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ABSTRACT 

One possible approach to study systematically the influence of the deformation regime on the 

geometry of geological structures like folds and boudins is analogue modelling. For a 

complete understanding of the resulting structures, consideration of the third dimension is 

required. 

This PhD study deals with scaled analogue modelling under constriction and plane-strain 

conditions to improve our knowledge of folding and boudinage of lower crustal rocks in space 

and time. Plasticine is an appropriate analogue material for rocks in the lower crust. 

Therefore, this material was used for the experiments. The macroscopic behaviour of most 

types of plasticine is quite similar to rocks undergoing strain-rate softening and strain 

hardening regardless of the different microscopic aspects of deformation. Therefore, if one is 

aware that the stress exponent and viscosity increase with increasing strain, the original 

plasticine types used with stress exponents ranging from 5.8 to 8.0 are adequate for modelling 

geologic structures. The same holds for plasticine/oil mixtures. Thus, plasticine and 

plasticine/oil mixtures can be used to model the viscous flow of different rock types in the 

lower crust. If climb-accommodated dislocation creep and associated steady-state flow is 

assumed for the natural rocks, the plasticine/oil mixtures should be used, which flow under 

steady-state conditions. 

Three different experimental studies of plane-strain coaxial deformation of stiff layers, with 

viscosity η2 and stress exponent n2, embedded in a weak matrix, with viscosity η1 and stress 

exponent n1, have been carried out. The undeformed samples (matrix plus layer) were cubes 

with an edge length of 12 cm. All experimental runs have been carried out at T = 25 ± 1°C 

and varying strain rates ė, ranging from 7.9 x 10-6 s-1 to 1.7 x 10-2 s-1, until a finite 

longitudinal strain of 30% – 40% was achieved.  



Abstract 
 

IV 

The first experimental study improved the understanding about the evolution of folds and 

boudins when the layer is oriented perpendicular to the Y-axis of the finite strain ellipsoid. 

The rock analogues used were Beck’s green plasticine (matrix) and Beck’s black plasticine 

(competent layer), both of which are strain-rate softening modelling materials with stress 

exponent n = ca. 8. The effective viscosity η of the matrix plasticine was changed by adding 

different amounts of oil to the original plasticine. At a strain rate ė of 10-3 s-1 and a finite 

strain e of 10%, the effective viscosity of the matrix ranges from 1.2 x 106 to 7.2 x 106 Pa s. 

The effective viscosity of the competent layer has been determined as 4.2 x 107 Pa s. If the 

viscosity ratio is large (> ca. 20) and the initial thickness of the competent layer is small, both 

folds and boudins develop simultaneously. Although the growth rate of the folds seems to be 

higher than the growth rate of the boudins, the wavelength of both structures is approximately 

the same as is suggested by analytical solutions. A further unexpected, but characteristic, 

aspect of the deformed competent layer is a significant increase in thickness, which can be 

used to distinguish plane-strain folds and boudins from constrictional folds and boudins. 

In the second experimental study, the impact of varying strain rates on growing folds and 

boudins under plane strain have been investigated. The strain rates used range from 7.9 x 10-6 

s-1 to 1.7 x 10-2 s-1. The stiff layer and matrix consist of non-linear viscous Kolb grey and 

Beck’s green plasticine, respectively, both of which are strain-rate softening modelling 

materials with power law exponents (n) and apparent viscosities (η) ranging from 6.5 to 7.9 

and 8.5 x 106 to 7.2 x 106 Pa s, respectively. The effective viscosity (η) of the matrix 

plasticine was partly modified by adding oil to the original plasticine. At the strain rates used 

in the experiments the viscosity ratio between layer and matrix ranges between 3 and 10. 

Different runs have been carried out where the layer was oriented perpendicular to the 

principal strain axes (X>Y>Z). The results suggest a considerable influence of the strain rate 

on the geometry of the deformed stiff layer including its thickness. This holds for every type 

of layer orientation (S ┴ X, S ┴ Y, S ┴ Z). If the stiff layer is oriented perpendicular to the short 



Abstract                             

V 

axis Z of the finite strain ellipsoid, the number of the resulting boudins and the thickness of 

the stiff layer increase, whereas the length of boudins decreases with increasing strain rate. If 

the stiff layer is oriented perpendicular to the long axis, X, of the finite strain ellipsoid, 

enlargement of the strain rate results in increasing wavelength of folds, whereas the number 

of folds and the degree of thickening of the stiff layer decreased. If the stiff layer is oriented 

perpendicular to the intermediate Y-axis of the finite strain ellipsoid enlargement of the strain 

rate results in a decreasing number of boudins and folds associated with increasing 

wavelengths of both structures.  

The wavelength of folds is approximately half of the boudins wavelength. This is true for the 

case where folds and boudins develop simultaneously (S ┴ Y) and for cases where both 

structures develop independently (folds at S ┴ X and boudins at S ┴ Z). 

In the third experimental study, scaled analogue experiments have been carried out to 

demonstrate the growth of plane-strain folds and boudins through space and time. Previous 

3D-studies are based only on finite deformation structures. Their results can therefore not be 

used to prove if both structures grew simultaneously or in sequence. Plane strain acted on a 

single stiff layer that was embedded in a weak matrix, with the layer oriented perpendicular to 

the intermediate Y-axis of the finite strain ellipsoid. Two different experimental runs have 

been carried out using computer tomography (CT) to analyse the results. The first run was 

carried out without interruption. During the second run, the deformation was stopped in each 

case at longitudinal strain increments of 10%. Every experiment was carried out at a 

temperature T of 25°C and a strain rate, ė, of ca. 4 x 10-3 s-1 until a finite longitudinal strain of 

40% was achieved with a viscosity contrast m of 18.6 between the non-linear viscous layer 

(Kolb brown plasticine) and the matrix (Beck’s green plasticine with 150 ml oil kg-1). The 

apparent viscosity, η, and the stress exponent, n, for the layer at a strain rate ė = ca. 10-3 s-1 and 

a finite strain e = 10% are 2.23 x 107 Pa s and n = 5.8 and for the matrix 1.2 x 106 Pa s and 
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10.5. These new data that result from incremental analogue modelling corroborate previous 

suggestions that folds and boudins are coeval structures in cases of plane-strain coaxial 

deformation with the stiff layer oriented perpendicular to the intermediate Y-axis of the finite 

strain ellipsoid. They will be of interest for all workers who are dealing with plane-strain 

boudins and folds, where the fold axes are parallel to the major axis (X) of the finite strain 

ellipsoid. 

As has been demonstrated by the first experimental study, coeval folding and boudinage 

under plane strain, with S ┴ Y, are associated with a significant increase in the thickness of the 

competent layer. The latter phenomenon does not occur in other cases of simultaneous folding 

and boudinage, such as bulk pure constriction. To study the impact of layer thickness on the 

geometry of folds and boudins under pure constriction, we carried out additional experiments 

using different types of plasticine for a stiff layer and a weaker matrix to model folding and 

boudinaging under pure constriction, with the initially planar layer oriented parallel to the X-

axis of the finite strain ellipsoid. The stiff layer and matrix consist of non-linear viscous Kolb 

brown and Beck’s green plasticine, respectively, both of which are strain-rate softening 

modelling materials. Six runs have been carried out using thicknesses of the stiff layer of 1, 2, 

4, 6, 8 and 10 ± 0.2 mm. All experimental runs were carried out at a temperature T of 30 ± 

2°C and a strain rate, ė, of ca. 1.1 x 10-4 s-1 until a finite longitudinal strain of 40% was 

achieved with a viscosity contrast m of 3.1 between the stiff layer (Kolb brown plasticine) and 

the matrix (Beck’s green plasticine). The apparent viscosity, η, and the stress exponent, n, for 

the layer at a strain rate ė = ca. 10-3 s-1 and a finite strain e = 10% are 2.23 x 107 Pa s and n = 

5.8 and for the matrix 7.2 x 106 Pa s and 7.9. Our results suggest a considerable influence of 

the initial thickness of the stiff layer on the geometry of the deformed stiff layer. There is no 

evidence for folding in XY=XZ-sections if the initial thickness of the competent layer is larger 

than ca. 8 mm.  If the initial thickness of the competent layer is set at ca. 10 ± 0.2 mm, both 

folds and boudins develop simultaneously. However, the growth rate of the boudins seems to 
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be higher than the growth rate of the folds. A further expected, but characteristic, aspect of the 

deformed competent layer is no change in thickness of the competent layer, which can be 

used to distinguish plane-strain folds and boudins from constrictional folds and boudins. The 

model results are important for the analysis and interpretation of deformation structures in 

rheologically stratified rocks undergoing dislocation creep under bulk constriction. Tectonic 

settings where constrictional folds and boudins may develop simultaneously are stems of salt 

diapirs, subduction zones or thermal plumes. 

To make (paleo) viscosimetric statements possible, the rheological data of the different 

plasticine types were related to the geometrical data. When comparing the normalized 

dominant wavelength Wd obtained from the deformed layer of the models with the theoretical 

dominant wavelength (Ld) calculated using the Smith equation (1977, 1979), the latter 

probably also holds when folding and boudinage develop simultaneously (S ┴ Y) and when 

boudins develop independently (S ┴ Z), but can obviously not be applied at very low viscosity 

ratios as is indicated by the low-strain-rate experiments.   
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ZUSAMMENFASSUNG 

Um den Einfluss des Deformationsregimes auf die Geometrie von geologischen Strukturen 

wie Falten und Boudins systematisch zu studieren, werden häufig Analogmodellierungen 

durchgeführt. Zum Verständnis der dabei modellierten Strukturen ist  die Berücksichtigung 

der dritten Dimension erforderlich. 

Im Rahmen meiner Doktorarbeit habe ich Analogexperimente unter konstriktionalen und 

ebenen Verformungsbedingungen durchgeführt, um das Wissen über die raumzeitliche 

Bildung von Falten und Boudins in der tieferen Kruste zu erweitern. Eine wesentliche 

Voraussetzung für die Durchführung von skalierten Modellierungen ist, dass das rheologische 

Verhalten des Analogmaterials hinreichend genau bekannt ist. Die rheologischen 

Bedingungen der Unterkruste lassen sich gut mit Plastilin simulieren. Daher wurde dieses 

Material für die hier vorgestellte Modellierung verwendet und vor den eigentlichen 

Modellierungen rheologische Analysen an den verwendeten Plastilintypen durchgeführt. Das 

makroskopische rheologische Verhalten der meisten Plastilintypen ist dem von 

Unterkrustengesteinen ähnlich, die „strain rate softening“ und „strain hardening“ erfahren, 

unabhängig von den unterschiedlichen mikroskopischen Aspekten der Deformation der 

beiden Materialien. Wenn man also beachtet, dass der Spannungsexponent und die Viskosität 

sich mit Zunahme des Strains erhöhen, sind Plastilintypen mit Spannungsexponenten 

zwischen 5.8 und 8.0 für das Modellieren von geologischen Strukturen geeignet. Dasselbe gilt 

für Plastilin/Öl Mischungen. Daher können Plastilin und Plastilin/Öl Mischungen benutzt 

werden, um das viskose Fließen verschiedener Gesteine der Unterkrust zu modellieren. Wenn 

Versetzungskriechen und -klettern als typische Deformationsmechanismen von natürlichen 

Unterkrustengesteinen unter steady-state-Bedingungen angesehen werden, sollten 

Plastilin/Öl-Mischungen benutzt werden. 
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Drei verschiedene experimentelle Studien über die Deformation einer kompetenten Lage 

eingebettet in einer inkompetenten Matrix unter koaxialen ebenen Verformungsbedingungen 

wurden durchgeführt. In beiden Fällen war das undeformierte Modell (Matrix plus Lage) ein 

Würfel mit der Kantenlänge 12 cm. Sämtliche Experimente wurden bei einer Raumtemperatur 

T = 25 ± 1°C und einer Strainrate ė = 7.9 x 10-6 s-1 bis 1.7 x 10-2 s-1 durchgeführt, bis ein 

finiter Strain von 30- 40% erreicht war. 

Ziel des ersten Experimentes war es, die Deformation einer kompetenten Lage senkrecht zur 

Y-Achse des finiten Strainellipsoids und die damit einhergehende Entwicklung von Falten und 

Boudins bei koaxialer, ebener Verformung zu simulieren. 

Die verwendeten Plastilintypen Becks Grün (Matrix) und Becks Schwarz (kompetente Lage) 

haben einen Spannungsexponenten n ≈ 8. Die effektive Viskosität η1 des Matrixplastilins 

wurde durch Hinzufügen unterschiedlicher Ölmengen zu Ursprungsplastilin verändert. Bei 

einer Strainrate ė von 10-3 s-1 und einem finiten Strain e von 10%  lag die effektive Viskosität 

der Matrix zwischen 1.2 x 106 und 7.2 x 106 Pa s. Bei großem Viskositätskontrast zwischen 

kompetenter Lage und Matrix (m > 20) und geringer Dicke der kompetenten Lage entwickeln 

sich Falten und Boudins gleichzeitig. Obwohl die Wachstumsrate der Falten höher als die der 

Boudins zu sein scheint, sind die Wellenlänge beider Strukturen annähernd gleich, wie auch 

theoretische Ableitungen vermuten lassen. Dabei nimmt die Dicke der kompetenten Lage mit 

zunehmendem Strain signifikant zu. Diese Beobachtung erlaubt es, Falten und Boudins, die 

auf ebene Verformung zurückgeführt werden können, von konstriktionalen Falten und 

Boudins zu unterscheiden. 

Im Rahmen der zweiten experimentellen Studie wurde die Auswirkung unterschiedlicher 

Strainraten bei ebener Verformung auf wachsende Falten und Boudins untersucht. Folgende 

Strainraten wurden angewendet: 7.9 x 10-6 s-1, 1.4 x 10-5 s-1, 2.7 x 10-4 s-1, 1.1 x 10-3 s-1, 1.1 x 

10-2 s-1, 1.7 x 10-2 s-1. Die Matrix des Modells bestand aus Becks Grün-Plastilin, die 

kompetente Lage aus Kolb Grau-Plastilin. Beide Modellmaterialien verhalten sich 
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nichtlinearviskos (n1 von Becks Grün = 7.9 und n2 von Kolb Grau = 6.5). Die scheinbare 

Viskosität liegt bei  7.2 x 106 Pa s  (η1, Becks Grün) und 8.5 x 106 (η2, Kolb Grau). Auch hier 

wurde die effektive Viskosität des Matrixplastilins durch Hinzufügen von Öl verändert. 

Mehrere Versuche mit unterschiedlicher Orientierung der kompetenten Lage (S) zu den 

Hauptstrainachsen (X>Y>Z) wurden durchgeführt. Die Ergebnisse lassen auf einen 

beachtlichen Einfluss der Strainrate auf die Geometrie der deformierten kompetenten Lage 

schließen. Dies gilt für jede Art der Schichtorientierung (S ┴ X, S ┴ Y, S ┴ Z). Wenn die 

kompetente Lage senkrecht zur Z-Achse des finiten Strainellipsoids ausgerichtet ist, stellt man 

eine Zunahme der Boudinanzahl und der Dicke der kompetenten Lage fest, wohingegen die 

Länge der Boudins abnimmt. Wenn die kompetente Lage senkrecht zur X-Achse des finiten 

Strainellipsoids orientiert ist, führt die Erhöhung der Strainrate zu einer Zunahme der 

Faltenwellenlänge. Gleichzeitig nehmen Faltenanzahl und Verdickungsgrad der kompetenten 

Lage ab. Wenn die kompetente Lage senkrecht zur Y-Achse des finiten Strainellipsoids 

ausgerichtet ist, führt  die Erhöhung der Strainrate zu einer Abnahme der Anzahl von Boudins 

und Falten. Gleichzeitig nimmt die Wellenlänge beider Strukturen zu. Die Wellenlänge der 

Falten ist ca. halb so groß wie die Wellenlänge der Boundins. Dies gilt sowohl für Fälle, wo 

Falten und Boudins sich gleichzeitig entwickeln (S ┴ Y), als auch für Fälle, bei denen beide 

Strukturen sich unabhängig voneinander entwickeln (Falten mit S ┴ X und Boudins mit S ┴ Z).  

Im Rahmen der dritten experimentellen Studie wurden skalierte Analogexperimente 

durchgeführt, um die raumzeitliche Entwicklung von Falten und Boudins bei ebener 

Verformung zu zeigen. Alle bisherigen 3D-Studie auf diesem Feld basieren nur auf finiten 

Deformationsstrukturen. Ihre Ergebnisse können daher nicht benutzt werden, um zu 

beweisen, ob Falten und Boudins gleichzeitig oder nacheinander wachsen. Eine einzelne 

kompetente Lage (eingebettet in einer inkompetenten Matrix) wurde ebener Verformung 

ausgesetzt. Dabei war die kompetente Lage senkrecht zur Y-Achse des finiten Strainellipsoids 
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orientiert. Zwei unterschiedliche Experimente wurden durchgeführt und mit 

Computertomographie (CT) analysiert. Im ersten Experiment wurde ohne Unterbrechung von 

0 – 40% Verkürzung deformiert. Während des zweiten Experimentes wurde die Deformation 

nach jeweils 10% des longitudinalen Strain gestoppt. Jedes Experiment wurde bei einer 

Raumtemperatur T von 25°C und einer Strainrate ė von ca. 4 x 10-3 s-1 durchgeführt, bis ein 

finiter Strain von  40% erreicht war. Der Viskositätskontrast m betrug 18.6. Die Matrix des 

Modells bestand aus Becks Grün-Plastilin, die kompetente Lage aus Kolb Braun-Plastilin. 

Beide Modellmaterialien sind nichtlinearviskos (n1 von Becks Grün = 10.9 und n2 von Kolb 

Braun = 6.5). Die scheinbare Viskosität liegt bei  1.2 x 106 Pa s  (η1, Becks Grün) und 2.23 x 

107 (η2, Kolb Braun). Die neuen Daten belegen, dass sich Falten und Boudins unter ebener 

koaxialer Deformation gleichzeitig bilden, wenn die kompetente Lage senkrecht zur Y-Achse 

des finiten Strainellipsoids orientiert ist. Die Ergebnisse sind für all jene  von Interesse, die 

sich mit ebener Verformung und der Bildung von Boudins und Falten beschäftigen, wobei die 

Faltenachsen parallel zur X-Achse des finiten Strainellipsoids liegen. 

Wie in der ersten experimentellen Studie demonstriert wurde, sind Faltung und Boudinage 

unter ebener Verformung mit einer bedeutenden Zunahme der Dicke der kompetenten Lage 

verbunden. Dieses Phänomen tritt nicht in anderen Fällen gleichzeitiger Faltung und 

Boudinage auf, wie z.B. reiner Konstriktion. Um den Einfluß der Lagenmächtigkeit auf die 

Geometrie von Falten und Boudins bei reiner Konstriktion zu studieren, wurden zusätzliche 

Experimente mit unterschiedlichen Plastilintypen durchgeführt. Lage und Matrix durchliefen 

reine Konstriktion, wobei die kompetente Lage parallel zur X-Achse des finiten 

Strainellipsoids orientiert war. Die Deformationsgeometrie der kompetenten Lage ist mit 

Schnitten entlang YZ und XY=XZ untersucht worden. Die kompetente Lage und die Matrix 

bestehen aus nichtlinearviskosem Kolb Braun-Plastilin und Becks Grün-Plastilin. Beides sind 

„strain softening“ Materialien. Sechs Experimente sind mit Mächtigkeiten der steifen Lage 

von 1, 2, 4, 6, 8 und 10 ± 0.2 mm durchgeführt worden. Alle Experimente wurden bei einer 
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Raumtemperatur T von 30 ± 2 °C und bei einer Strainrate von ca. 1.1 x 10-4 s-1 durchgeführt, 

bis ein finiter Strain von 40% erzielt war (Viskositätskontrast m zwischen kompetenter Lage 

(Kolb Braun Plastilin) und Matrix (Becks Grün Plastilin) von 3.1). Für die kompetente Lage 

ist die scheinbare Viskosität, η = 2.23 x 107 Pa s und der Spannungsexponenten, n = 5.8; für 

die Matrix 7.2 x 106 Pa s und 7.9 bei einer Strainrate ė von ca. 10-3 s-1  und einem finiten 

Strain e = 10%. Unsere Ergebnisse zeigen einen beträchtlichen Einfluss der Ausgangsdicke 

der kompetenten Lage auf die Geometrie der verformten Lage. Es gibt keinen Beweis dafür, 

dass Faltung in den XY=XZ Schnitten stattfindet, wenn die Ausgangsdicke der kompetenten 

Lage größer als ca. 8 mm ist. Wenn die Ausgangsdicke der kompetenten Lage 10 ± 0.2 mm 

beträgt, entwickeln sich Falten und Boudins gleichzeitig. Die Wachstumsrate der Boudins 

scheint jedoch höher als die Wachstumsrate der Falten zu sein. Ein weiterer charakteristischer 

Aspekt der verformten kompetenten Lage ist, dass keine Änderung der Dicke der 

kompetenten Schicht stattfindet. Dieses Phänomen kann verwendet werden, um gleichzeitig 

gebildete ebene Falten und Boudins (mit S ┴ Y) von konstriktionalen Falten und Boudins zu 

unterscheiden. Die Ergebnisse des Modells sind für die Analyse und die Deutung von 

Deformationsstrukturen in rheologisch geschichteten Gesteinen wichtig, die 

Versetzungskriechen bei reiner Konstriktion durchlaufen. Tektonische Settings, in denen sich 

konstriktionale Falten und Boudins gleichzeitig entwickeln, sind Stämme von Salzdiapiren, 

Subduktionzonen oder Mantelplumes. 

Um  paläoviskosimetrische Aussagen machen zu können, wurde die Plastilinrheologie mit der 

Geometrie der erzielten Strukturen in Beziehung gesetzt. Vergleicht man die normalisierten 

dominanten Wellenlänge Wd der deformierten Lage mit der aus der Smith-Gleichung (1977, 

1979) errechneten theoretischen dominanten Wellenlänge (Ld), so wird klar, dass die Smith-

Gleichung auch für die Fälle gilt, in denen Falten und Boudins sich gleichzeitig entwickeln (S 

┴ Y) sowie für den Fall, wo Boudins sich unabhängig entwickeln (S ┴ Z). Die vorgestellten 
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Experimente bestätigen damit die gleichung von Smith. Vorsicht ist jedoch geboten bei sehr 

niedrigen Viskositätskontrasten zwischen Lage und Matrix.  
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1 INTRODUCTION 

1.1 General background 

The study of folds and boudins is a problem of first importance to understand the temporal 

evolution of geological structures. Folds and boudins can give information about relative 

plasticity and relative strength of rocks during deformation. They therefore provide an 

excellent key to the forces involved in deformation of rocks and the rheological characteristics 

of rocks, their strength and viscosity. Investigations of folding and boudinage in the light of 

the known behaviour of other unstable systems is therefore of primary importance not only 

for the interpretation of geological processes, but also for large-scale geophysical 

interpretations of flow strengths and dynamics of the continental crust. Thus, it may be 

possible to provide a useful link between experimental, theoretical and field data. 

One possible approach to study the influence of the deformation regime on the geometry of 

geological structures like folds and boudins is to perform experimental deformation using 

rock analogues. The latter have been used since the beginning of the 19th century to provide 

qualitative insights into specific geological problems (Schellart, 2002). The aim of such 

experiments is to activate the same processes that occur in nature, but under scaled and well-

constrained conditions. The analogue modelling offers two advantages: it makes it possible to 

observe easily the origin, operation and interaction of the structures related to flexible 

tectonics like their influence at once of displacements. It allows the analysis of finished 

deformations of great width. The object is not more to solve by calculation a formulated 

problem in a mathematic way but to reproduce in laboratory a phenomenon by simulating on 

a model a certain number of conditions necessary to its realization. In this study we have 

mainly tried to model development of small-scale structures that can be used as kinematics’ 

indicators in studies of large-scale tectonics. In future, this should be integrated into large-

scale tectonic reconstructions and inversion modelling. Since the experimental technique can 
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be readily applied to offer solutions for three-dimensional problems involving large strains, it 

can offer invaluable new insights into geological problems, which are intrinsically three-

dimensional and often involve large amounts of strain.  

 

1.2 Problem definition 

Deformation processes in rocks are difficult to model experimentally. The very slow 

deformation processes in rocks, and the large scale of many structures such as folds, boudins, 

mullions and thrusts cannot be reproduced in the laboratory. Geologists therefore have to 

restrict themselves to observational science, like in archaeology, or apply “tricks” to learn 

something in the laboratory through modelling studies. Modelling studies can be undertaken 

as high-pressure experiments on small samples to learn about rheology, by using analogue 

materials as a substitute for rocks to learn about development of small-scale structures; or by 

numerical experiments modelling small or large-scale processes. Although the structure 

seems simple at first approach, there are many small-scale structures that remain ambiguous, 

but which contain potentially important information on the kinematics’ development of the 

area. 

A single layer embedded in a less viscous matrix will deform heterogeneously if shortened 

parallel or perpendicular to the layering and folds or boudins will form, respectively. 

However, various orientations of the layer can lead to formation of folds and/or boudins under 

oblate, plane and constrictional conditions. The pictures that could possibly develop within 

these deformation regimes are depicted in the schematic drawings of Zulauf et al. (2003, see 

also Weijermars, 1997). It is clear that folds and boudins will form synchronously whenever 

the stretching direction X is parallel to the fold axes and the intermediate axis of the strain 

ellipsoid Y is perpendicular to the axial plane. Most experiments found in the literature have 

been carried out under plane-strain conditions with the stiff layer oriented either 

perpendicular to the long axis X or perpendicular to the short axis Z of the finite strain 
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ellipsoid (Figs. 1.1a,b). Most of these models imply plane-strain conditions, with the length of 

the intermediate Y-axis of the finite strain ellipsoid kept constant. However, the finite strain of 

many natural tectonites deviates significantly from plane strain (e.g. Pfiffner and Ramsay, 

1982). Naturally deformed rocks may consist of L, L > S, S > L, or S tectonites, where the 

longitudinal strain e along the Y-axis deviates from zero. However, the origin of L and L > S 

tectonites in particular has been hardly verified by experiments.  

 

 

Fig. 1.1: Principal effect of a stiff layer orientation in reference to the axes of finite plane strain (after Zulauf et 
al., 2003). 

 

Moreover, largely unknown are the structures of the constrictional regime, where folds and 

boudins should develop simultaneously if a stiff layer is embedded in a matrix with the X-axis 

parallel to the layer, although S > L- and L > S tectonites are common in the nature (Fig. 1.2). 

Results of theoretical studies (Ramberg, 1959, Fig. 7; Ramsay, 1967; Talbot and Sokoutis, 

1995; Weijermars, 1997; Fig. 14.24) and analogue scale-model experiments (Kobberger and 

Zulauf, 1995; Zulauf et al., 2003; Zulauf and Zulauf, 2005) suggest that both folds and 
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boudins may grow under constriction. We present new data, which continue the investigations 

of Zulauf et al. (2003) and Zulauf and Zulauf (2005). 

  

 

Fig. 1.2: Principal effect of a stiff layer orientation in reference to the axes of finite constrictional strain (after 
Zulauf et al., 2003). 

 

1.3 Aims of the study 

There is a need for analogue modelling of geological structures (folds, boudins) in 

mechanically stratified material under plane-strain conditions with the axis of no change 

perpendicular to the stiff layer (Fig. 1.1c). The geometry of the instabilities should be 

compared to predictions arising from analytical solutions. The thickness of the deformed 

competent layer and the rheology of matrix and layer are generally believed to be important 

for the geometry of the instabilities (e.g., Watkinson, 1975; Zulauf et al., 2003). Apart from 

these basic parameters, the impact of varying stress exponents, strain rates, and orientation of 

the layer has been investigated in detail in the present study. The experiments of the present 

thesis have been carried out using a new deformation apparatus that can produce the full range 

of three-dimensional coaxial deformation, from pure constriction via plane strain to pure 

flattening (Zulauf et al., 2003).  
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Three different experimental studies of plane-strain coaxial deformation of a single stiff layer, 

with viscosity η2 and stress exponent n2, that is embedded in a weak matrix, with viscosity η1 

and stress exponent n1, have been carried out. In all experimental studies the undeformed 

samples (matrix plus layer) were cubes with an edge length of 12 cm. All experimental runs 

have been carried out at T = 25 ± 1°C and varying strain rates ė, ranging from 7.9 x 10-6 s-1 to 

1.7 x 10-2 s-1, until a finite longitudinal strain of 30% – 40% was achieved.  

The first experimental study has been carried out to improve our understanding about the 

impact of layer thickness and viscosity contrast between layer and matrix on the evolution of 

folds and boudins when the layer is oriented perpendicular to the Y-axis of the finite strain 

ellipsoid. The rock analogues used were Beck’s green plasticine (matrix) and Beck’s black 

plasticine (competent layer), both of which are strain-rate softening modelling materials with 

stress exponent n = ca. 8. The effective viscosity η of the matrix plasticine was changed by 

adding different amounts of oil to the original plasticine. The geometry of the instabilities will 

be presented and compared with predictions rising from analytical solutions. 

In the second experimental study, the impact of varying strain rates on growing folds and 

boudins under plane strain have been investigated. The stiff layer and matrix consist of non-

linear viscous Kolb grey and Beck’s green plasticine, respectively. Different runs have been 

carried out where the layer was oriented perpendicular to the principal strain axes (X>Y>Z). 

In the third experimental study, the impact of plane strain on the deformation structures of 

rheologically stratified analogue material was investigated in 4D. Plane strain acted on a 

single stiff layer that was embedded in a weak matrix, with the layer oriented perpendicular to 

the intermediate Y-axis of the finite strain ellipsoid. Two different experimental runs have 

been carried out using computer tomography (CT) to analyze the results. The first run was 

carried out without interruption. During the second run, the deformation was stopped in each 

case at longitudinal strain increments of 10%.  
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During the fourth experimental study the impact of layer thickness on the geometry of folds 

and boudins under pure constriction has been studied with the initially planar layer oriented 

parallel to the X-axis of the finite strain ellipsoid. The stiff layer and matrix consist of non-

linear viscous Kolb brown and Beck’s green plasticine, respectively. The deformation 

geometry of the layer has been investigated using conventional cuts along YZ and XY=XZ.  
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2 BACKGROUND TO FOLDING AND BOUDINAGING 

2.1 Definition and importance of folding for geology 

Folds are perhaps the commonest and most obvious manifestation of deformation in layered 

or foliated rocks. The study of fold development is, therefore, fundamental to understanding 

orogenesis (Mancktelow and Abbassi, 1992). In nature, rock units often exhibit planar 

features and show a layered structure. Compression or shortening parallel to the planar 

surfaces can cause a deflection of one or several layers in a direction orthogonal to the planar 

surfaces (Fig. 2.1). 

 

 

Fig. 2.1: Schematic two-dimensional model of single layer buckling. Due to compression or shortening, the 
initially flat layer deflects in a direction orthogonal to the shortening direction. The geometry of a folded layer is 
characterized by the wavelength (λ), amplitude (A), layer thickness (H), and  average fold arclength (Wa(fold)) in 
YZ- sections ( after Schmalholz, 2000). 

 

This mechanical process is termed buckling (e.g., Biot, 1961; Ramberg, 1961; Chapple, 1968; 

Johnson and Fletcher, 1994). The resulting structures are, in general, termed folds (e.g., 

Ramsay and Huber, 1987). If only one layer is folded, one speaks of single-layer folding (Fig. 

2.2); if several layers are folded one speaks of multilayer folding (Fig. 2.3). 
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Fig. 2.2: Example of single-layer ptygmatic folds of a granite dyke within a gneissic granite, representing 
probably late-orogenic intrusions of the Svecofennian orogenesis (1.83 – 1.8 Ga); Åva/Brändö, northeastern 
part of the Åland archipelago in theBaltic Sea southwest of Finland (copyright of C.Dietl, 07/05). 

 

 

 

Fig. 2.3: Multilayer folding of a Jurassic chert-limestone sequence of the Pindos unit of southern Crete (Agios 
Pavlos). 

 

The lithosphere, itself a layer, exhibits numerous planar features on different scales. On a 

large scale, it may be divided into the upper and lower crust and upper mantle. On a smaller 

scale, planar features are sedimentary bedding or metamorphic layering. On the microscale, 

planar foliations are present. Therefore, folding frequently occurs during deformation of the 

lithosphere on all scales. 

In general, the stress state and distribution within rock units is strongly controlled by folding. 

A considerable perturbation on any initial stress state can be present even if fold amplitudes 

and overall shortening are small. The initiation and spacing of thrusts and shear zones can be 
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strongly affected by the folding process and subsequent stress field. Folding-controlled 

distribution of high and low pressure areas may control the migration of fluids and eventual 

crystallisation of mineral resources. Weak zones in rocks, such as areas with strong 

schistosity, are often generated through folding, and locating of these weak zones is important 

in Engeneering Geology (e.g., when building tunnels). Therefore, the understanding of the 

mechanical process of folding is a key step to understand lithosphere deformation in general 

and e.g., mountain building in particular. 

 
2.2 Definition and importance of boudinaging for geology 

Boudinage structures, first described by Ramsay (1866) and Harker (1889), and named by 

Lohest (1909), when it was coined by geologists in Belgium to describe certain structures in 

metamorphosed layered sandstones and shales, are common extensional features, especially in 

rocks with a layering of contrasting lithologies (Quirke, 1923; Whitten, 1966; Price and 

Cosgrove, 1990). The shape of the separated bodies, i.e. the boudins, occur as a subdivision of 

a planar volume of rock by regularly spaced veins or zones of enhanced deformation, the 

interboudin zones or boudin necks. This planar rock volume can be a layer, group of parallel 

layers or simply a domain of foliated rock, apparently showing no competence contrast (Coe, 

1959; Platt and Vissers, 1980; Passchier and Druguet, 2002). The development of foliation 

boudins is attributed to the presence of pre-existing fractures (Platt and Vissers, 1980; Mandal 

and Karmakar, 1989) or interlocking pinching-and-swelling instability (Cobbold et al., 1971). 

In three-dimensions, most boudins occur as long tabular strips separated by boudin necks. 

However, if deformation deviates from plane strain, more complex shapes such as chocolate 

tablet boudinage, with rectangular or approximately cylindrical shaped boudins, may develop 

(Fig. 2.4). 
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Fig. 2.4: Terminology and measurable parameters used to describe idealized late stage of boudinage of a stiff 
layer embedded in a weak matrix. Hf = maximum boudin thickness; Wa(boudin) = boudin length; η1 = matrix 
viscosity and η2 = layer viscosity. 

 

Similar structures were described earlier by several other authors, for example, by 

MacCulloch (1816, Plate 15) in Glen Tilt, Central Scottish Highlands. For further references 

and reviews of the historical aspects see Cloos (1947) or Ramberg (1955) and Whitten (1966). 

In cross-section normal to the boudinaged planar volume of rock and the boudin necks, 

individual boudins occur in a range of shapes (Passchier and Druguet, 2002). The shape of the 

boudins may vary from rectangular to lens- shaped depending on the competence contrast and 

arranged in a linear train of orthorhombic symmetry but there are also some, especially in 

ductile shear zones, with parallelogram-shaped cross-sections and/or relative displacement on 

the interboudin popularly known as asymmetric boudins (Passchier and Druguet, 2002; Figs. 

1 and 2a).  

The rheological behaviour of the competent layer might vary from brittle to ductile failure, 

whereas the matrix reacts by viscous flow. Brittle boudins result from extensional or shear 

failure of the competent beds. In the latter case the boudins are often asymmetrical; such 

boudins have a monoclinic- or triclinic symmetry and their geometry suggests that they carry 

information on the rotational component of progressive deformation, and could act as shear 

sense indicators (Hanmer, 1986; Gaudemer and Tapponier, 1987; Malavieille, 1987; Marcoux 

et al., 1987; Goldstein, 1988; Malavieille and Lacassin, 1988; Hanmer and Passchier, 1991).  

The geological importance of boudinage structures is not less than that of folding or faulting 

and their role in providing understanding of the character and development of geological 
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processes is often significantly greater due to a number of specific features of these structures 

(Tokhtuev, 1967). Thus only detailed systematic study of boudinage structures as well as 

other structural features (and often in preference to all other structural features, especially in 

metamorphic complexes), gives us an opportunity to obtain additional data for the solving of 

many important problems of tectogenesis, metamorphism and mineralization. Knowledge of 

the features of morphology of boudinage structures and of the regularity of their spatial 

distribution facilitates more effective management and execution of mineral exploration and 

geophysical surveys (Tokhtuev, 1967; and references therein). This constitutes the great 

practical value of the study of boudinage structures. 

 

2.3 Previous studies 

2.3.1 Analytical approaches to the formation of folds and boudins 

The collapse of deformable structures under stress has fascinated scientists and engineers 

since 1744 when Euler present his linear stability analysis of the large-scale structural failure 

of plates, known as the buckling instability (Landau and Lifshitz, 1970). Since then many 

studies have been devoted to the description of buckle folds. Bazant and Cedolin (1991) 

noticed that failure of compressed layers can be split into two categories: (i) material failure 

which can be investigated using equilibrium equations that are derived for the undeformed 

configuration of the layer, and (ii) structural instabilities which in contrast with the first 

category require equilibrium equations that are derived for the deformed configuration of the 

layer. Buckling is one of the fundamental prototypes of structural stability problems. 

According to Schmalholz (2000), Euler (1744) was probably the first who solved the first 

buckling problem. At his time, the classical bending theories assumed that the bending strain ε 

is proportional to the curvature of the beam (Bernoulli-Navier hypothesis): 

 

r
y

=ε                                                                                                                          [2-1] 
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where y and r are the transverse coordinate measured from the middle line of the beam and r 

is the radius of curvature of the beam (Fig. 2.5). 

 

 

Fig. 2.5: Geometry of the deflected beam. r = radius of curvature; ds = the infinitesimal segment of the arc 
length; θ = angle between the x-axes and the tangent to a point on the beam; dW = the infinitesimal vertical 
deflection; and y = the vertical distance from the beam’s middle line to a point above the middle line (after 
Schmalholz, 2000). 

 

With this work, he laid the foundation for the development of the general thin-plate theories 

of buckling (e.g. Timoshenko and Woinowsky-Krieger, 1959) that are widely used to study 

folding problems. The major difference between the Euler beam and natural folds is that the 

Euler beam is free whereas folded layers are embedded in materials weaker than the layers. 

Smoluchowski (1909a) apparently performed the first analytical investigation of buckling of 

an elastic plate lying on top of a fluid. He verified his analytical solution by experiments, 

performed with various elastic materials (e.g. gelatine solution) floating on a viscous fluid 

(e.g. mercury) (Smoluchowski, 1909b). It should be noted that in the middle of the last 

century, a number of studies verified Smoluchowski’s buckling theory using thin-plate 

theories. Thereby, folding of either pure elastic or pure viscous single-layers embedded in a 

pure elastic or pure viscous infinite matrix is studied (e.g. Biot, 1961; Sherwin and Chapple, 

1968; Ramberg, 1959; Smith, 1975, 1977; Fletcher, 1977, 1991). The initial shape of the 

folded layers is assumed to be sinusoidal and the growth of the amplitude is assumed to be 

exponential with time. The most important result of these studies is the identification of a 

maximum amplification rate for a certain ratio of wavelength to thickness of the single layer, 

which is designated the dominant wavelength. A layer perturbation that exhibits this dominant 
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wavelength grows exponentially faster than all other layer perturbations, and it has 

presumably selected and locked at the nucleation stage. 

  
2.3.1.1 Folding of a Newtonian layer embedded in a Newtonian matrix 

In the case of a viscous single layer embedded in an infinite viscous matrix, Biot (1961) 

derived the expression for the dominant wavelength λd based on plate theory: 

 

3

1
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ηπλ

=
H

d                                                                                                [2-2] 

 
where H, 2η  and 1η  are the thickness of the layer, the viscosity of the layer and the viscosity 

of the matrix, respectively. The “viscous” dominant wavelength only depends on the viscosity 

contrast between layer and matrix and is independent of the layer-parallel stress or shortening 

rate. He noted that, in contrast to the case of an elastic plate, the dominant wavelength is 

independent of the compressive load. He additionally treated the folding of a stack of α layers 

with perfect slip and viscosity 2η  and found that the dominant wavelength is  

 

3

1

2

6
2

η
αηπλ

=
H

d                                                                                              [2-3] 

 
The result is striking: a single layer with viscosity 2η  and thickness H will have a smaller 

wavelength than a multilayer with the same thickness. 

Ramberg (1959) presented an equation quite similar to that derived by Biot [2-2], except that 

the constant ‘six’ in the denominator of equation was replaced by an undetermined constant. 

He was ensuring how to treat the effect of matrix, but two years later, he showed that this 

equation is a first-order approximation to his solution. 

Sherwin and Chapple (1968) studied the influence of layer thickeness on the dominant 

wavelength. They collected numerous hand samples containing folded quartz veins in 

phyllitic or sandy matrix and calculated the average arc wavelength by dividing the total arc 



Background to folding and boudinaging 
 

14 

length by the number of folds (see equation 2-7). The mean relative wavelengths were 4.0 to 

6.8, and the viscosity ratios between layer and matrix were calculated to be 2 to 8, which are 

too low for the Biot theory. Thus, they extended the Biot theory and considered layer parallel 

shortening. The dominant wavelength of the final fold is 
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d                                                                                          [2-4] 

 
where λ  is the uniform, finite elongation related to fold growth. With this equation, they 

calculated the viscosity ratio to be in the range of 16 to 21. In addition, dominant wavelength 

expressions were derived for single layers and matrices exhibiting power-law rheology (e.g. 

Smith, 1975; Fletcher, 1977, 1991).  

Smith (1975) presented a “unified theory on the onset of folding, boudinage and mullion 

structure” based on hydrodynamics. He distinguished a basic state of flow driven by the 

overall stress and a perturbing (secondary) flow, due to the inclination of the layer/matrix 

interface. The shift of the interface results from both types of flows. However, absolute 

growth will only occur, if the total growth rate is positive. In cases of Newtonian materials, 

only folds can compete the kinematics’ decay (Fig. 2.6). 

Fletcher (1977) derived the same solution for the folding instability like Smith (1975) in a 

slightly way. Nevertheless, these theoretical studies have shown that Ramberg and Biot’s 

solutions are wrong, especially for low viscosity ratios (Fig. 2.7) and for high viscosity ratios; 

the solutions of Ramberg and Biot predict nearly the same dominant wavelength.  

Later (Fletcher, 1991) extended the analytical solution for folding of a Newtonian layer for 

the three-dimensional case. For this general solution, a toroidal flow is required to satisfy the 

boundary conditions. The poloidal flow determines the rate of fold growth. He also stated that 

a cylindrical fold, with axis normal to the direction of maximum shortening in the plane of the 

layer would grow most rapidly. 
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Fig. 2.6: Smith’s (1975) plot of normalized dynamic growth rate γd vs. viscosity ratio m = η2/η1. Growth rates 
result from secondary flow. Negative γd indicates layer parallel shortening, positive γd layer parallel lengthening 
for the formation of the instability. 

 

 

 

Fig. 2.7: Fletcher’s (1977) plot of dominant wavelength vs. viscosity ratio (m = η2/η1) and his “exact” thick 
plate solution for folding with and without interfacial slip (bold line, 1977; Fig. 3). For comparison Ramberg’s 
solution (thin line) for folding with interfacial adherence (1962) and slip along the interface (1970), Biot’s 
(dotted line, 1961) thick plate solution for folding with interfacial slip and the thin plate solution (dashed line, 
equation [2-1]). 

 

2.3.1.2 Folding and boudinage of a non-Newtonian layer 

Most of the theoretical models based on linear viscous or elastic materials can only predict the 

growth rates and spacing of folds along a train in the initial stages of deformation (Ramberg, 

1960; Biot, 1961; Sherwin and Chapple, 1968). There are some theories available to make 

predictions of folds growth and shape to significant amplitudes. Thus, Fletcher (1974) and 

Smith (1977) showed that quantitative agreement between theory and the observed folds 

requires using a non-Newtonian model. Fletcher (1974) developed the theory to third order 
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and derived linearized constitutive relations for an incompressible power-law fluid to show 

that the rheology of a limestone layer embedded in shale was strongly nonlinear in folding. 

He presented the first analytical solution for folding of a single layer with power-law rheology 

embedded in a matrix with power-law rheology: 
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2
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d πλ
≅                                                                                                                          [2-5] 

where R = n2Q, and Q = 
1
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Smith’s theory is more general, does not depend on any specific rheology, and takes account 

of non-Newtonian materials. The normalised dominant wavelength of a non-Newtonian layer 

embedded in a non-Newtonian matrix for both folding and boudinage is defined by the 

following equation (Fletcher, 1974; Smith, 1977, 1979): 
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where Ld is the theoretical wavelength/thickness ratio, n1, η1 and n2, η2 are the stress 

exponents and the effective viscosities in the flow laws for matrix and layer, respectively, dλ  

is the dominant wavelength, H is the layer thickness, and m is the viscosity contrast m of layer 

and matrix (m = η2/η1). Enlargement of m results in an increasing theoretical 

wavelength/thickness ratio (Fig. 2.8). 

Fig. 2.8 is a plot of equation [2-6]. Substituting the measured values of the stress exponents 

and the effective viscosities into equation [2-6], the dominant wavelength/thickness, Ld found 

should be similar to the values calculated for the average arc length of folds/thickness ratio 

(Wd(fold))and the average boudin wavelength/thickness ratio (Wd(boudin)).  

The average arc length of folds (Wa(fold)) was calculated by the equation:  

 
Wa(fold) = total arc length/nfolds                                                                                              [2-7] 
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where nfolds  is the number of folds in YZ-sections (Sherwin and Chapple 1968; Fletcher and 

Sherwin 1978). Given that the layer thickness does not significantly change during folding, 

this average arc length (Wa(fold)) is nearly the same as the average initial wavelength (Ramsay 

and Huber 1987, p. 383). 

 

 

Fig. 2.8: Theoretical wavelength/thickness ratio (λd/H) for folding and boudinage vs. viscosity contrast of layer 
and matrix m (m = η2 /η1), where n1, η1 and n2, η2 are the stress exponents and the effective viscosities in the flow 
laws for matrix and layer, respectively (after Smith, 1977).  

 

To compare the theoretical value (Ld ) with the average arc length of folds (Wa(fold)) or average 

boudin wavelength (Wa(boudin)) measured in the experiments, we normalized the initial 

wavelength of the structures with the following equations:  

 
Wd(fold) = Wa(fold)/Hf                                                                                                                [2-8] 
 
Wd(boudin) = Wa(boudin)/Hf                                                                                                         [2-9] 

 
where Wd(fold)) and Wd(boudin) are the normalized dominant wavelength of folds and boudins, 

respectively, and Hf is the finite thickness.  

 
2.3.2 Analogue and numerical experiments on buckle folding 

The study of geological structures requires the knowledge of the mechanism that creates 

them. The folding process has been investigated by a number of researchers, following the 

pioneering work by James Hall (1815) and Bailey Willis (1891 – 1892), and using both 
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deformable materials and mathematical treatments. Probably Sir James Hall (1815) presented 

the first documentation of an analogue experiment to simulate a geological process in the 

Transactions of the Royal Society of Edinburgh. Here, he described his first attempts to model 

folding in geological strata, as he had observed in a belt of deformed Silurian clastic rocks 

that run across the southern Uplands of Scotland from Galloway to Berwickshire. Two 

experiments were performed. In the first experiment, several pieces of cloth, linen and 

woollen fabric were spread out on a table, one above the other. A flat door was put on top of 

the layered stack, being loaded with weights, to confine the stack. Next, two boards were 

applied to the sides of the stratified mass and were subsequently forced towards each other. 

This resulted in the gradual uplift of the heavy door, while the strata were constrained and 

adopted upward and downward bending folds. In the second experiment, beds of clay 

confined in a box were subjected to lateral compression due to the movement of movable 

ends driven by screw jacks, which is basically the same experimental design as is still in use 

today for fold– and thrust–type experiments. This experiment resulted in the generation of 

folds in the strata. The similarity between the folds reproduced in the experiments and folds 

observed in natural strata led the author to conclude that folds observed in nature must have a 

similar origin as in the experiment and therefore are the result of horizontal compression. 

Thereby, he further recognized the mechanism of layer thickening during layer-parallel 

compression. 

Bailey Willis (1891 – 1892) conducted layer-parallel shortening experiments with various 

wax mixtures (beeswax, beeswax plus plaster of Paris to harden it, beeswax plus Venice 

turpentine to soften it) and compared his results with the geometry and lateral distribution of 

folds in the Appalachians. He loaded the wax with slot in order to simulate the overburden 

pressure. Willis varied the viscosity of the “stratified beds” also laterally in order to model 

facies changes.  
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Ramberg (1959, 1961) and Biot et al. (1961) made analytical approaches. Ramberg (1959) 

investigated the evolution of ptygmatic folding and used putty and plasticine to simulate the 

incompetent and competent veins, respectively. The stiff layer was deformed in simple and 

pure shear under plane-strain conditions. Additionally he performed experiments with rubber 

sheets in order to investigate the contact strain adjacent to the deformed layer (Ramberg, 

1961). As for Biot et al. (1961), he conducted plane strain tests based on the buckling theory. 

He considered two cases – an elastic layer and a viscous layer, respectively, embedded in a 

viscous medium. The viscous matrix was corn syrup, the viscous layer was roofing tar and the 

elastic layer was made of cellulose acetate butyrate. The material properties were investigated 

in detail and Biot established the term “dominant wavelength”, i.e. the fastest growing 

disturbance in a viscous layer. He demonstrated that this wavelength is independent on the 

layer thickness and the viscosity contrast of both layer and matrix. Biot suggested that buckle 

folds would not form at viscosity ratios of less than 100. 

Hudleston (1973b) modelled buckle folds of single viscous layers with various viscosity 

contrasts. The experiments were conducted under pure shear and plane-strain conditions. He 

used various solutions of ethyl cellulose in benzyl alcohol and investigated changes in arc 

length, layer thickness, wavelength/thickness ratio, amplification and fold shape. The latter 

was studied using a harmonic analysis (Hudleston, 1973a). The data obtained suggest the 

earliest visible fold shape to be close to sinusoidal and that the folds become broader in the 

hinges during progressive deformation. The changes in arc length suggested that layer parallel 

shortening decreased with increasing viscosity ratio of layer and matrix. If the folds had mean 

limb dips of 10 – 20°, a nearly constant arc length was established meaning that layer parallel 

shortening is only important at low amplitudes. Interestingly, Hudleston (1973b) produced 

folds at very low viscosity ratios (ca. 10) – a contradiction to Biot’s theory. However, Biot 

(1961) considered initial irregularities of a much small magnitude than those present in the 

experiments. 
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Watkinson (1975) conducted plane-strain experiments using clay multilayers with different 

viscosity and the layer-oriented perpendicular to the Y-axis of the finite strain ellipsoid. 

However, only the fold geometry in the YZ-plane was monitored. From these sections it was 

found that the thickness of the folded competent layers did not significantly change during 

deformation. Even at high finite strain, the folds are characterized by low amplitude to 

wavelength ratios. 

Neurath and Smith (1982) investigated the growth rates of folds and boudins (the results of 

the latter will be described in 2.2). They used wax as rock analogue and investigated the 

material properties with uniaxial compression tests. The wax used for the experimental 

deformation is a power-law material characterized by both strain and strain-rate softening. 

The latter led to increased growth rates compared to the analytical solutions of e.g. Smith 

(1977). The viscosity ratios used in plane strain and pure shear models were 7.3 and 28. The 

experimental analysis was focusing on growth rates since these are more sensitive to 

rheological contrasts than the e.g. dominant wavelength. 

Abbassi and Mancktelow (1992) conducted experiments with power-law material (paraffin 

wax) and investigated the influence of a pre-existing isolated perturbation in an otherwise 

planar layer. They characterized the material properties in detail. Experiments with three 

different bell-shaped perturbations (narrow, intermediate, and broad) and with two different 

viscosity ratios (8 and 30) were performed. They also compared results of layers with 

interfacial slip and welded interface. The development of fold shape was described by means 

of a Fourrier series (see also Hudleston, 1973a). The presence of an initial perturbation 

controlled the development of the fold. Even up to large final amplitudes, the initial 

perturbation affected both the position of the component of maximum amplitude and the fold 

shape. However, neither the dominant wavelength nor the maximum growth rate was 

significantly influenced by the initial perturbation. Layer-parallel shortening decreased with 

increasing limb dips and ceased at around 30 – 40°. Strong bonding between layer and matrix 
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showed much slower amplitude of the perturbation and more homogeneous deformation than 

the experiments with welded interface. 

Kobberger and Zulauf (1995) probably were the first who conducted pure constrictional strain 

experiments using plasticine. Folds and boudins formed in this power-law material. They 

observed the layer thickness to be approximately constant throughout the experiment and that 

the dominant Jewavelength of folds holds approximately the predictions of analytical 

solutions, e.g. Smith (1977). 

Grujic and Mancktelow (1995) performed pure and simple shear experiments with paraffin 

wax under plane-strain conditions. They modelled folds with axes parallel to the extension 

direction. Especially the pure shear experiments with single competent layers and with two 

different viscosity ratios (8 and 600). At low viscosity ratios (30:1) and with initial 

perturbations of < 0.0125 of the layer thickness, the layer deformed homogeneously and no 

buckle folds developed. Folds only formed at high viscosity ratios (600:1) and propagated 

from the centre of the model towards its edges. The matrix flowed around the layer. In a 

second set of low viscosity ratio models, they introduced an initial perturbation. Only at large 

pre-experimental fold dips (ca. 45°) and large amplitude (1.5 of the layer thickness) the 

initially folded layers were boudinaged parallel to their fold axes. 

Zulauf et al. (2003) conducted plane-strain experiments using a single competent layer of 

plasticine embedded in a weaker plasticine matrix. First results of these studies suggest that 

both folds and boudins grow simultaneously if particular layer thicknesses and viscosity 

contrasts are given. Especially the structures of plane-strain deformation, where folds and 

boudins should develop simultaneously if a stiff layer embedded in a weaker matrix is 

oriented perpendicular to the Y-axis of the finite strain ellipsoid, are of interest for the present 

study.  

Numerical modelling using mathematical methods of integration of small portions has proved 

a useful alternative when high strains have to be reached. They were first used by Dieterich 
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(1969), Dieterich and Carter (1969) and have been employed extensively to analyze the 

influence of variables such as rheology, viscosity contrast and multilayer configuration in the 

folding process. This approach is only useful for modeling small folds. This method was 

applied for the linear-viscous case by several other workers, such as Hudleston and 

Stephansson (1974), Parrish (1973), Cobbold (1977), Anthony and Wickham (1978), Manz 

and Wickham (1978), Williams (1980) and Lan and Wang (1987).  

Parrish (1973) extended the linear models to a non-linear one. However, the constitutive law 

used in his model was based on the linear case. After every strain increment the viscosity in 

each element was adjusted to the stress exponent. Thus the bulk behavior of the layer was of a 

power-law type. Gravity was included in the models by De Bremaecker and Becker (1978), 

but only for diapiric structures. Cruikshank and Johnson (1993) developed a numerical 

procedure to simulate high-amplitude folds, which they compared to large (up to 18 km) 

natural folds, even though they did not take into account the influence of gravity. 

Johnson and Fletcher (1994) combined the analytical theory with numerical techniques and 

simulate viscous folding up to high amplitudes. However, investigations of finite amplitude 

folding were mainly performed using analogue and numerical experiments rather than 

nonlinear analytical theories. They performed experiments verified the assumed exponential 

growth of the fold amplitude for small strains. Thereby, exponential amplitude growth in 

settings with small competence contrast is valid for a wider strain range than in settings with 

high competence contrast. Also, the deformation component of homogeneous layer thickening 

increases when the competence contrast decreases. After the exponential growth the 

amplification slows down after a certain amount of strain (e.g., Cobbold, 1976; Hudleston, 

1973; Zhang et al., 1996; Zuber and Parmentier, 1996). During progressive folding the 

alteration of geometric parameters (e.g., amplitude, arc length etc…) depends more or less 

strongly on the initial geometry and the material properties (e.g., Abbassi and Mancktelow, 

1992; Hudleston, 1973; Ramberg, 1963). The different fold shapes of single-layer folds 
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developed in power-law material was used to estimate the power-law exponent from fold 

shapes (e.g., Hudleston and Lan, 1994; Lan and Hudleston, 1995b, and Lan and Hudleston, 

1996). Furthermore, the initial perturbation of compressed layers was found to have a strong 

influence on the final fold development (e.g., Abbassi and Mancktelow, 1992; Cobbold, 1975; 

Mancktelow, 1999a, Mancktelow and Abbassi, 1992; Williams et al., 1978 and Zhang et al., 

1996). The orientation and the distribution of stresses have been simulated during folding of 

single– and multilayer (e.g., Dieterich, 1970 and Stephansson, 1974). As expected, 

compressive stresses are observed within the lower parts of the fold hinge and extensional 

stresses within the upper part of the fold hinge. The development of thrusts was recorded 

within the fold limbs rather than within the fold hinges of compressed viscoelastoplastic 

layers (e.g. Gerbault et al., 1999). 

 
2.3.3 Analogue models of boudinage 

It seems that the first experimental studies on the formation of boudins were performed by 

Ramberg (1955). He used putty for simulating the incompetent rock and various kinds of 

modeling clay, plasticine and cheese for simulating the competent rock. No quantitative 

measurements of the material properties were conducted. However, Ramberg showed that the 

boudins shape and development depends on the strength and the plasticity of the layer. 

Additionally he presented an analytical treatise for fracture boudinage. Since then a large 

body of both natural and experimental work have been the subject of considerable study (e.g., 

Wilson, 1961; Ramsay, 1967; Etchecopar, 1974, 1977; Hobbs et al., 1976; Ghosh and 

Ramberg, 1976; Lloyd and Ferguson, 1981; Lloyd et al., 1982; Neurath and Smith, 1982; 

Woldekidan, 1982;  Blumenfeld, 1983; Simpson and Schmid, 1983;  Hanmer, 1984, 1986; 

Van der Molen, 1985; Ramsay and Huber, 1987; Goldstein, 1988; Lacassin, 1988; DePaor et 

al., 1991; Hanmer and Passchier, 1991; Mandal and Khan, 1991; Mandal et al, 1992; 

Swanson, 1992, 1999; Mandal et al, 2000; Goscombe et al., 2004). Previous attempts to 
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numerically model boudinage mostly dealt with the mechanisms of fracture and necking 

during layer-normal compression. Stress distribution and boudin displacement have been 

investigated with the use of the finite element method (FEM) and through theoretical 

considerations of elastic rock behaviour (Stephanson and Berner, 1971; Strömgard, 1973; 

Selkmann, 1978; Treagus and Lan, 2000). Nevertheless, only very few experimental 

treatments using rock analogues to model boudins have been carried out.  

Strömgard (1973) studied the stress distribution in the regions adjacent to rectangular boudins 

with photo elastic material. However, due to the high tensile strength of the competent layer, 

the fracture had to be produced by cutting it. He also presented an analytical treatise on stress 

distribution in single and multilayer systems assuming linear-viscous or elastic material 

properties. One of the numerous general conclusions of this study is that the length of boudins 

formed by tension fracture is 2 – 4 times the layer thickness. If the deformation involves 

necking before rupture, the boudins might to be longer. 

Neurath and Smith (1982) conducted numerous experiments using wax models and found that 

the boudins grew almost three times faster than predicted by the analytical solutions. 

Woldekidan (1982) performed various experiments using wax or plasticine multilayer 

shortened perpendicular to the layering. Rectangular experimental boudins were compared 

with natural examples. Additionally he found out that low competence contrasts and/or 

closely spaced competent layers lead to a bulk mechanical anisotropy and thus internal pinch 

and swell and/or kink bands developed.  

Mandal and Khan (1991) conducted experiments with obliquely cut wax layers submerged in 

pitch in order to study the offset and rhomboidal boudins during layer normal compression. 

They found out that rhomboidal boudins might either separate or only rotate and offset 

depending on the geometry. 

Mandal et al. (1992) performed experiments with tubes of polyethylene, which were 

uniaxially stretched. The development and nature of wide-necked pinch and swell structures 
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was investigated. They concluded that neck zone spreading might be an important process in 

the development of pinch and swell structures. Furthermore, they observed that a swell dies 

out if two adjacent necks coalesce with each other.  

Mandal et al. (2000) investigated the formation of tensile, shear fracture boudinage in 

multilayered plasticine, and found that the type of boudinage (i.e. shear or tensile fracture 

boudinage) and the aspect ratio (width/thickness) of boudins is dependent on the thickness 

ratio (TR) of the brittle and ductile layers. The aspect ratio is exponentially increasing with 

decreasing TR. Extensional shear fracture boudinage forms when TR is in the range of 0.1 and 

3.4, tensile fracture and shear fracture boudins at smaller and larger ratios, respectively. 
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3 EXPERIMENTAL APPROACHES  

3.1 Scaling procedure 

Our knowledge on rock deformation arises from field studies and laboratory experiments, the 

latter being applied to natural rocks or to analogue material. The problem of the reduction of 

scale and rate, necessary for experimental approach, is very delicate when a tectonic structure 

is modelled. For experimental reasons of choice of materials and due to the imperfect 

knowledge of the rheological properties of rocks under natural conditions it is impossible to 

replicate the nature in all aspects during modelling. It is thus necessary to choose well 

constrained material and perform the experiments under controlled conditions to keep 

uncertainties at minimum. The theory of these rules was first introduced by Hubbert (1937) 

and was later discussed by Hubbert (1951), Horsfield (1977), Shemenda (1983), Weijermars 

and Schmeling (1986), Richard (1991), Davy and Cobbold (1991) and Cobbold and Jackson 

(1992).  

Weijermars and Schmeling (1986, Fig. 3) compiled a flow map (log strain rate vs. log stress) 

of various rocks and commonly used analogue materials (Fig. 3.1). 

 

 

Fig. 3.1: Log stress vs. log strain rate diagram showing flow curves of investigated rock samples (at e = 10%) 
and analogue material, tested in previous studies: Weible red and Weible white plasticine at e = 5% (Kobberger 
and Zulauf, 1995); Plasticine Special Soft, Plasticine Standard Hard and plasticine Standard White at e = 10% 
(McClay, 1976); White Plastilina (Weijermars, 1986). Flow curves for rocks: Yule marble (Heard and Raleigh, 
1972), Solnhofen limestone (Schmid et al., 1977); Carrara marble (Schmid et al., 1980); quartzite (Heard and 
Carter, 1968); olivine (Ashby and Verall, 1977); all temperatures are in °C (diagram after Zulauf and Zulauf, 
2004). 
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Rocks can flow by diffusion and/or dislocation creep, where the fastest mechanism is 

dominating the flow. Natural rocks appear to have stress exponents between 1 and 10. Griggs 

at al. (1960) presented stress-strain curves at 5 kb confining pressure and strains of about 15% 

for different rocks. Dunite, pyroxenite and Yule marble showed either steady-state 

deformation or strain hardening. Basalt, granite and dolomite showed strain softening over a 

wide range of experiments. Additionally quartzite exhibited strain softening (Heard and 

Carter, 1968). In order to determine the rheology of Carrara up to very high shear strains (γ = 

28), experimental investigations of Barnhoorn et al. (2000) have shown strain hardening until 

a peak stress was reached (γ = 1 – 2). Then the material entered the strain softening range 

until a steady-state flow was reached. However, the stress exponent (n = 7 – 9) was constant 

(barnhoorn, pers. com., 2000) when the material deformed by power law creep (> 600 °C). 

Non-Newtonian flow is recently the best rheological model for most rocks, if dislocation 

creeps is the dominant deformation mechanism (Fig. 3.1). However, Paterson (1987) 

reviewed problems that arise if laboratory data are extrapolated to the scale of geological 

processes. Unknown variables are, for example, the confining pressure, the chemical 

environment, the presence of a fluid phase, the grain size and the preferred crystallographic 

orientation.  

In the present study, plasticine has been used as analogue material. The macroscopic 

behaviour of most types of plasticine is quite similar as in rocks undergoing strain-rate 

softening and strain hardening regardless of the different microscopic aspects of deformation 

(Zulauf and Zulauf, 2004; and references therein). Therefore, if one is aware that the stress 

exponent and viscosity increase with increasing strain, the original plasticine types used with 

stress exponent ranging from 5.8 to 8.0 (see 3.2 and 4.1) are adequate for modelling geologic 

structures. The same holds for plasticine/oil mixtures. Thus, plasticine and plasticine/oil 

mixtures can be used to model the viscous flow of different rock types in the lower crust. If 

climb-accommodated dislocation creep and associated steady-state flow is assumed for the 
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natural rocks, the three plasticine/oil mixtures should be used, which flow under steady-state 

conditions. 

Most of the experiments show that strain hardening occurs particularly at low temperatures 

and/or higher strain rates. Possible candidates for strain hardening are rocks, which are 

subjected to decreasing temperatures during exhumation from deep structural levels where 

climb-accommodated steady-state creep was possible. As the temperature, decreases during 

uplift, recovery by dislocation climb might be inhibited leading to strain hardening (Zulauf 

and Zulauf, 2004). Strain hardening is further important for the geometry of folds (Tentler, 

2001). The activation energy of plasticine is similar to that of Carrara Marble (Q = 418 kJ 

mol-1; Schmid et al., 1980) and wet dunite (Q = 420 kJ mol-1; Chopra and Paterson, 1981). 

Most of the other rocks (e.g. quartzite, granite, quartzdiorite, diabase, and anorthosite) show 

activation energies below 420 kJ mol-1 (Kirby, 1983; Ranalli and Murphy, 1987). Thus, the 

rock most appropriate for being modelled using plasticine is Carrara Marble because both the 

stress exponent and the activation energy are similar to those of plasticine (Fig. 3.1). 

 

3.2 Plasticine as analogue material  

Plasticine is a modelling material that has been widely used to simulate deformations both in 

metallurgical (Green, 1951) and in geological research (e.g. Watkinson, 1975; Sokoutis, 

1987). As we are using rheologically stratified plasticine as a rock analogue to investigate the 

growth of folds and boudins in three dimensions, detailed studies have been carried out 

concerning the rheology of different types of plasticine. For the selected experimental 

conditions, to demonstrate the impact of plane-strain coaxial deformation on the deformation 

structures of rheologically stratified analogue material, we investigated a stiff layer, with 

viscosity η2 and stress exponent n2, embedded in a weak matrix, with viscosity η1 and stress 

exponent n1. The layer consisted of Beck’s black and Kolb grey plasticine, commercially 

available plasticine produced by German manufacturers made by Beck’s Plastilin, 
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Gomaringen and Kolb, Hengersberg, Germany, respectively. The matrix consisted of Beck’s 

green plasticine, also produced by Beck’s Plastilin, Gomaringen. To reduce the viscosity of 

the original Beck’s green plasticine (termed Bg0), which formed the weak matrix, the material 

was partly modified by adding 50, 100 and 150 ml medical white oil (Liquid paraffin, made 

by DEA, Hamburg) to 1 kg warm (55°C) Beck’s green plasticine. The uncertainty in 

temperature is ± 1°C. Both were mixed in the laboratory using a kitchen aid machine to obtain 

the new plasticine types Bg50, Bg100 and Bg150. After mixing with the machine, the 

Plasticine/oil mixtures were additionally homogenised by hand and then wrapped in an 

ethylene bag during a few days. This plasticine constitutes the basic material for the 

preparation of the samples. Then it has to be homogenised by hand and 1 kg was moulded 

into a cube-like shape. The plasticine was then cut to cubes with a side length of 7 cm for 

Bg50, Bg100, and 8 cm for Bg150 with a wire-saw (Zulauf, 2004; Fig. II.2) at room 

temperature for the rheological measurements.  It is important to note that different coloured 

plasticine, even if produced by the same company, have different physical properties (e.g. 

Sofuoglu and Rasty, 2000). Therefore, our data are only valid for Beck’s green, Beck’s black, 

Kolb brown, and Kolb grey plasticine. 

The exact composition of plasticine is largely unknown because of patent restrictions. 

According to manufacturer’s declarations, the organic matrix of plasticine consists of white 

oil, wax, Vaseline and lubrication solvent. The composition and shape of the filling 

components of plasticine is of interest, as the individual components may rotate in the weak 

deforming organic matrix, resulting in shape-preferred orientation and related strain 

hardening. The calcite and barite fillers of Beck’s green and Kolb grey are plate shaped. Some 

of the plasticine types include small amounts of dyes such as titanium dioxide, magnetite or 

haematite (Zulauf and Zulauf, 2004). The volume percentages of calcite in Beck’s green and 

Beck’s black plasticine are ca. 46% (Schöpfer and Zulauf 2002). The black colour results 

from additional magnetite (Zulauf and Zulauf 2004). 
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The rheological data indicate that all types of plasticine are non-linear viscous materials 

characterized by strain-rate softening. The higher the strain rate, the lower is the viscosity 

(McClay, 1976, Zulauf and Zulauf, 2004). Plasticine types with mineral fillers show strain 

hardening, whereas plasticine with organic fillers shows steady-state creep (Zulauf and 

Zulauf, 2004). A rise in temperature results in linear decreases of n, η, and a reduction in the 

degree of strain hardening. Steady-state creep and major changes in n and η have further been 

observed at decreasing filler-matrix ratios, the latter being obtained by adding oil to the 

original plasticine (Zulauf and Zulauf, 2004). 

 
3.2.1 Rheological measurements 

3.2.1.1 Sample preparation 

Commercially available plasticine is porous with a considerable amount of isolated air 

pockets. In order to establish a reasonable degree of homogeneity, these air pockets should be 

squeezed out of the material. First the plasticine was put in the oven at 55°C for about one 

hour in order to make it softer and easier to handle. The procedure to obtain cubes was the 

same as described above. The initial samples were cubes (edge length = 5 cm for original 

Beck’s green (Bg0) and Kolb grey plasticine (Kg0)).  

To mould the plasticine into cubes, the viscosity of the hard types was decreased by heating 

up to ca. 50°C for a maximum of 1 hour (Zulauf and Zulauf, 2004). The viscosity of the 

heated samples is significantly controlled by the degree of kneading during the cooling 

period. Samples heated to T = 55°C and cooled to room temperature without deformation are 

much harder than those samples that are slightly moulded by hand during cooling (Zulauf and 

Zulauf, 2004). Further caution is needed to avoid air bubbles, which might be introduced into 

the plasticine during the moulding process. These bubbles are possible sites where shear 

fractures may occur (Zulauf and Zulauf, 2004). 
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From Beck’s green, Beck’s black and Kolb brown plasticine, the rheological parameters were 

available from the literature (Table 4.1). 

 
3.2.1.2 Uniaxial compression tests 

The rheological parameters of Kolb grey and modified Beck’s green plasticine have been 

determined applying uniaxial compression tests on plasticine cubes for constant strain rates 

ranging between 10-1 and 10-5 s-1 and for finite strain of 10%. The testing apparatus was a 

Zwick/Z-050 traction apparatus at the Lehrstuhl für Polymerwerkstoffe, 

Werkstoffwissenschaften, Universität Erlangen. For our purpose, the traction apparatus was 

rearranged for uniaxial compression. The upper steel plate was fixed and the lower plate was 

moving constantly. The plate distance (dl) and the force (F) were recorded at steps of 0.02 to 

1 s and the machine was linked to a computer to provide a force vs. strain plot during each 

run. The computer aided machine worked at constant velocity ranging from 400 to less than 

0.04 mm s-1. The data for the stress vs. strain diagrams were calculated using Excel software. 

The plates were within a heat chamber and the temperature was hold at 25°C. The uncertainty 

in temperature is ± 1°C. However, during the summer months, the room temperature was 

nearby 25°C and the chamber was overheated. The problem was solved by using a cooling 

box filled with water, which was heated with an aquarium thermostat. The cubes were put 

into water for at least one hour before the rheological test. The water dissolved the colour 

pigments and the samples had to be wrapped in polyethylene. Otherwise, the rheology was 

changed tremendously and lower viscosities were obtained. 

To reduce friction, the piston of the machine, the plates and the cubes surfaces were lubricated 

with Vaseline. Plasticine is an approximately incompressible fluid. Thus homogeneous 

constant-volume deformation can be assumed. Rheological calibration was performed with a 

series of strain rates applied to the cubes and measuring the change of the differential stress as 

the axial strain progresses up to 10%. Eight runs have been carried out for each material at 



                                                                                                                                          Experimental Approaches 

33 

finite strain rates ranging from 5.4 × 10-3 to 5.5 × 10-5 s-1 for the original Kolb grey plasticine 

(Kg0). Six runs have been carried out for each material at finite strain rates ranging from 1.2 

× 10-2 to 1.4 × 10-4 s-1 for the original Beck’s green plasticine (Bg0), 9.0 × 10-3 to 9.5 × 10-5 s-1 

for Bg50, 8.0 × 10-3 to 8.5 × 10-5 s-1 for Bg100 and 8.9 × 10-3 to 9.5 × 10-5 s-1 for Bg150. The 

results were homogeneously deformed cubes with nearly quadratic base and straight edges 

indicating pure oblate deformation (X = Y > Z). 

As the initial samples were cubes, the stress (σ) was calculated using the following equations: 

 

3
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=σ                                                                                                         [3-1]        

                                                                                                                                                                 
where L is the edge length of the cube (Fig. 3.2).  
 

 
Fig. 3.2: Cartoon showing undeformed and deformed sample: F = force; L = length of undeformed sample; dL 
= shortening increment (after Zulauf and Zulauf, 2004).  

               

According to Neurath and Smith (1982), the actual deviatoric stress in this experimental set-

up is 2/3 of the measured stress. The incremental strain rate was calculated by dividing the 

plate speed by the instantaneous sample height:  
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The finite longitudinal strain rate is calculated by equation: 
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where e is the finite strain and t is the time. 

As the ram speed is constant throughout a test, the strain rate is not constant. However, at e ≤  

50% the difference between finite and incremental strain rate is small and can be neglected. 

  
3.2.1.3 Stress exponents 

Previous studies have shown that the flow behaviour of plasticine and related materials is 

non-Newtonian, which can be approximately described by the so-called Dorn equation (e.g. 

Ranalli, 1995): 

 
ė = )*exp( RTEA n −σ                                                                                           [3-4] 

 
where ė is the steady-state strain rate, A is a material constant, σ  is the differential stress, n is 

the stress exponent, E* is the activation energy, R is the universal gas constant and T is the 

absolute temperature. 

 

Fig. 3.3: Schematic graphs (with arbitrary scaling) showing terminology of flow behaviour. (a) Stress vs. strain 
rate diagram where Eq. (3-5) is plotted for various values of the stress exponent, n. Materials with n = 1 are 
Newtonian, with n > 1 are strain-rate softening and with n = ∞ are perfectly plastic (see also Twiss and Moores, 
1992; Weijermars, 1997). (b) Stress vs. strain curves for ductile failure. In theory, the stress is constant after 
yielding (flow at steady stress), but it can either increase (strain hardening) or decrease (strain softening) (e.g. 
Ranalli, 1995) (afterSchöpfer and Zulauf, 2002).                                
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The equation )*exp( RTEAC −=  represents the reaction rate as a function of absolute 

temperature and is known as Arrhenius equation. Therefore, at a constant temperature and 

strain, the constitutive equation for a non-Newtonian material (Equation [3-4]) can be written 

in a simplified form as follows (e.g. Weijermars and Schmeling, 1986; Ranalli, 1995; Fig. 3. 

3a): 

  
nCE σ=&                                                                                                                       [3-5]     

 
where Ė is the longitudinal strain rate, C is a temperature- and strain-dependent constant 

(material constant), σ is the differential stress, and n is the stress exponent (McClay, 1976). 

Equation [3-5] can be rewritten as follows: 

 
 log10 Ė = log10 C + nlog10 σ                                                                                      [3-6] 
  
    
To obtain the stress exponent n, the deviatoric stress at a given strain (e.g. 10%) is plotted in a 

log stress vs. log strain rate diagram. The slope of a linear best-fit least-squares regression of a 

log strain-rate vs. log stress diagram yields the stress exponent. The intercept at the ordinate 

yields the material constant (C). The major uncertainty concerns the stress, whereas the strain 

rate is largely independent, apart from the uncertainties of the machine, the latter being 

negligible. Therefore we use a log stress vs. log strain-rate plot, where the slope of the 

regression line yields 1/n and C’ is the intercept along the vertical stress axis (Fig. 3.4). 

  

 

Fig. 3.4: Schematic diagram of log differential stress (σ) vs. log strain rate (Ė). Slope of regression line gives 
1/n; for further explanation see text (after Zulauf and Zulauf, 2004). 
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Starting from Equation [3-6], the material constant can be calculated by substituting (σ/Ė) 

couples determined experimentally (Weijermars and Schmeling, 1986). We calculated the 

material constant using the linear best-fit least-squares regression (Fig. 3.4) and the following 

equation (Zulauf and Zulauf, 2004): 

 
C = 10 –logC’n                                                                                                                         [3-7] 

 
3.2.1.4 Apparent viscosity 

Plasticine is a non-Newtonian material, i.e. the stress/strain rate relationships are non-linear. 

The apparent dynamic viscosity η can be calculated by the following equation: 

 

 
E&2
ση =                                                                                                                               [3-8] 

       
Equations [3-6] and [3-8] yields Equation [3-9], which can be used to calculate the apparent 

dynamic viscosity using all data couples (Zulauf and Zulauf, 2004):  
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1

2

1 −
= n

n

E
C

&η                                                                                                                 [3-9]  

                                                                                                      

3.3 Analogue modelling of geological structures 

3.3.1 Deformation apparatus 

The experimental deformation apparatus used to study the influence of the deformation 

regime on the geometry of a deforming stiff plasticine layer embedded in a weak plasticine 

matrix is shown in Figs. 3.5 and 3.6 (Zulauf et al., 2003). The numbers in Fig. 3.5 refer to the 

bracketed numbers in the following text. The apparatus consists of a basal PVC plate [1], on 

which six aluminum plates [2]–[7] have been orthogonally assembled. As the initial specimen 

geometry leads to point loads, which result in strong bending of plates [2]–[5], these plates 

have been reinforced with U-shaped beams made of steel (only shown in Fig. 3.6). Plates [2] 
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and [7] are fixed to the basal plate. Plates [3]–[6] are movable. In the top view of Fig. 3.5 the 

movement direction is indicated by black arrows. Axes a and b of the orthogonal Cartesian 

co-ordinate system describe the horizontal directions.  

 

 

Fig. 3.5: Technical drawing of the new deformation apparatus, with the motors and tooth belts not shown (after 
Zulauf et al., 2003). 

 

 

 

Fig. 3.6: Photographs of the deformation apparatus and electronic control unit. (A) View from above. (B) Side 
view. R = reinforcement spindle (after Zulauf et al., 2003). 
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The c axis denotes the vertical direction. Plate [6] is fixed to plate [3] and slides within a 

groove of the basal plate along the b direction. Plate [5] also slides within a groove of plate 

[1] along the a direction. Except for pure flattening strain (see below), the analogue material 

is bounded by plates [2]–[5]. Maximum initial model dimensions are usually 30×30×30 cm. 

To deform the specimen, the mobile plates are shifted horizontally along the basal plate in the 

a and b direction, respectively. Plates [2]–[5] are faced with Teflon sheets to reduce friction. 

The movement of plates [3] and [4] is performed in each case by four spindles, driven by two 

motors via gears and a toothed belt (shown in Fig. 3.6 only). One of the motors is fixed to 

plate [7]; the other is fixed to plate [6]. The motor speed is variable in the range 1–3000 rpm, 

and the number of revolutions is shown on a digital display. The corresponding longitudinal 

finite strain rates ė range from 4×10-6 to 1×10-2 s-1. 

If plate [3] moves along the b direction, plates [6] and [4] also move in this direction, because 

plate [6] is fixed to plate [3] and plate [4] is linked to plate [6] by the fours spindles. If these 

spindles are pushing plate [4] along the a direction, plate [5] is also shifted along the a 

direction. With this geometry an absolute maximum of 78% horizontal shortening is possible 

in the a and b directions. In cases of pure constrictional strain (Flinn parameter k = ∞) a 

control gear maintains the same speed for both motors, meaning that plates [3] and [4] are 

moving with the same velocity along the horizontal Y = Z axis of the finite strain ellipsoid, 

and the X-axis is vertical. There are two possibilities to produce plane strain (k =1). In one 

case, plate [3] and associated plates [4] and [6] move parallel to the b direction (that is 

equivalent to the Z-axis of the finite strain ellipsoid), whereas plate [5] is immobile. In the 

other case, plates [3] and [6] are immobile and plates [4] and [5] move along the a direction 

that is parallel to the Z-axis of the finite strain ellipsoid. Similar to the case of constrictional 

strain, the X-axis of the finite strain ellipsoid is vertical in both cases of plane-strain 

configuration.  
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3.3.2 The experimental procedure 

To demonstrate the impact of plane strain on the deformation structure of rheologically 

stratified analogue material, we investigated a stiff layer, with viscosity η2 and stress exponent 

n2, embedded in a weak matrix, with viscosity η1 and stress exponent n1. The following three 

deformation regimes were considered: (1) plane strain-coaxial deformation with the stiff layer 

perpendicular to the long axis, X, of the finite strain ellipsoid (Fig. 1.1a), (2) plane strain-

coaxial deformation with the stiff layer perpendicular to the short axis, Z, of the finite strain 

ellipsoid (Fig. 1.1b), and (3) plane strain-coaxial deformation with the stiff layer 

perpendicular to the intermediate Y-axis of the finite strain ellipsoid (Fig. 1.1c). Additional 

runs have been carried out under pure constrictional conditions. 

Layers are obtained by pushing a plasticine block (which was moulded in the same way as 

described above) gently through a horizontally spanned wire. With this technique it is 

possible to obtain layers with thicknesses of the stiff layer ranging from 1 ± 0.2 to 10 ± 0.2 

mm at 1 mm increments. Acetate sheets, which were lubricated on either side with Vaseline, 

were put between plates and plasticine. The plasticine was then easily removed from the 

plates. Plasticine that has been in contact with Vaseline (injections) was removed. Layers 

were cut perpendicular to the previous shortening direction with a horizontally spanned wire 

as described above. Distinct instabilities were not inserted into the layer before assembling it 

with the matrix blocks. 

The “matrix-block” was cut in the middle and the layer was put carefully in-between the two 

halves. The initial samples (matrix plus layer) were cubes (edge length = 12 cm). Good 

adherence was obtained if the block was put in the oven (55 °C) for about an hour. The 

sample is then stored in the analogue modelling laboratory over night.  

Before putting the specimen into the machine, the surfaces of the sample were lubricated with 

Vaseline and put into a bag made of ultra thin PVC to reduce friction. Subsequently the bag 

was also lubricated with Vaseline like the plates of the apparatus. The sample rested on a 
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tripod, which was inserted through a hole in the basal plate. Then the Y-plate (the plate 

perpendicular to the Y-axis of the finite strain ellipsoid) was moved. Gentle compression was 

sufficient and the sample stayed at its height without support. The tripod was then removed 

from underneath and the analogue material is then bounded by plates [1]-[4] (see Fig. 3.5). 

All experimental runs were carried out until a finite longitudinal strain of 30% was achieved. 

Further experiments have been carried out with a viscosity contrast m < 10 and were 

deformed in one run until 40% finite strain were achieved. After the experiment the plates 

were driven back. The sample was easily removed in its ethylene bag. To investigate the 

geometry of the deformed stiff layer, the specimen was cut in half along the X-axis. One of 

the halves served for analysing the geometry of the boudins (XY-sections), the other half was 

used to examine the folds (YZ-sections) (Fig. 3.7). The spacing of the single cuts was set at 1–

3 cm. There was no problem in reassembling the YZ-sections in order to investigate the XZ-

sections. The obtained slices were photographed and scanned.  

 

 
Fig. 3.7: Schematic drawing of undeformed (a) and deformed sample (b). 

 

3.4 Computer Tomography (CT)  

3.4.1 Introduction 

Computer tomography (Greek tome = cutting, graphia from graphein = to write) is an 

imaging process permitting insights into the interior of a spatial body without destroying it. 

By using tomography, the contents of the drums can be analysed nondestructively - without 
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having to open the drums. The decisive advantage is that the contents of the drums are shown 

to the user by the tomograms thus generated, so that even complex structures can be observed 

at a glance. The facility essentially consists of a radiation source, a detector system and a 

mechanism for handling the drum to be examined. Use of laboratory or industrial computed 

tomography has several advantages compared to laboratory or industrial X-ray sources. These 

include: (i) a high photon flux permits measurements at high spatial resolution; (ii) the X-ray 

source is tuneable, thus allowing measurements at different energies; (iii) the X-ray radiation 

is monochromatic, which eliminates beam-hardening effects; and (iv) the beam is flat (line 

scanning), which simplifies the reconstruction. Methods and applications of synchrotron and 

conventional computerized X-ray tomography are reviewed in Wellington and Vinegar 

(1987), Bonse and Busch (1999), Rivers et al. (1999), and Ketcham and Carlson (2001). 

Computer tomography (CT) was originally designed for medical applications (Hounsfield, 

1973; Kantzas et al., 1992) as a non-destructive technique for the investigation of internal 

structures of human bodies. It is now applied to a variety of non-medical fields (Duliu, 1999). 

Geologists have adapted CT (Wellington and Vinegar, 1987; Kenter, 1989; Long and Ross, 

1991; Orsi et al., 1994; Boespflug et al., 1995; Crémer et al., 2002) to characterize 

sedimentary facies in marine sediments. 

In preparation for the analysis, the core is positioned on a bed that slides through a gantry 

(Michaud et al., 2003; Fig. 2). The gantry is made up of an X-ray source that is opposite to 

600 receptors (Michaud et al., 2003). The receptor – source system rotates around the sample 

in a short period of time (2 s for one image). This helical rotation allows the measurement of 

the X-ray attenuation through the core at many different angles (Wellington and Vinegar, 

1987). X-ray beams are attenuated through the matter following the Beer – Lambert law:  

 
xeII µ−= 0                                                                                                            [3-10] 
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where Io, I, and x are the initial intensity of the X-ray incident beam, the measured attenuated 

intensity on the detectors, and the sample thickness, respectively. The parameter µ is the 

linear attenuation coefficient depending on both the atomic number and the density of the 

investigated object (Boespflug et al., 1994).  

In the present study, we used computer tomography (CT) in cases where the newly formed 

structures were weakly developed and thus difficult to examine using the procedure described 

above. The CT-studies were performed using a multislice spiral CT-scanner “Somatom Plus 

4, volume Zoom, Siemens Erlangen” at Neurocenter, Department of Neurosurgery, 

Universität Erlangen-Nürnberg University, Germany (Fig. 3.8).  

 

 

Fig. 3.8: Computer Tomography “Siemens Somatom Plus 4”, showing how the analogue material were taken up 
at the Division of Neuroradiology of the University of Erlangen-Nürnberg; the layer and the matrix consisted of 
Beck’s black and Beck’s green plasticine, respectively.  

 

The modulation of the scans was carried out under the following conditions: collimation 4 × 1 

mm; slice 1.25 mm; increment 1 mm, and table feed 8.7 mm. According to the details 

reported by the manufacturer and X-ray diffraction analyses, the initial contrast between the 

layer and the matrix consisted of Beck’s black and Beck’s green plasticine. Secondly, the 

contrast between layer and matrix consisting of Kolb grey and Beck’s green plasticine, 

respectively, is sufficient to distinguish structures in CT-images (Zulauf et al., 2003, Zulauf 

and Zulauf, 2004). A major disadvantage of the CT as seen in this study is its inaccurate 
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spatial resolution. Sometimes boundary surfaces between materials with different densities 

cannot be defined clearly. Besides, the CT used here can only dissolve up to 5 mm large 

ranges smaller details up to 1 mm become interpolated (Zulauf, 2004; Fig. III. 5).  

 
3.4.2 Visualization of the CT-data 

Visualization of CT data typically profits from the ability to view arbitrarily oriented sections 

through the three-dimensional volume represented by the data, and from the capability to 

extract features of interest selectively and display perspective views of them using methods of 

isocontouring or volume rendering (Ketcham and Carlson, 2001).  

Although direct volume rendering is a powerful tool for visualizing complex structures within 

volume data, the size and complexity of the parameter space controlling the rendering process 

makes generating an informative rendering challenging (Wellington and Vinegar, 1987; 

Bonse and Busch, 1999; Rivers et al., 1999; Ketcham and Carlson, 2001). In particular, the 

specification of the transfer function -- the mapping from data values to renderable optical 

properties -- is frequently a time-consuming and unintuitive task. Ideally, the data being 

visualized should itself suggest an appropriate transfer function that brings out the features of 

interest without obscuring them with elements of little importance (Rezk-Salama, 2002; and 

references therein). It is therefore hardly possible to study the geometry of the deformed stiff 

layer in 3D using conventional cuttings along XZ or YZ planes. The volume rendering 

technique has been used to carry out the CT-images necessary to quantify the geometry of 

deformed layers in 3D and 4D. 

For the visualization of the CT-data the program OpenQVis (Rezk-Salama, 2002), developed 

by the Department for Computer Science 9 (Computer Graphics) of the University of 

Erlangen-Nürnberg), was used. This program converts the 2D of data records (pixels) in 

volume data (Voxel). The rendition is difficult because of the complexity of the recorded data. 

For instance, volume data have to be interactive with respect to the rotation of the 3D-Data. 
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This also applies to the change of the opinion parameters, the adjustment of the shade and the 

arrangement function. The accuracy with respect to resolution of the regional structures in the 

recorded data is fixed in the physical model for discrete volume data. Moreover, artefacts of 

the special rendition algorithm affect quality (Rezk-Salama, 2002). 

The volume data cover grey tones for matrix and stiff layer. Due to different physical 

characteristics of stiff layer and matrix, the respective Voxelparameter has different threshold 

values. By changing the threshold value, it is possible to blend out the matrix and hence show 

the stiff layer only. Threshold value dependent, the stiff layer is differentially reproduced, 

leading at times to ambiguous interpretations.   

As for now, a set up approximating the ideal conditions, especially with a direction 

perpendicular to the stiff layer is not known. If the stiff layer is adjusted to the power value 

material, too little Voxel is represented and the stiff layer is "loechrig", i.e. the number of 

boudins rises strongly. A calibration of the volume data is only partially possible. There is the 

possibility of sending the stiff layer a certain volume and of determining dependent on it the 

threshold value border. Thus, the layer strength in the case of the incremental investigations 

decreases apparently, although actually an increase occurs. A possibility for this effect could 

be the dependence of the CT data on power and the size of the parts. A coherent stiff layer or 

a strongly folded range reflected clearly more strongly than a strongly boudined stiff layer, 

i.e. the X-ray penetrate the necks more strongly than the boudins and blooming thereby their 

edges. Threshold value attitudes concern cases primarily, in which the line of sight runs 

perpendicularly to the stiff layer. The changes parallel to the stiff layer are negligible. 

 
3.4.3 Evaluation of the CT-data 

Besides the visual assessment of the deformed samples with the OpenQVis Program (Rezk-

Salama, 2002) there was also a quantitative geometrical analyses with the help the program 

geoCT (Kaisersberger, 2002). 
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OpenQVis makes a 3D-visualization of CT-data possible (Zulauf, 2004; Fig. III.5). The 

transformed data are illustrated in the grey tones given by the CT. This 3D picture can rotate, 

increase or translate. Moreover, thanks to OpenQVis, even sections of a chosen plane can be 

moved and rotated (Zulauf, 2004; Fig. III.5). An assessment of samples parallel to arbitrary 

cuts in all possible directions is possible. Furthermore, a measuring function is an integral part 

of the program, which permits simple end-to-end measurements. This end-to-end 

measurement takes place in the area. Special application of the program is also found in 

Medicine (Rezk Salama, 2002; http://openqvis.sourceforge.net/gallery.html). 

The program geoCT makes the statistical assessment of the CT-data possible (Kaisersberger, 

2002). A conversion of the data is also necessary. Along the 3 principal axes of the finite 

strain ellipsoid cross section transverse sections are possible in distances given by the CT 

(Zulauf, 2004; Fig. III.5). The program count objects of the stiff layer and measure 

automatically those perpendiculars to the plane defining main axis. The found objects are 

shown in alternating colours (Zulauf, 2004; Fig. III.5). This example shows that automatic 

object identification is only permissible, if the individual boudins are already drifting apart in 

the course of the progressive deformation.  

The determination of the actual layer thickness is similarly problematic as with the program 

OpenQVis. An additional programmed function (Institute for Computer Science of the 

University of Erlangen-Nürnberg) makes a representation based on the volume possible. The 

evaluations took place for all samples with a threshold value based on a constant volume 

(85.000 mm3). This numeric value was empirically determined. The attitude was decisive, 

with which the number of boudins corresponded to the value of the conventional cut 

evaluation.  

Besides, well-trained folds can be measured efficiently on the basis an automatic drawing and 

centrelines identification. With initially trained folds or with ingates disturbed by Boudinage 
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the structures were measured manually. Furthermore, boundary regions were not considered 

and amplitudes were principally measured manually. 
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4 EXPERIMENTAL RESULTS 

4.1 Rheology of plasticine used for experiments  

The rheological data of the different types of plasticine used in the present study are 

summarized in Table 4.1. Apart from strain-hardening effects, the viscosity of Beck’s black, 

Kolb brown and Kolb grey plasticine, which formed the stiff layer, was held constant 

throughout the experiments.  

  

 Material n η [Pa s] ė [ s-1] e [%] T [°C] Study 

Beck’s green 8.6 1.1 x 107 4 x 10-3 10 25 
Zulauf and 

Zulauf 
(2004) 

Beck’s green 
(Bg0) 7.9 7.2 x 106 2 x 10-3 10 25 This study 

Bg50 13.5 6.8 x 106 2 x 10-3 10 25 This study 

Bg100 5.5 2.6 x 106 2 x 10-3 10 25 This study 

Bg150 10.5 1.2 x 106 2 x 10-3 10 25 This study 

Kolb grey 
(Kg0) 6.5 8.5 x 106 2 x 10-3 10 25 This study 

Beck’s black 8.0 4.2 x 107 1 x 10-3 10 25 
Schöpfer and 

Zulauf 
(2002) 

Kolb brown 5.8 2.23 x 107 4 x 10-3 10 25 
Zulauf and 

Zulauf 
(2004) 

 
Table 4.1: Rheological data (n-and η-values) of plasticine used in the present study. 

 

The results of constant strain-rate tests of the original Kolb grey and Beck’s green 

plasticine/oil mixtures (50, 100, and 150 ml oil/kg) types, carried out at T = 25°C, are 

presented in form of stress vs. strain plots (Fig. 4.1). The basic feature of all stress/strain 

curves is a steep slope at low strain, and a zone of yielding followed by almost steady state 

flow, the latter implying a small component of strain hardening. This increase of stress after 

yielding is almost linear in all plasticine types considered. It is obvious, that the stress 

exponent is proportional to the distances between the stress/strain curves at different strain 
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rates. The data of original Beck’s green and Kolb grey plasticine show a wide range of the 

stress/strain curves indicating strong strain rate dependence of the stress (Fig. 4.1). 

 

 

Fig. 4.1: Stress vs. strain plots for (a) Beck’s green plasticine, (b,c,d) of Beck’s green plasticine with different 
amounts of added white oil , (e) Kolb grey plasticine; T = 25 °C.  

 

However, the striking feature of the stress/strain curves that is important when calculating n 

and C concerns the tangents at the curves at a certain strain. These tangents are not parallel. 

Assuming steady-state flow and taking the stress at 10% strain, a plot of log10 stress vs. log10 

strain rate gives a straight line with slope n. From these plots, n is determined to be 7.9 for 

Bg0, 6.5 for Kg0, 13.5 for Bg50, 5.5 for Bg100 and 10.5 for Bg150 (Fig. 4.2). 
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Fig. 4.2: log stress vs. log strain plots for (a) Beck’s green plasticine, (b,c,d) of Beck’s green plasticine with 
different amounts of added white oil , (e) Kolb grey plasticine; T = 25 °C. Rk = regression coefficient, n = stress 
exponent, and N = number of runs. 

 

According to equation [3-9], the apparent dynamic viscosity (at 10% strain and a strain rate of 

ca. 2 x 10-3 s-1) is 7.2 x 106 Pa s for Bg0 (η0), 6.8 x 106 Pa s for Bg50 (η50), 2.6 x 106 Pa s for 

Bg100 (η100) and 1.2 x 106 Pa s for Bg150 (η150) (Table 4.1). Although the n- and C- values 

are varying tremendously, the viscosities are surprisingly as expected: Addition of oil leads to 

a decrease in viscosity. 
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The apparent viscosity, η, and the stress exponent, n, of the black and green plasticine (supply 

June 2002) have been determined in previous studies. At a strain rate ė = ca. 10-3 s-1 and a 

finite strain e = 10%, different supplies of original Beck’s green plasticine are characterized 

by η = 1.1 x 107 - 7.2 x 106 Pa s and n = 7.9 - 8.6 (Zulauf and Zulauf, 2004; Table 4.1). The 

original Beck’s black and Kolb brown plasticines show the following values: η = 4.2 x 107 Pa 

s and n = 8.0 (Schöpfer and Zulauf, 2002) and η = 2.23 x 107 Pa s and n = 5.8 (Zulauf and 

Zulauf, 2004), respectively. 

 

4.2 Coeval folding and boudinage under plane strain with the    

axis of no change perpendicular to the layer 
 
Plane-strain coaxial deformation of a competent plasticine layer embedded in an incompetent 

plasticine matrix was carried out to improve our understanding about the evolution of folds 

and boudins if the layer is oriented perpendicular to the Y-axis of the finite strain ellipsoid. 

The rock analogues used were Beck’s green plasticine (matrix) and Beck’s black plasticine 

(competent layer). Apart from strain-hardening effects, the viscosity of Beck’s black 

plasticine, which formed the competent layer, was kept constant throughout the experiments. 

The viscosity of original Beck’s green plasticine (termed Bg0), which formed the weak 

matrix, was partly modified by adding 50, 100 and 150 ml pharmaceutical white oil (liquid 

paraffin, made by DEA, Hamburg) to 1 kg warm (55°C) plasticine. The rheological data of 

the plasticine used are listed in Table 4.1. Four runs have been carried out using different 

viscosity ratios (ηlayer/ηmatrix = ca. 1, ca. 7, ca. 20 and ca. 35) (Table 4.2). Moreover, the range 

in thicknesses of the competent layer employed in the experiments was in the range from 1 ± 

0.2 to 10 ± 0.2 mm at 1 mm increments. 

Fifty experimental runs have been carried out at a temperature T of 25°C and a strain rate ė of 

ca. 2 x 10-3 s-1 until a finite longitudinal strain of 30% was achieved. To investigate the 

geometry of the deformed competent layer, the specimen was cut in half along the X-axis. 
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One of the halves served for analysing the geometry of the boudins (XY-sections), the other 

half was used to examine the folds (YZ-sections) (Figs. 3.7 and 4.3). 

  

          

Fig. 4.3: Photograph of deformed competent layer of Beck’s black plasticine embedded in matrix of modified 
Beck’s green plasticine (Bg150) at a viscosity ratio of ca. 35; initial layer thickness = 2 ± 0.2 mm; arrow in a 
indicates initial neck; arrow in b indicates possible “pseudoboudin” that might result from oblique trend of 
necks. 

 

Analyses of these sections include determination of: (i) finite layer thickness [Hf], (ii) length 

of boudins, (iii) maximum thickness of boudins, (iv) number of boudins, (v) shape of boudins, 

(vi) arc length of folds, (vii) number of folds, (viii) sharpness of fold hinges, and (ix) 

amplitude of folds. The average arc length of folds (Wa(fold)) was calculated by equation  [2-7]. 

The results presented are based on averaged data from measurements of 50 cross (YZ) and 

longitudinal (XY) sections representing the fifty runs carried out using different viscosity 

ratios. The spacing of the single cuts was set at 1–3 cm. There was no problem in 

reassembling the YZ-sections in order to investigate the XY-sections. As the viscosity contrast 

between layer and matrix has a major impact on the geometry of the deformed competent 

layer (Fig. 4.4), the results below are listed with decreasing viscosity of the matrix plasticine 

(Table 4.2). 
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Layer Beck’s black 
Plasticine 

Beck’s black 
Plasticine 

Beck’s black 
Plasticine 

Beck’s black 
Plasticine 

Matrix Beck’s green 
Plasticine 

Beck’s green 
Plasticine + 50 
ml oil/kg (Bg50)

Beck’s green 
Plasticine + 100 

ml oil/kg 
(Bg100) 

Beck’s green 
Plasticine + 150 

ml oil/kg 
(Bg150) 

Viscosity ratio 
(ηlayer/ηmatrix) 

ca. 1 ca. 7 ca. 20 ca. 35 

Run 4 3 2 1 

 
Table 4.2: Viscosity ratios of the different runs used in the present study. 

 

 

Fig. 4.4: Line drawing of deformed competent layer of Beck’s black plasticine embedded in matrix of modified 
Beck’s green plasticine at different viscosity ratios: ca. = 35 (a); ca. = 20 (b) and ca. = 7 (c); initial layer 
thickness = 1.0 ± 0.2 mm. 

 

Twenty (2 x 10) runs have been carried out with a viscosity ratio of 35 and with thicknesses of 

the competent layer ranging from 1 ± 0.2 to 10 ± 0.2 mm at 1 mm increments. As expected, 

boudins formed in XY-sections (Figs. 4.3a, 4.4a), whereas folds developed in YZ-sections 

(Figs. 4.3b, 4.4a). In a few cases folded layers are not continuous (see arrow in Fig. 4.3b), 

which is attributed to the fact that some of the necks trend oblique to the principal strain axes. 
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With increasing layer thickness, the average arc length of folds (Wa), determined by equation 

[2-7], increases from ca. 35 to ca. 60 mm and the wavelength/thickness ratio (Wd) ranges from 

ca. 6 to ca. 11 (Fig. 4.5a; Table 4.3). 

 
Viscosity 

ratio Hi[mm] Hf[mm] Hf[%] nfolds 
Wa(fold) 
[mm] Wd(fold) nboudins 

Wa(boudin) 
[mm] Wd(boudin)

ca. 35 1 3.3 ± 0.3 230 3.8 ± 0.8 35.7±10.4 10.8 6.8 ± 1.1 31.3±12.1 9.5 

 2 4.0 ± 0.7 100 2.6 ± 0.7 43.3± 5.1 10.8 3.3 ± 0.5 45.7±18.2 11.4 

 3 5.6 ± 1.4 90 2.3 ± 0.5 50.7±11.7 9.1 3.0 ± 0.6 50.5±14.9 9.0 

 4 6.9 ± 1.3 70 1.8 ± 0.4 55.5± 7.4 8.0 2.3 ± 0.4 55.7±15.7 8.1 

 5 9.2 ± 2.2 80 1.5 ± 0.5 57.2± 6.1 6.2 2.0 ± 0.7 58.3±22.3 6.3 

 6 10.4± 1.6 70 1.3± 0.4 60.2± 5.7 5.8 1.8± 0.4 65.4±20.6 6.3 

 7 11.0± 1.4 60 1 - - 1 - - 

 8 12.3± 1.9 50 1 - - - - - 

 9 13.0± 2.2 40 1 -  - - - 

 10 21.2± 3.6 120 - - - - - - 

ca. 20 1 2.6 ± 0.7 160 1 - - 2 46.5±12.5 - 

 2 3.6 ± 1.0 80 1 - - 1 53.7±5.8 - 

 5 8.3 ± 1.3 70 - - - - - - 

 7 9.3 ± 0.9 30 - - - - - - 

 10 14.8± 0.7 50 - - - - - - 

ca. 7 1 1.1 ± 0.2 10 - - - - - - 

 2 2.2 ± 0.3 10 - - - - - - 

 5 5.2 ± 0.5 0 - - - - - - 

 7 7.3 ± 0.6 0 - - - - - - 

 10 8.9 ± 1.0 -10 - - - - - - 

 
Table 4.3: Finite thickness of deformed competent layer and geometrical parameters for folds and boudins at 
different initial layer thicknesses. Hi = initial thickness of competent layer, Hf = finite average thickness of 

deformed competent layer, ( 1−
Hi
Hf

)*100 = layer thickening in [%], nfolds = number of folds, Wa(fold) = average 

fold arclength in YZ-sections, Wd(fold) = average fold arclength/thickness, nboudins = number of boudins, Wa(boudin) 
= average boudin wavelength in XY-sections and Wd(boudin) = average boudin wavelength/thickness. 

 

Moreover with increasing layer thickness the number of boudins (nboudins) decreases from ca. 7 

to ca. 2 and the length of boudins increases from ca. 30 to ca. 65 mm (Figs. 4.5a,b). 

According to our first quantification and statistical treatment, there is a clear tendency for the 

wavelength of both folds and boudins to be the same within uncertainty, which is actually 

quite large (Fig. 4.5a). 
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Fig. 4.5: Initial thickness of competent layer vs. wavelength (arc length) of boudins and folds (a) and initial 
thickness of competent layer vs. number of instabilities (b); viscosity ratio = ca. 35; N = number of data. 

 

 

Fig. 4.6: Initial vs. finite thickness of competent layer at different viscosity ratios. 

 

The ratio between finite and initial thickness of the competent layer (Hf/Hi) ranges from 1.4 

to 3.3, meaning that the thickness of the competent layer (maximum thickness of boudins) 
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increased considerably by 40 – 230% (Fig. 4.6a; Table 4.3). The effect of layer thickness on 

fold geometry is shown in Fig. 4.7. 

 

 

 

Fig. 4.7: Change in deformation geometry with thickness of layer of Beck’s black plasticine embedded in matrix 
of Beck’s green plasticine + 150 ml oil/kg; m = 35; e = 30%. 
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At a viscosity ratio of 20, ten runs have been carried out using thicknesses of the competent 

layer of 1, 2, 5, 7, and 10 ± 0.2 mm. In the YZ-sections, weak folding is observed, 

characterized by large wavelengths and low amplitudes. Boudinage appears to have 

developed from pinch and swell structures. With increasing layer thickness, the number of 

boudins (nboudins) decreases from 2 to 1 and the length of boudins increases from ca. 47 to ca. 

54 mm (Table 4.3). However, at both ends of XY-sections the layer is surrounded by the 

matrix, suggesting that the weak matrix flowed much faster than the competent layer. These 

observations imply significant boundary effects, which are attributed to the fact that the 

sample is not confined and can flow without resistance along the X-axis. The degree of layer 

thickening ranges from 50 to 160% (Fig. 4.6b, Table 4.3).  

At a viscosity ratio of 7, ten runs have been carried out using thicknesses of the competent 

layer of 1, 2, 5, 7, and 10 ± 0.2 mm. There is no evidence for folding and for boudinage, and 

the ends of the layers are hardly surrounded by the matrix. There is almost no change in 

thickness of the competent layer as is indicated by the Hf/Hi ratio that ranges from 0.9 to 1.1, 

equivalent to ± 10% thickening (Fig. 4.6c). 

In cases where the specimen does not show a competence contrast between layer and matrix 

(viscosity ratio = ca. 1), ten runs have been carried out using thicknesses of the competent 

layer of  1, 2, 5, 7, and 10 ± 0.2 mm. Homogeneous deformation occurs without folding in the 

YZ-sections and boudinage in the XY-sections. There is almost no change in thickness of the 

competent layer as is indicated by the Hf/Hi ratio that is ranging from 1.0 to 1.2, equivalent to 

± 15% thickening (Fig. 4.6d). 

 

4.3 The impact of strain rate on folding and boudinage under 

plane strain 
 
To demonstrate the impact of varying strain rates on growing folds and boudins under plane 

strain, we investigated a stiff layer, with viscosity η2 and stress exponent n2, that was 
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embedded in a weak matrix, with viscosity η1 and stress exponent n1. The stiff layer and 

matrix consist of non-linear viscous Kolb grey and Beck’s green plasticine, respectively. The 

effective viscosity (η) of the matrix plasticine was partly modified by adding oil to the 

original plasticine. The rheological data of the plasticine are listed in Table 4.1. At the strain 

rates used in the experiments the viscosity ratio between layer and matrix ranges between 3 

and 10. Different runs have been carried out where the layer was oriented perpendicular to the 

principal strain axes (X>Y>Z). In the three deformation regimes, the initial layer thickness 

(Hi) was set at 1.0 ± 0.2 mm. As there was an unexpected layer thickening in cases where the 

layer was oriented perpendicular to the minor principal axis of the strain ellipsoid Z, we 

carried out additional runs at different finite strains (5, 10, 20, 30, 40%) using the same 

material for matrix and layer with an initial thickness of the stiff layer (Hi) at 2.0 ± 0.2 mm. 

 
4.3.1 Stiff layer perpendicular to the long axis of the finite strain ellipsoid    

(S ┴ X) 
 
In cases where the layer is oriented perpendicular to the long axis X of the finite strain 

ellipsoid, folds have formed in XZ sections (Fig. 4.8). If the strain rate is ranging from 7.9 x 

10-6 s-1 to 1.1 x 10-3 s-1, enlargement of the strain rate results in a slight decrease in the number 

of folds (nfolds), ranging from ca. 4 to ca. 3  (Fig. 4.9a; Table 4.4). The arc length of the folds 

is the same within uncertainties (ca. 21mm; Table 4.4; Fig. 4.9b). There is only a weak 

increase of the mean value with increasing strain rate. If ė < 1.1 x 10-3 s-1 the ratio between 

apparent finite and initial thickness of the stiff layer (Hf/Hi) decreases with increasing strain 

rate from 3.1 to 2.3, meaning that the apparent thickness of the stiff layer increased 

considerably by 130 – 210% (Table 4.4; Fig. 4.10). The wavelength/thickness ratio (Wd) 

ranges from ca. 7 to ca. 9 (Table 4.4; Fig. 4.11).  
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Fig. 4.8:  XZ sections showing folding of the stiff layer with the layer initially perpendicular to the long X axis of 
the finite strain ellipsoid; strain rates used are indicated; e = 40%; initial layer thickness = 1.0 ± 0.2 mm. 

 

 

 

Fig. 4.9:  Number and length of instabilities vs. log strain rate in case where the stiff layer is perpendicular to 
the long X-axis of the finite strain ellipsoid; e = 40%; initial layer thickness = 1.0 ± 0.2 mm. 

 

If ė > 1.1 x 10-3 s-1 enlargement of the strain rate results in a significant increase in the number 

of folds (nfolds), ranging from ca. 3 to ca. 6 (Fig. 4.9a; Table 4.4), and a corresponding 

decrease of the arc length of the folds, the latter ranging from ca. 20 to ca. 18 (Table 4.4; Fig. 

4.9b).  
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Strain 
rate [s-1] Hi [mm] Hf 

[mm] Hf [%] nfolds 
Wa(fold) 
[mm] Wd(fold) 

Thickness 
of fold 
hinge  
[mm] 

Thickness 
of fold 
limb 
[mm] 

7.9 x 10-6 1.0 ± 0.2 3.1 ± 0.7 210 4.0 ± 0.7 20.6 ± 3.8 6.6 ± 1.2 3.3 ± 0.5 3.0 ± 0.4 

1.4 x 10-5 1.0 ± 0.2 2.9 ± 0.6 190 3.5 ± 0.5 20.8 ± 3.2 7.2 ± 1.1 3.1 ± 0.3 2.7 ± 0.2 

2.7 x 10-4 1.0 ± 0.2 2.5 ± 0.7 150 3.0 ± 0.6 21.3 ± 1.5 8.5 ± 0.6 2.7 ± 0.5 2.5 ± 0.3 

1.1 x 10-3 1.0 ± 0.2 2.3 ± 0.5 130 2.8 ± 1.3 21.6 ± 5.4 9.4 ± 2.4 2.4 ± 0.2 2.3 ± 0.4 

1.1 x 10-2 1.0 ± 0.2 2.5 ± 0.4 150 4.6 ± 0.5 20.3 ± 1.7 8.1 ± 0.5 2.7 ± 0.4 2.6 ± 0.3 

1.7 x 10-2 1.0 ± 0.2 2.4 ± 0.3 140 6.0 ± 0.9 18.1 ± 1.4 7.5 ± 0.6 2.6 ± 0.3 2.5 ± 0.2 

 
Table 4.4: Geometrical parameters of folds with the stiff layer perpendicular to the long axis (X) of the finite 
strain ellipsoid; initial layer thickness = 1.0 ± 0.2 mm. Hi = initial thickness of competent layer, Hf = finite 
average thickness of deformed competent layer, Hf% = layer thickening in [%], nfolds = number of folds, Wa(fold) 
= average fold arclength in XZ-sections, Wd(fold) = Wa(fold) / Hf. 

 

 

Fig. 4.10: Thickening of stiff layer vs. log strain rate. All runs under plane strain with the layers perpendicular 
to the X, Y and Z axis of the finite strain ellipsoid, respectively; e = 40%; initial layer thickness = 1.0 ± 0.2 mm. 
Functions and correlation coefficient, r, are represented, m = viscosity contrast (η2/η1). 

 

The wavelength/thickness ratio (Wd) decreases from ca. 10 to ca. 8 (Table 4.4; Fig. 4.11). The 

ratio between apparent finite and initial thickness of the stiff layer (Hf/Hi) is more or less the 

same within uncertainties to that acquired with a strain rate, ė = 2.7 x 10-4 s-1  (Table 4.4; Fig. 

4.10).    
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Fig.4.11: Normalized wavelength (arc length) of folds vs. log strain rate in cases where the stiff layer is 
perpendicular to the long axis (X) of the finite strain ellipsoid; e = 40%; initial layer thickness = 1.0 ± 0.2 mm. 

4.3.2 Stiff layer perpendicular to the short axis of the finite strain ellipsoid      

(S Z)

If the layer is oriented perpendicular to the short axis (Z) of the finite strain ellipsoid, boudins 

have formed in XZ sections. Some of the boudins appear to have developed from pinch and 

swell structures (Fig. 4.12). 

Fig. 4.12: XZ sections showing boudinage of the stiff layer with the layer initially perpendicular to the short axis 

(Z) of the finite strain ellipsoid; strain rates used are indicated; e = 40%; initial layer thickness = 1.0 ± 0.2 mm. 
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There is a clear relation between strain rate and geometric parameters, although the latter 

show a large uncertainty. If ė < 1.1 x 10-3 s-1, the average number of boudins (nboudins) 

increases with increasing strain rate from ca. 8 to ca. 12 (Table 4.5; Fig. 4.13a), whereas the 

length of boudins decreases from ca. 11 to ca. 8 mm (Fig. 4.13b; Table 4.5). If ė > 1.1 x 10-3 s-

1, enlargement of the strain rate results in a slight decrease in the number of boudins (nboudins), 

ranging from ca. 12 to ca. 10 (Fig. 4.13a; Table 4.5), and an increase in the length of boudins, 

the latter ranging from ca. 8 to ca. 11 is indicated, at increasing strain rates (Table 4.5; Fig. 

4.13b).  

 

 

Fig. 4.13:  Number and length of boudins vs. log strain rate in cases where the stiff layer is perpendicular to the 
short axis (Z) of the finite strain ellipsoid; e = 40%; initial layer thickness = 1.0 ± 0.2 mm. 

 

Strain rate 
[s-1] Hi [mm] Hf [mm] Hf [%] nboudins  

 
Wa(boudin) 

[mm] Wd(boudin) 

7.9 x 10-6 1.0 ± 0.2 1.0 ± 0.2 0 8.2 ± 2.1 11.3 ±  2.9 11.3 ±  2.9 

1.4 x 10-5 1.0 ± 0.2 1.2 ± 0.3 20 9.4 ± 2.6 10.6 ±  1.2 8.8  ±  1.0 

2.7 x 10-4 1.0 ± 0.2 1.4 ± 0.4 40 10.2 ± 1.9 9.8  ±  1.4 7.0  ±  1.0 

1.1 x 10-3 1.0 ± 0.2 1.5 ± 0.4 50 11.7 ± 2.0 8.3  ±  1.4 5.5  ±  0.8 

1.1 x 10-2 1.0 ± 0.2 1.6 ± 0.3 60 10.5 ± 1.1 9.4  ±  1.8 5.9  ±  1.1 

1.7 x 10-2 1.0 ± 0.2 1.4 ± 0.4 40 9.8 ± 1.3 11.1  ±  2.2 7.9  ±  1.7 
 
Table 4.5: Geometrical parameters of boudins with the stiff layer perpendicular to the short axis (Z) of the finite 
strain ellipsoid; initial layer thickness = 1.0 ± 0.2 mm. Hi = initial thickness of competent layer, Hf = finite 
average thickness of deformed competent layer, Hf = layer thickening in [%], nboudins = number of boudins, 
Wa(boudin) = average boudin wavelength in XZ-sections, Wd(boudin) = Wa(boudin) / Hf. 

 

The ratio between apparent finite and initial thickness of the stiff layer (Hf/Hi) ranges from 

1.0 to 1.6, meaning that with increasing strain rate the apparent thickness of the stiff layer 
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increased from 0 to 60% (Fig. 4.10; Table 4.5). The wavelength/thickness ratio (Wd) ranges 

from ca. 11 to ca. 6 (Table 4.5; Fig. 4.14). 

 

 

Fig.4.14: Normalized wavelength of boudins vs. log strain rate in cases where the stiff layer is perpendicular to 
the short Z-axis of the finite strain ellipsoid; e = 40%; initial layer thickness = 1.0 ± 0.2 mm. 

 

In order to evaluate the magnitude of finite strain at the time when the thickening of the initial 

stiff layer starts, we have carried out another series of experiments with an initial thickness of 

the stiff layer (Hi) at 2.0 ± 0.2 mm (Table 4.6). 

 
Strain 

[%] 
Hi 

[mm] 
Hf 

[mm] 
Hf 
[%] Hb[mm] nboudins 

Wa(boudin) 
[mm] Wd(boudin) 

lo 
[mm] 

lx 
[mm] 

ex 

 

Vo 
[mm3] 

V 
[mm3]

∆V 

5 2.0 ± 
0.2 

2.3 ± 
0.5 15 - 0 - - 120 

± 0.2 
121.0 
± 0.8 

0.013 
± 

0.004 
28 800 - - 

10 2.0 ± 
0.2 

2.4 ± 
0.3 20 2.1 ± 0.3 2.7 ± 0.5 9.0 ± 5.0 3.8 ± 1.2 120 

± 0.2 
123.3 
± 1.7 

0.028 
± 

0.014 
28 800 

31072 

± 740 

0.079 

± 

0.026 

20 2.0 ± 
0.2 

2.6 ± 
0.4 30 2.1 ± 0.4 3.5 ± 0.5 11.7 ± 2.5 4.5 ± 0.8 120 ± 

0.2 
125.9 
± 2.7 

0.049 
± 

0.010 
28 800 

31727 

± 1234 

0.102 

± 

0.043 

30 2.0 ± 
0.2 

2.8 ± 
0.3 40 2.2 ± 0.5 6.3 ± 0.4 13.0 ± 0.7 4.6 ± 0.2 120 ± 

0.2 
128.0 
± 3.6 

0.067 
± 

0.030 
28 800 

33792 

± 1536 

0.173 

± 

0.053 

40 2.0 ± 
0.2 

3.1 ± 
0.2 55 2.3 ± 0.7 6.8 ± 0.8 14.9 ± 0.4 4.8 ± 0.2 120 ± 

0.2 
130.2 
± 3.0 

0.085 
± 

0.021 
28 800 

35935 

± 3827 

0.248 

± 

0.133 

 

Table 4.6: Geometrical parameters of boudins with the stiff layer perpendicular to the short (Z) axis of the finite 
strain ellipsoid; initial layer thickness = 2.0 ± 0.2 mm. Hi = initial thickness of competent layer, Hf = finite 
average maximum thickness of deformed competent layer, Hf = layer thickening in [%], Hb = average boudin 
thickness of deformed competent layer,  nboudins = number of boudins, Wa(boudin) = average boudin wavelength in 
XZ-sections, Wd(boudin) = Wa(boudin) / Hf, l0  = initial length of competent layer, lx = finite average length of 
deformed competent layer without necks, ex = viscous extensional strain, V0  = volume of undeformed layer, V = 
volume of deformed layer, ∆V = volume strain. 
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The results based on averaged data from measurements of thirty longitudinal (XZ) sections 

representing the thirty runs carried out using incremental deformation studies have shown that 

significant layer thickening predates the formation of boudins that reach its maximum volume 

at 10% strain (Table 4.6). With increasing strain, the average number of boudins (nboudins) and 

the length of boudins increases from ca. 0 to ca. 7 (Table 4.6; Fig. 4.15b) and from ca. 9 to ca. 

15 mm (Fig. 4.15c; Table 4.6), respectively. 

 

 
Fig. 4.15: Diagrams showing the strain-dependent evolution of geometrical parameters of boudins, which result 
from plane strain-coaxial deformation with the stiff layer perpendicular to the minor (Z) axis of the finite strain 
ellipsoid, initial layer thickness = 2.0 ± 0.2 mm and ė = 1.1 x 10-3 s-1; (a,b) finite thickness of stiff layer and 
number of boudins vs. strain; (c,d) length and normalized wavelength of boudins vs. strain; (e,f) viscous 
extensional strain of layer and volume variation vs. strain. 
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The ratio between finite and initial thickness of the stiff layer (Hf/Hi) ranges from 2.3 to 3.1 

meaning that the thickness of the stiff layer (maximum thickness of boudins) increased 

considerably by 15 – 55% (Fig. 4.15a; Table 4.6). The wavelength/thickness ratio (Wd) ranges 

from ca. 3 to ca. 5 (Table 4.6; Fig. 4.15d). The viscous extensional strain of the layer (ex) 

ranges from 0.01 to 0.09, meaning that the deformed competent stiff layer extended from 1 to 

10% throughout the deformation (Fig. 4.15e; Table 4.6). The volume strain of the layer (∆V) 

increases with the bulk strain, ranging from 0.079 to 0.248 (Table 4.6; Fig. 4.15f).  

 
4.3.3 Stiff layer perpendicular to the intermediate axis of the finite strain 

ellipsoid (S ┴ Y) 
 
If the stiff layer is oriented perpendicular to the Y-axis of the finite strain ellipsoid, there is no 

evidence for folding and boudinage at low (ė = 7.9 x 10-6 s-1) and higher (1.1 x 10-2 s-1 ≤ ė ≤ 

1.7 x 10-2 s-1) strain rates (Table 4.7). 

 
Strain 

rate [s-1] 
Hi 

[mm] 
Hf 

[mm] Hf [%] nfolds 
Wa(fold) 
[mm] Wd(fold) 

nboudins  
 

Wa(boudin) 
[mm] 

Wd 

(boudin) 

7.9 x 10-6 1.0 ± 0.2 1.1 ± 0.4 10 0 - - 0 - - 

1.4 x 10-5 1.0 ± 0.2 1.6 ± 0.6 60 1.8 ± 0.4 13.3 ± 
1.2 8.3 ± 0.8 3.2 ± 0.4 26.6 ± 

14.6 
16.6 ± 

9.1 

2.7 x 10-4 1.0 ± 0.2 2.7 ± 0.7 170 1.3 ± 0.4 48.8 ± 
2.6 

18.1 ± 
1.0  2.0 ± 0.6 98 ± 30.0 36.3 ± 

11.1 

1.1 x 10-3 1.0 ± 0.2 3.2 ± 0.7 220 1.0 ± 0.0 52.2 ± 
8.5 

16.3 ± 
2.6  1.2 ± 0.4 105 ± 

24.0 
32.8 ± 

7.5 

1.1 x 10-2 1.0 ± 0.2 3.3 ± 0.2 230 0 - - 0 - - 

1.7 x 10-2 1.0 ± 0.2 3.4 ± 0.2 240 0 - - 0 - - 

 
Table 4.7: Geometrical parameters for folds and boudins with the stiff layer perpendicular to the intermediate 
(Y) axis of the finite strain ellipsoid; Hi = initial thickness of competent layer, Hf = finite average thickness of 
deformed competent layer, Hf = layer thickening in [%], nfolds = number of folds, Wa(fold) = average fold 
arclength in YZ-sections, Wd(fold) = Wd(fold) / Hf, nboudins = number of boudins, Wa(boudin) = average boudin 
wavelength in XY-sections, Wd(boudin) = Wa(boudin) / Hf. 
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 At strain rates between the above values, the layer shows pinch-and-swell as well as 

boudinage structures in XY sections, whereas the YZ sections show weak folding (Fig. 4.16).  

 

 

Fig. 4.16: XZ- and YZ-sections showing folding and boudinage of the stiff layer with the layer perpendicular to 
the intermediate axis (Y) of the finite strain ellipsoid; strain rates used are indicated; e = 40%; initial layer 
thickness = 1.0 ± 0.2 mm; arrow in (a) indicates initial neck; arrow in (b) indicates possible “pseudoboudin” 
that might result from oblique trend of necks. 

 

The ratio between apparent finite and initial thickness of the stiff layer (Hf/Hi) in this 

experimental run ranges from 1.1 to 3.4, meaning that with increasing strain rate the apparent 

finite thickness of the stiff layer (maximum thickness of boudins) increased considerably from 

10 to 240% during deformation (Table 4.7; Fig. 4.10). The degree of thickening decreased if ė 

> 1.1 x 10-3 s-1. Folds are characterized by large wavelengths. In a few cases folded layers are 

not continues (see arrow in Fig. 4.16) which is attributed to the fact that some of the necks are 

trending oblique to the principal strain axes (“pseudo-boudinage”, Zulauf et al., 2003). 

Despite the large uncertainties of the geometrical parameters, there is a clear relation between 

strain rate and number of folds and boudins. Enlargement of the strain rate results in a slight 

decrease of the number of folds (nfolds), ranging from ca. 2 to ca. 1 (Fig. 4.17a; Table 4.7) and 
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a large increase of the average arc length of folds (Wa) from ca. 13 to ca. 52 mm (Table 4.7; 

Fig. 4.17b). 

 

 

Fig. 4.17: Number and length of instabilities vs. log strain rate in cases where the stiff layer is perpendicular to 
the intermediate Y-axis of the finite strain ellipsoid; e = 40%; initial layer thickness = 1.0 ± 0.2 mm.  

 

The wavelength/thickness ratio (Wd) of folds ranges from ca. 8 to ca. 18 (Fig. 4.18; Table 

4.7). With increasing strain rate the number of boudins (nboudins) decreases from ca. 3 to ca. 1 

(Fig. 4.17a; Table 4.7) and the length of boudins increases from ca. 27 to ca. 105 mm (Fig. 

4.17b; Table 4.7). The wavelength/thickness ratio (Wd) ranges from ca. 17 to ca. 36 (Fig. 4.18; 

Table 4.7). 

 

 

Fig. 4.18: Normalized wavelength (arc length) of boudins and folds vs. log strain rate in cases where the stiff 
layer is perpendicular to the intermediate axis (Y) of the finite strain ellipsoid; e = 40%; initial layer thickness = 
1.0 ± 0.2 mm. 
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4.4 Coeval folding and boudinage under plane strain through 

space and time 
 
Results of theoretical studies (cf. Ramberg, 1959; Ramsay, 1967, Fig. 3-54; Weijermars, 

1997, Fig. 14-24b) and analogue scale-model experiments (Zulauf et al., 2003; this study), 

suggest that during one single deformation event plane-strain coaxial deformation with the 

layer oriented perpendicular to the Y-axis of the finite strain ellipsoid seems to be suitable for 

producing coeval folds and boudins in non-linear viscous material. As the results of previous 

3D-studies are based only on finite deformation structures, they cannot be used to prove if 

both structures grew simultaneously or in sequence. 

In the present experimental study the impact of plane strain on the deformation structures of 

rheologically stratified analogue material was investigated in 4D. Plane strain acted on a 

single stiff layer that was embedded in a weak matrix, with the layer oriented perpendicular to 

the intermediate Y-axis of the finite strain ellipsoid. The layer consisted of Kolb brown 

plasticine. The matrix was made of Beck’s green Plasticine. Contrary to the viscosity of the 

stiff layer, which was kept constant throughout the experiments, the effective viscosity (η) of 

the matrix plasticine was partly modified by adding oil to the original plasticine. The 

experiments have been carried out with a viscosity contrast m of 18.6. For details of the 

rheological parameters of the plasticine, see Table 4.1.  

To study the geometry of the deformed stiff layer in 3D, without destroying (cutting) the 

sample, and the impact of stress relaxation due to deformation interruption, two different 

experimental runs have been carried out using computer tomography (CT). The first run was 

carried out without interruption. During the second run the deformation was stopped in each 

case at increments of 10% longitudinal strain.  
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Fig. 4.19: Three-dimensional views of deformed competent layer of Kolb brown plasticine embedded in matrix 
of modified Beck’s green plasticine at viscosity ratio ca. = 19 and strain rate ca. = 4 x 10-3 s-1, based on 
computer tomography, showing the development of plane strain boudins. Only the stiff layer is shown. The 
undeformed sample is depicted on top, followed by 4 deformation stages, each of which implies 10% 
longitudinal strain. 
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Fig. 4.20: Three-dimensional views of deformed competent layer of Kolb brown plasticine embedded in matrix 
of modified Beck’s green plasticine at viscosity ratio ca. = 19 and strain rate ca. = 4 x 10-3 s-1, based on 
computer tomography, showing the development of plane strain folds. Only the stiff layer is shown. The 
undeformed sample is depicted on top, followed by 4 deformation stages, each of which implies 10% 
longitudinal strain.Viscosity ratio was ca. 19. 
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After having imposed the respective incremental strain, the sample was removed from the 

apparatus and analyzed using computer tomography (CT). Every experiment was carried out 

at a temperature, T, of 25°C and a strain rate, ė, of ca. 4 x 10-3 s-1 until a finite longitudinal 

strain of 40% was achieved. 

When comparing the final deformation states of the two runs, a difference in deformation 

geometry of the stiff layer is obvious (Figs. 4.19 and 4.20). The structures are more mature in 

experiments in which deformation was continuous compared to those experiments that have 

been interrupted for screening and thus could multiply relax (Figs. 4.19 and 4.20). Boudins 

are present already at 10% strain (Figs. 4.19 and 4.20). Low-amplitude folds are hardly visible 

at 10% strain, but became more or less distinct if 20-30% strain is reached. With increasing 

strain, the length of the necks increases. There is clear evidence that additional new necks and 

boudins also develop during progressive strain. A strong interaction between folds and 

boudins at high strain magnitudes is indicated by the fact that the long axes of most of the 

necks and boudins are aligned oblique to the principal strain axes.  

 

4.5 Coeval folding and boudinage under pure constriction with 

the X-axis parallel to the layer     
 
During this study, the impact of layer thickness on the geometry of folds and boudins under 

pure constriction has been studied with the initially planar layer oriented parallel to the X-axis 

of the finite strain ellipsoid. The stiff layer and matrix consists of non-linear viscous Kolb 

brown and Beck’s green plasticine, respectively. Apart from strain-hardening and strain rate 

effects, the viscosity of Kolb brown plasticine and Beck’s green plasticine were held constant 

throughout the experiments. The rheological parameters have been determined by previous 

investigations (Zulauf and Zulauf, 2004; this study). Six runs have been carried out using 

thicknesses of the stiff layer of 1, 2, 4, 6, 8 and 10 ± 0.2 mm. All experimental runs were 

carried out at a temperature T of 30 ± 2°C and a strain rate, ė, of ca. 1.1 x 10-4 s-1 until a finite 
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longitudinal strain of 40% was achieved with a viscosity contrast m of 3.1. The apparent 

viscosity, η, and the stress exponent, n, for the layer at a strain rate ė = ca. 10-3 s-1 and a finite 

strain e = 10% are 2.23 x 107 Pa s and n = 5.8 and for the matrix 7.2 x 106 Pa s and 7.9. 

The results of the experiments, documented in Table 4.8, are based on averaged data from 

measurements of 30 cross (YZ) and longitudinal (XY=XZ) sections. The spacing of the single 

cuts was set at 1–3 cm. There was no problem in reassembling the YZ-sections in order to 

investigate the XY=XZ-sections. 

 

Hi[mm] Hf[mm] Hf[%] nfolds 
Wa(fold) 
[mm] Wd(fold) nboudins 

Wa(boudin) 
[mm] Wd(boudin)

1 1.1 ± 0.4 10 - - - 21.0 ± 1.6 13.4 ± 7.7 12.2 ± 4.5 

2 2.1 ± 0.4 5 - - - 9.0 ± 0.7 38.8 ± 18.2 18.5 ± 9.6 

4 4.0 ± 0.4 0 - - - 6.8 ± 1.1 58.2 ± 36.8 14.6 ± 8.0 

6 6.0 ± 0.8 0 - - - 5.5 ± 1.1 44.1 ± 23.2 7.4 ± 1.3 

8 8.0 ± 0.9 0 - - - 4.8 ±  0.8 41.2 ± 20.2 5.2 ± 2.5 

10 10.0 ± 1.0 0 1 - - 4.0 ± 0.9 39.6 ± 18.9 4.0 ± 1.6 

 
Table 4.8: Finite thickness of deformed competent layer and geometrical parameters of folds and boudins at 
different initial layer thicknesses; viscosity ratio = ca. 3 and strain rate = ca. 1.1 x 10-4 s-1. Hi = initial thickness 

of competent layer, Hf = finite average thickness of deformed competent layer, ( 1−
Hi
Hf

)*100 = layer 

thickening in [%], nfolds = number of folds, Wa(fold) = average fold arclength in YZ-sections, Wd(fold) = average fold 
arclength/thickness, nboudins = number of boudins, Wa(boudin) = average boudin wavelength in XY-sections and 
Wd(boudin) = average boudin wavelength/thickness. 

 

To investigate the geometry of the deformed competent layer, the specimen was cut in half 

along the X-axis. One of the halves served for analysing the geometry of the boudins (XY=XZ-

sections), the other half was used to examine the folds (YZ-sections) (Fig. 4.21). Analyses of 

these sections include determination of: (i) finite average thickness of deformed competent 

layer [Hf], (ii) number of folds [nfolds], (iii) number of boudins [nboudins], (iv) average boudin 

wavelength [Wa(boudin)].  
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The data show that there is no evidence for folding in the YZ-sections at the following 

thicknesses of the stiff layer: 1, 2, 4, 6 and 8 ± 0.2 mm (Table 4.8). 

 

 

Fig. 4.21: XY = XZ and YZ section showing boudinage (a) and low amplitude fold and “pseudo-boudinage” or 
boudinage (b,c) of the stiff layer, respectively, under pure constrictional strain with the layer initially oriented 
parallel to the long  axis of the finite strain ellipsoid; e = 40%; strain rate = 1.1 x 10-4 s-1 and viscosity contrast 
was ca. 3. 

 

In YZ-sections the layers are sometimes not continues (Fig. 4.21c) which is attributed to the 

fact that some of the necks are trending oblique to the principal strain axes (“pseudo-

boudinage”, Zulauf et al., 2003). In XY=XZ-sections the layer shows boudinage. Some of the 

boudins appear to have developed from pinch and swell structures (Fig. 4.21a). A striking 

feature of the experiments is the fact that, at a layer thickness of 10 ± 0.2 mm, boudins formed 

in XY-sections (Fig. 4.21a), whereas weak folding, characterized by large wavelengths, 

developed in YZ-sections (Fig. 4.21b). In this case, the YZ-sections show rather “boudinage” 
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(Fig. 4.21c) instead of “pseudo-boudinage” as has been described previously. This 

“boudinage” as it was the case with the “pseudo-boudinage” could result from the fact that 

some of the necks do not follow the YZ plane, but are slightly oblique with respect to the 

principal strain axes (Zulauf et al., 2003). There is a clear relation between the initial 

thickness of the stiff layer and geometric parameters, although the latter show a large 

uncertainty. With increasing layer thickness, the average number of boudins (nboudins) 

decreases from ca. 21 to ca. 4 (Table 4.8; Fig. 4.22b).  

 

 

Fig. 4.22: Initial thickness of competent layer vs. finite thickness of competent layer (a), number of boudins (b), 
length of boudins (c) and wavelength of boudins (d). Functions and correlation coefficient, r, are represented at 
the top of each chart; horizontal dashed line is Ld = 4.0, calculated using equation [2-6]. 

 

The wavelength of boudins is the same within uncertainties (ca. 21 mm; Table 4.8; Fig. 

4.22c). There is almost no change in thickness of the competent layer as is indicated by the 

Hf/Hi ratio that ranges from 1.0 to 1.1, equivalent to ± 10 % thickening (Fig. 4.22a). The 

wavelength/thickness ratio (Wd) ranges from ca. 4 to ca. 19 (Table 4.8; Fig. 4.22d).  
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5 DISCUSSION 

5.1 Rheological data 

In early scale models of tectonic deformation, it was assumed that rocks behave as Newtonian 

fluids (e.g. Ramberg, 1981) and for this reason Newtonian fluids were used as analogue 

materials. However, with recent improvements in the understanding of the rheology of natural 

rocks, it has been realized that lower crustal rocks behave other than Newtonian. In analogue 

modelling, the model must be rheologically similar to the prototype (e.g. Weijermars and 

Schmeling, 1986). Plasticine as a rock analogue is a non-Newtonian fluid (Schöpfer and 

Zulauf, 2002; Zulauf and Zulauf, 2004). 

The rheological data indicate that all types of plasticine used in the present study are non-

linear viscous materials characterized by strain-rate softening with a poorly defined yield 

transition from elastic to plastic behaviour at axial strains ranging from ca. 1 to ca. 3% 

(McClay, 1976, Zulauf and Zulauf, 2004). A common feature of all stress/strain curves is a 

strong increase in stress, followed by plastic yielding with moderate strain hardening (see Fig. 

3.3b for terminology used in this section). The stress exponent is proportional to the distances 

between the stress/strain curves at different strain rates. The data obtained from the original 

material (Fig. 4.1a,e) show a wide range of stress/strain curves, indicating strong strain rate 

dependence of the stress. Adding oil to plasticine results in a significant change in the 

rheology of the original plasticine. An interpolation of viscosity and stress exponent of oil 

mixed plasticine is difficult because: (1) there is a non-linear relation between the apparent 

viscosity and the amount of added oil, and (2) the stress exponent changes unsystematically 

(Fig. 5.1). 

The nonlinear rheology of plasticine is attributed to structural changes in the material, e.g. 

reorientation of the fillers. Addition of oil inhibits these structural changes (Schöpfer and 

Zulauf, 2002).  
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Fig. 5.1: Amount of added oil vs. stress exponent of the different runs used in the present study. Note that the 
plasticine used is the original Beck’s green plasticine.  

 

Table 4.1 summarises stress exponents and apparent viscosities for different types of 

plasticine used in the present study. It is important to note that the values given are only valid 

for the given strain rate, strain and temperature (axial strain e of 10%, a strain rate ė of ca. 10-3 

s-1, and a temperature T of 25°C; the uncertainty in temperature is ± 1°C). The stress 

exponents, n, and apparent viscosities, η, are ranging from 5.5 – 13.5 and 1.2 x 106 – 4.2 x 107 

Pa s, respectively. 

 

5.2 Coeval folding and boudinage under plane strain with the axis 

of no change perpendicular to the layer 
 
Results of theoretical studies (cf. Ramberg, 1959, Fig. 7; Ramsay, 1967; Talbot and Sokoutis, 

1995; Weijermars, 1997, Fig. 14-24) and analogue scale-model experiments (Kobberger and 

Zulauf, 1995; Zulauf et al., 2003; this study) suggest that folds and boudins may grow during 

one single deformation event. This holds for all types of coaxial deformation (from pure 

flattening via plane strain to pure constriction), if particular geometrical and rheological 

boundary conditions are given. 

According to this study and Zulauf et al. (2003), plane-strain coaxial deformation seems to be 

suitable for producing coeval folding and boudinage in non-linear viscous material if the layer 
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is oriented perpendicular to the Y-axis of the finite strain ellipsoid. In this case, the thickness 

of the competent layer (Hi) increased significantly if the viscosity ratio ranges from ca. 20 to 

ca. 35. These observations are not or are only partly in line with results presented by 

Watkinson (1975) and Grujic and Mancktelow (1995). One reason for the differences in 

deformation geometry might be the fact that both authors used analogue materials, which 

differ significantly from plasticine. Moreover, Watkinson (1975) used clay multilayers, which 

developed folds in YZ-sections. He found that the thickness of the layers did not significantly 

change during deformation. The XY-sections, however, have not been monitored by him. 

Grujic and Mancktelow (1995) used wax as rock analogue which is characterized by a stress 

exponent (n = 2 – 3) that is much lower than the stress exponents used in the present studies 

(n = 8 – 13). The stress exponent of the competent layer, however, should have a large impact 

on the deformation geometry, and boudinage is hardly possible in Newtonian material (Smith 

1977). Grujic and Mancktelow (1995) found that folding is only possible at viscosity ratios 

larger than ca. 30. They did not observe boudins. Our results, on the other hand, are 

compatible with results obtained by Zulauf et al. (2003), who deformed non-linear viscous 

Beck’s orange plasticine + 100 ml oil kg-1 (matrix) and non-linear viscous Kolb brown 

plasticine + 50 ml oil kg-1 (layer) using the same apparatus and the same bulk deformation 

regime as has been used in the present study.  

Apart from finite strain, that was held constant at 30% from run to run, both the viscosity ratio 

and the initial thickness of the competent layer are the parameters that largely control the 

deformation geometry. If the initial layer thickness is held constant, increasing viscosity ratio 

promotes the development of instabilities, such as folds and boudins. In this case, folding and 

incipient boudinage are only possible if the viscosity ratio is set at ca. 35. If the viscosity ratio 

is set at ca. 20, weak folding is visible in the YZ-section, whereas the XY-section is almost free 

from boudinage. This observation suggests that under the present plane-strain conditions, 

folding is a stronger instability than boudinage, meaning that in this particular case of plane 
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strain, theoretical amplification rates due to the instability are larger for folding than for 

boudinage (cf. Smith, 1975). If the viscosity contrast is decreased, it is expected that folding 

can still be observed while boudinage is still too weak to develop significant structures. If the 

viscosity ratio is ≤ ca. 7, layer and matrix deform almost homogeneously and neither a fold 

nor a boudin will grow. 

Viscous layer thickening is an unexpected, but characteristic phenomenon of the deformation 

structures, which did not occur in other cases of simultaneous folding and boudinage, such as 

pure constriction (Kobberger and Zulauf, 1995; Zulauf and Zulauf, 2005). Thus, constraining 

the degree of layer thickening using common techniques of strain analysis can be used to 

identify the present structures in natural tectonites. Layer thickening, however, is difficult to 

explain. It should be intimately related to the difference in strain rate of layer and matrix and 

the growth of instabilities. If the viscosity ratio between layer and matrix is low, i.e. <10, the 

strain rate of both materials is approximately the same, meaning that layer and matrix will 

show a similar shortening strain rate along Z and an extensional strain rate along X. Thus, the 

deformation of layer and matrix is almost homogeneous and the shortening of the layer along 

Z is balanced by extension along X. As we are dealing with bulk plane-strain, where the strain 

rate along Y is 0, the above considerations explain why the thickness of the layer should not 

significantly change at low viscosity ratios. If the viscosity ratio increases to values >>10, the 

strain rate of the matrix will be strikingly higher than the strain rate of the layer, resulting in 

the growth of instabilities and layer thickening. Layer thickening is only possible if the 

viscous shortening strain rate of the layer along Z (ėZ(layer)) is larger than the viscous 

extensional strain rate of the layer along X (ėX(layer)). As we do not know at which stage of 

progressive deformation the layer thickening occurs, the question why both strain rates are 

different cannot be answered at the present stage. Incremental deformation studies and 

quantitative geometrical analyses using computer tomography are necessary to shed more 

light on this question.  
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This difference in longitudinal strain rate of matrix and layer along X causes drag forces along 

the matrix/layer interface, which is one prerequisite for the development of fracture boudins 

(Ramberg, 1955). If the layer is thick enough, these drag forces will not be able to cause 

tensional forces within the layer, which exceed the tensional strength of the layer. Thus, the 

layer will not be inhomogeneously deformed; boudins do not occur. If, on the other hand, the 

layer is thin, its tensional strength is much lower, and boudinage is possible. 

Measurements of natural folds give low wavelength to thickness ratios, usually <10 and 

commonly in the range 4 – 6 (Sherwin and Chapple, 1968). This implies a correspondingly 

low effective viscosity ratio between layer and matrix (<50) and non-linear material 

behaviour to achieve the amplification of the observed folds (Smith, 1979). Similar values of 

Wd should also be expected applying equation [2-6] (Fletcher, 1974; Smith, 1977, 1979), 

developed for plane-strain deformation of power-law materials if the competent layer is 

oriented perpendicular to the X-axis of the finite strain ellipsoid. 

From the rheological parameters of the plasticine used, Ld is calculated at 8.4. This value is 

similar to the values calculated for Wd(fold) and Wd(boudin), although there is a large uncertainty 

for the latter (Fig. 5.2). 

 

 
Fig.5.2: Initial thickness of stiff layer of Beck’s black plasticine vs. average fold arc length/finite thickness (a),  
and initial thickness of stiff layer vs. average boudin wavelength/finite thickness (b); viscosity ratio = ca. 35; 
horizontal dashed line is Ld = 8.4, calculated using equation [2-6]. 
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Thus, the equation of Smith (1977, 1979), probably also holds for folds and coeval boudins 

that result from plane-strain coaxial deformation with the layer oriented perpendicular to the 

Y-axis of the finite strain ellipsoid, although significant layer thickening did occur. The 

similar values of Wd and Ld can be interpreted that the viscous elongation of the layer along 

the X-direction did not significantly affect the initial wavelength of the instabilities. 

The overall decrease in wavelength/thickness ratio with layer thickness (Fig. 5.2) is difficult 

to explain. One reason might be the fact that initial layer irregularity is different for the 

different layer thicknesses.  

The principal difference in fold shape depends on both the viscosity contrast and the thickness 

of the competent layer. Many authors have investigated the influence of material rheology on 

the geometry of amplifying folds. Folds with the same kind of geometry as presented in our 

study have also been described in layered viscous materials (Johnson and Fletcher, 1994), and 

in strain-softening materials (Neurath and Smith, 1982; Tentler, 2001). This confirms that the 

principal difference in fold shape is not only dependent on the viscosity contrast and the 

thickness of the layer. There are other, rheological and geometrical, constraints that could 

account for sharp hinges etc., such as pseudo-plastic behaviour (Johnson, 1970), strain-

softening behaviour (Neurath and Smith, 1982), an increase in the layer’s power-law 

exponent or material anisotropy (Lan and Hudleston, 1996), or variations in the degree of 

initial layer irregularity. 

The new results should be important for all workers who are focusing on the relation between 

rock rheology and geometry of natural instabilities. There are different geodynamic settings in 

which the X-axis of the finite strain ellipsoid is parallel to the fold axis. Examples where 

deformation structures might result from bulk plane-strain with the Y-axis perpendicular to the 

layer are: (1) folding during crustal extension in rocks of the Austroalpine nappes in eastern 

Switzerland (Froitzheim, 1992); (2) folding in eclogite facies rocks of the Ile de Groix 

(Shelley and Bossière, 1999); (3) folding and boudinage of rocks of the Phyllite-Quartzite unit 
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of Crete during subduction (Zulauf et al., 2002). In order to verify the present assumption that 

these structures do really result from bulk plane-strain with the Y-axis perpendicular to the 

competent layer, the amount of layer thickening should be constrained using common 

techniques of strain analysis. 

  

5.3 The impact of strain rate on folding and boudinage under 

plane strain 
 
The results of the second set of experiments suggest a considerable influence of the strain rate 

on the geometry of the deformed stiff layer including its thickness. Apart from the strain rate, 

the deformation geometry of the stiff layer is controlled by the orientation of the stiff layer 

with respect to the principal strain axes. The impact of the orientation of the stiff layer is most 

striking when regarding the apparent finite thickness of the deformed layer. In the case of 

pure boudinage (S ┴ Z), layer thickening is less significant and largely increases with strain 

rate. In cases of pure folding (S ┴ X), the degree of layer thickeningis much higher and largely 

decreases with strain rate. If folds and boudins are growing together (S ┴ Y), the degree in 

layer thickening increases with strain rate. In the latter cases, however, the degree of 

thickening varies significantly more than in the other two cases. The different intensity of 

layer thickening at different orientations of the layer is compatible with literature data (e.g. 

Zulauf et al., 2003). The change in layer thickening with strain rate, however, is more difficult 

to explain. As we are dealing with strain-rate softening plasticine, the strain rate should have 

an impact on the viscosity of layer and matrix and thus on the viscositycontrast between both. 

There is an almost linear increase in the viscosity ratio with log strain rate. Within the range 

of strain rates used, the viscosity contrast varies from 3.3 to 10.2 (Table 5.1; Fig. 5.3). In the 

case of pure folding (S ┴ X) this relation between strain rate and viscosity contrast explains 
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the decrease in layer thickening with strain rate and viscosity contrast, respectively. The 

difference in slope in the log strain rate vs. thickening plot above and below ė = 1.1 x 10-3 s-1 

is difficult to explain.  

  
Strain rate 

[s-1] 
η1(matrix) 

[Pa s] 
η2(layer) 

[Pa s] m n1(matrix) 
 

n2(layer) 
 Ld 

7.9 x 10-6 3.02 x 108 1.01 x 109 3.3 10.5 6.5 4.1 

1.4 x 10-5 1.70 x 108 7.02 x 108 4.1 10.5 6.5 4.4 

2.7 x 10-4 8.92 x 106 4.23 x 107 4.7 10.5 6.5 4.6 

1.1 x 10-3 1.21 x 106 8.54 x 106 7.1 10.5 6.5 5.3 

1.1 x 10-2 1.10 x 105 1.04 x 106 9.5 10.5 6.5 5.8 

1.7 x 10-2 7.20 x 105 7.06 x 104 10.2 10.5 6.5 6.0 

 
Table 5.1: Rheological data of Beck’s green plasticine with 150 ml oil kg-1 (matrix) and original Kolb grey 
plasticine (stiff layer) at different strain rates ė, 10% strain and temperature of T = 24 ± 1°C. η1 = matrix 
viscosity; η2 = layer viscosity; m = viscosity contrast (η2/η1); Ld = theoretical wavelength/thickness ratio 
calculated after Smith (1977).  

 

 

Fig. 5.3: Viscosity ratio between layer and matrix vs. log strain rate of the different runs. Functions and 
correlation coefficient, r, are represented at the top of the chart. Note that the plasticine used is the same in all 
cases.  

 

Increasing viscosity contrast with strain rate also explains the increase in fold arc length and 

the decrease in the number of folds at slow strain rates (ė < 1.1 x 10-3 s-1). This trend in 
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change of layer geometry is compatible with results of analytical solutions, although the 

absolute values of the normalized arc length (Wd) are significantly higher than those 

calculated after the Smith equation (Fig. 4.11).  

Substituting the measured values of the stress exponents and the strain-rate dependent 

effective viscosities of the original Kolb grey plasticine (stiff layer) and the modified Beck’s 

green plasticine (matrix) into equation [2-6], the dominant wavelength/thickness, Ld, is found 

to be range from 4.1 to 5.3 (Table 4.7; Figs. 4.11, 4.14 and 4.18). 

The decrease in arc length with strain rate and viscosity contrast, respectively, at e > 10-3 s-1 is 

difficult to explain. However, although the strain-rate dependent change in arc length is not 

compatible with the gradient suggested by the Smith equation, the absolute values of Wd are 

approximating the values of Ld at the highest strain rate used. This observation is in line with 

the fact that the analytical solutions should not hold for low viscosity contrasts. Previous 

results of analogue modelling with higher viscosity ratios between layer and matrix (ca. 7 ≤ m 

≤ ca. 35), on the other hand, are compatible with the Smith equation (this study). It has further 

to be emphasized that the values of Wd might be somewhat higher than those presented if the 

real finite thickness instead of the apparent finite thickness is used for the normalization 

procedure. 

The situation is still more complicated if the layer is oriented perpendicular to the Z-axis (pure 

boudinage). Both the length and the number of boudins are opposite compared to the pure 

folds. However, similar to the case of pure folding, the change from a negative (positive) to a 

positive (negative) slope in the diagram log strain rate vs. length of boudins (number of 

boudins) does also occur at ė = 1.1 x 10-3 s-1, pointing to a change in the growth of the 

instabilities if this strain rate is reached. At slow strain rates and corresponding low viscosity 

contrast the difference between Wd and Ld is considerably large. At higher strain rates, the Wd 

values are more close to the Ld values (Fig. 4.14) confirming the assumption that results of 
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analytical solutions do not hold for low viscosity ratios between matrix and layer (Smith, 

1977, 1979). 

A particular problem concerns the layer thickening in cases of pure boudinage. This 

thickening cannot be explained only by the drag effect related to the cutting of the sample. 

Increasing layer thickening at increasing strain rate and viscosity contrast respectively 

remains an open question. 

If the layer is oriented perpendicular to the Y-axis (coeval folding and boudinage), the impact 

of the strain rate on layer thickening is more important than in the other two cases of pure 

folding and pure boudinage. At the slowest strain rate, which corresponds to m = 3.3, layer 

thickening is almost absent. This behaviour can be explained by the fact that the bulk strain 

perpendicular to the layer, and thus parallel to the Y-axis, is zero. As matrix and layer show 

similar show similar flow behaviour because of the low viscosity contrast, the deformation is 

almost homogeneous and thickening of the layer is not possible (this study). This assumption 

is supported by the lack of instabilities at the lowest strain rate used. If the strain rate 

increases, layer thickening increases almost linearly with log strain rate, and instabilities 

(folds and boudins) are growing. This behaviour can be explained by elevated viscosity 

contrast between layer and matrix at higher strain rates. Enlarged viscosity contrast supports 

inhomogeneous deformation and growth of instabilities. Obviously, the latter are intimately 

related to layerthickening. 

Peculiar is the fact that in cases where S ┴ Y, the number of instabilities decreases 

significantly with increasing strain rate and that no instability grows at the highest strain rate 

used. This behaviour cannot be explained by the impact of the strain rate on the viscosity 

contrast. The latter is 10 at the highest strain rate. On the other hand, previous studies have 

shown that coeval folding and boudinage should be possible at a viscosity contrast of ca. 10, 

whereas at m ≤ ca. 7, layer and matrix deform almost homogeneously and neither a fold nor a 

boudin will grow (this study). 
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The growth of classical folds (S ┴ X) or boudins (S ┴ Z) is possible already at low strain rates 

which imply low viscosity ratios. However, apart from the exception mentioned above, the 

growth of coeval folds and boudins (S ┴ Y) requires much higher strain rates which are related 

to higher viscosity ratios. The fact that the growth of instabilities with S ┴ Y requires higher 

viscosity ratios is in line with results presented by Zulauf et al. (2003) who used not only 

plasticine as analogue material but also the same apparatus and the same bulk deformation 

regime as has been used in the present study. 

 

5.4 Coeval folding and boudinage under pure constriction with 

the X-axis parallel to the layer 
 
There is no evidence for folding in YZ-sections if the thickness of the stiff layer is ≤ 8 mm, 

although the layer shows boudinage in XY=XZ-sections. At a layer thickness of 10 mm, 

boudins formed in XY-sections, and weak folding, characterized by large wavelengths, 

developed in YZ-sections. In order to produce constrictional folds and boudins, Kobberger and 

Zulauf (1995), Zulauf et al. (2003), and Zulauf and Zulauf (2005) have used similar boundary 

conditions like those of the present study. There is almost no change in the thickness of the 

competent layer and, given that m < ca. 10, constrictional folding is hardly possible, whereas 

constrictional boudins may develop (Zulauf and Zulauf, 2005). The constrictional runs of the 

present thesis have obtained similar results. Thus, under pure constriction boudins are 

stronger instabilities than folds. The opposite behaviour has been found under plane strain 

with the layer-oriented perpendicular to the Y-axis (see above). As boudins affect the 

orientation of the fold axes and vice versa (Fig. 4.21c), pure constriction and plane strain, 

with S perpendicular to Y, result in complex but characteristic patterns of coeval folds and 

boudins (Zulauf et al., 2003). 
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Theories of buckle folding in non-linear materials suggest the initial wavelength of buckle 

folds and boudins to be the same. The geometrical and rheological parameters of these 

instabilities are determined by equation [2-6] (Fletcher, 1974; Smith, 1977, 1979). 

To compare the theoretical value (Ld) with the average boudin wavelength (Wa(boudin)), 

measured in the experiments, we normalized the initial wavelength of the structures 

determined by equation [2-9].  

From the rheological parameters of the plasticine used, Ld is calculated at 4.0. This value 

clearly exceeds the Wd–value if the thickness of the stiff layer is 1, 2, 4 and 6 mm. Ld on the 

other hand is similar to the Wd–values calculated for the thickness of 8 and 10 mm, the latter 

showing relatively large uncertainties (Fig. 4.22d). Thus, the equation of Smith (1977, 1979), 

probably also holds approximately for folds and coeval boudins that result from pure 

constriction with the layer oriented perpendicular to the Y=Z-axis of the finite strain ellipsoid 

in cases where the viscosity ratio between layer and matrix is low (i.e. ca. 3) and the layer 

thickness is large. 
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6 CONCLUSIONS AND OPEN QUESTIONS 

In the present study (and in numerous others) it has been shown that small scaled modelling 

can improve our knowledge about the formation of geological structures. Proper modelling 

needs a detailed investigation of the properties of the analogue materials. According to the 

new results of experimental runs obtained using a new machine that supports every type of 

coaxial strain, the following conclusions can be drawn: 

1. The macroscopic behaviour of plasticine is quite similar as in strain hardening rocks 

regardless of the different microscopic aspects of deformation. Therefore, if one is aware that 

the stress exponent and viscosity increase with increasing strain, the three original materials 

(Beck’s black, Kolb grey and Beck’s green) with stress exponents ranging from 6.5 to 8 are 

adequate for modelling geological structures (folds, boudins) in mechanically stratified 

material under plane-strain conditions. The two plasticine/oil mixtures (Bg50 and Bg150) are 

suitable as incompetent matrix material, where (as in this study) unrealistic high stress 

exponents can be neglected and only the apparent viscosity needs to be considered. 

2. Rheology tests on original Beck’s black, Kolb grey and Beck’s green plasticine and 

plasticine/oil mixtures (Bg50, Bg100 and Bg150) have shown that this material has a 

nonlinear rheology. Both stress exponent and viscosity increase with increasing strain. The 

material exhibit strain-hardening and steady-state flow is never reached. These special 

properties of plasticine make strict scaling difficult, but with some limitations, it can be used 

as analogue material for rocks deforming by dislocation creep with weak strain hardening. 

       3. Coeval folding and boudinage of a competent layer are possible under plane strain if 

(a) the weak matrix and the competent layer consist of non-linear viscous material with n-

values >> 1, (b) the competent layer is oriented perpendicular to the Y-axis of the finite strain 

ellipsoid, and (c) the viscosity contrast between layer and matrix is larger than ca. 20. 
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      4. Folding and boudinage under plane strain are associated with a significant increase in 

the thickness of the competent layer. The latter phenomenon does not occur in other cases of 

simultaneous folding and boudinage, such as bulk pure constriction. The layer thickening is 

an unexpected phenomenon that cannot be entirely explained at the present stage. Incremental 

deformation experiments and geometrical analyses of the instabilities using computer 

tomography are required to shed more light on this phenomenon.   

      5.  Our experiments suggest that substituting the measured values of the stress exponents 

and the effective viscosities of the original Beck’s black plasticine (η1 = 4.2 x 107 Pa s and n1 

= 8.0) and the modified Beck’s green plasticine (Bg150; η2 = 1.2 x 106 Pa s and n2 = 10.5) 

into the theoretical dominant wavelength equation predicted by Smith (1977), the dominant 

wavelength/thickness, Ld, is found to be 8.4. There is a clear tendency that this value is similar 

to the values calculated for Wd(fold) and Wd(boudin), although there is a large uncertainty for the 

latter. Thus, the equation of Smith (1977, 1979), probably also holds when folds and boudins 

develop simultaneously (S ┴ Y) and when boudins develop independently (S ┴ Z), but can 

obviously not be applied at very low viscosity ratios as is indicated by the low-strain-rate 

experiments.   

6. The deformation geometry of the stiff layer is strongly controlled by the strain rate and 

the type of overall three-dimensional coaxial strain. There is a clear relation between viscosity 

ratio and strain rate.  

7. The growth of classical folds (S ┴ X) or boudins (S ┴ Z) is possible already at low 

viscosity ratios. However, the growth of coeval folds and boudins (S ┴ Y) requires much 

higher viscosity ratios.  

8. Folds and boudins develop simultaneously under pure constrictional strain, given that 

the analogue material shows non-linear viscous behaviour, and viscosity ratio between layer 

and matrix are set at 10 or even higher (Zulauf and Zulauf, 2005). 
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9. Because of the complex deformation patterns, the study of high-strain constrictional 

and plane stain structures is hardly possible using conventional cuttings along XZ or YZ 

planes. CT-images are necessary to quantify the geometry of deformed layers in 3D and 4D. 

10. The new results are important for the interpretation of natural tectonites, particularly 

in those cases where fold-axes are subparallel to the stretching direction (Fig. 6.1). 

 

 
Fig. 6.1: Model explaining coeval folding and boudinage under bulk plane-strain coaxial conditions in 
subduction environment (modified after Zulauf et al., 2002). 

 

Several open questions will be answered by further experiments. They concern not only the 

influence of layer thickness, but also the impact of varying stress exponent, and orientation of 

the layer. Further studies will also focus on three dimensional pure constriction deformation 

of a competent plasticine layer embedded in a competent plasticine matrix to improve our 

understanding about the evolution of folds and boudins if the layer is oriented parallel to the 

X-axis of the finite strain ellipsoid. 

One significant open question concerns layer thickening in cases of boudinage with S ┴ Z? 
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LIST OF ABBREVIATIONS 

Symbol Definition Dimension 

A Amplitude of folded layer [mm] 

C Temperature-and strain-
dependent constant (material 

constant) 

[MPa-n s-1] 

e Longitudinal strain of the 
main axes (eX, eY, eZ) 

- 

ė Finite longitudinal strain rate [s-1] 

Ė Incremental longitudinal 
strain rate 

[s-1] 

E* Activation energy [kJ mol-1] 

εij Deviatoric strain tensor - 

F Force [N] 

G Shear modulus [m s-2] 

Hi Initial thickness of competent 
layer 

[mm] 

Hf Finite average thickness of 
deformed competent layer 

[mm] 

Hb Averageboudin thickness of 
deformed competent layer 

[mm] 

∆H = ( 1−
Hi
Hf

)*100 Layer thickening [%] 

η1 Apparent dynamic viscosity of 
matrix 

[Pa.s] 

η2 Apparent dynamic viscosity of 
layer 

[Pa.s] 

l Finite length [mm] 

L Initial length [mm] 

Ld 
Theoretical wavelength / 
thickness ratio calculated 
after Smith (1977) (λ / H) 

- 

λ Wavelength of folded layer [mm] 

m Viscosity contrast (η2 / η1) - 
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n Stress exponent - 

n1 Stress exponent of matrix - 

n2 Stress exponent of layer - 

N Number of data - 

nfolds Number of folds - 

nboudins Number of boudins - 

R Universal gas constant [8.314 J mol-1 K-1] 

Rk Regression coefficient - 

S Surface [m2] 

t Time [s] 

T Temperature [°C] 

Tk Temperature in Kelvin (°C + 
273) 

[K] 

τ Shear stress [MPa] 

σ Differential stress (σ1 – σ3) [MPa] 

σ1 Main principal stress [MPa] 

σ2 Medial principal stress [MPa] 

σ3 Least principal stress [MPa] 

Wa(boudin) Average boudin wavelength in 
XY-sections 

[mm] 

Wa(fold) Average fold arclength  in YZ-
sections 

[mm] 

Wd(boudin) Average boudin wavelength / 
thickness measured on 

deformed samples 

- 

Wd(fold) Average fold arclength / 
thickness measured on 

deformed samples 

- 

X Long axis of the finite strain 
ellipsoid 

- 

Y Intermediate axis of the finite 
strain ellipsoid 

- 

Z Short axis of the finite strain 
ellipsoid 

- 
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