannealed, i.e. initial (l0) track length 

and a, b, C0-3 are constants derived by fitting experimental laboratory annealing data of 

a single type of apatite (Carlson, 1990; Crowley et al., 1991; Laslett and Galbraith, 

1996; Laslett et al., 1987). Ketcham et al. (1999) developed an isothermal annealing 

model in the form: 
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which describes fanning curvilinear contours of constant annealing of apatite fission 

track data sets on the Arrhenius plot; so called “curvilinear model” (Carlson et al., 

1999). In contrast to previous annealing models, the track length reduction r is linked to 

the apatites bulk chemistries inferred from etch pit diameters (Dpar; see Ketcham et al., 

1999) and thus permits the modelling of naturally occurring apatites with a broad range 
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of chemical compositions and annealing kinetics. Additionally, this model permits the 

employment of a correction model that accounts for the crystallographic annealing 

anisotropy (Donelick et al., 1999). 

Forward modelling predicts apatite fission track data for a given t-T paths. Thereby 

equations (22) or (23) are used to generate track length distributions from incremental 

isothermal annealing steps and subsequently a fission track age is derived, which 

generally is a sample’s pooled age (e.g. Ketcham et al., 1999; Green, 1988a). All 

numerical models of apatite fission track annealing rely on the principle of time 

equivalence (Duddy et al., 1988). It presumes that a fission track, which has been 

annealed to a certain degree, will behave during further annealing independent from the 

previous annealing conditions. Thus, further track reduction solely depends on the 

preceding degree of annealing and the prevailing t-T conditions whereas the order of 

occurrence of isothermal annealing steps is not important. In principle, forward 

modelling solely permits inferences on cooling. It fairly precisely constrains the timing 

of cooling into the AFT PAZ, approximately below 110°C and the palaeo-temperature 

value prior to the latest cooling step out of the PAZ. The timings of this paleao-

temperature and of the cooling out of the PAZ, approximately below 60°C are rather 

poorly defined.     

Inverse model approaches are designed to determine a range of t-T paths which are 

consistent with a given fission track data set and additional geological constraints. 

Inverse model attempts are not strictly mathematical inversions but rather statistical 

processes to determine a range of possible thermal histories that may underlie the 

measured fission track data. Components of inverse models comprise a candidate t-T 

paths generator, a statistical means to evaluate the goodness-of-fit between measured 

data and predicted data sets from each generated t-T path and a searching algorithm for 

extracting best-fit solutions among various permissible t-T paths generated (e.g. 

Gallagher and Sambridge, 1994, Ketcham et al. 2000). The computer program 

AFTSolve 1.3.1 (Ketcham et al., 2000), used in this study, permits maximum and 

minimum cooling rates and fixed time-temperature points as input parameters. In order 

to test the goodness-of-fit (G.O.F.) of model results, predicted track length distribution 

and fission track age are tested against measured fission track data individually. They 
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are then combined into one merit function to evaluate different thermal histories against 

each other (Ketcham et al., 2000). As a result, a wider 0.05 (“acceptable fit”) and a 

narrower 0.5 (“good fit”) probability envelop are created. They define a t-T space that 

comprises all t-T paths which are consistent with additional geological constraints and 

pass the principle baseline statistical criteria. The Monte Carlo method and the 

Constrained Random Research (CRC) are employed as routines for extracting best-fit 

t-T path solutions.  

2.2.5 Analytical procedures 

Titanite and apatite separates, (grain sizes of c. ≤ 315 μm) were extracted from rock 

samples using conventional preparation techniques including crushing, sieving, Wilfley 

table, heavy liquid and magnetic separation. Figure 2.8 illustrates schematically the 

mineral separation process. 

 

Figure 2.8: Flowchart of mineral separation technique for deriving and concentrating apatite and 
titanite separates. TBE = 1,1,2,2 tetrabromethane, DIM = di-iodomethane are heavy liquids with 
specific densities denoted. Values in the magnetic separator boxes indicate used forward slope, 
side slope and direct current, respectively. 
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Age standard
No. of

grains

ρ s (× 10
6
cm

-2
)

( )N s

ρ i (× 10
6
cm

-2
)

(N i)

ρ d (× 10
6
cm

-2
)

(N d)

P(χ
2
)

(%)

ζ - factor

± 1σ

Fish Canyon 18 0.311 (366) 0.770 (906) 1.146 (2049) 66.0 120.8 ± 8.2

Fish Canyon 30 0.336 (780) 0.820 (1902) 1.141 (2049) 99.0 119.5 ± 6.1

Fish Canyon 30 0.337 (829) 0.796 (1955) 1.129 (2049) 33.7 116.8 ± 5.9

Mt. Dromedary 29 0.812 (1588) 0.629 (1230) 1.002 (2049) 8.4 153.8 ± 6.8

Mt. Dromedary 30 1.075 (1623) 0.701 (1058) 1.006 (2049) 13.7 128.9 ± 5.9

Mt. Dromedary 25 0.862 (1593) 0.644 (1189) 1.011 (2049) 71.8 146.9 ± 6.6

Mt. Dromedary 20 0.929 (1287) 0.691 (957) 1.015 (2049) 8.9 145.7 ± 7.1

Mt. Dromedary 30 1.604 (1682) 1.270 (1332) 1.137 (2049) 30.2 138.6 ± 6.0

Mt. Dromedary 30 2.012 (2588) 1.562 (2009) 1.125 (2049) 72.3 137.3 ± 5.2

Mt. Dromedary 13 1.426 (828) 1.161 (674) 1.133 (2049) 1.8 142.9 ± 8.1

Titanite 

Batches of titanite grains were embedded in epoxy resin, then ground and polished with 

corundum powder (c. 20 and 0.05 μm graining, respectively) to expose internal crystal 

surfaces. Fission tracks were revealed by etching polished crystal mounts in an acid 

solution (conc. HF : conc. HNO3 : conc. HCl : H2O = 1 : 2 : 3 : 6). Samples were etched 

individually at room temperature for 17-27 minutes (Naeser and McKee, 1970). 

Distinctly recognizable terminations of confined tracks were used as an evaluation 

criterion for sufficient track revelation. Induced tracks were recorded in white micas 

following the external detector approach (Gleadow, 1981) and revealed after irradiation 

by exposing the micas for 15 minutes to 40% HF etchant at 21°C.  

All the samples were loaded into aluminium capsules and irradiated at the FRM II 

research reactor facility in Munich-Garching (Germany). Corning dosimeter glasses 

were used to monitor a neutron fluence gradient. An irradiation time of 60 s was applied 

to obtain a total thermal neutron (n) fluence of 0.5 × 1016 ncm-2. 

Table 2.2: Zeta values for titanite fission track calibration 

All samples were irradiated at the reactor facility FRM II Munich-Garching (Germany) and ζ 
values were determined for CN2 standard glasses. ρd is the standard glass track density, ρs and ρi 
represent sample’s spontaneous and induced track densities, with the total number of track 
counts given in parentheses (Ns, Ni, Nd). P (χ2) represents the probability of the chi-square test 

Track densities in mounts and micas were measured using a Zeiss® Axiophot 

microscope equipped with a drawing tube, a Kintec® stage and a Calcomp® digitizer 

with the latter two being operated by the FT-Stage software (Dumitru, 1991). Dry 

objectives, calibrated against stage micrometers, were used for track density counts in 
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transmitted light at 2000× magnification. Only pristine titanite grains without inclusions 

and lattice defects e.g. dislocations were used for age dating. TFT central ages were 

calculated according to zeta calibration method (Galbraith and Laslett, 1993; Hurford, 

1990a) using a weighted mean zeta factor of ζ = 134 ± 2. Individual zeta values and 

counting statistics of age standards are provided in Tab. 2.2. TFT age errors are quoted 

at the 1σ confidence level throughout this study and were derived according to the 

conventional method (Green, 1981). Due to the high yield of titanite crystals, granite 

sample YG3 was selected for internal cross validation. The separate was split in two and 

analysed independently.  

Apatite 

Apatite grains were embedded in epoxy resin, then ground and polished with corundum 

powder (20 μm and 0.05 μm graining) to expose internals crystal surfaces. The fission 

tracks were revealed by etching polished crystal mounts with 5 M HNO3 for 20 s at 

21°C. Induced tracks were recorded in white micas following the external detector 

approach (Gleadow, 1981) and revealed after irradiation by exposing the micas for 

15 min to 40 % HF etching at 21°C.  

One set of sample mounts was loaded into polyethylene capsules and irradiated at the 

thermal neutron channel 8 of the Thesis reactor facility in Ghent (Belgium). IRMM 540 

dosimeter glasses were used to monitor a neutron fluence gradient and a total thermal 

neutron (n) fluence of c. 1 × 1016 ncm-2 was applied.  

Track densities in mounts and micas were measured using a Zeiss® Axiophot 

microscope equipped with a drawing tube, a Kintec® stage and a Calcomp® digitizer 

with the latter two being operated by the FT-Stage software (Dumitru, 1991). Dry 

objectives, calibrated against stage micrometers, were used for track density counts in 

transmitted light at 1250× magnification. Only pristine apatite grains without inclusions 

and lattice defects e.g. dislocations were used for fission track analyses. Solely grains, 

exposing internal surfaces parallel to the crystallographic c-axis were used for track 

density and track length measurements. Confined track length (tints only) and etch pit 

diameter were measured with dry objectives, calibrated against a stage micrometer at 

2000× magnification in transmitted light and reflected light, respectively. Four etch pits 



 
Thermochronological methods and analytics 

 37

per grain dated and three etch pits per crystal used for track length measurement were 

determined. Arithmetic mean Dpar values were used for each grain and track of samples 

employed in the t-T path modelling. An overall sample’s arithmetic mean Dpar value 

was calculated as a bulk kinetic proxy for each AFT sample (Tabs. 6.1-6.4). The AFT 

central ages were calculated according to the zeta calibration method (Galbraith and 

Laslett, 1993; Hurford, 1990a) with a weighted mean zeta factor of ζ = 325 ± 7. 

Individual zeta values and counting statistics of age standards are provided in Tab. 2.3.  

All other apatite sample mounts were loaded into aluminium capsules and irradiated 

at the FRM II research reactor facility in Munich-Garching (Germany). An irradiation 

time of 100 s was applied to obtain a total thermal neutron fluence of 1 × 1016 ncm-2. 

Grain selection, track length and etch pit measurements were conducted as given above.  

The track densities were determined using the repositioning technique (Jonckheere et 

al., 2003) at a magnification 1250× in transmitted light. AFT central ages were 

calculated according to zeta calibration method (Galbraith and Laslett, 1993; Hurford, 

1990a) with a weighted mean zeta factor of ζ = 322 ± 9 for IRMM 540 dosimeter 

glasses. Individual zeta values and counting statistics of age standards are provided in 

Tab. 2.4. Throughout this study AFT age errors are quoted at the 1σ confidence level 

and were derived according to the conventional method (Green, 1981). 

The modelling of apatite fission track data was performed for representative samples 

that yield a minimum of 5 grains dated and of 30 track lengths measured. The software 

AFTSolve 1.3.1 (Ketcham et al., 2000) using the Ketcham AFT annealing algorithm 

(Ketcham et al., 1999) was employed. Single grain ages, track length measurements and 

corresponding Dpar values are used as model inputs. The annealing model of Ketcham et 

al. (2000, 1999) is calibrated for a track revelation procedure using 5.5 M HNO3 etchant 

for 20 s at 21°C (Carlson et al., 1999). Therefore, samples employed in t-T path 

modelling were corrected for slightly deviating etching conditions by multiplying the 

measured etch pit diameter (Dpar) values with a calibration factor of 1.0145, according 

to suggestion of R. A. Donelick (pers. comm., 2004). The calibration factor represents 

the ratio between the Dpar measurements obtained from two different track revelation 
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Table 2.3: Zeta values used for apatite fission track calibration (Ghent reactor) 

All samples were irradiated at the reactor facility Thetis in Ghent (Belgium) and ζ values were 
determined for IRMM 540 standard glasses. ρd is the standard glass track density, ρs and ρi 
represent sample’s spontaneous and induced track densities, with the total number of track 
counts given in parentheses (Ns, Ni, Nd). P (χ2) represents the probability of the chi-square test. 

Table 2.4: Zeta values used for apatite fission track calibration (Munich reactor) 

All samples were irradiated at the reactor facility FRM II Munich-Garching (Germany) and ζ 
values were determined for IRMM 540 standard glasses using the repositioning technique 
(Jonckheere et al., 2003). ρd is the standard glass track density, ρs and ρi represent sample’s 
spontaneous and induced track densities, with the total number of track counts given in 
parentheses (Ns, Ni, Nd). P (χ2) represents the probability of the chi-square test. 

Age standard
No. of

grains

ρ s (× 10
6
cm

-2
) ρ i (× 10

6
cm

-2
) ρ d (× 10

6
cm

-2
) P(χ

2
)

(%)

ζ - factor

± 1σ

Durango 16 0.128 (73) 0.867 (495) 1.520 (11498) 97.1 280.8 ± 35.6

Durango 23 0.133 (86) 1.071 (692) 1.606 (11498) 99.9 315.4 ± 36.5

Fish Canyon 21 0.181 (84) 1.558 (725) 1.577 (11498) 99.8 306.1 ± 35.8

Fish Canyon 21 0.198 (109) 1.554 (855) 1.557 (11498) 97.5 278.2 ± 28.8

Mt. Dromedary 18 1.083 (234) 3.027 (654) 1.554 (11498) 55.1 357.8 ± 27.5

Durango 6 0.143 (84) 1.035 (607) 1.589 (11803) 43.3 286.3 ± 33.7

Durango 10 0.194 (36) 1.351 (251) 1.587 (11803) 99.9 276.6 ± 49.6

Fish Canyon 20 0.211 (76) 1.952 (702) 1.591 (11803) 99.9 324.7 ± 39.8

Mt. Dromedary 20 0.737 (191) 2.185 (566) 1.586 (11803) 99.9 371.7 ± 31.4

Durango 14 0.140 (48) 1.052 (360) 1.481 (7238) 97.5 318.8 ± 49.4

Fish Canyon 7 0.171 (24) 1.520 (214) 1.478 (7238) 100.0 337.4 ± 73.0

Mt. Dromedary 19 0.711 (324) 1.699 (774) 1.484 (7238) 20.1 320.2 ± 21.6

Durango 10 0.151 (27) 1.051 (188) 1.487 (7246) 99.9 294.8 ± 61.0

Fish Canyon 6 0.205 (15) 1.814 (133) 1.486 (7246) 93.4 333.7 ± 91.2

Mt. Dromedary 25 0.801 (293) 2.145 (784) 1.488 (7246) 99.9 357.7 ± 25.0

Durango 10 0.136 (103) 0.954 (723) 1.506 (7359) 71.7 293.4 ± 31.4

Mt. Dromedary 22 0.704 (406) 1.880 (1084) 1.503 (7359) 70.3 353.4 ± 21.1

Durango 25 0.216 (231) 1.498 (1605) 1.481 (11436) 93.3 295.3 ± 21.5

Mt. Dromedary 25 0.742 (436) 1.971 (1158) 1.485 (11436) 95.4 355.8 ± 20.4

( )N s (N i) (N d)

Age standard
No. of

grains

ρ s (× 10
6
cm

-2
) ρ i (× 10

6
cm

-2
) ρ d (× 10

6
cm

-2
) P(χ

2
)

(%)

ζ - factor

± 1σ

Durango 17 0.127 (185) 0.736 (1075) 1.143 (7775) 99.8 320.0 ± 26.2

Durango 21 0.127 (238) 0.795 (1488) 1.140 (7775) 96.1 345.3 ± 25.0

Durango 15 0.130 (163) 0.782 (977) 1.147 (7775) 96.4 329.0 ± 28.6

Durango 11 0.133 (112) 0.856 (720) 1.121 (7775) 67.9 361.0 ± 37.3

Fish Canyon 14 0.217 (123) 1.226 (696) 1.136 (7775) 96.8 278.6 ± 27.9

Fish Canyon 25 0.222 (183) 1.527 (1260) 1.128 (7775) 99.8 341.3 ± 28.0

Fish Canyon 23 0.218 (216) 1.177 (1164) 1.132 (7775) 99.0 266.2 ± 20.5

Mt. Dromedary 26 0.835 (706) 1.649 (1394) 1.125 (7775) 92.7 349.1 ± 16.7

( )N s (N i) (N d)
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procedures of the same apatite standard. Multiple Dpar ratio determinations were derived 

for Durango and Fish Canyon apatite standards (Tab. 2.5). An overall mean Dpar ratio 

value of both standards was used as the calibration factor (1.0145). 

Table 2.5: Etch pits diameter values of apatite standards used for Dpar calibration 

Dpar represents arithmetic mean of all measured etch pits in a sample and SD is the associated 
standard deviation. Ratio Dpar is the ratio between Dpar values quoted by Donelick et al. (1999) 
(5.5 M HNO3, 20 s, 21°C; Durango = 1.83 ± 0.13 μm, Fish Canyon = 2.43 ± 0.21 μm) and 
measured Dpar values. 

All fission track annealing models are calibrated against a reduced track length (r = l/l0) 

and rely on the usage of an initial unannealed track length (e.g. l0 = 16.3 μm in Laslett et 

al., 1987; Ketcham et al., 1999). Uncertainties about this initial track length and the lack 

of knowledge about the AFT annealing behaviour below c. 60°C are accounted for to 

result in major cooling from c. 60°C to present-day surface temperatures in the 

geologically recent past (see Kohn et al., 2002 and references therein). The AFT-Solve 

1.3.1 (Ketcham et al., 2000) modelling software uses a compensation factor to account 

for some uncertainties about the initial spontaneous track length to reduce the effect of 

the recent rapid cooling events. However, it does not account for the poorly constrained 

annealing behaviour of apatite fission tracks below c. 60°C. Therefore such “recent” 

cooling episodes could be modelling artefacts and hence they are regarded as less 

reliable unless independent evidences exist. Throughout this study, cooling path models 

are discussed in terms of the best-fit model path. 

2.2.6 Fission track data presentation 

The results of the TFT and AFT analyses are presented in Table 3.3 and Tables 6.1-6.4, 

respectively. Individual titanite and apatite single grain age data are presented as radial 

plots (Appendix A and B), a graphical device for comparing crystals of different ages 

Age Standard
No. of

etch pits

D par

(μm)

SD

(μm)

ratio

D par

Durango 58 1.80 0.20 1.02

Durango 61 1.85 0.16 0.99

Durango 47 1.79 0.17 1.02

Weighted mean 166 1.82 0.01 1.01

Age Standard
No. of

etch pits

D par

(μm)

SD

(μm)

ratio

D par

Fish Canyon 34 2.38 0.18 1.02

Fish Canyon 56 2.40 0.30 1.01

Fish Canyon 58 2.39 0.22 1.02

Fish Canyon 41 2.34 0.27 1.04

Weighted mean 189 2.38 0.02 1.02
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and precisions (Galbraith, 1990). In radial plots the position of the x axis represents the 

precision of individual grain age estimates (dependant on the number of track counts), 

with precision increasing to the right. Each datum has the same standard error in the y 

direction (indicated by the vertical +2 to -2 bar). The age of each grain is proportional to 

the slope of a line from the origin passing through the datum’s x, y coordinates. It can 

be read from the radial age scale by extrapolating this line to its intersection with the 

age scale. Sample’s apatite track length data are shown as track length histograms, 

binned at 1 μm intervals (Appendix B). The kinetic parameters (Dpar) determined in 

each AFT sample, are presented in x-y scatter plots versus a) their single grain ages and 

b) their single track lengths (Appendix B).  

2.3 (U-Th)/He dating of apatite 

The application of the (U-Th)/4He radioactive decay series for age dating of rocks is the 

oldest known physical chronometric method and it had already been proposed at the 

begin of the 20th century (Rutherford, 1906; Strutt, 1908; Strutt, 1909). With the advent 

of the K-Ar dating method the (U-Th)/He method was excepting minor research efforts 

(e.g. Fanale and Kulp, 1962; Ferreira et al., 1975; Turekian et al., 1970) essentially 

abandoned. In particular as (U-Th)/He results derived from different mineral phases 

often yielded unreliable and unusually low ages, probably as a consequence of diffusive 
4He loss paired with radiation damage (Boschmann-Käthler, 1986; Hurley, 1954).  

By the mid 80’s, the (U-Th)/He dating method gained renewed interest. It had been 

suggested that at least in the case of apatite, He ages might be thermochronometers, 

which record cooling through very low temperatures (Zeitler et al., 1987). Important 

aspects on the technique, calibration, application and laboratory studies of the apatite 

(U-Th)/He thermochronometry are given by Ehlers and Farley, 2003; Farley et al., 

1996; Farley, 2000; Farley, 2002; House et al., 1999; Lippolt et al., 1994; Reiners and 

Farley, 2001; Stockli et al., 2000; Warnock et al., 1997; Wolf et al., 1998; Wolf et al., 

1996a; Wolf et al., 1996b. 
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2.3.1 Helium isotope measurements and age calculation  

In minerals, the overwhelming majority of 4He nuclei (α-particles) are produced by 

actinide radioactive decay series. They are mainly derived from 238U, 235U, 232Th and to 

a lesser extent from 147Sm. The (U-Th)/He dating method is based upon a chain of 

decays from the nuclides 238U, 235U and 232Th into their stable end products 206Pb, 207Pb 

and 208Pb, respectively. Thereby α and β particles are emitted (Fig. 2.9) according to the 

net-balances: 
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where α is a 4He nucleus, β- is an electron, νe is an electronic antineutrino and E 

represents the decay energy.  

The emitted α particles possess an energy- and solid matter-specific travel distance. 

After having released all energy, i.e. coming to rest they capture two electrons and form 

neutral 4He atoms. These 4He atoms are interpreted as stable daughter nuclides and their 

production per time can be described by the standard radioactive decay law.      

For (U-Th)/He dating the fundamental He production equation is given by: 

 

(24)   ( ) ( ) ( )161718 232237238 2322352384 −⋅+−⋅+−⋅= ttt eTheUeUHe λλλ  

 

where t = the time since the closure of the (U-Th)/4He system, 4He is the number of the 

helium daughter nuclides at time t. 238U, 235U and 232Th are the number of the specific 

parent nuclides at time t. λ238 is the decay constant for 238U = 1.5513 × 10-10 a-1, λ235 is 

the decay constant for 235U = 9.8485 × 10-10 a-1 and λ232 is the decay constant for 
232Th = 0.4948 × 10-10 a-1 after Steiger and Jäger (1977). 

The time since system closure, t, cannot be derived analytically from equation (24) 

for determined parent and daughter nuclide concentrations. It is either obtained 

iteratively or by calculating the first two terms of Taylor expansion to derive a 
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simplified linear age equation (see Wolf et al., 1998). Recently, a noniterative solution 

for  approximating t from equation (24) has been proposed (Meesters and Dunai, 2005). 

 

 

Figure 2.9: Illustration depicts the thorium and uranium decay series modified after 
Seelmann-Eggebert et al. (1981). Specific half-lives are quoted below isotopes and α, β and γ 
indicate the type of decay. 

Equation (24) assumes a secular equilibrium among all daughter nuclides of the decay 

chain and is determined by the lifetime of the most long-lasting interim daughter 
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nuclide, i.e. 234U = 3.6 × 105 a. For most applications this condition is valid, i.e. crystals 

have formed more than ~360 ka prior to onset of helium accumulation. In practice 

equation (24) assumes no initial 4He within the mineral specimen analysed. As the 

atmosphere contains 0.5 ‰ helium, trapped atmospheric helium can be neglected 

though other sources like fluid inclusions carrying crustal or mantle helium and/or 

impurities may be important. A detailed overview on helium isotopes is given by 

Mamyrin and Tolstikhin (1984). 

 

Figure 2.10: Schematic setup of the helium extraction line used at School of Earth Sciences; 
Melbourne University (D.X. Belton, pers. comm.). 

The determination of the 4He and U, Th nuclide concentrations is commonly done in 

two steps. First, 4He gas is extracted in vacuo from apatite by either furnace (Farley et 

al., 1999) or laser heating (House et al., 2000), spiked with 3He and admitted to a 

quadrupole mass spectrometer for measuring the He concentration as a ratio (3He/4He) 

via isotope dilution. Measured helium concentration levels of mass spectrometer 

background and extraction line blanks are corrected for (if necessary) by subtracting 

them from actual helium isotopic determinations. The precision on the helium gas 

measurement throughout this work is on the order of 1.4 %. It is based on multiple 
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measurements of a calibrated volume from a dedicated 4He tank (Fig. 2.10) (D.X. 

Belton, pers. comm., 2003). In a second step, degassed apatite grains are dissolved in 

nitric acid. The obtained solution is spiked with 235U and 230Th and the concentrations of 

U and Th are measured as ratios (235U/238U) and (230Th/232Th) using ICPMS (inductively 

coupled plasma mass spectrometry) via isotope dilution. The precisions on the isotope 

measurements are determined from multiple measurements of a known standard 

solution that is measured between the actual sample analyses. Typical precisions 

throughout this work are 4.1 % and 4.5 % for U and Th, respectively (D.X. Belton, pers. 

comm., 2003). 

2.3.2 α-emission balance and helium age correction  

The α particles of the U and Th decay chains are emitted with sufficient kinetic energy 

to travel between c. 13-34 μm in apatite, with average stopping distances between 

20-23 μm (Tab. 2.6). Consequently, the α decay induces a spatial separation between 

parent and daughter isotopes. The important implication is that α particles produced 

along the outermost rim of c. 20 μm of an apatite crystal may not entirely retained and 

hence alter the helium concentration within the apatite grain (Fig. 2.11). Depending on 

the shape and size of a grain the proportion of helium loss may significantly affect the 

calculated helium age. As an example, for a sphere with a radius of 100 μm only 82 % 

of the 4He produced is retained (Farley et al., 1996).  

Fleischer (1983) proposed an analytical solution for determining the fraction of α 

particles retained (FT) within a sphere containing homogeneously distributed uranium 

and being surrounded by negligible amounts of uranium, hence neglecting possible α 

implantation: 

 

(25)   3

3

164
31

R
S

R
SFT +−=   

 

where S = alpha stopping distance and R = radius of the sphere. Using Monte Carlo 

simulations, Farley et al. (1996) extended this approach to cubic and cylindrical 
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geometries (applicable for apatite and zircon) and yielded for grains being considerably 

larger than the α stopping distance (R >> S): 

 

(26)    β⋅−=
4

1 SFT  

 

where β is the surface to volume ratio of the mineral grain; for a hexagonal prism of 

apatite β =(2.31L+2R)/(R/L), R is the half prism width and L is the crystal length. 

Table 2.6: Stopping distances of α-particles in apatite for the decay series of 238U, 235U and 232Th  

Data after Farley et al., 1996 

In order to account for slightly higher mean kinetic energies of α-particle from the 232Th 

decay series (Tab. 2.6), a mean FT value (Farley et al., 1996), weighted by the fraction 

of helium (a) derived from each parent is calculated to: 

 

(27)   ( ) T
Th

T
U

T
mean FaFaF 232

238
238

238 1 ⋅−+⋅=  

 

Due to very similar α decay energies of 235U and 232Th this weighting approach 

associates 4He from both parent isotopes as a single value, Th232FT. The value of a238 

(fraction of 4He produced by 238U) is either derived directly from equation (24) or for 

integrated time periods < c. 200 Ma approximated from measured Th/U ratio by: 

 

Nuclide
α - energy

(MeV)

Stopping

distance in

apatite (μm)
238

U 4.18 13.54
234

U 4.76 16.26
230

Th 4.67 15.84
226

Ra 4.77 16.31
222

Rn 5.49 20.09
218

Po 6.00 22.89
214

Bi 7.69 33.39
210

Po 5.31 19.10
238

U

average
5.36 19.68

Nuclide
α - energy

(MeV)

Stopping

distance in

apatite (μm)
235

U 4.38 14.48
231

Pa 5.00 17.39
227

Th 5.93 22.50
223

Ra 5.65 20.97
219

Ra 6.68 26.89
215

Po 7.38 31.40
211

Bi 6.57 26.18
235

U

average
5.94 22.83

Nuclide
α - energy

(MeV)

Stopping

distance in

apatite (μm)
232

Th 3.98 12.60
228

Th 5.35 19.32
224

Ra 5.67 21.08
220

Rn 5.49 20.09
216

Po 6.78 27.53
212

Bi /
212

Po 6.0 / 8.7 34.14
232

Th

average
5.85 22.46
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(28)   ( )( ) 1
238 /245.004.1 −⋅+= UTha  

 

Fig. 2.12 illustrates the influence of the grain size on the FT correction factor. It 

demonstrates that the uncertainty on the FT correction factor increases significantly with 

decreasing grain size and that for grain radii smaller than c. 30 μm the FT value growth 

very rapidly and hence exerts a significant influence on the helium age. For a batch of 

apatite grains, a mean FT is calculated for the entire population, weighted by the 

individual grain mass, which itself is derived from the grain dimensions. This weighting 

implicitly assumes that larger grains contribute helium proportional to their mass 

(Farley et al., 1996). Correction for loss of alpha particles is accounted for by: 

(29)   
T

mean
raw

corr F
tt =  

 

where tcorr = the corrected 4He age and traw = 4He age calculated from equation (24).  

 

Figure 2.11: Illustration depicts the effect of long α-stopping distances on the retention of 4He in 
apatite. Left figure depicts sites of possible α-retention, α-ejection and α-implantation within a 
schematic crystal. U denotes the location of the parent nuclides (U or Th) and the surrounding 
sphere indicating the possible radial stopping distance of the emitted α particle. One possible 
trajectory is given by the arrow, pointing to the possible point of stop of a 4He nucleus.  
Diagram on the right displays a schematic cross section of the crystal and illustrates the change 
of 4He retention from rim to rim (after Farley et al., 1996). 
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Figure 2.12: Diagram shows the relation between grain size and alpha particles retained (right Y-
axis line) i.e. applicable correction factor to raw He age (left Y-axis). Black line represents 
α particles retention for the 238U decay series in a hexagonal apatite prism with a length/width 
ratio of 3. Dashed lines indicate 1σ error on the FT factor derived from grain measurement 
uncertainties and percentage values are 2σ uncertainties for related cross sections. Inset depicts 
a cross section of hexagonal apatite prism (grey hexagon) with one 4He particle being retained 
within the crystal (dark circle) and one being ejected outside of the grain (light circle). Cross 
section is determined between opposing apices. Figure modified after Ehlers and Farley, 2003. 

2.3.3 Age error estimation 

The absolute analytical error on the corrected 4He age (σrel) is estimated according to a 

procedure used at Melbourne University: 

 

(30)   
100

2222
4 FTUThHecorr

t

t σσσσ
σ

+++⋅
=  

 

where σ4He, σTh and σU are the relative analytical errors on the helium, thorium and 

uranium determinations, respectively and σFT is the estimated relative error on the mean 

FT factor given to:  
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The relationship between the grain radius and the FT factor is non-linear and a 

calibration curve has been fitted based on 400 grain radii determinations (30-200 μm 

range) to establish the relative error (σFT) on the FT factor (D.X. Belton, pers. comm., 

2003).  A relative error on the corrected 4He age (σt) is obtained by: 

 

(32)     
corr

t
rel t

σσ ⋅
=

100  

2.3.4 Helium diffusion in apatite 

In (U-Th)/He dating, it is crucial to understand the 4He diffusion behaviour in minerals. 

For apatite, notably Durango apatite, it has been shown by laboratory step degassing 

experiments that for temperatures below c. 265°C 4He diffusion is a thermally activated 

process that can be described by an Arrhenius relationship. The physical grain remains 

 

Figure 2.13: Diagram depicts the effective helium closure temperatures (Tc) for infinite 
cylinders as a function of apatite grain radii (half prism width) and cooling rates. Shaded area 
represents ranges typically observed in nature (after Farley, 2000). 

stable during heating and is the diffusion domain whereby diffusion in Durango apatite 

is nearly isotropic. The estimates on the Arrhenius diffusion parameters are 
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Ea = 33 ± 0.5 kcal/mol and log(D0) = 1.5 ± 0.6 cm2/s [D0 = 31.6 cm2/s] (Farley, 2000) 

and they may be applied to calculate a closure temperature according to Dodson (1973) 

using equation (6). In Fig. 2.13 closure temperatures are displayed for a range of grain 

radii and cooling rates. As a good approximation, the effective closure temperature of 

the (U-Th)/He dating method is c. 68°C for cooling rates of 10°C/Ma and grain radii of 

c. 90 μm (Farley, 2000). 

The time of 4He accumulation calculated from equation (24) solely accounts for 

production of α-particles and does not incorporate diffusive loss of 4He. Therefore only 

in the special case where cooling proceeds fairly rapidly the assumption of a cooling 

age is justified. In other cases where uncertainties exist about the diffusive closure of 

the (U-Th)/He system the term “helium indices” has been suggested (Keevil, 1941). If 

diffusion is the only source of 4He loss in the (U-Th)/He system the age equation can be 

stated as followed for a spherical diffusion domain: 

 
(33) 
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where 4He(r,t) is concentration of helium at time t as a function of the radial position r 

with a spherical diffusion domain of radius a. U(t) and Th(t) represent the parent isotope 

concentrations at time t and D(t) is the time-temperature dependant diffusion coefficient 

obeying an Arrhenius relationship. 

For high temperatures the diffusive term dominates and virtually all helium is lost 

from the mineral. With decreasing temperature, helium starts to accumulate and for 

even further temperature lowering the diffusive term becomes negligible and all helium 

produced is retained. Wolf et al., (1998) used an analytical solution of equation (33) for 

isothermal conditions and showed that with increasing depth and temperature, helium 

ages will decrease and in dependence of the isothermal holding time a helium partial 

retention zone (HePRZ), analogous to fission track PAZ, will establish. This model 

predicts that a 4He age will always be younger than its corresponding apatite fission 

track. The HePRZ does not overlap with the fission track PAZ. Solely for very rapidly 
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cooled samples (tcooling << 4He age), a 4He age and its corresponding AFT age will be 

equal. The example given in Fig. 2.14 demonstrates that the HePRZ locates c. 35°C 

cooler than the corresponding FTPAZ. Over geological timescales of 106-108 Ma, the 

HePRZ resides between c. 45-85°C and for typical geothermal gradients 25°C/km, it is 

located at 2 ± 1km (Wolf et al., 1998). Studies from boreholes broadly confirmed the 

supposed decrease in apparent age with increasing depth and temperature (House et al., 

1999; Warnock et al., 1997). Field investigation confirmed the existence of apatite 

HePRZ within a temperature range of c. 45°-85°C (Stockli et al., 2000). Equation (33) 

allows the modelling of helium ages for given time-temperature paths but does not 

account for α-particle emission.  

  
Figure 2.14: Variation of 4He (solid line) and fission track ages (dashed line) with temperature 
(depth) for apatites exposed to isothermal conditions for 120 Ma. Light grey and dark grey 
shaded areas represent HePRZ and FTPAZ, respectively. The HePAZ is defined as the range, 
were the 4He ages decrease from 90% to 10% of the isothermal holding time, i.e. 
0.1 ≤ tHe/thold ≤ 0.9. Diagram modified after Wolf et al. (1998). 

At the time of analysis, the helium content in a mineral is the net result of two inter-

woven processes: the ejection of α-particles and the helium diffusion (Meesters and 

Dunai, 2002a; Meesters and Dunai, 2002b). Meesters and Dunai (2002a, 2002b) 

presented an algorithm to calculate helium ages for given t-T paths that incorporates 

both processes. Their model demonstrates that the average 4He age tends to be universal 
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for identical surface to volume ratios. Therefore the He content evolving in a finite 

geometry can be translated into one evolving in the simpler geometry of a sphere.  

2.3.5 Analytical procedures 

Apatite grains for (U-Th)/He analysis were obtained from concentrates separated from 

whole rock material as described in chapter 2.5. Furnace heating and laser heating 

analyses were performed at Melbourne University in cooperation with B. Kohn and at 

CSIRO in Perth in cooperation with P. Crowhurst, respectively.   

 

Figure 2.15: Upper images show homogenous 238U and 235U distribution patterns in an etched 
euhedral apatite crystal (a) and corresponding detector mica print (a’), respectively. The lower 
image depicts an etched subheadral apatite (b) displaying strong zoning with moderate and 
extremely low 238U concentrations occurring in the core and rim, respectively. Its corresponding 
detector mica print (b’) reveals a similar zoning in the 235U distribution pattern. 

Heterogeneous distributions of U and Th exert strong influences on the helium retention 

(FT) and on the helium age. And so do the grain shape and grain diameter. Therefore 

apatite samples were screened in a two step process for selecting inclusion free samples 

with homogeneous parent nuclide distributions and preferred euhedral and cylindrical 

grain shapes. At first, apatite samples prepared for fission track analysis (embedded, 

a a’

b b’

30 m� 30 m�

30 m� 30 m�
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polished, etched and irradiated) were inspected as etched tracks in crystal mounts and 

extern mica detector reveal information on 238U and 235U distribution patterns, 

respectively (Fig. 2.15). Inspection was performed using dry objects in transmitted light 

at 50-500x magnification. From high quality samples c. 10-15 apatites were picked per  

 

Figure 2.16: Image of a stubby, euhedral apatite crystal displaying homogenous CL SEM (a) and 
backscatter SEM (a’) of a sample suited for (U-Th)/He analysis. Anhedral apatite crystals with a 
homogenous appearance in the backscattered SEM image (b’). Their CL SEM images (b) reveal 
zoning (triangular core) and sub parallel bright streaks in the larger grain. These crosscutting, 
streaky alterations are likely to be a source of helium loss and this sample has been excluded 
from (U-Th)/He analysis. Image (c) shows two euhedral apatite crystals with alternating zoning 
from rim to core. This possibly indicates zoned uranium and thorium distributions. 

sample and investigated more detailed using SEM CL (cathodoluminescence) and SEM 

backscatter imaging (Fig. 2.16). CL microscopy is a useful tool to detect lattice defects 

and/or trace activator cations such as REE2+/3+, Fe3+, Cr3+, Al3+, Mn2+, Pb2+ Cu2+, Sn2+ 

(Götze, 2002). By using coupled CL and Laser-ICP-MS analysis, it has been 

demonstrated that within zoned crystals different colours of luminescence produced by 

e.g. Mn or REE are in direct relationship to U, Th and Ce concentrations (Jolivet et al., 

2003). In backscatter SEM images of apatite crystals brighter regions are generally 

enriched in Y, Ce and La and often strongly correlate with U and Th (Ehlers and Farley, 

2003). Apatite samples showing strong internal structures e.g. zoning were excluded. 

Thereafter, grain selection was done by handpicking batches of pristine crystals (8-15) 

of similar grain diameter (> 60 μm) and undamaged surfaces. Picking was performed 

using a binocular microscope fitted with a polarizer and calibrated digital camera in 

100 m�
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transmitted and polarized light at 50x magnification. Apatites were immersed in ethanol 

and rotated in polarized light to detect inclusions (e.g. zircon, monazite) and cracks. 

Digital images were taken from selected apatite batches (Fig. 2.17). Subsequently, their 

grain dimensions were determined by an automated image analysis routine using edge 

detection and threshold algorithms to define the grains and then measure them by means 

of minimum and maximum fitted ellipses. This approach has a precision of c. ± 5 μm 

(D.X. Belton, pers. comm., 2003).  

 

Figure 2.17: Digital image of an apatite crystal batch selected for (U-Th)/He dating. The table to 
the right shows the corresponding grain dimensions derived by digital image analysis. 

Apatite batches were placed in stainless steel capsules and sealed by welding on a lid. 

Up to 6 capsules were loaded into the helium extraction line (Fig. 2.10), a stainless steel 

system connected to a dedicated, on-line Balzers PrismaTM 200 quadrapole mass 

spectrometer.  The extraction line was maintained at c. 10-8 mbar between analyses and 

the automated extraction and data acquisition system was computer controlled, using a 

Lab View program. The sample was heated in a sealed vacuum furnace to c. 870°C for 

approximately 20 min and gases released were “gettered” using a titanium sponge getter 

to remove all active gases (CO2, H2O, H2, N2, O2, CH4, e.t.c.). 4He abundances were 

determined via isotope dilution using a pure 3He spike, which is calibrated on a regular 

basis against an independent 4He standard tank. 4He ‘re-extracts’ hot line blank 

measurements were performed routinely after each analysis to determine whether all of 
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the trapped He gas has been removed or not. Every sixth sample analysis was a 

Durango apatite standard to control consistency of analyses.  

Apatite single grain analyses were performed at CSIRO Perth and grain selection 

followed routine outlined above. Picked grains were sealed in Pt tubes (1 mm width) 

and up to 25 individual aliquots were placed into pits in a Cu planchette prior to heating 

with the laser in an ultra-high vacuum system. The CSIRO He extraction and analysis 

facility comprises a fully automated, stainless steel system connected to a dedicated, on-

line Balzers PrismaTM 200 quadrupole mass spectrometer. Gas extraction was 

performed by using a US Laser Corporation, 16W Nd-YAG, continuous-wave infra-red 

laser system (λ = 1064 nm) with a 1000 μm beam, and samples were heated to 

c. 1000°C for c. 5 min using 1-2 W of power. The extraction line was maintained at 

c. 10-8 mbar between analyses. Active gases were removed using SAES getters 

(AP10N). The analytical procedure was controlled by a LabVIEWTM based, automated 

procedure. 4He abundances were determined via isotope dilution using a pure 3He spike, 

which is calibrated on a regular basis against an independent 4He standard tank. 4He ‘re-

extracts’ were performed routinely after each analysis to determine whether all of the 

trapped He gas has been removed or not. The re-extract gas levels were consistently as 

low as ~0.0034 ncc 4He.  

Apatites degassed by furnace heating were removed from capsules whereas laser 

heated samples remained within Pt tubes during the U and Th content determinations on 

a Perkin Elmer Sciex 5000a ICP-MS using the Isotope Ratio application. 100 µl of a 
235U and 230Th spike solution (approximately 50 ng/ml U and Th) prepared in 7.1 M 

HNO3(aq) was used to dissolve the apatite. Each acidified Pt/aliquot package was placed 

in an ultrasonic bath for ~10 minutes. A dilute stock solution (Johnson Matthey) 

containing 250 ng/ml U and Th (prepared on a weight/weight basis in 1M HNO3(aq)) 

was also acidified, spiked and analysed with the samples. 

2.3.6 Forward modelling of 4He ages 

The apatite (U-Th)/He thermochronometer is sensitive to record cooling between c. 

80°-40°C (Farley et al., 1996). The measured apatite helium age results from helium 

loss and accumulation during the samples passage through a t-T space (cooling path) 
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that is a priori unknown. Therefore, the interpretation of helium ages is not straight 

forward. It has to be linked to independent t-T constraints which enable the derivation of 

a t-T path that reproduces the measured helium age. Inverse t-T path modelling of AFT 

data provides such constraints. The AFT system records the cooling between c. 110°-

60°C but the timing of cooling to below c. 60°C is fairly poorly constrained (see section 

2.2.5.2). Both dating systems yield an overlapping sensitivity to record cooling between 

c. 80°-60°C. Corresponding AFT and apatite helium ages should therefore yield 

consistent cooling paths over this temperature interval. Forward modelling of the 

(U-Th)/He ages using AFT t-T models as an independent input could thereby assist to 

more tightly constrain the timing of the sample’s cooling to below c. 60°C and further 

to below c. 40°C. 

The forward modelling of He t–T paths is performed using the software “Decomp” 

(Meesters and Dunai, 2002a; Meesters and Dunai, 2002b). The interpretation of the 4He 

data by means of the model proposed by Meesters and Dunai (2002a, 2002b) is 

applicable in slowly cooled environments. In this approach the raw 4He age is regarded 

as the result of a thermal history experienced. The interplay of α-emission with 

diffusion is continuously incorporated in the thermal histories modelled. 

Sample aliquots and single grains radii are accordingly recalculated to fit a spherical 

geometry with an identical surface to volume ratio. The resulting sphere radius is used 

for modelling of t–T paths. To account for breakage of grains, the average lengths of 

selected aliquots and grains were multiplied by a factor of 1.5, according to the routine 

described by Farley (2002).  

Best-fit cooling paths of corresponding AFT t-T models (c. 110°-60°C), are used as 

starting points for the 4He data modelling. All samples are modelled assuming a 

homogenous parent nuclide distribution. To enable intra-sample comparability of 

different 4He models only the temperature is modified and the numbers (n) and time (T) 

of the t-T nodes are kept fixed in each sample. Intra-sample cooling path variations 

among individual analyses are assessed by estimating their average temperature 

deviations from an overall arithmetic mean t-T path. This mean t-T path is taken as 

reference and the deviates of the individual t-T paths from it are calculated for the 
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temperature range between c. 80°-40°C; i.e. the HePRZ. The root mean square (RMS) 

deviate of all 4He models in a sample is calculated to:  
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where m = number of modelled analyses in a sample, n = number of t-T nodes, xji = the 

modelled temperature of the ith analysis at the jth t-T step. jx = arithmetic mean 

temperature of all modelled analyses at the jth t-T step.  

The average deviation of the mean 4He t-T path from the input AFT model path is 

estimated by a similar approach. Thereby the AFT t-T path is taken as reference and the 

deviates of the individual t-T paths are calculated for the temperature range between c. 

80°-60°C; i.e. where the cooling paths pas through the AFT PAZ and the HePRZ. The 

deviation is calculated to: 
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where, n = number of t-T nodes, Hex  = arithmetic mean temperature of all modelled 

helium analyses and xAFT = temperature of AFT model at the ith t-T step, respectively. 

2.3.7 Remarks on the sample pre-screening and on excess 4He 

In principle the pre-screening approach permits the selection of potentially high quality 

samples. However, discrepancies persist as the grains dated are not identical with the 

ones inspected. CL and fission track sample mount/print images are only 2D 

representations of the uranium distributions in apatite grains. Hence complex, e.g. none 

concentric parent nuclide distributions may not be readily detected during the pre-

screening. Consequently, the difference between pre-screened and dated apatites might 

account for some awkward intra-sample 4He age results. 
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In analogy to the definition of excess radiogenic 40Ar* (Damon, 1968), the term “excess 
4He*” is used to designate the incorporation of 4He into samples by processes other than 

by in situ radioactive decay of 238U, 235U and 232Th. 4He ages are total fusion ages. 

Besides the previously outlined relations between corresponding AFT and 4He ages 

(Wolf et al, 1998), no independent control exists to reliably identify the influences of 

excess 4He*.  

Recent advances in the 4He dating systematic indicated a number of potential sources 

for excess 4He*. Undetected U- or Th-rich micro or fluid inclusions, could account for 

excess helium (Ehlers and Farley, 2003). Inhibited 4He diffusion due to a none zero 4He 

concentration grain boundary condition or implantation of α-particles from the 

neighbouring minerals with high U, Th contents (e.g. epidote, Fe-oxides, titanite and 

zircon) may also result in excess 4He* and anomalously old ages (Baxter, 2003; Belton 

et al., 2004a; Spencer et al., 2004). The radioactive decay of 147Sm via α-emission into 

stable 143Nd is capable of accounting for 0.1-10 % and in extreme cases for more than 

25 % of the 4He age in apatite. Routinely, 147Sm concentrations are not determined. In 

principle, 147Sm is not considered to be a major source for excess helium but it likely 

implies a systematic 4He age overestimation (Belton et al., 2004b). However, none of 

these excess 4He* contributing effects can be assessed quantitatively and thus they are 

collectively regarded as the potential source of excess 4He*. 

Microscopic inspections of thin sections yield titanite, zircon and occasionally 

epidote quantities of typically less than 5-10 %. Therefore α-particle implantation from 

these mineral phases is considered less significant. A comprehensive review on the 

effects of zoned parent nuclide distributions and excess 4He* is given by Fitzgerald et 

al. (2005). 

2.4 Denudation estimates 

Estimates on the amount of denudation can be obtained by dividing the palaeo-

temperature information, derived from thermochronological analyses, by an estimate of 

the appropriate palaeo-geothermal gradient. The amount of denudation for a given time 

interval is then,  
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(36)     
G
TD Δ

=  

 

where D is the amount of denudation during the time interval, ΔT is the estimated 

change in palaeo-temperature over the time interval, and G is the palaeo-geothermal 

gradient, assumed to be constant over the time interval. In principle, the parameter G is 

always unknown because the geothermal gradient present at the time of denudation 

existed within the now vanished rock column. In low temperature thermochronology, 

however, it is a common practice to approximate a palaeo-geothermal gradient from 

present day heat flow measurements divided by the thermal conductivities for the 

lithologies considered (e.g van der Beek et al., 1998). It is given then, 

 

(37)     
k
hfGP =  

 

where GP is the present day geothermal gradient, hf is the present day heat flow 

measurement, and k is the lithology dependant thermal conductivity.  

A regional study in southern and eastern Africa of Nyblade et al. (1990) indicates 

heat flow values of c. 60-80 mW/m2 for Late Neoproterozoic/Early Cambrian (‘Pan 

African’) mobile belt regions (including the Karoo age and recent rifts) and much lower 

values of c. 35 mW/m2 for the Archean cratons. Using a thermal conductivity of 

crystalline upper crustal rocks of c. 2.5 W/mK suggests a present day geothermal 

gradients of 25°-30°C/km for the southern Mozambique Belt and has been used 

throughout this study. Surface temperatures of 20°C are assumed, corresponding to 

values used in the modelling of t-T histories from AFT and (U-Th)/He data. 
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Abstract 

This study presents the thermochronological results of six 40Ar/39Ar hornblende, three 
40Ar/39Ar biotite and twenty five titanite fission track analyses from basement rocks of 

northern Mozambique. It elucidates the thermo-tectonic basement history since the 

latest Pan-African imprint and its implication for the initial Gondwana dispersal in Late 

Palaeozoic to Early Mesozoic times. 40Ar/39Ar hornblende and biotite ages of c. 474 Ma 

to 476 Ma and 448 Ma to 444 Ma, respectively, record the cooling of the eastern part of 

the southern basement subsequent to the latest Pan-African metamorphic imprint of the 

Namama Thrust Belt evolution at c. 550-500 Ma. Cooling took place at slow rates of 

c. 11°-7°C/Ma from c. 525°C to 305°C in the Early to Late Ordovician, respectively. 

Syn- to post tectonic granitoid/pegmatite emplacements at c. 500-450 Ma caused 

localized basement reheating and delayed basement cooling as recorded by younger 
40Ar/39Ar hornblende and biotite ages of c. 456 Ma and 428 Ma, respectively. The 

titanite fission track (TFT) ages fall into two age groups of c. 378 Ma to c. 327 Ma and 

c. 284 Ma to 219 Ma. A protracted basement cooling from around 350°-305°C to below 

275 ± 25°C at very slow rates of < 1°C/Ma is recorded by the older TFT age population 
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between the Late Ordovician/Early Silurian and the Late Devonian/Early 

Carboniferous. The decrease in cooling rates with time is attributed to a reduction in 

denudation, possibly linked to an establishment of pre-Karoo peneplains. The younger 

TFT ages record the cooling of a denuding, approximately E-W trending rift flank that 

was uplifted in the Early to Late Permian. Its formation marks the onset of rifting and 

incipient Gondwana disintegration in the north Mozambican sector. The corresponding 

rift basin was probably located to the south of the basement, proximate to the present 

continental margin and linked to the Zambezi rift system via the Zambezi pre-transform 

system. Associated crustal extension proceeded obliquely to a NW-SE tensional stress 

field by brittle reactivation of easterly trending ductile basement fabrics. Titanite FT 

results indicate ≤ 9-12 km of crust removal on the basement since the Permo-

Carboniferous. 

3.1 Introduction 

Since its amalgamation in Late Neoproterozoic/Early Cambrian times (Pan-African), 

the crystalline basement of northern Mozambique was located in the central part of the 

Gondwana supercontinent. Its present location at the East African margin documents 

that northern Mozambique has been a prominent site of continental extension and 

separation (Reeves et al., 2002). The supercontinent’s disintegration was favoured along 

large scale Pan-African structural discontinuities (Visser and Praekelt, 1998), and its 

history is generally constrained and resolved through the investigation of sediments 

(Karoo Group equivalents), which were deposited in coeval rifts structures across 

eastern Africa (Catuneanu et al., 2005). 

Rift basins located adjacent to the north (Metangula Basin) and west (Shire Valley) 

of the basement (cf. Fig. 3.2) contain Late Palaeozoic to Late Triassic/Early Jurassic 

and Late Palaeozoic to Late Triassic/Early Jurassic plus Early Cretaceous sediments, 

respectively (Castaing, 1991; Catuneanu et al., 2005). The marginal Rovuma and 

Mozambique rift basins to the east and south comprise Early-Middle Jurassic to 

Cenozoic strata. On the basement itself, solely Late Mesozoic to Cenozoic sedimentary 

deposits are preserved (Pinna et al., 1993; Salman and Abdula, 1995). All sedimentary 

records provide very limited aid as they draw a spatially contrasting and temporally 
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discontinuous picture. Thus, the geological evolution since the latest Pan-African 

imprint is not adequately to constrain and the timing of the Gondwana break-up remains 

enigmatic for this region. 

The current outline of the southern coastal margin conspicuously coincides with E to 

NE ductile litho-trends in the basement. This could suggest an influence of the 

Pan-African age structural inventory on the locus and geometry of crustal extension 

during the incipient rifting. 

In the absence of rift related continuous sedimentary records, thermochronological 

methods provide a valuable tool to investigate the cooling history of crystalline 

basement rocks. Cooling paths could provide information of the regional denudation 

history and thereby allow the interpretation of the regional thermo-tectonic history. This 

study combines medium- and low-temperature thermochronology involving 40Ar/39Ar 

dating of hornblende and biotite, and titanite fission track analyses of basement rocks 

sampled along a 260 km wide E-W trending profile. It aims to constrain the thermo-

tectonic evolution of the north Mozambican basement following the latest metamorphic 

imprint and to elucidate the earliest timing of Gondwana dispersal. By evaluating spatial 

cooling patterns, it is attempted to delineate constraints on the spatial configuration of 

the extension and to investigate a possible influence of the Pan-African structural 

heritage on the Gondwana dispersal in northern Mozambique.  

The 40Ar/39Ar dating method of minerals yields ages, which can record the cooling to 

below their specific closure temperatures (Dodson, 1973). For cooling rates of 100-

1°C/Ma and grain radii of c. 150 µm, hornblende and biotite yield closure temperatures 

ranging from 570-483°C and 345-281°C, respectively (McDougall and Harrison, 1999). 

In the case of TFT dating, the thermochronometer is estimated to partially retain fossil 

fission tracks over a temperature range of 310-265°C ± 10°C (Coyle and Wagner, 

1998), and to yield ages that can record cooling to below 275° ± 25°C (Kohn et al., 

1993). A combination of these three thermochronometers permits inferences to trace the 

cooling path of rocks from temperature conditions of the lower amphibolite 

metamorphic facies into regimes equal to around 15-10 km depth. 
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3.2 Geological setting and previous geochronology 

The Precambrian basement in northern Mozambique is of Mesoproterozoic juvenile 

origin and was subjected to intense amphibolite to granulite facies tectono-metamorphic 

overprints during the amalagamtion of the Gondwana supercontinent in Pan-African 

times (Kröner et al., 1997; Kröner et al., 2001). In East Africa, it represents the southern 

termination of the N-S trending Mozambique Belt (MB) (Fig. 3.1), which constitutes a 

fundamental suture in the assembly of Gondwana and possibly extends southward into 

Dronning Maud Land, Antarctica (Jacobs et al., 1998). It is still disputed if the 

supercontinent formed by suturing various parts of proto East and West Gondwana 

along the MB in a continent-continent collision on a scale of a modern Alpine-

Himalayan orogen between c. 650-500 Ma (Jacobs and Thomas, 2004) or by a 

multiphase assembly from a collage of continental blocks. In the latter model, the north 

Mozambican basement may experienced an early N-S trending (East African orogeny, 

c. 750-620 Ma) and/or a late E-W trending (Kuunga orogeny, c. 570-530 Ma) orogenic 

overprint in Pan-African times (Meert, 2003).  

The crystalline basement is divided into a western domain, the Mozambican Axial 

Zone (Axial Granulite Complex) and an eastern domain of granulitic nappes and 

amphibolitic rocks (Pinna et al., 1993; Pinna and Marteau, 1987a). 

3.2.1 Axial Granulite Complex (Unango Group) 

The Axial Granulite Complex extends from north-western Mozambique into southern 

Malawi and south-eastern Zambia (Andreoli, 1984; Barr et al., 1984; Bloomfield, 1968; 

Carter and Bennett, 1973; Daly, 1986; Kröner et al., 2001). In northern Mozambique, 

the axial granulite complex is termed the Unango Group, and comprises calc-alkaline to 

alkaline granulitic orthogneisses and leucocratic charnockites. These occur in three 

lithostructural units, the Lichinga, Cuamba and Meponda, (Pinna et al., 1993). In its 

western part the Meponda Unit contains interlayer of amphibolite facies supracrustal 

assemblages, the Metangula Group (e.g. Kröner et al., 2001).  
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Figure 3.1: Generalized map depicting major litho-tectonic units of the crystalline basement in 
northern Mozambique and southern Malawi. The map was modified after Pinna et al. (1993), 
Andreoli (1984), Kröner et al. (2001) and Perits et al. (2002) with superimposed locations of 
samples used for 40Ar/39Ar and TFT analyses. The inset depicts Pan-African Mobile Belts (grey) 
in a Gondwana reconstruction (Kusky et al., 2003, Jacobs and Thomas, 2004). Abbreviations: 
ANS = Arabian Nubian Shield, DM = Damara Belt, EAAO = East African-Antartic Orogen, EuF = European 
fragments, FP = Falkland Plateau, Kal = Kalahri craton, M = Madagascar, MB = Mozambique Belt, SF = San 
Francisco craton, T = Turkey, TS = Trans-Saharan, W Aus = Western Australia, WA = West Africa craton. 
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The prominent DM2 ductile fabrics in the Unango group display oscillating NW-SE to 

NE-SW trends (Pinna et al., 1993). A static, post-kinematic (DM2) granulite facies 

metamorphism is dated between 571-549 Ma, based on U/Pb Sensitive High Resolution 

Ion Micro-Probe (SHRIMP) and Pb/Pb evaporation analyses of individual metamorphic 

zircon grains (Kröner et al., 2001). Isobaric cooling led to a subsequent strain-free 

retrograde amphibolite facies overprint (Kröner et al., 2001; Pinna et al., 1993). Post 

DM2 ductile, amphibolite facies deformations DP1, DP2 and DP3 of likely Pan-African 

age, exemplified in the Geci Group (Lulin, 1985), are mainly confined to transpressive 

thrust zones ranging in trends from ENE-WSW to NW-SE (e.g. Costa et al., 1992). 

3.2.2 The eastern domain and the Lurio Belt foreland 

The eastern domain is subdivided into a northern and southern basement region by the 

ENE-WSE trending Lurio Belt (Fig. 1), which extends from the Indian Ocean into 

southern Malawi (Cadoppi et al., 1987; Kröner et al., 1997; Pinna et al., 1993). This belt 

is a discontinuous high-strain zone of dismembered layers, pods and lenses of granulite 

facies rocks (Thomas, 2006). In the area studied (Fig. 3.1), the basement consists of the 

following units (see also Pinna et al., 1993; Costa et al., 1992; and references therein). 

Nampula Supergroup: Amphibolite facies “basement” (Mocuba Complex of Costa et 

al., 1992) is composed of meta-granitoid biotite-hornblende gneisses, meta-basic dykes, 

concordant leucocratic granite-gneiss bodies, and migmatites, plus charnockites in the 

Namarroi zone. Autochthon migmatic leucocratic gneisses of the Mamala Formation 

rest unconformably on the “basement” and are interpreted as meta-rhyolites.  

Chiure Supergroup: These medium to high grade amphibolite facies (Rio Molocue 

Group of Sacci et al., 1984) allochthonous supracrustals cover the Nampula Supergroup 

and comprise metasedimentary composites, leucocratic paragneisses and meta-mafic 

lithologies. 

Mecuburi Group: This autochthonous supracrustal sequence (Cavarro Formation of 

Sacci et al., 1984) covers the Nampula Supergroup in the east of the southern basement 

(Fig. 1) and consists of amphibolitic leucogneisses that contain basal meta-sediments. 
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Granulite Klippen: Allochthonous ortho- and paragneisses of granulite to high grade 

amphibolite facies rest in synforms as unrooted klippen on the Nampula and Chiure 

Supergroup.  

Late to post-kinematic Pan-African intrusions: Gabbroic to granitic intrusives of late 

Pan-African age (c. 500 Ma) cross cut all previous units. Some bodies exhibit weak, 

linear fabrics and elliptic shapes that parallel the Lurio Belt trend. It is interpreted to 

indicate their syn- to late-kinematic emplacement (Pinna et al., 1993). Rb/Sr biotite 

cooling ages (Fig. 3.1) range between 420-434 Ma (Costa et al., 1992; Sacchi et al., 

1984). Undeformed pegmatites occurrences in the southern basement are largely 

regarded as Pan-African in age (Afonso, 1976; Araujo, 1976; Costa et al., 1992) and 

Costa et al. (1992) reported a Rb/Sr muscovite age of 454 ± 7 Ma (Fig. 3.1). 

 

The principle DM2 ductile basement fabrics display easterly, NE-SW to NW-SE 

oscillating trends; broadly parallel the Lurio Belt (Pinna et al., 1993). Curvilinear basin 

and dome structures are observed in the Mocuba Complex (Cadoppi et al., 1987; Sacchi 

et al., 1984). Pb/Pb evaporation and U/Pb SHRIMP ages of c. 615 Ma from single 

metamorphic zircon grains are interpreted to date the syn-DM2 granulite facies 

metamorphism in the southern basement and the Lurio Belt (Kröner et al., 1997). It is 

post-dated by an temporally unconstrained retrograde amphibolite facies overprint 

(Pinna et al., 1993). One Rb/Sr biotite cooling age of 449 ± 7 Ma is reported from a 

meta-granitoid of the Nampula Supergroup (Costa et al., 1992) (Fig. 1). 

The NNE-SSW trending Namama Thrust Belt (NTB) in the central southern 

basement (Fig. 1) displays a series of thrust sheets, imbricate stacks and indicates 

eastward thrusting. It alters the main ductile fabric (DM2 of Pinna et al., 1993) at all 

scales into a strongly E-W trending ductile fabrics (Cadoppi et al., 1987) and for the 

purposes of distinction is hereby termed DN1. The NTB is considered to be younger than 

the Lurio Belt (Cadoppi et al., 1987) and probably of Pan-African age (Sacchi et al., 

2000). Across the NTB (from west to east) a post-kinematic (DN1) increase from 

amphibolite to granulite metamorphic facies assemblages is attributed to thrusting and 

crustal stacking (Cadoppi et al., 1987).  
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3.2.3 Late Palaeozoic to Early Mesozoic intracontinental rift basin 

In the Late Carboniferous to Late Triassic/Early Jurassic, the regional tectonic regime of 

Gondwana was governed  by compressional stresses due to accretion along its southern 

margin and by tensional stress regimes in the northeast. Latter propagated from the 

diverging southern Tethyan margin southwards into the supercontinent (Wopfner, 

2002). Within the present East African sector it resulted in the formation of graben and 

subsequent extended intracratonic rift structures filled with thick, mainly terrigenous 

sedimentary deposits (Karoo Group equivalents). These deposits display remarkable 

similarities across central east and north eastern Africa, indicating an evolution 

controlled by similar forces (Reeves et al., 2002; Visser and Praekelt, 1996; Wopfner, 

1993, 1994). In the entire region, Late Triassic successions are terminated by a major 

unconformity. This is interpreted to reflect the incipient Gondwana break-up and to 

mark the termination of the intracratonic rift stage (Catuneanu et al., 2005 and 

references therein). 

West of the north Mozambican basement, the oldest Karoo basin infillings are 

preserved in the transtensional Mwabvi and Lengwe Basins (Shire Valley; Fig. 3.2) and 

are Early/Late Permian (Late Ecca-Early Beaufort) in age. Syn-sedimentary faulting and 

the initiation of the sinistral Zambesi pre-transform system occurred in response to a 

prominent NW-SE and a subordinate NE-SW tensional stress fields (Castaing, 1991). 

Terrestrial Karoo sedimentation probably lasted until the Late Permian (Early Beaufort). 

Late Triassic/Early Jurassic clastic sediments, with Stormberg Group affinities (Karoo 

Supergroup) and were followed by the deposition of fissure type basaltic lava flows of 

probable Early Jurassic age (Castaing, 1991; Habgood, 1963). Within the Cabora Bassa 

Basin (Fig. 3.2) incipient Karoo sedimentation coincides with tectonic activity in the 

Early Permian (Catuneanu et al., 2005 and references therein) and is probably linked to 

the evolution of the Zambesi pre-transform system (Castaing, 1991). The Permian-

Triassic boundary strata are not preserved and solely younger Permo-Triassic to Early 

Jurassic sediments are found (Johnson et al., 1996). In the Metangula Basin in northern 

Mozambique, earliest Karoo sedimentation and earliest rifting commenced in the Early 

Permian and sedimentation lasted until the Middle Triassic (Catuneanu et al., 2005; 

Verniers et al., 1989). Distinct NW-SE trending graben-like faulting occurred during the 
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Figure 3.2: Illustrations of the distribution of the Karoo basins in central Gondwana. It also 
depicts the north Mozambican rift structure and its westward extension into the Middle Zambezi 
Basin as well as a possible eastward linkage with proposed Permo-Triassic rift basin between 
India and Antarctic (Harrowfield et al., 2005). Dashed lines represent supposed boundaries. 
Intercontinental white areas are thinned continental crust. K represents isolated outcrops of 
Karoo age volcanics of c.180-160 Ma in age (Grantham et al., 2005b; Jaritz et al., 1977). The 
map was compiled and modified after Castaing, 1991; Catuneanu et al., 2005 and Harrowfield 
et al., 2005. 

Late Permian/Early Triassic (Verniers et al., 1989). In south-eastern Tanzania, active 

normal faulting along the NW margin of the Selous Basin (Uluguru Horst) occurred in 

the Late Permian and Karoo sediment infill comprises Late Permian to Late Triassic 

deposits, though older rift-related Karoo deposits are inferred at depth (Wopfner and 

Kaaya, 1991). In south-west Madagascar, intracontinental Karoo basins contain Late 

Carboniferous/Early Permian to Late Triassic strata (Besairie and Collignon, 1972). 

Earliest pull-apart basins formed along NE-SW trending zones of sinistral strike slip 
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deformation in the Early-Late Permian. During Permo-Trissic times transtension stress 

regimes developed. From the Early Triassic onwards a NW-SE tensional stress field 

prevailed and resulted in increasing formation of orthogonal half graben (e.g. 

Morondava Basin) (Schandelmeier et al., 2004).   

3.2.4 Marginal rift basins 

The Southern Rovuma Basin (Fig. 3.1 and 3.2) is located along the north-eastern 

Mozambican basement and represents the southern termination of the pericratonic East 

African marginal basin. Sedimentary deposits comprise Middle Jurassic to Cenozoic 

strata and Karoo age deposits are inferred below, based on seismic correlations with the 

Tanzanian Selous Basin (Salman and Abdula, 1995). The Mozambique Basin is located 

to the south of the basement (Fig. 3.1) and contains basin infillings ranging from 

volcanic rocks of Early Jurassic age to Cenozoic sedimentary deposits. Older Karoo 

related sedimentary deposits are not evident but their presence is inferred underneath 

the Mesozoic strata (Salman and Abdula, 1995). 

3.3 Analytical procedures 

3.3.1 40Ar/39Ar Analysis 

Optical thin section inspection (10-100× magnification) revealed that all samples 

contain fresh, unaltered mineral phases and euhedral to subhedral crystals of hornblende 

(BZ 216, GZ 90, PZ 37, RMZ 11, RMZ 13, RMZ 45) and biotite (GZ 39, RMZ 11, 

RMZ 13) with grain sizes ranging up to 1.5 mm and 1.2 mm, respectively. All samples, 

with exception of RMZ 45 contain minor amounts of hornblende (< 2-5 %) or biotite 

(< 3 %) partially intergrown with other mineral phases. Hornblende samples BZ 216, 

GZ 90, PZ 37, RMZ 11 and RMZ 13 yield opaque inclusions. Inclusions of titanite were 

observed in hornblende samples BZ 216, GZ 90, RMZ 13 and inclusions of apatite were 

found in hornblende samples GZ 90 and PZ 37. Biotite samples GZ 39, RMZ 13 and 

RMZ 18 contained inclusions of opaques and apatite. Zircon and zircon plus titanite 

inclusions were detected in biotite samples RMZ 18 and RMZ 13, respectively.   
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Hornblende and biotite grains were extracted from the rock samples by crushing, 

sieving, magnetic separation and hand picking. The grains were then cleaned in 

methanol, followed by deionised water in an ultrasonic bath. Approximately 300 µm-

sized grains were selected from the 150-315 μm sieve fraction. The mineral separates 

were individually wrapped in aluminium foil packets, and all the samples were inserted 

into an aluminium irradiation package. Biotite age standard Tinto B [(K/Ar age of 

409.2 ± 0.7 Ma (Rex and Guise, 1995)] was placed at 5 mm intervals along the package 

to monitor the neutron flux gradient. The package was Cd-shielded and irradiated in the 

5C position of the McMaster University Nuclear Reactor, Hamilton, Canada, for 90 h.  

Upon return, the samples were loaded into an ultra-high vacuum laser chamber fitted 

with a Kovar viewport and baked to 120°C overnight to remove adsorbed atmospheric 

argon from the samples and chamber walls.  

A 110 W Spectron Laser Systems continuous-wave neodymium-yttrium-aluminium-

garnet (CW-Nd-YAG) (λ = 1064 nm) infra-red laser, fitted with a TEM00 aperture, was 

used to slowly laser step-heat the mineral samples. The laser was fired through a 

Merchantek computer-controlled X-Y-Z sample chamber stage and microscope system, 

fitted with a high-resolution CCD camera, 6x computer controlled zoom, high 

magnification objective lens, and two light sources for sample illumination. The gases 

released by laser heating were ‘gettered’ using 3 SAES AP10 getter pumps to remove 

all active gases. The remaining noble gases were equilibrated into a high sensitivity 

mass spectrometer (MAP 215-50), operated at a resolution of 570, and fitted with a 

Balzers SEV 217 multiplier.  The automated extraction and data acquisition system was 

computer controlled, using a LabView program. The mean 5 minute extraction system 

blank Ar isotope measurements obtained during the experiments were 1.18 × 10-12, 

1.32 × 10-14, 4.65 × 10-15, 6.70 × 10-14, and 1.43 × 10-14 cm3 STP (standard temperature 

and pressure) for 40Ar, 39Ar, 38Ar, 37Ar, and 36Ar respectively. The Ar isotope analyses 

were corrected for system blanks, mass discrimination (40Ar/36Ar = 281.0), radioactive 

decay of 37Ar, and minor interference reactions from Ca and K (39Ar/37ArCa = 0.00065, 
36Ar/37ArCa = 0.000255, and 40Ar/39ArK = 0.0015). Errors quoted on the ages in the 

Tabs. 1 and 2 are 1 sigma and include the J value error. The 40Ar/39Ar ages were 

calculated using the decay constant of Steiger and Jäger, 1977. J values and errors are 
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noted on the sample 40Ar/39Ar data tables (Tab. 2). The 40Ar/39Ar data presented in this 

study were undertaken at the Western Australian Argon Isotope Facility (Curtin 

University and the University of Western Australia). 

In order to assess the geological significance of 40Ar/39Ar ages, a series of age spectra 

and 37Ar/39Ar plots are presented. Isoplot version 2.49 (Ludwig, 2001) was used to plot 

the figures and calculate the ages (Figs. 3.3a-f and 3.4a-c). Within 40Ar/39Ar age spectra, 

age plateaus were defined according to criteria outlined by Ludwig (2001). 40Ar/39Ar 

inverse isochron ages were calculated by fitting a negative regression line through the 

data points plotted on a 36Ar/40Ar versus 39Ar/40Ar inverse isochron diagram, using 

York’s algorithm (York, 1969) and quoted with 95% confidence errors. In assessing 

whether all the data fit within the estimated error limits, indices of goodness of fit are 

used, including Mean Squared Weighted Deviates (MSWD) (McIntyre et al., 1966). 

MSWD values were calculated for weighted mean ages and inverse isochrons with n-1 

and n-2 degrees of freedom, respectively (Ludwig, 2001). MSWD values ranging 

between 1 and 2.5 are accepted as meaningful goodness of fit indicators (Roddick, 

1978). MSWD values of > 1 generally indicate either underestimated errors or the 

presence of non-analytical scatter whereas values of < 1 suggest overestimated 

analytical errors. Weighted mean ages were calculated using both the analytical and J 

value errors on a series of pseudo-plateau steps, quoted with 95% confidence errors. 

The total fusion age is an unweighted mean age of all the steps including the analytical 

and J value errors, quoted with 1 sigma errors in the 40Ar/39Ar data tables (Tabs. 3.1 and 

3.2). 

3.3.2 Titanite fission track analysis 

Titanite separates with grain sizes of 150-315 μm were extracted using conventional 

preparation techniques including crushing, sieving, Wilfley table, heavy liquid and 

magnetic separation. Batches of titanite grains were embedded in epoxy resin, then 

ground and polished to expose internal crystal surfaces. The titanite fission tracks (TFT) 

were revealed by etching the polished crystal mounts in an acid solution of 1 part 

concentrated HF, 2 parts concentrated HNO3, 3 parts concentrated HCl, and 6 parts 

H2O. Samples were etched individually at room temperature for 17-27 minutes (Naeser 
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and McKee, 1970). Distinctly recognizable terminations of confined tracks were used as 

an evaluation criterion for sufficient fission track etching. All the samples were loaded 

into aluminium capsules and irradiated at the FRM II research reactor facility in 

Munich-Garching, Germany. Corning dosimeter glasses were used to monitor the 

neutron fluence gradient. An irradiation time of 60 seconds was applied to obtain a total 

thermal neutron fluence of 0.5×1016 neutrons/cm-2. Induced tracks were recorded in 

white micas following the external detector approach (Gleadow, 1981) and revealed 

after irradiation by etching the micas for 15 minutes in 40% HF at 21 ± 1°C. Track 

densities in mounts and micas were measured using a Zeiss® Axiophot microscope 

equipped with a Kintec® stage, a Calcomp® digitizer, and a drawing tube operated by 

the FT-Stage software (Dumitru, 1991). Dry objectives, calibrated against stage 

micrometers, were used for track density counts in transmitted light at 2000x 

magnification. Fission track ages were calculated according to the zeta calibration 

method (Galbraith and Laslett, 1993; Hurford, 1990) using a weighted mean zeta factor 

(ζ) of 134.5 ± 4.1 (M.D.) obtained from Fish Canyon Tuff and Mt. Dromedary TFT age 

standards. Errors are quoted at the 1σ level and were derived according to conventional 

method (Green, 1981).  

3.4 Results 

3.4.1 40Ar/39Ar hornblende analysis 

The 40Ar/39Ar results of six hornblende samples (BZ 216, GZ 90, PZ 37, RMZ 11, RMZ 

13 and RMZ 45) are presented in Tab. 1, 2 and Fig. 3. All hornblende samples exhibit 

disturbed age spectra and yield no plateau or inverse isochron ages. All the hornblende 

samples contained very high 40Ar* concentrations of 95-99 % (Tab. 3.2), with only the 

occasional presence of 11-36 % atmospheric 40Ar in the first low-temperature steps of 

sample PZ 37 (Tab. 3.2). The predominance of 40Ar* results in the limited distribution 

of data points in the inverse isochron plots that yield either no or statistically invalid 

inverse isochron ages (Tab. 3.1). Therefore inverse isochron plots are omitted.  

Pseudo-plateau and weighted mean ages of 462.5 ± 2.2 Ma, 550.7 ± 3.2 Ma, 

542.1 ± 0.3 Ma, 473.8 ± 2.4 Ma, 475.8 ± 2.8 Ma, and 455.5 ± 6.2 Ma are obtained for 
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samples BZ2 16, GZ 90, PZ 37, RMZ 13, RMZ 11 and RMZ 45, respectively. These 

ages are statically unreliable as they either comprise less than 45 % of the cumulative 
39Ar (BZ 216, PZ 37) or yield MSWD and probability values higher than 2.5 and lower 

than 0.05 (GZ 90, RMZ 11, RMZ 13, RMZ 45), respectively. 

All the hornblende samples preserved old ages in the low temperature steps 

(Figs. 3a-f) with some of these ages being anomalously old up to 3.8 Ga (e.g., sample 

BZ 216, Fig. 3a), thus indicating the presence of excess Ar in the samples. Amphibolite 

samples BZ 216, PZ 37 and GZ 90 yield large age differences of c. 3.4 Ga, 718 Ma and 

162 Ma between their oldest low-temperature step ages of 3869.4 ± 12.9, 1259.5 ± 7.9 

and 712.8 ± 3.2 Ma and their weighted mean ages of 462.5 ± 2.2, 541.9 ± 2.7 and 

550.7 ± 3.2 Ma, respectively. Samples BZ 216 and PZ 37 yield total fusion ages of 

1003.3 ± 1133.6 and 651.7 ± 210.1 Ma that are distinctly older than their corresponding 

weighted mean ages of 462.5 ± 2.2 and 541.9 ± 2.7 Ma, respectively. This suggests the 

incorporation of significant amounts of excess 40Ar in these samples. 

3.4.2 40Ar/39Ar biotite analysis 

The 40Ar/39Ar results of three biotite samples GZ 39, RMZ 18 and RMZ 13 are given 

in Figs. 3.4a-c, Tabs. 3.1 and 3.2. The biotite samples contain high concentrations of 
40Ar* (92-100 %) with only the occasional presence of 11-28 % atmospheric 40Ar in the 

first low-temperature steps of samples GZ 39 and RMZ 13 (Tab. 3.2) linked to the 

youngest preserved 40Ar/39Ar ages in these two samples. The predominance of 40Ar* 

resulted in the limited distribution of data points on the inverse isochron plots, which 

yield either no or statistically invalid inverse isochron ages (Tab. 3.1). Therefore inverse 

isochron plots are omitted. 

Biotite samples GZ 39 and RMZ 18 yield plateau ages of 443.8 ± 0.4 Ma and 

428.4 ± 0.3 Ma (Tab. 3.1). The highest-temperature steps (i.e. > 80 % cumulative 39Ar) 

of both samples revealed discordant 40Ar/39Ar age spectra (Figs. 3.4a, 3.4c). Sample 

RMZ 13 yielded a discordant 40Ar/39Ar age spectrum (Fig. 3.4b) with no plateau or 

inverse isochron age. A calculated weighted mean age of 448.2 ± 3.7 Ma (steps 2-6) is 

consistent with the sample’s total fusion age (Tab. 3.1). 
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Table 3.1: Results of 40Ar/39Ar hornblende and biotite analyses 

Step 36
Ar/

39
Ar ± 1σ 37

Ar/
39

Ar ± 1σ 40
Ar*/

39
Ar ± 1σ %

40
Ar*

Cum.

% 39Ar
Age (Ma) ± 1σ

Hornblende
BZ216
1 0.031968 0.006445 0.986919 0.028020 349.732503 2.212949 97.37 0.20 3869.41 12.85
2 0.006243 0.001156 2.728420 0.021142 220.124316 0.512934 99.17 1.33 3154.44 8.23
3 0.001416 0.000095 3.399730 0.017253 23.044950 0.031808 98.22 8.18 727.71 3.11
4 0.001222 0.000085 3.543060 0.025649 15.612262 0.030807 97.74 15.84 523.42 2.45
5 0.000720 0.000241 3.791943 0.031466 13.846273 0.071766 98.49 21.24 471.28 2.99
6 0.001581 0.000122 3.161398 0.045993 13.558327 0.036948 96.67 31.88 462.64 2.33
7 0.001013 0.000050 3.641793 0.036380 14.773656 0.015967 98.01 46.47 498.85 2.23
8 0.001071 0.000030 3.812191 0.042203 14.231090 0.014135 97.82 57.47 482.77 2.16
9 0.001079 0.000068 3.762541 0.037817 13.613811 0.022209 97.71 67.05 464.31 2.16
10 0.000603 0.000074 4.005727 0.024829 13.470823 0.025718 98.69 79.48 460.00 2.18
11 0.001267 0.000146 3.625625 0.016354 13.527152 0.048550 97.31 83.94 461.70 2.51
12 0.000653 0.000041 3.957767 0.020543 13.591164 0.016215 98.60 100.00 463.63 2.11
Total fusion age = 1003.4 ± 1133.6 Ma, J value = 0.021560 ± 0.000108

GZ90
1 0.002301 0.000146 2.456882 0.016064 22.476271 0.047316 97.06 2.59 712.84 3.20
2 0.000992 0.000064 2.387667 0.015752 18.514820 0.049140 98.44 8.52 605.95 2.92
3 0.000362 0.000110 2.456473 0.026630 16.822836 0.043184 99.37 11.97 558.29 2.70
4 0.000538 0.000045 2.316737 0.022783 16.721306 0.018715 99.06 20.38 555.39 2.45
5 0.000500 0.000021 2.495926 0.010075 16.737354 0.021711 99.13 29.23 555.85 2.48
6 0.000410 0.000014 2.476219 0.006787 16.653821 0.014297 99.28 43.26 553.46 2.42
7 0.000238 0.000031 2.590435 0.007219 16.399811 0.016299 99.57 49.38 546.17 2.41
8 0.000403 0.000000 2.400349 0.005985 16.592527 0.004636 99.29 61.34 551.70 2.38
9 0.000471 0.000033 2.202266 0.020097 16.346616 0.020737 99.16 67.03 544.65 2.43
10 0.000224 0.000018 2.476167 0.017132 16.456251 0.011906 99.60 77.46 547.80 2.39
11 0.000339 0.000020 2.408623 0.009644 16.677319 0.022609 99.40 86.81 554.13 2.48
12 0.000363 0.000014 2.468989 0.020111 16.467898 0.014588 99.35 100.00 548.13 2.40
Total fusion age = 569.5 ± 45.9 Ma, J value = 0.021559 ± 0.000108

PZ37
1 0.027605 0.000105 4.795990 0.052506 27.301070 0.104714 76.99 0.56 834.98 4.22
2 0.089966 0.001109 5.335098 0.045883 46.849253 0.335388 63.80 1.18 1259.48 7.92
3 0.012678 0.000028 6.435820 0.032841 29.971019 0.069612 88.89 2.51 899.20 3.91
4 0.003188 0.000004 5.030265 0.049770 17.610746 0.024486 94.92 5.54 580.62 2.58
5 0.001446 0.000357 4.687974 0.026548 16.655755 0.106100 97.50 10.29 553.49 3.86
6 0.001057 0.000154 4.498755 0.018551 16.158381 0.046009 98.10 22.14 539.20 2.69
7 0.001356 0.000226 4.439132 0.031948 16.870235 0.073552 97.68 25.14 559.62 3.20
8 0.000966 0.000064 4.155384 0.034079 16.280563 0.021442 98.28 40.21 542.72 2.43
9 0.000912 0.000025 4.536082 0.015826 16.181961 0.008882 98.36 53.81 539.88 2.35
10 0.001674 0.000077 4.052126 0.016037 16.098877 0.024255 97.02 58.20 537.48 2.43
11 0.000998 0.000078 3.948953 0.030853 16.240262 0.026588 98.22 73.93 541.56 2.47
12 0.000774 0.000060 4.271916 0.035165 16.238207 0.020075 98.61 90.86 541.50 2.41
13 0.000541 0.000000 4.276148 0.034619 16.272831 0.014912 99.03 100.00 542.50 2.39
Total fusion age = 651.7 ± 210.1 Ma, J value = 0.021558 ± 0.000108

RMZ11
1 0.002071 0.000001 1.805152 0.011411 16.135771 0.010117 96.35 3.77 538.51 2.35
2 0.000713 0.000000 1.631983 0.013544 13.703791 0.012508 98.49 9.29 466.93 2.10
3 0.000196 0.000000 2.083660 0.006827 13.986771 0.008592 99.59 13.84 475.41 2.11
4 0.000419 0.000000 1.799740 0.028872 13.934258 0.015722 99.12 21.78 473.84 2.14
5 0.000167 0.000054 2.161815 0.020805 14.043136 0.022280 99.65 37.09 477.09 2.20
6 0.000367 0.000055 1.895692 0.008180 14.019303 0.017721 99.23 50.47 476.38 2.16
7 0.000255 0.000000 2.032152 0.006206 13.951377 0.011752 99.46 59.96 474.35 2.12
8 0.000549 0.000073 1.849881 0.007221 13.751567 0.023784 98.84 65.00 468.37 2.19
9 0.000482 0.000001 1.478668 0.049551 13.825448 0.040317 98.98 73.12 470.58 2.40
10 0.000000 0.000000 2.106406 0.013741 14.004789 0.016991 100.00 80.96 475.95 2.16
11 0.000167 0.000000 1.862911 0.010342 13.996620 0.006078 99.65 83.82 475.70 2.10
12 0.000340 0.000000 1.957515 0.008483 14.028065 0.007438 99.29 100.00 476.64 2.11
Total fusion age = 479.2 ± 18.2 Ma, J value = 0.021556 ± 0.000108

Total fusion ag ,

RMZ13

1 0.002836 0.000212 2.988312 0.013327 17.243466 0.064602 95.37 3.00 570.16 3.06
2 0.001289 0.000001 3.046942 0.036717 14.266128 0.014036 97.40 9.45 483.72 2.17
3 0.000327 0.000046 3.205138 0.022329 14.047255 0.016597 99.32 16.39 477.20 2.16
4 0.000273 0.000085 3.245300 0.025361 14.006588 0.032799 99.43 20.14 475.98 2.31
5 0.000507 0.000095 3.081394 0.031997 13.959224 0.033506 98.94 30.21 474.57 2.32
6 0.000848 0.000081 2.728519 0.026984 13.908267 0.028004 98.23 44.40 473.04 2.25
7 0.000717 0.000078 2.964814 0.034257 13.879942 0.026517 98.50 52.59 472.20 2.23
8 0.000721 0.000090 2.899146 0.062228 14.204426 0.039599 98.52 62.59 481.88 2.42
9 0.000562 0.000000 3.462113 0.015176 13.977041 0.010603 98.83 73.58 475.10 2.12
10 0.000930 0.000080 2.931609 0.028501 13.830189 0.027456 98.05 81.52 470.71 2.23
11 0.000740 0.000119 3.175439 0.021192 13.874109 0.036536 98.45 86.85 472.02 2.35
12 0.001685 0.000195 2.573737 0.024448 13.558608 0.058774 96.46 90.11 462.55 2.70
13 0.000070 0.000091 3.499486 0.011615 14.071987 0.028740 99.85 100.00 477.94 2.27

e = 482.1 ± 25.9 Ma J value = 0.021555 ± 0.000108
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Tab. 3.1: continued  

See method and analytic chapters for analytical and data processing details. 

 

 

Biotite

GZ 39

1 0.011680 0.002009 0.000000 0.000000 8.965713 0.594464 72.20 0.99 318.75 19.43

2 0.003772 0.000539 0.002945 0.021168 12.114483 0.159828 91.57 4.27 418.55 5.27

3 0.000682 0.000076 0.007890 0.002870 12.982153 0.029098 98.47 27.59 445.10 2.17

4 0.000324 0.000108 0.000000 0.000000 12.935932 0.034885 99.27 35.79 443.70 2.24

5 0.000204 0.000068 0.000000 0.000000 12.933735 0.022260 99.54 48.82 443.63 2.08

6 0.000255 0.000064 0.002128 0.002101 12.924705 0.019603 99.42 62.67 443.36 2.06

7 0.000190 0.000048 0.000528 0.001563 12.877354 0.014933 99.57 81.31 441.92 2.02

8 0.000117 0.000040 0.012501 0.002493 12.850149 0.013735 99.73 92.32 441.09 2.00

9 0.000081 0.000085 0.015071 0.005261 12.853508 0.027671 99.81 97.55 441.19 2.13

10 0.000000 0.000000 0.030525 0.006027 13.033229 0.007971 100.00 99.16 446.65 2.00

11 0.001047 0.000001 0.035236 0.011596 12.724409 0.015440 97.63 100.00 437.25 2.00

Total fusion age = 429.2 ± 35.7 Ma, J value = 0.021554 ± 0.000108

RMZ 13

1 0.005050 0.000103 0.000000 0.000000 12.300142 0.037992 89.18 3.23 424.31 2.23

2 0.000920 0.000013 0.001692 0.000003 13.107143 0.020349 97.97 28.88 448.95 2.08

3 0.000743 0.000000 0.006078 0.001491 12.937691 0.008148 98.33 39.60 443.81 1.99

4 0.000119 0.000000 0.004797 0.000963 13.110753 0.007466 99.73 56.21 449.06 2.00

5 0.000102 0.000035 0.005773 0.000554 13.185036 0.012573 99.77 85.09 451.31 2.04

6 0.000628 0.000379 0.013758 0.002717 13.066838 0.114919 98.60 87.73 447.73 4.01

7 0.000000 0.000000 0.044075 0.014505 13.474908 0.400574 100.00 88.22 460.07 12.24

8 0.000087 0.000091 0.016849 0.000979 13.064757 0.029675 99.80 95.54 447.67 2.18

9 0.000330 0.000168 0.027560 0.016723 13.347708 0.050315 99.28 99.49 456.23 2.53

10 0.002616 0.001317 0.071897 0.127766 12.481085 0.390841 94.17 100.00 429.87 12.13

Total fusion age = 445.9 ± 10.4 Ma, J value = 0.021557 ± 0.000108

Hornblende

RMZ13

1 0.002836 0.000212 2.988312 0.013327 17.243466 0.064602 95.37 3.00 570.16 3.06

2 0.001289 0.000001 3.046942 0.036717 14.266128 0.014036 97.40 9.45 483.72 2.17

3 0.000327 0.000046 3.205138 0.022329 14.047255 0.016597 99.32 16.39 477.20 2.16

4 0.000273 0.000085 3.245300 0.025361 14.006588 0.032799 99.43 20.14 475.98 2.31

5 0.000507 0.000095 3.081394 0.031997 13.959224 0.033506 98.94 30.21 474.57 2.32

6 0.000848 0.000081 2.728519 0.026984 13.908267 0.028004 98.23 44.40 473.04 2.25

7 0.000717 0.000078 2.964814 0.034257 13.879942 0.026517 98.50 52.59 472.20 2.23

8 0.000721 0.000090 2.899146 0.062228 14.204426 0.039599 98.52 62.59 481.88 2.42

9 0.000562 0.000000 3.462113 0.015176 13.977041 0.010603 98.83 73.58 475.10 2.12

10 0.000930 0.000080 2.931609 0.028501 13.830189 0.027456 98.05 81.52 470.71 2.23

11 0.000740 0.000119 3.175439 0.021192 13.874109 0.036536 98.45 86.85 472.02 2.35

12 0.001685 0.000195 2.573737 0.024448 13.558608 0.058774 96.46 90.11 462.55 2.70

13 0.000070 0.000091 3.499486 0.011615 14.071987 0.028740 99.85 100.00 477.94 2.27

Total fusion age = 482.1 ± 25.9 Ma, J value = 0.021555 ± 0.000108

(Irradiation standard used = Tinto B biotite 409.24 ± 0.71 Ma)

RMZ 18

1 0.002598 0.000173 0.015448 0.010784 12.685405 0.055949 94.29 2.56 436.05 2.59

2 0.000683 0.000018 0.001561 0.000771 12.522462 0.008021 98.41 27.91 431.06 1.94

3 0.000348 0.000032 0.001412 0.001558 12.428754 0.011991 99.18 55.96 428.19 1.95

4 0.000000 0.000113 0.000000 0.000000 12.462420 0.034782 100.00 63.80 429.22 2.19

5 0.000139 0.000047 0.004156 0.002294 12.442172 0.014372 99.67 82.87 428.60 1.96

6 0.001139 0.000163 0.003685 0.032744 12.230228 0.050871 97.32 85.60 422.09 2.45

7 0.000000 0.000000 0.002661 0.007882 12.435996 0.012731 100.00 96.93 428.41 1.95

8 0.001587 0.000227 0.000000 0.000000 11.963503 0.069610 96.23 98.89 413.87 2.84

9 0.000980 0.000985 0.022325 0.066121 12.234369 0.294736 97.69 99.34 422.22 9.26

10 0.002021 0.000674 0.000000 0.000000 11.628928 0.203067 95.11 100.00 403.49 6.57

Total fusion age = 424.3 ± 9.0 Ma, J value = 0.021553 ± 0.000108

Irradiation standard used = Tinto B biotite (409.24 ± 0.71 Ma)

Step 36
Ar/

39
Ar ± 1σ 37

Ar/
39

Ar ± 1σ 40
Ar*/

39
Ar ± 1σ

Cum. %
Age (Ma) ± 1σ39

Ar
Ar*%

40
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The first low-temperature steps of GZ 39 and RMZ 13 yielded ages that are younger 

than the plateau and weighted mean ages (Figs. 3.4b, 3.4c and Tab. 2). Sample RMZ 18 

(Fig. 3.4a and Tab. 3.2) exhibits low-temperature step ages that are slightly older than 

the obtained plateau age. 
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Figure 3.3: 37Ar/39Ar and apparent age spectra plots of incremental heating steps from hornblende 
samples analyses (a-d: previous page and e-f: this page). Insets are presented for samples exhibiting 
strongly discordant spectra and depict entire age range of incremental heating steps. Errors for each step 
are ± 1 σ and do not include error of J value. 
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3.4.3 Titanite fission track analysis 

The ages and analytical details of 27 TFT analyses are presented in Tab. 3.3 and their 

spatial distribution pattern is depicted in Figs. 3.5 and 3.6. The TFT ages range between 

384 ± 20 Ma and 219 ± 12 Ma; the associated errors are quoted at their 1 σ confidence 

level. All TFT ages are younger than the latest Pan-African thermo-tectonic event at c. 

500 Ma (Pinna et al., 1993). The χ2 probability values of all samples demonstrate that 

the dispersion of the individual grain ages (Appendix A) is explained by a poissonian 

distribution, suggesting that the single grain ages are derived from a single population. 

Granite sample YG3 was employed for internal cross validation by two independently 

analysed splits (Tab. 3). The two data sets reveal concordant TFT results and indicate 

internally consistent TFT analyses. 

The TFT ages show no distinct trend with elevation, suggesting a non-uniform TFT 

age-elevation relationship (e.g. Braun, 2002), probably related to presents of diverse 

cooling paths records (Fig. 3.5b). Samples GZ 87 and GZ 90 were collected from in the 

western Axial Granulite Complex at 1200 m elevation. These are vertically offset by 

approximately 500 m against the majority of the TFT samples by the Neogene Malawi 

rift zone (Chorowicz, 2005 and references therein) (Figs. 3.5b, 3.6 and Tab. 3.3). 
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Figure 3.5: Diagrams depicting the results of the TFT analyses; weighted mean ages of Y and O 
populations are depicted as black horizontal or vertical lines and the grey bars indicate the 
associated ± 2 σ confidence intervals. (a) Latitude versus age plot: open symbols represent 
samples excluded from discriminant analysis and calculation of weighted mean ages. (b) Age 
versus elevation plot: open symbols represent samples excluded from discriminant analysis and 
calculation of weighted mean ages. (c) Age versus elevation plot of selective profiles A, B and 
C. (d) Latitude versus age plot of selective profiles A, B and C. (e) Latitude versus age plot for 
~ N-S trending synthetic profile. 

The age versus latitude plot (Fig. 3.5a) indicates two age groups: Seven TFT ages 

ranging from 378 ± 40 to 327 ± 18 Ma yield a weighted mean age of 328 ± 7 Ma. A 

younger TFT age population of 16 samples ranges from 284 ± 23 to 219 ± 12 Ma and 
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clusters around a weighted mean age of 255 ± 4 Ma. For easier distinction, the older and 

the younger TFT age populations are termed O and Y group, respectively. The grouping 

is confirmed by a discriminant analysis (Bahrenberg et al., 1992), using the TFT ages, 

latitudes, longitudes and elevations (Tab. 3) as grouping parameters. A Wilks’ Λ value 

of 0.110808 indicates a distinct class separation, and a probability value of P (χ2) 

> 99 % shows that the estimated discriminant functions are significant. Samples 

RMZ 11 and RMZ 31 were excluded from the discriminant analysis and weighted mean 

age calculation. Sample RMZ 11 (291 ± 15 Ma) does not overlap within its 1 σ error 

with the weighted mean ages of the O or Y group (Figs. 3.5b, 3.6 and Tab. 3.3). Its age, 

however, is statistically identical to proximately located O group samples RMZ 13, 

RMZ 14 and RMZ 16 (Fig. 3.1). Sample RMZ 31 yields a TFT age of 306 ± 16 Ma that 

overlaps within 1 σ error with the weighted mean age of the O populations (Figs. 3.5b, 

3.6 and Tab. 3.3) but RMZ 31 is proximately located to Y group samples RMZ 27 and 

RMZ 28 (Fig. 3.1).  

TFT samples from three N-S traverses A, B and C delineate the age versus latitude 

trends across the region from west to east (Fig. 3.6). Profile B covers the largest section 

whereas profile C represents a composite of two locations (Figs. 3.5c, d, and 3.6). In 

general, the TFT ages decrease from N to S and remain constant in E-W direction 

between longitude 37° E and 40.5° E (Fig. 3.6). East of longitude c. 40.5° E, the ages 

appear to align along an NE-SW to ENE-WSW trend (Fig. 3.6). Traverses A and B 

exhibit a steep gradient of TFT age decrease from the O to Y group (Fig. 3.5c, d). The 

steep gradient of profile A appears to be shifted towards the south compared to profile 

B. This shift attributed to the NE alignment similar age east of c. 40.5° E (Figs. 3.5d and 

3.6). The offset is accounted for as follows and a “corrected” synthetic traverse is 

shown in Fig. 3.5e. Along traverse B no significant change in the youngest TFT ages is 

observed further south than latitude c. 16.1° S (Figs. 3.5d and 3.6). At this point the Y 

group samples BZ 216, 020824-06 and 020824-03 yield identical TFT ages (within their 

1 σ errors) and indicates a plateau-like TFT age pattern (Figs. 3.5d, 3.6 and Tab. 3.3). 

South of latitude c. 16.5° S, traverse B crosses the interpolated TFT age isolines 

obliquely and may not reflect a true TFT age trend (Figs. 3.5d and 3.6). Therefore 

profile A is shifted by 0.5 degrees towards the north, such that sample WB 119 (251 ± 
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8 Ma) of traverse A aligns with sample 020824-06 (251 ± 11 Ma) of traverse B, and the 

plateau-like trends of both traverses overlap (Figs. 3.5d, e and 3.6). This amount of shift 

is considered to be a conservative estimate as it accounts for a good overlap of both the 

plateau-like age trends but does not artificially extend the plateaus. This is particularly 

important as the inflection points between the shallow and steep age gradients are not 

tightly constrained along the traverses. The synthetic profile shows that the change from 

the older towards the younger age population occurs fairly rapidly over a distance of 

approximately 0.5° latitude, i.e. c. 55 km. A general sigmoid trend line is approximated 

for the observed age decrease pattern between the O and Y groups from north to south 

(Fig. 3.5e). 

 

Figure 3.6: Topographic map of northern Mozambique with superimposed spatial distribution 
pattern of TFT ages. Contour lines were calculated using GMT 4.0, module surface. Sample 
locations are given as black squares and black circles for the O and Y groups, respectively. The 
open grey boxes indicate ungrouped samples. 
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3.5 Interpretation 

3.5.1 40Ar/39Ar hornblende data 

Experiments suggest that some hydrous mineral like hornblende and biotite do not 

remain stable during in vacuo heating and produces flat argon age spectra, irrespective 

of the spatial argon distribution. Significant age spectra disturbances can be produced 

by the degassing of impurities or experimental artefacts (Lee, 1993; Lee et al., 1991). 

Accordingly, the observed discordant hornblende age spectra (Figs. 3.3a-f) result from 

an influence of degassing inclusions or impurities. The discordant hornblende age 

spectra commonly show similar variations in the 37Ar/39Ar ratios (Figs. 3.3a-f), which 

may further suggest degassing of inclusions or impurities (Di Vincenzo et al., 2003).  

In all the hornblende samples (Figs. 3.3a-f) the old ages in the low temperature steps 

likely reflect the release of excess 40Ar (Damon, 1968) from extended crystal defects by 

short circuit diffusion (Lee, 1995, 1993; Lee et al., 1991; Lo et al., 2000). Consequently, 

the weighted mean and pseudo-plateau ages of all hornblende samples might be affected 

by excess 40Ar.  

The very high radiogenic 40Ar* and very low atmospheric 40Ar concentrations in all 

hornblende samples (Tab. 3.1) suggest that they were not significantly altered by 

mixing with meteoric fluids. Sample PZ 37 shows the largest concentration of 

atmospheric 40Ar in their low-temperature degassing steps and probably indicates some 

sample alteration by meteoric fluids containing a modern atmospheric 40Ar/36Ar ratio. 

However, as optical thin section inspection reveal fresh, unaltered mineral phases in all 

samples, large-scale external input of excess 40Ar by fluids is considered less likely.  

The observed excess 40Ar may either accumulated during original mineral formation 

or may be derived from internal build up above the isotopic system closure 

(Baxter, 2003). Hornblende analyses BZ 216 and GZ 90 are derived from amphibolite 

rock samples with < 5 % quartz and analyses PZ 37 is derived from an amphibolite with 

quartz content of 5-10 %. Quartz is regarded as a key sink mineral to preserve excess 
40Ar, to enable high total local sink capacity and to prevents internal build up (Baxter, 

2003; Baxter et al., 2002). Eventually, the low amounts of quartz in these three 

amphibolite samples resulted in a low total local sink capacity and enabled an internal 



 
Chapter 3 

 84 

build up of excess radiogenic argon. However, some of the low-temperature excess 40Ar 

in PZ37 appears to be associated with a Ca-rich phase (Fig. 3.3c).  

The total fusion and weighted mean ages of samples BZ 216, GZ 90 and PZ 37 may 

be significantly altered by excess 40Ar and degassing of non-hornblende phases and 

therefore may not provide geologically meaningful 40Ar/39Ar cooling ages. The 

weighted mean ages of samples RMZ 11, RMZ 13 and RMZ 45 are probably disturbed 

by the degassing of inclusions. A good agreement betweeen the total fusion 479.2 ± 

18.2, 482.1 ± 25.9 and 466.9 ± 29.9 and weighted mean ages of 473.8 ± 2.4 Ma, 475.8 ± 

2.8 Ma, and 455.5 ± 6.2 Ma of samples RMZ 11, RMZ 13 and RMZ 45, respectively 

suggests that these samples are least affected by excess 40Ar (Figs. 3.3d-f and Tabs. 3.1, 

3.2). Consequently, their weighted mean ages of c. 474-476 Ma provide the best 

estimation for hornblende 40Ar/39Ar cooling ages in this region. 

3.5.2 40Ar/39Ar biotite data 

Discordant age spectra are observed for all 40Ar/39Ar biotite samples. The discordant 
40Ar/39Ar age spectra pattern observed in sample RMZ 13, and in the high-temperature 

degassing steps (at cumulative 39Ar values of  > 80 %) of samples GZ 39 and RMZ 18, 

show similar variations in their corresponding 37Ar/39Ar ratios (Figs. 3.4a-c, Tab. 3.1) 

and likely result from degassing of non pristine biotite phases, e.g. inclusions (Di 

Vincenzo et al., 2003; Kuiper, 2002; Lo et al., 2000). 

The low ages in the first low-temperature degassing steps of GZ 39 and RMZ 13 

could either reflect loss of 40Ar, degassing of non biotite phases or the degassing of 39Ar 

by multipath diffusion, which was implanted into short circuit pathways by recoil 

effects during neutron irradiation (Lo et al., 2000). The low-temperature degassing steps 

of both samples are not accompanied by significantly lower 37Ar/39Ar ratios (Figs 3.4b-c 

and Tab. 3.1). This indicates that RMZ 13 and GZ 39 biotites either suffered some 40Ar 

loss or experienced degassing of non-biotite phases. The slightly older ages in the first 

low temperature degassing steps of biotite sample RMZ 18 may reflect the degassing of 

minor amounts of excess 40Ar from extended defects by short circuit diffusion (Lo et al., 

2000). 
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Minor influences of 40Ar loss in biotite sample RMZ 13 and of excess 40Ar in sample 

RMZ 18, suggest that their weighted mean and plateau ages of 448.2 ± 3.7 Ma and 

428.4 ± 0.3 Ma, respectively provide good 40Ar/39Ar biotite cooling age estimate in the 

region. Due to a possible influence of 40Ar loss, the plateau age of 443.8 ± 0.4 Ma for 

sample GZ 39 is regarded as a minimum estimate of the 40Ar/39Ar biotite cooling age. 

3.5.3 Cooling rates for 40Ar/39Ar hornblende and biotite results 

The following diffusion parameters were adopted to calculate of the closure 

temperatures and cooling rates for hornblende: a frequency factor (D0) of 0.024 cm2/s, 

an activation energy (E) of 64.1 kcal/mol, a diffusion geometry (A) of 55 for spherical 

diffusion (Harrison, 1981), and for biotite: D0 = 0.075 cm2/s, E = 47.1 kcal/mol (Grove 

and Harrison, 1996), and A = 27 for cylindrical diffusion that is appropriate for mica 

(Hames and Bowring, 1994; Onstott et al., 1991). A mineral closure temperature (Tc) is 

directly related to the cooling rate (Dodson, 1973). The closure temperatures for 

corresponding 40Ar/39Ar hornblende and biotite cooling ages were calculated using 

cooling rates (ΔT/Δt) that are in turn consistent with the age difference (Δt) between 

them.  
40Ar/39Ar analyses of sample RMZ 13 yield  hornblende and biotite cooling ages of 

475.8 ± 2.8 Ma and 448.2 ± 3.7 Ma, respectively (Fig. 3.1, Tab. 3.2). These ages differ 

by Δt = 21-34 Ma. Derived cooling rates range from c. 10.5° to 6.5°C/Ma suggesting 

closure temperatures of c. 524° to 513°C and 311° to 305°C for hornblende and biotite, 

respectively. Similar cooling rates and closure temperature values are inferred for 

hornblende sample RMZ 11 due to a similar cooling age of 473.8 ± 2.4 Ma and its 

proximate location to sample RMZ 13 (Fig. 3.1, Tab. 3.2). Identical biotite 40Ar/39Ar 

cooling ages of sample RMZ 13 (448.2 ± 3.7 Ma) and sample GZ 39 (443.8 ± 0.4 Ma) 

imply similar minimum cooling rates of 10.5°-6.5°C/Ma and closure temperatures of 

311°-305°C for GZ 39. Hornblende sample RMZ 45 (455.5 ± 6.2 Ma) and biotite 

sample RMZ 18 (428.4 ± 0.3 Ma) yielded younger ages than the hornblende and biotite 

cooling ages of sample RMZ 13. Therefore, the approximated cooling rates of 50°-

5°C/Ma and associated closure temperatures of 556°-511°C and 334°-302°C are applied 

for RMZ 45 hornblende and RMZ 18 biotite, respectively. A closure temperature of Tc 
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~ 350°C (Möller et al., 2000) is estimated throughout this study for cited Rb/Sr cooling 

ages (Fig. 3.1). 

 
Figure 3.7: Diagram illustrating the t-T cooling paths of the southern basement in northern 
Mozambique. Black rectangles represent t-T spaces constrained by the 40Ar/39Ar hornblende 
(Hbl) and biotite (Bt) analyses. Rb/Sr biotite (Bt) cooling ages of Costa et al. (1992) are 
represented by the blue dashed outlined box. Older (O) and younger (Y) TFT age groups are 
depicted by green squares and orange circles, respectively. Constrained and inferred cooling 
paths are shown in solid and dashed brown lines, respectively. The light grey area denotes a 
general t-T trend envelope, inferred from error intervals of thermochronological data and 
cooling rates. An inferred temperature range, where Y group TFT samples resided prior to their 
uplift and cooling is indicated by the orange dotted outlined box. Open symbols depict 
ungrouped TFT ages. Numbers 1, 2 and 3 indicate periods of the Pan-African metamorphism, 
granite and pegmatite intrusions and incipient rifting in the Early to Late Permian, respectively. 
The question mark denotes an exemplary cooling path for the post-metamorphic thermally 
influenced basement. 

3.5.4 Titanite Fission Track data 

Annealing characteristics of titanite fission tracks are fairly complex and rather sparsely 

constrained (Jonckheere and Wagner, 2000). Therefore the TFT age of sample RMZ 31 

may either be a “transitional age” between the O and the Y populations, or it reflects a 

variation in annealing characteristics with respect to proximate samples RMZ 27 and 

RMZ 28. The similarities in age and location may argue for a common cooling history 

for samples RMZ 31, RMZ 27 and RMZ 28 (Y group). Similarly, the TFT age of sample 

RMZ 11 may either represent a “transitional age” between the two age populations, or 
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differences in annealing characteristics. Due to the close spatial relations, a similar 

cooling history of samples RMZ 11, RMZ 13, RMZ 14 and RMZ 16 (O group) is 

inferred.  

Excepting the two samples RMZ 11 and RMZ 31, no TFT ages of c. 300 Ma have 

been observed. Therefore, the spatial separation between the O and Y TFT age groups is 

roughly approximated by the interpolated 300 Ma age contour (Figs. 3.5a and 3.6). A 

TFT age span of 65 Ma of the Y group is slightly larger than the 51 Ma age span of the 

O group (Figs. 5a and 5b). This could either reflect data scatter in the larger sample 

population (Y group: 16 samples versus O group: 7 samples) or the incorporation of a 

minor N-S TFT age gradient in the Y group (Figs. 3.5d and 3.6). 

As no track length information could be obtained, the O and Y group TFT ages are 

regarded as minimum cooling ages, with a TFT closure temperature of 275° ± 25°C 

(Kohn et al., 1993). Because the samples GZ 87 and GZ 90 from the Axial Granulite 

Complex yield similar TFT ages as the O group samples from the southern basement 

east of the Malawi Rift System, (Figs. 3.5b, 3.6 and Tab. 3.3) their ages likely indicate a 

common cooling O group history in the north Mozambican basement to either side of 

the Malawi rift, irrespective of the present day elevation difference. 

Relating the 40Ar/39Ar biotite results of RMZ 13 (Tc ~ 311°-305°C, 448.2 ± 3.7 Ma) 

to corresponding TFT O group samples RMZ 13 (348 ± 19 Ma) and RMZ 16 

(330 ± 20 Ma) suggests cooling rates of less than 0.6°C/Ma between Late Ordovician to 

Early Carboniferous times (Tabs. 3.1, 3.3 and Figs. 3.1, 3.7). These rates are one order 

of magnitude lower than the cooling rates of c. 10.5-6.5°C/Ma derived from 40Ar/39Ar 

hornblende and biotite analyses of sample RMZ 13. Similarly, a low cooling rate of 

< 0.9°C/Ma is determined for 40Ar/39Ar biotite sample RMZ 18 (428.4 ± 0.3 Ma, c. 334-

302°C) and its closest corresponding TFT samples RMZ 14 (338 ± 21 Ma) (Tabs. 3.1, 

3.3 and Figs. 3.1, 3.7). The very low cooling rate estimates could indicate that the O 

group samples cooled very slowly through the TFT partial annealing zone (PAZ), 310°-

265°C ± 10°C (Coyle and Wagner, 1998), and experienced a significant amount of track 

annealing. The O group samples probably cooled through the TFT PAZ (T < 265°C) in 

Late Carboniferous to Early Permian times (c. 320-290 Ma). A cooling rate of less than 

0.3°C/Ma was calculated from sample GZ 39 based on its 40Ar/39Ar biotite results 
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(443.8 ± 0.4 Ma, c. 311-305°C) and its corresponding Y group TFT age (254 ± 16 Ma) 

(Tabs. 1, 3 and Fig. 1). This rate could indicate an apparent further decrease in cooling 

rates towards the south. Cooling rate estimated were solely obtained from samples RMZ 

13 and GZ 39, and hence may not be unrestrictedly representative for the oldest O 

group (378 ± 40 Ma of RMZ 36) and youngest Y group (219 ± 12 Ma of 020826-03) 

TFT samples (Tab. 3.3, Fig. 3.6). However, the consistent NE to ENE alignment of 

similar N-S decreasing TFT age trends (Figs. 3.5c-e and 3.6) argues for a common 

origin for the TFT age distribution across the north Mozambican basement. The 

prominent N-S gradient between the TFT age groups (Figs. 5d-e) indicates that a solely 

continuous decrease in cooling rates towards the south is very unlikely. It rather 

suggests that the O and Y group TFT samples experienced distinctly different cooling 

paths and that in turn the cooling rates derived from the Y group samples are of no 

significance as the Y group TFT ages likely resulted from a complex cooling history. 

The occurrence of similar Y group TFT ages over a small elevation range (c. 600 m; 

Fig. 3.5b) could indicate that these samples experienced a period of more rapid cooling 

(cf. Braun, 2002), whereby the youngest TFT age, located furthest south, cooled at 

latest through the TFT PAZ.  

The Rb/Sr bitotite (Costa et al., 1992,) and 40Ar/39Ar biotite cooling ages (Tab. 3.1, 

3.2 and Fig. 3.1) indicate cooling to below c. 350°-300°C in the southern basement at 

450-420 Ma. This could rather suggest that subsequently, both TFT age groups cooled 

at fairly similar rates of < 1°C/Ma. Thereby the Y group samples were located at a 

deeper crustal level than the O group samples. During, presumably, Late 

Carboniferous/Early Permian times (c. 300-290 Ma) the O group samples had cooled 

through the TFT PAZ whereas the Y group samples still resided within and/or above the 

high temperature threshold of the TFT PAZ (c. > 310°C). The Y group cooled to below 

c. 275 ± 25°C, probably more rapidly, at a younger time (c. < 280 Ma) (Fig. 3.7).  

Alternatively, the O and Y group samples could have resided at similar crustal levels 

and cooled at similar rates from c. 450-420 Ma onward. Then, the Y group samples 

experienced a thermal overprinting causing partial or entire age resetting at a younger 

time (c. < 280 Ma). 



 
Post Pan-African thermo-tectonic evolution - 40Ar/ 39Ar and titanite fission track analyses   

 89

3.6 Discussion 

3.6.1 Proterozoic to Early Palaeozoic cooling in the south western Axial

 Granulite Complex 

The 40Ar/39Ar ages of hornblende samples GZ 90 and PZ 37 (Tab. 3.1 and Fig. 3.2), are 

younger than the peak post-kinematic (DM2) granulite facies metamorphic event at c. 

571-549 Ma in the Axial Granulite Complex in southern Malawi (Kröner et al., 2001). 

These 40Ar/39Ar hornblende ages appear to be in agreement with cooling from the latest 

granulite facies imprint at c. 571-549 Ma in the region. Unfortunately, a significant 

alteration by excess 40Ar observed within both analyses precludes reliably time-

temperature estimates on the regional cooling paths. 

Post-granulite facies metamorphism and DM2 fabrics reworking events are 

recognized in southern Malawi (temporally unconstrained in the Metangula Group; 

Pinna et al., 1993) and further north in the Cobue-Geci Group at c. 538 Ma (Lulin, 

1985; Pinna et al., 1993). There, the protholiths of the metasedimentary units (Fig. 1) 

were sourced from the Axial granulites and were subsequently metamorphosed under 

amphibolite facies conditions. U/Pb SHRIMP zircon dating on gneisses and granites 

from Eastern Zambia yielded ages of c. 500-480 Ma (De Waele, 2006). U/Pb SHRIMP 

dating on metamorphic overgrowths of detrital zircon from the Alto Benfica Group 

(Namarroi Zone, Fig. 1; Jacobs 2005, unpubl.) yield ages of c. 490 Ma. Both results 

indicate high T metamorphic overprints within the basement rocks to the east and west 

of the Unango granulites at c. 500 Ma. The 40Ar/39Ar hornblende ages of samples GZ 90 

and PZ 37 (Tab. 3.1, 3.2 and Figs. 3.3b-c) could therefore also result from excess argon 

alteration, accumulated during cooling periods following metamorphic overprints 

between c. 550-500 Ma in the western Axial Granulite Complex. 

3.6.2 Early Palaeozoic cooling in the southern basement  

40Ar/39Ar hornblende cooling ages of samples RMZ 13 and RMZ 11 date the cooling to 

below 524°C at 476-474 Ma in the eastern part of the southern basement. The syn-

tectonic granulite facies metamorphism (DM2) in the Mugeba Klippe basement is dated 

at c. 615 Ma (Kröner et al., 1997) although new U-Pb SHRIMP zircon ages of c. 551 
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Ma (Grantham et al., 2005a) and of c. 510 Ma from the Nampula basement (Jacobs 

unpublished data) have challenged these earlier results. This deformation (DM2) is post-

dated by an unconstrained, mainly amphibolite facies overprint (Pinna et al., 1993). A 

time difference of c. 30-80 Ma exists between the peak granulite facies meta-morphism 

and the 40Ar/ 39Ar hornblende cooling ages of RMZ 11 and RMZ 13. Both 40Ar/ 39Ar 

hornblende ages are also younger than the inferred timing (c. 500 Ma) of the syn-to late-

tectonic granitic intrusions (Pinna et al., 1993). Therefore, both 40Ar/39Ar hornblende 

cooling ages could either indicate a period of very slow cooling or a protracted, yet not 

completely resolved multiphase evolution of the basement during Pan-African times.  

The temporally unconstrained evolution of the Namama Thrust Belt probably post-

dates the peak granulite facies metamorphism (c. 615-551 Ma). It likely accounts for the 

distribution of some late phase, high grade metamorphic assemblages (Sacchi et al., 

2000). The associated DN1 deformation, presumably reworked a large region of the 

southern basement, and affected some of the granitoids emplaced at c. 500 Ma. 

Therefore, the 40Ar/ 39Ar hornblende results of RMZ 13 and RMZ 11 most probably 

record the cooling below 524°C at 476-474 Ma from a thermo-tectonic overprint at c. 

615-500 Ma at with subsequent cooling rates of 10.5-6.5°C/Ma (Fig. 3.7). This could in 

turn indicate that the amphibolite to granulite facies DN1 metamorphic overprint of the 

Namama Thrust Belt dates between c. 615-500 Ma.  

Sillimanite bearing metasedimentary rocks of the Alto Benfica Group (Thomas, 

2006) near the Namaroi Zone (Fig. 3.1) and yielded detrital zircons with metamorphic 

zircon overgrowths. U-Pb SHRIMP analyses revealed ages of c. 490 Ma and c. 610 Ma 

for the metamorphic rims and the youngest detrital grains, respectively (Jacobs, 2005 

unpublished). These findings record the deposition of sediments after 610 Ma with 

protolith sources of Late Proterozoic to Archean ages. They further suggest exposure 

and erosion after a granulite facies metamorphism at c. 615 Ma as well as post-

sedimentary reworking and metamorphism up to at least sillimanite grade at c. 490 Ma 

in the western part of the southern basement. In the eastern part of the southern 

basement (Fig. 1), the autochthonous, sillimanite-bearing metasedimentary rocks of the 

Mecuburi Group show evidences of reworking of Nampula gneisses (Sacchi et al., 

1984). With respect to proximate 40Ar/ 39Ar hornblende results of RMZ 13 and RMZ 11 
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(Fig. 3.1), the Mecuburi Group might also indicate exhumation, erosion, sedimentation, 

and amphibolite facies metamorphism between c. 615-500 Ma in the eastern part of the 

southern basement. 

An 40Ar/ 39Ar hornblende cooling age of 455.5 ± 6.2 Ma (RMZ 45) coincides with a 

pegmatite Rb/Sr muscovite cooling age of 454 ± 7 Ma (Costa et al., 1992; Fig. 1). 

Recent monazite U/Pb CHIME (Chemical Isochron Method) dates of pegmatites yield a 

broad scatter of intrusion ages around c. 450 Ma (Grantham, 2005a). U-Pb SHRIMP 

zircon analysis from two undeformed granites yielded intrusion ages of c. 500 and 450 

Ma (Grantham et al., 2005a). These data indicate localized thermal influences by 

igneous activity in the central southern basement between c. 500-450 Ma. The 

preserved younger 40Ar/ 39Ar hornblende age of RMZ 45 is thus inferred to record 

cooling to below 556°-511°C at c. 456 Ma (Fig. 3.7) from a late- to post-metamorphic 

reheating at c. 500-450 Ma.  
 

40Ar/ 39Ar biotite sample RMZ 13 and GZ 39 recorded the cooling to below c. 310-

305°C at 448.2 ± 3.7 Ma and 443.8 ± 0.4 Ma, respectively at rates of 10.5-6.5°C/Ma in 

the eastern part of the southern basement (Fig. 3.7). Both cooling ages coincide with a 

Rb/Sr biotite cooling age of 449 ± 7 Ma (Costa et al., 1992) from a basement gneiss in 

the Namama Thrust Belt hinterland (Fig. 3.1). These results likely indicate widespread 

cooling of the southern basement gneisses at c. 450 Ma to below c. 350°-305°C (Fig. 

3.7). Younger Rb/Sr biotite cooling ages of 434-420 Ma from mainly undeformed 

granitoids (Costa et al., 1992; Sacchi et al., 1984) coincide with the 428.4 ± 0.3 Ma 

40Ar/ 39Ar biotite cooling age of sample RMZ 18. This likely suggests that biotite 

sample RMZ 18 records cooling to below 334-302°C from a basement reheating 

between c. 500-450 (Fig. 3.7). Consequently, the pegmatite and granite emplacements, 

locally delayed final basement cooling to below 350°C to c. 434-420 Ma (Fig. 3.7).  

Conclusively, the 40Ar/ 39Ar biotite and Rb/Sr biotite cooling ages (Fig. 3.1 and Tab. 

3.2) indicate that the southern basement experienced widespread, ultimate cooling to 

below c. 350°-305°C from the youngest Pan-African thermo-tectonic events between c. 

615 Ma to 450 Ma at c. 450-420 Ma, i.e. in Late Ordovician to Early Silurian times 

(Fig. 3.7). 
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3.6.3 Late Palaeozoic cooling and denudation history 

Further cooling to below c. 275 ± 25°C occurred in Late Devonian to Early 

Carboniferous times. It was accompanied by a decrease in cooling rates to values of 

< 1°C/Ma (Fig. 3.7) and presumably reflects a reduction in denudation rates. The 

establishment of pre-Karoo peneplains (< Late Carboniferous), subsequent to a 

prolonged period of denudation (erosion) in central Gondwana (Catuneanu et al., 2005; 

Wopfner and Kaaya, 1991) most probably corresponds to the observed decrease in 

denudation in northern Mozambique.  

Preliminary apatite fission track results (Daszinnies et al., 2004) and isolated 

outcrops of Karoo age lavas (Grantham et al., 2005b; Jaritz et al., 1977) along the 

continental margin, (Fig. 3.2) indicate basement cooling to ≤ 110°C in Early to Middle 

Jurassic times. Conclusively, the Y group TFT ages probably record basement cooling 

to below 275 ± 25°C between the Late Carboniferous/Early Permian (c. < 280 Ma) and 

Late Triassic/Early Jurassic (c. > 200-180 Ma). 

Permo-Triassic rift basins adjacent to the north Mozambican basement consistently 

indicate incipient rifting in Early to Late Permian times (c. 280-260 Ma) (Castaing, 

1991; Catuneanu et al., 2005). This timing post-dates the cooling of the O group TFT 

samples but pre-dates and overlaps with the basement cooling period of the Y group 

TFT samples. This suggests that the cooling of the Y population is maybe related to 

regional incipient rifting activity in Early to Late Permian times. Their cooling might 

result from rift related denudation and exhumation by: (a) crustal extension, i.e. rift 

basin formation, (b) erosion of an uplifted rift flank adjacent to a rift basin, (c) erosional 

base level lowering due to incipient rifting. Alternatively, their cooling could also 

represent the fading of a thermal influence that accompanied the formation of a rift 

structure (e.g. Bott, 1995; Ziegler and Cloething, 2004). 

In the north Mozambican basement south of the Lurio Belt, besides remnant basal 

shear zones of the granulites nappes and Namama Thrust Belt (Fig. 3.1), regional 

ductile high strain zones (Pinna, 1995; Thomas, 2006) and regional brittle structures are 

absent (Thomas, 2006). This apparent lack of potential regional scale extensional 

structures indicates that the inferred Y group cooling pattern (Fig. 3.6) is less likely 

explained by denudation due to crustal extension on the north Mozambican basement. 
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The TFT age trends of profiles A-B and the composite profile (Figs. 3.5d, e) show a 

rapid sigmoid shaped age decrease over a distance of c. 50 km. Both, the profile shape 

and the distance of TFT age decrease strongly resembles sigmoidal AFT age patterns  

(a) observed at rifted continental margins displaying prominent escarpments (Gallagher 

et al., 1994), and (b) predictions from numerical modelling combining lithosphere 

extension and surface processes (Van der Beek, 1995). The youngest TFT ages 

(c. < 250 Ma) are located furthest south and pre-date the regional timing of incipient 

rifting (c. 280-260 Ma). They were likely exhumed from below the TFT PAZ (T > 

310°C) at times < c. 280 Ma. This is in good agreement with previous AFT studies 

which document that the youngest AFT ages are found on the uplifted rift flanks close 

to the basin edge commonly pre-date the timing of rifting as they were exhumed from 

below the AFT PAZ (Gallagher et al., 1998; Van der Beek et al., 1995). The observed 

TFT age patterns of the N-S profiles (Figs. 3.5d, e) are interpreted as traverses across 

the thermochronological imprint of an E to ENE trending rift flank that was uplifted 

during Karoo times. Thereby the O group TFT ages record the cooling of the unaffected 

hinterland, inland of the uplifted region. Towards the south the TFT ages rapidly 

approach the Y group age values that record the cooling from the denuding uplifted rift 

flank, cooling that result from interwoven processes of tectonic uplift, denudation and 

local isostatic compensation. This suggests further that the youngest TFT age samples 

may represent the zone of highest denudation, highest tectonic and isostatic uplift of the 

rift flank, proximate to the edge of a rift basin (Fig. 3.8a). 

Rift flanks are fairly linear, narrow (≤ 200 km) zones which adjoin continental rifts 

that are associated with broad domal swells (~1000 km wavelength), for instance the 

East African rift system (e.g. Fairhead, 1976). Rift flank uplifts may persist for long 

times (> 60 Ma) and are capable to produce spectacular topography such as the 

Transantarctic Mountains which rise > 3 km over the surface of the adjoining rifts 

(Fitzgerald et al, 1992). Thermal, mechanical and combined concepts have been 

advocated to support rift flank uplift (e.g. Royden and Keen, 1980; Buck, 1986, Kooi, 

1991). However, mechanically supported flexural uplift compared to thermal uplift is 

much more effective and more capable to explain the long term persistence of rift flank 

uplifts (Van der Beek et al., 1994 and references therein). 
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Figure 3.8: Illustration (a) depicts the spatial TFT age pattern in northern Mozambique 
and the inferred rift flank. The green squares and orange dots show the sample locations 
of the older and younger TFT age populations, respectively. The interpolated TFT age 
contours are represented by black lines. The ductile basement fabrics are derived from 
Pinna et al., 1993 and the orientation of the Permian tensional stress field is obtained 
from Castaing, 1991. Illustration (b) shows the inferred rift geometry. Thick dashed 
lines trace the approximated boundary between the hinterland and the rift flank. Thin 
dashed lines show the generalized ductile litho-trends. The blue and red circle segments 
are graphical representations of the acute angles formed by trends of ductile fabrics and 
the rift structure with the tension stress field, respectively. Large black and small grey 
arrows indicate the regional tensional stress orientation and the supposed local 
extension direction. Orientation measurements of joints obtained from the light grey 
area shown in the Rose and Schmidt diagrams. 

In depth dependant pure shear crustal extension models, the rheologically layered 

lithosphere retains a finite strength during rifting; necks around its strongest layer and 

for sufficiently deep levels of necking an upward state of flexure is induced that 

mechanically supports the rift flanks (Braun and Beaumont, 1989; Kooi et al., 1992). 

The uplift results from regional isostatic compensation of the mechanically thinned 
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lithosphere and/or from foot wall uplift due to unloading and flexural rotation of rift 

basin border faults (e.g. Ziegler and Cloething, 2004) (Fig. 3.9). Rift flank uplift is 

flexural in nature (e.g. Bott, 1995) and this fact appears to be in good agreement with 

the lack of regional extensional structures on the basement.  

 

Figure 3.9: Cartoons depicting three models of kinematic extension and their regional isostatic 
response: (a) the necking model for a deep level of necking (Braun and Beaumont, 1989; Kooi 
et al., 1992), (b) the detachment model (Weissel and Karner, 1989) and (c) the flexural 
cantilever model (Kusznir and Ziegler, 1992). In models (a) and (b) rift flank uplift is supported 
by regional isostatic compensation and passive upwelling of the asthenosphere into the 
mechanically attenuated mantle lithosphere (Ziegler and Cloething, 2004). In model (c) rift 
flank uplift results from foot wall unloading and flexural rotation of the normal fault (Buck, 
1988). Numbers 1, 2 and 3 indicate the extensional rift basin, the uplifted rift flank and the 
unaffected interior, respectively. Extensional faults are represented by thick black lines. 

A corresponding rift basin was probably located in the vicinity of the southern 

continental margin (Fig. 3.8b), suggestive that the uplifted rift flank could be up to 

approximately 200 km wide. This is quite a large distant but it is in consistency with 

numerical modelling predictions (Van der Beek et al., 1994, 1995) which indicate that 

the extent of the uplifted section depends on the pre-existing surface elevation. 

However, the Permo-Carboniferous pre-rifting surface elevation of the north 

Mozambican basement is unknown. The occurrence of thinned continental crust to the 

south (Nairn et al., 1991; Salman and Abdula, 1995) and to the southeast (Mascle et al., 

1987; Mougenot et al., 1986) of the north Mozambican margin could support the 

existence of a rift basin to the south of the present basement. 

Model results of denudation induced cooling from base level lowering triggered by 

incipient rifting yielded AFT age patterns that decrease very continuously in age from 

the interior towards the rift basins (Van der Beek, 1995). Hence a base level lowering is 

therefore less likely suited to explain the TFT ages pattern in northern Mozambique. 
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All post Pan-African igneous activity in northern Mozambique is younger than c. 180 

Ma (e.g. Eby et al., 1995, Grantham et al, 2005). This suggests that an intense rift 

related thermal activity by magmatism was less dominant or absent. A thermal 

overprinting is therefore considered less likely to explain the TFT age distribution. This 

could further indicate passive rifting conditions in the region (Bott, 1995; Ziegler and 

Cloething, 2004) and suggests that rift flank uplift supposedly occurred synchronous 

with incipient rifting (Braun and Beaumont, 1989) in Early to Late Permian times, at 

c. 280-260 Ma. 

Between longitudes 37°-40.5 °E and SE of the Liciro lineament, the regional ductile 

basement fabrics and the TFT age distribution display a very similar easterly trend 

(Fig. 3.8a). Such an easterly trend is also inferred for the uplifted rift flank (Fig. 3.8a, 

b). The regional easterly trends of the basement fabrics (Pinna et al., 1993; Cadoppi et 

al., 1987; Thomas, 2006) enclose acute angles of c. 85°-40° with the NW-SE orientated 

Early Permian tensional stress regime (Castaing, 1991) (Fig 3.8b). The inferred general 

trend of the rift structure forms an acute angle of c. 50° with it (Fig 3.8b). This could 

suggest that pre-existing basement fabrics trending at high angles of 45°-50° to the 

tensional stress direction were activated by oblique extensional faulting during rifting 

(Morley et al., 2004) (Fig. 3.8b). West of longitude 37°E, to the NE of the Liciro 

lineament, the inferred TFT age trend approaches an NE-SW orientation (Figs. 3.1, 3.6 

and 3.8a,b) and coincides with NE trending lithologies (Thomas, 2006). Here, steeply 

dipping joints trend parallel to ductile basement patterns (Fig. 3.8b). It could indicate 

brittle, extensional reactivation of ductile basement fabrics. Extension west of longitude 

37°E might therefore have taken place in a more orthogonal mode.  

The E-W orientated extensional fault trends in the Cabora Bassa Basin (Fig. 3.2), are 

attributed to reactivation of easterly trending crystalline basement fabrics (Castaing, 

1991). It is supposed that the Cabora Bassa Basin and the inferred rift basin south of the 

north Mozambican basement were linked via the Zambesi pre-transform system during 

incipient rifting in the Early to Late Permian (Fig. 3.2). Harrowfield et al. (2005) 

envisioned the formation of an extensive Permo-Triassic rift basin bordering 

Australia/Antarctica and India. If this is true, a branch could extended from the 

Australo-Antarctic rift basin into central Africa via northern Mozambique (Fig. 3.2).    
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Figure 3.10: Illustration of the tectono-geographic setting in central Gondwana during the Late 
Permian to Early Triassic; modified after Visser and Praekelt (1996, 1998). The study area is 
depicted by the dotted line box. Black and open triangles indicate areas and supposed areas of 
uplift and erosion, respectively. The grey hashed box highlights the right stepping restraining 
band. Abbreviations used: M – Madagascar, KZB – Kalahari-Zambezi Basins, KFIB – Karoo-
Falkland Islands Basins and FEATSS – Falkland-East Africa-Tethys shear system. 

Alternatively, the inferred cooling path of the Y group TFT samples could also be 

interpreted to record cooling from erosion of a region uplifted by transpression. In Late 

Permian to Early Triassic times, the north Mozambican basement could have been a site 

of lithospheric buckling, uplift and erosion around a regional-scale right stepping 

restraining bend in the sinistral Falkland-East Africa-Tethys shear system (FEATSS) 

(Visser and Praekelt, 1996, 1998) (Fig. 3.10). This alternative can not be strictly 

excluded but is considered less likely. As kinematic investigation in SW Madagascar do 

not evidence sinistral strike slip faults parallel to the present East African margin in 

Permo-Triassic times (Schandelmeier et al., 2004), the existence of the FEATSS along 

the east Mozambican margin during that time is questionable. Additionally, the lack of 

regional brittle structures in the north Mozambican basement rather precludes the 

existence of transpression structures. In the southern basement, cooling through 

denudation recorded by the TFT ages in Permo-Triassic times solely appears to have 

occurred parallel to the present southern costal margin. This could suggest that the 

present eastern coastal margin evolved at a distinctly younger time. If it formed 
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coevally, then it was not recorded by the TFT thermochronology. Either the amount of 

exhumation was too small or the location of margin formation was further in the east. 

At rifted margins, geothermal gradients are fairly constant as the upper crustal 

isotherms are not significantly disturbed (Brown and Summerfield, 1997; Stüwe et al., 

1994) by the sufficiently low (<100 m/Ma) exhumation rates (Leeder, 1991; Van der 

Beek, 1995). Estimating the amount of denudation is generally difficult as no direct 

measurements of palaeo-heat flow are available. A geothermal gradient of 30°-

25°C/km, inferred from present heat flow records and vitrinite reflectance data through 

the Karoo basins of southern Tanzania, has been used to constrain the Late Paleozoic to 

Cenozoic denudation history in the Malawi and Rukwa rift flanks (located in Pan-

African mobile belt) (Van der Beek et al., 1998). These values are adopted here. As the 

youngest TFT samples of the Y population were likely exhumed from below the TFT 

PAZ (T > 310°C), c. 10-12 km of crust are estimated to have been removed by 

denudation from the rift flank since its uplift in the Early to Late Permian times. Further 

inland, the TFT ages of the O group indicate an amount of c. 9-11 km of denudation 

since the Early Carboniferous (c. 330 Ma and Tc = 275 C°). Importantly, the denudation 

estimates are rough approximations as they assume a constant geothermal gradient over 

very long time periods, though transient geothermal gradient are more reasonable but 

inaccessible. Therefore, these high amounts of removed crustal material are regarded as 

extreme upper limit estimations. According to Jacobs and Thomas (2004), the thickened 

continental crust in the central part of East African-Antarctic Orogen was thinned by an 

orogenic collapse at c. 530-490 Ma. This could suggest that subsequently continental 

crust of average thickness (c. 30-50 km) existed in the area of northern Mozambique. If 

high amounts of up to 12 km (equal to c. 1/3-1/5 of the average thick continental crust) 

of denudation occurred since the Early Carboniferous, the question arises to which 

extent it can be evidenced by other observations. As a consequence of such amounts of 

denudation, the present day crustal thickness in northern Mozambique should be 

distinctly thinner than in formerly adjacent and less thinned regions of Africa and East 

Antarctica. Compared to them, the Mohorovičić discontinuity underneath northern 

Mozambique should be located at a shallower depth due to high degree of crustal 

thinning.  
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An alternative interpretation to the rift margin uplift model (preferred by one of us, 

GHG) is as follows. The data clearly show that the TFT ages young southwards, 

implying greater degrees of exhumation southwards. Early workers have interpreted the 

Lurio Belt as a significant high strain zone and have interpreted the Mugeba and 

Monapo structures as overthrust klippen of granulite grade lithologies derived from the 

Lurio Belt (e.g. Sacchi, 2002 Pinna et al., 1993). Grantham et al. (2003) have suggested 

that the Lurio Belt is correlatable with the shear zone which separates the Central 

Highlands Complex from the Vijayan Complex in Sri Lanka (see tight fit reconstruction 

of Gondwana after Lawver et al., (1998) and others including Reeves used in Grantham 

et al. (2003). Similar klippen structures of Highland Complex rocks overlying Vijayan 

Complex rocks in Sri Lanka are also recognised (Kriegsman, 1995; Kröner, A., 1991). 

Recent P-T estimates from the Mugeba structure show that the meta-pelitic and meta-

basic gneisses have peak metamorphic assemblages which show high strain syn-tectonic 

textures and indicate conditions of ~10kb and 900°C after which post-tectonic static 

cooling to ~8kb and ~700°C occurred (Roberts et al., 2005). U/Pb SHRIMP data 

indicate that the high grade metamorphism occurred at ~556 Ma. Data from the same 

Mugeba Klippe yielded marginally older ages (Kröner et al., 1997) however the data 

from Kröner et al. (1997) were obtained using the evaporation method which does not 

have the spatial resolution of SHRIMP. Consequently these data for the Mugeba 

Klippen are considered unreliable because the SHRIMP data show complex zircons 

with concordant ages of ~556 Ma and discordant zircons suggesting an upper intercept 

of ~1120 Ma Consequently during the period from ~550 Ma at ~8 kb and 700°C, rapid 

exhumation of the area (at least in the vicinity of sample 020823-6) to ~3.5 kb and 

~280°C at 245 Ma followed (assuming a typical geothermal gradient of 25°C/km) or 

2.8 kb and 280°C at 245Ma (assuming a geothermal gradient of 30°C/km). Using the 

typical geothermal gradient implies an uplift rate of ~15 km (4.5 kb) over ~300 my or 

50 m/my. The area south of the Lurio lineament, here termed the Nampula Terrane for 

convenience, contains a significant volume of largely undeformed granites whose ages 

vary from ~453 Ma to ~530 Ma (Grantham et al., 2005a) with most being ~500 Ma in 

age. The hornblende 40Ar39Ar ages (blocking temperature ~550°C) are broadly 
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consistent with these conditions with the granite minimum melt temperatures being 

~650-700°C. The large scale genesis of the granites from ~550-500 Ma is consistent 

with the Nampula Terrane being depressed in the footwall of the overthrust Lurian 

rocks now represented by the Mugeba and Monapo Klippen. The increase in 

temperature due to burial in the footwall would promote dehydration reactions at depth 

contributing to extensive partial melting of the ~1100 Ma gneisses to form the 

~450-530 Ma granites. Rapid exhumation and inversion of the Nampula terrane after 

the collision along the Lurio front would have followed. On a larger scale, if one 

considers a cross section from Cobue-Geci (at surface ~550-600 Ma ago) to the Urfjell 

in southern Kirwanveggan (also at surface ~550 Ma ago) the central portion of 

Mugeba/Sverdrupfjella experienced depths of 6-8 kb at ~500 Ma ago. The orogenic belt 

between these two areas has been exhumed. If one looks at the cooling rate from 

550 Ma, 900°C and 10 kb with all the points plotted until Karoo times i.e. surface at 

Gondwana breakup at 180-200 Ma, the data define an almost constant slope with a 

cooling rate of ~2.5°C/Ma.    

3.7 Conclusions 

Within the south western Axial Granulite Complex, the c. 542-551 Ma 40Ar/ 39Ar 

hornblende ages revealed a significant alteration by excess 40Ar* and do not permit 

reliable inferences on its post-metamorphic cooling history. In the eastern part of the 

southern basement cooling from the Pan-African thermo tectonic imprint at c. 

550-500 Ma was slow with low cooling rates of 10.5-6.5°C/Ma between 524°C and 

310-305°C, as recorded by the 40Ar/ 39Ar 476-474 Ma hornblende and c. 448-444 Ma 

biotite ages, respectively, and is probably linked to the development of the Namama 

Thrust Belt. Widespread cooling from this youngest thermo-tectonic event in the 

southern basement to below 350°C was already achieved by c. 450 Ma. The 

emplacement of granite and pegmatite bodies between c. 500-450 Ma, partly influenced 

by the youngest deformation event at c. 500 Ma, probably resulted in localized re-

heating and hence locally delayed cooling in the region to below 350°C until 

434-420 Ma. It cannot be excluded that the Axial Granulite Complex and the southern 

basement regions coevally experienced significant Pan-African overprints between 550-
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500 Ma, subsequent to their granulite facies metamorphic imprints at c. 571-549 Ma 

(Kröner et al, 2001) and 615-551 Ma (Grantham et al., 2005a; Kröner et al., 1997), 

respectively. The south-eastern termination of the Lurio Belt in the Unango Group and 

the adjacent Namarroi Zone are likely key areas to further resolve a younger (< 550 Ma) 

Pan-African thermo-tectonic evolution in northern Mozambique and southern Malawi. 

In both regions, the similar TFT ages of the O group samples indicate a common 

cooling to below 275 ± 25°C during the Late Devonian to Early Carboniferous. It likely 

further suggests that up to c. 9-11 km of denudation have occurred since. In the southern 

basement an accompanying decrease in cooling rates to < 1°C/Ma between the Late 

Ordovician/Early Silurian to Late Devonian/Early Carboniferous is attributed to a 

reduction in denudation, probably linked to the establishment of pre-Karoo peneplains 

(< Late Carboniferous) as inferred by Wopfner and Kaaya (1991). A younger group of 

TFT ages records the cooling induced by erosion of a broadly E-W trending uplifted rift 

flank. This rift flank probably initiated between Early to Late Permian times. Its 

formation marks the onset of rifting and incipient Gondwana dispersal in the north 

Mozambican segment. The TFT data suggest that up to 10-12 km of material has been 

denuded since the onset of rifting. A corresponding rift basin was probably located 

adjacent to the south of the basement and linked to the Zambezi rift system via the 

Zambezi pre-transform system. The basin potentially formed by oblique crustal 

extension in response to a regional NW-SW tensional stress regime while exploiting 

pervasive, easterly trending Pan-African ductile fabrics by brittle extensional 

reactivation. The development of an oblique extensional rift basin, superimposed onto a 

Pan-African mobile belt corresponds to a network of Karoo-age African rift basins 

which formed by transtensional and extensional fracturing of weak anisotropic 

lithosphere that was metamorphosed in late Neoproterozoic/Early Cambrian times 

(Rogers et al., 1995; Visser and Praekelt, 1998). The spatial TFT age pattern solely 

recorded rift related cooling and exhumation parallel to the present southern coastal 

margin in the Early to Late Permian.  
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Chapter 4  

CENTRAL EASTERN AFRICA DURING GONDWANAS RIFT, 

BREAK-UP AND DRIFT EVOLUTION SINCE THE MESOZOIC 

 
In the eastern part of central Africa, graben and extended intra-cratonic rift structures, 

filled with Karoo Group equivalent deposits formed during the Late Carboniferous to 

Late Triassic/Early Jurassic period of rifting (e.g. Catuneanu et al., 2005). Since the 

Late Permian to Early Triassic the tectonic regime of eastern Africa was governed by a 

NW-SE orientated tensional stress field (Castaing, 1991; Catuneanu et al., 2005; 

Schandelmeier et al., 2004; Verniers et al., 1989) (Figs. 4.1 and 4.2). During this time 

the rift structures were connected by transcontinental mega-shear systems. One of them, 

the Falkland-East Africa-Tethys shear system split the supercontinent into an eastern 

and western part but failed to break it apart (Visser and Praekelt, 1996; 1998) (Fig. 4.1). 

It remarkably coincides in trend with the Mozambique Belt and the East African-Ant-

arctic Orogen (Jacobs et al., 1998), suggesting a Pan-African shear zone/mobile belt 

control on its location and orientation.  

Based on palaeo-geographic reconstruction attempts it has been argued that the 

supercontinent’s separation into two rigid plates of East and West Gondwana is an 

oversimplification (Reeves et al., 2002). An improvement has been proposed by 

subdividing the continental plates into smaller crustal segments that are bounded by 

shear zones. These shear zones repeatedly accommodated the long distance transfer of 

stresses and allow limited rotation of the connected crustal segments (Reeves et al., 

2004). 

During the Early to Middle Jurassic, a widespread intracontinental magmatism 

occurred in southern Gondwana and evidences the continuing stress by extensional 

forces (Brewer et al., 1992; Hawkesworth et al., 1999). In southern Africa the Karoo 

Large Igneous Province (LIP) erupted between 184-179 Ma and virtually syn-

chronously, the Ferrar Group igneous activity took place along the margin of eastern 
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Antarctica (Duncan et al., 1997; Jones et al., 2001). The Karoo and Ferrar magmatism 

have been associated with a thermal anomaly of the Bouvet mantle plume (Fig. 4.2). 

This plume activity potentially caused further crustal weakening within southern 

Gondwana and thereby contributed to the rifting and final break-up between East 

Gondwana (Antarctica/ India/Australia) and West Gondwana (Africa/South America) 

(Fig. 4.1) (Storey, 1995) .  

 
 

Figure 4.1: Gondwana reassembly with outlined present-day continents and approximated axis 
of separation between East and West Gondwana modified after Jacobs and Thomas (2004). The 
EAAO is the East African-Antarctic Orogen, EF denotes European fragments and the FEATSS is 
the Falkland-East Africa-Tethys Shear System (Visser and Praekelt, 1996; 1998). 
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The tensional stresses that prevailed in central eastern Africa since in Late Palaeozoic 

Early Mesozoic times progressively changed in orientation from NW-SE to NE-SW 

during the Jurassic to Early Cretaceous (Castaing, 1991; Delvaux, 2001). 

 

Figure 4.2: Sketch map of Gondwana illustrating the location of the Karoo and Ferrar Large 
Igneous Province (LIP) in the Middle Jurassic. The map was modified from Storey et al. (1995).  
Abbreviations:  cDML = central Dronning Maud Land, M = Madagascar and NM = northern Mozambique. 

The southward movement of East Gondwana relative to West Gondwana proceeded 

during the Jurassic to Early Cretaceous (Fig 4.3) along the Davie Fracture Zone (DFZ) 

and an associated sub parallel system of fracture zones along the coast of eastern Africa 

(e.g. Mozambique Ridge) and Madagascar. They coincide in trend with prominent 

Pan-African lineaments, such as the Bongolava-Rantosara Shear Zone in Madagascar 

(Fig. 4.3) (Droz and Mougenot, 1987; Roeser et al., 1996). The DFZ is a remnant 

transform fault with a dextral shear sense that edges the north Mozambican margin and 

localized transpressional and transtensional stresses during the southward drift of 

Madagascar (Coffin and Rabinowitz, 1987; Coffin and Rabinowitz, 1992). The stresses 

probably also affected the adjacent continental margins, such as the south western 

margin of Madagascar (Malod et al., 1991). East Gondwana’s southward drift was 

accompanied by the evolution of the Somali and Mozambique basins (Fig 4.3). The rift 
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to drift transition, i.e. the timing of the Gondwana break-up is marked by the first 

production of oceanic crust. In the Somali Basin it is assigned to the first magnetic 

anomaly M 25 in the Late Jurassic at c. 154 Ma (Oxfordian-Kimmerigdian). The 

formation of oceanic crust ceased in the Early Cretaceous at c. 118 Ma (M 0) as did the 

southward drift of Madagascar (Coffin and Rabinowitz, 1992). Based on tectono-

sedimentary patterns from the Morondava Basin in Madagascar a late Early Jurassic 

timing (Toarcian-Aalenian) is inferred for the break-up in the Somali Basin (Geiger et 

al., 2004a). In the Mozambique Basin/Riiser-Larsen Sea, the first oceanic crust formed 

around c. 155 Ma (Jokat et al., 2003).  Episodes of marine transgressions of the southern 

Tethys occurred from the northern margin of the supercontinent and accompanied sea-

floor spreading. In the southern Rovuma Basin marine conditions prevailed since the 

Middle to Late Jurassic. In contrast, in the Mozambique Basin earliest marine 

transgressions occurred later in the Early Cretaceous and document the gradually 

southward extending marine corridor between East and West Gondwana (Salman and 

Abdula, 1995).  

Within central East Africa, the southern segment of the Tanganyika-Rukwa-Malawi 

System that emerged from the Permo-Triassic rifting period (Fig. 4.4), experienced 

renewed rifting during the Late Jurassic to Early Cretaceous (Delvaux, 2001 and 

references therein). In the Early Cretaceous crustal extension and rifting in the southern 

Tanganyika-Rukwa-Malawi System and its continuation via the Urema Graben into 

southern Mozambique were accompanied by alkaline and basaltic magmatism (Flores, 

1973; Nairn et al., 1991; Woolley and Garson, 1970). 

The Cretaceous was a time of major plate reorganisations. It was accompanied by the 

productions of large amounts of seafloor, associated with the extension of the world 

ocean ridge system during the Early Cretaceous and with an increase in the amount of 

spreading ridges and rise in spreading rates since the middle Cretaceous (Summerfield, 

1985; Summerfield, 1991). In the southern Gondwana hemisphere, a significant re-

arrangement in the plate tectonic pattern occurred in the Early Cretaceous at c. 130 Ma. 

The two plate drift configuration of East and West Gondwana was replaced by a three 

plate drift setting due to the opening of the southern Atlantic Ocean (Figs 4.4 and 4.5).  
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A triple junction formed between the crustal segments of South America, Africa and the 

India/Madagascar/Sri Lanka/Antarctica/Australia block. Synchronously, rifting between 

India/Madgascar, Sri Lanka and Antarctica/Australia initiated at c. 135-130 Ma 

(Lawver et al., 1991; Roeser et al., 1996; Storey, 1995). The northward drift of the 

India/Madagascar block started with an accelerated seafloor spreading at c. 96 Ma 

(Lawver et al., 1991; Powell et al., 1988; Storey, 1995). India rifted off Madagascar in 

the Late Cretaceous, broadly synchronous to the cessation of strike-slip motion along 

the DFZ (Malod et al., 1991).  

The changes in plate motion as e.g. the opening of the Atlantic and Indian oceans 

exerted a significant tectonic influence on the African plate. It resulted in the re-

activation of Pan-African age shear zones expressed by repeated crustal extension, 

rifting, strike-slip motion and the development and reactivation of superimposed 

sedimentary basins (Janssen et al., 1995). The Central African Shear Zone and the 

Mwembeshi Shear Zone are such regional scale transcontinental Pan-African age shear  

Figure 4.3: Palaeo-reconstructions of 
central eastern Africa during the Late
Permian to Early Jurassic rifting (left 
side) and during the drift of East 
Gondwana along the Davie Fracture
Zone and sea-floor spreading in the
Somali Basin and the Mozambique 
Basin/Riiser-Larsen Sea between the
Middel Jurassic to Early Cretaceous
(Montenat et al., 1996). 
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Figure 4.4: Palaeogeographic reconstruction the Gondwana fragments during the Early 
Cretaceous (c. 130 Ma). The map depicts active trans- and intracontinental tectonic lineaments 
and Karoo (Permo-Triassic) and Jurassic-Cretaceous rift basins in Africa. The red dotted lines 
broadly trace zones of post Triassic crustal extension, indicated by AFT analysis of Van der 
Beek et al. (1998) and this study. Map modified and compiled after Brown (1992), Castaing 
(1991), Dingle and Scrutton (1974), Delvaux (2001), Reeves et al. (2002) and references 
therein. Abbreviations: AFZ = Astrid Fracture Zone (Ridge), CASZ = Central African Shear Zone, DFZ = 
Davie Fracture Zone, FAFZ = Falkland-Africa Fault Zone, LB =Lurio Belt, LPB: Limpopo Belt, MFZ = 
Mozambique Fracture Zone (Ridge), MSZ = Mwembeshi Shear Zone, SMGS = South Mozambican Graben System, 
TRMS = Tanganyika-Rukwa-Malawi Rift System. 

 
Figure 4.5: Palaeo-geographic reconstruction of the pre-drift configuration between South 
America and Africa in the Early Cretaceous (c. 130 Ma). Trans-African shear zones reactivated 
during the seafloor spreading are highlighted by hashed patterns. The inset depicts theoretical 
relationships for a conjugated set of shear zones and associated structures in response to E-W 
extension after Brown (1992 and references therein). It also illustrates the anticipated sense of 
sinistral shear for the Mwembeshi and the dextral sense of shear for the Central African shear 
zones. The left stepping sinistral and right stepping dextral shears and zones of consequent 
extensional faulting are shown as a possible interpretation of the renewed rifting in southern 
segment of the TRMS. The thick black dotted lines broadly trace zones of post Triassic crustal 
extension, indicated by AFT analysis of Noble et al. (1997), Van der Beek et al. (1998) and this 
study. The Poles 1 and 2 are the poles of relative motion for the northern and southern domains 
of South America, relative to southern Africa, respectively. Map and inset after Brown (1992) 
and references therein. Abbreviations: CASZ = Central African Shear Zone, LB = Lurio Belt, LPB = 
Limpopo Belt, TRMS = Tanganyika-Rukwa-Malawi-Rift System.   
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zone reactivating structures (Figs. 4.4 and 4.5), which experienced multiple episodes of 

crustal extension and strike slip deformation during the Phanerozoic (Daly et al., 1989; 

Daly et al., 1991). They both accommodated long distance transfer of stresses through 

Africa in response to Atlantic opening (Fairhead, 1988; Popoff, 1988; Unternehr, 1988) 

and link-up to the N-S trending Mozambique Belt (MB) in eastern Africa. During 

Cretaceous times their tectonic activities led to repeated crustal extension in the Sudan 

rift and its extension into Kenya/Tanzania (Fairhead, 1988; Foster and Gleadow 1992, 

1996; Noble et al., 1997 and references therein). The geometric setting of these 

transcontinental shear zones and associated perpendicular orientated extensional rift 

basins (Figs 4.4 and 4.5) in West, Central and East Africa apparently resembles a 

regional conjugated fault system (Brown, 1992 and references therein). Synchronously, 

Cretaceous rifting activity along the Tanganyika-Rukwa-Malawi System (Delvaux, 

2001), and the MB in southern Mozambique (e.g. Nairn et al., 1991) is reported. 

An Early Tertiary period of extension and rifting is reported from the southern 

Tanganyika-Rukwa-Malawi System (≤ 50-40 Ma) in Malawi and along the upcoming 

eastern branch of the East African Rift System (Fig. 4.6) within the Sudan to northern 

Kenya basins and the Anza Rift (Delvaux, 2001). 

In Palaeogene times at c. 30 Ma, the Afar hot spot activity initiated the development 

of the East African Rift System (Fig. 4.6) in the Afar and Ethiopian plateau (Hoffmann 

et al., 1997) through triggering the formation of a triple junction (Chorowicz et al., 

1998). Subsequently, the rift system propagated from north to south. Its southern 

terminations of the western and eastern branches enclose the north Mozambican 

basement (see Chorowicz, 2005 and references therein). They are of late Miocene-

Pliocene to recent and of middle Miocene to recent in age, respectively (Chorowicz, 

2005; Mougenot et al., 1986). The south western branch coincides with the southern 

Tanganyika-Rukwa-Malawi System while the south eastern branch coincides in trend 

and location with the DFZ (Figs. 4.4-4.6). In the Palaeogene extensional faulting and 

graben formation along the DFZ formation is attributed to the extensional reactivation 

of fossil strike-slip faults (Mougenot et al., 1986).  
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Figure 4.6: Hypsographic digital elevation model of the East African Rift System from 
Chorowicz (2005). Black lines represent the main faults, white surfaces display lakes and colour 
levels from green to brown indicate the elvations from low to high, respectively.  
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Chapter 5  

PREVIOUS APATITE FISSION TRACK STUDIES IN CENTRAL 

EAST AFRICA AND EAST ANTARCTICA 

 
Previous AFT studies in central East Africa comprise a reconnaissance study around the 

East African Rift System in Kenya (Wagner et al., 1992), detailed studies of four 

mountain ranges surrounding the central Kenya Rift (Foster and Gleadow, 1992; 1996), 

a regional study in eastern Tanzania (Noble et al., 1997) a detailed study around the 

Malawi and Rukwa rift segments of the East African Rift System in south western 

Tanzania and northern Malawi (Van der Beek et al., 1998), regional studies in central 

and southern Madagascar (Emmel et al., 2004; 2006a-c) and a regional study of 

Madagascar as an entity (Seward et al., 2004). Following the late Neoproterozoic/Early 

Cambrian amalgamation of Gondwana, East Antarctica was adjoined to northern 

Mozambique and Madagascar. During the Palaeozoic-Mesozoic supercontinent’s 

disintegration, East Antarctica rifted off northern Mozambique but was still joined to 

central Africa until the early Mesozoic. Therefore, zircon fission track (ZFT) and AFT 

data of a study from two mountain ranges in the central Dronning Maud Land (Fig. 4.2), 

East Antarctica, are presented too (Meier et al., 2004). A combined study using the AFT 

data set of Meier (1999) and single grain apatite (U-Th)/He data provides refinements 

on the cooling paths of central Dronning Maud Land (Emmel et al., 2006d).    

AFT data from Kenya (Wagner et al., 1992) indicate a slow continuous cooling of 

the basement throughout the past 400 to 300 Ma and suggest earliest cooling to below 

60° C in the Late Carboniferous at around 310 Ma. Solely AFT data proximate to the 

Tanganyika and Kenya rifts indicate a Tertiary cooling period after a reheating of the 

rift flanks. 

Foster and Gleadow (1992, 1996) presented composite age-elevation profiles from 

AFT data surrounding the central Kenya Rift. They identified three periods of more 

rapid denudation during the Mesozoic to Cenozoic at ≥ 220 Ma, 130-110 Ma, and 
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70-60 Ma. Both Mesozoic events yielded c. 0.5 km of denudation; whereas up to 2.5 km 

of denudation are associated with the Early Tertiary event. Foster and Gleadow (1992) 

attributed the more rapid denudation to be caused by block faulting and local uplift in 

response to intracontinental tectonic phases correlated to changes in plate motion. 

Inverse modelling approaches of their AFT data from the eastern Kenya Rift flanks also 

indicate a denudation period in the Neogene at c. 10 Ma. However, the denudation 

history derived from their AFT data is inconsistent with classical correlations of 

regional erosion surfaces (Foster and Gleadow, 1992 and references therein). Samples 

from inferred Mesozoic erosion surfaces were not exhumed from depth ≥ 2 km until 

after Early Paleogene times (c. 60 Ma). 

The AFT data of Noble et al. (1997) showed a post Pan-African development of the 

basement in eastern Tanzania that is characterized by long periods of slow cooling. 

They are punctuated by three episodes of more rapid cooling at 140-120 Ma, 80-60 Ma 

and 40 Ma. Noble et al. (1997) associated them with rapid denudation. Their estimated 

total amounts of post-Late Cretaceous denudation range between c. 2 to 6 km. Similar 

to Foster and Gleadow (1992, 1996), they linked accelerated cooling and denudation to 

block faulting during phases of intracontinental tectonics. 

Van der Beek et al. (1998) presented AFT data from basement rocks along the 

Malawi and Rukwa rift flanks. Their data show a protracted regional cooling history 

since the Permian. Three periods of more rapid cooling and by inference denudation of 

the flanks were identified at c. 250-200 Ma, c. 150 Ma and ≤ 50-40 Ma. The estimated 

amounts of denudation for the Permo-Triassic and the Late Jurassic-Early Cretaceous 

episodes are c. 2 km each, whereas the Cenozoic denudation amounted to ≤ 1 km. The 

total post-Karoo denudation in the region varied between c. 3-5 km. These three periods 

are linked to different rifting events in the region and correlate with the deposition of 

sedimentary units within the rift basins. Importantly, Van der Beek et al. (1998) showed 

that the denudation history derived from their AFT data is inconsistent with correlations 

of regional erosion surfaces. Samples from inferred erosional “Gondwana surfaces” 

were exhumed to temperatures of 60-70° C in Karoo times but exposed to sub-aerial 

conditions at times ≤ Early Tertiary.   
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Emmel et al. (2004, 2006b,c) presented TFT and AFT data from basement rocks of 

south and central Madagascar and detrital AFT data from Middle Jurassic strata of the 

Morandava basin. In total four Palaeozoic-Mesozoic periods of more rapid cooling were 

identified from these data. The basement rock TFT and AFT data show a long and 

protracted cooling and denudation since the Late Neoproterozoic/Early Cambrian. More 

rapid cooling and by inference denudation occurred in the Early Carboniferous and 

during Permo-Triassic times. During the Early Carboniferous, enhanced denudation is 

potentially related to glacial abrasion and/or to intracontinental compression, uplift and 

erosion in central Gondwana. The Permo-Triassic episode is associated with crustal 

extension during the intracontinental Karoo rifting. It is linked to the formation of the 

western passive continental margin of Madagascar. Differential cooling and likely 

denudation patterns suggest a brittle reactivation of NW-SE trending ductile basement 

fabrics (e.g. Bongolava-Ranotsara Shear Zone) during that time. The fission track data 

of Emmel et al. (2004, 2006b, c) depict the basement of southern and central 

Madagascar as a region of continuous denudation during the intracontinental Karoo 

rifting, and furthermore indicate that the basement rocks along the western margin of 

Madagascar were subsequently reheated due to burial by Permo-Triassic sediments after 

their Palaeozoic exhumation. Detrital AFT data from the Morondava Basin indicate a 

reworking of Palaeozoic sediments, associated with renewed rifting and the break-up of 

Gondwana in the Early to Middle Jurassic (Emmel et al., 2006a). The youngest cooling 

event in the Late Cretaceous is linked to a thermal overprint from the Marion hot spot 

that accompanied the Madagascar–India/Seychelles break-up. The regional study results 

of Seward et al. (2004) displays distinct consistencies to the AFT data of Emmel et al. 

(2004, 2006a, b, c) but suggest a thermochronological subdivision of Madagascar into a 

southern, central and northern region. 

Meier et al. (2004) presented fission track data from two vertical profiles of 

basement rocks in central Dronning Maud Land, East Antarctica. The ZFT ages are 

interpreted to indicate a slow post Pan-African cooling and denudation of the basement 

from middle Palaeozoic to Triassic times. Inverse modelling approaches of their AFT 

data yield three Mesozoic episodes of more rapid cooling in the Early to Middle 

Jurassic (c. 190-180 Ma), in the Late Jurassic (c. 150-140 Ma) and in the Early 
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Cretaceous (c. 100-90 Ma). The Early to Middle Jurassic period is associated with 

differential denudation during the evolution of a high elevation passive rift margin. Both 

younger cooling episodes appear to be related to major plate reorganisations in the 

Mesozoic. The Late Jurassic cooling and denudation period coincides temporally with 

the onset of seafloor spreading in the Riiser-Larsen Sea at c. 155 Ma. Synchronous to 

the late Early Cretaceous cooling period, the spreading pattern between India, 

Antarctica and Australia changed and India started its accelerated northward drift. Meier 

et al. (2004) inferred a total removal of 5.5 to 9.5 km of crust since the middle 

Palaeozoic. Between 2.5 to 3.2 km and 0.3 to 1.2 km of denudation amounted during 

the Early to Middle and the Late Jurassic cooling periods, respectively. Recently, apatite 

(U-Th)/He analyses from central Dronning Maud Land yielded ages of c. 312 Ma to 

135  Ma. A combined analysis of new (U-Th)/He and the AFT data set of Meier et al. 

(2004) suggests rather two distinct cooling periods of the basement in the Phanerozoic 

(Emmel et al. 2006c). A Late Carboniferous cooling phase is related to far field stresses 

associated with convergent tectonics within Gondwana. In the Early Jurassic a second 

period of cooling indicates the erosion of an evolving rift shoulder. The post-Jurassic 

cooling history appears to be restricted to temperatures of ≤ 40° C. 
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Chapter 6  

APATITE FISSION TRACK ANALYSIS - RESULTS AND 

INTERPRETATION 

 

Fission track ages and analytical details of 96 AFT analyses are presented in 

Tabs. 6.1-6.4, Figs 6.1-6.10 and in Appendix B.1-B.4. The AFT ages range from 

169 ± 19 Ma to 61 ± 8 Ma. Their mean track lengths (MTL) span from 14.5 ± 0.2 μm to 

11.5 ± 0.2 μm with associated standard deviations (SD) ranging between 3.2 to 0.3 μm. 

The mean etch pit diameters (Dpar) span between 4.97 ± 0.08 μm to 1.04 ± 0.04 μm. In 

all samples, the χ2 probability values are higher than 5 %. This indicates that in each 

sample the single grain age dispersion is explained by a poissonian distribution and the 

single grain ages are considered to be derived from one population. The spatial 

distribution patterns of the AFT ages, the MTL, the associated SD and the Dpar values 

are depicted in Figs. 6.2 and 6.3. All contour images were computed using GMT 4.0, 

module surface (bash script is given in Appendix C).  

AFT central ages derived from less than 5 apatite grains analysed and track length 

information obtained from less than 20 track length measurements are statistically not 

trustworthy. Such critical data are denoted in the following sections but are not 

considered for interpretation. AFT data sets comprising either critical AFT ages or track 

length data are specially designated on the diagrams whereas samples yielding entirely 

critical AFT data sets (ages and length data) are not presented. 

In the following, the AFT results are presented and interpreted in three sections 

according to their sampling locations and these are the western Axial Granulite 

Complex, Mount Tumbine and the Southern basement. Within theses sections, samples 

yielding statistically critical AFT data are listed at first. Subsequently, the remaining 

AFT samples are interpreted and grouped. Fission track ages and track length data are 

interpreted according to inferences of Gleadow et al. (1986) and Dpar kinetic parameters 

are interpreted in accordance with implications of Barbarand et al. (2003a, b), Burtner et 
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al. (1994) and Donelick et al. (1999). At last, modelled AFT time-temperature (t-T) 

paths are presented. The AFT t-T paths are derived by using the following modelling 

parameters and strategy: 

 

(a) For all models the starting t-T constraints are set by the corresponding TFT ages 

or by TFT ages of proximate samples (see chapter 3, section 3.4.3). In addition, 

4-6 t-T constraints with large temperature intervals (T ~ 250°-20°C) are set 

randomly at time points between c. 200-20 Ma to enable a high degree of 

freedom for initial model runs. The present day surface temperature is set to 

20°C in all models. 

(b) If the first model runs generated t-T paths, some t-T constraints are varied and 

clustered more tightly in t-T space to further constrain the timing of a sample’s 

cooling into AFT PAZ; approximately to below c. 110°C. If no t-T paths were 

obtained with the initial random t-T constraints setting, the t-T constraints are 

modified manually to derive geologically reasonable t-T paths. 

(c) The quality of the “best fit” modelled AFT data set (AFT age, MTL ± SD) is 

evaluated by the indices of “goodness of fit” (G.O.F) and the model quality of 

the track length frequency distribution is assessed by visual comparison of the 

shape of the graphs (model versus measured).  

In the following interpretation and discussion of the samples AFT t-T path models the 

expression “(more) rapid cooling” refers to cooling rates of approximately 5°-3°C/Ma 

whereas “slow cooling” designates cooling rates < 3°-1°C/Ma. The ranges of rates are 

chosen somewhat arbitrarily, based on the variety of obtained model results and used to 

provide a fairly uniform measure for differently steep t-T paths segments among 

samples.  
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Figure 6.1: Generalized map depicting major litho-tectonic units of the crystalline basement in 
northern Mozambique and southern Malawi. The map was modified after Pinna et al. (1993), 
Andreoli (1984), Kröner et al. (2001) and Perits et al. (2002). Superimposed are the sample 
locations of the AFT and (U-Th)/He analyses. The dashed outlined rectangle represents the Mt. 
Tumbine area displayed in Fig. 6.5. The inset depicts Pan-African Mobile Belts in a Gondwana 
reconstruction (Kusky et al., 2003, Jacobs and Thomas, 2004). Abbreviations: ANS = Arabian 
Nubian Shield, DM = Damara Belt, EAAO = East African-Antartic Orogen, EuF = European fragments, FP = 
Falkland Plateau, Kal = Kalahri craton, M = Madagascar, MB = Mozambique Belt, SF = San Francisco craton, T = 
Turkey, TS = Trans-Saharan, W Aus = Western Australia, WA = West Africa craton.    
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Figure 6.2: Topographic map of northern Mozambique with superimposed spatial distribution 
patterns of AFT ages (upper) and MTL data (lower). Contour lines were calculated using GMT 
4.0, module surface. Sample locations are given as black circles. 
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Figure 6.3: Topographic map of northern Mozambique with superimposed spatial distribution 
patterns of track length SD data (upper) and Dpar values (lower). Contour lines were calculated 
using GMT 4.0, module surface. Sample locations are given as black circles. 
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6.1 Axial Granulite Complex  

6.1.1 Results 

Samples GZ 87, GZ 90, GZ 103 and PZ 37 were collected on the uplifted western flank 

of the Malawi rift zone, c. ≤ 50 km west of the western border fault (Figs. 4.6 and 6.1). 

All samples are derived from elevations > 1100 m (Tab. 6.1, Fig. 6.4a). The AFT ages 

show a large scatter, ranging from 163 ± 10 Ma to 79 ± 4 Ma. Their MTL span from 

14.3 ± 0.1 μm to 12.6 ± 0.5 μm with associated SD ranging from 2.3 to 1.5 μm. 

Observed Dpar values span between 2.89 ± 0.03 μm to 1.85 ± 0.01 μm (Tab 6.1, 

Fig 6.4a-d). All track length frequency distributions are unimodal. Samples GZ 90 and 

GZ 103 display a symmetric and sample PZ 37 a slightly negatively skewed shape of 

their track length histograms (Appendix B.1). The track length data of samples GZ 87 

and GZ 99 are statistically critical and are omitted. 

6.1.2 Interpretation 

In the absence of track length information, the AFT ages of GZ 87 and GZ 90 are 

interpreted as minimum cooling ages. Two samples, GZ 90 and PZ 37 reveal moderate 

MTL values of less than 13.2 μm and probably experienced a significant amount of 

fission track length reduction. Their fairly broad SD of > 1.7 μm and symmetric and 

slightly negatively skewed unimodal track length frequency distributions (Tab. 6.1 and 

Appendix B.1) suggest, that both samples cooled, at least partially, slow and protracted 

through the AFT PAZ. The AFT ages of GZ 90 and PZ 37 are interpreted as minimum 

cooling ages. 

AFT sample GZ 103 yields a long MTL value of 14.3 μm, a narrow SD of 1.5 μm 

and a unimodal, symmetric track length frequency distribution. These data argue for a 

relatively rapid cooling of GZ 103 through the AFT PAZ. The associated Dpar value of 

1.85 ± 0.01 μm (Tab. 6.1, Fig 6.4d) could indicate an annealing behaviour of GZ 103 

similar to that of the Durango apatite standard. The AFT age of GZ 103 (106 ± 9 Ma) is 

interpreted as a cooling age and records the cooling to below c. 100°C in Early 

Cretaceous times. 



 
Apatite fission track analysis - results and interpretation 

 131

 

S
am

p
le

L
it

h
o
lo

g
y

L
o
n

g
it

u
d

e
L

at
it

u
d

e
E

le
v
at

io
n

(m
)

N
o
.

o
f

g
ra

in
s

ρ
s

(×
1

0
6
cm

-2
)

(N
s)

ρ
i
(×

1
0

6
cm

-2
)

(N
i)

ρ
d

(×
1

0
6
cm

-2
)

(N
d
)

P
(χ

2
)

(%
)

C
en

tr
al

ag
e

±
1

σ
(M

a)

U

(p
p

m
)

M
T

L
±

1
σ

(μ
m

)

S
D

(μ
m

)

N
o
.

o
f

tr
ac

k
s

M
ea

n
D

p
ar

±
1

σ
(μ

m
)

S
D

p
ar

(μ
m

)

N
o
.

o
f

D
p

ar

G
Z

8
7

am
p

h
ib

o
li

te
3

4
.3

4
5

5
6

-1
4

.9
1

6
1
1

1
1

5
0

7
0

.1
3

3
(6

9
)

0
.2

8
1

(1
4

6
)

1
.6

1
5

(1
1

4
3

6
)

9
2

1
2

3
±

1
8

3
1

2
.7

1
1

.8
8

±
0

.0
5

0
.2

9
3

0

G
Z

9
0

g
t-

am
p

h
ib

o
li

te
3

4
.3

4
1

6
7

-1
4

.8
4

9
4

4
1
1

5
0

1
7

0
.7

4
6

(4
5

3
)

0
.1

9
2

(1
1

6
3

)
1

.5
7

0
(1

1
4

3
6

)
9

2
9

9
±

6
1

8
1

3
.0

±
0

.2
1

.7
1

0
1

2
.1

6
±

0
.0

1
0

.2
3

2
4

2

G
Z

9
9

am
p

h
ib

o
li

te
3

4
.5

3
4

1
7

-1
4

.8
2

3
0

6
1

5
0

0
2

4
0

.2
3

8
(4

9
6

)
0

.3
5

6
(7

4
0

)
1

.5
1

5
(1

1
4

3
6

)
1

0
0

1
6

3
±

1
0

3
1

2
.6

±
0

.5
2

.3
1

9
2

.5
4

±
0

.0
3

0
.3

1
1

4
2

G
Z

1
0

3
am

p
h

ib
o
li

te
3

4
.5

7
8

8
9

-1
5

.0
0

0
0

0
1

6
0

0
1

3
0

.7
7

9
(2

6
8

)
1

.9
4

1
(6

6
8

)
1

.6
0

9
(1

1
4

3
6

)
4

8
1

0
6

±
9

1
6

1
4

.3
±

0
.1

1
.5

1
1

7
1

.8
5

±
0

.0
1

0
.2

9
3

2
4

P
Z

3
7

am
p

h
ib

o
li

te
3

4
.4

5
7

7
8

-1
4

.6
8

8
8

9
1

3
0

0
1

9
1

.3
2

4
(6

1
9

)
4

.2
0

3
(1

9
6

4
)

1
.5

5
9

(1
1

4
3

6
)

9
2

7
9

±
4

3
8

1
3

.2
±

0
.2

1
.7

1
1

0
2

.8
9

±
0

.0
3

0
.3

9
2

1
3

T
ab

le
 6

.1
: R

es
ul

ts
 o

f a
pa

tit
e 

fis
si

on
 tr

ac
k 

an
al

ys
is

 –
 A

xi
al

 G
ra

nu
lit

e 
C

om
pl

ex
 

U
 is

 th
e 

to
ta

l u
ra

ni
um

 c
on

te
nt

 o
f a

 s
am

pl
e,

 ρ
d i

s 
th

e 
st

an
da

rd
 g

la
ss

 tr
ac

k 
de

ns
ity

, ρ
s a

nd
 ρ

i r
ep

re
se

nt
 th

e 
sa

m
pl

e’
s 

sp
on

ta
ne

ou
s 

an
d 

in
du

ce
d 

tra
ck

de
ns

iti
es

, 
w

ith
 t

he
 t

ot
al

 n
um

be
r 

of
 t

ra
ck

 c
ou

nt
s 

gi
ve

n 
in

 p
ar

en
th

es
es

. 
P 

(χ
2 ) 

re
pr

es
en

ts
 t

he
 p

ro
ba

bi
lit

y 
of

 t
he

 c
hi

-s
qu

ar
e 

te
st

. 
M

TL
 i

s 
th

e
ho

riz
on

ta
lly

 c
on

fin
ed

 m
ea

n 
tra

ck
 l

en
gt

h 
an

d 
SD

 r
ep

re
se

nt
s 

th
e 

co
rr

es
po

nd
in

g 
st

an
da

rd
 d

ev
ia

tio
n.

 M
ea

n 
D

pa
r i

s 
ar

ith
m

et
ic

 m
ea

n 
of

 a
ll 

c-
ax

is
pa

ra
lle

l e
tc

h 
pi

t d
ia

m
et

er
 m

ea
su

re
m

en
ts

 in
 a

 fi
ss

io
n 

tra
ck

 sa
m

pl
e 

an
d 

SD
 p

ar
 re

pr
es

en
ts

 th
e 

co
rr

es
po

nd
in

g 
st

an
da

rd
 d

ev
ia

tio
n.

 



 
Chapter 6 

 132 

 

Figure 6.4: Diagrams depict the AFT ages versus elevation (a), horizontally confined MTL (b), 
SD (c) and Dpar (d). Black triangles, circles and boxes represent different sample groups 
described in the text. Grey symbols indicate samples yielding statistically critical AFT track 
length data. In diagram (d) horizontally dotted lines represent Dpar values of Fish Canyon 
(upper) and Durango (lower) AFT age standards with grey bars representing associated standard 
deviations from Donelick et al. (1999). An elevation error of ± 50 m is assumed for the GPS 
altitude determination. 

Samples GZ 87 and GZ 90 are located in proximate distance on the same elevation at 

1150 m and yield similar AFT ages of 123 ± 18 Ma and 99 ± 6 Ma, respectively. GZ 87 

and GZ 90 also reveal similar Dpar values of c. 1.88 μm and c. 2.16 μm, respectively 

which suggests similar annealing kinetics for both (Figs. 6.1, 6.4a, d and Tab. 6.1). 

These consistencies argue for a common t-T path for GZ 87 and GZ 90. Both samples 

are also very similar in their AFT age and their Dpar values to sample GZ 103. (Figs. 6.1, 

6.4a, d and Tab. 6.1). Sample GZ 103, however, yields an AFT cooling age whereas GZ 

87 and GZ 90 reveal minimum AFT cooling ages (Fig. 6.4a-c and Tab. 6.1). GZ 87 and 

GZ 90 are located c. 500 m below GZ 103 and could represent a deeper crustal level. It 

is inferred that all three samples experienced cooling from a similar event in the Early 

Cretaceous but recorded it at different depths. The deeper seated samples (GZ 87, 
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GZ 90) probably experienced a more protracted cooling path than GZ 103 and did not 

cool entirely through the AFT PAZ whereas GZ 103 did during the common cooling 

event.  

Sample GZ 99 yields the oldest AFT age of 163 ± 9 Ma in the region and is located 

at the same elevation as sample GZ 103 (Fig. 6.1, 6.4a and Tab 6.1). Its moderate Dpar 

value of 2.54 ± 0.03 μm could indicate a higher annealing resistance than GZ 103 and 

likely accounts for a highest regional AFT age. However, the measured individual track 

lengths of less than c. 13 μm (Appendix B.1) indicate a distinct amount of fission track 

annealing. These moderate track lengths suggest a t-T path for GZ 99 that is distinctly 

different to GZ 103. It is supposed that the AFT age of GZ 99 documents a sample’s 

cooling to below c. 110°C in the region at a time prior to the Early Cretaceous (c. 106 

Ma). 

Sample PZ 37 reveals the youngest minimum cooling age (79 ± 4 Ma) and the largest 

Dpar value (2.98 ± 0.03 μm) of all samples (Figs. 6.1, 6.4d and Tab 6.1). Compared to 

the AFT standards (Durango, Fish Canyon; Fig. 6.4d), its higher Dpar value could 

indicate a higher annealing resistance. The moderate MTL of 13.2 ± 0.01 μm, suggests 

that PZ 37 experienced a distinct amount of fission track annealing. All these facts 

indicate that PZ 37 experienced a t-T path distinctly different from the other samples in 

the region. As indicated by its youngest AFT age, PZ 37 presumably cooled at a 

younger time into the AFT PAZ than any other sample; at a time younger than c. 106 

Ma (cooling age of GZ 103).  

 

The modelled t-T paths of samples GZ 90, GZ 103 and PZ 37 are presented in Fig. 6.6.  

The t-T paths of GZ 90 and GZ 103, display both cooling into the AFT PAZ in the Early 

Cretaceous at c. 115-106 Ma but cool at different rates. GZ 103 displays a fast cooling 

through the AFT PAZ between c. 106 to 100 Ma at rates of c. 10-7°C/Ma, and thereby 

emphasizes that its age represents an AFT cooling age. GZ 90 displays a more rapid 

cooling step from c. 110°C to c. 80°-70°C. Subsequent cooling continued protractedly 

and cooling to below 60°C occurred in Palaeogene times. The similar timing of cooling 

into the AFT PAZ of GZ 90 and GZ 103 supports that both samples probably recorded 
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the same Early Cretaceous cooling event at different crustal levels, whereby GZ 90 (and 

by inference GZ 87) was seated approximately 0.5 km below GZ 103.  

Sample PZ 37 displays a slow cooling into the PAZ in the Late Cretaceous at c. 82 

Ma. Subsequently, slow cooling continued to below 60°C in the Neogene. This t-T path 

documents the youngest cooling period in the region and could be related to a cooling 

event in the Late Cretaceous at c. 90-80 Ma. The AFT results of PZ 37 could further 

indicate that among all samples of the region, PZ 37 represents the deepest exhumed 

crustal level. 

Two distinct periods of cooling into the AFT PAZ are recognized in the region 

during Early (c. 115-100 Ma) and during Late Cretaceous (c. 90-80 Ma) times. These 

events are recorded by two sample sets which are located in fairly proximate distance to 

each other and at different present day elevations. Probably, these samples sets were 

seated at different crustal level in former times. As no apparent AFT age-elevation 

relationship is observed among these two sample sets (Fig. 6.4a), it is suggested that the 

Early and Late Cretaceous cooling histories are recorded in different crustal blocks. 

This in turn could indicate a tectonic segmentation of the region, with separating brittle 

faults supposedly aligned parallel to the regional, northerly ductile fabric trend.  

 

Figure 6.5: Illustration of the main elements of the AFT t-T path pictograms used in this study. 
AFT t-T path: The solid black line is the “best fit” model. The dark grey and light grey colours 
indicate the t-T space envelops of the “good fit” and “acceptable fit” t-T models, respectively. 
TFT model constraints are given in the lower panel and the sample number is quoted for a 
proximate TFT sample. The “best fit” model results Age = AFT age, TL = MTL ± SD and their 
probabilities of goodness of fit (G.O.F.) are given in the inset. Colour index: This colour 
scheme is used for modelled AFT t-T paths and indicates the earliest cooling of a sample to 
below c. 110°C. 
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Fig 6.6: This map is a subset of Fig. 6.1 and depicts AFT sample locations in northern Mozambique. The large dots highlight samples from the western Axial Granulite Complex
and samples from the eastern margin of the southern basement ( ) that were employed in the . The corresponding paths are given as pictograms. A
detailed pictogram explanation is provided in Fig. 6.5.
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6.2 Mount Tumbine 

6.2.1 Results 

Eight fission track analyses (RT 51 to RT 55 and RT-MD-94) were conducted on 

samples from a pseudo-vertical profile at Mt. Tumbine ranging from 788 to 1535 m 

altitude (Tab 6.2 and Fig. 6.8). The AFT ages span from 103 ± 5 Ma to 72 ± 8 Ma and 

do not correlate with elevation (Fig 6.7a). The MTL range from 14.2 ± 0.3 μm to 

11.6 ± 0.2 μm with associated SD spanning from 2.3 to 0.7 μm. Observed Dpar values 

span between 2.46 ± 0.02 μm to 1.22 ± 0.02 μm and indicate a negative trend on AFT 

age versus Dpar plot (Fig. 6.6). Generally all samples display unimodal and negatively 

skewed track length frequency distributions though samples RT 52, RT 54 and RT-MD-

94 indicate slightly symmetric tendencies (Appendix B.2). AFT ages of samples RT 50, 

RT-MD-94 and track length data of sample RT 53 are statistically critical and are 

omitted (Tab 6.2). 

6.2.2 Interpretation 

In the absence of track length information, the AFT age of RT 53 is interpreted as a 

minimum cooling age. The MTL values of less than 13.7 μm of samples RT 51, RT 52, 

RT 54 and RT 55 indicate a distinct amount of fission track length reduction. Their 

corresponding SD of > 1.3 μm and their unimodal, negatively skewed track length 

frequency distributions (Tab 6.2, Fig 6.7c and Appendix B.2) probably indicate a slow, 

protracted cooling of samples through the AFT PAZ. Therefore the AFT ages RT 51, 

RT 52, RT 54 and RT 55 are interpreted as minimum cooling ages. 

On the AFT age versus Dpar value plot sample RT 51 is represented twice (duplicate 

analyes) (Fig. 6.6d). Consequently, the observed negative trend line is solely considered 

as a qualitative trend estimate. The inverse AFT age-Dpar value relation contrasts the 

predicted positively correlated increase of the AFT ages and Dpar values. This 

contradiction probably indicates different etching characteristics that are unrelated to 

different annealing resistances of the analyses samples (e.g. Ketcham et al., 2000). On 

the other hand it could represent an AFT sample set that experienced distinctly different 

t-T paths. The latter suggestion is sustained as the majority of the samples reveal similar 
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AFT ages of c. 82 Ma over an elevation spanning from c. 750 to 1550 m but do not 

show similar MTL, SD and Dpar values (Fig. 6.7a-d and Tab. 6.2) as would be expected 

for a common cooling history of the sample set. In addition, the MTL do not show any 

trend with elevation as expected for a common history of the samples. Their clear 

scatter rather indicates diverse cooling histories recorded in the sample set (6.7a).   

Duplicate analyses of sample RT 51 reveals the oldest AFT ages (> 90 Ma), long 

MTL (> 13 μm) and the lowest Dpar values (< 1.3 μm) among all samples (Fig. 6.7a-d 

and Tab 6.2). These data could suggest that sample RT 51 experienced least significant 

fission track annealing than any other sample of the profile.  

 
Figure 6.7: Diagram (a) depicts the AFT ages (filled symbols) and MTL (open symbols) versus 
elevation (a). Diagrams (b), (c) and (d) depict AFT ages versus horizontally confined MTL, SD 
and Dpar, respectively. Black filled triangles, circles and boxes represent sample groups 
discussed in the text. Grey filled symbols indicate samples yielding statistically critical AFT 
track length data. In diagram (d) horizontally dotted lines represent Dpar values of Fish Canyon 
(upper) and Durango (lower) AFT age standards with grey bars representing associated standard 
deviations from Donelick et al. (1999). An elevation error of ± 50 m is assumed for the GPS 
altitude determination. 
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Samples RT 54 and RT 55 display similar AFT ages, MTL, SD and Dpar values 

(Tab. 6.2), indicating a very similar cooling history for both samples. Their MTL 

(≤ 11.8 μm) are the shortest of the sample set (Tab. 6.2, Fig. 6.7a, b) and document, that 

both samples experienced the highest degree of fission track annealing among the AFT 

samples of Mt. Tumbine. Proximate to RT 54 locates sample RT 53, which yield a 

similar AFT age and Dpar value (Tab. 6.2 and Figs. 6.7d, 6.7). A similar cooling history 

is inferred for the three samples RT 53, RT 54 and RT 55. These samples were obtained 

from the syenite intrusion (RT 53, RT 54) and country rock gneiss lens (RT 55), and for 

the purpose of distinction, they are termed group A in this section.  

RT 52 yield a similar AFT age and a SD value as the group A samples (Tab. 6.2). 

However, RT 52 reveals MTL (12.5 ± 0.3 μm) and Dpar (1.86 ± 0.01 μm) values that 

range between the values of group A (RT 53, RT 54, RT 55) and sample RT 51 

(Tab. 6.2, Fig. 6.7b-d). The t-T path of RT 52 could therefore be similar to group A or 

sample RT 51 and it is further explored by AFT t-T path modelling. 

 

Modelled t-T paths of samples RT 51, RT 52, RT 54, and RT 55 are presented in 

Fig. 6.8.  All samples display a consistent timing of more rapid cooling into the AFT 

PAZ in the Early Cretaceous (c. 115-100 Ma) and further cooling to below c. 80° in the 

Cretaceous. RT 51 and RT 52 display a fairly similar slow, protracted cooling through 

the AFT PAZ to below c. 60°C during the Late Cretaceous to Palaeogene times. 

However, RT 51 displays a somewhat earlier cooling to below c. 60°C in the Early-Late 

Cretaceous than RT 52 (Palaeogene). These AFT samples RT 51 and RT 52 are derived 

from a country rock gneiss lens and the syenite host rock, respectively (Fig 6.8). The 

difference in their cooling paths could be related to local variations in the palaeo-

geothermal gradient. This could be attributed to minor variations in the thermal 

conductivity between the gneiss (RT 51) and the syenite (RT 52) or to localized, 

transient palaeo-heat flow values. Group A samples RT 54 and RT 55 solely yield good 

model reproductions of their AFT data if a cooling step suggesting a reheating up to c. 

80-90°C in Palaeogene times is introduced. The more rapid cooling to below 60°C in 

Neogene times, however, could be a modelling artefact (e.g. Kohn et al., 2002).  
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Figure 6.8: Map illustrating the geological situation of the Mt. Tumbine area. It is a subset of 
Map sheet 1635 – Milange (Thomas, 2006), which is part of the geological map of Mozambique 
(scale 1:250.000). Superimposed are the AFT sample locations of the pseudo vertical profile. 
The arranged pictograms display the modelled t-T paths. 
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6.3 Southern basement  

6.3.1 Results 

82 AFT samples were derived from the north Mozambican basement located between 

the Indian Ocean and the Malawi rift system. The majority of the samples are derived 

from the basement south of the Lurio Belt (Figs. 4.6 and 6.1). The AFT ages range from 

169 ± 19 Ma to 61 ± 8 Ma. The samples MTL span between 14.5 ± 0.2 μm to 11.5 ± 0.2 

μm with associated standard deviations ranging from 3.2 to 0.3 μm. The observed Dpar 

values span between 4.97 ± 0.08 μm to 1.04 ± 0.04 μm (Tabs. 6.3, 6.4; Fig. 6.9). All 

track length frequency distributions are unimodal and display symmetrical to negatively 

skewed shapes (Appendix B.3, B.4). 

6.3.2 Interpretation 

Samples JJ 199, PZ 33, PZ 17, RT 59 and RMZ 36 (migmatite) yield statistically 

critical AFT data sets (Tab. 6.3) and are entirely omitted. It is indicated by Figs. 6.2 and 

6.9a that samples, which are located within the central part of the basement, distant 

from the continental margin, generally reveal AFT ages younger than 100 Ma. These 

samples occur at elevations from c. 200 m to 900 m and are termed C (central) group 

samples. AFT samples which occur along the present continental margin generally yield 

AFT ages older than c. 100 Ma. These samples are located at elevations below c. 300 m 

and are termed M (margin) group samples. The grouping into two AFT sample 

populations is confirmed by a discriminant analysis (Bahrenberg et al., 1992). The AFT 

age, MTL, SD, latitudes, longitudes and elevations (Tabs. 6.3 and 6.4) are chosen as a 

sample’s parameter values for this analysis. Solely samples yielding statistically 

trustworthy values in all six parameters are employed. Hence 47 C group and 15 M 

group samples are used in the analysis. A Wilks’ Λ value of 0.28570 indicates a distinct 

class separation and a probability value of P (χ2) 73.91% shows that the estimated 

discriminant functions are significant. 12 samples are located in the central part of the 

southern basement, which yield AFT ages of < 100 Ma but lack reliable track length 

data (Tab. 6.3). Due to of their similarities in AFT age and location these samples are 

incorporated in the C group. Samples RMZ 19, GZ 66 and RMZ 13 are located close to 
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the continental margin, yield AFT ages ≥ c. 100 Ma but lack reliable track length data 

(Tab. 6.4). Because of their similarities in AFT ages and location they are incorporated 

in the M group. In total the C and M groups comprise 59 and 18 AFT samples, 

respectively (Fig. 6.1 and Tabs. 6.3, 6.4). 

C group samples 

The C group samples yield AFT ages between 151 ± 9 Ma to 61 ± 8 Ma, with the 

majority being younger than c. 100 Ma. They display MTL between 13.4 ± 0.2 μm to 

11.5 ± 0.2 μm with the majority being shorter than 13.0 μm (Tab 6.3 and Figs. 6.2, 

6.9a, b). The associated SD ranges between 2.8 to 1.3 μm but cluster predominantly 

between 2.3 and 1.4 μm (Tab 6.3 and Figs. 6.3 6.9c). Dpar values in the C group range 

from 3.20 ± 0.04 μm to 1.08 ± 0.01 μm but predominantly cluster tightly around a value 

of c. 1.8 μm. A subpopulation, which is generally restricted to the eastern part of the 

region, yields Dpar values of 1.31 ± 0.02 μm to 1.08 ± 0.01 μm (Tab 6.3 and Figs. 6.3, 

6.9d). The C group AFT samples consistently display unimodal and negatively skewed 

track length frequency distributions (Appendix B.3). 12 C group samples yield 

statistically critical track length data, which are omitted (Tab. 6.3). In the absence of 

track length information, their AFT ages are interpreted as minimum cooling ages. The 

moderate MTL values of the remaining 47 C group samples indicate a considerable 

amount of fission track annealing. Their fairly broad SD and their unimodal, negatively 

skewed track length distribution could suggest that track shortening resulted from a 

slow, protracted cooling through the AFT PAZ. 

The majority of the C group samples display strong similarities in their AFT ages 

(c. < 100 Ma), their MTL (c. < 13 μm), their SD (c. 2.3-1.4 μm), their Dpar values 

(c. 1.8 μm) and their track length frequency distributions (Tab 6.3, Figs. 6.2, 6.3, 6.9a, b 

and Appendix B.3). These similarities indicate that the majority of C group samples 

experienced fairly similar t-T paths. Few C group samples with AFT ages of ≤ c. 80 Ma 

display a slight tendency to decrease in MTL with AFT age (Fig. 6.9b), presumably 

indicating a higher degree of track annealing. However, all C group AFT ages of less 

than c. 100 Ma are interpreted as minimum cooling ages. 
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Figure 6.9: Diagrams depict the AFT ages versus elevation (a), horizontally confined MTL (b), 
SD (c) and Dpar (d). Black triangles and circles denote the C group and M group samples, 
respectively. Grey symbols indicate samples yielding statistically critical AFT track length data. 
In diagram (d) horizontally dotted lines represent Dpar values of Fish Canyon (upper) and 
Durango (lower) AFT age standards with grey bars representing associated standard deviations 
from Donelick et al. (1999). An elevation error of ± 50 m is assumed for the GPS altitude 
determination. 

Four C group samples (GM 139, RMZ 25, RMZ 33 and RMZ 35) yield AFT ages of 

> 110 Ma and deviate from the general the C group AFT age pattern (Tab 6.3 and 

Fig. 6.9a-d). These samples are interpreted here in more detail. All four samples yield 

moderate MTL (< 13.4 μm), moderate to broad SD (< 2.1 μm) and negatively skewed 

track length frequency distributions (Tab. 6.3, Fig. 6.9a-d and Appendix B.3), indicating 

that they experienced some amount of fission track annealing and that track shortening 

probably resulted from slow cooling through the AFT PAZ. Therefore the AFT ages of 

GM 139 (111 ± 11 Ma), RMZ 25 (119 ± 6 Ma), RMZ 33 (151 ± 9 Ma) and RMZ 35 

(119 ± 6 Ma) are interpreted as minimum cooling ages.  

With exception of GM 139 (SD = 1.3 μm), their sample’s broad SD suggest 

protracted cooling paths through the AFT PAZ. These 4 samples are all located at 
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marginal positions in the spatial distribution of the C group data set and proximate (≤ 20 

km) to prominent tectonic zones. Sample GM 139 is located in the southwest of the C 

group data set, adjacent to Palaeozoic-Mesozoic rift basins of the Shire Valley (Fig. 

6.1). Samples RMZ 25, RMZ 33 and RMZ 35 are located proximate to Lurio Belt, a 

high strain shear zone of late Neoproterozoic/Early Cambrian age that bounds the 

southern basement to the north. Compared to the majority of the C group samples GM 

139 displays a larger MTL of 13.3 ± 0.2 μm and a narrower SD of 1.3 μm (Tab. 6.3 and 

Fig. 6.9b, c). This could indicate that GM 139 cooled more rapidly through the AFT 

PAZ and experienced a minor amount of track annealing. It is inferred, that the AFT age 

of > 100 Ma of GM 139 resulted from a cooling history that was broadly similar to but 

less protracted than the ones of the majority of C group samples.  

Two samples, RMZ 25 and RMZ 33 yield Dpar values of 2.56 ± 0.02 μm and 

3.20 ± 0.04 μm, respectively. These values are larger than the average C group Dpar 

values of c. 1.8 μm (Tab 6.3, Fig. 6.8d) and could indicate, compared to the C group, a 

higher fission track annealing resistance of both samples. This might explain their AFT 

ages of > 100 Ma even though both samples experienced t-T paths that were relatively 

similar to the majority of the C group samples. In the case of RMZ 33, its higher sample 

elevation at c. 717m (Tab. 6.3, Fig. 6.9a), compared to the majority of the C group 

samples, might additionally account for its AFT age. RMZ 33 yields a larger MTL of 

13.4 ± 0.2 μm than the average C group samples (Fig. 6.9b). In conjunction with its 

higher elevation this could suggest that RMZ 33 was located at a more shallow crustal 

level and cooled slightly earlier through the AFT PAZ. It therefore retained a longer 

MTL and an older AFT age compared to the majority of the C group samples. The AFT 

age of RMZ 33 (151 ± 9 Ma) could result from a combined effect of increased track 

retention and slightly earlier cooling through the AFT PAZ, with respect to the C group 

sample set. 

With exception of its AFT age, the AFT data (MTL, SD, Dpar) of RMZ 35 are very 

similar to the majority of the C group samples (Tab. 6.3 and Figs 6.1, 6.2a-d). Sample 

RMZ 35 is located at an elevation of c. 794 m, distinctly higher than the average 

elevations (c. 300-500 m) of the C group samples. Therefore RMZ 35 could have been 

located at more shallow crustal level in former times and its AFT age > 100 Ma could 
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result from a slightly earlier cooling through the AFT PAZ with respect to the bulk C 

group sample set. However, the short MTL (11.9 ± 0.04 μm) indicate significant track 

annealing and appears to be less compatible with a simple “earlier cooling due to higher 

elevation” effect. It appears more reasonable, that the AFT age of RMZ 35 results from 

a t-T history that is distinctly different than that experienced by the majority of the C 

group samples. Hence RMZ 35 could represent an outlier. This is in particular 

reasonable, as RMZ 35 is derived from the high strain zone of the Lurio Belt and could 

reflect a cooling history related to tectonic activity along it. 

 

The modelled AFT t-T paths of 21 C group samples are given in the Fig. 6.10. With the 

exception of the sample RMZ 35, they all display a fairly uniform cooling into the AFT 

PAZ in Early to Late Cretaceous times between c. 130 Ma to 90 Ma. The majority of 

the samples reveal a rapid cooling step in the Early/Late Cretaceous at c. 110-90 Ma. 

Subsequently, their cooling to from temperatures > c. 90°-80°C occurred protractedly 

during the Late Cretaceous to Palaeogene/Neogene times (Fig. 6.10). In general, the 

very similar t-T paths of the modelled C group samples are in good agreement with the 

uniform AFT data pattern of the population. This indicates that extensive parts of the 

southern basement experienced a very uniform cooling history since the Early/Late 

Cretaceous. All presented C group AFT t-T path models denote, that the southern 

basement had been definitely cooled to below 60°C by Palaeogene to Neogene times. 

Sample GM 139 already indicates a cooling to below 60°C in the Late Cretaceous 

and thus reflects a more rapid cooling step through the AFT PAZ in the region adjacent 

to the Shire Valley (Fig. 6.10). RMZ 25, RMZ 33 and RMZ 36, located proximate to the 

Lurio Belt (Fig. 6.10), yield slow protracted cooling paths through AFT PAZ from the 

Late Cretaceous (c.130 Ma) onward to Palaeogene/Neogene times (below c. 60°C). 

Their t-T paths could indicate a subtle spatial difference of the southern basement’s 

cooling history with proximity to the Lurio Belt (Fig. 6.10). Compared to the majority 

of the C group samples, their slightly earlier cooling into the AFT PAZ could reflect a 

cooling of a formerly more shallowly seated crustal level (see former section). 
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For sample RMZ 35 from the Lurio Belt, two t-T path models are presented (Fig. 6.10). 

Model b is a slight modification of model a, and results from t-T constraints 

adjusted in response to corresponding (U-Th)/He model results (see chapter 7, section 

7.3). Reasonably good model reproductions of the determined AFT data of RMZ 35 are  

solely obtained, if a cooling into the AFT PAZ during Jurassic times (c. 170-150 Ma) 

and cooling steps linked to reheating (with T ≤ 90°C) in the Early Cretaceous and in the 

Palaeogene are inferred. Additionally, at least one period of cooling to below 60°C had 

to be enforced prior to the reheating related final cooling step in the Palaeogene. The 

Jurassic timing of cooling into the AFT PAZ of RMZ 35 could suggest that this sample 

was seated at a more shallow crustal level than the majority of the C group samples.  

M group samples 

The AFT ages of the M group samples span from 169 ± 19 Ma to 97 ± 6 Ma. Their 

MTL range between 14.5 ± 0.2 μm to 11.9 ± 0.2 μm with most of them being larger 

than 12.3 μm. The associated SD range between 2.7 and 1.1 μm and cluster pre-

dominantly around c. 1.8 μm. Sample’s Dpar values span over a large range from  

4.97 ± 0.08 μm to 1.18 ± 0.03 μm (Tab. 6.4 and Figs. 6.2, 6.3, 6.9a-d). Track length 

frequency distributions of the M group samples display unimodal symmetrical to 

negatively skewed shapes (Appendix B.4). The track length data of samples RMZ 19, 

GZ 66 and RMZ 13 are statistically critical and are therefore omitted (Tab 6.4). In the 

absence of track length information, their AFT ages are interpreted as minimum cooling 

ages. 

With the exception of GZ 64 and PZ 711, the moderate MTL values of all M group 

samples indicate that they experienced a distinct amount of fission track annealing. 

Their track length frequency distributions point out that annealing probably resulted 

from protracted and rather complex cooling histories. Therefore these M group AFT 

ages are interpreted as mixed ages. A broad range of Dpar values observed in the M 

group samples (Fig. 6.9d) suggests a diverse range of annealing kinetics, i.e. resistances 

to track shortening. As a consequence, some of the AFT age spread in the M group 

could be associated with variable track retention characteristics. Within the M group 

samples, no correlations are apparent between their AFT ages and elevation, MTL or 
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SD (Tab. 6.4 and Fig. 6.9a-c). Presumably, this suggests that the broad range of AFT 

ages might also represent a diversity of t-T histories in the M group.  

The AFT samples GZ 64 and PZ 711 yield long MTL of > 14.3 μm and very narrow 

SD of < 1.2 μm (Tab. 6.4 and Fig. 6.9b, c). This could imply that both samples 

experienced minor amounts of fission track annealing and cooled fairly rapidly through 

the AFT PAZ. Their large Dpar values of ≥ 3.75 μm (Tab 6.4, Fig 6.9d and Appendix 

B.4) likely argue for distinctly higher track annealing resistances compared to the 

Durango apatite standard. Their AFT ages, however, are interpreted as minimum 

cooling ages. 

 

The modelled AFT t-T paths of 13 M group samples are presented in Fig. 6.6. and 

indicate more rapid cooling periods into the AFT PAZ during the Early Jurassic at c. 

200 Ma, the Middle to Late Jurassic at c. 180-150 Ma and the Early to Late Cretaceous 

at c. 130-90 Ma. One modelled t-T path (RMZ 16) suggests a cooling to below c. 60°C 

in Early/Middle Jurassic times (c. 190 Ma) and a subsequent cooling step due to 

reheating to 90°-70°C in the Middle Jurassic (≥  180 Ma). The majority of modelled M 

group t-T paths, however, show that the basement along the eastern continental margin 

cooled to below c. 60°C either in the Early to Late Cretaceous or at latest during 

Palaeogene to Neogene times. Several t-T paths indicate a cooling step due to a 

reheating of up to c. 80°-60°C during Palaeogene times approximately at c. 40-20 Ma.  

Samples GZ 64, GZ 74, PZ 27, RMZ 27 and RMZ 28 indicate a more rapid cooling 

step into the AFT PAZ and further to below c. 90°C in Early to Late Cretaceous times. 

Subsequent, cooling continued protractedly to below c. 60°C during the Palaeogene to 

Neogene. These AFT t-T paths display very strong similarities to the C group t-T paths 

(Fig. 6.10). These sample’s Dpar values of > 2.1 μm are larger than the average Dpar 

values of the C group samples of c. 1.8 μm. In particular samples GZ 64 and GZ 74, 

which display very large Dpar values of > 3.5 μm (Tab. 6.4) and yield t-T paths, that 

appear to be very similar to t-T paths of adjacent C group samples 020823-02 and 

020824-0 (Figs. 6.6 and 6.10), which reveal Dpar values of c. 1.8 μm (Tab. 6.3). It is 

inferred, that the AFT ages (> 100 Ma) of GZ 64, GZ 74, PZ 27, RMZ 27 and RMZ 28 
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of are likely related to a higher resistance to track annealing, and therefore represent a 

further southward extension of C group cooling pattern. 

The cooling paths of the very proximate samples RMZ 4 and RMZ 11 as well as 

RMZ 29 and RMZ 30 (Fig. 6.6) display all a similar rapid cooling step into the AFT 

PAZ in the Early Cretaceous. However, their following cooling histories appear to be 

somewhat ambiguous. Samples RMZ 11 and RMZ 29 indicate a rapid cooling step to 

below c. 80°C in the Early Cretaceous and a subsequent very slow and protractedly 

cooling to below c. 60°C during Neogene times. In contrast, RMZ 4 and RMZ 30 

indicate a rapid cooling step through the entire AFT PAZ in Early Cretaceous times at c. 

100 Ma (Fig. 6.6). 

Samples RMZ 14, RMZ 31 and PZ 711 (Fig. 6.6) display cooling into the PAZ 

during Jurassic times at c. 160-150 Ma and at c. 170 Ma, respectively. In the following, 

slow cooling continued to below c. 60°C in the Early Cretaceous at c. 130 Ma. The 

three samples (RMZ 14, RMZ 31, PZ 711) document an earlier cooling through the 

AFT PAZ than the aforementioned M group samples. It is supposed, that their AFT 

data, compared to the previously interpreted M group samples, trace the t-T path of a 

formerly more shallow seated crustal level. Two modelled t-T paths (a and b) are 

presented for RMZ 31 (Fig. 6.6). While model a yields rapid cooling to below 60°C in 

the Early Cretaceous, model b suggests a prolonged residence close the low temperature 

threshold of AFT PAZ (≤ 60°C) since the Early Cretaceous. In contrast to model a, 

model b uses an additional tight temperature constraint in Cretaceous times. A 

refinement of these slightly ambiguous cooling paths is investigated by corresponding 

(U-Th)/He analyses (see chapter 7).  

The t-T path of sample RMZ 16 indicates a more rapid cooling step into the AFT 

PAZ in the Early Jurassic at c. 200-190 Ma. It is therefore possible that, compared to the 

other M group samples, it reflects the t-T path of a formerly more shallowly seated 

crustal level. Two slightly varying t-T path models (a and b) indicate that the timing of 

the reheating is not too tightly to constrain but suggest a probable occurrence between c. 

180 Ma and 160 Ma. The post Jurassic t-T path of RMZ 16 is very similar to that of the 

proximate samples RMZ 4 and RMZ 11 (Fig. 6.6). Alternatively, sample RMZ 16 could 

also represent the t-T path of a similar crustal level as the neighbouring samples RMZ 4, 
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RMZ 11 and RMZ 14. Thereby RMZ 16 could in turn indicate that these three 

proximate samples were completely annealed during a Jurassic reheating event and 

solely preserved a record of their post-Jurassic t-T histories. 

In general, the modelled M group samples indicate a series of different t-T paths and 

emphasize that the population’s heterogeneous AFT age pattern is related to diverse 

cooling histories. They also highlight that the t-T evolution of the present eastern 

continental margin is distinctly different from the homogenous t-T evolution of the 

central part of the southern basement. The spatially proximate occurrences of distinctly 

different t-T path along the eastern margin could imply that samples, which were 

formerly located at different crustal levels, are now juxtaposed at similar elevations due 

to a tectonic segmentation of the basement along the present eastern continental margin. 

6.3.3 Remarks on the Dpar values of the southern basement samples 

The overwhelming majority of the apatite samples from the southern basement (C and 

M group samples) yield etch pit diameters that are very similar to Dpar values of the 

Durango (c. 1.8 μm) and Fish Canyon (c. 2.5 μm) apatite standards, thus indicating that 

their annealing characteristics are very similar to these standard apatites. Few samples 

(e.g. RMZ 33, PZ 711), however, display very large Dpar values of > 3.5-5 μm (Fig. 

6.3). These apatite samples are all derived from amphibolitic lithologies and their AFT 

ages range among the oldest observed in the southern basement (Tabs 6.3, 6.4 and Figs. 

6.2, 6.3). This could point out that the apatites obtained from amphibolitic lithologies 

yield distinctly higher fission track annealing resistances. These samples could have 

began to retain fission tracks at higher temperatures than the standard Durango apatites 

(> 110°C) and apparently, than the majority of the apatites sampled from the southern 

basement. The AFT ages of those “large Dpar” samples could therefore also partly result 

from cooling and track accumulation that started in temperature regimes >> 110°C. 

For an isothermal holding time of 100 Ma and Dpar values of 5 μm, the annealing 

model of Ketcham et al. (1999) expands the AFT PAZ and places the high temperature 

threshold at c. 205°C. Accordingly, the AFT samples of the amphibolitic rocks could 

have already started to record the basement cooling history at temperatures as high as c. 

200°C. This is almost twice the value of the high temperature PAZ threshold of 
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Durango apatite at c. 110°C (Carlson et al., 1999; Green et al., 1986; Ketcham et al., 

1999; Laslett et al., 1987). 

However, such extreme high temperature track retention can not be unambiguously 

inferred from the Dpar parameter alone (see section 1.2.3.2). The etch pit diameter is 

related to the apatites solubility, which in turn depends on the apatites bulk chemical 

composition (e.g. Barbarand et al., 2003 and references therein). The chlorine content of 

apatites is a well known example, where the track retention behaviour is correlated to 

one chemical constituent and reflected in the etch pit size (Burtner et al., 1994). On the 

other hand, the presence of e.g. OH in apatites increases the etch pit size but apparently 

does not affect the fission track annealing kinetics (Ketcham et al., 2000). The observed 

etch pit diameters of > 3.5-5 μm represent rather extreme values for the annealing 

model of Ketcham et al., 1999 and might solely reflect a different apatite solubility, 

unrelated to their apatite annealing kinetics. Inferences on the fission track retention for 

temperatures >> 110°C may therefore not be simply deduced from such large Dpar 

values without corresponding chemical analyses of the apatite samples from 

amphibolitic lithologies. They could assist to evaluate the dependence of the etch pit 

size on particular chemical constituents and their possible relation to annealing 

resistance. In t-T paths modelling of such samples (e.g. PZ 711, Tabs. 6.3, 6.4), the 

determined Dpar values are employed as annealing kinetic proxies but the resultant t-T 

paths are cautiously interpreted within the usual temperature range of c. 110-60°C.  

Independent t-T constraints from other thermochronological systems sensitive to 

temperatures between > 110°C and < 265°C (TFT) could provide information on the 

AFT retention characteristics of samples derived amphibolitic lithologies in northern 

Mozambique. Such additional thermochronological dating systems would permit an 

independent calibration for the temperature sensitivity of the samples displaying high 

Dpar values. Suited thermochronological system would be zircon fission track dating, 

with an estimated PAZ of c. 320-210°C (Yamada et al., 1995) and U-Th/He dating on 

titanite and zircon which have closure temperatures of c. 200°C and c. 183°C (for 

cooling at 10°C/Ma), respectively (Reiners and Farley, 1999; Reiners et al., 2004). 
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Chapter 7  

APATITE (U-TH)/HE ANALYSIS – RESULTS AND 

INTERPRETATION 

 
The (U-Th)/He ages and the analytical details of 15 aliquot and 24 single grain analyses 

are presented in Tabs. 7.1, 7.2 and Figs. 7.1, 7.2, 7.4. All U-Th/He ages refer to FT 

corrected 4He ages unless quoted differently. The 4He ages of the batch analyses range 

from 1459 ± 63 Ma to 40 ± 2 Ma. Their corresponding mass weighted average grain 

radii (MWAR) span from c. 74 to 48 μm. The associated standard deviations range from 

8.8 to 2.9 μm. The single grain analyses yield 4He ages between 523 ± 18 Ma to 

46 ± 2 Ma. Their corresponding grain radii span from c. 83 to 38 μm.  

Individual batch and single grain helium analyses are interpreted and grouped into (I) 

apparently reliable 4He age results, (II) ambiguous 4He ages and (III) rejected 4He ages. 

The interpretation and grouping of the helium analyses is based on five criteria of which 

the first four are considered most significant: 

(1)  The relation between the observed 4He age and corresponding AFT age is used 

to check the 4He age consistency with 4He production and diffusion model of 

Wolf et al. (1998). For a rock sample it predicts that an apatite 4He age can not 

be older than its corresponding AFT age. 

(2)  An intra-sample 4He age reproduction for similar grain radii is employed as a 

consistency criterion since grains with identical diameters are supposed to yield 

identical 4He ages within a rock sample (Farley, 1996). 

(3)  The correlation of the 4He ages with grain radii are evaluated for multiple intra-

sample analyses in order to check for a grain size dependant helium retention; 

i.e. larger grains yield older 4He ages (Farley, 2000) and very slow, protracted 

cooling histories can result in large 4He age variations correlated with grain size 

(Reiners and Farley, 2001). 
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(4)  Intra-sample 4He age variations among grains of similar radii might result from 

dating grains containing different parent nuclide zoning patterns. 4He age 

variations of up to ± 25 % around a “true age” can be expected for extreme cases 

of zoning (Farley, 2002; Fitzgerald et al., 2005). These variations are magnified 

by very slow cooling rates (< 3°C/Ma) or prolonged residence in the HePRZ 

(Fitzgerald et al., 2005). In order to evaluate the amount of the intra-sample 

single grain 4He age variations, a maximum 4He age spread relative to a mean 
4He age is estimated (Tab. 7.2).  

(5) Individual 4He analyses that are consistent with criteria (1) but do not fulfil 

criteria (2) and (3) are related to AFT and 4He data of proximate samples. 4He 

ages, the grain radii and the AFT cooling histories of the proximate samples are 

used to evaluate a regionally consistent cooling path of such particular 4He ages.  

Table 7.1: Results of (U-Th)/He batch analysis 

FT represents the correction factor for α emission after Farley et al. (1996). MWAR is the mass 
weighted average radius of apatite crystals measured in an aliquot. SD is the associated standard 
deviation of the MWAR. Though standard deviations are not strictly valid for such small 
populations, they are provided as a rough guide of the spread of single grain radii in a sample. 
Analyses marked † represent rejected 4He ages. 

7.1 Apparently reliable 4He ages (I) 

The 4He ages of all batch analyses of BZ 216 (c. 66-53 Ma), RMZ 47 (c. 46-43 Ma), of 

batch analyses 3-5 of RMZ 18 (c. 73-80 Ma) and of batch analyses 1-3 of RMZ 25 

(c. 44-40 Ma) are younger than their corresponding AFT ages (Tabs. 6.3, 7.1, Fig. 7.1a). 

Sample Lithology Longitude Latitude
Elevation

(m)

No. of

grains

4
He

(ncc)

U

(ppm)

Th

(ppm)

Th/U Raw age

(Ma)
F T

Corrected age

± 1σ (Ma)

MWAR

(μm)

SD

(μm)

BZ 216 amphibolite 37.44806 -16.03861 428 10 4.29 18.5 4.3 0.24 40 0.75 53 ± 2 58.0 5.8

10 5.12 24.9 10.9 0.45 47 0.71 66 ± 3 50.4 3.5

8 3.16 16.5 5.8 0.36 43 0.75 57 ± 2 56.8 5.6

RMZ 18 gneiss 39.75833 -14.98472 317 10 1.02 2.6 1.2 0.48 77 0.73 106 ± 4 55.8 6.4

10 13.70 2.9 1.1 0.39 1052 0.72 1459 ± 63 51.7 5.6

9 1.06 2.2 0.9 0.41 63 0.79 79 ± 3 67.6 8.8

3 0.27 2.1 0.7 0.33 60 0.75 80 ± 3 59.1 3.2

2 0.57 7.3 1.6 0.22 56 0.76 73 ± 3 66.9 7.4

RMZ 25 gabbro 39.13778 -14.20472 358 10 2.25 14.5 38.3 2.69 31 0.72 44 ± 3 53.1 6.5

8 1.72 9.6 32.0 3.44 28 0.72 40 ± 2 54.2 5.1

7 1.01 6.4 22.8 3.69 31 0.71 44 ± 2 52.5 4.9

5 1.58 8.6 30.0 3.60 55 0.70 78 ± 3 47.6 2.9

RMZ 47 granitic gneiss 37.14708 -15.64833 575 9 2.26 4.0 17.3 4.40 33 0.78 43 ± 3 73.9 8.7

5 1.07 4.4 17.1 4.01 35 0.76 46 ± 2 68.1 7.8

RMZ 35 granitic gneiss 37.18194 -15.04722 794 8 5.73 16.4 41.0 2.55 60 0.67 89 ± 6 59.3 5.8

ratio

†

†

†
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These 4He ages replicate within their ± 2 σ confidence levels and display similar 

MWAR (Tab. 7.1, Fig. 7.1a). All the helium data of these analyses are consistent with 

criteria (1) to (3) and thus their 4He ages are considered to be reliable.  

Table 7.2: Results of (U-Th)/He single grain analysis 

FT represents the correction factor for α emission after Farley et al. (1996). Radius is the single 
grain radius of the apatite crystals analysed. Mean is the arithmetic mean 4He age of the denoted 
or of all individual analyses in a sample. Analyses marked * represent ambiguous 4He ages and 
marked † represent rejected 4He ages. 

Sample RMZ 35 comprises only one batch and two single grain analyses (a, b) due to 

low grain quality and quantity. Batch analyses yield integrated 4He ages of all grains 

present in an aliquot and are not unambiguously comparable to single grain ages. The 

batch analysis yields a 4He age of 89 ± 6 Ma for an MWAR of c. 60 μm. This 4He age is 

younger than the AFT age of the sample (Tabs. 6.3, 7.1, Fig. 7.1b). Likewise younger 

are the 4He ages 61 ± 2 Ma and 58 ± 2 Ma of single grain analyses a and b (Tab. 7.2).  

Sample Lithology Longitude Latitude
Elevation

(m)
analysis

4
He

(ncc)

U

(ppm)

Th

(ppm)

Th/U Raw age

(Ma)
F T

Corrected age

± 1σ (Ma)

Radius

(μm)

020821-02 granite 39.20053 -15.09433 420 a 0.60 9.2 8.1 0.91 39 0.81 48 ± 2 75.0

b 0.38 8.0 4.8 0.62 56 0.77 73 ± 3 60.5

ratio
*

48 60

020824-02 bt-granite 37.40161 -16.37942 410 a 2.28 11.4 13.2 1.19 86 0.84 102 ± 4 82.5

b 0.67 11.5 12.7 1.14 37 0.81 46 ± 2 80.0

c 11.53 20.7 22.7 1.13 296 0.82 361 ± 13 77.5

020825-02 orthogneiss 37.62831 -16.33258 280 a 0.53 6.8 5.7 0.87 100 0.76 132 ± 5 60.0

b 1.07 10.3 7.0 0.70 116 0.77 150 ± 5 65.0

c 0.33 4.9 4.1 0.86 76 0.77 99 ± 3 60.0

mean 97 127

020823-02 bt-gneiss 37.35775 -16.54864 210 a 0.41 8.6 8.8 1.05 44 0.77 57 ± 2 60.0

b 2.91 7.5 10.8 1.48 403 0.77 523 ± 18 60.0

c 0.28 8.5 9.2 1.12 54 0.73 74 ± 2 55.0

d 0.61 4.1 3.6 0.91 56 0.83 68 ± 3 75.0

e 0.10 8.0 23.2 3.00 42 0.6 70 ± 2 37.5

RMZ 31 bt-hbl-gneiss 39.68361 -15.84694 31 a 0.33 6.3 30.4 4.96 74 0.68 109 ± 3 40.0

b 0.29 13.4 41.9 3.23 56 0.66 85 ± 2 37.5

c 0.21 6.4 14.3 2.32 39 0.74 52 ± 2 55.0

d 0.17 3.9 20.0 5.34 68 0.67 101 ± 3 40.0

e 1.15 4.8 21.9 4.69 85 0.78 109 ± 4 60.0

RMZ 35 granitic gneiss 37.18194 -15.04722 794 a 0.55 25.7 84.0 3.38 41 0.68 61 ± 2 45.0

b 0.23 14.9 35.6 2.48 39 0.68 58 ± 2 42.5

mean 64 91

RMZ 42 biotite-gneiss 37.20417 -15.32556 886 a 0.88 17.6 36.9 2.16 51 0.73 69 ± 2 50.0

b 1.77 29.0 52.6 1.87 61 0.76 80 ± 3 55.0

c 1.52 31.9 69.9 2.26 60 0.74 81 ± 2 55.0

d 1.00 20.4 29.5 1.50 41 0.77 53 ± 2 65.0

mean 53 71

mean c-e 51 71

†

†

†

†

†

†

mean

*

*

†

†

†

*

*

*

*

*

*

*

*
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Figure 7.1: Diagrams depicting 4He age versus grain size relation for batch analyses (a) and 4He 
age versus grain size relation for batch and single grain analyses of sample RMZ 35 (b). In 
diagram (a) the raw and FT corrected 4He ages are plotted in the upper and lower panels, 
respectively. In diagram (b) raw and FT corrected 4He ages are indicated by grey and black 
colours, respectively. The error bars on 4He ages represent 2 σ confidence levels. Open symbols 
denote rejected 4He ages. Corresponding AFT ages are displayed as grey, black outlined 
symbols with their 1 σ confidence levels. For batch analyses the grain sizes are represented by 
the MWAR and their associated standard deviations. For single grain analyses, a grain radii 
error of ± 5 μm is estimated.  

These single grain ages reproduce within their ± 2 σ confidence levels and display 

similar grain radii of c. 45 μm and c. 43 μm (Tab. 7.2 and Fig. 7.2b). Single grain and 

batch analyses of RMZ 35, however, show an apparent increase in their 4He ages with 

their grain radii (Tabs. 7.1, 7.2 and Fig. 7.1b). Thus the batch and single grain analyses 

of RMZ 35 are apparently consistent with criteria (1) to (3) and their 4He ages are 

considered to be reliable. 

Analysis a of sample 020823-02 gives a 4He age of 57 ± 2 Ma that is younger than 

the corresponding AFT age. The grain radius is c. 60 μm (Tabs. 6.3, 7.2 and Fig. 7.2b). 

This analysis displays strong similarities in 4He age and grain size to the batch analyses 

of sample RMZ 47 (Tab. 7.1). In both samples, the AFT data uniformly indicate a very 
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Figure 7.2: Diagrams (a) and (b) depict the 4He ages versus grain size relation for single grain 
analyses. In both diagrams the raw and FT corrected 4He ages are plotted in upper and lower 
panels, respectively. The error bars on 4He ages represent 2 σ confidence levels. Open symbols 
indicate rejected 4He ages. Corresponding AFT ages are displayed as grey, black outlined 
symbols with their with their error bars indicating the 1 σ confidence levels. A grain radii error 
of ± 5 μm is estimated. 

slow, protracted cooling into the HePRZ (c. 80°-60°C) (Fig. 6.10). This might suggest 

that both samples experienced a very similar cooling history through the HePRZ. 

Consequently, the 4He age of analysis a of 020823-02 is considered to be reliable. 

Analysis b of sample 020824-02 yields a 4He age of 46 ± 3 Ma that is younger than 

its corresponding AFT age. The grain radius is c. 80 μm (Tabs. 6.3, 7.2 and Fig. 7.2b). 

This analysis displays remarkable similarities in 4He age and grain size to the batch 

analyses of sample BZ 216 (Tab. 7.1). No AFT t-T path information is available for 

020824-02. The proximate sample 020824-01 yields a similar AFT age as 020824-02 

(Tab. 6.3) and its slow, protracted cooling into the HePRZ (c. 80-60°C) is regarded as 

representative for the region. AFT results of sample 020824-01 indicate an identical 

cooling history to BZ 216 (Fig. 6.10). These facts could suggest that sample 020824-02 
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and BZ 216 experienced a very similar cooling histories through the HePRZ. 

Accordingly, the 4He age of analysis b of 020824-02 is interpreted as reliable. 

7.2 Ambiguous 4He ages (II) 

All single grain 4He ages of samples 020821-02 (c. 48-73 Ma), RMZ 31 (c. 52-109 Ma) 

and RMZ 42 (c. 53-81 Ma) are younger than their corresponding AFT ages. Their 4He 

ages only partly replicate within their ± 2 σ confidence levels for similar grain radii 

(Tab. 7.2, Fig. 7.2a) and although their range in grain radii is fairly small, the grain sizes 

do not correlate with the 4He ages (raw and FT-corrected) (Tab. 7.2, Fig. 7.2a). The 

single grain 4He analyses of samples 020821-02, RMZ 31 and RMZ 42 are consistent 

with criteria (1) but inconsistent with criteria (2) and (3). Therefore, these 4He ages are 

interpreted as ambiguous. In each of these three samples the variations in single grain 

ages (raw and FT-corrected 4He ages) are fairly similar. They range between ± 15-27 % 

and reach in extreme cases ± 43 % (Tab. 7.2). For all three samples, corresponding AFT 

results indicate a very slow, protracted cooling into the HePRZ (c. 80°-60°C) (Fig. 

6.10). As the 4He ages do not correlate with the grain sizes, other reasons than differing 

grain radii might cause the observed scatter in single grain ages. Pre-screening results 

do not indicate strong or contrasting parent nuclide zoning patterns and exclude them as 

a cause for the age variations. However, minor amounts of excess 4He* in some grains 

could account for the 4He age scatter. 

7.3 Rejected 4He ages (III) 

Batch analysis 2 of RMZ 18, single grain analyses a, c of 020824-02 and single grain 

analysis b of 020823-02 yield both raw and FT corrected 4He ages, which are older than 

their corresponding AFT ages (Tabs. 6.3, 7.1). Such old 4He ages are inconsistent with 

criteria (1) and thus are rejected. Compared to their corresponding intra-sample 4He 

analyses, their determined 4He concentrations are over a magnitude higher whereas the 

U and Th concentrations are about the same (Tab. 7.1). This is interpreted to indicate 

significant amounts of excess 4He*.  

Batch analysis 1 of RMZ 18 (106 ± 4 Ma) and batch analysis 4 of RMZ 25 

(78 ± 3 Ma) yield 4He ages which are younger than their corresponding AFT ages 
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(Tabs. 6.3, 7.1 and Fig. 7.1a). These 4He ages do not overlap within their ± 2 σ 

confidence levels with their replicating batch analyses and therefore regarded as 

potential outliers (see section 7.2). Compared to their corresponding replicates, the 

outliers of RMZ 18 and RMZ 25 yield slightly smaller MWAR of c. 56 μm and 

c. 48 μm, respectively but older 4He ages (Tab. 7.1). Both analyses are consistent with 

criteria (1) but inconsistent with criteria (2) and (3). The 4He ages of RMZ 18 batch 1 

and RMZ 25 batch 4 are rejected. 4He, U and Th concentrations of the outliers range 

within the same order of magnitude as their sample’s replicates and preclude a 

significant influence of excess 4He* (Tab. 7.1). In both samples the outlier analyses 

yield raw 4He ages, which are older than the FT-corrected ages of the intra-sample 

replicates (Tab.7.1). This indicates that a false FT correction factor is unlikely to explain 

these two older 4He ages (Farley, 2002; Fitzgerald et al., 2005). The fairly homogenous 

CL pre-screening results of RMZ 18 and RMZ 25 preclude significant influences by 

variable parent nuclide distribution patterns (Fitzgerald et al., 2005). No conclusive 

explanation is inferred for the non-replicating 4He ages of samples RMZ 18 batch 1 and 

RMZ 25 batch 2.  

Single grain analyses a-c of 020825-02 yield raw and FT-corrected 4He ages that are 

older than the sample’s AFT age (Tabs. 6.3, 7.2 and Fig. 7.2b). This contradicts 

criterion (1) and all single grain analyses of 020825-02 are rejected. The single grain 

ages of sample 020825-02 yield identical grain radii of c. 60-65 μm but do not replicate 

within their ± 2 σ confidence levels. Sample 020825-02 yields similar raw and FT 

corrected single grain 4He age variations in the range of ± 18-22 % (Tab. 7.2). The 

pre-screening revealed some grains displaying zoned CL (Fig. 7.3). This could indicate 

an influence of variable parent nuclide distribution patterns (Farley, 2002; Fitzgerald et 

al., 2005). AFT results of the proximate samples 020824-01, 020824-03 and BZ 216 

argue for slow protracted cooling into the HePRZ (c. 80°-60°C) in the region (Fig. 

6.10). The heterogeneous parent nuclide zoning and the very slow protracted cooling 

through the HePRZ could account for the non-reproducing single grain 4He ages of 

020825-02. However, these facts do not account for single 4He ages that are older than 

the corresponding AFT age (Fig. 7.2b). Possibly, this is simply related to excess 4He*.  
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Figure 7.3: CL image of sample 020825-02 displaying grains with concentric alternating 
zoning patterns. 

Single grain analyses c-e of 020823-02 yield 4He ages (c. 68-74 Ma) that are older than 

the sample’s AFT age and reproduce within their ± 2 σ confidence levels (Tabs. 6.3, 7.2 

and Fig. 7.2b). These 4He ages do not correlate with their corresponding grain radii of 

c. 37.5 to 75 μm. The single grain analyses c-e of sample 020823-02 are inconsistent 

with criteria (1) to (3) and are rejected. The corresponding raw 4He ages are younger 

than the sample’s AFT age, display an increase in age with grain size (Tabs. 6.3, 7.2 and 

Fig. 7.2b) and appear to be consistent with criteria (1) and (3). In addition, the raw 4He 

ages of analyses c-e are fairly similar to the FT corrected 4He age of analysis a (Figs. 

7.2b, Tab. 7.2). Following the FT correction (Tab. 7.2) the variation in single grain ages 

decreases from ± 10-18 % to ± 4 %. As the single grain raw 4He age variation is 

attributed to the range of grain radii (Tab. 7.2, Fig. 7.2b) the reduced variation in single 

grain FT corrected 4He ages could indicate incorrect FT factors. Conclusively, it appears 

that subsequent to the FT correction, the 4He ages of sample 020823-02 become in-

compatible with model predictions for (U-Th)/He dating as the FT factors overcorrect 

the raw 4He ages of analyses c-e (Farley, 2002). Alternatively, minor amounts of excess 
4He* could also account for the inconsistencies between the raw and FT corrected 4He 

single grains ages in analyses c-e of sample 020823-02.  

40 m�
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7.4 General considerations on (U-Th)/He dating 

Recently it has been proposed, that as yet unexplained increases in 4He retention might 

results in 4He ages that are older than their corresponding AFT ages (Green and Duddy, 

2006). It is problematic to reconcile “4He ages with AFT data in the same sample as (U-

Th)/He ages increase beyond c. 50 Ma years unless uranium contents are unusually 

low” (Green and Duddy, 2006). It has also been found that samples from silicic 

lithologies with high U and Th contents tend to be more susceptible to poor 4He age 

reproduction than samples from basic host rocks with low U and Th contents (Lorencak 

et al., 2004). 

The data presented do not show that particularly 4He ages older than c. 50 Ma are 

incompatible with corresponding AFT ages. Additionally, the replication of the 4He age 

does not appear to be related to specific lithologies or to U and Th concentrations 

(Tabs. 7.1 and 7.2). Batch analyses appear to yield slightly better 4He age reproductions 

than single grain analyses. Presumably, inter-grain 4He age variations (e.g. differing 

parent nuclide distributions) are “blurred” to a certain degree by aliquot dating. 

7.5 Results of forward t-T path modelling of (U-Th)He ages 

The helium t-T paths presented in Fig. 7.4 are the results of model approaches that aim 

to comply with the following criteria: 

(a) The raw 4He age must be reproduced by the modelled t-T path (Tab. 7.3). 

(b) Within one sample, the temperature variations among modelled t-T paths of 

different helium analyses should be minimized within the HePRZ, i.e. ideally, 

the HeRMS = 0. 

(c) The AFT and (U-Th)/He thermochronometer are both sensitive to record cooling 

from 80°C to 60°C (Laslett et al., 1987; Wolf et al., 1998). Therefore modelled 

helium t-T and corresponding AFT t-T paths should yield a similar timing for 

cooling to below c. 80°C. The modelled helium t-T paths should overlap at least 

with the corresponding AFT t-T path confidence envelops. 

(d) The modelled helium t-T paths should yield a similar cooling trend as 

corresponding AFT t-T path. It should overlap at least with the AFT t-T paths 
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confidence envelops. The deviation of the mean helium cooling path from AFT 

cooling path should be minimized (ideally, AFTRMS = 0). 

(e) In samples with only one helium analysis modelled or with HeRMS ≥ 5°C, the 

AFTRMS values represents an estimates of the difference between the AFT t-T 

path and the single or least deviating helium t-T path, respectively.   

 

For apparently reliable 4He ages of samples BZ 216, RMZ 18, RMZ 25, RMZ 35, RMZ 

47, 020823-02 and 020824-02 and for ambiguous 4He ages of samples 020821-02, 

RMZ 31 and RMZ 42 forward modelling approaches are used to test if the their raw 4He 

ages are compatible with their corresponding t-T paths derived from AFT analyses. In 

addition, the raw 4He ages of the rejected analyses c-e of sample 020823-02 are 

subjected to a forward model approach together with its apparently reliable analysis a to 

test for a possible FT factor overcorrection. 

The modelled helium t-T paths are presented in two groups according to their general 

cooling path trends. Helium t-T paths from samples BZ 216, RMZ 25, RMZ 42, 

RMZ 47, 020821-02, 020823-02 and 020824-02 are characterized by slow, protracted 

cooling. The samples of these 4He analyses are located within the central southern 

basement and correspond to the C group AFT data set (chapter 6, Tab. 6.3 and Fig. 

6.10). The second group comprises helium t-T paths of samples RMZ 18 and RMZ 31 

from the eastern margin of the southern basement (M group AFT data set; chapter 6, 

Tab. 6.4 and Fig. 6.6) and of sample RMZ 35 from the Lurio Belt (outlier of the C 

group, chapter 6, Tab. 6.3 and Fig. 6.10). These samples display periods of reheating in 

their t-T paths. 

7.5.1 Slow and protracted cooling path models 

Forward modelled helium age t-T paths of samples BZ 216 (all analyses, 2 models), 

RMZ 25 (all analyses, 2 models), RMZ 42 (grain d), RMZ 47 (all analyses), 

020821-02 (grain a), 020823-02 (grains a, d) and 020824-02 (grain b) yield good fits 

with model criteria (a)-(e) (Fig. 7.4) and considered to be reliable. These modelled t-T 

paths indicate slow and protracted cooling to below c. 80°C in the central southern 

basement since the Late Cretaceous (c. < 100 Ma). They consistently display cooling to 
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Table 7.3: Summery of apatite (U-Th)/He model data 

MWAR and Radius are the mass weighted average radii and single grain radii of the batch and 
single grain analyses, respectively. Length is the mean and single grain length of the batch and 
single grain analyses, respectively. Analyses marked * denote idiomorphic apatite grains that are 
not corrected for grain breakage. Analyses marked † indicate rejected modelled helium age t-T 
paths Sphere radius is the radius of a model sphere with the same surface to volume ratio as the 
corresponding 4He analysis.    

below c. 60°C in the Palaeogene (c. 40 Ma) and further cooling to below c. 40°C in 

Neogene times (c. 20-10 Ma) (Fig. 7.4). With exception of sample RMZ 25, all 

corresponding AFT t-T path models indicate a more rapid cooling of their best-fit paths 

to below 60°C in Neogene time. This period of more rapid cooling to ambient 

temperatures in the recent geologic past is not reproduced by any of the corresponding 

helium t-T path models. This could suggest that such a period of rapid cooling 

represents a modelling artefact related to experimental uncertainties of AFT annealing 

Apparently reliable He ages
4

Ambigous He ages
4

μm) μm)
Sample Analysis

MWAR /

Radius (

Length

(μm)

Sphere

radius (

Uncorrected

age (Ma)

Modelled

age (Ma)

BZ 216 batch 1 58 181 72 40 40

batch 2 50 167 63 47 47

batch 3 57 154 69 43 43

RMZ 18 batch 3 68 190 82 63 63

batch 4 59 194 74 60 60

batch 5 67 175 80 56 56

RMZ 25 batch 1 53 127 62 31 31

batch 2 54 147 65 28 28

batch 3 53 142 64 31 31

RMZ 47 batch 1 74 193 88 33 33

batch 2 68 184 82 35 35

RMZ 35 batch 59 147 70 60 60

grain a 45 120 54 41 41

grain b 43 115 52 39 39

020823-02 grain a 60 200 75 44 44

020824-02 grain b 80 160 90 37 37

020821-02 grain a 75 200 90 39 39

grain b 61 155 72 56 56

020823-02 grain c 55 130 64 54 54

grain d 75 320 97 56 56

grain e* 38 100 41 42 42

RMZ 31 grain a 40 170 52 74 74

grain b 38 130 48 56 56

grain c 55 155 67 39 39

grain d 40 150 51 68 68

grain e 60 310 80 85 85

RMZ 42 grain a* 50 220 61 51 51

grain b 55 190 69 61 61

grain c 55 140 65 60 60

grain d 65 175 78 41 41

†

†

†

†

†

†
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model (e.g. Kohn et al., 2002, see section 2.2.5.2). Therefore the cooling below c. 60°C 

in the Palaeogene and further to below c. 40°C in the Neogene is more likely expressed 

by the modelled helium t-T paths of the central southern basement. 

The modelled helium t-T paths of BZ 216 only marginally overlap with confidence 

envelops of the related AFT t-T path and suggests a just acceptable consistency with the 

corresponding AFT data set. No AFT t-T path could be calculated for sample 020824-

02 due to insufficient track length data (Appendix B.4). Therefore helium t-T path of 

analysis b of 020824-02 is modelled by using the AFT paths of the proximate samples 

020824-01A and 020824-01B. The reliable helium model results of the initially rejected 

helium analysis d from sample 020823-02, could suggest that the inconsistency between 

its FT corrected 4He age and corresponding AFT ages is related to an incorrect FT factor. 

Helium models of analyses a-c of RMZ 42, analysis b of 020821-02 and analyses c, e 

of 020823-02 do not comply with criteria (a)-(e) and are rejected (Fig. 7.4). For 

analyses c and e of 020823-02, this suggests that the inconsistencies between their FT 

corrected 4He age and corresponding AFT age may not be related to an overcorrection 

of raw 4He age by an incorrect FT factor. 

7.5.2 Cooling path models involving reheating events  

Forward modelled helium age t-T paths of samples RMZ 18 (batch 3-5), RMZ 31 (all 

analyses) and RMZ 35 (all analyses, 2 models) yield good fits with model criteria (a)-

(e) (Fig. 7.4) and considered to be reliable. These modelled t-T paths indicate a more 

rapid cooling to below c. 60°C at the eastern margin of the southern basement and in the 

Lurio Belt in the Early Cretaceous (c. > 100 Ma). RMZ 18 and RMZ 31 also show 

further cooling to below c. 40°C during this time (Fig. 7.4). All these three samples 

consistently indicate a reheating up to c. 60°C in Palaeogene times (c. 40 Ma) followed 

by subsequent cooling to below c. 40°C in the Neogene at c. 20-10 Ma (Fig. 7.4). 

No AFT t-T path is derived for sample RMZ 18 due to insufficient track length data 

(Appendix B.5). Therefore, its helium t-T paths are modelled by using AFT t-T paths of 

the proximate sample RMZ 4 as an initial model input. 

The best-fit AFT t-T paths of RMZ 4, RMZ 31 and RMZ 35 indicate a reheating 

between 60°C and 75°-80°C in the Palaeogene related to a subsequent more rapid 



Figure 7.4: The map is a subset of Fig. 6.1 and depicts AFT and (U-Th)/He sample locations. Large dots highlight sample locations of (U-Th)/He analyses in the southern

basement. The arranged pictograms display the modelled helium paths. Rejected He paths are denoted in red italics on the pictograms. The principle elements of the
path pictograms are indicated by the solitary example. The solid black lines represent the modelled paths of individual analyses and the dots, triangles and

circles are the employed nodes. The dashed line and the grey envelops are the modelled paths of corresponding AFT analyses (see Figs. 6.5, 6.10). The colour index
corresponds to the colour scheme used forAFT paths and indicates the sample’s earliest cooling to below c. 110° C.
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cooling step to below 60°C in the Neogene. Such more rapid cooling is not reproduced 

by any of the corresponding modelled helium age t-T paths. This could suggest that this 

period of rapid cooling represents a modelling artefact related to uncertainties in the 

AFT annealing model (e.g. Kohn et al., 2002, see section 2.2.5.2). Therefore cooling to 

below c. 60°C in the Palaeogene and further to below c. 40°C in the Neogene is more 

likely traced by the helium t-T paths of samples RMZ 18, RMZ 31 and RMZ 35.  

Both, RMZ 31 and RMZ 35 display a difference of c. 15°-20°C in their maximum 

reheating temperatures between the best-fit AFT t-T and the helium t-T model paths. 

RMZ 31 helium t-T paths display good overlaps with their corresponding AFT t-T paths 

confidence envelops at time of reheating (Fig. 7.4). It is supposed that in this sample the 

temperature differences are related to uncertainties in both the AFT annealing and the 

helium diffusion models. In AFT dating these uncertainties originate from e.g. the 

limited knowledge of initial, non-annealed MTL (e.g. Kohn et al., 2002). In (U-Th)/He 

age modelling, the diffusion characteristics of Durango apatite are universally used. A 

possible influence of variable diffusion kinetics for different apatite species as proposed 

by Lippolt et al. (1994) is thereby not considered. The helium t-T paths of RMZ 35 do 

not display good overlaps with the AFT confidence envelops at times of maximum 

reheating (Fig. 7.3). The AFT MTL is not well reproduced by the modelled AFT data 

(Fig. 6.10). Besides uncertainties in the AFT annealing (section 2.2.5.2) and helium 

diffusion models, the rather less well reproduced AFT data are probably more crucial to 

account for the observed temperature difference. As the cooling step between 60°C to 

40°C is best constrained by helium t-T paths, the temperature of c. 60°C and the timing 

of the reheating in the Palaeogene at c. 40-30 Ma are probably better estimated by 

modelled helium than by the AFT t-T paths of samples RMZ 31 and RMZ 35 (both 

models). 

The t-T path of the single grain analysis c from samples RMZ 31 deviates slightly 

from the corresponding helium analyses t-T path models (Fig. 7.4) and might indicate 

an outlier 4He analysis of RMZ 31. However, the single grain 4He ages of RMZ 31 do 

not correlate with their grain radii (Tab. 7.2, Fig. 7.2a) but yield very consistent forward 

modelled t-T paths (Fig. 7.4). Meesters and Dunai (2002a) demonstrated that the 

average helium age does not strongly depend on the radius and shape of a crystal but 
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tends to be universal for identical surface to volume ratios (S/V). The helium age 

evolution can be modelled for a sphere with an identical S/V ratio. Consequently, the 

slightly larger length/width ratios of single grains a, e compared to b, d (Tab. 7.4) result 

in smaller S/V ratios and could account for higher helium retention, i.e. older 4He ages. 

The lack of correlation between the raw 4He ages and grain radii in single grain analyses 

of sample RMZ 31 might be simply explained by different single grain S/V ratios due to 

variations in grain length (Tabs. 7.2, 7.3).  
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Chapter 8  

DISCUSSION – MESOZOIC-CENOZOIC COOLING AND 

DENUDATION HISTORY OF THE NORTH MOZAMBICAN 

BASEMENT  

 
In this chapter, the results of the AFT and (U-Th)/He analyses are discussed together to 

deduce implications on the cooling and denudation history of the north Mozambican 

basement since middle Mesozoic times. They are presented in sections according to 

their sample locations and the sample groupings derived from the AFT analyses. These 

are the western Axial Granulite Complex, the Mount Tumbine and the eastern and 

central southern basement areas. The sections are ordered chronologically, starting with 

the oldest recorded cooling event in the region.   

8.1 Axial Granulite Complex 

The earliest cooling into the AFT PAZ, which is insinuated on the western rift shoulder 

of the Malawi rift system, (Figs. 4.6, 6.1, 8.1 and Tab. 6.1) most probably occurred 

prior to the Early Cretaceous.  A Late Jurassic period (c. 150 Ma) of denudation due to 

rifting is inferred from AFT data on the western flanks of the Rukwa and Malawi rifts 

(Figs. 4.4, 8.2; Van der Beek et al., 1998). Nairn et al. (1991) and references therein 

suggest that earliest post-Karoo crustal extension occurred in southern Mozambique 

(SMGS in Fig. 4.4) between c. 195-140 Ma, prior to Gondwana break-up. Both areas of 

pre-Cretaceous rifting are superimposed onto the northerly trending MB and line up in 

N-S trend with the analysed samples from the western Axial Granulite Complex. This 

implies that the investigated region had cooled into the AFT PAZ in response to 

denudation during a Jurassic phase of rifting, which probably reactivated northerly 

trending ductile fabrics along the western MB. It further indicates that this Jurassic 

thermo-tectonic event is of continental scale relevance along the western edge of the 

MB, contrasting to the local importance ascribed by Van der Beek et al. (1998). 
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Figure 8.1: Map of post Pan-African tectonic lineaments in northern Mozambique. Modified 
and complied after Castaing (1991), Chorowicz (2005), Lächelt (2005), Mougneot et al. (1987), 
and references therein. The insets illustrate the generalized regional cooling paths for sample 
sets of the Axial Granulite Complex and Mt. Tumbine (green), the C group (brown) and the M 
group (blue) populations of the southern basement. The colours of the cooling paths represent 
similar periods of earliest cooling into the AFT PAZ (≤ 110°C): dark blue = c. 190-180 Ma, 
brown = c. 170 Ma, violet = c. 150 Ma, orange = c. 130-110 Ma, light blue = c. 90-80 Ma and 
dotted grey = unconstrained, but inferred. 
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During the Early Cretaceous a relatively swift cooling step with rates of up to 10°C/Ma 

is recorded at c. 115-100 Ma (Figs. 6.6, 8.1). This period coincides with the Early 

Cretaceous intrusive activity in the Chilwa Alkaline Province around southern Malawi 

between c. 138-105 Ma (Figs. 8.1, 8.2; Bloomfield, 1959; Eby et al., 1995; Woolley and 

Garson, 1970). Eby et al. (1995) suggested that the Chilwa magmatism was caused by 

crustal extension along pre-existing zones of weakness that lead to decompressional 

melting. The cooling of these intrusions to T ≤ 110°-60°C proceeded extremely rapid 

after their emplacement, implying that prolonged thermal influences on the surrounding 

basement are less likely and/or of very local importance. This argues that the Early 

Cretaceous cooling period is less likely related to a cooling from a thermally disturbed 

basement. In the Chilwa Alkaline Province, a sub-orthogonal system of NE and NW 

trending alkaline dykes indicates crustal extension in response to variable stress field 

settings. Castaing (1991) inferred a reorientation of the tensional stress field from NW-

SE to NE-SW in Southeast Africa between Middle/Late Jurassic to Early/Late 

Cretaceous. The northerly trending Chire-Urema Graben, which crosscuts the Shire 

Valley, formed in the Early Cretaceous (Flores, 1973). It can be linked further 

southward via the Chissenga Graben into the horst and graben structures of southern 

Mozambique (Figs. 4.4, 4.5, 8.1, 8.2). The extension of theses graben was accompanied 

by the eruption of volcanics (Lupata, Movene basalts) from fissures at c. 137-115 Ma 

(Nairn et al., 1991; Lächelt, 2005 and references therein). Their tectonic activity 

presumably ended in the Late Cretaceous with the establishment of the rifting in 

Mascarene Basin in the Indian Ocean (Dingle and Scrutton, 1974). During the Early 

Cretaceous, crustal extension and related magmatism localized along the western MB is 

manifested from north to south in the Chilwa Alkaline Province, the Chire-Urema 

Graben and the southern Mozambican Graben (Figs. 4.4, 6.1, 8.1). These facts highlight 

a potential for brittle, extensional or transtensional reactivation of northerly trending 

ductile basement fabrics in the western MB. They further suggest that the middle Early 

Cretaceous swift cooling to T ≤ 70°-60°C in the Axial Granulite Complex was related to 

denudation due to rifting. Whether this Early Cretaceous exhumation also caused a 

basement exposure to sub aerial/aerial conditions is not resolved by the AFT system. 

However, the recorded amount of cooling suggests approximately 2.0-1.7 km of 
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associated denudation. Such an amount of denudation is in part supported by the fact 

that pre-existing NW trending faults in the Shire and Zambezi valleys (Fig. 8.1) 

experienced throws of up to 1 km during their intense extensional reactivation in 

Cretaceous times (Castaing, 1991). The rapid rift related denudation was most probably 

linked to the southward movement of Madagascar along the DFZ (Figs. 4.3, 4.4, 8.1, 

8.4) as suggested by Castaing (1991). On the other hand, the opening of the South and 

Equatorial Atlantic at c. 130-110 Ma (Fig. 8.2) caused a reactivation of transcontinental 

shear zones and subsequently triggered reactivation of the MB fabrics and the 

superimposed extensional basins (Jansen et al., 1995 and references therein). The 

Mwembeshi Shear Zone extends across Africa from northern Namibia through 

Botswana, Zambia into Malawi, where it links up with the MB (Fig. 4.4, 4.5). In 

northern Namibia, the Early Cretaceous rifting and break-up was accompanied by the 

reactivation of NE-SW trending faults of the Mwembeshi Shear Zone (Clemenson et al., 

1997) and fault related igneous activity at c. 137-124 Ma (Milner et al., 1995; Renne et 

al., 1992). Consequently, the Early Cretaceous (c. 115-100 Ma) phase of more rapid 

denudation and rifting in the Axial Granulite Complex was probably linked to the 

tectonic reactivation of the MB via the transcontinental Mwembeshi Shear Zone in 

response to the continental break-up and opening of the South Atlantic in West Africa 

(Fig. 4.4). The inferred sinistral sense of displacement along the Mwembeshi Shear 

Zone shear (Unternehr et al., 1988), however, conflicts with an associated right stepping 

extensional setting along the Axial Granulite Complex. This could in turn suggest that 

the Mwembeshi Shear Zone also experienced some dextral displacement in the Early 

Cretaceous. The Early and Late Cretaceous dextral movement and reactivation of Pan-

African age shear zones and associated extensional and compressional tectonics in the 

perpendicular trending Cretaceous rift basins in response to the opening of the South 

and Central Atlantic are reported from the Central African Shear Zone and the Benue 

Trough (Fairhead and Brinks, 1991; Popoff, 1988). Alternatively, the Axial Granulite 

Complex was linked as a right stepping extensional/transtensional setting via the 

Tanganyika-Rukwa-Malawi System to the dextral Central African Shear Zone / Benue 

Trough (Figs. 4.4 and 4.5) and experienced rift related denudation due to far stresses 

transferred trough the Central African Shear Zone into Africa in Early Cretaceous times. 
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A Late Cretaceous cooling into the AFT PAZ at c. 90-80 Ma is recorded by one sample 

of the Axial Granulite Complex. The subsequent cooling through the AFT PAZ is rather 

slow and less rapid than the cooling during the Early Cretaceous denudation phase (Fig 

8.1). The Late Cretaceous cooling period coincides with the highest tectonic subsidence 

rates (> 40 m/Ma) in the Mozambique Basin (Fig. 8.1; Jansen et al., 1995) and with the 

peak rifting rates (c. 50 m/Ma) in the now E-W extending South Mozambique Graben 

between c. 96-76 Ma (Fig. 4.4; Nairn et al., 1991). The recorded synchronous cooling is 

probably related to denudation by renewed crustal extension in the western Axial 

Granulite Complex. As cooling did not proceed too rapid this Late Cretaceous cooling 

phased could alternatively reflect, slow ongoing denudation due to erosion. Jansen et al. 

(1995), however, related the Late Cretaceous increase in subsidence in the Mozambique 

Basin to far field stresses of plate reorganization in the Indian Ocean, which therein led 

to the rapid opening of the Mascarene Basin (Fig. 8.2, section 8.3.1). Nairn et al. (1991) 

emphasized a broad synchronism between the peak rifting in southern Mozambique and 

a change in poles of rotation of South America relative to Africa (see references in 

Nairn et al., 1991).  However, no significant tectonic changes/activities are reported 

along the entire Atlantic throughout the Cenomanian to Coniacian between c. 96 Ma 

and 85 Ma (Jansen et al. 1995). A tectonic quiescence since the break-up is also 

evidenced along the Mwembeshi Shear Zone in northern Namibia, where recent AFT 

data indicate earliest post break-up tectonic activity by transpression at around c. 70 Ma 

(Raab et al., 2002). This rather implies that tectonic activity and renewed extension in 

the western MB in northern Mozambique at c. 90-80 Ma were linked to changes in the 

spreading configuration in the Indian Ocean during the early Late Cretaceous. 

The Late Cretaceous to Palaeogene period of slow cooling through the AFT PAZ 

represents c. 2.0-1.7 km of denudation. Since, subsequent cooling to surface conditions 

(c. 20°C) suggest additional 1.6-1.3 km of denudation. Together with Early Cretaceous 

denudation phase, this suggest at least locally up to 4.0-3.4 km of crust removal during 

Early Cretaceous to Palaeogene times and up to 5.6-4.7 km until today. An indicated 

pre-Cretaceous amount of denudation can not be exactly quantified but indicates, 

however, at least ≥ 3.6-3.0 km of removed crust since Mesozoic times. Since the 

Mesozoic, the Zambezi Delta was sourced from a palaeo-catchment area that comprised 
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the Middle Zambezi and the Shire fluviatile systems (Fig. 8.1; Goudi, 2004; Thomas 

and Shaw, 1988). According to Salman and Abdula (1995) the paleao-shelf outer edge 

of the Mozambique Basin gradually extended seawards by accumulation of younger 

sediment complexes since the Early Cretaceous. The presented AFT data evidence, that 

the Axial Granulite Complex provided material that was transported to and deposited in 

the Mozambique Basin since the Early Cretaceous. The Zambezi Delta experienced an 

elevated sediment influx in the Late Cretaceous between c. 90-65 Ma (Walford et al., 

2005), synchronous to the second Cretaceous denudation period in the western Axial 

Granulite Complex at c. 90-80 Ma (Fig. 8.2). It further substantiates a material flux 

from the western Axial Granulite Complex into the Zambezi Delta of the Mozambique 

Basin in the Cretaceous. 

The AFT modelling results of the western Axial Granulite Complex indicate that 

cooling to c. 60°C took places at latest in the Neogene (Fig. 8.1). This in turn could 

imply a subsequent more rapid cooling to subaerial conditions. As the development of 

the south-western Malawi Rift segment started in the Late Miocene (Chorowicz, 2005), 

this indirectly insinuated cooling in the recent past could be either related to renewed 

rifting in the Axial Granulite Complex in the Neogene or just a modelling artefact (see 

section 2.2.5.2) 

8.2 Mount Tumbine  

Mount Tumbine is an inselberg, made up of a circular syenite intrusion and belongs to a 

set of alkaline intrusions and dykes, the Chilwa Alkaline Province (Figs. 6.7, 8.1). The 

intrusion ages within this province range between c. 137-105 Ma (Bloomfield, 1968; 

Eby et al., 1995; Lächelt, 2004; Woolley and Garson, 1970). 

A rapid cooling period into the AFT PAZ and presumably further below c. 80°-60°C 

occurred in the Early Cretaceous at c. 115-110 Ma. It is synchronous to the rapid 

cooling into the AFT PAZ of related alkaline intrusions, exposed near the city Zomba 

(Figs. 8.1, 8.2) to the north of Mt. Tumbine (Eby et al., 1995). This probably suggests 

that Mt. Tumbine cooled alike these plutons very rapidly to shallow ambient 

temperatures after its intrusion in the Early Creatceous at c. ≤ 115 Ma. Eby et al. (1995) 

related the rapid cooling of these alkaline granitoids to their emplacement into a shallow 
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intrusion level (c. 2-3 km depths) and to subsequent rapid unroofing due to local 

doming above the intrusions. Updomed and indurated Karoo sediments are also 

reported proximate to Early Cretaceous alkaline intrusions in the Shire Valley (Fig. 8.2) 

to the south of Mt. Tumbine (Cooper and Bloomfield, 1961). Consequently, the more 

rapid cooling of Mt. Tumbine is most probably as well related to an emplacement into a 

shallow crustal level and to subsequent rapid denudation (unroofing) in the Early 

Cretaceous. If the entire amount of rapid cooling is attributed to post-intrusive 

denudation, it equals to c. 2.0-1.7 km of crust removal during the Early Cretaceous. 

Such amount of denudation is similar to the synchronous rift related denudation in the 

western Axial Granulite Complex (section 8.1) and could suggest a primarily 

denudation (rift related) controlled cooling of Mt. Tumbine in the Early Cretaceous. 

This rapid Early Cretaceous cooling of the Mt. Tumbine syenite intrusion, however, 

further manifests a rifting and magmatic period in the western part of the north 

Mozambican MB during the Early Cretaceous at c. 130-100 Ma. The modelling results 

suggest that Mt. Tumbine cooled trough the 60°C isotherm in Late Cretaceous to 

Palaeogene times (Fig. 6.7). This subsequent exposure to sub aerial/aerial conditions is 

likely related to ongoing denudation and implies a maximum amount of 3.6-3.0 km of 

denudation since the Early Cretaceous.   

A post-Cretaceous cooling step due to a reheating to temperatures up to 80°-90°C is 

inferred from the AFT modelling in Palaeogene times (c. 45-30 Ma). Field observations 

along the Mt. Tumbine sampling profile (Fig. 6.7) revealed cm-scale joints healed with 

quartz, feldspar and sulphides. These veins occur rather locally and are present within 

the gneiss and syenite host rock. Their formation thus clearly post-dates the timing of 

the syenite intrusion in the Early Cretaceous. It suggests, that the reheating is related to 

heat advection by fluids after the main intrusive activity. Because the timing of 

reheating broadly corresponds to the earliest rifting and igneous activity of the East 

African Rift System in the Afar region at c. 30 Ma (Fig. 4.6; Chorowicz, 2005 and 

references therein), the reheating might represent an early foreshadowed thermo-

tectonic signal of the shortly after evolving south-eastern branch of the East African Rift 

System (Figs. 4.6 and 8.1).  
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8.3 Southern basement 

8.3.1 The eastern margin 

On the base of the interpretation from thermal history modelling of the AFT and 

(U-Th)/He data, a tectonic segmentation of the eastern margin of the southern basement 

is deduced (sections 6.3.2.2, 7.5.3). Satellite image analyses of the eastern margin reveal 

a prominent NNW-SSE trend in the photo-lineation pattern between c. 14.5° and 

15.5° latitude (Riepshoff, 2005). These lineations crosscut the easterly trending ductile 

basement fabrics at high angles (Fig. 8.3) and display an obvious parallelism to the 

northerly trending DFZ, located offshore to the present continental margin (Figs. 8.1, 

8.3). According to Riepshoff (2005) these photo-lineations represent brittle tectonic 

structures (faults) that resulted from associated tectonic activities of the DFZ in the 

Phanerozoic. The results of the AFT and apatite (U-Th)/He thermochronology and the 

satellite image analyses appear to be fairly complementary, inferring that the southern 

basement along the eastern continental margin exposes crustal segments that are 

separated by northerly trending brittle faults. These enclosed blocks were formerly 

located at different crustal levels and experienced exhumation and differential cooling 

during different stages of tectonic activity along the DFZ. The northerly trend of the 

brittle fault pattern coincides with northerly ductile basement trends of the MB, 

observed to the north of the Lurio Belt (Fig. 6.1). The matching northerly orientated 

trends of the ductile fabrics, brittle faults and DFZ imply that the formation of the DFZ 

reactivated pre-existing ductile basement fabrics to the north of the Lurio Belt.  

Earliest rapid cooling through the AFT PAZ is recorded at c. 190-180 Ma and was 

followed by a second, slow cooling step starting in the Middle Jurassic due to reheating 

up to 70°-90°C at c. 180-160 Ma (Figs. 6.6, 8.1). The timings of the first cooling step 

and the reheating event correspond to the oldest crystallization K-Ar and Sm-Nd model 

ages (Jaritz et al, 1977; Grantham et al., 2005) of c. 180-160 Ma from primarily basaltic 

rocks exposed along the eastern margin (Fig. 8.3). A relation of these volcanic rocks to 

the Bouvet mantle plume derived Large Igneous Province (Fig. 4.2) is uncertain 

(Duncan et al., 1997; Grantham et al., 2005). Because of underlying terrestrial sedi-

mentary remnants Jaritz et al. (1977) inferred surficial emplacement conditions. 
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Figure 8.3: Image (a) displays the distribution of photo-lineations (white lines) superimposed 
on the interpreted satellite image mosaic of the eastern continental margin. The mosaic location 
at the eastern margin is depicted in Fig. 8.1 and the white numbers are the “paths-row” codes of 
individual Landsat TM 5 scenes. A dashed light blue line approximates the boundary between a 
northern and a southern region of photo-lineation trend patterns. Their corresponding rose 
diagrams are given in the inset. Image (b) displays the relationship between ductile basement 
fabrics (black lines) and photo-lineations (white lines) in the northern region. Images are 
modified after Riepshoff (2005). 
 
This in turn suggests that the preceding cooling (at least for parts of the basement) took 

place from ≥ 110°C to aerial conditions at c. 190-180 Ma. Geiger et al. (2004) argued 

that the Gondwana break-up in the Morondava Basin of southern Madagascar (Figs. 

4.1-4.4, 8.4) was preceded by a short-lived rifting period, the “Andafia rift”, during the 

Early to Middle Jurassic at around 190-180 Ma (Toarcian-Aalenian). A series of AFT 

studies indicate that cooling by denudation along the western margin of Madagascar, 

parallel to the DFZ (Emmel et al., 2004; Seward et al., 2004) as well as exhumation and 

reworking of Permo-Triassic sedimentary strata within the Morondava Basin (Emmel et 

al., 2005) in the Early to Middle Jurassic are linked to the synchronous rifting event in 

the Morondava Basin (Figs. 4.3, 8.4). To the south of northern Mozambique, at the 

opposite site of the Mozambique Basin, an Early Jurassic cooling period is related to 

erosion along an evolving rift shoulder in central Dronning Maud Land, East Antarctica 
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synchronous rifting in the Mozambique and Somali basins during Early to Middle 
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Jurassic times, and prior to the Gondwana break-up. The orientation of the associated 

rift axis between northern Mozambique and central Dronning Maud Land is unknown. 

However, based on the easterly trending Permo-Triassic rift setting (chapter 3; Fig. 3.8) 

and the easterly orientated Mesozoic seafloor magnetic anomalies (Fig. 4.4; Coffin and 

Rabinowitz, 1992) an easterly rift axis trend, broadly parallel to the present southern 

passive margin of north Mozambique, is inferred. These Early to Middle Jurassic rifting 

phases in the future Somali and Mozambique basins could suggest a synchronous 

dextral movement and tectonic activity along the DFZ. The late Early Jurassic cooling 

period from ≥ 110°C to 20°C at around 190-180 Ma most probably reflects denudation 

of approximately 3.6-3.0 km due to tectonic activity along the DFZ and sustains 

synchronous transform faulting along the DFZ. Grantham et al. (2005) suggested a 

transpressive tectonic setting based on the chemical indications from the exposed 

volcanic rocks. In the absence of kinematic constraints, transtension and/or pure 

orthogonal crustal thinning might also account for denudation and cooling around 190-

180 Ma. A Jurassic rifting period (c. 195-140 Ma) prior to break-up is also reported 

from southern Mozambique (Nairn et al., 1991 and references therein). There E-W to 

NW-SE tension resulted in N-S trending faults and produced a series of large horsts and 

grabens (Fig. 4.4; Castaing, 1991; Dingle and Scrutton, 1974; Nairn et al., 1991). Based 

on seismic interpretations an initial period (Jurassic-?Early Cretaceous) of wrench 

faulting is related to northerly trending strike slip movement during the early separation 

of East and West Gondwana (Dingle and Scrutton, 1974; Nairn et al., 1991). The late 

Early Jurassic period of transpressional and/or transtensional tectonics along the eastern 

margin of northern Mozambique appears to be of a similar nature as the synchronously 

active setting in southern Mozambique. These consistencies might indicate that the DFZ 

and the fault system of southern Mozambique were already active as associated systems 

of N-S trending transform structures during an Early Jurassic rifting event at c. 190-180 

Ma (Figs. 4.3, 4.4, 8.4). 

Subsequently to the Early Jurassic cooling a reheating up to 70°-90°C is inferred at 

c. 180-160 Ma (Figs. 6.6, 8.1, 8.2) and most probably related to the synchronous 

volcanic activity in the Middle Jurassic. Conclusively, an increased heat flow and/or re- 
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Figure 8.4: Palaeo-geographic reconstructions of Gondwana depicting the palaeo-positions of 
Madagascar, northern (N) Mozambique and central Dronning Maud Land (cDML) at the 
Permian/Triassic boundary (250 Ma), in the Middle Jurassic (175 Ma), Early Cretaceous (140 
Ma) and late Early Cretaceous (118 Ma). White and medium grey zones in 250 Ma and 175 Ma 
timeframes represent zones of significant strain and limited intracontinental rifting during the 
late Palaeozoic to Early Mesozoic. Light grey zones in 140 Ma and 118 Ma timeframes 
represent shallow continental margins and oceanic plateaus. Orange and green lines represent 
transform faults. The maps are modified and compiled from de Wit (2003) and references 
therein and Roeser et al. (1996). Abbreviations: Oceanic basins: MB = Mozambique Basin, RLS = Riiser-
Larsen Sea. Transform and shear zones: AR = Astrid Ridge, BRSZ = Bongolava-Ranotsara Shear Zone, DFZ = 
Davie Fracture Zone, GR = Gunnerus Ridge, MR = Mozambique Ridge.  

burial due to volcanic rock emplacement are accounted for the observed reheating. 

Jaritz et al. (1977) estimated the present day maximum thickness of the volcanic rocks 

to be of c. 2.5-2.0 km. As these Jurassic volcanic rocks occur only as small remnants 

today, these estimates represent minimum values of their initial thickness. No 

information is available on the synchronously prevailing palaeo-geothermal gradient. 

Adopting an average value of 30°C/Ma suggests that reheating temperatures of 60°C to 

75°C can be achieved by reburial from volcanic rocks of 2.5-2.0 km thickness alone. 

These values are in good agreement with reheating palaeo-temperatures of c. 70°-90°C 

derived from AFT modelling. Higher reheating temperatures up to 90°C are easily 

explained by a) an initial volcanic rock pile thickness of > 2.5 km and/or b) a palaeo-

geothermal gradient of > 30°C/Ma, elevated by an increased palaeo-heat flow due to 

volcanism. Conclusively, reburial due to emplacement of volcanic rocks with a 

thickness of ≥ 2.0-2.5 km is accounted for as the prominent trigger of basement 

reheating (c. 70°-90°C) at the eastern margin in the Middle Jurassic at c. 180-160 Ma.  
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Broadly synchronous, during the Middle to Late Jurassic (c. 170-150 Ma) phases of 

more rapid cooling into the AFT PAZ are also recorded along the eastern margin (Figs. 

6.6, 7.4, 8.1). They coincide with the timing of the incipient Gondwana break-up 

between c. 180-155 Ma (Fig. 8.2). Based on tectono-sedimentary evidences in the 

southern Somali Basin, Geiger et al. (2004) inferred a Middle Jurassic break-up 

(Bajocian unconformity) at c. 180 Ma. Whereas the oldest directly dated magnetic 

anomalies in the Somali and Mozambique basins indicate a break-up at c. 155-154 Ma 

(Coffin and Rabinowitz, 1992). Müller et al. (1997) inferred a similar time interval (c. 

180-154 Ma) for oceanic crust formation between the continental shelf regions and the 

M25 anomaly in the Somali and Mozambique oceanic basins (Fig. 4.3). These data 

argue for tectonic activity along the DFZ as a result of the incipient rift to drift 

transition and ongoing southward movement of East Gondwana relative to West 

Gondwana in Middle to Late Jurassic times. Therefore the Middle to Late Jurassic (c. 

170-150 Ma) cooling phases could reflect differential exhumation and denudation along 

the eastern margin in response to transpression and/or transtension along the DFZ in 

northern Mozambique. As the timing of this cooling period (c. 170-150 Ma) coincides 

with the period of basalt extrusion (c. 180-160 Ma), the observed cooling might not 

solely result from denudation but could also reflect the vanishing of an elevated palaeo-

geothermal gradient, raised by an increased heat flow related to volcanism. An amount 

of denudation associated with this cooling episode is therefore not reliable to quantify. 

In combination with the denudation estimates associated with the Early Jurassic cooling 

phase, these AFT data suggest, that at least locally ≥ 3.6-3.0 km of material was 

removed between the Early Jurassic to Late Jurassic.   

During the Early to Late Cretaceous (c. 130-90 Ma), a rapid cooling phase through 

the AFT PAZ to ≤ 60°C to 40°C occurred along the eastern margin (Figs. 6.6, 8.1, 8.2). 

Within that time, Madagascar stopped its southward drift (Fig. 8.4) due to cessation of 

sea floor spreading in the Somali Basin (magnetic anomaly M0: c. 118 Ma; Coffin and 

Rabinowitz, 1992). Therefore, the cooling periods between c. 130-110 Ma are likely 

associated with denudation due to transpression and/or transtension during the ceasing 

tectonic activity along the DFZ. In the Early Cretaceous, the opening of the South and 

Equatorial Atlantic (c. 130-110 Ma) (Figs. 4.5, 8.2) resulted in a dextral reactivation of 
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the NE to E trending Pan-African age shear zones fabrics along the Central African 

Shear Zone (Daly et al., 1989, Fairhead, 1988), and extension in the perpendicular 

trending rift basins superimposed on the N-S trending MB in East Africa (Jansen et al., 

1995 and references therein). Jansen et al. (1995) related the increased tectonic 

subsidence in the Lamu Embayment (SE Kenya) and the Mozambique Basin (Figs. 4.4, 

4.5, 8.2) to basement reactivation in response to the opening of the South Atlantic. 

Synchronously (c. 140-110 Ma), a more rapid denudation is indicated by AFT data in 

southern Kenya and along the costal margin of Tanzania (Fig. 4.3, 4.4, 4.5 8.2; Foster 

and Gleadow, 1996; Noble et al., 1997). In both areas this rapid denudation is related to 

block faulting and fault reactivation in response to far stresses of the opening of the 

South Atlantic. The eastern margin of northern Mozambique directly lines up with the 

Kenya rift valley and the coastal rift basins of Tanzania along the MB (Figs. 4.4, 4.5). 

This Early Cretaceous (c. 130-110) phase of more rapid cooling is therefore also related 

to denudation which resulted from basement reactivation (presumably northerly 

trending, pre-existing brittle and ductile fabrics) in response to far stresses of the South 

Atlantic opening. Thereby, the eastern margin (cf. the DFZ) formed via the costal 

Tanzania, Kenya and the Sudan rifts a regional right stepping extensional and/or 

transtensional setting to the dextrally displacing Central African Shear Zone.  

The Early Cretaceous denudation period appears to be in good agreement with Early 

Cretaceous (Aptian-Lower Albian) sedimentary records from the southern Rovuma 

Basin. These records indicate an Early Cretaceous uplift and reworking of Jurassic 

strata due to tectonism and sea-level fluctuations (Hancox et al., 2002). Hancox et al. 

(2002) inferred sediment sources to the south and southwest of the southern Rovuma 

Basin. The presented AFT and (U-Th)/He data hereby evidence that the north 

Mozambican basement has been a region of denudation in the Early Cretaceous. 

During the late Early Cretaceous to Late Cretaceous (c. 96-90 Ma), a reorganization 

of the spreading direction took place in the Indian Ocean (Fig. 8.2). It led to the rapid 

opening of the Mascarene Basin between the India/Seychelles/Madagascar block and 

Australia/Antarctica (Powell et al., 1988). Jansen et al. (1995) and references therein 

have argued that because the India/Seychelles/Madagascar block still formed an entity 

with the African Plate, the rapid rifting in the Mascarene Basin caused an accelerated 
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tectonic subsidence in the nearby coastal basins of Mozambique (Fig. 8.2). 

Consequently, rapid cooling along eastern margin in early Late Cretaceous times (c. 90 

Ma) was possibly related to denudation by renewed crustal extension in reponse to far 

stress influences of the rapidly spreading Mascarene Basin. On the other hand, a base 

level lowering due to increased tectonic subsidence in the southern Rovuma Basin  

could have also triggered rapid erosion and cooling on the adjacent basement (Fig. 8.1). 

Compressional structures (flower structure), in the DFZ are associated with 

transpression along the DFZ due to a kinematic change related to the rifting in the 

Mascarene Basin (Malod et al., 1991). Hence, denudation due to transpression might 

too account for the more rapid denudation and cooling in the early Late Cretaceous. 

However, this Early to Late Cretaceous period of cooling to sub aerial conditions 

(AFT and He model results: T ≤ 60°-40°C) represents approximately 2.8-2.4 km of 

denudation along the eastern margin and potentially comprises up to 2.5-2.0 km of 

Jurassic basalts. Based on quantitative thermal models it is argued that an elevated 

transient geothermal gradient likely associated with the Early/Middle Jurassic 

magmatism in southern Africa would have been completely dissipated by Cretaceous 

times (Brown et al., 1994). Therefore the denudation estimates for the Early Cretaceous 

cooling period are less likely to be altered by an elevated geothermal gradient, related to 

the Early/Middle Jurassic magmatism along the eastern margin in northern 

Mozambique. Thermal effects of the Middle Jurassic to Early Cretaceous rifting along 

the northern Mozambican (south eastern basement) sector of the sheared margin of East 

Africa are unlikely to have caused elevated geothermal gradients within the upper 5 km 

of the crust for locations (all samples investigated; Figs. 6.1, 8.1) greater than c. 25 km 

inland of the continent-ocean boundary (Gadd and Scrutton, 1997). 

The youngest, post Cretaceous slow cooling step at the eastern margin is related to a 

reheating to c. 60°C in Palaeogene times at c. 40-20 Ma (Figs. 6.6, 8.1, 8.2). Along the 

eastern margin Cenozoic marine sediments occur mainly in the Rovuma Basin and 

generally increase in thickness towards the basin’s axis in the east (Salman and Abdula, 

1995; von Daniels et al., 1977). This suggests that sedimentary burial is rather unlikely 

to explain the inferred basement reheating on the margin in the Palaeogene. Supposedly, 

the reheating reflects an increased paleao-geothermal gradient due to an increased heat 
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flow in Palaeogene times. As the eastern margin appears to be distinctly ruptured (e.g. 

Riepshoff, 2005; Fig. 8.3) advection of heat by fluid flow could account the observed 

reheating. The timing of this reheating event coincides with an Oligocene-Miocene 

unconformity observed in the sedimentary strata of Rovuma Basin. Jansen et al. (1995) 

and references therein “correlated” the unconformity with the development of the East 

African Rift System and/or with the India-Asia collision. Block faulting and extension 

along the south western branch of the East African Rift System, offshore to the eastern 

continental margin is evidenced since the Middle Miocene (Mougenot et al., 1986) and 

was accompanied by igneous activity (Figs. 4.6, 8.1). A synchronous reheating event at 

Mt. Tumbine is, alike the reheating at the eastern margin, localized within a broadly N-

S trending zone of repeated Mesozoic tectonism, superimposed onto the MB. This 

consistency could point to a widespread Cenozoic reheating event confined to major 

zones of crustal weakness along the MB in northern Mozambique. 

Since post Early to early Late Cretaceous times, final cooling from c. 60°-40°C to 

surface temperatures along the entire eastern margin of the southern basement is also 

partly related to denudation. This amount is not exactly to quantify as cooling caused by 

denudation is likely obscured by cooling from the Palaeogene reheating phase.  

However, it certainly did not exceed 0.8-0.7 km of denudation. 

In total ≥ 6.4-5.4 km of material was removed from the eastern continental margin 

during the Jurassic (190-150 Ma) and Early to early Late Cretaceous (130-90 Ma) 

periods of denudation. If a potential post Cretaceous crust removal is considered then 

the total denudation amounts to approximately 7-6 km until today.  

8.3.2 The central southern basement and the Lurio Belt 

The earliest period of more rapid cooling into the AFT PAZ (≥ c. 110°C) is recorded by 

a sample from the Lurio Belt in the Middle to Late Jurassic at c. 170-150 Ma (Figs. 

6.10, 8.3). This period coincides with the timing of the incipient break-up of Gondwana 

and the onset of seafloor spreading in the Somali and Mozambique basins (e.g. Müller 

et al., 1997). The Lurio Belt constitutes a prominent zone of crustal weakness that 

bounds the southern basement to the north. Its ENE to NE trend broadly parallels the 

axis of the seafloor spreading in the Mozambique Basin (Figs. 4.4, 6.1, 8.3). This could 
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suggest that the ductile fabrics of the Lurio Belt, were orientated in suited trend to have 

been affected by tectonism in response to the incipient seafloor spreading in the 

Mozambique Basin. Presumably, the observed period of more rapid cooling in the Lurio 

Belt represented exhumation due to reactivation of the ductile basement fabrics during 

the Jurassic. As the drift vector in the Mozambique Basin was orientated c. N-S (Fig. 

4.3; Montenat et al., 1996), cooling could have been either related to c. N-S orientated 

crustal extension or to c. N-S orientated compressive uplift and subsequent denudation. 

Synchronously, the eastern margin of the southern basement experienced periods of 

denudation due to transpression and/or transtension along the DFZ in response to the 

incipient break-up and southward drift of East Gondwana relative to Africa (Fig. 8.1, 

section 8.3.1). A Jurassic period of rift related denudation is also supposed for the 

western edge of the MB along the Axial Granulite Complex (Fig. 8.1, section 8.1). 

These data could indicate that in northern Mozambique prominently N-S and 

subordinate ENE to NE trending ductile fabrics of the southern basement were 

reactivated by brittle deformation during the incipient Gondwana break-up in Middle to 

Late Jurassic times. While northerly trending ductile fabrics were primarily reactivated 

by transpression and/or transtension, ENE to NE aligned ductile trend were reactivated 

by c. N-S orientated extension or compression. Rapid cooling into the AFT PAZ up to 

c. 80°C due to denudation represents approximately 1.2-1.0 km of crust removal in 

Middle Jurassic times. 

In the Early Cretaceous (c. 130-100 Ma), a rapid cooling through the AFT PAZ to 

T ≤ 70°-60°C is recorded from samples in the eastern Axial Granulite Complex (e.g. 

samples GM 139, LH 20; Figs. 6.10, 8.1). Their cooling through the AFT PAZ and the 

timing of cooling strongly resemble the Early Cretaceous cooling pattern of samples 

from the western Axial Granulite Complex (section 8.1) and the very proximate samples 

of Mt. Tumbine (section 8.2). These similarities suggest that the region at the western 

part of the southern basement cooled more rapidly in response to rapid denudation and 

crustal extension along the northerly trending Axial Granulite Complex and due to the 

reactivation of Karoo age NW-SE trending normal faults of the proximate Shire Valley 

(Figs. 6.1, 6.10, 8.1; Castaing, 1991) in the Early Cretaceous at c. 130-110 Ma. The 

synchronous amount of denudation is estimated to be of 2.0-1.7 km. As outlined in 
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section 8.1, this denudation was caused by rifting linked to the tectonic reactivation of 

the western MB either via the transcontinental Mwembeshi Shear Zone or the Central 

African Shear Zone in response to the continental break-up and opening of the South 

Atlantic in West Africa (Figs. 4.4, 8.2).  

The Lurio Belt experienced a more rapid cooling step to sub aerial/aerial conditions, 

T ≤ 70°-40°C, due to a reheating to T ≤ 90°C (samples RMZ 35, WB 295; Tab. 6.3; 

Figs. 6.10, 8.1) in the Early Cretaceous at c. 130-100 Ma. However, the timing and the 

intensity of this reheating event is not very tightly constrained (see sections 6.3.2.1 and 

7.4). Both, the reheating and the subsequent rapid cooling are synchronous to  

a) a period of crustal extension and magmatism in the Axial Granulite Complex 

(cf. southern Tanganyika-Rukwa-Malawi System, Figs. 4.4, 8.1) adjacent to the 

west (see section 8.1, 8.2 and 8.3.1) and 

b) a period of denudation by block faulting due to northerly trending basement 

fabric reactivation along the eastern margin (section 8.3.1).  

In both regions the tectonic reactivation along the northerly trending MB was triggered 

by far stress influences from the opening of the South Atlantic transfered via the 

reactivation of NE to E trending transcontinental shear zones (Central African Shear 

Zone, Mwembeshi Shear Zone in Fig. 4.5). The Lurio Belt links up to both regions of 

tectonic activity in the east and west (Fig. 4.4) and broadly parallels in its trend these 

transcontinental shear zones. It therefore supposed that the Lurio Belt was syn-

chronously reactivated as it is linked via the MB to these transcontinental shear zones. 

A reactivation of the NE trending Limpopo Belt in south eastern Africa (Fig. 4.4) is also 

indicated by AFT data in the Early Cretaceous (pers. com. D.X. Belton). The 

reactivation of the Lurio Belt appears to be consistent with a widespread reactivation of 

NE to E trending Late Neoproterozoic/Early Palaeozoic shear zones in Eastern Africa 

during the Early Cretaceous. The inferred reheating (T ≤ 90°C) could reflect advection 

of heat due to fluid flow in the Lurio Belt. In the Early Cretaceous, a NE-SW orientated 

regional tensional stress field prevailed in south-east Africa (Castaing, 1991). The 

subsequent cooling to aerial/subaerial conditions could therefore reflect the vanishing of 

an increased geothermal gradient and denudation due to transtensive and/or 

transpressive brittle reactivation of the ductile high strain fabrics of the Lurio Belt. 
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Certainly, the maximum amount of associated denudation was less 1.6-1.3 km (Figs. 

6.10, 8.1.) and hence indicates a maximum of denudation of 2.8-2.3 km during the 

Middle to Late Mesozoic along the Lurio Belt. 

The majority of the samples from the central southern basement display a very 

homogenous AFT data and cooling pattern (Fig. 6.2, 6.10, 8.1). They cooled more 

rapidly into the AFT PAZ up to ≤ 90°-70°C in the Early Cretaceous at c. 130-90 Ma. 

Subsequently, these samples cooled very slowly and protractedly through the AFT PAZ 

and to aerial conditions (T ≤ 40°C) in the Neogene. The pronounced spatially 

homogenous cooling pattern could suggest that a large part of the central southern 

basement behaved as a uniform crustal segment during its post Jurassic thermo-tectonic 

evolution. The timing of cooling of the “uniform crustal segment” into the AFT PAZ 

coincides with episodes of more rapid cooling through the AFT PAZ (T ≤ 60°C) in the 

adjacent regions of the eastern continental margin (cf. DFZ), the Axial Granulite 

Complex (cf. southern Tanganyika-Rukwa-Malawi System) and the Lurio Belt (Figs. 

4.4, 6.1, 8.1). These regions were pronounced loci of repeated basement fabric 

reactivation (northerly trends of the MB) due to denudation and exhumation related to 

far field stress activities since the Jurassic (sections 8.1, 8.3.1). The uniformly cooled 

central southern basement appears to be “caught” between these regions (Figs. 6.6, 6.10, 

8.1). Repeated differential denudation and exhumation presumably resulted in a lower, 

isostatically compensated local base level (“the lowest topographic point in a particular 

area” [Burbank and Anderson, 2001: page 160]) within these regions than in the central 

southern basement segment fringed by them. A resultant local base level gradient 

between the central southern basement and these adjacent N-S trending zones could 

have triggered gradient compensating denudation within the central southern basement. 

This denudation, probably erosion, could have caused the observed more rapid and 

spatially homogenous cooling into the AFT PAZ during the Early to early Late 

Cretaceous. Approximately 1.3-0.8 km of crustal material was removed during this 

denudation phase. No denudation induced more rapid cooling is recorded in the Axial 

Granulite Complex and along the eastern continental margin at times younger than the 

Late Cretaceous; t ≤ 90 Ma (Figs. 4.4, 6.6, 6.10, 8.1). The early Late Cretaceous also 

marks the onset of very slow and protracted cooling through the AFT PAZ with the 
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central southern basement (Fig. 8.1). Such a significant reduction in the cooling could 

reflect a decrease of denudation, in correspondence to an attainment of a fairly similar, 

denudation compensated base level throughout the entire southern basement (to the 

south of the Lurio Belt) from the Axial Granulite Complex in the west to the eastern 

continental margin. It suggests, that the spatially homogenous cooling pattern of a large 

part of the central southern basement also resulted from global plate reorganization 

processes during the Mesozoic. In contrast to the Axial Granulite Complex (section 8.1) 

and the eastern continental margin (section 8.3.1), the basement cooling was related to 

exhumation that was indirectly linked to the reactivation of pre-existing ductile 

basement fabrics. However, the ductile basement fabrics in the central southern 

basement trend sub parallel to Lurio Belt (Fig. 6.1; Pinna, 1995). The Lurio Belt most 

likely experienced some denudation in the Early Cretaceous. Therefore it is also 

possible that denudation due to the reactivation of broadly easterly trending fabrics 

caused cooling in the southern central basement during the Early to onset of Late 

Cretaceous. Though this alternative cannot be strictly discarded it is regarded as less 

likely. It would infer a very homogenous fabric reactivation and exhumation in order to 

account for the observed AFT data (Tabs. 6.3 and Figs. 6.2, 6.10). Generally, the AFT 

and helium model results (Figs. 6.10, 7.4, 8.1) suggest, that the central southern 

basement cooled very slowly and protractedly to aerial conditions (T ≤ 40°C) in Late 

Palaeogene to Early Neogene times (Fig.8.1), most probably to continuing slow 

erosional denudation. Since the Early Cretaceous, the central southern basement 

experienced approximately 3.6-3.0 km of crustal removal by denudation. 

The youngest post Cretaceous cooling step, related to reheating up to c. 60°C 

occurred in the Lurio Belt in Palaeogene times at c. 40-20 Ma (Figs. 6.10, 8.1). 

Synchronous sediment deposition on the basement is not reported (Pinna, 1987 and 

Lächelt, 2005). As the Lurio Belt constitutes a crustal zone of weakness, heat advection 

by fluid flow appears to be the most reasonable explanation for the inferred reheating. 

This reheating temporally coincides with reheating events at Mt. Tumbine (section 8.2) 

and along the eastern continental margin (section 8.3.1). Similarly to them, a relation to 

the incipient formation of the East African Rift System is supposed for the Cenozoic 

reheating event along the Lurio Belt (section 8.2, 8.3.1). It, however, further manifests a 
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widespread Cenozoic reheating event, localized along major zones of crustal weakness 

in northern Mozambique.  

8.4 Inferences on the Mesozoic Gondwana break-up 

Within the north Mozambican basement the overwhelming majority of thermo-tectonic 

histories, recorded by the AFT and the apatite (U-Th)/ He systems are related to the post 

break-up evolution of the African continental crust (Figs. 6.6, 6.7, 6.10, 8.1). Solely 

along the sheared eastern continental margin, thermo-tectonic imprints of Early to 

Middle Jurassic age are related to the transform fault activities of the DFZ in response 

to rifting and subsequent drifting in the Early to Middle Jurassic (Fig. 6.6, 8.1). 

However, these data only provide an indirect thermo-tectonic record of Gondwana’s rift 

and break-up history in the north Mozambican sector. They neither permit direct 

inferences on the Jurassic rift geometry nor do they permit the quantification of rift 

related denudation. The post Jurassic thermo-tectonic basement evolution, recorded by 

the AFT and apatite (U-Th)/He data likely obscured any potential previous thermo-

tectonic patterns related to the Gondwana break-up in the Jurassic. It cannot be 

concluded if the supercontinent’s break-up either left a thermo-tectonic imprint that has 

been obscured by younger thermo-tectonic events or if it did not leave an imprint at all 

on the north Mozambican basement. Rifting in the north Mozambican sector could have 

been a more a less slow, continuous process of crustal attenuation since the earliest rift 

undertaking in the Permian (cf. chapter 3). The rift axis and the loci of continuous 

crustal extension were likely located to the south of the present continental margin and 

therefore may have not left a thermo-tectonic record on the basement. In addition, a new 

rift axis might have formed at a rather distant location to the south of northern 

Mozambique and rifting did not affect the basement at all in the Early Jurassic. Such a 

rift setting would be fairly similar to a proposed “Andafia rift” in the Somali Basin in 

the Early Jurassic (Geiger et al., 2004). There, the Jurassic rift event initiated a new rift 

axis by a rift jump to the north of the Morondava Basin (Fig. 4.3), abandoned the 

“Karoo age” rift axis and did not leave an imprint in the AFT thermo-tectonic record of 

the basement in south-western Madagascar (see chapter 9).  
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8.4.1 Denudation estimates for the Permo-Jurassic 

AFT and (U-Th)/He data indicate that throughout the entire southern basement of 

northern Mozambique at least 3.6-3.0 km and locally up to c. 5.6 km of high grade 

metamorphic crust was removed by denudation since Jurassic to Cretaceous times. 

Corresponding TFT data suggest c. 12-9 km of denudation since the Early 

Carboniferous to Late Permian. As pointed out in chapter 3, this amount of denudation 

equals approximately 1/3-1/5 of an average continental crust thickness and is regarded 

as the upper limit estimate of denudation. In particular as this estimation is very 

sensitive to the palaeo-geothermal gradient employed and as independent evidences of 

significantly thinned crust are absent in northern Mozambique. However, it suggests 

that on average  ≤ 8-6 km of high grade metamorphic crust could have been removed 

between the Late Permian (c. 250 Ma) and the Early Jurassic to Early Cretaceous 

(c. 190-130 Ma) by very slow denudation (≤ 0.13 km/Ma). 
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Chapter 9  

THE NORTH MOZAMBICAN – SOUTH CENTRAL 

MALAGASY RELATIONS: INFERENCES FROM FISSION 

TRACK ANALYSES 

 
This chapter summarizes the main results from TFT and AFT fission track analyses in 

south central Madagascar of Emmel et al. (2004, 2006a, b, c) and relates them to this 

study in northern Mozambique. It aims to outline the principle differences and 

similarities in the thermo-tectonic histories of the two passive continental margins in 

order to evaluate a coeval and possibly linked margin evolution. Both margins evolved 

from the long term Gondwana disintegration during Late Palaeozoic to Mesozoic times. 

Today, southern Madagascar and northern Mozambique are separated by the DFZ 

transform fault system, whose tectonic activity resulted in a sheared continental margin 

in the northern Mozambican sector of central East Africa (Figs. 4.3, 4.4, 8.4). A 

comparison of their basement’s thermo-tectonic histories could thereby contribute to 

infer, if the supercontinent’s disintegration between both regions was favoured along 

one prominent long lasting transcontinental mega shear system, the Falkland-East 

Africa-Tethys shear system (Figs. 3.10, 4.1) as proposed by Visser and Praekelt (1996, 

1998). In addition, the south western Malagasy and north Mozambican passive 

continental margins could represent opposite shoulders of a common large scale rift 

structure between East and West Gondwana, offset by the DFZ (Fig. 4.3). 

In pure shear models of crustal attenuation the extension is inferred to be 

symmetrically distributed around the rift zone (McKenzie, 1978). Within this model, the 

upper and lower crusts are symmetrically stretched by brittle and ductile deformation, 

respectively. Consequently, this mode of extension could suggest that the exhumation 

due to crustal attenuation is also fairly symmetrically distributed (Fig. 9.1A). It further  

suggests that relative similar cooling, i.e. thermo-tectonic histories are to be expected on 
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Figure 9.1: Three end-member models for continental extension after Lister et al. (1986). 

either side of the rifted margins. In contrast, simple shear models of non-uniform 

continental extension (Fig. 9.1B, C) are characterized either by low angle detachment 

faults that cut through the crust and may even dissect the entire lithosphere (Wernicke, 

1985) or by a complex delamination of the lithosphere, with a crustal detachment at the 

brittle-ductile transition connecting with the Mohorovičić discontinuity, (Lister et al., 

1986). Both, the simple (Wernicke model) and combined shear model (delamination 

model) predict a strong asymmetry in the distribution of the crustal extension to either 

side of the detachment (Fig. 9.1B, C). These detachment models indicate that the lower 

plate margin experienced a distinctly higher degree of crustal attenuation than the upper 

plate margin (Fig. 9.2). Consequently, the associated cooling and denudation histories 
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should be significantly different on the evolving margins. The non-uniform shear 

models predict that the lower plate margin should display a much broader zone of 

thinned crust, which thus experienced a higher amount of exhumation and denudation 

than the corresponding upper plate margin (Fig. 9.2).  

Comparing the thermo-tectonic and related denudations histories (cf. amounts of 

cooling) from the basements of south western Madagascar and northern Mozambique, it 

should be possible to identify symmetric or asymmetric distributed denudation patterns 

across the rift (upper versus lower plate margin) and to derive inferences on the type of 

crustal extension (pure shear versus simples shear model). In the case of a non-uniform 

stretching model it might even be possible to infer the dip direction of the continental 

crust’s dissecting detachment. 

 

Figure 9.2: Sketch of the detachment-fault model of intraplate continental margins with lower-
plate and upper-plate characteristics. “lower plate” and “upper plate” terminology refer to the 
position during terrestrial-rift stage; both types of margins evolve into intraplate continental 
margins during seafloor spreading. The lower-plate margin (A) has a complex structure; tilted 
blocks are remnants from the upper plate, above a bowed-up detachment faults. Multiple 
detachments have led to two generations of tilted blocks. The upper-plate margin (B) is 
relatively coherent. A rise of the asthenosphere during detachment faulting would cause uplift 
of the adjacent margin but “underplating of igneous rocks” would result in subsidence as 
asthenospere converts to lithosphere during cooling as an intraplate margin. Taken from Busby 
and Ingersoll (1995) after Lister et al. (1986). 

After the latest tectono-metamorphic imprint related to the Gondwana amalgamation at 

c. 500 Ma, south central Madagascar experienced a long, protracted period of slow 

cooling in response to slow denudation lasting until the Early Carboniferous at c. 

350 Ma (see references in Emmel et al. 2004). The titanite fission track ages from south 

central Madagascar range from 483 ± 33 Ma to 266 ± 13 Ma (Fig. 9.3). Generally, TFT 
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ages of ≤ 300 Ma are partially reset due to a post cooling thermal influence and are 

mainly located proximate to Cretaceous volcanic dykes. The AFT ages range from 

460 ± 21 Ma to 79 ± 5 Ma (Fig. 9.3). AFT ages that are younger than c. 100 Ma are 

mainly located along the eastern margin of Madagascar and relate to the Madagascar-

India separation while ages of around 200 Ma are partially reset due to a post cooling 

thermal influence by Cretaceous volcanism. These results are fairly similar to AFT ages 

of Seward et al., 2004, which range between 431 ± 21 Ma to 68 ± 5 Ma.  

TFT data with ages of c. ≥ 300 Ma and AFT data with ages of c. ≥ 200 Ma from the 

basement suggest that the south western margin of Madagascar cooled more rapidly by 

denudation (≤ 0.2-0.1 km/Ma) to T ≤ 110°C in the Early Carboniferous and to 

subaerial/aerial conditions (T ≤ 60°C) in the Late Carboniferous/Early Permian. The 

denudation was either related to wet based glacial abrasion or to differential exhumation 

due to brittle reactivation of NW-SE trending basement structures in response to 

intracontinental compression. Synchronously more protracted cooling to T ≤ 60°C due 

to very slow denudation (≤ 0.11-0.025 km/Ma) is recorded further inland to the east. 

Throughout the Permian more rapid cooling (T ≤ 60°C) is related to differential 

denudation which continued east of the Morondava Basin and progressed eastwards 

inland. This differential exhumation occurred along N-S trending basement structures 

during the evolution of the eastward retreating rift shoulder of the Morondava Basin. 

Synchronously and subsequently, the western part of the basement (Morondava Basin) 

was subjected to reheating (T ≥ 110°C) due to burial by Permo-Triassic sediments. The 

Morondava Basin had its largest eastward extension at this time. Along the NW-SE 

trending Bongolava Ranotsara Shear Zone differential cooling was related to 

exhumation and indicated graben formation during the Permo-Triassic. South central 

Madagascar experienced a more or less continued basement cooling due to differential 

exhumation along NW-SE and N-S trending structures during Carboniferous to Triassic 

times. It was related to block faulting due to potential reactivation of late 

Neoproterozoic/Early Cambrian basement structures during the formation of the 

Morondava Basin. Importantly, the AFT data indicate, that except for the western basin 

area, the south central Malagasy basement had cooled to T ≤ 60°C by the Middle 

Triassic. 
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Figure 9.3: TFT (a) and AFT (b) age distribution pattern from the basement of central and 
southern Madagascar with sample locations (black crosses) from Emmel (2004). BRSZ = 
Bongalova Ranotsara Shear Zone. 

Palaeostress analyses in the southern Morondava Basin (Schandelmeier et al., 2004) 

indicate that  

a) an early period (Late Carboniferous/Early Permian) of sinistral strike-slip 

faulting resulted in c. N-S trending pull apart basins; bounded by conjugated sets 

of N-S and NW-SE trending faults 

b) and it was successively replaced by pure NW-SE orthogonal rifting in the Early 

to Middle Triassic and resulted in NE-SW trending graben structures. 

Recent palaeo-geographic reconstructions suggest that Madagascar experienced a slight 

counter clockwise rotation subsequent to its Carboniferous-Triassic rifting (Reeves et 

al., 2004; Reeves et al., 2002). The axis of crustal extension had therefore a c. NNE to 

NE alignment. It was part of a large intracontinental rift zone, the Malagasy Chasm 

(Wopfner, 1994) that extended from the southern Tethyian margin into Gondwana 

(Figs. 3.2, 8.4: 250 Ma time frame). 

The basement of northern Mozambique experienced its latest metamorphic imprint, 

related to supercontinent amalgamation, between c. 550-500 Ma (chapter 3) and was 
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followed by a very slow and protracted cooling in response to denudation from the 

Early Ordovician to the Late Devonian/Early Carboniferous (c. 350 Ma). This slow long 

term cooling (c. 200-150 Ma) appears to be similar to the post metamorphic basement 

cooling of south central Madagascar.   

The TFT ages from northern Mozambique (384±20 Ma to 219±12 Ma) are generally 

younger than the ages of south central Madagascar. They indicate that 

a) more rapid cooling occurred in the late Early to Late Permian (280-260 Ma); 

distinctly later than in Madagascar 

b) the cooling was related to denudation due to the onset of rifting and slightly 

postdates the incipient rifting in Madagascar 

c) the exhumation likely occurred along an uplifted rift flank, parallel to an E-W 

trending rift basin that was supposedly linked to the Zambezi rift system  

d) the basement did not cool to T ≤ 275°C prior to the Triassic (≤ 250 Ma) and 

remained at distinctly higher temperature than south central Madagascar in Late 

Palaeozoic to Early Mesozoic times.   

Importantly, the TFT age pattern on the north Mozambican basement reflects the 

thermo-tectonic imprint of an uplifted rift flank, where the total amount of exhumation 

is related to a complex, coupled interaction of flexural tectonic uplift, denudation and 

isostatic compensation (chapter 3.0) during the Permian to Triassic. In south western 

and central Madagascar, the differential exhumation during the Permo-Triassic period is 

related to a retreating rift shoulder and to crustal extension (graben formation). Clearly, 

the thermo-tectonic basement records of the Permo-Triassic rifting event that affected 

south western Madagascar and northern Mozambique resulted from two fundamentally 

different rifting induced processes. Rift flank uplifts are common rifting induced 

features that do not relate to a particular mode of crustal extension (Ziegler and 

Cloething, 2004). As a consequence, no inferences on the type continental margin can 

be made for northern Mozambique and no conclusion can be drawn on the mode of 

crustal extension (pure versus simple shear) for the intracontinental Gondwana rifting in 

the Malagasy-Mozambican sector during the Permo-Triassic.  
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The kinematic constraints from the southern Morondava Basin in Madagascar 

(Schandelmeier et al., 2004) strongly argue that there has been no tectonic activity along 

the Tanzania-Mozambican sector of the East African margin during the Permo-Triassic. 

In conjunction with the strongly E-W aligned exhumation pattern in northern 

Mozambique these inferences suggest that there has been no apparent direct linkage 

between the c. NE-SW trending Malagasy Trough rift system and the c. E-W trending 

North Mozambique-Zambezi Rift System along the Tanzania-Mozambican sector of the 

East African margin (Fig. 3.2, 8.4). This could imply that the Falkland-East 

Africa-Tethys Shear System did not exist between northern Mozambique and 

Madagascar during the Permo-Triassic rifting period (Fig. 3.10). It appears more 

reasonable, that the Malagasy Trough and the North Mozambique-Zambezi Rift System 

constituted two discrete rift zones with two individual detachments during the Permo-

Triassic period of intracontinental rifting in Gondwana. How and if these zones were 

linked further to the west within Central Africa (Fig. 3.2) is beyond the scope of this 

fission track data set. 

The AFT ages of northern Mozambique (169 ± 19 Ma to 61 ± 8 Ma) are generally 

younger than the ages of south central Madagascar and indicate that 

a) more rapid cooling to T ≤ 110°C and to subaerial / aerial conditions (T ≤ 60°-

40°C) took place between the late Early Jurassic (c. 190-180 Ma) and the Late 

Cretaceous (c. 90-80 Ma); distinctly later than in Madagascar  

b) alike south central Madagascar the cooling was related to differential denudation 

and primarily confined along N-S trending zones of crustal weakness that also 

parallel the Mozambique Belt trend 

c) in contrast to southern Madagascar, brittle reactivation and the stepwise 

exhumation along these N-S trending zones are related to repeated transpression 

and/or transtension due to the Gondwana break-up but mainly to post break-up 

far field stress influences from global plate re-organizations; by tectonic events 

that occurred in post Triassic times. 

Subsequent to the Permo-Triassic rifting along the Malagasy Chasm, the Morondava 

Basin experienced a short lived Early Jurassic (c. 190-180 Ma) rifting event, the 
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“Andafia rift”. This rifting event initiated the supercontinent break-up and seafloor 

spreading in the Somali Basin. Subsequently, the southward drift of Madagascar relative 

to Africa started at c. 180-154 and lasted until c. 118 Ma (Geiger et al., 2004, Coffin 

and Rabinowitz, 1987). Palaeo-reconstructions of Madagascar’s movement along the 

DFZ suggest, that its south western margin passed northern Mozambique between 

c. 175-140 Ma (de Witt, 2003 and references therein) when they attained their spatially 

closest palaeo-geographic position during the Gondwana dispersal (Fig. 8.4).  

A potential mutual influence during this period is therefore discussed now in more 

detail. During the incipient break-up and drift of E and W Gondwana, basaltic lavas of 

Early to Middle Jurassic age (c. 180-160 Ma) erupted on the eastern margin of northern 

Mozambique (Fig. 8.1; Jaritz et al., 1977, Grantham et al., 2005). Volcanic rocks of 

Jurassic age are completely absent in Madagascar (Besairie, 1961; Besairie, 1973). This 

likely suggests that south western Madagascar did not pass northern Mozambique prior 

to the Middle Jurassic (c. ≥ 170-160 Ma). Hence they likely were located at common 

latitude during the late Middle Jurassic to the onset of the Early Cretaceous (c. 160-140 

Ma). Synchronously (c. 170-150 Ma), parts of the eastern margin of Mozambique 

experienced more rapid denudation due to transpression along the DFZ (section 8.3.1). 

This could indicate that the denudation along the eastern margin of northern 

Mozambique provided sedimentary infill to the passing Morondava Basin during the 

late Middle to Late Jurassic. Detrital AFT central ages from Middle Jurassic strata 

(Lower Bajocian to Lower-Middle Callovian; c. 174-156 Ma) of the Morondava Basin 

suggest that these sediments were sourced by reworking the older Permo-Carboniferous 

basin strata (Emmel et. al, 2006a). Reworking was triggered by the previously formed 

“Andafia rift”. It exposed the eastern parts of the Morondava Basin into the position of 

a denuding rift shoulder. Palaeo-current indicators consistently suggest a sediment 

source in the east and appear to exclude an East African source region throughout the 

Middle Jurassic. (Emmel et al., 2006a; Geiger, 2004). These facts rather preclude a 

sediment delivery from northern Mozambique into the adjacent Morondava Basin 

during this time. Thus the question arises where these sediments were deposited instead. 

In the southern Rovuma Basin (Figs. 6.1, 8.1), Middle to Late Jurassic strata are 

inferred, based on seismic interpretation (Salman and Abdula, 1995). Hancox et al. 
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(2002) have shown that Early Cretaceous strata of the southern Rovuma Basin in 

northern Mozambique were sourced from the south and southwest. It could imply that a 

similar source region can be assumed for the Middle to Late Jurassic sediments of the 

southern Rovuma Basin. Thereby the Rovuma Basin “collected” the denuded material 

from northern Mozambique and prevented a material transport further east into the 

Morondava Basin. Such a scenario broadly resembles the Mesozoic graben setting in 

southern Mozambique (Fig. 4.4). These graben also accumulated the Mesozoic 

sediments (Jurassic to Late Cretaceous) that were delivered from the African continent 

and prevented a further eastward transport into the developing Mozambique Basin 

(Dingle and Scrutton, 1974).  

The comparison of the TFT and AFT data from south central Madagascar and 

northern Mozambique clearly shows that both regions experienced a distinctly different 

thermo-tectonic evolution since the Early Carboniferous. While cooling to T ≤ 60°C 

occurred differentially in south central Madagascar during the Karoo rifting period 

(Carboniferous-Triassic), northern Mozambique did not cool T ≤ 110°C prior to the 

Early Jurassic. The cooling of the north Mozambican basement to T ≤ 60°C and further 

to surface temperatures was strongly linked to the post break-up evolution of south 

central East Africa. Common to both regions is a repeated differential denudation along 

pre-existing late Neoproterozoic/Early Cambrian zones of crustal weakness due to their 

repeated reactivation since the Palaeozoic. The basements of south western Madagascar 

and northern Mozambique did not yield thermo-tectonic FT records that are directly 

linked to the Jurassic rifting events in the Somali and Mozambique basins, respectively. 

In northern Mozambique, a thermo-tectonic imprint related to the Jurassic rifting might 

have existed but has been subsequently overprinted by younger, post break-up tectonic 

events. It is therefore not possibly to derive inferences on the types of continental 

margins and on the modes of crustal extension in the Malagasy-Mozambican sector 

during the Jurassic rifting episode of the disintegrating Gondwana supercontinent.  

Many continental rifts are asymmetric in their nature of extension (Busby and 

Ingersoll, 1995 and references therein). As the Jurassic rifting event ultimately led to the 

Gondwana break-up and proceeded along the DFZ in the Malagasy-Mozambican sector, 

it could be likely that south western Madagascar and northern Mozambique constituted 
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asymmetric rift margins and shared a common detachment during the short lived 

Jurassic rifting period. On the other hand, the DFZ constitutes a major transform fault 

(Droz and Mougenot, 1987). Therefore, separated by the DFZ, independent rift basin 

yielding individual detachments of even opposite dip directions could have existed 

between Madagascar-Kenya/Tanzania and northern Mozambique-central Dronning 

Maud Land (Antarctica) during the Jurassic rifting. 

The youngest thermo-tectonic event recorded by AFT data in south central 

Madagascar is a thermal overprint in Early to Late Cretaceous times. It is associated 

with the magmatism of the Marion hot spot (c. 90-83 Ma) that initiated the India 

Madagascar break-up (Storey et al., 1995). In northern Mozambique, the youngest event 

recorded by AFT data is a basement reheating confined to N-S and ENE to NE trending 

zones of crustal weakness in Palaeogene times. It reflects an increased geothermal 

gradient due to heat advection by fluid flow and potentially foreshadows the subsequent 

incipient rifting in northern Mozambique in the Neogene. These different youngest 

thermo-tectonic events further manifest the distinct spatial separation and independent 

thermo-tectonic evolution of Madagascar and Mozambique following the cessation of 

Madagascar’s southward drift in the Early Cretaceous (c. 118 Ma). 
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Chapter 10  
CONCLUSION 

 
40Ar/39Ar hornblende and biotite cooling ages record the cooling from the latest Pan-

African metamorphic imprint at c. 550-500 Ma, linked to the formation of the Namama 

thrust Belt, at slow rates of about 11°-7°C/Ma in Early to Late Ordovician times. Syn- 

to post-tectonic granitoid and pegmatite emplacements at c. 500-450 Ma locally delayed 

cooling and a widespread basement cooling to < 350°C occurred in the Late Ordovician 

to Early Silurian.  

The TFT results in the northern part of the basement record the very slow cooling 

(rates < 1°C/Ma) between the Late Ordovician/Early Silurian and the Late 

Devonian/Early Carboniferous, that is related to decreasing denudation due to the 

establishment of pre-Karoo peneplains within central Gondwana. In southern part of the 

basement the TFT results record the cooling of a denuding and approximately E-W 

trending uplifted rift flank. It formed in the Early to Late Permian and marks the onset 

of rifting and incipient Gondwana dispersal in the vicinity of northern Mozambique. 

Associated crustal extension proceeded in an oblique mode in response to a NW-SE 

tensional stress field. Thereby easterly trending ductile basement fabrics were 

supposedly reactivated by brittle extensional faulting; emphasizing that the ductile 

structural heritage of the late Neoproterozoic/Early Cambrian MB (cf. EAAO) 

influenced the location and orientation of the zone of rifting and exhumation in Permian 

times. A linkage of the north Mozambican rift structure to the Zambezi Rift via the 

Zambezi pre-transform system is inferred. The denudation estimates derived from the 

TFT data suggest a maximum crustal removal of ≤ 9-11 km in the hinterland and ≤ 10-

12 km on the rift flank since Late Carboniferous and Early/Late Permian, respectively. 

AFT and (U-Th)/He data of the north Mozambican basement can be broadly grouped 

into three regions. These are the zone of the Axial Granulite Complex including Mt. 

Tumbine, the eastern margin of the southern basement and the central part of the 
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southern basement, located between the former two regions. Common to all regions is 

an AFT cooling history record since the Jurassic to Cretaceous. These thermo-tectonic 

histories show, that the location and the orientation of the zones of repeated Mesozoic-

Cenozoic exhumation appear to be controlled by prominently N-S and subordinately 

ENE-WSW trending ductile fabrics of the MB, which formed in late Neo-

proterozoic/Early Cambrian times. However, the origin of the brittle basements fabric 

reactivation by exhumation is intrinsically linked to post break-up and opening histories 

of the Atlantic and Indian oceans; global plate reorganization process that exerted far 

field stresses onto the north Mozambican sector of the African continental crust since 

Middle Mesozoic time.  

Two periods of more rapid cooling due to denudation are record by the AFT data in 

northern Mozambique, a first during the Early to Late Jurassic (c. 190-150 Ma) and a 

second during the Early to early Late Cretaceous. A third cooling stage is presumably 

related to a reheating event in the Palaeogene (c. 40-20 Ma).     

The Jurassic period is related to reactivation of N-S trending zones of crustal 

weakness along the MB, i.e. along the orogenic root of the former East African-

Antarctic Orogen. In the western Axial Granulite Complex a potential Jurassic (? 195-

145) cooling stage is related to crustal extension along a generally N-S orientated zone 

that extents from the southern Tanganyika-Rukwa-Malawi Rift System via northern 

Mozambique into the graben system of southern Mozambique. Along the eastern 

margin of the southern basement denudation in the Early Jurassic (c. 190-180 Ma) was 

caused by transpression tectonics along the N-S trending DFZ, which was active as a 

transform zone and interlinked the short-lived Early Jurassic rifting events in the Somali 

and Mozambique basins. A subsequent reheating to c. 70°-90°C resulted from the 

emplacement of at least 2.5-2.0 km of volcanics rocks, presumably related to transform 

faulting the late Early to Middle Jurassic at c. 180-160 Ma. Synchronous (c. 170- 150 

Ma) differential cooling to T ≤ 60°C reflects either the fading of a volcanism induced 

elevated transient palaeo-geothermal gradient and/or denudation related to transpressive 

/transtensive tectonics along the DFZ during the incipient southward drift of East 

relative to West Gondwana. Within the Lurio Belt (central southern basement) a 

Jurassic denudation induced cooling phase is also attributed to a brittle reactivation of 



 
Conclusion 

 209

the ductile high strain basement fabrics by exhumation in response to the early 

southward drift of East Gondwana. 

The second denudation period triggered cooling that was recorded throughout the 

entire southern basement during the Early to Late Cretaceous (c. 130-90 Ma). In the 

Axial Granulite Complex denudation resulted from crustal extension in response to NE-

SW orientated tensional stresses. It occurred along the N-S aligned zone stretching from 

the Axial Granulite Complex in the north via the contemporaneously formed Urema 

Graben to the graben system of southern Mozambique. The associated alkaline intrusion 

of Mount Tumbine was probably emplaced into a shallow crustal level (c. ≤ 3km) and 

sub-sequently cooled rapidly in response to denudation in the Early Cretaceous. Crustal 

attenuation along the western MB has been triggered by the reactivation of pre-existing 

N-S trending zones of weakness and can be linked to the influence of far field stresses 

of the opening of the South and Equatorial Atlantic. Changes in the spreading 

configuration in the Indian Ocean are accounted for denudation by renewed crustal 

extension in the western MB in the Late Cretaceous (c. 90-80 Ma). Palaeo-drainage 

pattern and sediment flux estimates suggest that material denuded in the western Axial 

Granulite Complex was deposited within the Zambesi Delta of the Mozambique Basin 

during Cretaceous times and potentially since. At the eastern margin more rapid 

denudation during the Early to Late Cretaceous is linked to transpressive and/or 

transtensive and extensional tectonics along the DFZ, which in turn are linked to the 

cessation of Madagascar’s southward drift (130-118 Ma), to far field stresses of the 

opening of the South and Equatorial Atlantic (c. 130-110 Ma) and to changes in the 

spreading configuration in the Indian Ocean (c. 90 Ma). Material denuded from the 

eastern margin of the basement was deposited into the southern Rovuma Basin during 

Early Cretaceous times. In the Lurio Belt an Early Cretaceous cooling phase is linked to 

the fading of a basement reheating by fluid flow and to denudation by transpressive 

and/or transtensive brittle reactivation of the ENE to NE trending ductile high strain 

fabrics, which both are caused by far field stresses of the South Atlantic opening. In the 

central southern basement the AFT and the apatite (U-Th)/He data indicate a spatially 

homogenous and very similar thermo-tectonic history since the Early Cretaceous. The 

basement experienced an episode of more rapid denudation during the Early to the Late 
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Cretaceous (c. 130-90 Ma) and subsequently a very slow and protracted denudation 

until Palaeogene to Neogene times. This very uniform pattern is related to an erosional 

compensation of a potential local base level gradient between the central southern 

basement and its bounding N-S trending zones of contemporaneous crustal extension to 

the west (Axial Granulite Complex) and east (eastern continental margin). 

A Palaeogene cooling stage (c. 40-20 Ma), linked to a basement reheating to c. 60°C 

by heat advection of fluids, is observed at Mt. Tumbine, in the Lurio Belt and along the 

eastern continental margin; within zones of crustal weakness. It temporally coincides 

with the earliest tectonic activity of the initiating EARS at c. 30 Ma and probably 

displays a tectonic foreshadow of the Late Miocene rifting in northern Mozambique. 

Denudation estimates suggest that in the Axial Granulite Complex (incl. Mt. 

Tumbine) c. 3.6-3.0 km, and locally up to 5.6-4.7 km of crust were removed since the 

Early Cretaceous, whereby the post Cretaceous amount of denudation was less 0.8 km. 

Along the eastern continental margin denudation amounted to at least 6.4-5.4 km 

between the Early Jurassic to early Late Cretaceous. An additional post Cretaceous 

quantity of denudation of less 0.8 km suggests an approximated total amount of 7-6 km 

since the Jurassic. In the Lurio Belt and in the central southern basement a total of 3.6-

3.0 km of denudation is recognized since the Middle Jurassic and since the Early to Late 

Cretaceous, respectively. The post Cretaceous amount of denudation has been less than 

0.8-0.7 km in the Lurio Belt area and less than 2.3-2.2 km throughout the central 

southern basement. 

 

The comparison of the thermo-tectonic histories from the passive continental margins of 

northern Mozambique and south central Madagascar yield the following results. Though 

the timings of cooling during the Karoo age rifting episode are broadly similar in south 

central Madagascar (Carboniferous to Permian) and northern Mozambique (Permian to 

Triassic), the associated rifting induced processes responsible for the observed cooling 

are fundamentally different in both regions and do not permit inferences on the 

prevailing geometry of crustal extension. South central Madagascar experienced 

differential denudation by crustal extension and rift shoulder retreat in the Morondava 

Basin whereas the basement of northern Mozambique was exhumed and denuded due to 
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an uplifted rift flank. The different alignment of the Karoo age rift axes in southern 

Madagascar (c. NE-NNE) and northern Mozambique (c. E-W) rather suggest 

independent rift shoulder evolutions within the independent rift systems of Malagasy 

Chasm and the Mozambique-Zambezi system during the Permo-Triassic, respectively. 

In conjunction with structural data from southern Madagascar these results suggest a 

kinematic linkage of both rift systems via Falkland-East Africa-Tethys Shear System 

did not exist in Permian times. 

No thermo-tectonic records of the Jurassic rifting and subsequent Gondwana break-

up histories (c. 180-160 Ma) are preserved in the basement rocks of south central 

Madagascar as extensive parts to the east the present Morondava Basin had been cooled 

to T ≤ 60°C prior to Triassic times. Detrital AFT data from the Morondava Basin 

evidence an influence of the Jurassic rifting episode in southern Madagascar but do not 

permit inferences on the amount of associated exhumation and denudation. In northern 

Mozambique cooling T ≤ 110-60°C is not evidenced prior to the late Early Jurassic and 

is not directly related to Jurassic Gondwana break-up in the Mozambique Basin. The 

majority of north Mozambican basement experienced cooling T ≤ 60°C by thermo-

tectonic events associated with the post break-up history of the eastern African 

continent. The thermochronological data sets from south western Madagascar and 

northern Mozambique imply that both rift shoulders were not directly linked throughout 

their passive margin evolution during the Gondwana dispersal in Palaeozoic to 

Mesozoic times. The youngest thermo-tectonic events recorded by AFT data in south 

central Madagascar (Late Cretaceous) and northern Mozambique (Palaeogene) further 

manifest the distinct spatial separation and independent thermo-tectonic evolution of 

Madagascar and Mozambique following the cessation of Madagascar’s southward drift 

in the Early Cretaceous (c. 118 Ma).  

Common to both regions is brittle reactivation of ductile basement fabrics, formed 

during the late Neoproterozoic/Early Cambrian development of East African-Antarctic 

Orogen by differential exhumation during their post Pan African rift and drift 

evolutions. In Permian times broadly northerly and easterly trending fabrics were 

reactivated in Madagascar and northern Mozambique, respectively. Since the Jurassic, 
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exhumation was prominently localized to the reactivation of northerly fabrics in 

northern Mozambique. 
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TITANITE FISSION TRACK – RADIAL PLOTS 
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Appendix B  
APATITE FISSION TRACK – DATA PLOTS 

B.1 Western Axial Granulite Complex  
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B.2 Mount Tumbine 
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B.3 Southern basement – C group 
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Sample: RMZ 25
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Sample: 020821-02 (A)
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Sample: 020822-01
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Sample: 020824-01 (A)
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B.4 Southern basement – M group 
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Appendix C  
BASH SCRIPT – GMT 4.0 
#!/bin/bash 
# 
# GMT script for plotting spatial distribution patterns of apatite and titanite fission 
track data 
# Copyright M.Daszinnies:University of Bremen:Department of Geosciences 
# 
# 
if [ "x$1" != "x-a" ] && [ "x$1" != "x-t" ]; then # check 1st parameter 
 cat << EOF >&2 
 
Usage: sh ft_age.sh -option1 -option2 
  
 option 1 -a apatites -> inputfilename ap_age_a.txt etc... 
  -t titanites -> inputfilename tit_age_a.txt etc... 
 
 option 2 -s gridding using surface 
  -t gridding using triangulation 
Example  
EOF 
exit 
else 
 if [ "x$2" != "x-s" ] && [ "x$2" != "x-t" ]; then # check 2nd parameter 
 echo Check your parameters !  
 echo sh ft_age.sh -h for help  
 exit 
 fi 
fi 
 
# ---Save existing GMT defaults--- 
echo Saving GMT defaults... 
rm /home/mat/work_gmt/tmp/gmtdefaults$$ -v -f 
gmtdefaults -L > /home/mat/gmt_work/tmp/gmtdefaults$$ 
# 
# ---Set new GMT defaults--- 
echo Setting new GMT defaults... 
gmtset MEASURE_UNIT cm 
gmtset PAPER_MEDIA A4 
gmtset ANOT_FONT Helvetica 
gmtset LABEL_FONT Helvetica 
gmtset ANOT_FONT_SIZE 8 
gmtset LABEL_FONT_SIZE 8 
gmtset HEADER_FONT_SIZE 12 
gmtset FRAME_WIDTH 0.075 
gmtset TICK_LENGTH 0.15 
gmtset PAGE_ORIENTATION PORTRAIT 
gmtset COLOR_BACKGROUND 0/0/0 
gmtset COLOR_FOREGROUND 255/255/255 
gmtset COLOR_NAN 255/255/255 
gmtset DEGREE_FORMAT 3 
gmtset BASEMAP_TYPE FANCY 
# 
# ---Definition of general variables---  
cpt=/home/mat/gmt_work/cpt/mozambique.cpt # cpt-file for topography grid 
grid=/home/mat/gmt_work/grids/mozambique_base.grd # base topography grid 
grad_grid=/home/mat/gmt_work/grids/mozambique_shade.grd  
# base shaded topography grid (intensity parameter for topography grid) 
grad_grid_a=/home/mat/gmt_work/grids/mozambique_shade_sub_a.grd  
# sub shaded topopography grid (intensity parameter - trend grid) 
# grad_grid_b=/home/mat/gmt_work/grids/mozambique_shade_sub_b.grd  
# (like a "grad_grid_a" but for additional area) 
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project=M 
scale=16 
trend_cpt=/home/mat/gmt_work/cpt/trend_ft_age.cpt # cpt-file for trend grids 
trend_grid_a=/home/mat/gmt_work/grids/tit_ft_age_a.grd # trend grid  
trend_grid_b=/home/mat/gmt_work/grids/tit_ft_age_b.grd # trend grid 
trend_grid_x=/home/mat/gmt_work/grids/tit_ft_age_x.grd # trend grid 
# 
# ---General graphic features---  
# 
# ---Creating colour palaette for topography (only once required)--- 
# echo Creating color palette -cpt- for topography... 
# makecpt -Crelief -T-3500/3500/200 -Z > $cpt 
# 
# ---Illumination option; creating shaded relief from topography grid--- 
echo Creating shaded relief... 
grdgradient $grid -Ne0.6 -A120 -M -G$grad_grid -V # creating topographic gradient grid 
# grdimage $grid -R$region -J$project$scale -I$grad_grid -C$cpt -Y15 -E150 -K -V > $out  
# shaded topography image using intensity parameter of grad_grid 
# 
# 
if [ "x$1" == "x-a" ]; then # gridding apatite ft ages 
 echo Apatite Fission Track.... 
    # ---Input variables--- 
  txt_in_a=/home/mat/gmt_work/ap_age_a.txt # eastern area - data file 
  txt_in_b=/home/mat/gmt_work/ap_age_b.txt # western area - data file 
  region=34/41/-17.5/-13.5 # total area dimension variables 
  # 
  if [ "x$2" = "x-s" ]; then # gridding with surface  
   out=/home/mat/gmt_work/ps/mozambique_ap_ft_ages_surface.ps  

# output variables   
   echo Plotting basemap relief... 

grdimage $grid -R$region -J$project$scale -I$grad_grid -C$cpt -Y15 
-E150 -K -V > $out  
# shaded topography image using intensity parameter of grad_grid 

   prep_grid_a=/home/mat/gmt_work/tmp/ft_age_prep_a.gmt  
# ---trendsurface variables surface--prep for 
blockmean 

   prep_grid_b=/home/mat/gmt_work/tmp/ft_age_prep_b.gmt  
# ---trendsurface variables surface--prep for 
blockmean 

   # 
        # ---Preprocessing data for SURFACE--- 
   echo Preprocessing fission-track data... 

blockmedian $txt_in_a -I0.5m `minmax $txt_in_a -I0.1` -V > 
$prep_grid_a  
blockmedian $txt_in_b -I0.5m `minmax $txt_in_b -I0.2` -V > 
$prep_grid_b 

   echo done! 
        # ---Interpolation of data (in plane)--- 
   echo Gridding -surface- fission-track data... 

surface $prep_grid_a -I0.5m `minmax $txt_in_a -I0.1` -T0.5 -A0.965 
-G$trend_grid_x 

         grdsample $trend_grid_x -T -G$trend_grid_a  
# ---transforming grid: node to pixel registration --- 
surface $prep_grid_b -I0.5m `minmax $txt_in_b -I0.2` -T0.5 -A0.965 
-G$trend_grid_x 

         grdsample $trend_grid_x -T -G$trend_grid_b  
# ---transforming grid: node to pixel registration--- 

   echo done! 
   # 

else  
# gridding with triangulate -- using remaining alternative for 
option2 "-t "   
out=/home/mat/gmt_work/ps/mozambique_ap_ft_ages_triangulate.ps  
# output variables 

   echo Plotting basemap relief... 
grdimage $grid -R$region -J$project$scale -I$grad_grid -C$cpt -Y15 
-E150 -K -V > $out  
# shaded topography image using intensity parameter of grad_grid 

   tria_grid_a=/home/mat/gmt_work/tmp/ft_age_tria_a.grd  
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# ---trendsurface variables triangulation---  
   tria_grid_b=/home/mat/gmt_work/tmp/ft_age_tria_b.grd  

# ---trendsurface variables triangulation--- 
   # 
        # ---Triangulating data--- 
   echo Gridding -triangulation- fission-track age data... 

triangulate $txt_in_a `minmax $txt_in_a -I0.1` -J$project$scale -
I0.5m -F -G$tria_grid_a 
triangulate $txt_in_b `minmax $txt_in_b -I0.2` -J$project$scale -
I0.5m -F -G$tria_grid_b 

        # ---Postprocessing of data after triangulation (smoothing)--- 
   echo Smoothing triangulated trendsurface... 
   grdfilter $tria_grid_a -D0 -Fc1 -G$trend_grid_a 
   grdfilter $tria_grid_b -D0 -Fc1 -G$trend_grid_b 
   echo done! 
  fi 
  # 
    # ---Creating colour palatte of trendsurface--- 
  makecpt -Cseis -T50/180/10 -Z > $trend_cpt # adjust range manually 
  # 
    # ---Cutting sub-grid of shaded topography using dimensions of trendsuface--- 
  echo Cutting subgrid from shaded relief... 
  grdcut /home/mat/gmt_work/grids/mozambique_shade.grd  

-G/home/mat/gmt_work/grids/mozambique_shade_sub_a.grd 
`minmax /home/mat/gmt_work/ap_age_a.txt -I0.1` # grdcut absolut path - ? 

  grdcut /home/mat/gmt_work/grids/mozambique_shade.grd  
-G/home/mat/gmt_work/grids/mozambique_shade_sub_b.grd 
`minmax /home/mat/gmt_work/ap_age_b.txt -I0.2` # grdcut absolut path - ? 

  #echo loop okay 
fi 
# 
if [ "x$1" = "x-t" ]; then 
 echo Titanite Fission Track....  
  # ---Input variables--- 
  txt_in_a=/home/mat/gmt_work/tit_age_a.txt # eastern area - data file 
  txt_in_b=/home/mat/gmt_work/tit_age_b.txt # western area - data file 
  region=34/41/-18/-14 # total area dimension variables 
  # 
  if [ "x$2" = "x-s" ]; then # grdding with surface 
   out=/home/mat/gmt_work/ps/mozambique_tit_ft_ages_surface.ps  

# output variables 
   echo Plotting basemap relief... 

grdimage $grid -R$region -J$project$scale -I$grad_grid -C$cpt -Y15 
-E150 -K -V > $out  
# shaded topography image using intensity parameter of grad_grid 

   prep_grid_a=/home/mat/gmt_work/tmp/ft_age_prep_a.gmt  
# ---trendsurface variables surface--prep for blockmean 

   # 
        # ---Preprocessing data for SURFACE--- 
   echo Preprocessing fission-track data... 

blockmedian $txt_in_a -I0.5m `minmax $txt_in_a -I0.1` -V > 
$prep_grid_a  

   echo done! 
        # ---Interpolation of data (in plane)--- 
   echo Gridding -surface- fission-track data... 

surface $prep_grid_a -I0.5m `minmax $txt_in_a -I0.1` -T0.5 -A0.965 
-G$trend_grid_x 

         grdsample $trend_grid_x -T -G$trend_grid_a  
# ---transforming grid: node to pixel registration--- 

   echo done! 
   # 

else  
# gridding with triangulate -- using remaining alternative for 
option2 "-t "   
out=/home/mat/gmt_work/ps/mozambique_tit_ft_ages_triangulate.ps  
# Output variables 

   echo Plotting basemap relief... 
grdimage $grid -R$region -J$project$scale -I$grad_grid -C$cpt -Y15 
-E150 -K -V > $out  
# shaded 
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topography image using intensity parameter of grad_grid 
   tria_grid_a=/home/mat/gmt_work/tmp/ft_age_tria_a.grd  

# ---trendsurface variables triangulation---  
   # 
        # ---Triangulating data--- 
   echo Gridding -triangulation- fission-track age data... 
   triangulate $txt_in_a `minmax $txt_in_a -I0.1` -J$project$scale  

-I0.5m -F -G$tria_grid_a 
        # ---Postprocessing of data after triangulation (smoothing)--- 
   echo Smoothing triangulated trendsurface... 
   grdfilter $tria_grid_a -D0 -Fc1 -G$trend_grid_a  
  
  fi 
  # 
    # ---Creating colour palatte of trendsurface--- 
  makecpt -Cseis -T200/380/10 -Z > $trend_cpt # adjust range manually 
  # 
    # ---Cutting sub-grid of shaded topography using dimensions of trendsuface--- 
  echo Cutting subgrid from shaded relief... 
  grdcut /home/mat/gmt_work/grids/mozambique_shade.grd  

-G/home/mat/gmt_work/grids/mozambique_shade_sub_a.grd 
`minmax /home/mat/gmt_work/tit_age_a.txt -I0.1`  
# grdcut uses only absolute path - ? 

  #echo loop okay 
fi 
# 
# 
# ---Plottin of trendsurfaces using intensity parameter of shaded topography--- 
echo Plotting trendsurfaces... 
grdimage $trend_grid_a -J$project$scale -R$region -
I/home/mat/gmt_work/grids/mozambique_shade_sub_a.grd  
-C/home/mat/gmt_work/cpt/trend_ft_age.cpt -K -O -V >> $out # grdimage akzeptiert nur 
direkte Pfade - ? 
if [ "x$1" == "x-a" ]; then 
 grdimage $trend_grid_b -J$project$scale -R$region -I/home/mat/gmt_work/ 

grids/mozambique_shade_sub_b.grd -C/home/mat/gmt_work/cpt/trend_ft_age.cpt -K -O 
-V >> $out  
# grdcut uses only absolute path - ? 

fi 
# grdimage $trend_grid_b -J$project$scale -R$region -I$grad_grid_sub_b -C$trend_cpt -K -
O -V >> $out  
# obsolete - 2nd area only 
# 
# ---Plotting isolines of data distribution---  
echo Plotting isolines of data distribution... 
grdcontour $trend_grid_a -J$project$scale -R$region -C10 -A20 -K -O -V >> $out 
if [ "x$1" == "x-a" ]; then 
 grdcontour $trend_grid_b -J$project$scale -R$region -C20 -A20 -K -O -V >> $out 
fi 
# 
# ---Plotting of sample locations--- 
echo Plotting sample locations... 
psxy -R$region -J$project $txt_in_a -G0/0/0 -Sc0.15 -K -O -V >> $out 
psxy -R$region -J$project $txt_in_b -G0/0/0 -Sc0.15 -K -O -V >> $out 
# 
# ---Plotting geography--- 
echo Plotting rivers, coastline... 
pscoast -J$project$scale -R$region -Df -C50/100/150 -I1/3/50/100/150 -I2/2/50/100/150  
-I3/1/50/100/150 -I4/1/50/100/150 -I5/1/50/100/150 -I6/1/50/100/150 -I8 -N1/2/0/0/0  
-N3/1/0/0/0 -W0.25p -O -K -V >> $out 
# 
# ---Creating basemap--- 
echo Plotting color scale bar of topography 
psscale -C$cpt -D6/-1/12/0.4h -I0.5 -B500g500":Elevation (m):" -K -O -V >> $out # scale 
bar topography 
echo Plotting color scale bar of trendsurface 
if [ "x$1" == "x-a" ]; then 
 psscale -C$trend_cpt -D6/-3/12/0.4h -I0.8 -B20g10":Apatite FT-Ages (Ma):" -K -O  

-V >> $out  
# scale bar trendsurface 
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else  
# remaining option is x-t 
psscale -C$trend_cpt -D6/-3/12/0.4h -I0.8 -B20g10":Titanite FT-Ages (Ma):" -K -O 
-V >> $out  
# scale bar trendsurface 

fi 
echo Plotting basemap... 
if [ "x$1" == "x-a" ]; then 

psbasemap -J$project$scale -R$region -B1/1:."Distribution of Apatite FT-Ages": -O 
-V >> $out  
# map frame etc...; adjust image title manually 

else 
psbasemap -J$project$scale -R$region -B1/1:."Distribution of Titanite FT-Ages": 

 -O -V >> $out  
# map frame etc...; adjust image title manually 

fi 
# 
# ---Cleaning up--- 
echo Cleaning up... 
rm $grad_grid $grad_grid_a $grad_grid_b -v -f 
rm $trend_grid_a $trend_grid_a $trend_grid_x $trend_cpt -v -f 
rm $tria_grid_a $tria_grid_a $prep_grid_a $prep_grid_a -v -f 
# 
echo Restoring GMT defaults... 
/bin/mv /home/mat/gmt_work/tmp/gmtdefaults$$ .gmtdefaults 
rm /home/mat/work_gmt/tmp/gmtdefaults$$ -v -f 
echo Finished ! 
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