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Chapter 1

Introduction

Until the beginning of the 20th century, it was thought that ruptures of the surface
observed after a strong earthquake were the result of strong ground shaking rather
than the other way around. This interpretation changed following the great 1906
earthquake in San Francisco, when Henry Fielding Reid examined the displacement of
the ground surface around the San Andreas Fault (Reid, 1910). From his observations,
he concluded that the earthquake must have been the result of the elastic rebound of
previously stored elastic-strain energy in the rocks on either side of the fault. Geodetic
measurements and other evidence confirmed Reid’s theory for the movement of the
Earth’s crust in the so-called seismic cycle. However, traditional methods were for a
long time inadequate to measure the deformation caused by a strong shock with more
accuracy than several centimeters (e.g. Plafker and Savage, 1970).

The arrival of space geodetic techniques improved the quality of the observations,
making measurement campaigns easier, faster and accurate down to a couple of mil-
limeters (see e.g., Klotz et al., 2001; Jacobs et al., 2002; Fialko, 2004). At once, mea-
surements could be carried out both more frequently and more accurately, allowing
for the detailed study of time–dependent crustal deformation processes. The slow and
small–magnitude nature of these processes has strongly hindered our study of them.
However, as the number of stations and campaigns using the Global Positioning System
(GPS) increased and, at the same time, more and more Interferograms of Synthetic
Aperture Radar (InSAR) data were generated, crustal deformation became visible with
higher accuracy and over shorter time intervals.

Based on these developments, the study of deformation associated with strong
earthquakes underwent remarkable improvements. Usually, measurements deal with
the displacement (e.g. Deng et al., 1998; Freymueller et al., 2000). Additionally, the
observed surface displacement after a strong earthquake can be used to infer the slip
distribution on its rupture surface (e.g. Reilinger et al., 2000; Bürgmann et al., 2002),
and this slip distribution can then be used as an input to model the stress change
caused by the shock (e.g. Parsons, 2004). As a consequence, the analysis of earthquake
interactions by means of stress transfer has progressed over the last few years parallel
to that of the surface deformation. Although the matter of earthquake triggering by
stress transfer had been the subject of previous studies (e.g. Healy et al., 1968; Raleigh
et al., 1972), during the 1990s the work of several researchers (e.g. King et al., 1994)
brought it back into discussion. Since then, the work of numerous research groups
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around the world has lead to notable improvement in our understanding of earthquake
interaction. However, partly due to the novelty of the subject, but mainly due to the
lack of an appropriate methodology, the analysis of stress transfer has been limited
mainly to that of the elastic co-seismic quasi-static deformation, and even today an
important percentage of studies disregard time-dependent post-seismic stress changes
(see Freed, 2005; Steacy et al., 2005).

The increase in the accuracy, frequency and coverage of the measurements has pro-
vided material for various and still open debates. Although viscoelastic relaxation pro-
cesses are known to take place, the deformation caused by them is slow. In most cases,
the time interval covered by accurate measurements is too short to provide adequate
information as to the rate or the kind of temporal development of the deformation. Be-
cause of this, estimations for the value of the viscosity of the lower crust and/or upper
mantle range by several orders of magnitude, depending not only on the study region
(e.g. Pollitz and Sacks, 2002; Piersanti, 1999), but also on the source process causing
the relaxation (e.g. James et al., 2000; Hu et al., 2004). In a similar way, it is also
not clear yet which rheological model is more adequate to describe the time evolution
of the relaxation process. The rheology of a Standard Linear Solid body properly re-
produces transient deformation immediately after an earthquake (Cohen, 1982; Pollitz
et al., 1998), whereas Maxwell bodies better describe the deformation process once the
steady state has been reached (e.g. Khazaradze et al., 2002). According to recent stud-
ies, non-linear rheologies could be the most adequate to analyze post-seismic relaxation
processes (Freed and Bürgmann, 2004). However, as mentioned before, deformation
records are usually either not long enough or their accuracy is insufficient to derive
information about the rheological model to better describe these processes.

Probably the most important open questions about post-seismic deformation are
which processes are significantly involved in the observed deformation, to what extent,
and how far and how long from the triggering event can their effects be observed.
Apart from relaxation (e.g. Zweck et al., 2002; Hu et al., 2004), in certain cases other
time–dependent processes have been shown to provide an adequate explanation for
observed deformations. Examples of these can be velocity-strengthening frictional af-
terslip (Hearn et al., 2002; Bürgmann et al., 2002), poroelastic rebound (Peltzer et al.,
1998; Jónsson et al., 2003) or shear zone strength changes after an earthquake (Montesi,
2004).

As mentioned, displacement measurements can lead to information about the stress
field. In general, measurements of some facets of the deformation process can be used
to gain insight into other aspects that are not easy to measure. For this, computer
modeling is an essential and powerful tool. The development of computer tools and
methods to model co- and post-seismic deformation associated with earthquakes run
parallel to that of the quality of the measurements. At the first stage, methods and
programs to model deformation in a homogeneous elastic half-space were progressively
developed under different assumptions and gradually improved. The culmination of
this progress was the publication by Okada (1992) of his unified formulation for the
internal deformation due to shear and tensile faults in an elastic half-space, a work
that is still widely in use today.

For static-elastic deformation in a layered half-space, Table 1 provides an overview
of published numerical techniques and software. Most of these methods are based on

2



Chapter 1. Introduction

the wavenumber integration method. From the beginning it was clear that - in contrast
to the homogeneous half-space - the wavenumber spectra or kernel functions obtained
for the stratified case could not be integrated analytically, so that either the integration
should be carried out numerically (cf. Sato, 1971; Sato and Matsu’ura, 1973) or the
integrals should be approximated (Ben-Menahem and Gillon, 1970; Jovanovich et al.,
1974a; Roth, 1983).

A practical problem is that the number of calculations for the kernel functions in-
creases exponentially with the number of layers. Because of this, algorithms based on
analytical or semi-analytical methods were essentially limited to no more than four lay-
ers over the half-space (cf. Roth, 1992). Another way to compute the kernel functions
is to adopt the propagator algorithm, which was first applied by Thomson (1950) and
Haskell (1953) to seismic wave propagation in layered media. Although the formulation
of the propagator algorithm was very clear and could be applied to an unlimited num-
ber of layers, its numerical results showed the same instability known from dynamic
solutions (see for instance Sato, 1971). To overcome these, mathematical improve-
ments in the algorithm were introduced (cf. Dunkin, 1965; Jovanovich et al., 1974a;
Roth, 1983). The success was clearly visible but remained limited, until Wang (1999b)
approached the problem from a physical point of view and proposed an algorithm
that avoids numerical operations between incident waves from the source at each layer
interface.

Since the late 1960s, several steps were taken to obtain methods for modeling post-
seismic effects more comprehensively. The first attempts to provide inelastic models
were made for the 3D deformation field of an elastic crust above a viscoelastic half-space
with different rheologies (Braslau and Lieber, 1968; Rosenman and Singh, 1973a,b;
Singh and Rosenman, 1974; Nur and Mavko, 1974). For a review of the progress in
these efforts until the late 1990’s, see Roth (1994) and Piersanti et al. (1997). Grav-
itational effects were first introduced by Rundle (1980b,a, 1981, 1982), with the as-
sumption of depth-independent gravitational acceleration. Between 1994 and 1996,
several subsequent papers were published that presented the viscoelastic-gravitational
dislocation theory and the corresponding numerical tools (see Fernández and Rundle,
1994a,b; Fernández et al., 1996a,b; Yu et al., 1996a,b). These were followed by similar
approaches for the case of magma intrusions (Folch et al., 2000; Fernández et al., 2001),
using the source presentation of Bonafede (1990). Recently, Wang (2005a) found an in-
correct formulation included in the earlier treatment of the gravity effect. This resulted
in new approaches to solve the problem by Fernández and Rundle (2004) and Wang
(2005b). Finally, the effects of earthquakes on a spherical Earth have been considered.
From the early works of Ben-Menahem and Israel (1970) and Smylie and Mansinha
(1971), subsequent improvements led to several different modeling approaches currently
in use, most notable the works of Piersanti et al. (1997) and Pollitz (1997).

In this thesis, a numerical tool for the calculation of post-seismic deformation,
PSGRN/PSCMP (Wang et al., 2006), was used. This tool can be used to determine
the surface and subsurface time-dependent deformation, as well as changes in the geoid
and gravity, produced by dislocation sources embedded in a mixed elastic/inelastic
layered half-space. This software uses the elastic-viscoelastic correspondence principle
(e.g. Christensen, 1971), which states that a linear viscoelastic boundary-value problem
can be solved by adopting the associated elastic solutions in which the elastic moduli
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á
n
d
e
z

a
n
d

R
u
n
d
le

(1
9
9
4
b
)

X
-

-
-

P
D

3
G

1
0
)

M
a

a
n
d

K
u
sz

n
ir

(1
9
9
4
a
)

X
X

E
D

&
S

4
†

M
a

a
n
d

K
u
sz

n
ir

(1
9
9
5
)

X
X

X
X

E
D

&
S

4
G

†
F
e
rn

á
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Chapter 1. Introduction

are replaced by the Laplace or Fourier transformed complex moduli. The time-domain
solutions are then obtained using the inverse transform.

Because of the complicated non-linear relationship between geophysical observables
and subsurface structure, a direct inversion for rheological parameters is in general
difficult. Since PSGRN/PSCMP provides a forward modeling tool, usually a large
set of models must be run to select the best-fitting one. Therefore, the efficiency of
the software and the stability of its numerical results are crucial. For this purpose,
several effective techniques (orthonormalized Thomson-Haskell propagator, analytical
asymptotes, filter techniques, etc.) were used to solve the stability and convergence
problems when computing the Green’s functions (Wang, 1999b; Wang et al., 2003;
Wang and Kümpel, 2003). The result is an easy to use, high performing software,
with respect to both speed and accuracy. Chapter 2 deals with the mathematical
background of the method used in PSGRN/PSCMP, including the techniques applied
to improve the accuracy and speed of the calculations.

This software, in combination with high quality data, can be used to extract details
about the space-time development of tectonic processes, especially earthquake-related
crustal deformations, and their basic rheological parameters. However, the variables
that influence these processes are numerous and the way they affect the deformations
is very different. Therefore, it is important to study the effect that the variation of
the input parameters have on the modeled results before trying to model observed
crustal deformation. In Chapter 3, we provide such a sensitivity analysis and offer
an interpretation of the results, with suggestions as to what kinds of deformation data
are more appropriate to study each parameter.

The information obtained by the sensitivity analysis, however, cannot always be
applied directly when modeling real data. This is shown in Chapter 4, where we
model post-seismic crustal deformation associated with the great 1960 Chilean earth-
quake (often also referred to as the Valdivia earthquake). For this event, deformation
measurements are only available several tens of kilometers away from the area located
directly over the inferred rupture surface. The region over the rupture surface, ac-
cording to our results in Chapter 3, would be the most appropriate one to extract
information about the rheological properties of the crust and upper mantle in the re-
gion. However, since the 1960 event occurred offshore, measurements in such a region
are not available. Nevertheless, a careful and systematic study led to important conclu-
sions, including the identification of viscoelastic relaxation as the cause of the observed
anomalous deformation, information about the rheology of the region, as well as pre-
dictions of the future development of the deformation. According to our results, the
deformation associated with the post-seismic relaxation process after the Valdivia event
can still be observed today, and will still be measurable for several decades. It should
therefore be taken into account for any application considering crustal deformation.

From the analysis of the stress field, we also conclude that the effects of viscoelastic
relaxation should not be neglected. In Chapter 5 we present results dealing with the
stress changes due to strong earthquakes striking along the North Anatolian Fault zone,
Turkey, since 1939. Plate motion and co-seismic stress change are usually the only two
sources considered for the estimation of stress increase/decrease, and calculations are
usually carried out considering only the elastic behavior of the medium. However,
according to our results, the stress increase due to viscoelastic relaxation after a strong

5



Chapter 1. Introduction

event is comparable, and sometimes larger, than that corresponding to plate motion.
Therefore, it is not an acceptable simplification to limit similar studies to plate motion
and elastic co-seismic stress changes, and the exclusion of viscoelastic post-seismic
effects may neglect an important part of the actual stress change.

In summary, the results presented in this thesis demonstrate that the methodology
and software used provide adequate and powerful tools for the calculation of co- and,
especially, post-seismic deformation associated with earthquakes. The tools themselves
and the results from their application, both theoretical and applied, are of use to very
different fields of geophysics, from modeling the of deformation to earthquake probabil-
ity calculation and seismic-hazard assessment. The viscoelastic relaxation process after
a strong earthquake has an effect on the deformation field that cannot be neglected,
and the PSGRN/PSCMP software provides an optimum way to model it appropriately.

The contents of this thesis that have been published are listed below:

• Chapter 2:

– Wang, R., F. Lorenzo Mart́ın, F. Roth, 2003. Computation of deforma-
tion induced by earthquakes in a multi-layered elastic crust - FORTRAN
programs EDGRN / EDCMP. Computers & Geosciences, 29 (2): 195-207,

– Wang, R., F. Lorenzo Mart́ın, F. Roth, 2006. A semi-analytical software PS-
GRN/PSCMP for calculating co- and post-seismic deformation on a layered
viscoelastic-gravitational half-space. Computers & Geosciences, 32: 527541
(doi: 10.1016/j.cageo.2005.08.006).

• Chapter 3:

– Lorenzo Mart́ın, F., R. Wang, F. Roth, 2002. The effect of input parameters
on viscoelastic models of crustal deformation. F́ısica de la Tierra, 14: 33-54.

• Chapter 4:

– Lorenzo Mart́ın, F., F. Roth, R. Wang, 2006. Inversion for rheological pa-
rameters from post-seismic surface deformation associated to the 1960 Val-
divia earthquake, Chile. Geophys. J. Int., 164: 7587 (doi: 10.1111/j.1365-
246X.2005.02803.x).

• Chapter 5:

– Lorenzo Mart́ın, F., F. Roth, R. Wang, 2006. Elastic and inelastic triggering
of earthquakes in the North Anatolian Fault zone. Tectonophysics, 424 (3-4):
271-289 (doi: 10.1016/j.tecto.2006.03.046).
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Chapter 2

Computation of co- and
post-seismic deformation induced
by earthquakes in a multi-layered
half-space

The methodology adopted for the results presented in this thesis has been developed
during the last years by Wang Rongjiang and his co-workers, and can be found in
several publications. Wang (1999b) presented the basic structure of the method for
stable and efficient computation of Green’s functions in a multi–layered half–space. His
approach was later used for solving elastic (Wang et al., 2003), poroelastic (Wang and
Kümpel, 2003), and viscoelastic problems (Wang et al., 2006). Also, two recent papers
(Wang, 2005a,b) proposed a new and consistent approach for including the gravity
effects in plane-Earth models. In the following we compile the results presented in
the mentioned papers in a systematic way, in order to provide a clear overview of the
methodology used in the subsequent Chapters. First, the solution to the static elastic
problem is given. Then, the effects of gravity are included and the solution is extended
into the viscoelastic case.

In the first place, the equations of the elastic boundary-value problem are obtained.
Using the Hankel transform, the partial differential equations of motion are converted
into a set of ordinary differential equations governing the deformation field in the
wavenumber domain. For each homogeneous layer, all fundamental solutions of the
latter equation are given in closed analytical form. The special solution satisfying the
source and boundary conditions will be obtained by the Thomson-Haskell propaga-
tor algorithm. When the wavenumber domain problem has been solved, the desired
deformation field in the spatial domain is then obtained through the inverse Hankel
transform. In general, Green’s functions are calculated for four fundamental differ-
ent dislocations sources (the strike-slip double-couple, the dip-slip double-couple, the
compensated linear vertical dipole (CLVD) and the point inflation) at different depths,
so that any finite dislocation can be modeled via linear superposition. Theoretically,
all calculations in the propagator algorithm are based on analytical formulae. Only
the inverse Hankel transform has to be carried out numerically. In practice, however,
numerical problems appear in both procedures above.
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2.1. Description of the boundary-value problem

According to the correspondence principle, the same propagator algorithm used
in the static elastic case can be adopted to compute the spectral Green’s functions.
The time-dependent inelastic Green’s functions are then obtained by the Fast Fourier
Transform (FFT), extended with an anti-aliasing technique that ensures numerical
stability when calculating the post-seismic transients. Moreover, the coupling between
the deformation and the Earth’s gravity field is considered, so that results are obtained
not only for the complete deformation field consisting of 3 displacement components,
6 stress (strain) components and 2 tilt components, but also the geoid and gravity
changes.

2.1 Description of the boundary-value problem

For an isotropic and elastic medium, Hooke’s linear constitutive relation between the
stress and strain holds,

σij = λεkkδij + 2µεij, (2.1)

where σij and εij are the components of the stress and strain tensors, λ and µ are the
two elastic parameters termed Lamé’s constants and δij is the Kronecker delta. The
summation convention applies, that is, εkk = ε11 + ε22 + ε33. The strain components
are related to the derivatives of the the displacement as follows:

εij ≡ 1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (2.2)

where ui are the components of the displacement vector, u.
Using tensor notation, Eq. 2.1 can be written as

Γ = (λ∇ · u) I + µ
(∇u + (∇u)t

)
, (2.3)

where boldface denotes a vector, Γ is the stress tensor, I is the unit tensor and (∇u)t

denotes the tensor transpose of ∇u.
The partial differential equations governing the static deformation in an elastic

medium are given by the equilibrium conditions of forces,

∇ · Γ + f = 0, (2.4)

where f is the body force representing the source. In combination with Hooke’s law,
the governing equations can be written in terms of displacements of the medium. We
have

∇ · Γ = ∇ · ((λ∇ · u) I + µ
(∇u + (∇u)t

))

= λ∇ ·



uk,k 0 0
0 uk,k 0
0 0 uk,k


 + µ∇ ·




2u1,1 u1,2 + u2,1 u1,3 + u3,1

u2,1 + u1,2 2u2,2 u2,3 + u3,2

u3,1 + u1,3 u1,3 + u3,1 2u3,3




= (λ + 2µ)∇ (∇ · u)− µ




u1,22 − u2,12 − u3,13 + u1,33

u2,11 − u1,21 − u3,23 + u2,33

u3,11 − u1,31 − u2,32 + u3,22




= (λ + 2µ)∇ (∇ · u)− µ∇× (∇× u) , (2.5)
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2.1. Description of the boundary-value problem

Figure 2.1: Schematic rep-
resentation of a layered Earth
model. Within each layer, rock
parameters are homogeneous
and the deformation equation
in a homogeneous medium
applies (Eq. 2.7). At the in-
terfaces, displacement and
stress must satisfy the con-
tinuity conditions, given by
Eqs. 2.8 and 2.9. For con-
venience, the plane at the
source depth will be defined
as a pseudo interface.

where the subindex behind the coma represents a partial derivative, that is

ui,j ≡ ∂ui

∂xj

. (2.6)

Therefore Eq. 2.4 reads

(λ + 2µ)∇ (∇ · u)− µ∇× (∇× u) + f = 0. (2.7)

If we consider a layered medium, as depicted in Fig. 2.1, displacement and stress satisfy
the continuity conditions at an interior material interface

u
∣∣+
− = 0, (2.8)

en · Γ
∣∣+
− = 0, (2.9)

where en is the unit normal vector of the interface, and the symbol
∣∣+
− denotes the

increment of the respective quantity from one side to the other side of the interface.
The stress-free surface is expressed by

en · Γ = 0. (2.10)

In the Green’s function approach, the function f describes a point source. For
convenience in numerical calculations, the plane at the source depth will be defined
as a pseudo interface. Then, the point source can be represented by a jump of the
displacement and stress components. In case that f = fsδ(z − zs), for example, where
δ(z − zs) is a Chirac’s delta function, the source is then represented by a stress jump
through the horizontal plane at z = zs,

en · Γ
∣∣+
− = fs. (2.11)

9



2.2. Application of the Hankel transform

2.2 Application of the Hankel transform

For a layered half-space model which consists of an arbitrary but finite number of
horizontal layers, with a free surface on top and the deepest layer extending to infinite
depth, it is convenient to use the cylindrical coordinate system x = (z, r, θ) in which z is
the symmetry axis through the point source and positive downwards. In this reference
system, the Bessel functions of the first kind, Jm(x), are used to obtain the cylindrical
surface harmonics

Y m
k (r, θ) = Jm(kr)

(
cos mθ
sin mθ

)
, (2.12)

or, using an equivalent notation

Y m
k (r, θ) = J|m|(kr)eimθ, (2.13)

for (0 ≤ k < ∞, m ∈ Z). These are used to obtain the surface vector harmonics, given
by

Zm
k (r, θ) = ezY

m
k (r, θ), (2.14)

Rm
k (r, θ) =

(
er

k

∂

∂r
+

eθ

kr

∂

∂θ

)
Y m

k (r, θ), (2.15)

Tm
k (r, θ) =

(
er

kr

∂

∂θ
− eθ

k

∂

∂r

)
Y m

k (r, θ), (2.16)

Consider the Hankel transforms (c.f. Bracewell, 1965, pp. 244)

u(z, r, θ) =
∑
m

∞∫

0

[Um(z, k)Zm
k (r, θ)

+Vm(z, k)Rm
k (r, θ) + Wm(z, k)Tm

k (r, θ)] kdk, (2.17)

ez · Γ(z, r, θ) =
∑
m

∞∫

0

[Em(z, k)Zm
k (r, θ)

+Fm(z, k)Rm
k (r, θ) + Gm(z, k)Tm

k (r, θ)] kdk, (2.18)

where Um, Vm, . . . are the wavenumber spectra of the displacement and stress field.
Application of the Hankel transform to Eq. 2.7 yields two systems of ordinary differ-
ential equations which are decoupled from each other and govern the depth-dependent
coefficient sets (Um, Em, Vm, Fm) and (Wm, Gm), respectively. A detailed obtention of
these two systems of ordinary differential equations can be found in the Appendix A.

The first system is called the poloidal mode and corresponds to the P-SV wave field
in seismology. In matrix notation it is written as

d

dz
ym = Aym, (2.19)

where
ym = (Um, Em, Vm, Fm)t (2.20)

10



2.2. Application of the Hankel transform

expresses a generalized 4-dimensional displacement vector in the wavenumber domain,
and

A =




0 1
λ + 2µ

λk
λ + 2µ

0

0 0 0 k

− k 0 0 1
µ

0 − λk
λ + 2µ

4k2µ (λ + µ)
λ + 2µ

0




(2.21)

is the coefficient matrix.
The second system is a 2-dimensional toroidal mode corresponding to the SH wave

field in seismology,
d

dz
xm = Bxm, (2.22)

where

xm = (Wm, Gm)t, (2.23)

and

B =


 0 1

µ

µk2 0


 . (2.24)

The functions Lm, Mm and Nm are the wavenumber spectra of the the body force f .
The interface conditions, Eqs. 2.8 and 2.9, are then expressed by the continuity

conditions of the generalized displacement vectors ym and xm,

ym

∣∣+
− = 0, (2.25)

xm

∣∣+
− = 0, (2.26)

the free surface conditions, Eq. 2.10, by

ym = (Um, 0, Vm, 0)T , (2.27)

xm = (Wm, 0)T , (2.28)

and the source conditions, Eq. 2.11, in general by

ym

∣∣+
− = ∆ym(zs), (2.29)

xm

∣∣+
− = ∆xm(zs), (2.30)

where ∆ym(zs) and ∆xm(zs) are the poloidal and toroidal source functions, respec-
tively. These are obtained by integration of the body force f , and depend therefore of
the function used to describe it. For a single force and a point dislocation, Table 2.1
shows the Hankel transformed source functions.
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2.3. Thomson-Haskell propagator algorithm

Y m
k Jm(kr) cos mθ Jm(kr) sin mθ

m 0 1 2 1 2

∆Um − Mzz

2π(λ + 2µ)
0 0 0 0

∆Em
fz
2π 0 0 0 0

∆Vm 0 −Mxz
2πµ 0 −Myz

2πµ 0

∆Fm
(2µ + 3λ)Mzz

2π(λ + 2µ)
k

fx
2π

Mxx −Myy

4π k
fy

2π
Mxy

2π k

∆Wm 0
Myz

2πµ 0 −Mxz
2πµ 0

∆Gm 0 − fy

2π −Mxy

2π k
fx
2π

Mxx −Myy

4π k

Table 2.1: Hankel transformed source functions in the cases of a point single force
(fx, fy, fz) and a point dislocation with the moment tensor components (Mxx,Mxy =
Myx, Mxz = Mzx,Myy,Myz = Mzy,Mzz) with Mxx + Myy + Mzz = 0.

2.3 Thomson-Haskell propagator algorithm

Solutions of Eqs. 2.19 and 2.22 can be obtained in the closed analytical form as follows.
For the poloidal displacement, the solutions to Eq. 2.19 are given by

y(z) = eAz. (2.31)

By the eigen decomposition theorem, the matrix exponent can be written as

eAz = Lp(z)Ep(z)L−1
p (z), (2.32)

Ep(z) is the (4× 4) diagonal eigenvalue matrix

Ep(z) = dia
(
eλiz

)
= dia

(
ekz , e−kz , ekz , e−kz

)
, (2.33)

with λi being the eigenvalues of the matrix A. Lp(z) is the (4×4) poloidal layer matrix,
whose 4 columns consist of the 4 eigenvectors of the coefficient matrix A, lip, and L−1

p (z)
is the inverse of the layer matrix Lp(z).

Since +k and −k are both second order eigenvalues, their corresponding eigenvec-
tors should be linear functions of z instead of constant, that is

lip = a + bz (2.34)

with both a and b being constant vectors. Hence, the eigenvalue problem is equivalent
to the (8× 8) matrix system

(
A∓ kI −A

0 A∓ kI

)(
a
b

)
= 0 (2.35)
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2.3. Thomson-Haskell propagator algorithm

After calculations, we find that the poloidal layer matrix is given by

Lp(z) =




1 1 1 +
λ + µ

µ (1− kz) 1 +
λ + µ

µ (1 + kz)

2µk −2µk 2(λ + µ)(1− kz)k −2(λ + µ)(1 + kz)k

1 −1 −1− λ + µ
µ kz 1− λ + µ

µ kz

2µk 2µk −2(λ + µ)k2z 2(λ + µ)k2z




, (2.36)

The individual solutions to Eq. 2.19 are then

yi(z) = lip · eλiz. (2.37)

and the general solution is a linear combination of the individual solutions

y(z) =
4∑

i=1

cpi
· lip · eλiz = Lp(z)Ep(z) cp, (2.38)

where cp is an arbitrary constant vector,

cp = (A+, A−, B+, B−)t , (2.39)

Note that the displacement in the form of Eqs. 2.38 and 2.39 shows again an analogy
to seismology. The terms with constants A± and B± correspond to amplitudes of
the up- and down-going P and SV waves, respectively. Their depth-dependence is
characterized by the terms e±kz and (kz)e±kz, respectively.

For a homogeneous layer of thickness h, we find from Eq 2.38 that

y(0) = Lp(0)Ep(0) cp = Lp(0)cp, (2.40)

hence, we can relate the displacement vector at the upper and lower boundaries of the
layer by

y(h) = Hp(h)y(0), (2.41)

where

Hp(h) = Lp(h)Ep(h)L−1
p (0). (2.42)

The matrix Hp is known as the Thomson-Haskell propagator, and relates the displace-
ment vector from depth to depth. Using this approach, the boundary-value problem
is converted to an algebraic problem. The boundary conditions are supplied by the
free surface conditions and the conditions in infinity. On one side, we can choose any
two independent starting values for the displacement vector, both of which satisfy the
free surface conditions (Em = Fm = 0), and propagate it downwards until the source
plane. Similarly, the same procedure can be done from the deepest interface upwards
to the source plane. The only difference is that the start values here should satisfy the
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2.4. The improved propagator algorithm

conditions for infinity, that is, A+ = B+ = 0, because there are no upgoing waves from
infinity. The displacement vectors determined this way are the fundamental bases of
solutions of the present boundary-value problem. The desired displacement is a linear
superposition of them. The weights will be determined by the source conditions.

The situation for the toroidal mode is similar but easier than the poloidal mode
shown above because the dimension is reduced from 4 to 2. The general solution to
Eq. 2.22 is

x(z) = Lt(z)Et(z) ct, (2.43)

where the (2× 2) toroidal layer matrix, whose 2 columns consist of the 2 eigenvectors
of the coefficient matrix B, lit, is given by

Lt(z) =

(
1 1

µk −µk

)
, (2.44)

Et(z) is the (2× 2) diagonal eigenvalue matrix

Et(z) = dia
(
ekz, e−kz

)
, (2.45)

and ct is the constant vector

ct = (C+, C−)t . (2.46)

Similarly, for a homogeneous layer of thickness h, we can also derive the relationship

x(h) = Ht(h)x(0), (2.47)

where
Ht(h) = Lt(h)Et(h)L−1

t (0). (2.48)

2.4 The improved propagator algorithm

Calculations with the algorithm described above are not stable for the poloidal mode.
It might appear that the problem is caused by operations between the large ekz terms
and the small e−kz term. However, the results for the toroidal mode are stable, so
this cannot be the reason for the instability of the poloidal mode. In reality, the prob-
lem is caused by operations between the two increasing vectors. For example, when
a displacement vector is being propagated from the surface downwards (in the posi-
tive z direction), the terms A+ekz and B+(kz)ekz represent two increasing waves and
the terms A−e−kz and B−(kz)e−kz two amplitude-decreasing waves. It is obvious that
through operations with the Thomson-Haskell propagator the two amplitude-increasing
waves included in the displacement vector become more significant than the two de-
creasing waves. In the extreme, i.e., when kh >> 1, the latter can even lose their
numerical presence. Additionally, when the product between the wavenumber and the
layer thickness is large, also the less strongly increasing A+ekz wave, should have lost its
significance to a certain extent due to the operation with the more strongly increasing
B+(kz)ekz wave. If such a process is repeated by a number of thick layers, all displace-
ment vectors may finally be dominated by the single B+(kz)ekz wave, regardless what
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2.5. Convergence problems of the numerical Hankel transform

start values of them were chosen. Consequently, the fundamental displacement vector
bases computed this way will loss their independence and the numerical instability
arises when they are superposed to satisfy the source conditions.

From the physical point of view, the two decreasing e−kz and (kz)e−kz waves de-
scribe the reflection from the top of a layer. When the layer thickness, measured by the
wavelength 1/k, is large enough, the evanescent reflection effect can not be observed
at the bottom of the layer. Thus, the vanishing of the decreasing waves is of physical
nature. In contrast, however, the vanishing of one increasing wave due to operations
with the other increasing wave is purely of numerical nature because both include in-
dependent and complementary information about the radiation characteristic of the
source. Therefore, to solve the loss-of-precision problem, any direct numerical oper-
ations between the two increasing waves should be avoided. For this purpose, Wang
(1999b) proposed an orthonormalisation extension to the propagator algorithm. As has
been stated, there are two fundamental displacement vector bases to be determined
for the poloidal mode. In the improved propagator algorithm, the two vector bases
are not computed separately but simultaneously. At each interface, they are linearly
transformed, or orthonormalised in a wide sense, to the other two vector bases so that
each of them includes only one increasing wave for the next homogeneous layer. Then,
the new vector bases can be propagated to the next interface without any numerical
operations between the two increasing waves and the loss-of-precision problem is fully
solved.

The orthonormalised propagator algorithm has been successfully applied to the
computation of synthetic seismograms (Wang, 1999b) and quasi-static deformations in
poro-plastic media (Wang and Kümpel, 2003). The same computation strategy is also
adopted for the calculations presented in the following Chapters.

2.5 Convergence problems of the numerical Hankel

transform

In the software used for the results presented here, equidistant wavenumber sampling
is used in the numerical Hankel transform (wavenumber integrations in Eqs. 2.17 and
2.18). The sampling interval ∆k can be chosen between 1-10% of the Nyquist wavenum-
ber 2π/rmax, where rmax is the maximum horizontal distance from the test points to the
source. A practical problem here is the cut-off value of the wavenumber k, which de-
pends upon how fast the integrands in Eqs. 2.17 and 2.18 converge to zero. In case that
the observation points are located at a different depth than the source, the integrands
decrease with wavenumber k approximately by e−kd or ke−kd, where d is the depth
difference between the observation points and the source. Then, the cut-off wavenum-
ber can be determined so that all integrands become insignificant, for example, several
orders smaller than their maxima. However, if the source and the observation points
are located at the same depth, the integrands at large wavenumbers either converge to
non-zero constants or linearly increase with the wavenumber. The difficulty is caused
by the idealized point source and can be solved using a similar technique as the one
used by Farrell (1972) for calculating the deformation of a spherical earth induced
by surface loading. Using this technique, the asymptotic terms are expressed in the
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2.6. A consistent approach for including the gravitational effect

analytical form and removed from the numerical wavenumber integrations as follows

∞∫

0

U(k)J2(kr)kdk =

∞∫

0

∆U(k)J2(kr)kdk + U∞

∞∫

0

J2(kr)kdk

=

∞∫

0

∆U(k)J2(kr)kdk +
2

r2U∞, (2.49)

where where U∞ is the limit value of U(k) for k → ∞ and ∆U(k) is the difference
U(k)− U∞.

In addition, the δ point source function is replaced by an extended disk source
with a characteristic radius ro which is much smaller than the distance to the obser-
vation points. For example, if an extended source with a normal distribution is used,
the only difference to the point source is an additional factor e−k2r2

o to be multiplied
to the wavenumber integrands. In practice, this factor can effectively accelerate the
convergence of the numerical integrations. Therefore

∞∫

0

U(k)J2(kr)kdk ≈
k∞∫

0

∆U(k)J2(kr)e−k2r2
okdk +

2

r2U∞, (2.50)

where k∞ is the cut-off wavenumber, and ro << r is the characteristic spatial extension
of the physical point source. Presently, k∞ is determined through a rough sampling
so that the integrands decrease by 3–4 orders for k > k∞ in comparison with their
maxima, and ro is about 1% of the source-observation distance r.

2.6 A consistent approach for including the gravi-

tational effect

The extension of the earlier elastic dislocation theory with the gravitational effect was
first made by Rundle (1980b) based on the generally governing equations for infinites-
imal static deformation in a self-gravitating, hydrostatically prestressed Earth (Love,
1911),

∇ · Γ + ρ∇ (ψ + u · g)− g∇ · (ρu) = 0, (2.51)

∇2ψ − 4πG∇ · (ρu) = 0, (2.52)

where Γ is the Lagrangian incremental stress tensor, u is the displacement vector, ψ
is the Eulerian incremental potential, g is the acceleration due to gravity, G is the
gravitational constant, and ρ is the density.

In order to apply Eqs. 2.51 and 2.52 to a simplified plane-Earth model, Rundle
approximates the Earth’s gravity g by its surface value and treats it as a constant
external body force. Since the self-gravitating term, ρ∇ψ in Eq. 2.51, is negligible
for co- and post-seismic deformation, it is in general enough to consider the so-called
reduced problem, in which the deformation equations are decoupled from the potential
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2.6. A consistent approach for including the gravitational effect

field equation (Rundle, 1982). To construct the Haskell propagator for the reduced
problem, four Hankel-transformed fundamental displacement solutions of the poloidal
(P-SV) type and two of the toroidal (SH) type are needed, as in the elastic, non-
gravitational case. Since the SH solutions include only horizontal movements without
volume changes, they are not affected by the gravity field. The Hankel-transformed
P-SV solutions with the gravity effect have been given in the form

[
Uz(k, z)
Ur(k, z)

]
=

[
p±1,2(k)

1

]
exp [±m1,2(k)z] , (2.53)

with

p±1,2 =
(λ + 2µ)k2 − µm2

1,2

k [ρg ± (λ + µ)m1,2]
, (2.54)

where k is the horizontal wavenumber (parameter of the Hankel transform), ±m1,2 are
the four vertical wavenumbers of the deformation field,

±m1 = ±
√

k2 + kkg, (2.55)

±m2 = ±
√

k2 − kkg, (2.56)

and
kg =

ρg√
µ(λ + 2µ)

. (2.57)

For k > kg, the elastic-gravitational Haskell propagator can be constructed in anal-
ogy to the purely elastic one (see Appendix). Particularly for k >> kg, the elastic-
gravitational solutions converge to the purely elastic ones, implying that the gravity
can only affect deformation over long wavelengths.

However, a problem occurs for k ≤ kg. In this case, the boundary value problem
has no solution at all because only one of the four fundamental solutions given by
Eq. 2.53 is regular at infinite depth, but two are in general required. It should be
mentioned that the regularity at infinite depth is necessary from both the physical and
the mathematical points of view. If any non-regular solution is used instead of the
missing regular one, two consequences are expected: (1) A small local perturbation
may cause a global reaction of the half-space, and (2) the reaction cannot be uniquely
determined because there are two non-regular solutions for choice. The parameter kg

therefore represents a critical wavenumber of the model. As shown by Wang (2005a),
this regularity problem was ignored in many previous studies. In fact, the solution
given in Eq. 2.53 that is valid for k > kg was implicitly extrapolated to the invalid
wavenumber region 0 ≤ k ≤ kg. Consequently, kernel functions (i.e. the Hankel-
transformed response functions) obtained became complex even in the static elastic
case and exhibit singularities near the critical wavenumber.

The regularity problem can be explained by the physically inconsistent assumptions
made for the half-space model. In fact, any compressible medium should become more
compact under hydrostatic pressure. Therefore, when including the constant gravity, a
self-consistent half-space model should either be incompressible, or have an increasing
density with depth. Otherwise, the model is not in a hydrostatical equilibrium state
and is therefore unstable. The existence of the critical wavenumber implies that an
unpredictable deformation at infinite depth can be induced by a small near-surface
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2.6. A consistent approach for including the gravitational effect

perturbation, if the wavelength of the perturbation is large enough − a certainly non-
physical consequence.

Another problem is the long-term instability occurring when the shear modulus of
a compressible layer of the model relaxes to a very small value. In contrast to the
regularity problem for the low wavenumber range, the instability may appear at any
wavenumber. However, the physical causes for these two different problems are the
same, that is as µ → 0, the finite compressible layer becomes practically an infinite
medium considering the vanishing gravitational wavelength of this layer (1/kg → 0).

Wang (2005b) has shown that these two numerical problems can be overcome by
using the Adams-Williamson condition (Longman, 1963). This condition requires the
density gradient resulting from the initial hydrostatic equilibration. It is given by

dρ

dz
=

ρ2g

κ
, (2.58)

where the parameter κ = λ+2µ/3 is the bulk modulus which is assumed to be constant
during the viscoelastic relaxation (see below). In fact, the Adams-Williamson condition
is well satisfied by most realistic Earth models, except for an asthenospheric structure.

When including this density gradient, the equation for the reduced problem reads

∇ · Γ + ρg∇uz −
(

ρ∇ · u +
ρ2g

κ
uz

)
gez = 0, (2.59)

where g = gez has been used.

In the upper and lower Earth’s crust, the density deviations needed to satisfy the
Adams-Williamson condition are within a few percent. Therefore, after the density
gradient is explicitly considered, the remaining density parameter ρ in Eq. 2.59 can
still be treated as a constant value. Using this approximation, we find that the four
vertical wavenumbers given by Eqs. 2.55 and 2.56 are modified to

±m1 = ±
√

k2 +
2

3

(
k̃2

g + k̃g

√
k̃2

g − k2

)
, (2.60)

±m2 = ±
√

k2 +
2

3

(
k̃2

g − k̃g

√
k̃2

g − k2

)
, (2.61)

where

k̃g =
ρg√

4

3
κ(λ + 2µ)

. (2.62)

The coefficients given by Eq. 2.54 are still valid.

Note that the real part of the modified eigenvalues ±m1,2 never vanishes for k > 0.
Thus, no critical wavenumber exists even for µ → 0. The regularity problem for the
low wavenumber range and the numerical instability for the long-term relaxation are
therefore avoided by this regularization approach.
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2.7 Implementation of the rheology

According to viscoelasticity theory, post-seismic deformation transients are controlled
by (1) the source time function, usually a Heaviside step function, and (2) the relax-
ation of the shear stress in the inelastic media with time. To avoid the complicated
convolution in the time domain, all approaches use the correspondence principle (cf.
Christensen, 1971), which states that a linear viscoelastic boundary-value problem can
be solved by adopting the associated elastic solutions, in which the elastic moduli
are replaced by the Laplace or Fourier transformed complex moduli. Then the time-
domain solutions are obtained via the inverse Laplace transform. Since the viscoelastic
response spectra are usually complicated functions of the Laplace time-conjugate pa-
rameter (frequency), results in the closed analytical form are only possible for few par-
ticularly simple models, for example the homogeneous viscoelastic half-space without
gravity effects. For more complicated models, numerical methods must be used, which
in general require a dense sampling of the response spectra that are obtained by the
Haskell propagator algorithm and the Hankel transform. The numerical tool used for
the results presented in the following Chapters is based on the Riemann-Mellin contour
integral in combination with the FFT technique, a straightforward and full-spectrum
method for ensuring numerical stability in calculating post-seismic transients. Because
of the complicated non-linear relationship between geophysical observables and subsur-
face structure, a direct inversion for rheological parameters is in general difficult. Since
the software provides a forward modeling tool, usually a large set of models must be run
to select the best-fitting one. Therefore, the efficiency of the software and the stability
of its numerical results are crucial. This is achieved by the effective techniques (or-
thonormalized Haskell propagator, analytical asymptotes, filter techniques, etc.) used
to solve the stability and convergence problems when computing the Green functions
(Wang and Kümpel, 2003; Wang, 1999b; Wang et al., 2003). These techniques lead to
small, fast and very accurate programs.

In most seismic reference Earth models, the quality factor of the bulk modulus is
at least one order higher than that of the shear modulus. On that account, only the
shear modulus will be considered to be viscoelastic while the bulk modulus remains
elastic. Viscoelasticity is described by the SLS rheology defined by three parameters:
the unrelaxed shear modulus µo, the viscosity η and the parameter α which is the ratio
of the fully relaxed modulus to the unrelaxed modulus (Fig. 2.2). In the frequency
domain, the complex shear modulus is then given by

µ(iω) = µo
α(1− α) + iωη/µo

(1− α) + iωη/µo

, (2.63)

where ω is the angular frequency, and i =
√−1. Note that the complex shear modulus

defined here differs from the Fourier transform of the shear relaxation function by the
factor iω (see e.g., Christensen, 1971).

Obviously, the SLS rheology becomes identical to the Maxwell rheology when the
relaxation ratio α → 0. Another special case is α → 1 for the perfect elasticity. For
the latter case, the viscosity parameter in Eq. 2.63 is meaningless.

The complex Lamé constant λ(iω) can be derived from the complex shear modulus
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Figure 2.2: Model of the SLS rheology.
µo is the unrelaxed modulus, η is the vis-
cosity, and 0 ≤ α ≤ 1 is the relaxation
ratio. Note the two special cases, α = 1
and α = 0, representing perfect elastic-

ity and the Maxwell rheology, respectively.

ααµµo

(1- αα)µµo

ηη

µ(iω) by assuming a constant bulk modulus:

λ(iω) = λo +
2

3
[µo − µ(iω)] , (2.64)

where λo represents the unrelaxed Lamé constant.

2.8 A practical anti-aliasing technique

Once the boundary-value problem has been solved in the frequency domain using the
correspondence principle, the time-dependent Green functions can be obtained by the
inverse Fourier transform. It is known that aliasing problems may appear when using
the discrete FFT algorithm.

If the sampling interval of the frequency, which is antiproportional to the time
window used, is not high enough, signals beyond the time window will appear at the
wrong frequency. These alias signals may result in a wrong estimation of the co-
seismic deformation. To solve the problem, we adopt the anti-aliasing technique that
has been used in computing synthetic seismograms (Kind and Seidl, 1982). Instead
of the Fourier spectrum, for example X(iω), the Laplace spectrum X(σ + iω), where
σ is a small positive constant, will be computed. The inversion for its time-domain
function x(t) is then given by

x(t) = eσt F−1 [X(σ + iω)]

= eσt 1

2π

+∞∫

−∞

X(σ + iω)eiωtdω. (2.65)

In fact, Eq. 2.65 can be directly derived from the well-known Riemann-Mellin in-
version formula.

Note that X(σ + iω) is the Fourier spectrum of the function e−σtx(t), i.e. x(t)
filtered by the window function e−σt. Using Eq. 2.65, the amplitude of the alias signals
appearing at the origin time are reduced by the factor e−σT , where T is the length of
the time window used. We therefore define β = e−σT and call it the alias-suppression
factor. The smaller the β factor chosen, the more effectively are the alias signals
suppressed. On the other hand, a too small β value will enhance at the same time the
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numerical errors of the long-term relaxation signals. In most practical cases, to choose
0.1 ≤ β ≤ 0.5 should be appropriate if the time window used is large enough to cover
the main relaxation process.

Another aliasing problem are numerical oscillations due to the limited cut-off fre-
quency used, which is antiproportional to the sampling interval. In general, the vis-
coelastic response to a Heaviside dislocation source is characterized by three stages:
(1) the instantaneous elastic response, (2) the transient viscoelastic relaxation process,
and (3) the steady end state. An approximation of such time behavior using a single
relaxation time can be expressed in the form

x(t) =
[
xp + (xi − xp)e

−t/τ
]
H(t), (2.66)

where xi is the instantaneous co-seismic change, xp is the permanent change, τ is the
relaxation time, and H(t) is the Heaviside function.

The Laplace transform of the function x(t) is

X(σ + iω) =
xp

σ + iω
+

xi − xp

σ + iω + 1/τ
. (2.67)

For a multi-layered model, there may be several relaxation times or even a continu-
ous relaxation spectrum. In this case, the parameter τ represents the main relaxation
time of the model. Because the spectrum given by Eq. 2.67 converges slowly to zero,
numerical oscillations related to the cut-off frequency may appear when using the dis-
crete FFT. To overcome the problem, the co-seismic and steady-state solutions, xi and
xp, respectively, are also computed. Then, Eq. 2.67 is used for the first-order prediction
and subtracted from the computed spectra. The numerical inverse FFT is then only
applied to the residual spectra, and the end result is obtained by adding Eq. 2.66 to the
inverse FFT of the residual spectra. The key point of this approach is the estimation of
the main relaxation time τ , which may be different for different observables at different
positions. In the present implementation, the parameter τ is estimated independently
for each Green function component, following the criterion that the residual takes a
value as small as possible at the cut-off frequency.

Numerical tests have shown that the above two techniques are very efficient. The
two aliasing problems have been satisfactorily solved. In most cases, a stable FFT
result can be obtained even if the time window used is not large enough and/or the
time sampling rate is not high enough.

2.9 Computation procedures

The described methodology for calculation of deformation in a layered viscoelastic
gravitational Earth model has been programmed into a code consists of two programs.
The first program, PSGRN, is used to prepare the time-dependent Green’s functions
that describe the response of the viscoelastic-gravitational model to the 4 fundamental
dislocation sources at different depths with a Heaviside time history. The second
program, PSCMP, is used to compute the transient deformation, as well as changes in
the geoid and gravity field induced by finite fault planes of an earthquake via linear
superposition. Usually, PSGRN is considerably more time-consuming than PSCMP.
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However, once the Green’s functions have been calculated, they can be repeatedly used
for different earthquakes, as long as the Earth model remains unchanged. This is the
reason why the computation is divided into these two steps. The flowcharts of major
subroutines of the two programs are shown in Fig. 2.3 and Fig. 2.4, respectively.

Figure 2.3: The flowchart of major subroutines of the program PSGRN.

Figure 2.4: The flowchart of major
subroutines of the program PSCMP.

The output from PSGRN are Green’s functions covering 13 observables (3 dis-
placement components, 6 stress components, 2 tilt components, and 2 geopotential
components, i.e. the gravity and geoid changes) induced by the 4 different dislocation
sources (strike-slip, dip-slip, CLVD and inflation). For a fixed uniform observation
depth, the observables depend in general not only on the source depth and the ob-
servation distance but also on the observation azimuth angle θ. However, since the
CLVD and inflation sources are axisymmetric, the associated observables are reduced
by their tangential components. The azimuthal dependence for the other two source
types can be expressed by a simple azimuthal factor, that is, (sin 2θ, cos 2θ) for the
strike-slip source and (sin θ, cos θ) for the dip-slip source. Whether the cosine factor
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2.10. Comparisons with previously published results

Figure 2.5: Schematic representation of the reference
system used to define the rectangular fault planes that
serve as input to PSCMP. x, y and d are the North
and East coordinates and the depth of the upper left
corner of the rupture surface. L and W are the length
and width of the rupture. Its orientation is fixed by the
strike (φ) and dip (δ) angles, and the average displace-
ment on the rupture surface is given by its magnitude
U0 and the rake angle (λ).

or the sine factor is used depends on which of the observables is considered. In case of
the dip-slip source (Mxz 6= 0), for example, both the vertical and radial displacements
are proportional to cos θ, but the tangential displacement is proportional to sin θ. The
Green’s functions are thus stored without the azimuthal factor. In summary, there are
44 independent Green’s functions in the discrete form. They may then be stored in a
given directory to serve as a data base. The stepping of source depths and observation
distances should be dense enough so that a linear interpolation can be applied later
to any individual source-observation configurations. In practice, the step should be
comparable with the discretisation size to be applied later to the finite source plane.

As an input of PSCMP, an earthquake is represented by an arbitrary number of
rectangular fault planes with different location, area and orientation (strike, dip and
rake, see Fig 2.5). PSCMP discretises these fault planes automatically to a set of
point dislocations using the same spatial resolution as used for Green’s functions, and
carries out the convolution integration. The observation positions can be either a set
of irregular stations, a 1D equidistant profile or a 2D equidistant array. In addition,
users can choose either a local Cartesian coordinate system or the geographic coordinate
system. In the latter case, a projection to the local Cartesian system which is needed for
the internal convolution procedure will be made using the equality criterion for distance
and azimuth. Output from PSCMP are all or a selected part of the 13 observables in
the form of time series and/or scenarios (“snapshots”).

2.10 Comparisons with previously published results

Wang (2005b) compared the gravity effects on the co- and post-seismic surface deforma-
tion computed by PSGRN/PSCMP and by the code FLTGRV published by Fernández
et al. (1996a). In general, both results show that the gravity reduces the magnitude
of the long-wavelength part of the vertical displacement of the crust due to the buoy-
ancy effect at the surface and internal density discontinuities. For example, for large
thrust earthquakes with a rupture area as large as 400 × 120 km2, the results of the
present code indicate that gravity can affect the co-seismic vertical movement by up
to 4 percent. Over longer timescales, when ductile flow in the lower crust must be
accounted for, the gravity effect on the vertical displacement can reach up to 20 per-
cent. In comparison, the gravity effect obtained by the code FLTGRV showed a similar
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Figure 2.6: Coseismic and additional post-seismic surface displacement calculated
for two Earth models, for a profile perpendicular to the fault strike through the center
of the rupture surface. The source is a vertical strike-slip dislocation. The fault is
200 km along the strike and 30 km along the dip (penetrating the entire elastic upper
layer). τ (= 2η/µo) is the characteristic Maxwell relaxation time. U represents the
magnitude of slip on the fault plane and Uy is the displacement parallel to the fault
strike. These results are comparable with Figs. 9 and 10 of Pollitz (1997).

spatial form, but seems to include a constant offset, like a rigid-body motion of the
crust, in both co- and post-seismic cases. Wang (2005b) concluded that such an offset
(comparable with the peak-to-peak amplitude of the gravity effect in the thrust zone.)
is unrealistic because it leads to an average surface subsidence, which is inconsistent
with thrust-fault mechanisms.

Here we have recomputed deformation models presented by Pollitz (1997). Two
Earth models (A and B) were used (see the upper panels of Fig. 2.6 and 2.7). Figure 2.6
shows the co- and post-seismic displacement parallel to the fault strike of a strike-slip
dislocation. For both models, our results indicate no significant influence of gravity on
deformation of strike-slip earthquakes, and agree with those obtained by Pollitz (1997),
who used a spherical geometry (see Fig. B.2 in Appendix B).

Figure 2.7 is comparable with Figs. 3 and 6 in Pollitz (1997) (see Fig. B.1 in
Appendix B), showing the vertical displacement and the displacement perpendicular
to the fault strike of a buried thrust event. For Model A, we can reproduce Pollitz’s
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results at the co-seismic and early post-seismic period, but find some differences at the
late post-seismic period. In particular, for t = 45τ in the nongravitational case, our
results indicate smaller subsidence at the far ends of the half-space profile than those
of Pollitz (1997) for the spherical profile. Similar differences can also be seen for Model
B. Additionally, our results indicate a smaller gravity effect for Model B than Pollitz’s
results. All these differences may be attributed to the curvature effect neglected in the
present plane-Earth model, but also to the wavelength cut-off (the limited maximum
degree of the spherical harmonics) used for the spherical model. It should be mentioned
that such a cut-off problem does not exist in the present code, in which the analytical
half-space solution (Okada, 1992) is used for the short-wavelength asymptote, so that
the numerical calculation is only needed for the long-wavelength residuals due to the
gravity effect and the layering of the model. In addition, the analytical propagator
scheme used for plane-Earth models is in general more accurate than the numerical
propagator scheme (for example the Runge-Kutta integration) used for spherical Earth
models.

Model A with the same half-space geometry was also considered by Rundle (1982)
(see Fig. B.3 in Appendix B). There is a good agreement between his results and ours
for the vertical displacement in the nongravitational case, and a slight difference (a few
percent) at t = 45τ in the gravitational case. It seems that numerical errors caused
by the previous regularity problem are not so serious for earthquakes with a small to
moderate magnitude, but they become non-negligible for large-scale earthquakes (for
example Mw ≥ 8) as shown by Wang (2005b).

2.11 Summary

In the present software, the numerical Green’s function approach is used to calculate
earthquake’s viscoelastic deformations based on a layered half-space Earth model. In
general, the computation task is fulfilled by two separate programs. The first pro-
gram PSGRN prepares all fundamental Green’s functions of the given multi-layered
half-space, and the second program PSCMP carries out the convolution integrations.
The advantage of this construction is the following: Once the Green’s functions have
been computed, they can be used repeatedly for different earthquakes as long as the
earth model remains unchanged. In the program PSGRN, the stable and accurate
results are guaranteed by the orthonormalised propagator algorithm, and the compu-
tation efficiency is achieved using the convergence accelerator technique applied to the
numerical Hankel transform.

In comparison to spherical models such as those used by, for example Pollitz (1997)
and Wang (1999a), an obvious disadvantage of the plane-Earth model is that it neglects
the Earth’s surface curvature, which may affect an earthquake’s far-field deformation.
However, since the source extension of a large earthquake is in general limited to about
1000 km, significant co- and post-seismic deformation may arise at distances of up to
a few hundred kilometers from the earthquake’s rupture edges. Therefore, the spatial
extension of the deformation field, even for the largest earthquake, is smaller than
about 1500 km. The maximum arch height of such a spherical area over its average
plane surface is less than 25 km, or 2 percent of its horizontal extension. For such a
small geometric deviation, we may expect that its influence on the deformation field
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Figure 2.7: Same as Fig. 2.6, but for a buried thrust fault dipping at 30 degree.
Ux and Uz are the displacement perpendicular to the fault strike and the vertical
displacement, respectively. These results are comparable with Figs. 3 and 6 of Pollitz
(1997) and, for the vertical displacement of Model A, with Figs. 6 and 7 of Rundle
(1982).

is similarly small. Thus, the curvature effect should not be larger than a few percent.
Additionally, we should keep in mind that the static displacements decrease with dis-
tance by about 1/r2. Therefore, the co- and post-seismic deformation calculated by
PSGRN/PSCMP should be accurate enough for most applications to present-day data
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sets.
In comparison with other similar modeling tools published previously, the present

software PSGRN/PSCMP includes several improvements:

• A new and consistent approach is used for including the gravity effects in the
plane-Earth models.

• The loss-of-precision problem of the Haskell propagator algorithm is fully avoided
by the orthonormalization technique.

• The numerical accuracy of the inverse Laplace transform is remarkably improved
by using FFT with the anti-aliasing extension.

• A data-base of Green’s functions is automatically generated, which can be used
repeatedly for modeling the deformation field of different earthquakes.

• There is no restriction on the number of layers of the model used.

• Large-scale earthquakes are represented by a number of rectangular fault planes
with different locations and orientations, allowing for the consideration of com-
plicated geometries in an easy and straight-forward way.

• The output includes a complete set of deformation components and the geopo-
tential changes at the surface or any given depth in the form of time series and/or
scenarios (“snapshots”).
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Chapter 3

The effect of input parameters on
viscoelastic models of crustal
deformation

The increasing quality of data on time-dependent deformation of the Earths surface can
be used to extract more details on the spatial and temporal development of earthquake-
related crustal deformation. Different variables are involved in these processes, some
of them more accurately determined than others. In this Chapter, we model surface
deformation on a subduction zone, in a medium composed of an elastic layer over
an inelastic half-space. We analyze the effect that three variables (viscosity of the
half-space, thickness of the elastic layer and dip angle of the fault plane) that are less
accurately determined from data have on the displacement field. We show that the
variation of model parameters leads to stable variations in the deformation fields. From
the variability analysis, we derive which is the most appropriate data to be used to
obtain values for the studied parameters. According to our results, the best data to
derive the value of the viscosity is the post-seismic deformation over the area where the
rupture takes place, although any area with large magnitude post-seismic displacements
can provide profitable data. For the thickness of the elastic layer it is also advisable
to use post-seismic data from the area above the fault plane, whereas the dip is better
determined by means of co-seismic data.

3.1 Introduction

3.1.1 Motivation

Geodetic data on time-dependent deformation of the Earth’s surface can be used as a
basis to derive rheological parameters of the crust and upper mantle by forward mod-
eling. With the installation of the GPS system, especially with the recently started
continuous measurements and, at the same time, since more Interferograms of Syn-
thetic Aperture Radar (InSAR) data are generated, the sampling rate in monitoring
recent crustal movements has drastically increased. This high data quality can be used
to extract more details on the space-time development of tectonic processes, especially
earthquake-related crustal deformations, and their basic rheological parameters. How-
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ever, the variables that influence these processes are numerous and the way they affect
the deformations is very different. Therefore, it is important to study the effect of
the variation of the input parameters before trying to model any real data on crustal
deformation.

Seismology might provide accurate values for the magnitude of an event and its
seismic moment. Also, the average displacement over the fault plane can be accurately
calculated from those values. The distribution of aftershocks immediately after the
event leads to information about the depth at which the crust starts to behave vis-
coelastically rather than elastically. Also the location and orientation of the rupture
plane, as well as its length and width, can be deduced from the aftershock distribution
or from fault plane solutions. Nevertheless, the depth for the elastic to viscoelastic
border and the size and geometry of the fault plane cannot be inferred with the same
accuracy as magnitude, seismic moment or average displacement over the fault plane.

Information on surface rupture and deformation at certain points on the surface
can be available from geological and geodetic observations. This can lead to further
information about the event that caused the deformation and the area where it took
place. In addition, post-seismic geodetic measurements on time-dependent deformation
can provide information about the viscosity of the lower crust and upper mantle, as
well as about the rheological law that governs the relaxation process. Nevertheless,
this process takes place very slowly, covering time intervals much longer than those for
which accurate geodetic measurements have been carried so far. For this reason, in
our analysis of the rheology, we confine ourselves to cases with Maxwell rheology with
different values for the viscosity.

3.1.2 Modeling

There are two main modeling concerns. Firstly, the results should provide values that
are in the range of what is measurable. Interpretations would be useless if the results
from modeling are too small to exceed the resolution of real measurements. Secondly,
it is important to check for the stability and uniqueness of the solution when we derive
any source parameter from measured data. We must show that a best-fitting model
can be found, so that we can find the most likely values for our parameter set. Also,
we have to study which parameters influence the results, and how strong this influence
is.

In our study, we fix the parameters that are usually accurately determined: seismic
moment, average displacement over the fault plane and elastic rock properties for
the layered half-space. The displacement on the fault plane is taken to be the same
all over the rupture surface: there is no need to complicate the model excessively.
Also, the size of the fault plane is not changed, in order to avoid making our analysis
too extensive. We chose to model deformations on a medium with an elastic layer
over a viscoelastic half-space, since this is a reasonable simplification that nevertheless
represents the properties of the crust and upper mantle appropriately. Such a medium
has been widely used in former publications (e.g. Cohen, 1980b,a, 1994; Rundle, 1982;
Fernández et al., 1996b; Yu et al., 1996b), although the study of the effects of the input
parameters on crustal deformation is in general not as systematic and includes not as
many studied parameters as in the present paper.
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Cohen (1980b) showed the effect that a change in the rheological model has on the
modeled results for a strike-slip source, and Cohen (1980a) extended the study to the
effects of the depth of the source, its length and width, and the lithospheric thick-
ness. Rundle (1982) analyzed the result of considering a thrust fault in a viscoelastic-
gravitational model. Calculations for fault planes that break the elastic layer fully or
only partially were compared. Also deformation caused by faults of different size was
analyzed, as well as the differences arising from considering a viscoelastic-gravitational
medium instead of a purely viscoelastic one. Ma and Kusznir (1994b) studied the
effect of the rock parameters, the depth and width of the source and its dip angle
for a fault in a three-layer medium. Cohen (1994) analyzed the effect of the viscosity
when modeling a dip-slip fault. Also, deformation due to a fault with constant dip was
compared to that due to a fault with a variable one. Fernández et al. (1996b) and Yu
et al. (1996b) analyzed the effect of gravity on the results for a dipping thrust fault and
for a strike-slip fault respectively. They also included calculations for two different dip
angles, as well as for fault planes that break the elastic layer fully or only partially. Roy
and Royden (2000a,b) considered two layers over the half-space, to analyze how the
rheological stratification within the crust affects the formation and long-term evolution
of fault systems.

In the following study, three parameters are systematically varied: the thickness
of the elastic layer, the viscosity of the underlying half-space and the dip angle of the
fault plane. Values for these parameters are, as stated before, generally not very well
determined. We analyze the effect that small changes on these three parameters have
on the resulting deformation. We created a so-called Reference Model (from now on
RM), with average values for the parameters and vary these to compare the effect that
this variation has on the deformation. The deformation caused by the RM played the
role of synthetic geodetic data that we tried to model by means of different sets of
parameters.

For the RM we chose the parameters to represent an earthquake on a subduction
zone. Some of the values were taken from a concrete case, namely the 1960 Valdivia
earthquake. This event was the largest recorded in the last century, with a moment
magnitude of 9.5 (Kanamori, 1977). GPS measurements in 1994 and 1996 in Chile and
Argentina (Klotz et al., 2001) show that the deformation associated to the earthquake
can still be observed. However, we did not want to confine the analysis to this event,
so several parameters were substituted by more general ones.

3.2 Variability analysis

3.2.1 Reference Model

As was already mentioned, some values for the RM were taken from the 1960 Valdivia
earthquake. A reference value of 41 km was used for the thickness of the elastic layer,
in accordance with receiver function images across the southern Andes (Kind et al.,
2001). Since our model considers horizontal layers, lateral inhomogeneities from the
crust, typical of subduction zones, cannot be taken into account.

The dip angle of the fault plane was 20o for the Valdivia earthquake, with a depth
for the upper limit of the rupture plane of 6 km (Barrientos and Ward, 1990). These
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Figure 3.1: Schematic representation of
the geometry of the fault and the medium
used in the modeling. The half-space was

made up of an elastic layer of variable
thickness ”d” and a viscoelastic half-

space. The origin of the reference sys-
tem is above the center of the fault plane,
with the x-axis parallel to the strike of the

fault plane. The upper boundary of the
fault plane is located at a depth of 6 km.

The fault plane is 80 km long, 40 km
wide and has a variable dip angle ”dip”.

values were adopted for the RM (see Fig. 3.1). Although the rake differed slightly from
90o for this event, we modeled a pure dip-slip event, in order not to take too many
parameters into account. An arbitrary slip of 5 m and a surface of 80×40km2 was
taken. The slip on the fault plane influences the final deformation in a linear way, so
re-scaling the results would be straightforward. Similar media to the one described has
been used by Thatcher et al. (1980); Rundle (1982); Thatcher and Rundle (1984) or
Fernández et al. (1996b).

In addition to the geometry and position of the source, the physical media had to be
described by means of some other values. We choose for these parameters representative
values for a subduction zone (Dziewonski and Anderson, 1981). The upper layer was
given the following rock properties: Vp = 6.7 km/s; Vs = 3.87 km/s; η = 2.9·103 kg/m3.

The homogeneous half-space beneath this layer has Maxwell rheological properties.
Piersanti (1999), compared post-seismic deformation data with synthetic results and
concluded that the viscosity of the asthenosphere beneath the Chilean region should
be between 8 · 1019 and 1020 Pa·s. Vermeersen et al. (1998), by means of the study of
the effects of the post-glacial rebound, obtained viscosities in the range of 1020 up to
a few times 1020 Pa·s for the upper mantle. According to these studies, we decided to
use a reference value of 1020 Pa·s for the viscosity.

The rock parameters for the half-space are: Vp = 8.0 km/s; Vs = 4.62 km/s;
ρ = 3.4 · 103 kg/m3.

The values listed above were used to create the RM. Subsequent models varying the
dip angle, the thickness of the elastic layer and the viscosity of the inelastic half-space
were also created. Then the deformation in these models was compared to the one
from the RM.

3.2.2 Input parameters

Models with values for the viscosity from 0.5 · 1020 Pa·s to 2.0 · 1020 Pa·s in steps of
a factor

√
2 were calculated. All the models had Maxwell rheological properties. The

range covered by these values is almost one order of magnitude. The reason for this is
that the viscosity is not very well known in most of the cases, and some studies show
that traditional standard values used in simulations may be incorrect by up to one
order of magnitude (Vermeersen et al., 1998).

For each of the values of the viscosity, the thickness of the elastic layer took also
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different values, from 35 km to 45 km every 2 km. This variation range reflects a
realistic inaccuracy of 10% in the determination of this parameter.

For a subduction zone it would be realistic to increase the value of the dip angle
with the depth. However, for simplicity, we decided to use a plane for the rupture area,
and then vary the dip angle within values for this parameter at different depths in a
subduction zone. For this reason, for every combination for the values of the former
two parameters, values of the dip angle from 14o to 24o every 2o were also used. A
total number of 180 different models were calculated.

Calculations were made for a grid of 41×41 test points, uniformly distributed every
5 km on a surface of 200×200 km2 with the origin over the center of the fault plane.
However, in some cases only a trace of test points perpendicular to the strike of the
fault plane is used to show the main dependencies.

3.2.3 Stability

To study the stability of the problem we compared the result of the RM with that of
the other models. The difference in displacement was averaged for all the 1681 test
points in the area above the rupture plane. The absolute deviation was calculated for
every point as follows:

σ = |UxRM − Ux|+ |UyRM − Uy|, (3.1)

where (UxRM , UyRM) are the displacement at that point in the x and y direction for
the RM, and (Ux, Uy) are the same values for the compared model. Fig. 3.2 shows the
averaged absolute deviations from the RM for the horizontal post-seismic displacement
during the first 2 years after the event for different sets of parameters. In each of the
panels there is only one minimum: the deviations increase with the difference of the
input parameters from the ones of the RM. Thus, our variations lead to a unique
solution. It may be necessary though to have some limit for the variability of the
parameters involved.

3.2.4 Effect of input parameters on co-seismic deformation

To avoid treating fault tip effects along strike we confine ourselves to a trace of 41 test
points on the surface, perpendicular to the strike of the fault plane.

The upper panels on Figs. 3.3 and 3.4 show the co-seismic horizontal displacement
(Uy, positive along dip direction) along the trace. The shaded area displays the vari-
ability of the displacement with the dip angle of the fault plane (Fig. 3.3) or with the
thickness of the elastic layer (Fig. 3.4). The fault plane dips towards positive values of
the y-axis.

To analyze these curves in more detail, three test points were selected from this
trace: B and C, 25 and 60 km distance from the center of the fault, along dip, and A,
10 km distance in the opposite direction. The three points are marked with triangles
on the upper panels of Figs. 3.3 and 3.4. Test point A is situated in the area where
maximum co-seismic and post-seismic displacement occurs. Test point B is located on a
plateau for the co-seismic displacement and, as will be seen later, in the area where the
post-seismic deformation changes direction. It will also be shown later that test point
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Figure 3.2: Averaged absolute deviations from the RM [mm] for the horizontal post-
seismic displacement (first 2 years after the event) for different sets of parameters.
The upper panel shows values for a fixed dip angle of 20o. For the middle panel a
thickness of the elastic layer of 41 km was used. In the lower panel, a viscosity value
of 1.0 · 1020 Pa·s was used. The minimum (value 0, corresponding to the RM) is
marked with a star on every panel. Values for the error increase as the compared
models differ more from the RM.

C lies in the area where the post-seismic displacement reaches the greatest magnitude
in the opposite direction to the overall displacement field. For these three points, the
lower panels on Figs. 3.3 and 3.4 show the difference in displacement between the RM
and models with other values for the parameters.

When the thickness of the elastic layer is fixed (Fig. 3.3), small variations in the dip
angle correspond to noticeable changes of the deformation. This parameter influences
the geometry and distribution of the deformation in such a strong way that deviations
from the RM are very large. Basically, the difference in displacement increases as the
magnitude of the displacement does, and deviations are remarkably large even for small
magnitude displacements.

We conclude therefore that the effect of the dip angle in the co-seismic displacement
is so strong that a value could be resolved best for this parameter by means of the
analysis of data on the co-seismic displacements associated to a seismic event.

If the dip angle is fixed and the thickness of the elastic layer varied (Fig. 3.4,
deviations have an exaggeration factor of 10 on the upper panel), the deviations for
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Figure 3.3: Co-seismic horizontal displacement (Uy) for a trace of points perpen-
dicular to the strike of the fault plane. The fault plane dips towards positive values
of the y-axis. The thickness of the elastic layer was fixed to 41 km. The upper panel
shows the displacement together with its variability (as a shaded area) when different
values for the dip angle of the fault plane are used (no vertical exaggeration for the
deviations). The lower panel shows the deviations from the RM for the three points
at the surface: A (y = −10 km), B (y = 25 km) and C (y = 60 km) for the different
values of the dip angle of the fault plane. Even a small variation of the dip angle leads
to notable changes in the displacement.

the co-seismic displacement are much smaller than in the previous case. There is
also a rough direct relation between magnitude of the displacement and its variability.
However, this does not hold true for the area where test point B is located. Deviations
for this point may be too small to be measured (Fig. 3.4, lower panel). For the test
points A and C, any change away from the RM leads to variations over 2 mm.

As we have just shown, the position of the test point can diminish the variability of
the displacement drastically. In the case that measurements are taken at such points, it
may not be possible to infer a value for the elastic layer thickness only by means of the
analysis of the co-seismic deformation. Other information, like the fault plane solution
or aftershocks distribution, may be needed to constrain the value of this parameter.
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Figure 3.4: Co-seismic horizontal displacement (Uy) for a trace of points perpen-
dicular to the strike of the fault plane. The fault plane dips towards positive values of
the y-axis. The dip angle was fixed to 20o. The upper panel shows the displacement
together with its variability (as a shaded area) when different values for the thickness
of the elastic layer are used (vertical exaggeration for the deviations: factor 10). The
lower panel shows the deviations from the RM for the three points at the surface: A
(y = − 10 km), B (y = 25 km) and C (y = 60 km) for the different values of the
thickness of the elastic layer. Notice the different vertical scale here and in Fig. 3.3.
In this case, deviations for point B are very small.

It should be noted that the difference in deformation associated to a change of
the thickness of the elastic layer depends on the contrast in the two Lamé’s constants
between the elastic layer and the ones for the viscoelastic half-space. However, this
study did not analyze this possibility of modifying the model, and was limited to the
contrast induced by the relaxation with time of the physical rock parameters in the
viscoelastic half-space.
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3.2.5 Effect of input parameters on post-seismic deformation

We consider again the trace of 41 test points perpendicular to the strike of the fault
plane. For these points, the red line in Fig. 3.5 show the horizontal post-seismic
displacement in the y-direction for the first two years after the event. Its variation
with the three studied parameters is represented by means of the shaded area. The
fault plane dips towards positive values of the y-axis.

Varying the three parameters at the same time leads to big changes in the results.
We only include the results starting from the value η = 0.7 · 1020 Pa·s. A value for the
viscosity of 0.5 ·1020 Pa·s only leads to bigger deviations. The values for the parameters
that lead to the top and bottom values for the displacement are listed in Table 3.1.

Although the variability of the displacement is remarkable, it is not evident which
variables have a stronger influence, and how this influence depends on the distance
to the fault plane. This is now analyzed in greater detail, first taking account of the
location of the test point, and then varying only one of the parameters at a time.

3.2.6 Distance to the fault plane

If we consider the test points A, B and C as before, we again observe that the different
parameters have a different influence on the deformation depending on the location.
Figure 3.6 shows the deviations for the post-seismic displacement for the first two
years after the event at these three test points. At test point A (Fig. 3.6, first column),
located in the area of maximum deformation, deviations are on average greater than
at the other two test points. In the two lower panels, variations with the dip angle are
much smaller than those with the other two parameters, showing that varying the dip
angle does not influence the results as much as the viscosity or the thickness of the
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Figure 3.5: Horizontal post-seismic (first two years after the event) displacement
perpendicular to the strike of the fault plane for a trace of points perpendicular to
the strike of the fault plane. For every point, the displacement corresponding to the
RM is plotted (red line), together with its variation when the thickness of the elastic
layer, the viscosity of the half-space and the dip angle of the fault plane changes. See
Table 3.1 for the parameters that lead to the maximum or minimum displacement.
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distance model parameters leading to largest deviation
to fault top bottom

plane center dip angle thickness viscosity dip angle thickness viscosity
[km] [o] [km] [1020Pa·s] [o] [km] [1020Pa·s]

-100 to -15 24 35 0.7 14 45 2.0
-10 18 35 0.7 14 45 2.0
-5 18 35 0.7 24 45 2.0
0 18 35 0.7 22 45 2.0
5 16 35 0.7 24 45 2.0
10 14 35 0.7 24 45 2.0
15 14 35 0.7 24 45 2.0
20 14 35 0.7 24 45 2.0
25 14 35 0.7 24 35 0.7
30 14 45 0.7 24 35 0.7

35 to 100 14 45 2.0 24 35 0.7

Table 3.1: Value list for the model parameters that lead to the top or bottom values
for horizontal displacements when the three parameters change. For example, on
the surface, 5 km away from the origin of coordinate in the dipping direction, the
model that leads to the maximum displacement is the one with a dip angle of 16o, an
elastic layer 35 km thick and a viscosity of 0.7 · 1020Pa·s. The values for the resulting
displacement were used for the shaded area on Fig. 3.5.

elastic layer. The same holds true for test point C (Fig. 3.6, last column), although in
this case the magnitude of the deviations is much smaller.

On the contrary, test point B (Fig. 3.6, middle column) shows that deformation
in this area is actually more sensitive to the dip angle than to the other two param-
eters (Fig. 3.6, middle column, lower two panels). However, the magnitude of these
deviations is still smaller than the deviations at test point A.

It should be noticed that each panel in this figure shows results for a single test point.
In some cases there are other local minima apart from the one corresponding to the
RM, or the models around the latest show small deviation. This simply demonstrates
that it would be very difficult to infer the value of our parameters from the deformation
observed at a single test point.

These results provide important information on the optimal location of the test
points required to extract information from post-seismic data. Measurements around
test point A or C will be useful for determining the thickness of the elastic layer or the
viscosity of the half-space, but will provide poor information on the dip angle, whereas
the area around point B will behave the opposite way.

The area of maximum deformation provides data that can be measured easily. In
addition, the results depend heavily on the viscosity, so interpretation of the mea-
surements could provide reliable values for this parameter. Measurements around test
points B and C, although smaller in magnitude, could be useful for obtaining results
about the other two variables if, as might be the case, no reliable value is available for
the viscosity.
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Figure 3.6: Deviations from the RM (mm) for the post-seismic displacement for the
first two years after the event for points A, B and C, as indicated in Fig. 3.5. The
first row shows values for a fixed dip angle of 20o. For the second row a thickness of
the elastic layer of 41 km was used. In the third row, a viscosity value of 1.0 · 1020

Pa·s was used. The minimum, corresponding to the RM, is marked with a star on
every panel.
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3.2.7 Effect of single input parameters

We plotted the horizontal (Uy) post-seismic displacement for the trace of test points
perpendicular to the fault plane strike (Fig. 3.7). On the upper panel, we represent
the variability of the displacement with the viscosity of the half-space. Once again, we
only include the results starting from the value η = 0.7 · 1020 Pa·s, since a value for the
viscosity of η = 0.5 · 1020 Pa·s only leads to bigger deviations from the RM.

The magnitude of the displacement increases as the viscosity decreases and vice
versa. The values for the viscosity that lead to the greater or smaller displacement are
listed in Table 3.2. At test points where the displacement is large, there is also large
variability of the results. This indicates that data from areas of large deformation is
appropriate for finding a value for the viscosity.

distance model parameters leading to largest deviation
to fault half-space viscosity thickness of the dip angle of

plane center [1020Pa·s] elastic layer [km] fault plane [o]
[km] top bottom top bottom top bottom

-100 to -10 0.7 2.0 35 45 24 14
-5 0.7 2.0 35 45 18 14
0 0.7 2.0 35 45 18 22
5 0.7 2.0 35 45 16 24
10 0.7 2.0 35 45 14 24
15 0.7 2.0 35 45 14 24
20 0.7 2.0 35 45 14 24
25 0.7 2.0 41 35 14 24

30 to 100 2.0 0.7 45 35 14 24

Table 3.2: Value list for the model parameters that lead to the top or bottom values
for horizontal displacements when one of the parameters changes. For example, on
the surface, 5 km along dip from the origin of the coordinate system, when only the
viscosity changes, the model that leads to the maximum displacement is the one with
a viscosity of 0.7 · 1020Pa·s. The values for the resulting displacement were used for
the shaded area on the upper panel (half-space viscosity), central panel (thickness of
the elastic layer) and lower panel (dip angle) on Fig. 3.7.

The central panel of Fig. 3.7 shows the same curve with its variability when only
the thickness of the elastic layer changes. Basically, once again there is an inverse
relationship between this parameter and the magnitude of the displacement: smaller
magnitude displacements correspond to the model with a thicker elastic layer. Nev-
ertheless, 25 km away from the center, where the displacement almost vanishes, the
maximum displacement corresponded to the RM itself (see triangles in Fig. 3.7, central
panel). The values from the rest of the models are smaller. The model that leads to
the minimum displacement at this test point is the one with an elastic layer 35 km
thick, the same as for all the test points with negative displacement (see Table 3.2).
In this case, the greatest variation occurs where the deformation is greater as long
as the displacements are positive (along dip). When the displacement takes negative
values, this relation does not hold, and the magnitude of the deviations from the RM
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Figure 3.7: Horizontal post-seismic (first two years after the event) displacement
Uy for a trace of points perpendicular to the strike of the fault plane. In every panel
the displacement is plotted with a red line, and for every point also the variation of
the displacement with one parameter is included. The upper panel shows the variation
when viscosity changes, whereas the middle and lower panels show the variation with
the thickness of the elastic layer and the dip angle of the fault plane, respectively. The
triangles in the middle panel show the test point where the thickness of the elastic
layer for maximum and minimum displacement changes. Box ”a” in the lower panel
shows the area for which the dip angle of the fault plane for maximum and minimum
displacement changes. Box ”b” shows the area for which a change in the dip angle
can lead to a change in the sign of the displacement. For the parameters that lead to
the maximum or minimum displacement see Table 3.2.

is generally smaller. This means that data from the area of maximum displacements
is the most appropriate when looking for a value for the elastic layer thickness.

The variation of the dip angle of the fault plane affects the displacement in a more
complicated way (Fig. 3.7, lower panel). The dip angle values that provide the top
and bottom values for the displacements change more smoothly than in the case of the
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other two parameters (see box a in Fig. 3.7 and Table 3.2). Moreover, box b shows an
area where changing the parameters for the model can lead to a change in the direction
of the displacement. In addition, the greatest variability of the displacement does not
correspond to the test points where the magnitude of the displacement is greatest
(although this was the case for the co-seismic displacement, Fig. 3.2). The dip angle,
in contrast to the viscosity or the thickness of the elastic layer, is a geometrical variable
that only affects the distribution of the displacements and not their development in
time. These facts stress the importance of observation points in the area where the
post-seismic displacement changes direction. Data from this area should be used to
resolve the value of the dip angle.

3.3 Conclusions

The spatial and temporal development of earthquake-related crustal deformation pro-
cesses involve multiple variables, some of which are less precisely determined than
others. Former works on forward modeling usually include no analysis of the effect of
these parameters on the deformation or this analysis is not systematic (Cohen, 1980b,a;
Thatcher and Rundle, 1979). Furthermore, usually only one variable is analyzed, or the
study is constrained to not more than two or three values for each variable (Fernández
et al., 1996b; Yu et al., 1996b). In the present study, the effect of three different
variables (lithospheric thickness, asthenospheric viscosity and dip angle of the fault)
is analyzed in detail for the co- and post-seismic deformation due to a thrust event,
to ascertain how heavily results depend on which parameter. From this analysis the
following conclusions were derived:

• When analyzing the co-seismic displacement, a strong dependency on the dip
angle of the fault plane is found. Points with large displacements show also a
large variability when the dip angle varies. The area over the rupture plane is the
one where the largest displacements take place. Therefore, surface measurements
in this area are the most suitable for ascertaining the most likely value for the
dip angle.

By contrast, varying the thickness of the elastic layer leads to small differences in
general, especially small in the area immediately beyond the surface projection of
the lower end of the rupture plane. This indicates that co-seismic displacement
measurements, especially around the mentioned area, are not recommendable for
trying to ascertain an accurate value for this parameter.

• In the analysis of the post-seismic deformation we find that, on average, devi-
ations from a reference model are large above the rupture plane when varying
the viscosity and the thickness of the elastic layer. In this area, the dip angle
does not influence the results as much as the other two parameters. Further away
from the rupture surface along dip direction, in the area immediately beyond the
surface projection of the lower end of the rupture plane, the dip angle becomes
the most influential parameter. Further away, where the magnitude of the hor-
izontal displacement reaches another maximum, the viscosity and the thickness
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of the elastic layer have again a greater effect than the dip angle of the rupture
surface.

Accordingly, measurements in areas of large post-seismic displacements are suit-
able for deriving a value for the viscosity. In particular, above the rupture area,
values depend heavily on this parameter. The same region can also provide data
that is useful for ascertaining the thickness of the elastic layer, although for this
parameter the area where the minimum displacement occurs is not as appropriate
as for the viscosity.

The dip angle, in general, cannot be accurately derived using post-seismic defor-
mation data. The magnitude of the variability associated with this parameter is
very small. The best place to find a value for this parameter is the area where
the post-seismic displacement changes direction.
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Chapter 4

Inversion for rheological parameters
from post-seismic surface
deformation associated with the
1960 Valdivia earthquake, Chile

Data collected during two Global Positioning System (GPS) campaigns in 1994 and
1996 across Chile and western Argentina (22 stations), in the area where the Mw = 9.5
May 22nd 1960 Valdivia earthquake took place, shows ground motion velocities that
cannot be fully explained by the elastic strain accumulation during the inter-seismic
phase of an earthquake deformation cycle. We use dislocation models to reproduce the
observed velocities, with a 3D source in a medium with one elastic layer overlying a
Maxwell viscoelastic half-space, and a planar rupture surface with uniform coseismic
slip. The reason for avoiding a more detailed and elaborated model is that knowledge
about the Valdivia earthquake source parameters and the area where the event took
place is poor. We focus therefore on examining the first-order post-seismic deformation,
and ignore finer details about the heterogeneity of the Earth. By means of a grid search
inversion over more than a million different models, we derived the most likely values for
some of the medium and source parameters involved in the deformation process, namely
viscosity (η), thickness of the elastic layer (D), average slip on the rupture surface (U0)
and the seismic coupling coefficient (χ). According to our study, the optimum values
are: η = 1020 Pa·s, D = 46 km, U0 = 15 m and χ = 96. A clear difference is seen
between the surface deformation caused by silent-slip on the rupture surface and the one
caused by post-seismic relaxation processes, two possibilities proposed to explain the
anomalous velocities. We find that the deformation associated with the 1960 Valdivia
event can still be observed after several decades and it is the most likely explanation
for the velocity component that cannot be explained by plate convergence. Our model
also predicts that this deformation will still be measurable for several more decades.
Our model reproduces the first-order pattern of the measured GPS velocities, showing
good agreement with recent finite element studies, with the advantage of simplicity
and short computation time, allowing the extensive search for the best fitting model.
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4.1 Introduction

With the establishment of the Global Positioning System (GPS), the accuracy of ob-
servations of time-dependent deformation of the Earth’s surface has significantly im-
proved and continues to do so. Also, with an increasing number of sites providing
continuous measurements and with more numerous Interferograms of Synthetic Aper-
ture Radar (InSAR), both the sampling rate and areal coverage in monitoring recent
crustal movements have drastically increased. The data obtained can be used to ex-
tract more details about the space-time development of tectonic processes, such as
earthquake-related crustal deformations, and their basic rheological parameters, in a
way that was not possible in the recent past. Post-seismic relaxation, plate convergence
or silent earthquakes, for example, can now be studied with a high accuracy, despite
the intrinsically low magnitude of the deformation involved.

Thanks to this recently acquired data accuracy, an interesting feature can be ob-
served around the area where the great 1960 Valdivia earthquake took place. GPS
velocities for sites at latitudes further north have a direction parallel to the conver-
gence between the Nazca and South American plates, but observations from sites lo-
cated close to the area of the earthquake are not coherent with deformation caused by
plate motion, but show anomalous seaward velocities (Klotz et al., 2001; Khazaradze
and Klotz, 2003). The deformation further north can be fully explained by the elastic
strain accumulation during the inter-seismic phase of an earthquake deformation cycle.
These velocities agree with a full rate of convergence, in other words, a 100% locking
of the Andean Subduction Zone is needed to explain them. On the contrary, other
processes must be involved to produce the deformation observed in the area of the
Valdivia earthquake.

An explanation for this incoherence could be that the Valdivia earthquake may still
have an influence on the crustal motion in this area. Very large earthquakes, such as
subduction events of Mw ≥ 9, may induce large stresses in the mantle over a very
broad region, and the relaxation process may cause prolonged crustal deformation far

Figure 4.1: Map of the study area. The triangles show the 22 GPS sites used
for this work. Thin arrows and error ellipses show the measured annual velocities
(Klotz et al., 2001; Khazaradze and Klotz, 2003). Numerical values for these velocities
are shown in Table 1. The thick arrows display the annual velocities obtained by
means of the best-fitting model. The dashed-line rectangle shows the projection of
the rupture surface used for calculations. The thick black line shows the position of
the Chile trench. Squares display the most important cities. White dots display the
seismicity (events with magnitude at least 5) between 1961 and 1981 from the South
American SISRA Catalog (Askew and Algermissen, 1985). Stars show the location
of the epicenter of the 1960 Valdivia earthquake after Talley and Cloud (number 1,
(Talley and Cloud, 1962)), Cifuentes (number 2, two subevents, (Cifuentes and Silver,
1989)) and Krawczyk (number 3, (Krawczyk and the SPOC team, 2003)). Areas
delimited by dashed lines (A, B and C) display latitude intervals for the panels shown
in Fig. 4.5.
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4.2. The 1960 Valdivia earthquake

away from the coseismic rupture zone for several decades after the event (Nur and
Mavko, 1974; Thatcher and Rundle, 1984). Other possible explanations could be aseis-
mic slip on the coseismic rupture surface (Nason and Weertman, 1973), deep slip on its
down-dip prolongation or even a combination of the three processes. Freymueller et al.
(2000) and Zweck et al. (2002) interpreted the inter-seismic crustal motion observed on
the western Kenai Peninsula as resulting from a delayed or continuing post-seismic tran-
sient response of the 1964 Mw = 9.2 Alaska earthquake. Savage and Plafker (1991) and
Brown et al. (1977) attributed the immediate post-seismic relaxation after this event
to post-seismic slip on the plate interface directly downdip from the coseismic rupture.
Kasahara (1975) suggested delayed strain release by aseismic faulting following the
1973 Nemuro-Oki earthquake, Japan. Fitch and Scholz (1971) explained post-seismic
movements after the 1946 Nankaido earthquake, Japan, with a combination of reversed
slip on the coseismic rupture surface and delayed forward slip on the deeper parts of
the fault.

Deep slip was also suggested for the 1960 Valdivia earthquake (Linde and Silver,
1989; Barrientos et al., 1992). However, these and other early works (Plafker and
Savage, 1970; Plafker, 1972; Barrientos and Ward, 1990) tried to explain the observed
deformation around the area of the event using elastic models and, in most cases, in-
cluding both co- and post-seismic deformation with the observations. This approach
cannot properly consider effects from viscoelastic relaxation, which might not be negli-
gible. Piersanti (1999) modeled uplift and uplift rates by means of a layered spherical
Earth model with Maxwell rheology, but this work was based on data from only two
stations. Khazaradze et al. (2002) modeled GPS velocities as a combination of plate
motion and continuous post-seismic crustal deformation using a 3-D viscoelastic finite-
element model. However, the geometry of the subduction zone in this area is not well
constrained by data, and the sensitivity of the results to the model parameters remains
unclear. Their work was continued by Hu et al. (2004), including a separate analysis of
deformation due to the earthquake alone and deformation due to fault locking. Choos-
ing 2-3 values for their model parameters, they did a simplified check for the sensitivity
of their results.

In this study we used data from 22 GPS stations across Chile and western Argentina
(Fig. 4.1), collected during two GPS campaigns in 1994 and 1996 (Klotz et al., 2001;
Khazaradze and Klotz, 2003). We modeled the measured deformation by means of
the method described in Chapter 2. This method allows us to consider co- and post-
seismic deformation processes in an adequate manner. Its speed also allows us to carry
out a systematic global search for an optimum model with a fairly broad parameter
space. These facilities are used to search for an explanation for the anomalous velocities
around the earthquake’s location. We also carried out an inversion for rheological and
structural parameters in this area using the GPS data, and found the most likely
values for these parameters and their reliability. We also estimate the time for which
deformation due to the earthquake will still be measurable.

4.2 The 1960 Valdivia earthquake

The Valdivia earthquake of May 22nd, 1960, is until now the largest event ever recorded
by a seismic network. The main shock consisted of two sub-events adding up to a
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4.2. The 1960 Valdivia earthquake

moment magnitude of 9.5 (Kanamori, 1977). The destruction area extended for more
than 800 km in a north-south direction. Surface deformation related to the earthquake,
including both uplift and subsidence relative to sea level, was observed over an even
larger area of southern Chile (Talley and Cloud, 1962; Álvarez, 1963; Plafker and
Savage, 1970).

Despite the intensive scientific and engineering studies made shortly after the dis-
aster, surprisingly little has been published concerning the generative mechanism of
this event. Nor is much information about the area of occurrence of the event. Most
studies related to the South American Subduction Zone have been carried for latitudes
further north (Jordan et al., 1983; Cahill and Isacks, 1992; Araujo and Suárez, 1994) or,
in the best of the cases, only over the northernmost part of the Valdivia rupture area
(Tichelaar and Ruff, 1991; Bohm et al., 2002; Krawczyk and the SPOC team, 2003;
Lüth et al., 2003). In the following sections, we briefly present background information
relevant to our work, i.e. the subduction zone and the source mechanism of the event
and its geometry.

4.2.1 Tectonic setting and seismicity

The 1960 Valdivia earthquake sequence ruptured about 1000 km of the southernmost
section of the South American Subduction Zone. In this region, the Nazca Plate is
being subducted beneath South America along the Peru-Chile Trench at a rate of
78 mm/a, according to the analysis of sea-floor paleo-magnetic data (DeMets et al.,
1994; Somoza, 1998). Space-geodetic estimates provide a value considerably lower for
the convergence velocity (66 mm/a (Angermann et al., 1999); 69 mm/a (Norabuena
et al., 1998, 1999)). These results are based on observations over a relatively short
time span, and may therefore be affected by short-term deformation processes, while
paleo-magnetic studies provide only a long-term average velocity that may not be
representative of the current convergence rate. We favored for this reason the use of
the results from the recent geodetic studies.

4.2.2 Mechanism and location

There were no fault displacements at the surface to provide direct geological evidence
as to the orientation and sense of slip on the causative fault or faults (Álvarez, 1963).
Similarly, the seismological data was generally inadequate to permit either reliable focal
mechanism solutions or precise delineation of the focal region (Plafker and Savage,
1970). No fault-plane solution is available for the main shock of the 1960 sequence
because the first arrivals were masked on most seismograms by the large foreshock
that immediately preceded it (Cifuentes and Silver, 1989).

Precise location of the epicenter of the main shock was not possible for the same
reason. The U. S. Coast and Geodetic survey located the epicenter on the continental
shelf, approximately 80 km offshore from the coastline and 60 km west of Isla Mocha
(38.30o S, 74.30o W, (Talley and Cloud, 1962); see Fig. 4.1 for these geographical
locations). Cifuentes and Silver (1989) relocated the sequence of the earthquake using
the master-event technique. According to her work, the two sub-events of the main
shock were relocated to 38.05o N, 72.34o W and 38.16o N, 72.20o W. Recently, Krawczyk
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4.2. The 1960 Valdivia earthquake

and the SPOC team (2003) presented for the first time the slab geometry of this area,
based on a near-vertical seismic reflection experiment, and proposed a new location at
73.08o W. This recent work gives an idea of how many aspects of this earthquake are
still not well known.

4.2.3 Coseismic slip on the rupture surface

Plafker and Savage (1970) and Plafker (1972), by means of the dislocation analysis of
vertical surface deformation several years after the earthquake, found that the most
plausible model for the Valdivia earthquake would be a fault with an average slip of
about 20 m. Strain modeling suggested, however, that the slip required to satisfy the
surface displacement may be as large as 40 m. Kanamori and Cipar (1974) estimated
an average dislocation of 24 m from the analysis of a long-period strain seismogram.
Barrientos and Ward (1990) employed surface deformation data from more than 300
data points to investigate the slip distribution on the rupture surface. Several slip
peaks appeared on this surface, in some cases exceeding 40 m. However, the aver-
age repeat time has been estimated to be 128 ± 31a (Nishenko, 1985) and, by the
present convergence rate of the Nazca and South America plates, much less slip would
accumulate during such a period.

4.2.4 Rupture surface geometry

The Wadati-Benioff zone is delineated well enough to infer the dip of the subducting
Nazca Plate only in the Arauco Peninsula region, the northern section of the rupture
area of the Valdivia earthquake. There, the Wadati-Benioff zone does not extend deeper
that 160 km. The Nazca Plate in the Arauco Peninsula region dips at a shallow angle
of about 15o to a depth of 40 km, where it steepens to a moderate dip of about 30o to
reach a depth of about 125 km beneath the volcanoes (Bohm et al., 2002; Krawczyk
and the SPOC team, 2003; Lüth et al., 2003). The average dip might be larger than
for the Arauco Peninsula region, as the dip in the region north of the 1960 rupture
area (Jordan et al., 1983; Cahill and Isacks, 1992). It might also be less, because
of the increase in buoyancy due to the southward decrease in the age of the oceanic
lithosphere being subducted. Plafker and Savage (1970) estimated the dip angle to be
of the order of 35o. Plafker changed this value to 20o in a later work (Plafker, 1972).

The width of the rupture surface of the Valdivia earthquake is poorly constrained.
An approximate measure is obtained from the dip of the Nazca Plate in the Arauco
Peninsula region and the probable depth range of faulting. The width of the aftershock
distribution, excluding the events close to the trench axis as they are not on the main
thrust zone, yields an approximate width for the rupture area of 140 km (Cifuentes
and Silver, 1989). However, the depth of aftershocks are poorly determined, and thus
the depth range is not well constrained.

The rupture length of the main shock is also not well known. In contrast to the
northern endpoint, the southern endpoint is not clearly determined, due to the lack of
information south of 45oS. In any case, the sites we used for our analysis are located
around its northern half (Fig. 4.1). Thus, the exact southern end of the rupture is not
critical for our study. Benioff et al. (1961) made the first determination of fault length
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from instrumental data, suggesting a value of 960 km to 1200 km. The distribution
of aftershocks during the first month leads to a value of 930 km (Cifuentes and Silver,
1989). An estimate of rupture length can also be obtained from the extent of crustal
deformation. The southernmost point of vertical displacement measured by Plafker
and Savage (1970) is at 45.21o S, but the extent of vertical displacement could reach
as far south as the Taitao Peninsula, where a few centimeters of uplift were reported
after the earthquake. The rupture length can be estimated as the distance between the
initiation of the earthquake and the southern limit of crustal deformation. This length
is 800 km to the southernmost measured point, and 920 km to the Taito Peninsula.
According to this, Cifuentes and Silver (1989) proposed a value of 920 ± 100 km for the
rupture length, within the range of values previously presented (Benioff et al., 1961;
Press et al., 1961).

4.3 Modeling

For our study of the post-seismic deformation associated with the 1960 Valdivia earth-
quake, we use observations from 22 sites from the SAGA (South American Geodynamic
Activities) GPS network (Klotz et al., 2001; Khazaradze and Klotz, 2003). The sta-
tions cover the northernmost part of the rupture area of the 1960 event (Fig. 4.1). The
values used are listed in Table 4.1. The collected data was processed and transformed
to a fixed South America reference frame (Klotz et al., 2001).

The mean value of position residuals for these stations, reflecting the achieved
regional network precision, is of the order of 2 mm and 5-7 mm for horizontal and
vertical displacement, respectively. Since the expected surface uplift in the Andean
Subduction Zone does not exceed 2 mm per year, two observations separated by 2 years
are not sufficient to resolve the possible vertical motions with adequate confidence. For
this reason we only considered the two horizontal components of the deformation in
our work.

As already mentioned, different approaches have been used by other authors to
model the subduction zone where the Valdivia earthquake took place. The most im-
portant conclusions from their analyze are:

• The predicted deformation is notably sensitive to the distribution of slip on the
rupture surface (Linde and Silver, 1989; Barrientos and Ward, 1990). However,
external constraints are needed to realistically resolve this parameter.

• Effects due to post-seismic relaxation are not negligible. When considered, mod-
els with viscosity in the range of 1019 (Khazaradze et al., 2002; Hu et al., 2004)
to a few times 1020 Pa·s (Piersanti, 1999) provide good results for this area.

• The geometry of the rupture surface is an important parameter (Klotz et al.,
2001; Khazaradze et al., 2002; Khazaradze and Klotz, 2003; Hu et al., 2004).
However, external information is required to describe it. Unfortunately, such
information is scarce or not available in detail for the Valdivia area.

• The structure of the medium layering has also a significant effect on the modeled
data (Piersanti, 1999). Lateral inhomogeneities also have a significant effect on
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Station Longitude Latitude W-E vel. 1σ error S-N vel. 1σ error correl.
ID [o] [o] [mm/a] [mm/a] [mm/a] [mm/a] coeff.

ANTU 288.3745 −37.3358 16.4 2.1 1.3 2.0 0.05
AUMA 291.4048 −37.6065 −1.9 1.9 −4.0 2.0 0.01
BARI 288.5865 −41.1321 −11.7 2.0 −3.2 2.2 0.09
CALF 286.6116 −39.7539 16.3 2.0 7.4 2.1 0.12
CEPI 289.3679 −40.2494 −6.7 2.0 −1.2 2.1 0.07
CHOL 287.5584 −42.0279 −5.8 2.0 0.6 2.2 0.12
CHOS 289.6855 −37.3608 5.9 1.9 −6.7 2.0 0.04
COMA 289.7824 −41.0363 −9.5 2.0 1.0 2.2 0.06
ELCH 291.1123 −39.2906 −3.4 1.9 2.5 2.1 0.02
EPUY 288.5956 −42.1405 −7.6 2.0 0.5 2.2 0.10
FTRN 287.6233 −40.1304 −0.3 2.0 8.6 2.1 0.10
GUAB 285.9728 −41.8063 16.2 2.0 9.2 2.2 0.15
LAAM 289.9449 −38.8360 −1.1 1.9 −6.0 2.1 0.04
LINC 287.5962 −40.6233 −8.2 2.2 −2.2 2.2 0.08
PAST 288.5272 −39.5835 −3.4 2.0 −0.4 2.1 0.08
PEHO 288.9261 −38.5967 −3.0 1.9 −5.0 2.1 0.06
PPUY 288.0646 −40.7007 0.3 2.0 2.2 2.2 0.10
PSAA 286.5942 −38.7788 19.5 2.0 8.1 2.1 0.10
PTMT 287.0523 −41.4628 −0.6 1.9 4.8 2.2 0.14
PUAW 287.6075 −38.3383 2.9 2.1 2.3 2.1 0.05
PUCA 286.2800 −40.5468 27.6 2.0 8.5 2.2 0.13
RALU 287.6879 −41.3785 0.6 2.0 3.3 2.2 0.12

Table 4.1: GPS site velocities from the SAGA network used in the modeling (Klotz
et al., 2001; Khazaradze and Klotz, 2003).

the deformation field (Khazaradze et al., 2002; Hu et al., 2004). However, the
model details might not be resolved by the available data.

• Sensitivity studies for the parameters involved in the modeling have been seldom
conducted.

• Trade-off between different parameters has been discussed briefly in earlier works
(Hu et al., 2004), but no further testing has been carried out so far.

With this factors in mind, we performed an inversion on four source and medium
parameters for the Valdivia earthquake and the area where it took place: the average
coseismic slip on the rupture surface U0, the viscosity of the underlying viscoelastic half-
space η, the thickness of the overlying elastic layer D and the seismic coupling coefficient
χ (Scholz and Campos, 1995). Fig. 4.2 shows a schematic representation of the fault
geometry and the medium used in the modeling. We model the deformations using an
elastic layer over a viscoelastic half-space with linear Maxwell rheology. This rheological
model is a reasonable simplification that nevertheless represents the properties of the
crust and upper mantle appropriately. Such a medium has been widely used in earlier
publications (Cohen, 1980b,a; Rundle, 1982; Cohen, 1994; Fernández et al., 1996b;
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Yu et al., 1996b), although systematic studies of the effects of the rheological input
parameters on crustal deformation, similar to the one shown in Chapter 3, are sparse.
Table 4.2 compiles the rock parameters used in our models to describe the medium.
These are standard values for the crust and upper mantle, consistent with seismic
refraction studies for this area (Bohm et al., 2002; Lüth et al., 2003).
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Figure 4.2: Schematic repre-
sentation of the fault geometry
and medium used in the model-
ing. On the vertical section, the
points on the rupture surface
represent the point sources into
which the extended surface is
discretized (see Chapter 2).

depth [km] ρ [103 kg/m3] Vp [km/s] Vs [km/s] λ = µ [1010 Pa] visc. [Pa · s]
0−D 2.9 6.7 3.87 4.34 –
D −∞ 3.4 8.0 4.62 7.25 η

Table 4.2: Medium model parameters used. The elastic layer extended from 0 km to
a depth D, varying from 30 to 98 km. The viscosity of the underlying half-space, η,
varied from 1018 Pa·s to 8.0 · 1022 Pa·s.

Other authors have considered different rheological models to analyze post-seismic
relaxation processes, like the Standard Linear Solid rheology (Cohen, 1982; Pollitz
et al., 1998) or power-law, non-linear rheologies (Pollitz et al., 2001; Freed and Bürgmann,
2004). These approaches are adequate to model the transient creep immediately af-
ter an earthquake. On the other side, linear Maxwell rheology is adequate when the
steady-state has been reached. Given the time interval between the Valdivia event and
the observations (∼ 35a) and the estimated average repeat time (128 ± 31a Nishenko,
1985), we can assume that the steady-state has been reached and that the Maxwell
linear rheology properly reproduces the relaxation process. In addition, the limited
amount of data justifies the use the linear Maxwell rheology instead of more compli-
cated models.

For the inversion, we performed a parameter-space grid search on the four parame-
ters of interest. Besides their most likely values, we also obtained information about the
sensitivity of the modeled data to each parameter. Also, we studied the different kinds
of processes that (may) contribute to the observed deformation, in order to determine
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whether it is possible to distinguish their effects on the measurements and therefore to
establish the cause for the anomalous velocities around the Valdivia earthquake area.

The slip on the fault plane was assumed to be uniform. It may be more realistic
to divide the whole rupture surface into patches with different average slip (Linde and
Silver, 1989; Barrientos and Ward, 1990), but we opted not to do so, since the small
amount of data available and the distance from the rupture surface to the stations does
not allow for such detailed slip inversion. Also, slip along the rupture surface should
tend to zero towards the edges of the fault. Hence, it would be correct to include
tapering of the slip on the rupture surface. However, the effects of such a tapering are
only perceptible close to the rupture edges. The stations closest to the fault plane are
directly above its deeper edge, so that their distance from to the rupture edges is over
40 km. The tapering in the slip distribution would not have any visible effect on the
observation point.

The size and orientation of the fault plane was also fixed, in order to avoid making
our analysis too extensive. The rupture surface had an area of 850× 130 km2, dipping
20o E. These values are consistent with recent studies (Oleskevich et al., 1999; Bohm
et al., 2002; Krawczyk and the SPOC team, 2003) and similar to those considered
or derived by other authors (Plafker, 1972; Kanamori and Cipar, 1974; Cifuentes and
Silver, 1989; Barrientos and Ward, 1990). For a subduction zone, it would be realistic to
increase the value of the dip angle with depth in the seismogenic zone (Linde and Silver,
1989; Barrientos et al., 1992), but, on the other hand, the dip angle is a geometrical
variable that mainly affects the distribution of the deformation and less its development
in time (see Chapter 3), i.e., the post-seismic velocity. Thus, we use a planar rupture
area for simplicity. The rake angle was fixed to 108o to coincide with the long-term
direction of relative motion between the Nazca and South American plates, projected
onto the rupture surface (Chase, 1978; DeMets et al., 1990, 1994; Norabuena et al.,
1998; Angermann et al., 1999; Norabuena et al., 1999). The strike of the rupture
surface and the depth of the upper limit of the fault plane were chosen in our model
to coincide with the local trend of the Peru-Chile trench (N8oE) and its local depth
(4 km) (Smith and Sandwell, 1997).

The observed velocities could in principle include deformation proceeding from dif-
ferent processes in addition to plate motion: post-seismic relaxation, silent slip on the
coseismic rupture surface or aseismic slip on its down-dip prolongation. Several at-
tempts incorporating deep slip did not lead to a better fit of the data, hence the total
observed deformation was modeled as follows:

x = χ xplate(D) + xrelax(U0, η,D) + (1− χ) xss(D), (4.1)

where x is the total modeled deformation, xplate is the deformation caused by plate
convergence, xrelax is the contribution from post-seismic relaxation and xss is the de-
formation created by silent slip. The seismic coupling coefficient regulates which per-
centage of plate convergence is stored on the fault and later released by earthquakes.
Here, we assume that the rest of the convergence gets released in the form of silent
slip. The steady nature of xplate and xss allows to model them elastically, so that they
do not depend on the viscosity. Also, these contributions to the total deformation are
exclusively determined by the plate convergence and the medium parameters, so that
they do not depend on U0. Hence, xplate and xss depends only on D. On the contrary,
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xrelax depends on the manner in which both medium and event are modeled, so that
it is dependent on U0, η and D. It must be noted that the three contributions to the
total deformation are time dependent. xplate and xss increase linearly with time and
the time evolution of xrelax is determined by the choice of the rheological model and
the value of the viscosity.

Models with viscosity values covering several orders of magnitude, from 1018 Pa·s to
8.0 · 1022 Pa·s, were considered. All models have a Maxwell rheology for the half-space
below the seismogenic layer. The reason for this wide range is that viscosity is not well
known, with some studies showing that traditional standard values used in simulations
may be incorrect by up to one order of magnitude (Vermeersen et al., 1998). Previous
inferences for this parameter in the area of the Valdivia earthquake range from 3 · 1019

Pa·s (Khazaradze et al., 2002; Hu et al., 2004) to several times 1020 Pa·s (Piersanti,
1999). In addition, the average viscosity of the mantle has been estimated to be 1021

Pa·s from post-glacial rebound (James et al., 2000) and rotational dynamic studies
(Lambeck, 1980).

For each viscosity value, the thickness of the elastic layer was varied between 30 km
to 98 km. Tichelaar and Ruff (1991) estimated the depth of seismic coupling in Chile
to be 48-53 km, while Oleskevich et al. (1999) proposed 40-50 km. Recent seismic
refraction studies propose a crustal thickness of at least 35 km at ∼ 38.15o S (Bohm
et al., 2002; Krawczyk and the SPOC team, 2003). However, some modeling approaches
by other authors considered a much thicker elastic layer (Piersanti, 1999).

It must be noted at this point that we are limited to modeling homogeneous hori-
zontal layers. Hence, the thickness of the elastic layer may not be directly interpreted as
the thickness of the crust in the area where the earthquake occurred. The latter shows
strong lateral variations, especially in the trench-perpendicular direction. Rather, our
elastic layer thickness reflects the depth range where both oceanic and continental
plates are coupled and where the material behaves elastic/brittle, so that seismicity
can occur.

We considered a range of different values for the average slip on the rupture sur-
face, between 10 to 45 m. Different authors consider different values for this parameter,
ranging from 17 m (Barrientos and Ward, 1990) to 40 m (Plafker and Savage, 1970).
With the rupture surface and medium rock parameters of our model, a coseismic aver-
age slip of at least 40 m is required to fit the moment magnitude, hence the high upper
limit for the values that we regard as possible.

No specific study has been done for the state of coupling of the Chilean Subduction
Zone at the latitudes in this work. It is clear that this subduction zone, with young
lithosphere subducting rapidly, must be strongly coupled and has a highly compressive
strain regime (Uyeda, 1982; Scholz and Campos, 1995; Klotz et al., 2001; Conrad et al.,
2004). Therefore, the seismic coupling coefficient (reflecting the degree of mechanical
coupling at the plate interface) for this subduction zone must be close to 1. We consider
a number of different values for the seismic coupling coefficient, ranging from 1, meaning
totally locked (Klotz et al., 2001), down to 0.65. Lower values are not reasonable.

Altogether, a total number of 1,224,720 different models were considered.

To evaluate the fit between the models and the data, we calculated the deviation
as follows:
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∆ =
22∑
i=1

[(
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i

σxi

)2

+

(
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σyi

)2
]

, (4.2)

where
(
xGPS

i , yGPS
i

)
are the measured displacement at the i-th station in the South-

North and West-East direction, respectively, (σxi
, σyi

) are the corresponding error es-
timations and (xi, yi) are the respective modeled displacement values.

4.4 Results and discussion

4.4.1 Parameter inversion

From the grid search we found that the best-fitting model has an elastic layer D = 46
km overlying a viscoelastic half-space with a viscosity of η = 1020 Pa·s, an average slip
of U0 = 15 m and a seismic coupling coefficient of χ = 0.96. This set of parameters is
represented by small white circles in Figs. 4.3 and 4.4.

The soundness of these inversion results was tested by means of a Monte-Carlo
error propagation analysis (Metropolis and Ulam, 1949). This is a statistically robust
approach to evaluate the stability of the parameters’ estimation by reiterating the in-
version for sets of potential deformation rates at the GPS sites, taking into account the
uncertainties in the velocity values. We considered 2 times 550 random sets of veloci-
ties falling into the 1σ and 2σ GPS error ellipses. They led to the values respectively
shown by crosses and dots in Figs. 4.3 and 4.4. The results must not be mistaken with
the analysis of the deviation curves. The latter only provides a qualitative estimation
of the dependence of the deviation on the considered parameter and cannot be used
to extract a confidence interval. The Monte Carlo method offers alternative possible
best-fitting models when inaccuracies in the data are considered. It propagates the
confidence ellipses in the GPS measurements to the determination of the minimum
deviation and therefore to the estimation of the most likely value for the parameters.

The displacements calculated by means of the best-fitting model are shown in
Fig. 4.1 by thick-line vectors. The average difference between model velocities and
GPS observations is 6 mm/a, comparable to the 3σ errors of the GPS velocities. If
we only consider the stations south of latitude 38o S, the differences are reduced to
4 mm/a, the same value obtained by Hu et al. (2004) by means of their finite element
modeling.

Fig. 4.3 shows the dependence of the deviation between observations and predictions
on the variation of each parameter. The upper panel shows the effect of the elastic
layer thickness. For low values in this variable, a moderate variation leads to sharp
and strong variations in the deviation. The origin of this is the discretisation of the
extended source into a finite number of point sources (see Chapter 2). The change
in the depth for the elastic to viscoelastic boundary implies a change in the medium
properties for a number of point sources (see Fig. 4.2), hence the deviation changes
abruptly rather than continuously. The depths of the deepest point sources are shown
as vertical dashed lines to illustrate this problem. The obtained result of D ≤ 46 − 48
km may be interpreted as the thickness of the continental crust under the GPS sites,
consistent with value derived from seismic refraction data (Bohm et al., 2002; Krawczyk
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Figure 4.3: Dependence
of the deviation (∆,
Eq. 4.2) against each pa-
rameter. From top to bot-
tom: elastic layer thick-
ness (D), viscosity (η),
coseismic average slip on
the rupture surface (U0)
and seismic coupling co-
efficient (χ). For each
panel, the three variables
that are not considered
were fixed to the values
that led to the best-fitting
model (see Table 4.3).
Vertical dashed lines on
the upper panel display
the depth of the deepest
point sources into which
the rupture surface was
discretized. The white
circle in each panel shows
the position of the min-
imum, crosses and dots
respectively display val-
ues for models resulting
from the 1σ and 2σ error
propagation analysis.

and the SPOC team, 2003). This result is also consistent with the depth of coupling
between the Nazca and the South American plates, as inferred from the distribution
of interplate seismicity (Tichelaar and Ruff, 1991).

The value of η = 1020 Pa·s for the viscosity led to the best fit of the data (second
panel, Fig. 4.3). This result agrees with previous works for this region (Piersanti, 1999)
and also with other studies dealing with the viscosity of the upper mantle (Vermeersen
et al., 1998). Our result is very well constrained according to the Monte-Carlo analysis.
The local minimum for η = 3 · 1018 Pa·s corresponds to a viscosity which is usually
considered too low.

A best estimate of the coseismic slip U0 = 14−16 m (third panel, Fig. 4.3) is similar
to the one deduced by Barrientos and Ward (1990) for their uniform slip planar model,
but much smaller than the patches of high displacement of their variable slip model.
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4.4. Results and discussion

Other works consider or derive comparable values for this parameter (Khazaradze et al.,
2002), although some authors suggest the possibility of a much larger average slip
(Plafker and Savage, 1970). We discuss this possibility in section 4.4.2.

The best-fitting model had a seismic coupling coefficient of χ = 0.94− 0.98 (fourth
panel, Fig. 4.3), meaning that the Chilean subduction zone is 94 - 98% locked. This
is a reasonable result, being that the Chilean subduction zone is an area with a highly
compressive strain regime (Scholz and Campos, 1995; Klotz et al., 2001; Conrad et al.,
2004).

According to the error propagation analysis, these parameter estimates are stable
and reliable when considered independently. Especially, the value for the viscosity in
this area remains unchanged for sets of GPS velocities randomly distributed inside
their 2σ error ellipses. The seismic coupling coefficient, on the other hand, is less well
resolved. Given the uncertainty in the determination of this parameter, we can only
conclude that the data is consistent with a highly locked fault.

We performed two further inversions from models under two special restrictions:
first, the subduction zone was set to be fully locked (χ = 1), such that viscoelastic
relaxation and inter-seismic elastic strain were the only processes causing deforma-
tion. Second, models with no post-seismic relaxation processes were considered. The
results from these inversions are summarized in Table 4.3, together with the results
when all deformation types were present. The results show that including post-seismic
relaxation improves the fit to the observed GPS data. If we assume that post-seismic
relaxation is not taking place, or that its influence cannot be observed on the measured
deformation, the deviation between modeled and observed data is 87% larger. On the
other hand, excluding silent slip also leads to a good fit between modeled and observed
data. This is an anticipated result, since the inversion for the general case already
suggested that the subduction zone is almost completely locked.

Finally, we also carried out an inversion using the convergence rate of 78 mm/a
provided by paleo-magnetic studies instead of the 66 mm/a from geodetic studies. The
results from the inversion do not change, with the exception of the value for the seismic
coupling coefficient (see Table 4.3). Increasing the convergence rate implies that the
inter-seismic deformation caused by plate convergence is larger. As a consequence, in
order to maintain the goodness of the fit, the contribution of plate motion to the total
deformation must be reduced, hence the seismic coupling coefficient must be smaller
(see Eq. 4.1).

4.4.2 Trade-off

Fig. 4.4 shows the trade-off between pairs of studied parameters. For each panel, the
two variables that are not considered were fixed to the value that led to the best-fitting
model (see Fig. 4.3 and Table 4.3). To facilitate the analysis, the field displayed is
∆′ = 30 · ln(∆/∆min). Also, the results from the 1σ and 2σ error propagation analysis
are shown.

No clear trade-off between pairs of variables is observed, with the exception of
viscosity and coseismic average slip. In this case, models with η = 2 · 1020 Pa·s and
U0 = 26 − 31 m, as well as models with η = 3 · 1020 Pa·s and U0 = 41 − 45 m also
provide a good fit to the GPS data. A linear regression of the viscosity on the average
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Parameters
Contributions to elas. layer half-space average seismic

dev. from

deformation thickness viscosity slip c. coeff.
obs. GPS

(D) [km] (η) [Pa·s] (U0) [m] (χ)
data (∆)

xplate, xrelax, xss 46 1.0× 1020 15 0.96 255.0109

xplate, xrelax 82 9.0× 1018 13 (1.0) 278.3046

xplate, xss 46 – – 0.72 476.5012

xplate, xrelax, xss

(NUVEL-1A)
46 1.0× 1020 15 0.89 255.0987

Table 4.3: Parameter values corresponding to the best-fitting models for four different
assumptions about the origin of the deformation. First, the observed velocities is fitted
by deformation from plate motion, post-seismic viscoelastic relaxation and silent slip
on the rupture surface. Second, the seismic coupling coefficient is fixed to χ = 1,
meaning that no silent slip takes place. Third, we assume that no relaxation process
exists, or that its effect cannot be observed from the measured velocities. Finally,
we consider the Nazca-South America convergence rate from paleo-magnetic studies
(DeMets et al., 1994).

coseismic slip produces the following relationship:

η = aU0 + b

a = 7.27 · 1018 Pa·s/m (4.3)

b = −3.86 · 1018 Pa·s.

According to this, values larger than the 15 m are possible in combination with vis-
cosities larger than 1020 Pa·s. 15 m of average rupture slip corresponds to a moment
M0 = 7.2 ·1022 N·m and therefore a magnitude Mw = 9.2 using the Kanamori relation-
ship, much lower than the actual Mw = 9.5. Consistency with the latter value would
imply a seismic moment of M0 = 2.24 · 1023 N·m, and therefore an average coseismic
slip of U0 = 40 m, which conflicts with recurrence time and convergence rate data
(Nishenko, 1985; DeMets et al., 1994; Somoza, 1998). There are two possible expla-
nations for this problem. First, this may be an indication that the distribution of slip
on the rupture surface should be modeled non-uniformly. To check this, a better areal
coverage could be very useful when inverting for the distribution of slip. The second
possibility is that the average slip on the rupture surface is larger than the 15 m ob-
tained in this study, implying a larger viscosity. Data from a later campaign will be
useful in gaining a better insight into the time-development of the relaxation process,
so that higher viscosity values could be confirmed or ruled out.

4.4.3 Horizontal velocity components

Fig. 4.5 shows the horizontal velocities along the W-E (left panels) and S-N (right
panels) directions for three latitude intervals. The dots are the observed deformation
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Figure 4.4: Trade-off between pairs of the studied parameters. For each panel, the
two variables that are not considered were fixed to the values that led to the best-fitting
model (see Fig. 4.3 and Table 4.3). The field displayed is ∆′ = 30 · ln(∆/∆min), where
∆ is the deviation between the modeled and observer velocities. The white circles show
the position of the minimum, crosses and dots, respectively, display parameter values
for models resulting from the 1σ and 2σ error propagation analysis. Isolines display
contours for ∆′ equal to 1, 3, 10 and 30.

data for the stations corresponding to each interval, together with 1σ error bars. The
solid thick line shows the W-E and S-N velocities for the best-fitting model for a trace
of points at the central latitude of each interval (38o S, 40o S and 42o S, respectively,
see also Fig. 4.1). For the W-E velocities, the fit is in general good, with our best-
fitting model reproducing the trend shown by the GPS velocities. In the case of the
S-N velocities, the best fit occurs at the two southernmost profiles, although it must
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Figure 4.5: Horizontal velocity components in the W-E (left) and S-N (right) di-
rections for three latitude intervals (areas A, B and C, Fig. 4.1). Dots and error
bars represent measured GPS velocities together with 1σ errors. The solid thick line
shows W-E and S-N velocities from the best-fitting model for a trace of points at the
central latitude of each interval (38o S, 40o S and 42o S respectively). The dotted
line shows the deformation when the subduction zone is fully locked (χ = 1), so that
viscoelastic relaxation and plate convergence are the only processes causing deforma-
tion. The dashed line shows the deformation when no post-seismic relaxation process
is considered. Table 4.3 lists the parameters that lead to the best fit for each one of
these cases.

be noted that the magnitude of the displacement in the S-N direction is much smaller
than the one in the perpendicular direction. This variation of the fit with latitude may
also be a suggestion that uniform coseismic slip on the rupture surface is not adequate
to describe the Valdivia event.

The dotted lines in Fig. 4.5 show the best-fitting model without the contribution
from relaxation (plate convergence and silent slip only). This model creates a too-
smooth deformation field and fails to fit most of the observed data, especially in the area
close to the rupture surface. In addition, and most importantly, the anomalous seaward
velocities are not reproduced when excluding relaxation. Hence, even though some
silent slip seems to be taking place in this area, this process alone cannot explain the
observed seaward velocities. Including viscoelastic post-seismic relaxation processes, on
the other hand, improves significantly the fit of the data, while the anomalous velocities
are well reproduced. This can only be understood as evidence for the relaxation process
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of the Valdivia earthquake continuing.
When we regard viscoelastic relaxation processes as source for the deformation, but

exclude silent slip (dashed lines on Fig. 4.5), the fit between modeled and observed data
is also good (see also Table 4.3), and the results are very similar to the ones obtained
in the general case, with no systematic variation in the fit to the single stations.

4.4.4 Measurability and time-dependency of the deformation
rates

The viscosity of η = 1020 Pa·s obtained for the best-fitting model and the used shear
modulus of µ = 7.25·1010 Pa for the half-space imply a Maxwell relaxation time of τα =
η/µ ≈ 44 a for the viscoelastic mantle. This value represents the time required for the
stress to relax by a factor of 1/e in a homogeneous linear Maxwell body subjected to a
constant strain. Because of the layering of the model and the spatial transfer of stresses,
the Maxwell relaxation time does not necessarily represent the actual characteristic
decay time of the post-seismic crustal motion. As a consequence, the latter is in
general dependent on the observable and on the observation location.

As it can be important for future GPS campaigns to know for how long will the
deformation associated with the Valdivia earthquake still be measurable and where are
the locations of strongest time-dependence, we did the following analysis: Assuming
4 mm/a as a reasonable measurability threshold, the contour lines on Fig. 4.6 display
the number of years after the event for which the horizontal velocities from post-seismic
relaxation will still be identifiable, that is, for which the velocities will be above the
threshold value of 4 mm/a. According to our results, the on-going deformation from the
relaxation process of the Valdivia earthquake will be measurable for several centuries
at most of the sites employed in this study. The coastal stations will be the first ones
to display no effect from the relaxation process.

Fig. 4.7 shows the W-E deformation rate for a trace of points at 40o S for the best-
fitting model, both before the earthquake and the additional contribution of the event
at different moments after the Valdivia earthquake. From Fig. 4.6 and 4.7 it follows
that stations in the range between 70 to 73o W will be the most adequate to further
analyze the relaxation process, since the time-dependence of the deformation rate is
strong in this region, and its effects will be still measurable for a long period of time.

It is worthwhile to note that we made inferences about the time-dependent relax-
ation process from only two GPS campaigns. The two measurements provide only one
point in time for the deformation, so the time evolution of the velocity field has not
been observed directly. It is the areal coverage of the GPS stations that allows us to
extract information about this process.

4.5 Conclusions

By means of dislocation models we reproduced the first-order pattern of measured de-
formation observed in the area of the 1960 Valdivia event. According to our study,
the Valdivia earthquake is the most likely explanation for the velocity component that
cannot be explained by plate convergence. We derived the most likely values for the
viscosity (η), the thickness of the elastic layer (D) and the seismic coupling coefficient
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Figure 4.6: Isochrones for the measurability of the deformation caused by post-
seismic relaxation. The label for the contours display the number of years after the
event during which the post-seismic relaxation produce velocities of at least 4 mm/a.
The deformation was calculated by means of our best-fitting model.

(χ) for this area, as well as the average coseismic slip on the 1960 rupture surface (U0).
Despite the simplicity of our approach and the uncertainties in several input values,
our inversion was successful in retrieving the main features of the observations. The
lack of precise geophysical information for the studied area does not allow us to propose
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Figure 4.7: Horizontal velocities in the W-E direction for a trace of points at 40o S.
Calculations made with the values for the parameters corresponding to the best fit
of the data (Table 4.3, first line). The thick solid line represents the pre-seismic
deformation, that is, the effects from plate convergence and silent slip. Thin lines
display the additional contribution associated with the Valdivia earthquake at different
points in time. Triangles display the position of the stations considered in this study.

more complex models, with a more detailed geometry and heterogeneous slip distribu-
tion for the rupture surface. Also, the amount of data we used was very limited, so
the possibility of an inversion on other parameters apart from those studied was not
considered. Nevertheless, our best-fitting model reproduces the general trend of the
observed velocities, including the observed anomalous seaward movement of the inland
stations. Other authors proposed silent slip as a possible explanation for the measured
anomalous deformation rates. Our study shows that, even though a small amount of
silent slip is present, it is not sufficient to explain the observed seaward velocities on
its own. The most likely explanation for these anomalies is the post-seismic relaxation
associated with the Valdivia earthquake. Estimates of the values of the studied pa-
rameters are consistent with previous works, although our study provides a narrower
range of possible values. Specifically, according to our error propagation analysis, the
estimate for the viscosity in this area (η = 1020 Pa·s) is stable and reliable when con-
sidered independent from the other parameters. However, we found a trade off between
viscosity and average coseismic slip on the rupture surface, hence higher viscosities, in
combination with larger coseismic slip values, must also be regarded as possible. Ac-
cording to the values inferred, the relaxation process will still be measurable for several
decades, with decreasing deformation magnitude. New measurement campaigns could
be used to extract more information about the medium and the Valdivia earthquake.
A larger areal coverage would allow a better analyze of the distribution of slip on the
rupture surface, the most problematic point in our study. Also, measurements at the
same sites at later times would be used to better understand the time-development
of the relaxation process. The speed of this process is directly linked to the viscos-
ity value in the region. The values presented in this work provide a good first-order
approximation and starting point for more detailed works.
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Chapter 5

Elastic and inelastic triggering of
earthquakes in the North Anatolian
Fault zone

Deformation models used to explain the triggering mechanism often assume pure elastic
behavior for the crust and upper mantle. In reality however, the mantle and possibly
the lower crust behave viscoelasticaly, particularly over longer time scales. Conse-
quently, the stress field of an earthquake is in general time dependent. In addition, if
the elastic stress increase were enough to trigger a later earthquake, this triggered event
should occur instantaneously and not many years after the triggering event. Hence, it is
appropriate to include inelastic behavior when analyzing stress transfer and earthquake
interaction.

In this work, we analyze a sequence of 10 magnitude Ms > 6.5 events along the
North Anatolian Fault between 1939 and 1999 to study the evolution of the regional
Coulomb stress field. We investigate the triggering of these events by stress transfer,
taking viscoelastic relaxation into account. We evaluate the contribution of elastic
stress changes, of post-seismic viscoelastic relaxation in the lower crust and mantle,
and of steady tectonic loading to the total Coulomb stress field. We analyze the
evolution of stress in the region under study, as well as on the rupture surfaces of the
considered events and their epicenters. We study the state of the Coulomb stress field
before the 1999 Izmit and Düzce earthquakes, as well as in the Marmara Sea region.

In general, the Coulomb stress failure criterion offers a plausible explanation for the
location of these events. However, we show that using a purely elastic model disregards
an important part of the actual stress increase/decrease. In several cases, post-seismic
relaxation effects are important and greater in magnitude than the stress changes due
to steady tectonic loading. Consequently, viscoelastic relaxation should be considered
in any study dealing with Coulomb stress changes.

According to our study, and assuming that an important part of the rupture surface
must be stressed for an earthquake to occur, the most likely value for the viscosity of
the lower crust or mantle in this region is 5·1017−1018 Pa·s. Our results cannot rule out
the possibility of other time-dependent processes involved in the triggering of the 1999
Düzce event. However, the stress increase due to viscoelastic relaxation brought 22%
of the 1999 Düzce rupture area over the threshold value of ∆σ ≥ 0.01 MPa (0.1 bar),
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and took the whole surface closer to failure by an average of 0.2 MPa. Finally, we
argue that the Marmara Sea region is currently being loaded with positive Coulomb
stresses at a much faster rate than would arise exclusively from steady tectonic loading
on the North Anatolian Fault.

5.1 Introduction

The North Anatolian Fault zone (NAF) is an almost pure dextral 1500 km long fault
zone running along the north of Turkey (Fig. 5.1). During the last century, several
strong earthquakes have taken place along the NAF. These events or subsets of them
have been the subject of numerous studies (Mogi, 1968; Toksöz et al., 1979; Purcaru
and Berckhemer, 1982; Roth, 1988; Stein et al., 1997). There are several reasons
for the interest: first, the events provide an unequalled possibility to analyze how
the occurrence of an earthquake may trigger additional shocks. Second, the number
of field investigations provides a valuable and still increasing amount of information.
Third, recent events appear to be propagating westwards, with the Mw = 7.4 Izmit
and the Mw = 7.1 Düzce earthquakes in 1999 as the most recent and westernmost
events. If this sense of propagation continues, a strong shock west of the Izmit-Düzce
rupture can be expected (Hubert-Ferrari et al., 2000; Parsons et al., 2000; Parsons,
2004). This region would be the Marmara Sea, just south of Istanbul, a mega-city with
more than 12 million inhabitants. A strong earthquake in this region would therefore
have catastrophic consequences, both in loss of life and monetary costs.

The triggering of earthquakes by stress transfer has been analyzed by numerous
authors (Healy et al., 1968; Raleigh et al., 1972; Harris, 1998; Belardinelli et al., 1999;
King and Cocco, 2001; Belardinelli et al., 2003; Hardebeck, 2004; Freed, 2005; Steacy
et al., 2005). Previous deformation models often assume purely elastic behavior for
the crust and upper mantle, and therefore the crust instantaneously responds to the
motion on the rupture. When using the elastic approach, any time dependence of the
deformation might be attributed to time-dependent fault slip (Kasahara, 1975; Linde
and Silver, 1989; Barrientos et al., 1992). Several studies have shown good correlation
between calculated positive elastic (co-seismic) stress change and the location of after-
shocks (Reasenberg and Simpson, 1992; Stein et al., 1992; King et al., 1994; Nalbant
et al., 1996; Toda et al., 1998; Deng et al., 1999; Ma et al., 2005; Nostro et al., 2005), as
well as the triggering of moderate to large earthquakes (King et al., 1994; Stein et al.,
1994; Harris et al., 1995; Stein et al., 1997; Nalbant et al., 1998; Stein, 1999; Nalbant
et al., 2002; McCloskey et al., 2005; Nalbant et al., 2005a).

However, in the real Earth, the mantle and possibly the lower crust behave as an
inelastic body, that is, any imposed stress will relax with time. The crust will first de-
form as an elastic body, but later deformation will continue because of stress relaxation
(Thatcher et al., 1980). Since inelastic stress relaxation also leads to redistribution of
the stress, it is necessary to include inelastic behavior when analyzing stress transfer
and earthquake interaction. Also, an important limitation of the elastic/co-seismic
stress change approach is that it cannot explain time delays of the triggered events.
Post–seismic stress changes due to viscous relaxation in the lower crust and/or upper
mantle have also been successfully used to explain aftershock distribution and the trig-
gering of later events (Deng et al., 1999; Freed and Lin, 2001; Zeng, 2001; Pollitz and
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Figure 5.1: Map showing the major tectonic elements of Turkey. Anatolia is forced
to move towards the Aegean subduction zone, moving along the North and East Ana-
tolian faults. The box shows our study area.

Sacks, 2002). However, only pairs of events have been considered so far to analyze
whether, and how, the Coulomb stress is increased by post-seismic relaxation.

In the present study, we investigated a sequence of 10 magnitude Ms > 6.5 earth-
quakes (Table 5.1 and Fig. 5.2) that have occurred on the NAF since 1939. In contrast
to Roth (1988), the geographical region considered here brackets the area from the
Marmara Sea in the west to east of Erzincan. We also took into account the details in
orientation and geometry of the different ruptures. In addition, further studies carried
out in the last few years have allowed us to consider more realistic values than those
from Roth (1988) for the medium properties and stratification, as well as for the stress
build-up due to plate motion on the NAF.

The last strong events before 1939 in this region took place in the 18th century
(Ambraseys and Finkel, 1995; Şengör et al., 2005). We can assume therefore that the
1939 event was the first in a new seismic cycle, and that the stress field in the region
has been homogenized by steady tectonic loading. Moderate events may have a locally
important influence on the stress field. However, information about their location
and effects is usually not accurate enough, especially for older events and/or on the
center and eastern part of the NAF. Assuming 1939 as a start for the calculations and
Ms > 6.5 as the magnitude threshold is a good compromise to consider a significantly
long seismic series and information reliable enough for the correct modeling of the
considered earthquakes. We studied the changes in the Coulomb stress field from the
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beginning of the sequence to the present day. Previous similar works (Stein et al.,
1997; Çakir et al., 2003; Muller et al., 2003) considered the instantaneous response
to the events and the effects of stress change due to tectonic loading from steady
slip beneath the NAF. In the present study, we additionally take into account the
effect of viscoelastic relaxation in the lower crust and upper mantle. We evaluated the
importance of the three processes on the total stress field.

We also analyzed the time evolution of the Coulomb stress at the epicenters of the
shocks, as well as the state on the rupture surfaces immediately before the earthquakes,
under different assumptions. We considered the current situation in the Marmara
Sea and extrapolated it to the year 2010 to evaluate the rate at which viscoelastic
relaxation is increasing the stresses in the region, information that may be useful for
seismic-hazard assessment in this region.
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Figure 5.2: Space-time migration of the 10 considered Ms > 6.5 earthquakes along
the NAF in the period 1939 to 1999. Thick lines in (a) and (b) display the events.
Stars indicate the epicenters of the shocks in the sequence (Dewey, 1976, Earthquake
Research Directorate (ERD), Seismological Division, Turkey, U.S. Geological Survey
(USGS)). Lines in (c) represents the geometry of the North Anatolian Fault used in
the calculations. The values are the equivalent amount of slip per year on the segments
in mm/a (Armijo et al., 2003; Flerit et al., 2003, 2004).
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Date GMT lat. [o N] lon. [o E] Ms Mo [Nm] references
1939 26 Dec 23:57 39.80 39.38 8.0 4.11 · 1020

3, 4, 6, 8

1942 20 Dec 14:03 40.66 36.35 7.3 1.74 · 1019
3, 4, 6, 8

1943 26 Nov 22:20 41.05 33.72 7.6 2.51 · 1020
3, 4, 6, 8

1944 01 Feb 03:23 41.00 33.22 7.6 1.48 · 1020
3, 4, 6, 8

1951 13 Aug 18:33 40.86 32.68 6.7 2.12 · 1019
1, 4, 5

1957 26 May 06:33 40.58 31.00 7.2 1.35 · 1019
3, 4, 6, 8

1967 22 Jul 16:56 40.57 30.80 7.3 2.82 · 1019
2, 3, 4, 6, 8, 14

1992 13 Mar 17:19 39.71 39.60 6.9 1.14 · 1019
6, 7, 9, 10

1999 17 Aug 00:01 40.70 29.91 7.8 2.15 · 1020
12, 13, 14

1999 12 Nov 16:57 40.818 30.198 7.3 4.67 · 1019
11, 12, 16, 17

Table 5.1: Parameters of the sequence of earthquakes used. Epicentral coordinates
are from Dewey (1976) until 1967, with the exception of the 1943 event, for which
Dewey’s epicentral coordinates appear to be too far East (Ambraseys, 1970; Alsan
et al., 1976; Şaroǧlu et al., 1992). For this event and the more recent ones, we used
the coordinates provided by the Earthquake Research Directorate (ERD), Seismological
Division, Turkey. Ms values are from the U.S. Geological Survey (USGS). M0 values
correspond to the geometry and slip distribution used in the present work, comparable
to those of Stein et al. (1997). The references used are: 1) Pinar (1953); 2) Ambraseys
and Zatopek (1969); 3) Ambraseys (1970); 4) Dewey (1976); 5) Barka and Kadinsky-
Cade (1988); 6) Şaroǧlu et al. (1992); 7) Pınar et al. (1994); 8) Barka (1996);
9) Nalbant et al. (1996); 10) Grosser et al. (1998); 11) Ayhan et al. (2001); 12) Tibi
et al. (2001); 13) Wright et al. (2001); 14) Barka et al. (2002); 15) Muller et al.
(2003); 16) Utkucu et al. (2003); and 17) Umutlu et al. (2004).

5.2 Tectonic setting

The tectonic setting of the study region is dominated by the collision of the Arabian and
African plates against the Eurasian and Anatolian ones (Fig. 5.1). The Arabian and
African plates move approximately northward against the relatively stable Eurasian
plate, causing the Anatolian block to move westwards from the East Anatolian Con-
vergence Zone onto the oceanic lithosphere of the Eastern Mediterranean Sea (Şengör
et al., 1985, 2005). This movement changes its direction to southwest in West Anatolia
and the Aegean Sea, so that the large scale result is a counter-clockwise rotation of
the Anatolian Plate (McKenzie, 1972; Jackson and McKenzie, 1988; McClusky et al.,
2000). This relative westward movement of the Anatolian Plate generates strike slip
on both the NAF and the East Anatolian Fault zone (EAF). Along most of the NAF,
the right-lateral slip has a rate of 24 ± 1 mm/a (McClusky et al., 2000; Flerit et al.,
2004).

The NAF splits into three different branches at its westernmost part. About 80%
of the total slip accommodates on the northern branch and the remaining 20% is
distributed between the other two (Flerit et al., 2003). The northern branch crosses
the Marmara Sea, linking the Izmit segment in the east with the Ganos fault in the
west (Le Pichon et al., 2001; Gokaşan et al., 2003; Armijo et al., 2005). The NAF in the
Marmara Sea consists of two main parts: a western one, about 120 km long and striking
N265o E, and a 50 km long eastern segment, striking N280o E. These two segments were
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the probable location of several strong and damaging historical earthquakes, the latter
of which took place in 1754, 1766 and 1894 (Ambraseys and Finkel, 1991; Ambraseys,
2002; Parsons, 2004). The Marmara Sea region has also been identified as a seismic
gap (Hubert-Ferrari et al., 2000).

5.3 Methodology

During the last decade, Coulomb stress modeling has become a popular and accepted
tool to analyze the conditions under which earthquakes occur (King et al., 1994; Stein
et al., 1997; Zeng, 2001; Muller et al., 2003; Lin and Stein, 2004). Once the components
of the stress tensor have been calculated, the Coulomb stress change (∆σc) is given by:

∆σc = ∆τ + µ′∆σN , (5.1)

where τ is the shear stress, σN is the normal stress and µ′ is the effective (or apparent)
coefficient of friction. When Coulomb stresses surpass a certain critical value, failure
occurs. Normal and shear stresses are positive when the fault is unclamped and in
the corresponding slip direction respectively, so that both positive normal and shear
stresses encourage failure (see Fig. 5.3, upper panels). The orientation of a known
fault can be used to define the reference system to calculate normal and shear stresses.
When no target fault is considered, Coulomb stresses can be calculated on so called
”optimally oriented fault planes”, obtaining the direction in which Coulomb stress is at
its maximum (Fig. 5.3, lower panels). This approach is useful to analyze the correlation
between Coulomb stress changes and aftershock distribution, since it can be assumed
that a sufficient number of small faults with all orientations exist, and that the faults
optimally oriented for failure will be most likely to slip in small earthquakes. The
calculation of the optimum directions, however, implies knowledge of the pre-existing
regional stress field (King et al., 1994).

The effective coefficient of friction is often assumed to be constant in a given area,
and it is utilized to include the unknown effects of pore-fluid pressure in the crust
(Harris, 1998). This parameter is not a material constant, as often implicitly assumed,
and its relationship with pore pressure is not simple (Beeler et al., 2000; Cocco and
Rice, 2002). A common simplification is to assume that the change in pore pressure is
proportional to the normal stress. Under this assumption, µ′ is related to the friction
coefficient µ through the Skempton coefficient B as follows:

µ′ = µ · (1−B), (5.2)

where B describes the presence of fluids in rock, with B = 0 for completely drained
rocks and B = 1 for the maximum possible presence of fluids. A coefficient of friction
of µ = 0.85 from laboratory values (Byerlee and Wyss, 1978) and a moderate pore
pressure (B ∼ 0.5) lead to a value of (B ∼ 0.5). However, if fluids are expelled from
the fault zone, the value for µ′ will increase up to that of µ.

5.4 Model parameters

The layered model used for our calculations is described by the rock parameters sum-
marized in Fig. 5.4 (Milkereit et al., 2000, 2004). We considered a Poisson’s ration
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Figure 5.3: Graphical representation of eq. 5.1 for a reference system with the x-axis
parallel to the strike of the fault (upper row) and for ”optimally oriented fault planes”
(lower row) (this means that the stress field is rotated, for each point separately, to
the orientation corresponding to the maximum Coulomb stress increase). Panels from
left to right: shear stress change, normal stress change and Coulomb stress change.

of 0.25. Concerning the rheological properties, we first considered a medium with a
strong viscoelastic lower crust and a weak viscoelastic mantle (hereinafter Model 1).
However, although other authors have favored similar stratification for their studies
(e.g. Freed and Lin, 2001; Pollitz and Sacks, 2002), there is also the possibility that
the most appropriate description of the medium is the opposite, with a weak lower
crust and a strong mantle (Deng et al., 1998, 1999; Zeng, 2001), or that the lithosphere
should be considered elastic over its whole depth (Casarotti and Piersanti, 2003). For
this reason, we also considered two models incorporating these options (respectively
Model 2 and Model 3). In all the cases, viscoelastic layers are modeled as Maxwell
bodies. According to recent studies, other rheological models could be more adequate
to analyze post-seismic relaxation processes, like the Standard Linear Solid rheology
(Cohen, 1982; Pollitz et al., 1998) or power-law, non-linear rheologies (Pollitz et al.,
2001; Freed and Bürgmann, 2004). However, from the present data we are not able to
discern among different rheologies. For this reason, we prefer to use the simplest and
most used linear Maxwell rheology, instead of more complicated models that would
add additional unknowns to our analysis.

Fault rupture locations and geometry, as well as slip distribution, were obtained
from tectonic and geological maps and published field observations (see Table 5.1). We
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modeled the tectonic stress loading with steady slip over the depth range 17 to 100 km,
using the deep dislocation technique proposed by (Savage, 1983). The slip increases
from zero at 17 km depth to its full magnitude at a depth of 35 km. The magnitude
of the slip on the NAF was taken from GPS interpretations (Flerit et al., 2003, 2004).
Fig. 5.2c displays the exact amount of annual fault slip used to model the different
segments of the NAF.

With these parameters, we carried out calculations for a grid of 81 × 501 points,
with a spacing of approximately 2 km, covering the study region outlined in Fig. 5.1.
We also calculated Coulomb stress changes at a 2 km spacing along the segments. For
these computations, we considered the full geometry for each rupture segments. How-
ever, only horizontal stress components were used for the calculations. Since the most
important deformation along the NAF is horizontal, this is a reasonable simplification.

5.5 Results

Fig. 5.5 illustrates the evolution of the cumulative Coulomb stress changes on vertical
fault planes striking in E-W direction. We choose a fixed strike direction for these
calculations instead of using optimally oriented fault planes to facilitate the comparison
between different snapshots. For these calculations we used Model 1, with µ′ = 0.4 and
lower crust and mantle viscosities of 5 ·1019 Pa·s and 1018 Pa·s, respectively. Since most
of the large earthquakes along the NAF have an hypocentral depth of 10-15 km (e.g.
Şengör et al., 2005), Coulomb stresses were calculated at 10 km depth, regarding this
as a realistic depth for earthquake nucleation. Fig. 5.5a shows the effect of the steady

Figure 5.4: Parameters of the hori-
zontally stratified medium. The same
stratification values have been applied

for different tectonically active ar-
eas along the NAF (Milkereit et al.,

2000, 2004, thick line). Results from
other studies are also shown for

comparison (Karahan et al., 2001;
Horasan et al., 2002; Kaypak and
Eyidoǧan, 2005). We considered a

Poisson’s ration of 0.25. The lower
crust and the mantle have variable
viscosities ηlc and ηm, respectively.
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tectonic stress loading over 10 years, to illustrate the influence of this process on the
total field. The state of the stress field at the beginning of the sequence is shown in
Fig. 5.5b, where only the elastic response of the medium to the 1939 event is present.
The evolution in time is then shown, with snapshots immediately before and after the
1943 event (Fig. 5.5c and 5.5d) and after the 1992 event (Fig. 5.5e). Fig. 5.5f displays
the stress changes due exclusively to viscoelastic relaxation between 1939 and 1992, to
demonstrate the effect this process has on the total stress field. Values near the NAF
typically range from 0.3 to 0.5 MPa, greater in magnitude than those corresponding
to steady tectonic loading for the same period. After both 1999 events, the situation
is the one displayed in Fig. 5.5g, and the evolution of the field until the present time
is shown in Fig. 5.5h (total stress field) and Fig. 5.5i (only the viscoelastic relaxation
effect).

5.5.1 Coulomb stress on the rupture surfaces

We calculated the Coulomb stress change on the rupture surfaces of the events posterior
to 1939 and separately assessed the influence of tectonic, elastic and viscoelastic load-
ing. We regarded positive stress values below 0.01 MPa as not significant, since steady
tectonic loading can cause such amounts of stress over a very short period of time (Stein
et al., 1997). Table 5.2 compiles values for the maximum and average change stress at
the rupture surfaces, while Table 5.3 displays the percentage of the rupture length with
σc ≥ 0.01 MPa. The values in both tables display the state immediately before the
corresponding event. The values were calculated for Model 1, including results with
and without steady tectonic loading, as well as for elastic and viscoelastic media. For
the latter, mantle viscosity values from ηm = 5 · 1017 to 1019 Pa·s were considered. We
maintained a constant ratio with the lower crust viscosity of ηlc/ηm = 50 to simplify the
analysis. Previous works dealing with southern California propose ratios ranging from
3 to 100 Deng et al. (1998, 1999); Freed and Lin (2001); Zeng (2001); Pollitz and Sacks
(2002), although there is no agreement on whether weak-lower-crust or weak-mantle
models are more appropriate.

The joint effect of tectonic, elastic and viscoelastic loading produces positive average
Coulomb stress changes on most of the rupture surfaces. The percentage of the rupture
surfaces over the threshold value is at its maximum for ηm = 5 ·1017−1018 Pa·s. Three
of the ruptures (1942, 1951 and 1967) show negative average Coulomb stress change
regardless of the model assumed.

The entire length of the 1951 rupture is in a stress shadow, with the whole sur-
face stressed by less than 0.01 MPa (Table 5.3). By contrast, the 1957 event shows,
independent of the model assumptions, values above this threshold for all its length.
The percentage of rupture surface above the threshold for the remaining 7 events de-
pends on the contributions considered for the stress loading, as well as the value of the
viscosity when viscoelastic models are used. In general, the influence of viscoelastic
relaxation is comparable to that of tectonic loading.

We also carried out calculations using an effective coefficient of friction of 0.6 (Ta-
ble 5.4a). This value accounts for a situation where most of the fluids are expelled
from the fault zone. The results differ slightly from those presented above, although
changes are not systematic. Most notably, when the total stress field on the 1944 rup-
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viscosity 1942 1943 1944 1951
∞ 0.07 -0.67 0.11 0.04 13.37 0.36 -1.52 -3.30

5 · 1017 Pa·s 0.17 -0.48 0.23 0.07 13.40 0.37 -1.23 -2.92
1018 Pa·s 0.15 -0.53 0.20 0.07 13.38 0.37 -1.27 -2.99

5 · 1018 Pa·s 0.09 -0.64 0.13 0.05 13.37 0.36 -1.41 -3.18
1019 Pa·s 0.08 -0.66 0.12 0.05 13.37 0.36 -1.46 -3.24

From tect. loading 0.04 0.05 0.05 0.10

1957 1967 1992 1999a 1999b
4.52 0.86 0.89 -0.31 3.40 1.29 0.98 0.33 0.57 0.26
4.74 1.00 1.12 -0.16 4.22 1.80 1.14 0.44 0.80 0.50
4.69 0.97 1.06 -0.20 3.98 1.64 1.10 0.41 0.76 0.46
4.61 0.92 0.98 -0.25 3.68 1.46 1.05 0.39 0.71 0.41
4.57 0.90 0.94 -0.27 3.63 1.43 1.03 0.37 0.68 0.39

0.11 0.22 0.64 0.46 0.56

Table 5.2: Maximum and average Coulomb stress changes (∆σc) on the ruptures
immediately before each event. Values are for a purely elastic model (infinite viscosity)
and for 4 different mantle viscosities, ηm. The ratio with the lower crust viscosity
is kept constant at ηlc/ηm = 50. The last line displays the fraction of the results
produced by steady tectonic loading. Results are for Model 1 (see text), and an effective
coefficient of friction of 0.4.

ture surface is considered, the stressed surface decreases from 100% for µ′ = 0.4 to
89% for µ′ = 0.6. The total stress field on the 1942 rupture surface increases, so that
the considered percentage increases from 21% for µ′ = 0.4 to 29% for µ′ = 0.6. The
elastic contribution to the 1999a event is notably larger, increasing the stressed surface
from 49% for µ′ = 0.4 to 57% for µ′ = 0.6. The viscoelastic contribution to the 1943
event decreases, with the stressed surface decreasing from 44% for µ′ = 0.4 to 35% for
µ′ = 0.6.

Results for Model 2 and Model 3 (Table 5.4b and c) also show localized differences.
Most notably, the stressed area on the rupture surfaces of the 1942 and 1967 events
increases to 36% and 78%, respectively, for Model 2. In general, the effect of viscoelastic
relaxation is smaller for Model 3, as it would expected. The stressed surface of the

Figure 5.5: Evolution of the Coulomb stress field since 1939. Calculations were
made for fault planes striking in an E-W direction, and the results were evaluated
for 10 km depth. Black thick lines represents all segments used to model the tectonic
loading at the NAF. White lines display ruptured segments and red lines unruptured
segments, immediately before their activation. Panel a shows the effect of 10 years of
steady tectonic loading. The rest of the panels display the situation at different points
in time: (b) immediately after the 1939 event; (c) before the 1943 event; (d) after the
1943 event; (e) after the 1992 event; (f) effect of viscoelastic relaxation from 1939 to
1992; (g) after the 1999b event; (h) current state of the Coulomb stress field; (i) effect
of viscoelastic relaxation from 1939 to 2005.
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viscosity 1942 1943 1944 1951 1957 1967 1992 1999a 1999b
∞ 14 93 95 0 100 75 100 85 100

with 5 · 1017Pa·s 29 96 100 0 100 78 100 93 100
tectonic 1018Pa·s 21 95 100 0 100 78 100 91 100
loading 5 · 1018Pa·s 18 93 95 0 100 75 100 88 100

1019Pa·s 14 93 95 0 100 75 100 88 100
∞ 11 20 52 0 100 70 94 49 7

without 5 · 1017Pa·s 21 59 67 0 100 75 100 81 29
tectonic 1018Pa·s 21 44 57 0 100 73 100 81 29
loading 5 · 1018Pa·s 14 21 54 0 100 73 94 81 21

1019Pa·s 11 21 53 0 100 73 94 81 21

Table 5.3: Percentage of fault rupture showing ∆σc ≥ 0.01 MPa. Values when
including the effects of steady tectonic loading (upper five lines) and when excluding
this effects (lower five lines). Model parameters as in Table 5.2.

1943 rupture decreases to 33% for both Model 2 and Model 3. In the latter model,
the stressed surface for the 1943, 1992 and 1999b events decreases in 11%, 6% and 8%,
respectively.

5.5.2 Coulomb stress at the epicenters

Fig. 5.6 displays the time evolution of the Coulomb stress at the epicenters of the
events posterior to 1939. For the 9 epicenters, the effect of the corresponding rupture
is a stress release. Also, the epicenters of 8 out of 9 earthquakes are stressed with high
σc values, although there are differences regarding its magnitude. Epicenters of the
events on the central and eastern part of the NAF (1942, 1943 and 1944) were loaded
by about 0.1 MPa before the rupture took place. The epicenters for 1957 and 1967, on
the other hand, stored stresses up to values around 0.3 MPa, and up to 0.5 MPa for
the 1999a and 1999b epicenters, before the earthquakes occurred. The 1992 epicenter
was loaded with more than 0.9 MPa immediately before the shock took place.

In general, it can be observed that the increase in magnitude of ∆σc due to vis-
coelastic relaxation is comparable, and in some cases larger, than that due to steady
tectonic loading (compare the thin dashed and solid lines, Fig. 5.6).

The location of epicenters, especially the earlier ones, are subject to considerable
inaccuracy. Fig. 5.7 shows the variation in the magnitude of ∆σc immediately before
each event when a realistic 0.1o inaccuracy is considered. In general, the sensitivity
of Coulomb stress change to the location of the epicenter is not too strong, with the
exceptions of the 1944 and 1951 events.

5.5.3 The 1999 Izmit and Düzce events

The most recent earthquakes of the westwards migrating sequence were the 1999
Mw = 7.4 Izmit/Kocaeli (1999a) and Mw = 7.1 Düzce (1999b) events. Fig. 5.8
shows the state of the total cumulative ∆σc field for optimally oriented fault planes,
as well as the stress load on the rupture surfaces, immediately before both events. We
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Figure 5.6: Time-evolution of Coulomb stress on the epicenters of the considered
events (Table 5.1). Vertical dotted lines mark the timing of each event considered.
The thick solid line shows the stress development when elastic and viscoelastic stress
changes, as well as tectonic loading, are considered. The thin solid line shows the
development when the effect from viscoelastic relaxation is not considered. The thin
dashed line displays the case where viscoelastic relaxation is considered but tectonic
loading is not. The white dot marks the moment and state of stress at the epicenter
when the rupture occurs. The value marked close to the dot is the Coulomb stress at
that moment, in MPa.

assumed a 10 MPa uniaxial compression N120oE oriented regional stress field for the
calculation of the optimally oriented fault planes (Stein et al., 1997; Hubert-Ferrari
et al., 2000; Pınar et al., 2001). Most of the surface of the faults involved in the
1999a event were subjected to high Coulomb stresses at the moment of the earthquake
(Fig. 5.8a). With the exception of the Sapanca-Akyazi segment, the rest of the rup-
ture length were loaded with stress values over 0.1 MPa. Moreover, the Izmit-Sapanca
Lake segment, were the epicenter was located, as well as its surroundings, were sub-
jected to stresses over 0.3 MPa. The 1999b rupture was also mostly loaded, although
the Coulomb stresses in this area were partially released by the 1944, 1957 and 1967
events. The stress changes caused by the 1999a shock induced important changes on
the 1999b rupture. Stresses on the later rupture were larger than before the 1999a
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Figure 5.7: Variation of the Coulomb stress changes when possible inaccuracies in
the epicentral location are considered. The circle shows the ∆σc value for the epicentral
location provided by the corresponding catalogue (see Table 5.1). The grey line display
the variation when this location is changed by 0.1o in any direction.

shock took place (Fig. 5.8b), including at the event’s epicenter (Fig. 5.6).
The local M ≥ 2 seismicity (KOERI, 2005) correlated with the state of the ∆σc

field before the 1999a event (Fig. 5.8a). In addition, there was an important cluster of
activity in the place where the epicenter of the 1999a event was going to take place.
After this event and before the 1999b event the correlation is less apparent (Fig. 5.8b).
It should be noted that the displayed seismicity ranges from 0 to 17 km depth. For
deeper regions, the calculated ∆σc field may not be representative.

5.5.4 The Marmara Sea region

The current situation in the Marmara Sea region according to our computations is
displayed in Fig. 5.9a, for optimally oriented fault planes and for the two segments of
the NAF in the region. We assumed a 10 MPa uniaxial compression N120oE oriented
regional stress field. The effect of the Ms = 6.4 1963 Cinarcik event (Ambraseys and
Jackson, 2000) was taken into account, since its influence in the region may not be
negligible.

Most of the region shows high stress values. The effect of tectonic loading (Fig. 5.9b,
for 10 years), is not as important as the stress changes induced by post-seismic stress
relaxation. Figs. 5.9c and 5.9d, respectively 5 and 10 years after the last event of the
sequence, show that the viscoelastic relaxation increases the stresses in the region at a
faster rate than steady tectonic loading.

The local M ≥ 2 seismicity between 0 and 17 km deep (KOERI, 2005) correlates
with the calculated Coulomb stress change, with high activity rates associated with
the lobe of large ∆σc values at the western end of the 1999a rupture (∆σc ≥ 0.3 MPa),
and more activity, in general, for areas with ∆σc ≥ 0.1 MPa.

78



5.6. Discussion

0

0

0
0

0

30˚E 31˚E

40˚30'N

41˚00'N

30˚E 31˚E

40˚30'N

41˚00'N

30˚E 31˚E

40˚30'N

41˚00'N Izmit-Sapanca Lake
segment

Sapanca-Akyazi
segment

a     Before the 1999 Izmit event 

0
0

0

0 0

0

0

30˚E 31˚E

40˚30'N

41˚00'N

30˚E 31˚E

40˚30'N

41˚00'N

30˚E 31˚E

40˚30'N

41˚00'N

b     Before the 1999 Düzce event 

-10.00

-1.00

-0.50

-0.30

-0.10

-0.03

-0.01

0.01

0.03

0.10

0.30

0.50

1.00

10.00

MPa

M ≥ 2 seisimicity

KOERI stations

events
before current

epicentres

∆σc on segments:

∆σc ≥ 0.30 MPa

∆σc ≥ 0.10 MPa

∆σc ≥ 0.01 MPa

∆σc < 0.01 MPa

Figure 5.8: Coulomb stress change at 10 km depth on optimally oriented fault planes
(color field, 10 MPa uniaxial compression, N120oE oriented regional stress field) and
on given faults (filled circles), for Model 1. (a) shows the situation before the Au-
gust 17th, 1999 event (1999a), and (b) before the November 12th, 1999 shock (1999b).
White lines are already ruptured segments. Red stars display the location of the epi-
centers. Small white dots show the local M ≥ 2 seismicity at depths between 0 and
17 km over six months before the 1999a event (a) and for the period between the 1999a
and 1999b shocks (b). Green squares display the location of the Kandilli Observatory
and Earthquake Research Institute (KOERI) seismic stations.

5.6 Discussion

5.6.1 Coulomb stress on the rupture surfaces and at the epi-
centers

In general, the Coulomb stress criterion explains the triggering of subsequent earth-
quakes by preceding ones. Almost all rupture surfaces, or a large percentage of them,
and/or their epicenters, were strongly stressed at the moment of the shock (Table 5.3
and Fig. 5.6). The results for the epicenters are stable with respect to the possible
inaccuracies in their location (Fig. 5.7), with the exception of the 1944 and 1951 earth-
quakes. The 1944 epicenter was located very close to previous ruptures (1943, which
took place only 2 months before the 1944). Close to the rupture, the stress change
gradient is very high, hence the position of the epicenter plays a major role. At the
epicenter of the 1951 event, ∆σc is strongly negative, independent of variation in its
location.
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It should be noted that only the ruptures of the 1944, 1957, 1992 and 1999b events
were stressed over their whole surfaces under certain conditions (Table 5.3). For most
of the events, the rest of the surface was probably dynamically activated during the
shock, as described by the general asperity model (Lay and Kanamori, 1981). With the
exception of the 1942 earthquake, over 75% of the events’ ruptures was stressed before
the event. This coincide with the results of (Steacy and McCloskey, 1998), according
to which large events only occur when the entire fault is highly stressed relative to
its strength. In general, the percentage of stressed surface does not change drastically
with the viscosity chosen, and values lower than 1018 Pa·s for the weak layer do not
lead to noteworthy improvements.

The rupture of the 1992 event was strongly stressed over its whole surface, indepen-
dently of the model assumptions. The stress at the epicenter reached 0.91 MPa before
the shock. However, a potentially important factor is the seismicity further to the east,
and on the EAF, south of the 1992 shock. At least 3 strong events took place in these
areas between 1939 and 1992, in 1949, 1966 and 1971 (Dewey, 1976), and they may
have had a significant influence on the Coulomb stress on the 1992 rupture surface.
In addition, recent studies show that fault distribution in the region east of the 1992
event might be more complex than the one traditionally assumed (Milkereit et al.,
2004). Other authors suggest that deep steady slip may not be adequate to estimate
the stress changes due to steady tectonic loading in this region (Nalbant et al., 2005b).
For these reasons, it is unlikely that we would improve our understanding of this region
by broadening our study area further to the east. Other than this, it would introduce
several additional unknown parameters into our study. Measurements and estimates
of the slip on the surface of the 1939 event are insufficient (Barka, 1996), and the 1992
event did not provide surface expressions of the rupture (Grosser et al., 1998), so that
the present results about the 1992 event should be treated carefully. A more detailed
study, similar to the one carried out by (Nalbant et al., 2005b), would be necessary to
better understand the influence of viscoelastic relaxation in this area.

We observed that tectonic loading and viscoelastic relaxation increased the stressed
surface by a comparable percentage, with the exception of the 1943, 1944 and 1999b
events (Table 5.3). For these three earthquakes, the effect of steady tectonic loading
is much more important than that from viscoelastic relaxation. For the 1943 and 1944
events, this is due to two factors: first, the time interval between these shocks and earlier
events in the sequence is too short for viscoelastic relaxation to have a more important
effect (Fig. 5.6); second, the rupture surfaces of these earthquakes were notable long,
with mainly their easternmost ends loaded by the previous ruptures. For these two
events, as well as for the 1939 earthquake, the steady tectonic loading during the
preceding centuries seems to be the determining factor for the extension of the rupture
surface, rather than the calculated Coulomb stress changes. The case of the 1999b
earthquake appears to be different. For this event, the elastic/coseismic stress changes
only manage to stress 7% of the rupture surface. The effect of viscoelastic relaxation
since 1939 is about 0.3 MPa (see Fig. 5.5). When combined with the viscoelastic stress
changes only 21-29% of the rupture surface overcomes the threshold value of 0.01 MPa
(Table 5.3). The tectonic loading, on the contrary, rises the percentage of stressed
surface from 7% to 100%.

The 1951 event presents a rupture surface that is totally unloaded, independent of
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the assumptions made. This, together with the results for the 1951 epicenter, indicate
that the Coulomb stress change approach, as applied in this study, cannot offer a
plausible explanation for the occurrence of this event. Some authors model this shock
as a reverse slip event (Stein et al., 1997), striking parallel to the NAF. We could not
find any evidence in the literature to support this possibility. On the contrary, the fault
plane solution for this event is that of a strike-slip event (Stein et al., 1997; McKenzie,
1972; Şengör et al., 2005), and the studies of the surface expression of the rupture also
deny the existence of significant reverse slip (Pinar, 1953; Barka and Kadinsky-Cade,
1988). In addition to the poorly known geometry and mechanism of the 1951 shock, it
is possible that creep occurring on part of the 1944 rupture (Ambraseys, 1970; Kondo
et al., 2005) may have played a role in the triggering of the 1951 event.

We tested the stability of our results by comparing different models. The role of
the effective coefficient of friction is not trivial, as it modulates the contribution of the
normal stress to the Coulomb stress. For most of the earthquakes studied in this work,
the influence of the value for µ′ is very limited (Table 5.4), with the exception of the
1942, 1943 and both 1999 events, for which some model assumptions cause noteworthy
changes. The reason for this is the relative location of the rupture surfaces. At the
center of the study region, the events in the sequence fall in line along the NAF, with
each event’s rupture adjacent to the previous ones. Normal stresses are small in this
direction, hence Coulomb stress change is basically governed by shear stress change,
and the influence of µ′ disappears. Other than this, the westernmost part of the 1939
rupture occurred south from the main NAF (Barka, 1996), as well as south from the
future 1943 and 1944 ruptures. Similarly, the 1999 events took place in a region where
the geometry of the NAF is more complicated and shocks did not line up along the
same main fault. Normal stress field gains importance when calculating ∆σc in this
circumstances, and the choice for the value of µ′ has a consequence on the results.

Changes in the properties of the medium (Table 5.4b and c) also led to punctual
changes in the results. Results for Model 3 are lower than those for Model 1, al-
though not drastically, while Model 2 gave results that differ significantly from those
of Model 1. However, the percentage of the stressed area on the rupture surfaces does
not systematically increase or decrease between the models, so that we cannot extract
information about the rheological stratification of the region from the analysis of the
Coulomb stress changes.

5.6.2 The 1999 Izmit and Düzce events

If we assume that an important part of the rupture surface must be stressed for an
earthquake to take place, then Model 2 with ηlc = 1018 Pa·s or Model 1 with ηm =
5 · 1017− 1018 Pa·s are the favored models to explain the triggering of the 1999a event.
In these cases, 91-94% of the rupture is stressed (Tables 5.3 and 5.4). However, the
difference in the results from among the models and viscosity values is not strong.
When tectonic loading is considered in addition to the earthquake related coseismic
changes, the stressed surface increases from 49% to 85%. A similar increase takes
place when relaxation is taken into account, with the result of 81% of the surface being
stressed.

When only the coseismic stress change due to previous events is considered, only
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7% of the 1999b rupture surface is brought over the threshold value of ∆σc ≥ 0.01 MPa
(Table 5.3). When the effects of viscoelastic relaxation are also considered, the Coulomb
stress change increases by an average of 0.2 MPa, and the percentage of the stressed
surface raises to 29%. This increase in the Coulomb stress is comparable to 20 years
of tectonic loading.

Other time-dependent processes, such as afterslip, ductile creep at depth or poroe-
lastic diffusion processes, may have played an important role in the triggering of the
1999b event (Bürgmann et al., 2002; Hearn et al., 2002). Hearn et al. (2002) analyzed
the observed post-seismic GPS deformation between the 1999a and 1999b earthquakes
to evaluate which process could better explain the occurrence of the 1999b shock. They
conclude that the most likely explanation is velocity-strengthening frictional afterslip,
and favor this possibility against viscoelastic lower crust relaxation. The viscosity for
the lower crust needed to reproduce the fit obtained by means of frictional afterslip
models is η = 1017 Pa·s. The authors argue that this value is much lower than most
previous estimates of crustal viscosity. However, they do not consider the effects of
viscoelastic relaxation in lower layers, although they point out that similar horizontal
displacements are obtained when the ratio between viscosity and layer thickness is kept
constant and the top of the viscoelastic layer unchanged. Our analysis of the stress
field shows that the effect of a viscoelastic half-space (not only a viscoelastic layer)
underlying the elastic layers is not negligible. A similar result can be expected for the
surface displacement field (see Chapter 4), hence it appears more realistic to include
the viscoelastic behavior of lower regions of the crust and upper mantle when modeling
these displacements.

Using an elastic medium and vertical fault planes, Bürgmann et al. (2002) inter-
preted the post-seismic deformation with afterslip on the 1999a rupture and its pro-
longation in the E-W direction and with depth. According to their results, rapid slip
took place at depth below the eastern part of the 1999a rupture. This would create
additional stress on the future 1999b rupture surface, being therefore a potential ex-
planation for the time delay between both 1999 events. Also, poroelastic rebound has
proven to have an important role in the first months after an earthquake (Peltzer et al.,
1998; Jónsson et al., 2003). Given the short time interval between the 1999a and 1999b
events, it might be necessary to consider its influence. However, Hearn et al. (2002)
showed that the deformation caused by poroelastic rebound alone cannot explain the
measured deformation. From these previous works and the results presented here, it
is most likely that the time delay between the 1999 Izmit and the 1999 Düzce events,
as well as the time evolution of the observed deformation can only be explained as a
combination of several different time-dependent processes.

Utkucu et al. (2003) carried out an analysis of the Coulomb stress state on the 1999
Düzce rupture surface under different conditions. Using an elastic half-space model,
they find that the 1999 Izmit event increased the stress on most of the future 1999
Düzce rupture surface, with values for ∆σc over 1.2 MPa, with most of the rupture
surface stressed between 0 and 0.4 MPa. According to our results, the Coulomb stress
increase ranges between 0.25 and 0.05 MPa, from west to east on the 1999 Düzce
rupture surface. The difference is due to the different rupture segments used by Utkucu
et al. (2003) and in the present study. Utkucu et al. (2003) considered a small eastern
segment striking E-W at the end of the 1999 Izmit rupture. However, the observed slip
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in that area is very small (Barka et al., 2002), and it may be a secondary effect of the
1999 Izmit shock. We used the geometry obtained from the inversion of InSAR data
(Wright et al., 2001), that fitted the observed deformation field without the need of an
eastern E-W striking segment.

When the effect of previous events is also considered, we find that the stressed sur-
face decreases notably, in accordance with the results of Utkucu et al. (2003). However,
the influence of tectonic loading is very different. This is due to the different elements
used to model the tectonic movements. Utkucu et al. (2003) consider a simplified ge-
ometry for the long-term tectonic loading model, whereas we used the more detailed
results from (Flerit et al., 2003, 2004), based on GPS velocity vectors compiled by
McClusky et al. (2000). Utkucu et al. (2003) model uses a plate rate of 24 mm/a along
the Mudurnu Valley, where the 1967 earthquake took place. According to Flerit et al.
(2003, 2004), it is more appropriate to split the 24 mm/a in this area into two branches
with 12 mm/a each (Fig. 5.2c), the northernmost of which runs below the 1999b Düzce
fault.

5.6.3 The Marmara Sea region

The local seismicity in the Marmara Sea region correlates with the Coulomb stress
change (Fig. 5.9a). A purely elastic approach when calculating the state of the stress
field neglects the important stress changes due to viscoelastic relaxation. These pro-
cess loaded the eastern part of the Marmara Sea region with stresses over 0.1 MPa
(Fig. 5.9c). Also, the viscoelastic effect is comparable or even larger than the stress
increase due to 10 years of tectonic loading (compare Fig. 5.9b and 5.9c). Both pro-
cesses generate stress changes that differ in their pattern: the influence of viscoelastic
relaxation is more important to the east of the Marmara Sea region, whereas tectonic
loading increases σc in a more homogeneous way. The eastern segment of the NAF in
the Marmara Sea, which was already strongly stressed (∆σc ≥ 0.3 MPa, Fig. 5.9a), is
currently being loaded at a much faster rate than would be expected due to tectonic
loading alone (Figs. 5.9c and 5.9d). Accordingly, stress changes due to viscoelastic re-

Figure 5.9: Coulomb stress change at 10 km depth on optimally oriented fault planes
(color field, 10 MPa uniaxial compression, N120oE oriented regional stress field), and
on given faults (filled circles), for Model 1. The 1963 Ms = 6.4 Cinarcik earthquake
rupture surface is marked in (b), south west of the Prince Islands. The total stress field
is displayed in (a); (b) shows the change in Coulomb stresses due to 10 years of steady
tectonic loading; (c) and (d) show the cumulative effect of viscoelastic relaxation,
for the present time and in 2010, respectively. The white framed line displays the
western end of the 1999a rupture. Small white dots in (a) show the local M ≥ 2
seismicity for the period 2000-2004 at depths between 0 and 17 km. Green squares
display the location of the Kandilli Observatory and Earthquake Research Institute
(KOERI) seismic stations. The inset in (c) shows the total ∆σc for the Prince Islands
segment in 2005 (black thick line), when the 1963 Cinarcik event is not considered
(grey thick line), the coseismic contribution from the 1999 Izmit shock (black thin line),
the contribution from viscoelastic relaxation (red line) and the changes corresponding
to 10 years of tectonic loading (blue line).
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laxation should be taken into account in studies focusing on the state of the Coulomb
stress field in this region.

Most of the NAF in the Marmara Sea is currently strongly loaded (∆σc ≥ 0.3 MPa),
and the whole region displays ∆σc values up to 1 MPa. These results agree with those
of Hubert-Ferrari et al. (2000). Their study also shows that aftershocks immediately
after the 1999 Izmit event are absent in the area where the 1963 Cinarcik earthquake
released stress. We find that the combined effect of the 1999 Izmit earthquake, tectonic
loading and viscoelastic relaxation erased in the mean time any possible stress shadow
around the area where the 1963 Cinarcik event took place (Fig. 5.9a). The fact that
local seismicity between 2000 and 2004 does not show any noticeable decrease in this
area reflects this change in the Coulomb stress field between 1999 and the present date.

When the effects of the 1963 event are not considered, Coulomb stress changes on
the Prince Islands segment range from 0.73 to 2.68 MPa (Fig. 5.9c, inset). Coseismic
stress changes due to the 1999 Izmit earthquake range from 0.08 to 1.93 MPa, which
is higher in the eastern end than the values estimated by Hubert-Ferrari et al. (2000,
0-0.5 MPa) or Parsons (2004, 0.02-0.760 MPa). Hubert-Ferrari et al. (2000) considered
a 1999 Izmit rupture surface shorter to the west than that suggested by later studies
(Reilinger et al., 2000; Wright et al., 2001). Parsons (2004) considered different slip
distributions for the 1999 Izmit rupture surface, other than the one used in the present
study (Wright et al., 2001). More detailed slip distributions (Reilinger et al., 2000;
Delouis et al., 2002) suggest less slip to the western end of the 1999 Izmit rupture,
so that Coulomb stress change in the immediacy of the fault’s end would also be
proportionally smaller. However, there is still no agreement on the slip distribution of
the 1999 Izmit earthquake (Reilinger et al., 2000; Bouchon et al., 2002; Delouis et al.,
2002). In addition, the effect from details of the slip distribution vanish with distance
from the rupture. Pollitz and Sacks (2002) found that the static stress pattern around
the 1992 Landers rupture was sensitive to the choice of the slip model, but the post-
seismic stress change depended little on this choice. The use of a simple slip model for
the present study is therefore justified.

Ten years of tectonic loading causes a stress increase of 0.08 MPa along the Prince
Islands segment (Fig. 5.9c, inset, blue line). Sixty six years of tectonic loading plus the
coseismic effect of the 1999 Izmit earthquake create 0.52-2.37 MPa, which is comparable
to the 0.5-1 MPa obtained by Utkucu et al. (2003) using the slip distribution model of
Delouis et al. (2002). The contribution due to the post-seismic viscoelastic relaxation
between 1999 and 2005 (Fig. 5.9c, inset, red line) ranges from 0.12 to 0.27 MPa,
equivalent to 15 to 35 years of tectonic loading.

5.7 Conclusions

Our analysis presents several improvements in relation to previous works. We consider
a whole sequence of earthquakes instead of single pairs of events, we used a horizontally
stratified medium and included the time-dependent effects of viscoelastic relaxation.
Our results show that the effects of the latter are comparable or even greater in magni-
tude than the stress changes induced by steady tectonic loading during the inter-seismic
phase of the earthquake cycle (Figs. 5.5, 5.6 and 5.9). Viscoelastic relaxation should
therefore not be neglected.
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The Coulomb stress failure criterion provides good results in this area and for this
sequence of events, but considering only elastic stress changes can neglect an important
part of the actual stress increase/decrease. For the case of the Marmara Sea region,
the current rate of stress loading is governed by viscoelastic relaxation rather than
tectonic loading. Accordingly, this result should be taken into account by seismic
hazard-assessment studies in this region.

There is the possibility that our modeling approach is still too coarse for these
events or this region, and that a more exhaustive analysis should be carried out, tak-
ing into account a more detailed geometry and slip distribution for the events and/or
additional information about the rheological properties of the lower crust and upper
mantle in the area. Nevertheless, it is improbable that the importance of the viscoelas-
tic relaxation shown here would decrease considerably when including more detailed
model parameters. The viscoelastic relaxation process should therefore be considered
when analyzing time-dependent deformation-related data.
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Chapter 6

Summary and conclusions

In this thesis, results dealing with the time-dependent crustal deformation after strong
earthquakes have been presented. The method used for the calculations was described,
together with several modifications to improve the speed and accuracy of the calcula-
tions. The software that applies the methodology was used to carry out a sensitivity
analysis to assess the influence that different input parameters have on the modeled
displacement field: The effect of three different variables (lithospheric thickness, as-
thenospheric viscosity and the dip angle of the fault) was analyzed in detail for the
co- and post-seismic deformation due to thrust events. We found that the dip angle
has a strong influence on the co-seismic deformation, but a less important one on the
post-seismic displacements. The lithospheric thickness and asthenospheric viscosity, on
the contrary, influence the post-seismic deformation more strongly than the co-seismic
one. The region where the deformation is larger is in general the most suitable for
ascertaining the most likely value for the latter two parameters.

The application to real deformation data was twofold. First, we considered GPS
observations from surveys conducted in 1994 and 1996 at sites located close to the
area of the great 1960 Chilean earthquake. These observations are not consistent with
deformation caused by plate motion, but show anomalous seaward velocities for the
inland stations. We reproduced the first-order pattern of the observed deformation,
including the observed anomalous seaward movement. According to our study, the
1960 earthquake is the most likely cause for the velocity component that cannot be
explained by plate convergence. Our model also predicts that this deformation will
still be measurable for several more decades.

Also for this region, we derived the most likely values for some of the medium and
source parameters involved in the deformation process by means of a grid search inver-
sion over more than a million different models. The parameters studied were viscosity,
thickness of the elastic layer, average slip on the rupture surface and the seismic cou-
pling coefficient. According to the sensitivity analysis, the influence of the dip angle
on the post-seismic deformation field is small. For this reason, we fixed the value of
this parameter, using results from previous studies of this region, and excluded it from
the inversion. The observations unfortunately did not cover the area of maximum dis-
placements, which was identified by the sensitivity analysis as the most appropriate
to find information about viscosity and thickness of the elastic layer. However, we ob-
tained well-constrained estimates for these two variables, which agree with the strong
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sensitivity of the modeled post-seismic deformation found to two parameters.
The obtained estimate for these parameters is consistent with those of previous

works, but our study provided a narrower range of possible values. Specifically, ac-
cording to our error propagation analysis, the estimate for the viscosity in this area is
stable and reliable when considered independent from the other parameters. However,
we found a trade off between viscosity and average coseismic slip on the rupture sur-
face, hence higher viscosities, in combination with larger coseismic slip values, must
also be regarded as possible.

The second application was the study of the evolution of the Coulomb stress field
along the North Anatolian Fault zone, considering the effects of 10 magnitude Ms > 6.5
earthquakes that have taken place there since 1939. We investigated the triggering of
these events by stress transfer in a way that presented several improvements in relation
to previous works: We considered a whole sequence of earthquakes instead of single
pairs of events, we used a horizontally stratified medium and, most importantly, we
included the time-dependent effects of viscoelastic relaxation. Our results show that the
effects of the latter are comparable or even greater in magnitude than the stress changes
induced by steady tectonic loading during the inter-seismic phase of the earthquake
cycle. For the Marmara Sea region, the current rate of stress loading is governed
by viscoelastic relaxation rather than tectonic loading. Also, we concluded that the
Coulomb stress failure criterion provides good results in this area and for this sequence
of events, but considering only elastic stress changes would neglect an important part
of the actual stress increase/decrease.

The results compiled in this thesis provide evidence that PSGRN/PSCMP, the
programs that use the methodology presented, are a very powerful tool for calculat-
ing the co- and post-seismic deformation induced by earthquakes in a multi-layered
viscoelastic-gravitational half-space. They provide a combination of speed, accuracy
and flexibility hardly equalled by any other available program.

Our sensitivity analysis, the inversion for the area around the 1960 Chilean earth-
quake and the prediction about the future measurability of the deformation are poten-
tially useful when planning future geodetic campaigns or when a numerical inversion
is carried out. We also showed that the effects on the deformation (displacement or
stress field) of viscoelastic relaxation after a strong event are measurable, and can
be observed far away from the epicentral area and long after the event. Therefore,
to neglect viscoelastic relaxation is not an acceptable simplification when analyzing
time-dependent crustal deformation after a strong earthquake.
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Pinar, N., 1953. Etude géologique et macrosismique du tremblement du terre de
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Roth, F., 1983. Oberflächendeformationen und Krustenspannungen in Erdbebengebi-
eten: Ein Modell zur Beschreibung ihrer zeitlichen änderungen. Dissertation, 184 S.,
Inst. f. Geophys., C.-A.-Univ. Kiel.

Roth, F., 1988. Modeling of stress patterns along the western part of the North Anato-
lian Fault Zone. Tectonophys. 152, 215–226, spec. iss.: Seismic Source Physics and
Earthquake Prediction Research, O. Kulhánek, Ed.
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Appendix A

Expansion of the deformation field
equation in terms of poloidal and
toroidal modes

A.1 Introduction to the Hankel transform

(Note: Throughout this Appendix, the dependency of functions on variables is often
skipped for clarity, as long as this does not lead to misunderstandings. We will write,
for instance, Y m

k instead of Y m
k (r, θ).)

The scalar cylindrical surface harmonics are defined by

Y m
k (r, θ) = Jm(kr)eimθ, (A.1.1)

for (0 ≤ k < ∞, m ∈ Z), where Jm(x) are the Bessel functions of the first kind. It is
trivial to show the following recursive relationships, that will be repeatedly applied in
the following sections

∂2Y m
k

∂r2
+

1

r

∂Y m
k

∂r
− m2

r2
Y m

k = −k2Y m
k , (A.1.2)

∂2Y m
k

∂θ2
= −m2Y m

k . (A.1.3)

We define the scalar Hankel transform (c.f. Bracewell, 1965, pp. 244) as

s(r, θ) =
∞∑

m=0

∞∫

0

Sm(k)Y m
k kdk, (A.1.4)

where Sm(k) are the wavenumber spectra of the scalar function s(r, θ).
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A.1. Introduction to the Hankel transform

A vector Hankel transform can be defined in a similar manner, where the vector
harmonics are given by

Zm
k (r, θ) = ezY

m
k , (A.1.5)

Rm
k (r, θ) =

(
er

k

∂

∂r
+

eθ

kr

∂

∂θ

)
Y m

k , (A.1.6)

Tm
k (r, θ) =

(
er

kr

∂

∂θ
− eθ

k

∂

∂r

)
Y m

k , (A.1.7)

These vectors provide a complete and orthogonal base, and can be used to define the
vector Hankel transform as follows

V(r, θ) =
∑
m

∞∫

0

(Am(k)Zm
k + Bm(k)Rm

k + Cm(k)Tm
k ) kdk, (A.1.8)

where Am, Bm and Cm are the wavenumber spectra of the vector function V(z, r, θ).
We need to obtain expressions for these spectra, as the inverse transform to that of
Eq. A.1.8. For this, we will make use of the orthogonality property of the exponential
function:

2π∫

0

ei m θ e−i m′ θdθ = 2πδmm′ , (A.1.9)

where δmm′ is the Kronecker delta, and the closure equation of the Bessel functions of
the first kind: ∞∫

0

Jm(kr) Jm(k′r) r dr =
1

k
δ(k − k′), (A.1.10)

where δ(k − k′) is the Dirac delta function.

Multiplying both sides of Eq. A.1.8 by Zm′
k′ (r, θ) (notation for the conjugate of

Zm′
k′ (r, θ)), for m′ ∈ N and k′ ∈ R+, integrating and applying A.1.9, A.1.10 and the

orthogonality of Zm
k , Rm

k and Tm
k , we find

∞∫

0

2π∫

0

V · Zm′
k′ rdθdr =

∑
m

∞∫

0

∞∫

0

2π∫

0

AmZm
k · Zm′

k′ krdθdrdk

=
∑
m

∞∫

0

Amk

∞∫

0

2π∫

0

Y m
k Y m′

k′ rdθdrdk

=
∑
m

∞∫

0

Amk

∞∫

0

Jm(kr)Jm′(k′r)r

2π∫

0

eimθe−im′θdθdrdk

= 2π

∞∫

0

Am′(z, k)k

∞∫

0

Jm′(kr)Jm′(k′r)rdrdk

= 2πAm′(z, k′). (A.1.11)
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A.1. Introduction to the Hankel transform

Dropping the apostrophe we therefore have

Am(z, k) =
1

2π

2π∫

0

∞∫

0

Vz(z, r, θ)Y m
k (r, θ)rdrdθ. (A.1.12)

To obtain an expression for the wavenumber spectrum Bm(z, k) we follow a similar

procedure. Multiplying both sides of Eq. A.1.8 by Rm′
k′ (r, θ) and integrating we find

∞∫

0

2π∫

0

V ·Rm′
k′ rdθdr =

∑
m

∞∫

0

∞∫

0

2π∫

0

BmRm
k ·Rm′

k′ krdθdrdk

=
∑
m

∞∫

0

Bmk

∞∫

0

2π∫

0

1

kk′

[
∂Y m

k

∂r

∂Y m′
k′

∂r
+

1

r2

∂Y m
k

∂θ

∂Y m′
k′

∂θ

]
rdθdrdk

=
∑
m

∞∫

0

Bmk

∞∫

0

2π∫

0

[
∂Jm(kr)

∂r

∂Jm′(k′r)
∂r

+
m

kr
Jm(kr)

m′

k′r
Jm′(k′r)

]
ei(m−m′)θrdθdrdk

= 2π

∞∫

0

Bm′k

∞∫

0

[
∂Jm′(kr)

∂r

∂Jm′(k′r)
∂r

+
m

kr
Jm′(kr)

m′

k′r
Jm′(k′r)

]
rdrdk. (A.1.13)

Now we can apply the following properties of the Bessel functions of the first kind

∂Jm(x)

∂x
=

1

2
[Jm−1(x)− Jm+1(x)] (A.1.14)

m

x
Jm(x) =

1

2
[Jm−1(x) + Jm+1(x)] . (A.1.15)

These relationships, together with the orthogonality of the Bessel functions lead to

∞∫

0

2π∫

0

V ·Rm′
k′ rdθdr = 2π

∞∫

0

Bm′k

∞∫

0

1

2
[Jm′−1(kr)Jm′−1(k

′r)

+ Jm′+1(kr)Jm′+1(k
′r)] rdrdk

= 2π

∞∫

0

Bm′δ(k − k′)dk

= 2πBm′(z, k′). (A.1.16)
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Therefore

Bm(z, k) =
1

2π

∞∫

0

2π∫

0

V ·Rm
k rdθdr

=
1

2π

∞∫

0

2π∫

0

[
Vr(z, r, θ)

1

k

∂Y m
k (r, θ)

∂r
+ Vθ(z, r, θ)

1

kr

∂Y m
k (r, θ)

∂θ

]
rdrdθ, (A.1.17)

or, equivalently

Bm(z, k) =
1

2π

∫

S

V · ∇Y m
k dS. (A.1.18)

For Cm(z, k) we make use of the property

Tm
k (r, θ) = Rm

k (r, θ)× ez. (A.1.19)

so that

Tm
k ·Tm′

k′ = (Rm
k × ez) · (Rm′

k′ × ez), = Rm
k ·Rm′

k′ (A.1.20)

and applying the previous calculations we find

Cm(z, k) =

∞∫

0

2π∫

0

V ·Tm
k rdθdr

=
1

2π

∞∫

0

2π∫

0

[
Vr(z, r, θ)

1

kr

∂Y m
k (r, θ)

∂θ
− Vθ(z, r, θ)

1

k

∂Y m
k (r, θ)

∂r

]
rdrdθ, (A.1.21)

or, equivalently

Cm(z, k) =
1

2π

∫

S

V · (∇Y m
k × ez

)
dS. (A.1.22)

A.2 Hankel transform of Hooke’s law

Using tensor notation, Hooke’s linear constitutive relation between stress and strain
(cf. Ranalli, 1995, pp. 51) can be written as

Γ = (λ∇ · u) I + µ
(∇u + (∇u)t

)
, (A.2.23)
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where Γ is the stress tensor, I is the unit tensor and (∇u)t denotes the tensor transpose
of ∇u. In particular

σzz = (λ + 2µ)
∂uz

∂z
+ λ

(
∂ur

∂r
+

1

r
ur +

1

r

∂uθ

∂θ

)
= λΘ + 2µεzz, (A.2.24)

τzr = µ

(
∂ur

∂z
+

∂uz

∂r

)
= 2µεzr, (A.2.25)

τzr = µ

(
∂uθ

∂z
+

1

r

∂uz

∂θ

)
= 2µεzθ, (A.2.26)

where σ denotes normal stress, τ shear stress, ε strain and Θ = ∇ · u is the strain
dilatation. These relations between stress components and the first derivatives of the
displacement vector have their equivalent in the wavenumber domain, which can be
obtained as we show in the following.

If we consider the vectors u(z, r, θ) and ez ·Γ(z, r, θ), we have the following Hankel
transforms:

u(z, r, θ) =
∑
m

∞∫

0

(UmZm
k + VmRm

k + WmTm
k ) kdk, (A.2.27)

ez · Γ(z, r, θ) =
∑
m

∞∫

0

(EmZm
k + FmRm

k + GmTm
k ) kdk, (A.2.28)

where Γ is the stress tensor and Um, Vm, . . . are the wavenumber spectra of the dis-
placement and stress field. These two Hankel transforms, together with the stress-strain
relations given by Eqs. A.2.24 to A.2.26 will provide three expressions relating the first
derivatives of the displacement wavenumber spectra with the stress and displacement
spectra themselves.

A.2.1 Derivative of the displacement wavenumber spectrum
Um(z, k)

We consider the function
(∇ · u− ∂uz

∂z

)
Y m

k and integrate it between two arbitrary
values of z, z1 and z2:

z2∫

z1

∫

S

(
∇ · u− ∂uz

∂z

)
Y m

k dSdz =

∫

V

(
∇ · u− ∂uz

∂z

)
Y m

k dV

=

∫

V

((∇ · u) Y m
k + u · ∇Y m

k − u · ∇Y m
k ) dV −

∫

V

∂uz

∂z
Y m

k dV

=

∫

V

∇ · (uY m
k ) dV −

z2∫

z1

∫

S

u · ∇Y m
k dV −

∫

V

∂uz

∂z
Y m

k dV

= I1 − I2 − I3. (A.2.29)

To calculate the first addend in the last integral, we can use the divergence theorem,
which states that the volume integral of the divergence ∇ · F of F over the volume V
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and the surface integral of F over the boundary S of V are related by

∫

V

(∇ · F) dV =

∫

S

F · dS. (A.2.30)

Therefore

I1 =

∫

S

(−ez · u|z1
Y m

k

)
dS +

∫

S

(
ez · u|z2

Y m
k

)
dS

=

∫

S

[uz(z2, r, θ)Y
m
k − uz(z1, r, θ)Y

m
k ] dS

=

∫

S

z2∫

z1

∂uz

∂z
dz Y m

k dV =

∫

V

∂uz

∂z
Y m

k dV = I3. (A.2.31)

Hence, and since z1 and z2 can be any two arbitrary values, we have

∫

S

(
∇ · u− ∂uz

∂z

)
Y m

k dS = −
∫

S

u · ∇Y m
k dS (A.2.32)

Applying this result to the expression for Vm corresponding to Eq. A.1.18, taking into
account that Y m

k does not depend on z and applying the expression for σzz given by
Eq. A.2.24, we obtain

Vm(z, k) =
1

π

∫

S

[
ur(z, r)

1

k

∂Y m
k (r, θ)

∂r
+ uθ(z, r)

1

kr

∂Y m
k (r, θ)

∂θ

]
dS

=
1

2πk

∫

S

u · ∇1Y m
k dS

=
1

2πk

∫

S

u · ∇Y m
k dS

= − 1

2πk

∫

S

(
∇ · u− ∂uz

∂z

)
Y m

k dS

= − 1

2πk

∫

S

(
∂ur

∂r
+

1

r

(
ur +

∂uθ

∂θ

))
Y m

k dS

=
1

2πk

∫

S

(
λ + 2µ

λ

∂uz

∂z
− 1

λ
σzz

)
Y m

k dS, (A.2.33)

and therefore

∂Um(z, k)

∂z
=

1

λ + 2µ
Em(z, k) +

λk

λ + 2µ
Vm(z, k). (A.2.34)
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A.2.2 Derivative of the displacement wavenumber spectrum
Vm(z, k)

The expression for Vm corresponding to Eq. A.1.18 can be differentiated to obtain

∂Vm

∂z
(z, k) =

1

2π

∫

S

(
∂ur

∂z

1

k

∂Y m
k

∂r
+

∂uθ

∂z

1

kr

∂Y m
k

∂θ

)
dS

=
1

µ

1

2πk

∫

S

(
τzr

∂Y m
k

∂r
+ τzθ

1

r

∂Y m
k

∂θ

)
dS

− 1

2πk

∫

S

(
∂uz

∂r

∂Y m
k

∂r
+

1

r2

∂uz

∂θ

∂Y m
k

∂θ

)
dS

=
1

µ
Fm − I, (A.2.35)

where

I =
1

2πk

∫

S

(
∂uz

∂r

∂Y m
k

∂r
+

1

r2

∂uz

∂θ

∂Y m
k

∂θ

)
dS =

1

2πk

∫

s

∇uz · ∇Y m
k dS. (A.2.36)

To manipulate Eq. A.2.36 we will use the functions

ym
k (z, r, θ) = e−kzY m

k (r, θ). (A.2.37)

We have

∇Y m
k = ekz∇ym

k + kY m
k ez, (A.2.38)

and therefore

I =
ekz

2πk

∫

S

∇uz · ∇ym
k dS +

1

2π

∫

S

∇uz · ∇
(
Y m

k · ez

)
dS. (A.2.39)

Since ym
k is a harmonic function, we find that

∇uz · ∇ym
k = ∇ · (uz∇ym

k

)− uz∇2ym
k = ∇ · (uz∇ym

k

)
, (A.2.40)

hence

I =
ekz

2πk

∫

S

∇ · (uz∇ym
k

)
dS +

1

2π

∫

S

∇uz · ∇
(
Y m

k · ez

)
dS. (A.2.41)

Integrating the first surface integral in the last expression between two arbitrary values
of z, z1 and z2, and applying the divergence theorem, as stated in Eq. A.2.30, we find

z2∫

z1

∫

S

∇ · (uz∇ym
k

)
dSdz =

∫

S

[
−ez ·

(
uz∇ym

k

)∣∣
z1

+ ez ·
(
uz∇ym

k

)∣∣
z2

]
dS

= −k

∫

S

uzym
k

∣∣∣∣
z2

z1

dS

= −k

∫

S

z2∫

z1

∂
(
uzym

k

)

∂z
dzdS (A.2.42)
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and therefore

∫

S

∇ · (uz∇ym
k

)
dS = −k

∫

S

∂
(
uzym

k

)

∂z
dS

= −k

∫

S

∂uz

∂z
ym

k dS + k2

∫

S

uzym
k dS

= −ke−kz

∫

S

∂uz

∂z
Y m

k dS + k2e−kz

∫

S

uzY m
k dS (A.2.43)

Substituting

I =
ekz

2πk

∫

S

∇ · (uz∇ym
k

)
dS +

1

2π

∫

S

∂uz

∂z
Y m

k dS

= − 1

2π

∫

S

∂uz

∂z
Y m

k dS +
k

2π

∫

S

uzY m
k dS +

1

2π

∫

S

∂uz

∂z
Y m

k dS

=
k

2π

∫

S

uzY m
k dS = k Um. (A.2.44)

Hence, we can finally write

∂Vm(z, k)

∂z
=

1

µ
Fm(z, k)− k Um(z, k). (A.2.45)

A.2.3 Derivative of the displacement wavenumber spectrum
Wm(z, k)

Finally, from the expression for Wm corresponding to Eq. A.1.22 we find

∂Wm

∂z
(z, k) =

1

2πk

∫

S

(
∂ur

∂z

1

r

∂Y m
k

∂θ
− ∂uθ

∂z

∂Y m
k

∂r

)
dS

=
1

2πk

∫

S

[(
∂ur

∂z
+

∂uz

∂r

)
1

r

∂Y m
k

∂θ

−
(

∂uθ

∂z
+

1

r

∂uz

∂θ

)
∂Y m

k

∂r

]
− 1

r

(
∂uz

∂r

∂Y m
k

∂θ
− ∂uz

∂θ

∂Y m
k

∂r

)
dS

=
1

2πk

1

µ

∫

S

(
τzr

1

r

∂Y m
k

∂θ
− τzθ

∂Y m
k

∂r

)
dS

− 1

2πk

∫

S

1

r

(
∂uz

∂r

∂Y m
k

∂θ
− ∂uz

∂θ

∂Y m
k

∂r

)
dS

=
1

µ
Gm − 1

2πk

∫

S

∇uz ·
(∇Y m

k × ez

)
dS. (A.2.46)
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The second integral can be manipulated as follows

∫

S

∇uz ·
(∇Y m

k × ez

)
dS

=

∫

S

∇ · (uz

(∇Y m
k × ez

))− uz∇ · (∇Y m
k × ez

)
dS (A.2.47)

Using cartesian coordinates we find

∇ · (∇Y m
k × ez) = ∇ ·

(
∂Y m

k

∂y
ex − ∂Y m

k

∂x
ey

)
= 0, (A.2.48)

and hence
∫

S

∇uz ·
(∇Y m

k × ez

)
dS =

∫

S

∇ · (uz

(∇Y m
k × ez

))
dS

(A.2.49)

Using the divergence theorem once more, we have

z2∫

z1

∫

S

∇ · (uz

(∇Y m
k × ez

))
dSdz

=

∫

S

−ez ·
(
uz

(∇Y m
k × ez

))∣∣
z1

+ ez ·
(
uz

(∇Y m
k × ez

))∣∣
z2

dS. (A.2.50)

However, since ∇Y m
k × ez is perpendicular to ez, the last integrand is always equal to

zero. Therefore, we have

∂Wm(z, k)

∂z
=

1

µ
Gm(z, k) (A.2.51)

In summary, Eqs. A.2.34, A.2.45 and A.2.51 provide the following system of equa-
tions:

∂Um(z,k)
∂z

= 1
λ+2µ

Em(z, k) + λk
λ+2µ

Vm(z, k)

∂Vm(z,k)
∂z

= 1
µ

Fm(z, k)− k Um(z, k)

∂Wm(z,k)
∂z

= 1
µ

Gm(z, k)





, (A.2.52)

which is the expression of Hooke’s law in the wavenumber domain.

A.3 Hankel transform of the equations of motion

In addition to the three equations obtained by applying the Hankel transform to
Hooke’s law, we will also find three equations relating the displacement vector u(z, r, θ)
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and its first and second derivatives. For this, we consider the equilibrium conditions of
linear momentum (Eq. 2.7), given by

(λ + 2µ)∇ (∇ · u)− µ∇× (∇× u) + f = 0. (A.3.53)

This equation relates the first and second partial derivatives of the displacement field
u and the field itself. Although clear and compact in notation, this expression is not
suitable for calculations. However, we can rewrite Eq. A.3.53 by means of the Hankel
transform and taking into account the obtained relations obtained in the previous
section. By doing this, we will transform this equation into an equivalent system
of 6 equations on 6 variables. The variables will be the wavenumber spectra of the
displacement and stress field, and the equations relating them will only include the
spectra themselves and their first derivative with respect to z. Needless to say, such
system of ordinary differential equations is more practical than the original Eq. A.3.53.

We consider the expressions for the vector Hankel transform of u(z, r, θ) (Eq. A.1.8),
as well as the scalar Hankel transform (Eq. A.1.4) for each of the components of
u(z, r, θ). Substitution of Eqs. A.1.5 to A.1.7 into Eq. A.1.8 gives

u(z, r, θ) =
∑
m

∞∫

0

[
Umez +

1

k

(
Vm

∂

∂r
+ Wm

1

r

∂

∂θ

)
er

+
1

k

(
Vm

1

r

∂

∂θ
−Wm

∂

∂r

)
eθ

]
Y m

k kdk, (A.3.54)

We can now consider each of the three components from u(z, r, θ) and obtain the
following identities

uz(z, r, θ) =
∑
m

∞∫

0

UmY m
k k dk, (A.3.55)

∂uz

∂z
=

∑
m

∞∫

0

∂Um

∂z
Y m

k k dk, (A.3.56)

∂uz

∂r
=

∑
m

∞∫

0

Um
∂Y m

k

∂r
k dk, (A.3.57)

∂uz

∂θ
=

∑
m

∞∫

0

Um
∂Y m

k

∂θ
k dk; (A.3.58)
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ur(z, r, θ) =
∑
m

∞∫

0

(
Vm

1

k

∂Y m
k

∂r
+ Wm

1

kr

∂Y m
k

∂θ

)
k dk, (A.3.59)

∂ur

∂z
=

∑
m

∞∫

0

(
∂Vm

∂z

1

k

∂Y m
k

∂r
+

∂Wm

∂z

1

kr

∂Y m
k

∂θ

)
k dk, (A.3.60)

∂ur

∂r
=

∑
m

∞∫

0

(
Vm

1

k

∂2Y m
k

∂r2
+ Wm

(
1

kr

∂2Y m
k

∂θ∂r
− 1

kr2

∂Y m
k

∂θ

))
k dk, (A.3.61)

∂ur

∂θ
=

∑
m

∞∫

0

(
Vm

1

k

∂2Y m
k

∂r∂θ
−m2Wm

1

kr
Y m

k

)
k dk; (A.3.62)

uθ(z, r, θ) =
∑
m

∞∫

0

(
Vm

1

kr

∂Y m
k

∂θ
−Wm

1

k

∂Y m
k

∂r

)
k dk, (A.3.63)

∂uθ

∂z
=

∑
m

∞∫

0

(
∂Vm

∂z

1

kr

∂Y m
k

∂θ
− ∂Wm

∂z

1

k

∂Y m
k

∂r

)
k dk, (A.3.64)

∂uθ

∂r
=

∑
m

∞∫

0

(
Vm

(
1

kr

∂2Y m
k

∂r∂θ
− 1

kr2

∂Y m
k

∂θ

)
−Wm

1

k

∂2Y m
k

∂r2

)
k dk, (A.3.65)

∂uθ

∂θ
=

∑
m

∞∫

0

(
−m2Vm

1

kr
Y m

k −Wm
1

k

∂2Y m
k

∂r∂θ

)
k dk. (A.3.66)

In cylindrical coordinates, we have

∇ · u =
∂uz

∂z
+

∂ur

∂r
+

1

r

(
ur +

∂uθ

∂θ

)
(A.3.67)

Substituting from Eqs. A.3.55 to A.3.66 and applying the relationship given by Eq. A.1.2
we find

∇ · u =
∑
m

∞∫

0

[
∂Um

∂z
Y m

k + Vm
∂2Y m

k

∂r2
+ Wm

(
1

r

∂2Y m
k

∂θ∂r
− 1

r2

∂Y m
k

∂θ

)

+
1

r

(
Vm

∂Y m
k

∂r
+ Wm

1

r

∂Y m
k

∂θ

)
+

1

r

(
−m2Vm

1

r
Y m

k −Wm
∂2Y m

k

∂r∂θ

)]
k dk

=
∑
m

∞∫

0

∂Um

∂z
Y m

k + Vm

(
∂2Y m

k

∂r2
+

1

r

∂Y m
k

∂r
− m2

r2
Y m

k

)
dk

=
∑
m

∞∫

0

(
∂Um

∂z
− kVm

)
Y m

k kdk. (A.3.68)
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Therefore

∇ (∇ · u) =
∂∇ · u

∂z
ez +

∂∇ · u
∂r

er +
1

r

∂∇ · u
∂θ

eθ, (A.3.69)

where

∂∇ · u
∂z

=
∑
m

∞∫

0

(
∂2Um

∂z2
− k

∂Vm

∂z

)
Y m

k kdk, (A.3.70)

∂∇ · u
∂r

=
∑
m

∞∫

0

(
∂Um

∂z
− kVm

)
∂Y m

k

∂r
kdk, (A.3.71)

1

r

∂∇ · u
∂θ

=
∑
m

∞∫

0

(
∂Um

∂z
− kVm

)
∂Y m

k

∂θ
kdk. (A.3.72)

Using the expressions Eqs. A.1.5 to A.1.7 for the cylindrical surface harmonics, we
obtain

∇ (∇ · u) =
∑
m

∞∫

0

((
∂2Um

∂z2
− k

∂Vm

∂z

)
Zm

k + k

(
∂Um

∂z
− kVm

)
Rm

k

)
k dk.(A.3.73)

Similarly, the curl of u in cylindrical coordinates can be calculated as

∇× u =
1

r

∣∣∣∣∣∣∣

ez er reθ

∂
∂z

∂
∂r

∂
∂θ

uz ur ruθ

∣∣∣∣∣∣∣
= a (A.3.74)
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A.3. Hankel transform of the equations of motion

Again, substituting from Eqs. A.3.55 to A.3.66 into A.3.74 and applying Eq. A.1.2

az =
∂uθ

∂r
+

1

r

(
uθ − ∂ur

∂θ

)

=
∑
m

∞∫

0

[
Vm

(
1

r

∂2Y m
k

∂r∂θ
− 1

r2

∂Y m
k

∂θ

)
−Wm

∂2Y m
k

∂r2

+
1

r

(
Vm

1

r

∂Y m
k

∂θ
−Wm

∂Y m
k

∂r
− Vm

∂2Y m
k

∂r∂θ
+ m2Wm

1

r
Y m

k

)]
dk

=
∑
m

∞∫

0

(
m2

r2
Y m

k − ∂2Y m
k

∂r2
− 1

r

∂Y m
k

∂r

)
Wmdk

=
∑
m

∞∫

0

WmY m
k k2dk, (A.3.75)

ar =
1

r

∂uz

∂θ
− ∂uθ

∂z

=
∑
m

∞∫

0

(
∂Wm

∂z

∂Y m
k

∂r
+

(
Umk − ∂Vm

∂z

)
1

r

∂Y m
k

∂θ

)
dk, (A.3.76)

aθ =
∂ur

∂z
− ∂uz

∂r

=
∑
m

∞∫

0

(
∂Wm

∂z

1

r

∂Y m
k

∂θ
−

(
Umk − ∂Vm

∂z

)
∂Y m

k

∂r

)
dk. (A.3.77)

Expressions A.3.75 to A.3.77 can be used to calculate the following partial derivatives

∂az

∂r
=

∑
m

∞∫

0

Wm
∂Y m

k

∂r
k2dk, (A.3.78)

∂az

∂θ
=

∑
m

∞∫

0

Wm
∂Y m

k

∂θ
k2dk, (A.3.79)

∂ar

∂z
=

∑
m

∞∫

0

(
∂2Wm

∂z2

∂Y m
k

∂r
+

(
∂Um

∂z
k − ∂2Vm

∂z2

)
1

r

∂Y m
k

∂θ

)
dk, (A.3.80)

∂ar

∂θ
=

∑
m

∞∫

0

(
∂Wm

∂z

∂2Y m
k

∂r∂θ
−m2 1

r

(
Umk − ∂Vm

∂z

)
Y m

k

)
dk, (A.3.81)
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A.3. Hankel transform of the equations of motion

∂aθ

∂z
=

∑
m

∞∫

0

(
∂2Wm

∂z2
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r

∂Y m
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k
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dk, (A.3.82)

∂aθ

∂r
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∂θ
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(
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∂z

)
∂2Y m

k

∂r2

)
dk, (A.3.83)

which need to be considered when calculating ∇× (∇× u)

∇× (∇× u) = ∇× a =
1

r
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Substitution of the expressions A.3.80 to A.3.83 into A.3.84 gives

bz =
∂aθ

∂r
+

1

r

(
aθ − ∂ar

∂θ

)

=
∑
m

∞∫

0

[
∂Wm

∂z

(
1

r

∂2Y m
k

∂r∂θ
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=
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br =
1

r
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∂θ
− ∂aθ
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bθ =
∂ar

∂z
− ∂az

∂r

=
∑
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∂Um

∂z
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A.4. The poloidal- and toroidal-mode systems

Using the expressions Eqs. A.1.5 to A.1.7 for the cylindrical surface harmonics, we can
hence write ∇× (∇× u) as

∇× (∇× u) =
∑
m

∞∫

0
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k2
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Umk − ∂Vm

∂z

)
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k ez
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)
1
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)
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∂z2

)
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r
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)
∂Y m

k
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)
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]
dk, (A.3.88)

that is

∇× (∇× u) =
∑
m

∞∫

0

[
k

(
Umk − ∂Vm

∂z

)
Zm

k

+

(
∂Um

∂z
k − ∂2Vm

∂z2

)
Rm

k +

(
k2Wm − ∂2Wm

∂z2

)
Tm

k

]
kdk. (A.3.89)

Since (Zm
k ,Rm

k ,Tm
k ) form an orthogonal vector basis, when substituting Eqs. A.3.73

and A.3.89 into the equation of motion given by Eq. A.3.53, we can split each of the
three components, finding that the equation of motion in the wavenumber domain can
be written as the following system

(λ + 2µ)∂2Um

∂z2 − (λ + µ)k ∂Vm

∂z
− µk2Um = 0

µ∂2Vm

∂z2 + (λ + µ)k ∂Um

∂z
− (λ + 2µ)k2Vm = 0

µk2Wm − µ∂2Wm

∂z2 = 0





. (A.3.90)

For the source conditions we need to substitute the right side of the latter homogeneous
system by the source functions, which depend upon the body force f used to describe
the source. For a single force and a point dislocation, Table 2.1 shows the Hankel
transformed source functions.

A.4 The poloidal- and toroidal-mode systems

The relations given by Eqs. A.3.90 and the relationships found for the first derivatives
of Um, Vm and Wm, Eqs. A.2.52 can be combined as follows. Deriving Eq. A.2.52a and
using Eq. A.3.90a, we find

∂Em(z, k)

∂z
= (λ + 2µ)

∂2Um(z, k)

∂z2
− λk

∂Vm(z, k)

∂z

= µk
∂Vm(z, k)

∂z
+ µk2Um(z, k)− Lm(z, k)

= kFm(z, k)− Lm(z, k). (A.4.91)
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A.4. The poloidal- and toroidal-mode systems

The derivative of Eq. A.2.52b can be combined with Eq. A.3.90b as follows

∂Fm(z, k)

∂z
= µ

∂2Vm(z, k)

∂z2
+ µk

∂Um(z, k)

∂z

= −λk
∂Um(z, k)

∂z
+ (λ + 2µ) k2Vm(z, k)−Mm(z, k)

= − λk

λ + 2µ
Em(z, k) +

4µ (λ + µ) k2

λ + 2µ
Vm(z, k)−Mm(z, k).(A.4.92)

Finally, the derivative of Eq. A.2.52c combined with Eq. A.3.90c give

∂Gm(z, k)

∂z
= µk2Wm(z, k) + Nm(z, k). (A.4.93)

Defining the vectors ym = (Um, Em, Vm, Fm)t and xm = (Wm, Gm)t we can write
the last three results in matrix format, together with those from Eqs. A.2.52:

d
dz

ym = Aym, (A.4.94)

A =




0 1
λ + 2µ

λk
λ + 2µ

0

0 0 0 k

− k 0 0 1
µ

0 − λk
λ + 2µ

4k2µ (λ + µ)
λ + 2µ

0




; (A.4.95)

d

dz
xm = Bxm, (A.4.96)

B =


 0 1

µ

µk2 0


 . (A.4.97)

which are the poloidal- and toroidal-mode systems of ordinary differential equations.
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Appendix B

Previous published modeling
results for gravitational viscoelastic
post-seismic relaxation on a layered
Earth model

This appendix compiles four figures displaying results from Pollitz (1997), obtained by
means of his layered spherical model (Figs. B.1 and B.2), as well as two figures from
the work of Rundle (1982), showing his modeling results using his layered viscoelastic
gravitational half-space model (Fig. B.3). Both Pollitz’s and Rundle’s approaches are
still widely used and accepted. For this reason, we compared the results from our
modeling method to these. The results from our calculations can be seen in Figs. 2.6,
which is comparable to Figs. 9 and 10 from Pollitz (1997) (Fig. B.2 in this Appendix),
and Fig. 2.7, comparable with Figs. 3 and 6 from Pollitz (1997) (Fig. B.1 in this
Appendix) and with Figs. 6 and 7 from Rundle (1982) (Fig. B.3 in this Appendix).
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Appendix B. Previous published modeling results for gravitational
viscoelastic post-seismic relaxation on a layered Earth model

Figure B.1: (Figs. 3 and 6 from Pollitz (1997)) Co-seismic and additional post-
thrusting displacement at the surface predicted by Model A (top left) and B (top right)
on a profile perpendicular to the fault strike and bisecting the fault plane. U represents
the magnitude of slip on the fault plane, and ux and uz are displacement perpendicular
to the fault strike and in the vertical direction, respectively. Variables λ and µ are the
Lame parameters, and ρ is the density.
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Appendix B. Previous published modeling results for gravitational
viscoelastic post-seismic relaxation on a layered Earth model

Figure B.2: (Figs. 9 and 10 from Pollitz (1997)) Co-seismic and post-strike-slip
displacement predicted by Model A (top left) and B (top right). Symbols are as defined
in Fig. B.1.
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Appendix B. Previous published modeling results for gravitational
viscoelastic post-seismic relaxation on a layered Earth model

Figure B.3: (Figs. 6 and 7 from Rundle (1982)) Surface displacements due to a
30o dipping thrust fault in an elastic layer over a viscoelastic half-space (upper panel)
and in an elastic-gravitational layer over a viscoelastic-gravitational half-space (lower
panel). Long-dashed line is layer-half-space boundary, slanted line is edge-on view of
fault plane. Fault is 2L = 20H/3 long, D = H/2, and W = H (2L is the length
of the fault along strike, W is its width, D is the depth of its upper limit and H is
the thickness of the elastic layer). Solid curve is the initial co-seismic displacement,
short-dashed curves show changes in surface displacements due to viscoelastic stress
relaxation after 5τα and 45τα. Left vertical axis is cm/m of slip, horizontal axis is
distance normal to fault strike, and right vertical axis is depth.
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