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Krishnamurthy, Anne Möhle, Dr. Gudrun Oevel, Marcus Post, Rechnerbetreuung
Mathematik, Uwe Schubert, Dr. Oliver Schütze, Stefan Sertl, Fang Wang, and
Katrin Witting.

However, this list would not be complete without a special thanks to all my
friends and my family. In particular, the constant support and encouragement
of my parents, Heinz-Josef and Helene Padberg, has accompanied me over many
years of studies.

Finally, I thank Dietmar Gehle - for a number of things.

iv



Contents

1 Introduction 1

2 Basic Concepts and Definitions 11
2.1 Autonomous Dynamical Systems . . . . . . . . . . . . . . . . . . 12

2.1.1 Hyperbolic Sets and Invariant Manifolds . . . . . . . . . . 13
2.1.2 Attractor . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Ergodic Theory . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 Lyapunov Exponents . . . . . . . . . . . . . . . . . . . . . 16

2.2 Non-Autonomous Dynamical Systems . . . . . . . . . . . . . . . . 20
2.2.1 Hyperbolic Trajectories and Invariant Manifolds . . . . . . 20
2.2.2 Pullback Attractor . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Lyapunov Exponents . . . . . . . . . . . . . . . . . . . . . 26

2.3 Finite-Time Velocity Fields . . . . . . . . . . . . . . . . . . . . . 27

3 The Set Oriented Approach 30
3.1 The Subdivision Algorithm . . . . . . . . . . . . . . . . . . . . . . 30
3.2 The Continuation Algorithm . . . . . . . . . . . . . . . . . . . . . 32
3.3 Extensions to Non-Autonomous Systems . . . . . . . . . . . . . . 34

4 Expansion Rate Approach for Autonomous Systems 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Expansion Rates . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Expansion Rates and Stable Manifolds . . . . . . . . . . . 39
4.2.3 Direct Expansion Rates . . . . . . . . . . . . . . . . . . . 43
4.2.4 Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Approximation of Expansion Rates . . . . . . . . . . . . . . . . . 47
4.3.1 Set Wise Expansion Rates . . . . . . . . . . . . . . . . . . 47
4.3.2 Test Point Strategies . . . . . . . . . . . . . . . . . . . . . 47
4.3.3 Choice of Number of Iterations N . . . . . . . . . . . . . . 50
4.3.4 Parallel Computing . . . . . . . . . . . . . . . . . . . . . . 53

v



4.3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Extraction of Invariant Manifolds . . . . . . . . . . . . . . . . . . 60

4.4.1 The Subdivision Algorithm . . . . . . . . . . . . . . . . . . 60
4.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Expansion in Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5.1 Dynamical Systems and Graphs . . . . . . . . . . . . . . . 68
4.5.2 Graph Based Expansion . . . . . . . . . . . . . . . . . . . 69
4.5.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Analyzing Transport in Non-Autonomous Systems 76
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Time-Dependent Invariant Manifolds . . . . . . . . . . . . . . . . 77

5.2.1 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . 79
5.2.2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . 83
5.2.3 The Continuation Algorithm . . . . . . . . . . . . . . . . . 83
5.2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Computation of Transport Rates . . . . . . . . . . . . . . . . . . 92
5.3.1 A Transfer Operator Approach . . . . . . . . . . . . . . . 93
5.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Application to Ocean Flows 108
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2 Two-Dimensional Ocean Flows . . . . . . . . . . . . . . . . . . . . 110
6.3 Transport in Monterey Bay . . . . . . . . . . . . . . . . . . . . . 115
6.4 Three-Dimensional Ocean Flows . . . . . . . . . . . . . . . . . . . 116

7 Conclusion 120

vi



Chapter 1

Introduction

In this thesis numerical techniques for the analysis of transport phenomena in
non-autonomous dynamical systems are developed. This introduction will estab-
lish the context: it addresses the dynamical systems approach to transport and
discusses how these concepts can be used for the analysis of time-dependent ve-
locity fields. This provides the scientific background for a detailed description of
the results in this thesis.

Transport and dynamical systems Transport processes play an important
role in many natural phenomena. Prominent examples are the chaotic advection
of fluid particles in geophysical flows or the transport of asteroids and comets
in the solar system. Similar transport mechanisms are also at work in chemical
physics explaining for example the transition between different conformations of
molecules or the kinematics of chemical reactions.

Suppose one is interested in the motion of a passive particle, that is a passive
quantity driven by a fluid flow. Then, neglecting molecular diffusion [11, 74], the
particle follows trajectories which are solutions of

ẋ = f(x, t),

where f(x, t) is the velocity field, x ∈ Rn the particle position, and t ∈ R the
time. From a dynamical systems point of view the motion of the passive quantity
is governed by those structures that form the skeleton of the dynamics, such as
attractors, invariant manifolds, or, in the case of Hamiltonian systems, KAM tori.
Over the past twenty years this analogy between the global, geometrical study of
nonlinear dynamical systems and transport and mixing studies in classical and
fluid mechanics has been used to obtain a deeper understanding of transport
issues in a variety of systems, notably in geophysical models, see for example
Aref [3], Jones [60], or Wiggins [112] for recent reviews.
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Hence, most of the work has been done in the context of two-dimensional,
time-periodic or quasi-periodic velocity fields where the study of the equations
for fluid particle trajectories can be reduced to the study of a two-dimensional
area-preserving Poincaré map. Once the problem has been cast in this setting, a
variety of well-known techniques and ideas from dynamical systems theory can be
applied for the purpose of studying fluid transport and mixing issues. For exam-
ple, KAM tori represent barriers to fluid transport and mixing whereas chaotic
dynamics should act to enhance mixing. In particular, invariant manifolds, such
as the stable and unstable manifolds of hyperbolic periodic points, manifest them-
selves as organizing structures in the fluid flow [86]. In that setting, the stable
and unstable manifolds generically intersect transversally, producing an infinite
number of homoclinic or heteroclinic tangles, so-called lobes - little areas formed
by the manifold intersections (see e.g. [76, 91, 110]). These lobes provide a natu-
ral gate way between dynamically distinct regions; hence, lobe dynamics is seen
as the main transport mechanism in this context. Transport can be quantified
in terms of lobe volumes, which can be estimated for example by a Melnikov
approach [78, 110]. This transport mechanism based on the geometrical template
of stable and unstable manifolds is known as chaotic transport.

Time-dependent dynamical systems Recent progress in nonlinear dynam-
ics has extended the above picture to velocity fields with general aperiodic time
dependence. Here hyperbolic trajectories and their stable and unstable manifolds
continue to manifest themselves as the organizing structures in the flows. How-
ever, often the structures under consideration exist only on a finite-time interval.
This is the case in turbulent flows or, in particular, when the velocity field f(x, t)
is given as data obtained from measurements or as the numerical solution of a
partial differential equation such as the Navier-Stokes equation. For example,
modern sensing techniques have been developed to the point where geophysical
data such as velocity fields or temperature fields can now be obtained at a fairly
high resolution in space and time. In particular, the Office for Naval Research
sponsored Autonomous Ocean Sampling Network II project (AOSN II) [2] as well
as its successor Adaptive Sampling and Prediction (ASAP) [4] have the objec-
tive to integrate sophisticated platforms and techniques to better observe and
predict the ocean. Within the AOSN II field experiment in Monterey Bay (Cali-
fornia) geophysical data has been obtained through different sensing devices such
as autonomous underwater vehicles or high frequency radar arrays. One scien-
tific goal is to analyze the velocity data in order to detect so-called Lagrangian
coherent structures [102]. Without being precise about their definition for now
these can be seen as finite-time analogues to stable and unstable manifolds, still
mediating transport in the fluid flow, see Figure 1.1. These structures are of
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great oceanographic interest. For example, numerical evidence shows that they
often correspond to temperature fronts [74]. Moreover, the knowledge of these
structures is useful when optimizing the trajectories or distribution of underwater
gliders [57, 105].

Figure 1.1: Illustration of the discrete velocity field measured in Monterey Bay in
summer 2003 within the AOSN II project [2]. Also shown is an approximation of
Lagrangian coherent structures (red), which mediate transport and mixing (see
Chapter 6).

However, in this context several mathematical and practical problems arise:
first of all, most of the fundamental concepts and results from dynamical systems
theory have at best questionable validity when the evolution describing the dy-
namics is based on a time series. For instance, chaos, hyperbolicity and invariant
manifolds are asymptotic notions and the general time dependence of the data
rules out an extrapolation of the dynamical system to infinity. So, finite-time
concepts for the classical notions need to be established.

The development of mathematically consistent concepts for dynamical sys-
tems with aperiodic time dependence has been an active research area in the last
ten years (see e.g. [112]). This leads to the new idea of a finite-time analysis.
Rather than dealing with asymptotic notions of the evolution of the system, one
considers the structures of interest on finite-time intervals and makes statements
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about notions, such as their stability, only with respect to this time span. This
is a natural thing to do as in the numerical analysis of dynamical systems one is
always restricted to dealing with finite-time approximations.

Note that in the course of this work the classical terms from dynamical systems
will also be used to describe finite-time notions. This may not always be in
accordance with classical dynamical systems theory but is widely used in the
literature, see Wiggins [112] for a discussion. For example, the term finite-time
hyperbolic trajectory is completely at odds with classical dynamical systems theory
where a trajectory is defined for all times and hyperbolicity is an asymptotic
concept. In the finite-time context this term refers to a solution to the differential
equation with respect to the time interval under consideration which attracts
other solutions from some directions and repels them along others. A precise
definition is given in Section 2.3.

Recent work has shown that the presence of a uniformly hyperbolic trajectory
defined on a long enough finite-time interval implies the existence of (finite-time)
stable and unstable manifolds, so-called hyperbolic material lines or surfaces,
which play again a crucial role in transport and mixing as in the classical case [50,
45]. The existence of a uniformly hyperbolic trajectory, however, can only be
proven under very restrictive conditions. It is essential to have a hyperbolic
stagnation point on frozen time slices of the velocity field which does not move
too fast under the dynamics [49]. However, these conditions are difficult to verify
in general fluid flows [61, 113].

Approximation of hyperbolic trajectories and their stable/unstable
manifolds Only a few algorithms for the detection of (finite-time) hyperbolic
trajectories (e.g. [56, 63]) have been proposed. The majority of recent approaches
deal with the approximation of (finite-time) stable and unstable manifolds, where
the underlying hyperbolic trajectory can be obtained as the intersection of the
manifolds. These techniques fall roughly into two classes. The first class of meth-
ods uses the fact that a ball of points initialized near the hyperbolic trajectory
will align along the unstable manifold or along the stable manifold under time
reversal [78, 79, 80, 84], see Figure 1.2. A similar notion is that of pullback
attraction [7, 8, 97, 104], where attracting sets in fibers of the extended phase
are considered. Under mild assumptions it can be shown that the local unstable
manifold of a hyperbolic trajectory is pullback attracting [104].

The second class of approaches makes use of the repelling nature of the stable
manifold in a statistical sense. Here the stable manifold of a hyperbolic trajectory
typically appears as a local maximizer of the finite-time Lyapunov exponent or
direct Lyapunov exponent [46, 47, 74]. Finite-time Lyapunov exponents with
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respect to initial conditions x(t0) = x0 are defined by

Λ(t; t0, x0) :=
1

2t
log λmax{(Dxϕ

t+t0,t0(x0))
>Dxϕ

t+t0,t0(x0)},

where λmax denotes the maximum eigenvalue of the positive semi-definite matrix
(Dxϕ

t+t0,t0(x0))
>Dxϕ

t+t0,t0(x0). This quantity measures how much an infinites-
imal perturbation grows under the linearized flow and is expected to be large
along repelling objects.

Related concepts are finite-size Lyapunov exponents [9, 10, 62, 70] or relative
dispersion [12, 61, 108, 113], which measure how much solutions to neighboring
initial conditions of a small but finite distance diverge as time increases. These
approaches do not use the Jacobian matrix Dxϕ

t+t0,t0(x0). The hyperbolicity
times approach by Haller [45, 46], which takes necessary and sufficient conditions
into account, uses the eigenvalue structure of the Jacobian to detect the local
stable and unstable manifolds of a (finite-time) hyperbolic trajectory.

Figure 1.2: Stable and unstable manifold of a hyperbolic saddle point in a time-
discrete dynamical system. Points initialized on either sides of the stable manifold
move along different branches of the unstable manifold under the dynamics.

The above methods have a number of shortcomings. Most of these techniques
are formulated for the two-dimensional setting. Also, in order to be able to
approximate the fine scale structures, such as invariant manifolds or even lobes,
from which to deduce the transport quantities, a dense enough grid representation
of the data is required, which is often not available. Furthermore, especially in
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methods that make use of the finite-time Lyapunov exponent or hyperbolicity
times, a reliable approximation of the total derivative Dxf(x, t) is needed.

Without using the Jacobian, the stable manifolds can be approximated by
those initial conditions that determine solutions which remain in a certain initial
box for the longest time [98, 106]. These methods are independent of the dimen-
sion of phase space or the accuracy of the underlying data but they appear to be
experimental with theoretical results largely missing.

A common feature of the majority of these approaches is that they seek to
provide an accurate approximation of the invariant manifolds in order to be able
to discover the underlying transport mechanism. However, while invariant man-
ifolds in periodic or quasi-periodic velocity fields generically intersect infinitely
often, this is not true for aperiodic flows and finite-time systems [78, 87]. Here,
there are usually only a finite number of lobes or none at all, ruling out the appli-
cation of lobe dynamics. Furthermore, in the fluid dynamics context, often some
version of Melnikov’s method is used for transport calculations. This requires the
flow to be very close to an integrable steady limit, a condition which is usually
not fulfilled in arbitrary flows [49]. Finally, lobe dynamics may not even be able
to provide a template for all transport mechanisms at work [62]. This is reason
enough to develop manifold independent methods for the calculation of transport
rates.

Other techniques for analyzing transport Apart from attempting to ex-
tract invariant manifolds as the boundaries between regions, one can also think of
directly approximating the regions of interest, such as in the patchiness approach
[77, 82, 83]. In this context dynamically distinct regions are identified using time
averages, yielding an ergodic partition of the set under consideration.

Another concept is that of almost invariant sets, see e.g. [26, 28, 30, 31, 32, 38].
These are regions in phase space that are almost invariant in the sense that, with
high probability, a trajectory starting in a particular set will stay in this set for
a long time.

To identify and approximate almost invariant sets, one considers a transfer op-
erator (the Frobenius-Perron operator) on the set of probability measures whose
fixed points are invariant measures. The set oriented approach first proposed by
Dellnitz and Hohmann [23, 24] provides a natural basis for the numerical approxi-
mation of this operator. Here the phase space is discretized by small sets (boxes).
Then the transfer operator with respect to this discretization can be approxi-
mated in terms of a transition matrix which contains the transition probabilities
between these boxes [64], an idea which goes back to Ulam [107]. By this one
obtains a Markov chain. The eigenvector of the transition matrix corresponding
to the eigenvalue 1 is an approximation of the natural invariant measure, whereas
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eigenvectors corresponding to eigenvalues of modulus near 1 approximate signed
measures. Then boxes corresponding to negative entries in the eigenvector and
boxes corresponding to positive entries form two almost invariant sets [26, 32].

Apart from such a spectral approach one can view the Markov process as a
directed graph. Then standard graph algorithmic techniques can be employed to
obtain a partition of phase space into almost invariant sets [28, 30, 31, 38]. Once
a partition of phase space has been obtained, transport rates between the regions
obtained can be easily computed using the transfer operator [28]. Moreover, in
Dellnitz, Junge, Koon et al. [28] it was demonstrated in an example that the
boundaries between almost invariant sets correspond to invariant manifolds of
hyperbolic periodic points.

However, this methodology is restricted to autonomous systems and further-
more, because of its global nature, provides a coarse picture of the phase space
structure. Although some recent effort has been made by Froyland [37], typically
the boundaries between the almost invariant sets are not resolved at a sufficiently
high accuracy to analyze transport at smaller scales.

What is achieved in this thesis This thesis contributes to the current re-
search on the detection of invariant manifolds in dynamical systems with gen-
eral time dependencies and the approximation of transport rates by making use
of the advantages of different techniques. To be more precise, we extend the
well-established methods related to finite-time Lyapunov exponents and relative
dispersion described above, and embed them in the set oriented approach first
proposed by Dellnitz and Hohmann [23, 24]. This new multilevel technique, the
expansion rate approach, allows for the efficient detection, approximation, and
continuation of stable and unstable manifolds to hyperbolic objects. It is largely
independent of the resolution of the data and its formulation is independent of
the dimension of phase space.

Moreover, we present a set oriented technique for the computation of trans-
port rates in dynamical systems with general time dependencies which is inde-
pendent of invariant manifolds. The method relies on a discretization of the
Perron-Frobenius operator of the underlying non-autonomous dynamical system
and extends and improves the results in Dellnitz, Junge, Koon et al. [28], where
the autonomous case has been treated. Hence, this approach can also be applied
to dynamical systems where the invariant manifold cannot be obtained accurately
enough to consider lobe dynamics or where the underlying transport mechanism
remains obscure.

Altogether this thesis makes four major contributions to the current research
in the numerical analysis of chaotic transport:

1. Detection and extraction of invariant manifolds in autonomous dynamical
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systems,

2. Extraction and continuation of invariant manifolds in non-autonomous dy-
namical systems,

3. Manifold independent approach for the computation of transport rates be-
tween regions of interest in non-autonomous dynamical systems, and

4. Application of these methods to geophysical fluid data obtained from high
frequency radar measurements in Monterey Bay in summer 2003.

The outline of this thesis is as follows:
In Chapter 2 we briefly introduce the relevant concepts from classical dy-

namical systems theory: hyperbolicity, invariant manifolds and attractors as well
as Lyapunov exponents for a diffeomorphism. We also address how these notions
translate into the setting of non-autonomous ordinary differential equations and
the analysis of velocity fields only given for finite time.

In Chapter 3 we review the basic set oriented methods for the approximation
of relative global attractors and invariant manifolds of autonomous dynamical
systems as introduced in Dellnitz and Hohmann [23, 24]. The extensions of these
results to non-autonomous systems by Aulbach, Rasmussen, and Siegmund [7],
and Siegmund [104] are briefly summarized.

Chapter 4 contains all the theoretical and numerical results related to the de-
tection and extraction of invariant manifolds in autonomous dynamical systems,
as well as a brief section discussing heuristics for detecting relevant structures in
graphs.

We define the expansion rate as the dominant finite-time Lyapunov exponent
with respect to some initial condition and analyze the relation between expansion
rates and geometrical structures in the underlying dynamical system. We note
that in typical cases the stable manifold of hyperbolic periodic points can be
identified as being a local maximizer of the expansion rate. For special cases this
relation is not only necessary but also sufficient. The direct expansion rate is then
defined as a finite approximation of the expansion rate via a difference quotient.
This formulation does not require smoothness of the map.

The numerical approximation of expansion rates and direct expansion rates
in a set oriented context is then introduced and relevant test point strategies are
discussed. We also address the problem of choosing an appropriate number of
iterates of the map to uncover the desired structures.

The set oriented methods provide a natural basis for a subdivision scheme for
the extraction of candidates for stable manifolds of hyperbolic periodic points,
that is regions that are characterized by large expansion rates. We prove con-
vergence of this algorithm and demonstrate it by the example of a steady ABC-
flow [36, 46]. This three-dimensional differential equation is notable for being an
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exact solution of Euler’s equation, exhibiting a nontrivial streamline geometry.
We extract two-dimensional stable manifolds of hyperbolic periodic orbits. To
the best of our knowledge this has been the first time that these two-dimensional
structures have been fully extracted and visualized.

In Dellnitz, Junge, Koon et al. [28] it has been shown that standard graph
partitioning methods can be used to detect almost invariant sets. In the example
considered, the boundaries between these sets coincide with the stable and unsta-
ble manifold of a hyperbolic fixed point of the underlying dynamical system. This
relation is not surprising as invariant manifolds are known to bound dynamically
distinct regions. Therefore, we derive heuristics based on the expansion idea in
order to detect these relevant manifold structures already in the graphs and we
test our approach with two examples. We note that such methods may provide
a first step in the analysis of time series.

In the first part of Chapter 5 set oriented methods for the numerical analysis
of non-autonomous systems are developed. We show how the results from the
autonomous case can be adapted to systems with general time dependence. The
numerical methods developed before are immediately applicable if one computes
the scalar expansion rate field with respect to a fixed initial time. However, as
the expansion and direct expansion rates here are not only dependent on the
integration interval but also on the initial time, one typically needs to carry out
these computations for a large number of initial times to analyze the temporal
behavior of the stable manifolds of hyperbolic trajectories. To avoid this we
propose a set oriented continuation scheme, which makes use of the fact that fibers
of the stable manifold of a uniformly hyperbolic trajectory can be continued in
backward time. The combination of a set oriented subdivision and continuation
scheme based on the expansion rate technique provides a new approach for the
efficient extraction of (finite-time) invariant manifold candidates.

The second part of the chapter addresses the approximation of transport rates.
Velocity fields defined as data sets typically do not provide an accurate enough
template for the computation of transport rates in terms of lobe dynamics. There-
fore we derive a set oriented approach for the approximation of transport rates
which is independent of any specific transport mechanism. The method relies on a
discretization of the Perron-Frobenius operator of the underlying non-autonomous
dynamical system and extends and improves the results in [28], where the set-up
for the autonomous case has been introduced. Notably, our method does not re-
quire volume-preservation of the underlying dynamical system. Moreover, unlike
in Monte Carlo approaches, such as used in [39], we can derive an error estimate
yielding an upper and lower bound on the transport rate between arbitrary sets of
interest. In addition, an adaptive approach is described which has been designed
to reduce the discretization error, generalizing the approach presented in [28]. We
test our method by two examples, a Rossby Wave Flow as well as an autonomous
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problem from chemical physics, where ionization rates for the Rydberg atom in
crossed fields are computed.

In Chapter 6 we discuss applications of our methods to geophysical fluid
flows. To be more precise, we apply our techniques to time-dependent two-
dimensional data sets, obtained within the AOSN II project from high frequency
radar measurements in Monterey Bay in summer 2003 [2]. We identify Lagrangian
coherent structures [102] that mediate transport in ocean dynamics. For the in-
tegration and interpolation of the two-dimensional time-dependent data we use
MANGEN [74], which also takes the different boundary conditions into account.
However, as the accurate trajectory integration is computationally very expensive
we are restricted in the number of test points. We therefore propose a different
direct expansion rate approach that only considers the box centers. This alter-
native method is very efficient but nevertheless gives a good indication of the
location of areas of high stretching.

Additionally, we compute transport rates from near-shore regions to regions
in the open sea west of Monterey Bay. The results demonstrate the strong time-
dependence of the transport processes, having serious implications for such things
as pollution timing as discussed in [74, 75]. We note that, due to the open bound-
ary allowing particles to leave the area under consideration, previous methods
that take advantage of volume-preservation are difficult to apply.

Moreover, the first set of experiments indicate that our methods allow the con-
sideration of three-dimensional oceanic flows. Also, three-dimensional geophysical
data has been collected within the AOSN II project in Monterey Bay [2], with
the goal being to learn more about genuinely three-dimensional events such as
the upwelling event. Here cool, nutrient-rich depth water rises to the surface and
influences the currents and temperature distribution in Monterey Bay dramati-
cally. This event is of great interest to oceanographers. For example, future field
experiments in Monterey Bay, such as planned within the ASAP project [4] for
summer 2006, will even concentrate on the observation of the upwelling center.
For our analysis we use data provided by the Harvard Ocean Prediction System
(HOPS) [1, 54].

The thesis closes with a summary of the results and a discussion about open
problems and possible future directions.
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Chapter 2

Basic Concepts and Definitions

The classical theory of dynamical systems is devoted to the analysis of their
qualitative and asymptotic behavior.

In the following section we briefly introduce the relevant concepts such as hy-
perbolicity, invariant manifolds and attractors, as well as Lyapunov exponents in
the context of discrete autonomous systems. Notably, the analysis of continuous
autonomous systems can be reduced to investigating an appropriate flow map.
Therefore, only distinct characteristics for this class of systems are discussed.

In the second section we show how these notions translate into the context of
non-autonomous dynamical systems. Here we define hyperbolic trajectories, show
the existence of invariant manifolds, and briefly review the concept of pullback
attractors as used, for example, in [7, 8, 15, 69, 97, 104]. Attractors for random
dynamical systems are considered in [67, 68]. Motivated by applications in fluid
dynamics and following the relevant literature, all concepts are introduced in
the framework of ordinary differential equations, that is, non-autonomous time-
continuous dynamical systems.

The theoretical concepts for dealing with finite-time notions are addressed
in the third section. Sometimes, the velocity field is given as a set of data and
thus only defined on a finite time interval. In this context, the classical notions
of stable and unstable manifolds or Lyapunov exponents become problematic as
they are asymptotic concepts. The development of a mathematically consistent
theory for the finite-time setting has been an active research area for the last ten
years. Here we give some relevant definitions and results by Haller and Poje [49],
Sandstede et al. [96], as well as Ide et al. [56].

Before we proceed, we introduce the norms and distances that will be used
throughout this thesis.

Norms, metrics and distances Let X ⊂ Rl be a compact set. We introduce
the following norms and metrics on Rl or Rl,l:
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• ‖·‖ is used as a general notation for vector norms on Rl or matrix norms
on Rl,l;

• ‖x‖∞ = max{|xi|, i = 1, . . . , l} denotes the maximum-norm on Rl;

• ||| · ||| := ‖·‖2 denotes the 2-norm, that is, the Euclidean vector norm

|||x||| =

√√√√ l∑
i=1

x2
i , x ∈ Rl

and the spectral norm for matrices A ∈ Rl,l, respectively,

|||A||| = max
|||x|||=1

|||Ax||| = max
|||x|||=|||y|||=1

|y>Ax| =
√

λmax{A>A},

where λmax{A>A} refers to the largest eigenvalue of the symmetric positive-
semidefinite matrix A>A ∈ Rl,l.

Let A, B ⊂ X ⊂ Rl be two non-empty sets. The Euclidean vector norm on Rl

defines a metric d on X

d(x, y) := |||x− y|||, x, y ∈ X.

We can then define three kinds of distances:

d(x, A) := inf{d(x, y) : y ∈ A},
d(A, B) := sup{d(x, B) : x ∈ A} (Hausdorff semi-distance),

dH(A, B) := max{d(A, B), d(B, A)} (Hausdorff distance).

2.1 Autonomous Dynamical Systems

Let f : X → X be a diffeomorphism defining a discrete dynamical system

xk+1 = f(xk), k ∈ Z.

on some compact subset X ⊂ Rl. f may be given as an analytical map or as a
time-T map xn+1 = φT (xn) of the flow φt of an autonomous ordinary differential
equation

ẋ = f(x)

with x ∈ Rl and f : Rl → Rl sufficiently smooth. We denote by Df(x) := Dxf(x)
the total derivative of f at x.

12



2.1.1 Hyperbolic Sets and Invariant Manifolds

A set A ⊂ X is called invariant if f(A) = A. Simple examples of invariant sets
are fixed points or periodic points. A fixed point x̄ satisfies f(x̄) = x̄. For a
periodic point xp we have fp(xp) = xp for some finite p > 1 and fk(xp) 6= xp for
1 ≤ k < p. The dynamics of f in a neighborhood of a fixed point x is well studied
in the case where x is hyperbolic, that is, Df(x) does not possess an eigenvalue
on the unit circle. Then the theorem of Hartman and Grobman (cf. [103]) says
that f and Df are locally topologically conjugated. Moreover, the tangent space
of X in x can be split into the direct sum of two Df(x)-invariant subspaces Eu

and Es, such that vectors in Eu are expanded by Df(x) and vectors in Es are
contracted. Eu is called the unstable eigenspace, Es the stable eigenspace.

The concept of hyperbolicity can be extended to general invariant sets:

Definition 2.1.1 (Hyperbolic invariant set) A closed invariant set Λ ⊂ X
is called hyperbolic if the tangent space TxX for x ∈ Λ can be written as the
direct sum

TxX = Eu
x ⊕ Es

x

such that

(i) Df(x)(Es
x) = Es

f(x) and Df(x)(Eu
x) = Eu

f(x);

(ii) there are constants C > 0 and λ ∈ (0, 1) such that

‖Df j(x)v‖ ≤ Cλj‖v‖ for v ∈ Es
x, j ≥ 0,

‖Df j(x)v‖ ≤ Cλ−j‖v‖ for v ∈ Eu
x , j ≥ 0;

(iii) Es
x and Eu

x depend continuously on x.

Now we introduce the notion of stable and unstable manifolds for hyperbolic
sets. Consider A ⊂ X and let

W s(A) = {y ∈ X| d(f j(y), f j(A)) → 0 for j →∞}
W u(A) = {y ∈ X| d(f−j(y), f−j(A)) → 0 for j →∞}

denote the stable and unstable set of A, respectively.
If Λ is a hyperbolic invariant set then W s(Λ) and W u(Λ) are immersed sub-

manifolds of Rl. The following statement gives an explanation:

Theorem 2.1.2 (Local stable and unstable manifold) Let Λ ⊂ X be a hy-
perbolic invariant set, x ∈ Λ and ε > 0 sufficiently small. For

W s
ε (x) = {y ∈ X| d(f j(y), f j(x)) ≤ ε for all j ≥ 0}

W u
ε (x) = {y ∈ X| d(f−j(y), f−j(x)) ≤ ε for all j ≥ 0}

it follows that

13



(i) W s
ε (x) and W u

ε (x) are differentiable submanifolds;

(ii) TxW
s
ε (x) = Es

x and TxW
u
ε (x) = Eu

x ;

(iii) there are constants C > 0 and λ ∈ (0, 1) such that

d(f j(y), f j(x)) ≤ Cλjd(x, y) for y ∈ W s
ε (x), j ≥ 0,

d(f−j(y), f−j(x)) ≤ Cλjd(x, y) for y ∈ W u
ε (x), j ≥ 0;

(iv) W s
ε (x) and W u

ε (x) are continuously dependent on x.

W s
ε (x) and W u

ε (x) are called the local stable and unstable manifolds of x.

The existence of these invariant manifolds is guaranteed by the Stable Manifold
Theorem, see, for example, Katok and Hasselblatt [66] for a collection of all
relevant results in this context. The global stable and unstable manifolds of
x are given by

W s(x) =
⋃
j≥0

f−j(W s
ε (f j(x))) and

W u(x) =
⋃
j≥0

f j(W u
ε (f−j(x))).

The following result by Palis (1969) (see e.g. [43], p.247, Thm. 5.2.10) states
that the unstable manifold of a hyperbolic fixed point can be approximated by
mapping forward a small disk initialized transverse to the stable manifold.

Theorem 2.1.3 (The Lambda Lemma) Let f be a C1-diffeomorphism of Rl

with a hyperbolic fixed or periodic point p having s and u dimensional stable and
unstable manifolds (s+u = l), and let D be a u-disk in W u(p). Let ∆ be a u-disk
meeting W s(p) transversely at some point q. Then

⋃
n≥0 fn(∆) contains u-disks

arbitrarily C1 close to D.

By a u-disk we mean a u-dimensional embedded ball in the l-dimensional phase
space. In a two-dimensional dynamical system, ∆ can be thought of as a curve
intersecting W s(p) transversely at some point; see Figure 2.1 for an illustration
of the theorem.

2.1.2 Attractor

The asymptotic behavior of dynamical systems is captured in the notion of at-
tracting sets or attractors. First we need to briefly review some fundamental
concepts.

The asymptotic states of an orbit through a point x ∈ X are defined in terms
of limit sets:
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Figure 2.1: A disk transversely intersecting the stable manifold converges to the
unstable manifold.

Definition 2.1.4 (ω- and α-limit sets) Let f : X → X be a continuous map
and x ∈ X. The ω-limit set of x is defined by

ω(x) = {y ∈ X| ∃ a sequence ni →∞ such that fni(x) → y}.
If f is a homeomorphism, we define the α-limit set of x similarly:

α(x) = {y ∈ X| ∃ a sequence ni → −∞ such that fni(x) → y}.
So limit sets contain the limit points of f i, i ∈ Z.

Definition 2.1.5 (Attracting set) An invariant set A ⊂ X is called an at-
tracting set with fundamental domain U ⊂ X, if for every open neighbor-
hood V ⊃ A there is J ∈ N such that f j(U) ⊂ V for all j ≥ J .

The closure of an invariant set is invariant. For a closed attracting set A with
fundamental domain U it follows that

A =
⋂
j∈N

f j(U).

Now we define the relative global attractor as the attracting set with respect to
some bounded set Q ⊂ Rl:

Definition 2.1.6 (Relative global attractor) Let Q ⊂ Rl be a bounded set.
We define the global attractor relative to Q by

AQ =
⋂
j≥0

f j(Q).
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Remark 2.1.7 Let Q be a neighborhood of a hyperbolic fixed point p. Then it
is easily seen that the connected component of W u ∩Q which contains p is part
of AQ. Moreover, provided Q is small enough, AQ coincides with this part of the
unstable manifold of p, see [24].

Note that the classical definition of an attractor requires an additional minimality
condition.

Definition 2.1.8 (Attractor) A closed attracting set A is called an attractor
if it is indecomposable, that is, for every x, y ∈ A there is a finite sequence
{x = x0, . . . , xn = y} such that d(f(xj−1), xj) < ε.

2.1.3 Ergodic Theory

We briefly introduce some notions from ergodic theory.
Let B be the Borel-σ-algebra on X. Let m denote the Lebesgue measure

and M the set of probability measures on (X,B). A measure µ ∈ M is called
f-invariant if

µ(A) = µ(f−1(A))

for all A ∈ B.
An invariant measure µ is called ergodic if µ(A) ∈ {0, 1} for all invariant sets

A.

Definition 2.1.9 An ergodic measure µ is an SRB-measure if there exists a
subset U ⊂ X with m(U) > 0 such that for each continuous function Ψ

lim
N→∞

1

N

N−1∑
j=0

Ψ(f j(x)) =

∫
Ψ dµ

for all x ∈ U . An SRB-measure is also often called the natural or physically
relevant measure.

2.1.4 Lyapunov Exponents

Let f : X → X be a diffeomorphism on a compact subset X ⊂ Rl. Consider a
small (infinitesimal) perturbation ε0 in the initial condition x0. With y0 = x0 +ε0

we obtain

y1 = x1 + ε1 = f(y0) = f(x0) + Df(x0) · ε0 + higher order terms.

Thus, ignoring higher order terms, we can write

ε1 = Df(x0) · ε0.
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For k ∈ N it follows inductively that

εk+1 = Df(xk) · εk =
k∏

i=0

Df(xi) · ε0 = Dfk(x0) · ε0.

So the evolution of a small displacement ε0 is governed by the linearized dynam-
ical system. Using these ideas, the average rate of convergence or divergence of
neighboring orbits can be measured by Lyapunov exponents. The Multiplicative
Ergodic Theorem by Oseledec [85] (see also Ruelle [93]) provides conditions under
which these characteristic exponents exist.

We state the version used in Aston and Dellnitz [6]:

Theorem 2.1.10 (Multiplicative Ergodic Theorem) Let f : X → X be a
diffeomorphism on a compact subset X ⊂ Rl and let µ be an ergodic measure.
Then there exist real numbers λ1 > λ2 > · · · > λk (k ≤ l), positive inte-
gers l1, . . . , lk which satisfy

∑k
i=1 li = l and a measurable decomposition TxM =

W (1)(x) ⊕ · · · ⊕ W (k)(x) with dim(W (i)(x)) = li and Df(W (i)(x)) = W (i)(f(x))
such that for µ-almost all x

lim
n→∞

1

n
log |||Dfn(x)v||| = λj,

provided that v ∈ (W (j)(x)⊕ · · · ⊕W (k)(x)) and v /∈ (W (j+1)(x)⊕ · · · ⊕W (k)(x)).
The numbers λ1 > λ2 > · · · > λk are called Lyapunov characteristic exponents
with respect to the ergodic measure µ.

Remarks 2.1.11 1. Note that

lim
n→∞

1

n
log |||Dfn(x)v||| = λ1,

for almost any choice of v (see e.g. [100], Theorem 9.7, p.349).

2. The dominant Lyapunov exponent λ1 is a measure of the chaoticity of an
attractor. If λ1 > 0 then the attractor is chaotic, if λ1 ≤ 0 we have regular
dynamics.

3. A dissipative system is characterized by
∑k

i=1 λi < 0, a conservative system

by
∑k

i=1 λi = 0.

The Multiplicative Ergodic Theorem guarantees the existence of Lyapunov ex-
ponents only for µ-almost all x. This definition is not very useful in our context
because we are especially interested in regions of measure zero. Therefore, we give
the following alternative definition of (local) Lyapunov exponents, which will be
used in the remainder of this thesis:
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Definition 2.1.12 Let f : X → X be a diffeomorphism on a compact subset
X ⊂ Rl. Then for N ∈ N the expansion rate or finite-time Lyapunov exponent
is defined as

Λ(N, x0) =
1

N
log |||Dfn(x0)||| =

1

N
log |||

N−1∏
i=0

Df(xi)|||.

The (dominant local) Lyapunov exponent is given by

λ(x0) = lim sup
N→∞

Λ(N, x0).

Note that λ(x) is guaranteed to exist for all x ∈ X. Moreover, for fixed N ∈ N
the expansion rate Λ(N, x) is continuous in x and one has point-wise convergence
to the dominant local Lyapunov exponents. λ(x) is typically not continuous in
phase space but a singular function of the phase space coordinates [20]. For the
sake of simplicity, λ(x) will be referred to as the Lyapunov exponent with respect
to the initial condition x.

It is a simple task to check that Lyapunov exponents are f -invariant and
hence constant along orbits. Therefore, the Lyapunov exponents defined this
way are related to orbits and hence, can be seen as local Lyapunov exponents.
In contrast, the exponents obtained by the Multiplicative Ergodic Theorem are
given with respect to an ergodic measure, which means, that they characterize
the dynamical system rather than a single orbit.

In the following paragraphs we derive some characteristics of the (local) Lya-
punov exponent for special classes of orbits.

Proposition 2.1.13 Let xn+1 = f(xn) be a dynamical system defined by the
diffeomorphism f : X → X, X ⊂ Rl.

1. Let x̄ be a fixed point, that is, x̄ = f(x̄). Then λ(x̄) = log ρ(Df(x̄)). Here
ρ denotes the spectral radius of a matrix.

2. Let {x̄0, x̄1, ..., x̄p−1} be a periodic orbit of period p > 1, that is, fp(x̄i) = x̄i.
Then λ(x̄i) = 1

p
log ρ(Dfp(x̄0)) for i = 0, ..., p− 1.

The continuous dependence of the expansion rate on x is used to prove the fol-
lowing result on limit sets:

Proposition 2.1.14 Let x ∈ X and ω(x) = {x̄} with x̄ = f(x̄), that is,

lim
n→∞

fn(x) = x̄.

Then λ(x) = λ(x̄).
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Proof: lim supN→∞ Λ(N, x) = λ(x) exists point-wise for all x and λ(x) is con-
stant along orbits. Moreover, we have limn→∞ fn(x) = x̄ and, as the factors in
the matrix product

∏N−1
i=0 Df(xi) converge to constant matrices, it follows that

limN→∞ Λ(N, x) = lim supN→∞ Λ(N, x). Using a result from elementary calculus
we can conclude that the two limits

lim
N→∞

lim
k→∞

Λ(N, fk(x)) = lim
N→∞

Λ(N, x̄) = λ(x̄)

lim
k→∞

lim
N→∞

Λ(N, fk(x)) = lim
k→∞

λ(fk(x)) = λ(x)

exist and are equal.

We can use fp to obtain an analogous result if ω(x) = {x0, . . . , xp−1} is a
periodic orbit.

The following remarks sum up a few results for the special case of autonomous
continuous systems:

Remarks 2.1.15 Let ẋ = f(x) be an autonomous dynamical system, x ∈ Rl

and f : Rl → Rl Cr with r ≥ 1. Let φt be the flow. The Multiplicative Ergodic
Theorem gives conditions under which Lyapunov exponents λi exist. Similarly,
we define

λ(x0) = lim sup
t→∞

1

t
log |||Dφt(x0)|||.

Then the following holds

• Let x̄ be a hyperbolic fixed point of ẋ = f(x), that is, φtx̄ = x̄ and Df(x̄) has
no eigenvalues on the imaginary axis. Note that in this case the Hartman-
Grobman theorem for flows ([94], p.22, Theorem 5.4) applies. Then

λ(x̄) = max
λ
{Re(λ) : λ eigenvalue of Df(x̄)}.

• If x is a state on a periodic orbit, then λ(x) is related to the maximum
eigenvalue of the monodromy matrix.

• Let x ∈ X. Unless ω(x) contains a stationary solution, there is a j such
that λj = 0. This is related to the direction tangential to the trajectory.

• A time-continuous dynamical system must be at least three-dimensional to
exhibit a chaotic attractor: with λ1 > 0, λ2 = 0, and requiring

∑
i λi < 0,

it follows that λ3 < 0.

• For Hamiltonian systems, the Lyapunov exponents exist in additive inverse
pairs, so if λ > 0 is a characteristic exponent, then so is −λ, ensuring that∑

i λi = 0.
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The following example illustrates these ideas.

Example 2.1.16 (The Duffing oscillator) Let Q ⊂ R2 be a compact set. The
Duffing oscillator is a non-autonomous second order differential equation:

ẍ + δẋ− x + x3 = γ cos ωt. (2.1)

For a detailed analytical analysis see for example [43].
We consider the dynamical system without periodic forcing, so it can be writ-

ten as a first order system:

ẋ1 = x2

ẋ2 = −δx2 + x1 − x3
1.

For δ = 0.25, the system exhibits a saddle point at the origin and two sinks
at (±1, 0) , see Figure 2.2 a). Using the results derived in this section, it follows
that λ(x) = −0.1250 for all x ∈ Q \ W s([0, 0]), and λ(x) = 0.8828 for all x ∈
Q∩W s([0, 0]), which are the dominant Lyapunov exponents of the two sinks and
the saddle, respectively. Consequently, in this example, the value of the Lyapunov
exponent can be used to identify the separatrix between two basins of attraction.

Choosing δ = 0, there is a saddle at (0, 0) with dominant Lyapunov exponent
1 and two centers at (±1, 0) with zero Lyapunov exponent. Apart from the three
fixed points and the homoclinic connections formed by the stable and unstable
manifold of the saddle, the system exhibits families of periodic orbits, see Figure
2.2 b). As the system is conservative, it follows that λ(x) = 0 for all x that are
not asymptotic to the saddle point. So again, the stable manifold of the saddle
point is characterized by a positive Lyapunov exponent, while all other points
have a zero Lyapunov exponent.

In Chapter 4 we will see that such a maximizing property of the stable man-
ifold of hyperbolic points does not only apply to this special simple case but is
a general characteristics of the Lyapunov exponent. Moreover, we will see that,
even for a relatively small number of iterations, stable manifolds serve as local
maximizers of the expansion rate. This feature will be exploited for the numerical
detection and extraction of these relevant dynamical objects.

2.2 Non-Autonomous Dynamical Systems

2.2.1 Hyperbolic Trajectories and Invariant Manifolds

We now consider systems of ordinary differential equations of the form

ẋ = f(x, t), (2.2)
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a) b)

Figure 2.2: Duffing oscillator for γ = 0. a) δ = 0.25: Saddle at the origin and
two sinks at (±1, 0). The unstable manifold of the saddle spirals into the sinks,
the stable manifold forms a separatrix between the two basins of attraction of
the sinks. b) δ = 0: Saddle at the origin and two centers at (±1, 0). Stable and
unstable manifolds of the saddle form two homoclinic orbits.

with states x ∈ Rl, time t ∈ R and we assume the vector field (or velocity field)
f : Rl × R → Rl to be Cr, r ≥ 1, in x and continuous in t.

The smoothness assumptions above permit linearization and ensure that the
initial value problem

ẋ = f(x, t), x(t0) = x0 (2.3)

has a unique solution, which we denote by

ϕt,t0(x0) := x(x0, t0; t).

If not otherwise stated, we assume that this unique solution exists for all t ∈ R.

The family of mappings {ϕt,s}t≥s, for t, s ∈ R, satisfies the properties

1. ϕt,t = id;

2. ϕt,s = ϕt,r ◦ ϕr,s, for r, s, t ∈ R,

and therefore fulfills in particular the definition of a cocycle (see e.g. [97]).

We now give a formal definition of a non-autonomous dynamical system; see
for example [68]:

Definition 2.2.1 (Non-autonomous dynamical system) With state space
Rl and a time set T, a non-autonomous dynamical system consists of a
pair of mappings (θ, Φ), where
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(i) θ is an autonomous dynamical system on a nonempty parameter set P ,
satisfying

θt : P → P, θt ◦ θs = θt+s, θ0 = idP ,

for all, s, t ∈ T;

(ii) Φ is a cocycle mapping on Rl, with Φ : T+ × P × Rl → Rl and

Φ(0, p, x0) = x0, Φ(t + s, p, x0) = Φ(t, θsp, Φ(s, p, x0)),

for all s, t ∈ T+, p ∈ P and x0 ∈ Rl.

Obviously, Φ : R × R × Rl → Rl with Φ(T, t0, x) = ϕT+t0,t0x satisfies the
definition of a non-autonomous system. Therefore, when in the course of this
thesis we refer to a non-autonomous dynamical system we mean this system
induced by the cocycle {ϕt,s}.

Notably, this cocycle and consequently the solution to the initial value prob-
lem are usually not given analytically but need to be approximated using an
integration scheme, such as an explicit Runge-Kutta integration scheme.

In the case where the differential equation has periodic time dependence,
we can reduce the analysis of the dynamics to the general autonomous discrete
case by considering an appropriate Poincaré map, see for example the book by
Guckenheimer and Holmes [43] for a detailed introduction.

Hyperbolic trajectories serve as the time-dependent generalization of hyper-
bolic fixed points. A trajectory γ is given by the continuous map γ : R → Rl

with ϕt,s(γ(s)) = γ(t). For the definition of a hyperbolic trajectory we need to
introduce the concept of exponential dichotomies, see Coppel [16] for a classical
reference.

Definition 2.2.2 (Exponential dichotomy) Consider the linear ordinary dif-
ferential equation with time-dependent coefficients:

ξ̇ = A(t)ξ, ξ ∈ Rl, (2.4)

where A(t) ∈ Rl,l is a continuous function of t. Let X(t) ∈ Rl,l be the fundamental
matrix solution of (2.4) with ξ(t) = X(t)ξ0 a solution passing through ξ0 at t = 0
and X(0) = I. Then (2.4) is said to possess an exponential dichotomy if
there exists a projection operator P ∈ Rl,l, P 2 = P and constants K1, K2 ≥ 1,
λ1, λ2 > 0 such that

||X(t)PX−1(τ)|| ≤ K1 exp(−λ1(t− τ)), t ≥ τ, (2.5)

||X(t)(I − P )X−1(τ)|| ≤ K2 exp(λ2(t− τ)), t ≤ τ. (2.6)
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Definition 2.2.3 (Hyperbolic trajectory) Let γ(t) denote a trajectory of the
vector field ẋ = f(x, t). Then γ(t) is said to be a hyperbolic trajectory if the
associated linearized system

ξ̇ = Df(γ(t), t)ξ

has an exponential dichotomy.

See Katok and Hasselblatt [66], Def. 6.2.6, for a definition in the discrete time
case. As the constants are chosen independently of τ and t, often the term
uniformly hyperbolic is used. Uniformly hyperbolic solutions attract initial
conditions along certain directions and repel them along other directions; the
operator P allows a projection onto the stable and unstable subspaces.

The geometrical picture of the notion of exponential dichotomy is more easily
understood in the extended phase space:

E := {(x, t) ∈ Rl × R},

that is, we append the variable t to the phase space. Now we can consider the
velocity field defined on the extended phase space as follows

ẋ = f(x, t), (2.7)

ṫ = 1, (2.8)

and the hyperbolic trajectory in E is denoted by

Γ(t) = (γ(t), t).

Strictly speaking, the hyperbolicity is lost when we consider the respective tra-
jectories in the extended phase space. This is due to the additional direction
tangent to the trajectory. Therefore, we will call Γ(t) = (γ(t), t) a hyperbolic
trajectory in the extended phase space if γ(t) is hyperbolic.

The extended phase space is foliated by time-slices: We define a time-slice
or τ-fiber of the extended phase space E by

Σ(τ) := {x ∈ Rl|(x, τ) ∈ E}.

Figure 2.3 illustrates this notion. Note that Γ(t) intersects (Σ(τ), τ) in the unique
point γ(τ).

Remark 2.2.4 Note that in Chapter 5 τ -fibers Σ(τ) will be used for two different
purposes. Usually, we will consider τ -fibers to identify a set of initial conditions
with respect to a fixed time. Solutions with respect to these initial values will
then be computed in phase space. On the other hand, we will can choose initial
conditions on a τ -fiber to compute trajectories in the extended phase space E .
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Figure 2.3: The extended phase space of a non-autonomous system is foliated by
time slices or fibers.

Definition 2.2.5 (Non-autonomous set [7]) We call a set Σ ⊂ E a non-
autonomous set if for all τ ∈ R the τ -fibers are non-empty. Σ is closed or
compact, if all τ -fibers are closed or compact. Finally Σ is forward invariant if
ϕt,τ (Σ(τ)) ⊂ Σ(t) for t ≥ τ and invariant if ϕt,τ (Σ(τ)) = Σ(t) for all t, τ ∈ R.

The following theorem establishes the existence of stable and unstable mani-
folds for hyperbolic trajectories.

Theorem 2.2.6 (Stable and unstable manifolds [78]) Let the set-up be as
described above, and suppose that the projection operator P has rank k. Let
Dρ(τ) ∈ (Σ(τ), τ) denote the ball of radius ρ centered at γ(τ) and define the
tubular neighborhood of Γ(t) in E as

N (Γ(t)) :=
⋃
τ∈R

(Dρ(τ), τ).

Then in the extended phase space E there exists a (k+1)-dimensional Cr manifold
W s

loc(Γ(t)) ⊂ E, and an (l− k + 1)-dimensional Cr manifold W u
loc(Γ(t)) ⊂ E, and

ρ0 sufficiently small such that for ρ ∈ (0, ρ0):

1. W s
loc(Γ(t)), the local stable manifold of Γ(t), is invariant under the forward

time evolution generated by (2.2).
W u

loc(Γ(t)), the local unstable manifold of Γ(t), is invariant under the back-
ward time evolution generated by (2.2).

2. W s
loc(Γ(t)) and W u

loc(Γ(t)) intersect along Γ(t), and the angle between the
manifolds is bounded away from zero uniformly for all t ∈ R.

3. Every trajectory on W s
loc(Γ(t)) can be continued to the boundary of N (Γ(t))

in backward time, and every trajectory on W u
loc(Γ(t)) can be continued to

the boundary of N (Γ(t)) in forward time.
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4. Trajectories starting on W s
loc(Γ(t)) at a time t = τ approach Γ(t) at an

exponential rate e−λs(t−τ) as t → ∞, for some constant λs > 0. Similarly,
trajectories starting on W u

loc(Γ(t)) at a time t = τ approach Γ(t) at an
exponential rate e−λu|t−τ | as t → −∞, for some constant λu > 0.

5. Any trajectory in N (Γ(t)) not on either W s
loc(Γ(t)) or W u

loc(Γ(t)) will leave
N (Γ(t)) in both forward and backward time.

Comments and references to the proof and related results are given in [78, 80].
Notably, the above theorem is a consequence of the Hadamard-Perron theorem,
see for example Katok and Hasselblatt [66], Thm. 6.2.8, who also give a detailed
proof for the discrete time setting. Also [19, 58] state stable manifold theorems
for the discrete time-dependent case.

Finally, hyperbolic trajectories and their invariant manifolds persist under
small perturbations; see for example Malhotra et al. [78] and references therein.

2.2.2 Pullback Attractor

Similar to the autonomous case, there is also a concept of attracting sets in the
non-autonomous setting. The notions of the pullback attraction idea for non-
autonomous and random dynamical systems are discussed and used for example
in Aulbach et al. [7, 8], Cheban et al. [15], Keller and Ochs [67], Kloeden et
al. [69, 68], Schmalfuss [97], and Siegmund [104].

Definition 2.2.7 (Cocycle absorbing set [69]) A compact non-autonomous
set B is called a cocycle absorbing set for the cocycle {ϕt,s} on Rl if for each
τ ∈ R and every bounded subset D ⊂ Rl there exists a tD(τ) ≥ 0 such that

ϕτ,τ−t(D) ⊆ B(τ) for all t ≥ tD(τ).

It is said to be uniformly absorbing if tD(τ) is independent of τ .

Definition 2.2.8 (Global pullback attractor) An invariant compact non-au-
tonomous set Σ is called a global pullback attractor if for any compact set
C ∈ Rl we have

lim
t→∞

d(ϕτ,τ−t(C), Σ(τ)) = 0 for all τ ∈ R,

where d denotes the Hausdorff semi-distance.

This concept of attraction considers a fixed final time and moves the initial
time to −∞. This does not mean that we are going backwards in time but rather
that we consider the asymptotic state of the system on a τ -fiber arising from
the initial conditions starting at time −∞. The following statement gives an
existence and uniqueness result for pullback attractors.
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Theorem 2.2.9 ([69]) Let B be a cocycle absorbing set for the cocycle {ϕt,s}.
Then there exists a pullback attractor Σ uniquely determined by

Σ(τ) =
⋂
s≥0

⋃
t≥s

ϕτ,τ−t(B(τ − t)).

Under conditions on the spectral gap in the dichotomy spectrum, as well as on
the nonlinearity, Aulbach et al. [8] show that the unstable manifold of a hyperbolic
trajectory in a non-autonomous dynamical system is a global pullback attractor.
Similarly, the stable manifold is pullback attracting in such systems under time
reversal. Siegmund [104] considers a non-autonomous difference equation and
restricts the analysis to a cylinder around a hyperbolic orbit. Under these con-
ditions, he proves that the (local) unstable manifold coincides with the global
pullback attractor.

2.2.3 Lyapunov Exponents

In analogy to the Multiplicative Ergodic Theorem in the discrete time case, we
obtain the existence of Lyapunov exponents. Let ϕt+t0,t0(x0) denote a solution
which exists for all t ≥ 0. We are interested in describing the dynamics near that
trajectory. For this we study the linear vector field

ξ̇ = Df(ϕt+t0,t0(x0))ξ, ξ ∈ Rl

Let X(t + t0, ϕ
t+t0,t0(x0)) ≡ X(t) denote a fundamental matrix solution. Note

that X(t) = Dϕt+t0,t0x0 solves the variational equation, and clearly X(0) = I. In
analogy to the autonomous case, the expansion rates are given as

Λ(T ; t0, x0) :=
1

t
log |||Dϕt+t0,t0(x0)|||,

and we denote the dominant Lyapunov exponent by

λ(t0, x0) := lim sup
t→∞

1

t
log |||Dϕt+t0,t0(x0)|||.

The Multiplicative Ergodic Theorem [85] gives again conditions under which even
the limit as t →∞ exists, see also Hahn [44] (Theorem 64.4, p.318) for the nec-
essary regularity conditions on Df(x(t), t). Note that Lyapunov exponents and
exponential dichotomy are related in the following way: the size of the Lyapunov
exponents is determined by the Sacker-Sell spectrum [95], that is those values of
λ ∈ R for which the shifted system ξ̇ = (A(t)− λI)ξ, with A(t) := Dϕt+t0,t0(x0),
does not satisfy an exponential dichotomy; see for example [33, 34] for a discus-
sion.

Again, Lyapunov exponents are constant along trajectories and unaffected by
what happens on a finite time interval.
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2.3 Finite-Time Velocity Fields

In the previous paragraphs we have stated definitions for time-dependent dynam-
ical systems. We now address the case that the velocity field is only defined on
a finite time interval [t−, t+] with −∞ < t− < t+ < ∞. Two common examples
for this case are that the time-dependent vector field is not given analytically but
obtained as the numerical solution of a partial differential equation such as the
Navier-Stokes equation, or from experimental measurement data. In both cases
the velocity field is, by construction, discrete in space and time and only defined
for finite times.

In this setting, notions from dynamical systems such as hyperbolicity, stable
and unstable manifolds, or Lyapunov exponents become problematic as they are
based on asymptotic quantities. In the last few years mathematically consistent
concepts that deal with finite-time velocity fields [56] have been developed.
However, these attempts are far from providing a uniform theory. We briefly
introduce some characteristics of finite-time velocity fields.

Following Ide et al. [56] we start by defining finite-time hyperbolicity:

Definition 2.3.1 (Finite-time hyperbolic trajectory) Let γ(t) denote a tra-
jectory of the vector field ẋ = f(x, t) on [t−, t+]. Then γ(t) is said to be a (uni-
formly) hyperbolic trajectory on [t−, t+] if the associated linearized system

ξ̇ = Df(γ(t), t)ξ

has an exponential dichotomy on [t−, t+] (see Definition 2.2.2).

There are two different contexts in which the existence of finite-time invariant
manifolds has been analyzed, see Jones and Winkler [61] for a detailed discussion.

The first is due to Haller and Poje [49]. They derive conditions on f(x, t)
under which the dynamical system admits finite-time hyperbolic trajectories, re-
lying on the existence of a hyperbolic fixed point for each τ -fiber on the interval
of existence. Hence, their approach is tailored to situations where the time de-
pendence is relatively weak. For the construction of the manifolds, a contraction
mapping argument is used, for which the original vector field is modified outside
the interval [t−, t+]. As this extension can be chosen differently, the resulting
manifolds are not unique. However, if the interval under consideration is long
enough, the manifolds are determined up to exponentially small errors, that is,
they are exponentially close to the manifolds that would be obtained if the system
was available for infinite times.

The second approach is due to Sandstede et al. [96] in the context of an
application to Melnikov theory. There the authors smoothly extend the vector
field outside of its time range of definition. They assume t− = t−(ε), t+ = t+(ε)
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with t− → −∞ for ε → 0 and t+ → ∞ and require that the perturbed vector
field coincides with the unperturbed field on the finite time span. Standard theory
provides them with invariant manifolds for a hyperbolic trajectory. As in Haller
and Poje [49], these manifolds depend upon the way the extension is constructed,
and again, the larger the time range of definition of the original vector field, the
closer are the invariant manifolds for different extensions.

The actual definitions of the manifolds are similar in Haller and Poje [49] and
Sandstede et al. [96]. Both postulate that all solutions which, while in [t−, t+],
stay close to the hyperbolic trajectory - for example, in a box or tube around the
trajectory in the extended phase space - in forward time form the stable manifold.
The unstable manifold is defined by considering the solutions in backward time.
The definition by Haller and Poje [49] summarizes this description:

Definition 2.3.2 (Finite-time invariant manifolds) Let Γ(t), t ∈ [t−, t+],
be a finite-time hyperbolic trajectory in the extended phase space. Then we
define finite-time invariant manifolds in the following way:

W s
loc(t−, t+) = {(z(t), t) : |||z(t; z0)− Γ(t)||| ≤ |||z(t−; z0)− Γ(t−)|||, t ∈ (t−, t+]},

W u
loc(t−, t+) = {(z(t), t) : |||z(t; z0)− Γ(t)||| ≤ |||z(t+; z0)− Γ(t+)|||, t ∈ [t−, t+)}.

Note that by the smoothness of the flow with respect to the initial condition,
these sets are closed, their boundaries are piecewise smooth, and they have non-
zero volume in the extended phase space [49]. However, the manifolds constructed
this way may contain solutions that would not stay within the prescribed neigh-
borhood of the hyperbolic trajectory if longer time spans would be considered.
Hence, this again shows their nonuniqueness, which, as discussed above, will not
be resolved numerically if long enough time intervals are available. Note that the
nature of this concept is local and therefore the existence of global stable and
unstable manifolds is not immediately included.

The definition of Lyapunov exponents as before is not possible as this notion
is based on asymptotic quantities. Instead we define finite-time exponents:

Definition 2.3.3 (Finite-time Lyapunov exponents) Let ẋ = f(x, t) be a
time-dependent differential equation. Let x(t) be a solution on [t−, t+] with re-
spect to the initial value x(t0) = x0. Then the dominant finite-time Lyapunov
exponent or expansion rate is defined as

λ(t; t0, x0) :=
1

t
log |||Dϕt+t0,t0(x0)|||,

where t0, t + t0 ∈ [t−, t+].

Notably, λ(t; t0, x0) depends on the initial condition and the initial time as well
as the integration time.
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In Malhotra et al. [78] and Wiggins [112] an alternative definition for a finite-
time hyperbolic trajectory is used. In their setting, a trajectory is finite-time
hyperbolic on [t−, t+] if none of its finite-time Lyapunov exponents are zero on
this interval. They show that this definition is equivalent to the dichotomy based
concept. In Chapter 5 we briefly address the relation between these two dif-
ferent notions and also discuss that finite-time invariant manifolds are typically
characterized by large finite-time Lyapunov exponents.

Following the fundamental work by Haller [45, 46, 47], in a recent manuscript,
Shadden, Lekien, and Marsden [102] define Lagrangian coherent structures as
ridges in the scalar finite-time Lyapunov exponent field. They derive an analytical
formula for the flux across these structures and show that is it nearly zero. Hence,
Lagrangian coherent structures are nearly invariant and, therefore, candidates of
finite-time invariant manifolds.
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Chapter 3

The Set Oriented Approach

We briefly review the set oriented algorithms for the numerical approximation
of (relative) global attractors and invariant manifolds as introduced by Dellnitz
and Hohmann [23, 24]. Extensions and applications of this set oriented approach
can be found, for example, in [13, 21, 25, 26, 27, 32, 65]. In a short section we
show how these methods can be used in the non-autonomous case [8, 7, 104]. All
these algorithms can be efficiently carried out using the software package GAIO
(Global Analysis of Invariant Objects) [21] and its extensions. The set oriented
approach provides a basis for the numerical methods established in the following
chapters.

It is worth mentioning that set oriented methods also provide a natural basis
for the approximation of invariant measures, as discussed for example in [21, 25,
26, 64], or the computation of Lyapunov exponents as suggested by Aston and
Dellnitz [5, 6].

3.1 The Subdivision Algorithm

The set oriented subdivision algorithm computes relative global attractors as
defined in the previous chapter. Recall that the global attractor relative to the
compact set Q is defined as

AQ =
⋂
j≥0

f j(Q),

and that it contains all unstable manifolds in Q. The subdivision algorithm
generates a sequence B0,B1,B2, . . . of finite collections of compact subsets (boxes)
of Rn such that for all k ∈ N,

Qk =
⋃

B∈Bk

B, with B ∩B′ = ∅ for B 6= B′ ∈ Bk
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is a covering of AQ. Moreover, the diameter of the boxes

diam(Bk) = max
B∈Bk

diam(B)

converges to zero as k → ∞. The algorithm works in two steps, the subdivision
and the selection step:

Algorithm 3.1.1 Given an initial collection B0, one inductively obtains Bk from
Bk−1 for k = 1, 2, . . . in two steps.

1. Subdivision: Construct a new collection B̂k such that⋃
B∈B̂k

B =
⋃

B∈Bk−1

B and diam(B̂k) ≤ θ diam(Bk−1)

for some 0 < θ < 1.

2. Selection: Define the new collection Bk by

Bk = {B ∈ B̂k : f−1(B) ∩ B̂ 6= ∅ for some B̂ ∈ B̂k}.

The selection criterion can be efficiently tested using a set of test points in each
box B. These test points are mapped forward and B is discarded unless it
contains an image point of some box. This procedure can be made rigorous
in the case where local Lipschitz constants for f are available [64]. Moreover,
the boxes are stored in a binary tree, where the children of a box at depth k are
constructed by bisecting the box in alternating coordinate directions; see Figure
3.1 for an illustration. This does not only allow for rapid searching of which
box contains images of test points, but also for handling large numbers of boxes
within reasonable memory requirements.

Note that it is possible to impose other selection criteria in order to deal
with constraints or approximate, for example, the chain recurrent set of f [27].
Without selection however, one obtains an efficient discretization or partition of
the phase space.

We end this section with the following proposition, which states a convergence
property of the subdivision algorithm 3.1.1:

Proposition 3.1.2 ([24]) Let AQ be the global attractor relative to the compact
set Q, and let B0 be a finite collection of closed subsets with Q0 = Q. Then

lim
k→∞

dH(AQ, Qk) = 0.

See Dellnitz and Hohmann [24] for a detailed proof of this statement.
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Figure 3.1: Hierarchical storage of the box collections in the software package
GAIO. Illustration taken from [27].

Example 3.1.3 (The Hénon attractor) For illustration we apply the subdi-
vision algorithm to the Hénon map [51]

h(x, y) = (1 + y − ax2, bx),

with a = 1.4 and b = 0.3. Figure 3.2 shows a nested sequence of box cover-
ings of the relative global attractor in the Hénon system with respect to Q =
[−1.35, 1.35] × [−0.5, 0.5]. The results after 2, 6, 10, and 14 steps in the sub-
division algorithm are shown and demonstrate the convergence of the covering
towards the Hénon attractor.

3.2 The Continuation Algorithm

The continuation algorithm supplements the subdivision algorithm introduced
above. It is used to, roughly speaking, globalize the local unstable manifold of a
hyperbolic fixed point or periodic point p ∈ Rn. Let Q ⊂ Rn and for l = 0, 1, . . .
let

Pl =
⋃

B∈Bl

B, with B ∩B′ = ∅ for B 6= B′ ∈ Bl

be a partition of Q on level (depth) l, obtained by applying the subdivision step
(1.) in Algorithm 3.1.1 l times with respect to the initial box B0 := Q. Obviously,
the Pl, l ∈ N, form a nested sequence of successively finer partitions of Q. For
x ∈ Q, let Pl(x) ∈ Pl denote the element or box of P containing x. Then
we obtain for any point x ∈ Q a unique sequence {Pl(x)}. Now assume that
C = Pl(p) is a neighborhood of the hyperbolic fixed point p such that the global
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Figure 3.2: Nested sequence of coverings of the Hénon attractor, obtained after
2, 6, 10, and 12 steps in the subdivision algorithm.

attractor relative to C satisfies

AC = W u
ε (p) ∩ C.

Applying the subdivision algorithm with k subdivision steps to B0 = {C}, we
obtain a covering Bk ⊂ Pk+l of the local unstable manifold W u

ε (p) ∩ C, that is

AC = W u
ε (p) ∩ C ⊂

⋃
B∈Bk

B.

As shown in the previous section, the covering converges to AC for k → ∞.
We can now a apply a continuation scheme for the approximation of the global
unstable manifold.

Algorithm 3.2.1 For a fixed k we define a sequence C(k)
0 , C(k)

1 , . . . of subsets

C(k)
j ⊂ Pl+k by

1. Initialization:
C(k)

0 = Bk.

2. Continuation: For j = 0, 1, . . . compute

C(k)
j+1 = {B ∈ Pl+k : B ∩ f(B′) 6= ∅ for some B′ ∈ C(k)

j }.
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The algorithm stops if no more boxes are added to the current collection. Observe
that the unions

C
(k)
j =

⋃
B∈C(k)

j

B

form nested sequences in k, that is, C
(0)
j ⊃ C

(1)
j . . .. Let W0 = W u

ε (p) ∩ C and
define inductively for j = 0, 1, . . .

Wj+1 = f(Wj) ∩Q.

This allows us to state the convergence result for the continuation method, Al-
gorithm 3.2.1:

Proposition 3.2.2 ([23]) The sets C
(k)
j are coverings of Wj for all j, k = 0, 1, . . ..

Moreover, for fixed j, C
(k)
j converges to Wj in Hausdorff distance if the number

k of subdivision steps in the initialization goes to infinity.

We close this section by remarking that the convergence result does not require
the existence of a hyperbolic structure along the unstable manifold. However,
if hyperbolicity can be assumed we additionally obtain results on the speed of
convergence [24, 64].

Example 3.2.3 (The Hénon map) We come back to the Hénon map (Exam-
ple 3.1.3) and illustrate the continuation method (Algorithm 3.2.1). We approx-
imate the unstable manifold of the saddle point at (0.6314, 0.1894). For this we
insert a box on depth 14 containing the fixed point. Figure 3.3 shows this box
(black) as well as the result after 4, 8, and 13 steps of the continuation algorithm
on depth 14. After 13 steps no more boxes are added.

3.3 Extensions to Non-Autonomous Systems

Continuation Algorithm We briefly review the results of a set oriented ap-
proach for the computation of pullback attractors. For details we refer, in par-
ticular, to [8, 7, 67, 104] and references therein. Let ẋ = f(t, x), x ∈ Rl, t ∈ R,
with evolution ϕt,s given for all s, t ∈ R. Let the cocycle {ϕt,s} define a non-
autonomous dynamical system on Rl. Then we obtain the corresponding box-
valued non-autonomous dynamical system:

Definition 3.3.1 (Box - NDS) Let Q ⊂ Rl be a compact set and suppose that
B = {B1, . . . , Bn} is a partition of Q. Choosing a positive step-size T ∈ R we
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Figure 3.3: Coverings of the unstable manifold of the saddle point at
(0.6314, 0.1894) for the Hénon map. Shown are the initial box containing the
fixed point (black) and box collections obtained after 4, 8, and 13 steps in the
continuation algorithm.

define

ϕ̂(0, τ)BI = BI , I ⊂ {1, . . . , n} for all τ,

ϕ̂(1, τ)BI = BJ , where J := {j ∈ {1, . . . , n} : ϕτ+T,τBI ∩Bj 6= ∅},

and then continue recursively for all k ≥ 2

ϕ̂(k, τ)BI := ϕ̂(1, τ + (k − 1) · T )(ϕ̂(k − 1, τ)BI).

This is called the box-valued non-autonomous dynamical system (box-
NDS) associated with the evolution ϕt,s and Q,B, T .

Lemma 3.3.2 The box-NDS has the following characteristics:

Q ∩ ϕτ+T,τBI ⊂ ϕ̂(1, τ)BI

and

d(ϕ̂(1, τ)BI , Q ∩ ϕτ+T,τBI) ≤ diamB,

where d denotes the Hausdorff semi-distance.
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We now want to state a continuation algorithm for the approximation of the
pullback attractor A.

Algorithm 3.3.3 In order to calculate the fiber A(τ + k ·T )∩Q for some τ ∈ R
and k ∈ {0, . . . k1} choose an initial value k0 < 0 in Z. We start with a partition B
of Q and denote the set of boxes by BIk0

with ∪B∈BIk0
B = Q. The approximation

of the sets A(τ + k · T ) ∩Q by means of box coverings BIk
is as follows:

1. Starting steps: For k = k0, ...,−1 calculate

BIk+1
= ϕ̂(1, τ + k · T )BIk

= ϕ̂(k − k0 + 1, τ + k0 · T )BIk0
.

2. Continuation steps: For k = 0, ..., k1 − 1 calculate

BIk+1
= ϕ̂(1, τ + k · T )BIk

= ϕ̂(k − k0 + 1, τ + k0 · T )BIk0
.

Aulbach et al. [7] (see also [104]) show that for any accuracy ε > 0 there is κ ∈ N
and a box size diamB = δ > 0, such that for all k ≥ κ

d(ϕ̂(k, τ − k · T )Q,Q ∩ A(τ)) < ε.

If the main box Q and step size T are chosen sufficiently large, then this con-
vergence is even true in the Hausdorff distance [7, 104]. Aulbach et al. [7] also
propose a subdivision algorithm generalizing the continuation algorithm. Here, in
the first few starting steps the box covering is successively refined and continued.
Convergence for this algorithm is also shown in [7].

Note that the numerical scheme for the approximation of the evolution can
be interpreted as a non-autonomous difference equation. Cheban, Kloeden, and
Schmalfuß [15] analyzed a non-autonomous quasilinear differential equation and
the respective difference equation generated by a one-step explicit numerical
scheme. They showed that the difference equation had a numerical pullback
attractor close to that of the original system. This result is important as we are
usually restricted to the consideration of the numerical pullback attractor.

Remark 3.3.4 The continuation algorithm above can be altered in cases where
a covering of a fiber A(τ) of the pullback attractor is given. Then one can
approximate A(τ + k · T ) for all k > 0 by just employing the continuation step
in the algorithm. The convergence follows from the invariance of the pullback
attractor A and from the results above.

The continuation of non-autonomous invariant manifolds will be addressed in
Chapter 5.
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Chapter 4

Expansion Rate Approach for
Autonomous Systems

4.1 Introduction

In classical dynamical systems theory invariant manifolds are known to form
the geometrical skeleton of the dynamics. In the context of transport theory
they serve as boundaries between regions of interest and can explain transport
phenomena in terms of lobe dynamics [91, 110]. Also, almost invariant sets can
be bounded by stable and unstable manifolds of hyperbolic periodic points of the
underlying dynamical system [28].

In the last two decades many different numerical methods for the approxima-
tion of invariant manifolds of hyperbolic fixed points of diffeomorphisms f : X →
X or vector fields have been developed. Most of the methods start with a linear
approximation of the local stable or unstable manifold and evolve the global man-
ifold via a continuation scheme. In order to carry out the computation, the fixed
point as well as its stable and unstable eigenspaces need to be known. However,
especially in view of applications in non-autonomous dynamical systems, there is
an increasing need for the development of methods for the numerical detection
and extraction of invariant manifold candidates when we have little or even no a
priori knowledge of the geometry of the dynamical system f : X → X.

In Example 2.1.16 on the Duffing System, we have seen that the stable man-
ifold of the hyperbolic saddle point at the origin is characterized by a positive
dominant Lyapunov exponent. All other trajectories have a negative, or, in the
undamped case, zero dominant Lyapunov exponent. This is the motivation for
investigating the relationship between the stable manifold of hyperbolic periodic
points and the associated Lyapunov exponent.

In numerical analysis one is restricted to dealing with finite approximations of
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these asymptotic quantities. Therefore, we use the expansion rate - a finite-time
Lyapunov exponent - as already stated in Definition 2.1.12. We will see that
in a typical setting, even for a relatively small number of iterations of the map
f , parts of the stable manifold of hyperbolic fixed or periodic points appear as
relative local maxima (ridges) of the scalar field induced by the expansion rate
distribution. This relationship has already been observed and used in [35, 46, 47,
74]. Additionally, we define the direct expansion rate, which does not need the
Jacobian but approximates the dominant finite-time Lyapunov exponent via a
finite difference quotient. This method is similar in spirit to the different relative
dispersion approaches [12, 61, 108, 113] in the context of the numerical analysis
of geophysical fluid flows.

In the following section we will investigate the relationship between stable
manifolds, which are geometric structures, and the finite-time Lyapunov expo-
nent, which is a statistic quantity, in the necessary theoretical depth. We then
propose a set oriented numerical algorithm in order to obtain a robust approxi-
mation of the scalar expansion rate field in two or more dimensions. Strategies for
the choice of test points are addressed as well as the optimal number of iterations,
which is necessary to make the structures under consideration visible.

The theoretical and numerical results provide the natural framework for a
subdivision scheme to numerically extract those objects characterized by large
(direct) expansion rates. We state different algorithms and prove convergence.
The numerical tools are applied to some test problems. Notably we extract
two-dimensional stable manifolds of hyperbolic periodic orbits as well as elliptic
regions in the ABC flow. This shows the capability of our methods to deal with
higher dimensional systems. Most of the results and methods introduced in this
chapter will also be used for the analysis of non-autonomous dynamical systems
in Chapter 5. Relevant applications in the context of ocean dynamics are then
investigated in Chapter 6.

We close this chapter by developing a few heuristic measures for the analysis
of graphs obtained by an appropriate discretization of a dynamical system. In
Dellnitz, Junge, Koon et al. [28] almost invariant sets have been approximated
using graph algorithms. Moreover, in the example considered, the boundaries
between these sets have striking similarities with the invariant manifolds of hy-
perbolic periodic points. Motivated by the expansion rate approach we derive
several heuristics for expansion in graphs and test them in two examples.

38



4.2 Theoretical Results

4.2.1 Expansion Rates

As described above we want to use the concept of Lyapunov exponents in order
to identify certain structures of interest in our dynamical system. In practice, we
usually cannot - and do not want to - compute the limit for n →∞.

Therefore, we use the expansion rates of the form

Λ(N, x0) =
1

N
log |||

N−1∏
n=0

Df(xn)|||, N ∈ N.

Unlike Lyapunov exponents, these finite-time Lyapunov exponents have the
nice property that they are continuous in phase space for fixed N . Hence for
ε > 0 there is δ > 0 such that |Λ(N, x0)− Λ(N, x1)| < ε for all |x0 − x1| < δ.

However, here are no general results for the size of δ in terms of N . If
λ(x) = λ(y) for all x, y in a bounded region (i.e. x, y belong to the same basin
of attraction), then the permissable value of δ increases for larger N . If x lies
on the stable manifold of some hyperbolic fixed point then for increasing N , δ
is decreasing because initial conditions slightly off the manifold tend to another
limiting value. However, in this case, for values restricted to the manifold the
δ-interval is increasing. That is, for every ε > 0 one finds a not only some δ > 0
such that for all y ∈ X with |||x − y||| < δ it follows that |||Λ(N, x) − Λ(N, y)||| < ε.
Further, for some non-uniform neighborhood V (x) with Uδ(x) ⊂ V (x) it follows
that |||Λ(N, x)− Λ(N, y)||| < ε for all y ∈ V (x). Here Uδ(x) denotes a ball around
x with radius δ.

4.2.2 Expansion Rates and Stable Manifolds

We now derive some results on the relation between local maxima in the scalar
expansion rate field and the stable manifolds of hyperbolic periodic points. The
following lemma sums up the results presented in Chapter 2:

Lemma 4.2.1 Let x̄ be a hyperbolic fixed point of the dynamical system f : X →
X and let Q ⊂ X be a compact subset containing x̄. Then for every ε > 0 there
is N ∈ N such that |Λ(n, x)− λ(x̄)| < ε for all n > N and all x ∈ W s(x̄) ∩Q.

Proof: The lemma follows from the fact that the Lyapunov exponent of an orbit
is determined by its ω-limit set and the convergence of the expansion rate to the
dominant Lyapunov exponent for N →∞.
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This means that for sufficiently large N , the stable manifold of a hyperbolic
fixed point x̄ is characterized by a positive expansion rate in the order of magni-
tude of λ(x̄).

To have a positive expansion rate for all N ∈ N is characteristic for the local
stable manifold. To show this let us first define the concept of λ-expansion:

Definition 4.2.2 (λ-expansive set) Let f : X → X be a diffeomorphism on a
compact subset X ⊂ Rl. We call x ∈ X λ-expansive if there is a constant λ > 0
such that

Λ(n, x) =
1

n
log |||Dfn(x)||| ≥ λ ∀n ∈ N.

A set Aλ ⊂ X is called λ-expansive if all points x ∈ Aλ are λ-expansive. We call
x ∈ X (λ, N)-expansive if Λ(n, x) ≥ λ for all n ≥ N ∈ N. A (λ, N)-expansive
set is denoted by A(λ,N). Let

C(λ,n) := {x ∈ X : Λ(n, x) ≥ λ}.

Then
Aλ =

⋂
n∈N

C(λ,n)

and
A(λ,N) =

⋂
n≥N

C(λ,n).

Observe that, for some arbitrary N ∈ N, C(λ,N) is a superset of A(λ,N). We will
need this in the numerical discussion. Notably all sets defined above are compact.

We now prove the following lemma on the local stable manifold of x̄:

Lemma 4.2.3 Let x̄ = f(x̄) be a hyperbolic fixed point. Then for every δ > 0
and λ = λ(x̄)− δ, there is ε > 0 such that W s

ε (x̄) is λ-expansive.

Proof: Show that x̄ is λ-expansive:

1

n
log |||Dfn(x̄)||| ≥ λ(x̄) ∀n ∈ N

⇒ 1

n
log |||Dfn(x̄)||| > λ(x̄)− δ = λ ∀n

and

lim
n→∞

1

n
log |||Dfn(x̄)||| = λ(x).

As 1
n

log |||Dfn(x̄)||| > λ ∀n and 1
n

log |||Dfn(x)||| depends continuously on x for fixed
n, for each n we find a (possibly non-uniform) neighborhood Vn(x̄) of x̄ such that

1

n
log |||Dfn(x)||| > λ ∀x ∈ Vn(x̄).
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Consider
U∞ =

⋂
n≥0

Vn(x̄),

which is a λ-expansive set of points. It is non-empty as x̄ ∈ U∞. From the
continuous dependence of 1

n
log |||Dfn(x)||| on x on the one hand, and from

lim
n→∞

1

n
log |||Dfn(x)||| = λ(x) > λ, ∀x ∈ W s(x̄)

on the other hand, we find ε > 0 such that W s
ε ⊂ U∞. This concludes the proof.

We can also re-formulate Lemma 4.2.1 in the context of λ-expansion:

Lemma 4.2.4 Let Q ⊂ Rl be a compact set and x̄ ∈ Q be a hyperbolic fixed
point with λ(x̄). Then for every δ > 0 there is N > 0 such that W s(x̄) ∩ Q is
(λ, N)-expansive with λ := λ(x̄)− δ.

We remark that all these properties are necessary but not sufficient to char-
acterize the stable manifold of a saddle point. However, in some simple cases one
can show that λ-expansion or (λ, N)-expansion is also sufficient.

Theorem 4.2.5 Let ẋ = f(x), x ∈ X ⊂ R2, be structurally stable, f(x0) 6= 0
and γ := φt(x0) a bounded, non-periodic orbit. If x0 is λ-expansive or (λ, N)-
expansive, then it belongs to the stable manifold of a hyperbolic fixed point.

Proof: This follows from a combination of the statements in the Poincaré-
Bendixson Theorem and Peixoto’s Theorem ([111], Thms. 9.0.6 and 12.1.4).
Peixoto’s Theorem says that the dynamical system ẋ = f(x), x ∈ X ⊂ R2 is
structurally stable if and only if (1) the number of fixed points and periodic or-
bits is finite, (2) they are all hyperbolic, (3) there are no orbits that connect
saddle points, and (4) the nonwandering set consists of fixed points and periodic
orbits. The Poincaré-Bendixson Theorem says that the ω-limit set of a point x0

on a bounded orbit is either a fixed point, a periodic orbit or a finite number of
saddle points and their connecting orbits. As the system is structurally stable,
there are no such connections. Stable and asymptotically stable periodic orbits,
as well as stable or asymptotically stable fixed points and orbits converging to
them, are also ruled out, because they cannot be (λ, N)-expansive. Unstable pe-
riodic orbits are not permitted as we require x0 not to be on a periodic orbit. So
the above statement follows.

On the other hand, if we look at systems that are not structurally stable at
all, namely two-dimensional (or one-degree of freedom) Hamiltonian systems, the
concept of λ-expansion is also sufficient:
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Theorem 4.2.6 Let ẋ = f(x), x ∈ X ⊂ R2, be a Hamiltonian dynamical system
with a hyperbolic fixed point x̄ with Lyapunov exponent λ(x̄). Then there is 0 <
λ ≤ λ(x̄) such that if x0 is λ-expansive or (λ, N)-expansive, then x0 = x̄ or it is
contained in its stable manifold.

Proof: In a one-degree of freedom Hamiltonian system the two Lyapunov expo-
nents with respect to an orbit add up to zero. However, for every x0 ∈ X, unless
ω(x0) is a hyperbolic fixed point, both Lyapunov exponents have zero real part.
So only the stable manifold of a hyperbolic fixed point can contain a λ-expansive
set for λ > 0.

For general dynamical systems one obtains the following result when the hy-
perbolic fixed point under consideration is the most unstable hyperbolic orbit:

Lemma 4.2.7 Suppose that there is a hyperbolic fixed point x̄ ∈ Q, where Q ⊂ X
is a compact set, and δ > 0 such that λ(x̄) > λ(x) + δ for all x ∈ Q \ W s(x̄).
Then there is λ > 0 such that Aλ ∩Q ⊂ W s(x̄) ∩Q.

Proof: Choose λ = λ(x̄)− δ
2
. Then Aλ∩Q 6= ∅ as x̄ ∈ Aλ∩Q. Let x ∈ Q\W s(x̄).

Then there is N0 ∈ N such that |||Λ(n, x) − λ(x)||| < δ
2

for all n ≥ N0. Hence
Λ(n, x) < λ for all n ≥ N0 and, consequently, x /∈ Aλ ∩Q. This gives the desired
statement.

If one considers the (λ, N)-expansive set A(λ,N) for some N > 1 one typically
finds a larger part of W s(x̄) ∩Q.

Another consequence of this lemma is that one can use λ as a filter; analyzing
the λ-expansive sets for increasing λ gives a nested sequence of expansive sets
often corresponding to a hierarchy of stable manifolds of hyperbolic periodic
points.

Remarks 4.2.8 1. The concept of λ-expansion is related to uniform hyper-
bolicity. Note however, that for this we need exponential growth normal to
the orbit/manifold under consideration, which we do not restrict ourselves
to in our setting. Here all kinds of stretching are detected.

2. The result above also applies to periodic points if one considers fp for some
p > 1.

For the sake of completeness we note that unlike in usual optimization prob-
lems, we do not just need to look at local or global maxima but strictly speaking
at relative local maxima of the expansion rate field in order to detect stable man-
ifolds. These so-called ridges are characterized by demanding that they are strict
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maxima of a scalar field only in directions normal to the structure under consider-
ation. This concept is discussed in detail in Shadden, Lekien, and Marsden [102].

However, as noted by Haller [47] the invariant manifolds identified in a finite-
time context are not unique but only given up to exponentially small errors.
Hence, also a small strip along the stable manifold is characterized by large expan-
sion rates, which complicates the numerical extraction of the manifold. However,
in typical examples it is not necessary to look for ridges specifically. Therefore
we will not proceed with this concept any further.

4.2.3 Direct Expansion Rates

So far we have only considered infinitesimal perturbations. Often, one is in-
terested in finite perturbations because they are realistic in many applications.
Moreover, in some cases Df(x) is not given analytically as we will see in the fol-
lowing chapter in the context of finite-time velocity fields. Here f may be given
only in terms of measurement data or a finite set of data points approximating the
solution to a partial differential equation. In this case, Df(x) can usually be ob-
tained via local interpolation of the given discrete velocity field. However, as well
as interpolation errors, this means additional computational expense. Therefore
it is desirable to get an approximation of Λ(N, x) on the basis of f .

Definition 4.2.9 (Direct expansion rate) Let ε > 0 and N ∈ N. The direct
expansion rate is given by

Λε(N, x0) :=
1

N
log

(
max

{x:|||x0−x|||=ε}

|||fN(x0)− fN(x)|||
ε

)
.

Direct expansion rates are quantities that are similar in spirit to the concept of
relative dispersion, see for example [12, 61, 108, 113].

The connection between expansion rates and direct expansion rates is given
in the following proposition.

Proposition 4.2.10 Let f : X → X be a diffeomorphism on a compact subset
X ⊂ Rl. Then

lim
ε→0

Λε(N, x0) = Λ(N, x0).

Proof: Let N ∈ N be fixed. As f is a diffeomorphism, fN(x0) is continuously
differentiable with respect to x0. Therefore we have

lim
x→x0

(
fN(x0)− fN(x)

|||x0 − x|||
− DfN(x0) · (x0 − x)

|||x0 − x|||

)
= 0.
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It follows that

lim
ε→0

max
{x:|||x0−x|||=ε}

|||fN(x0)− fN(x)|||
|||x0 − x|||

= lim
ε→0

max
{x:|||x0−x|||=ε}

|||DfN(x0) · (x0 − x)|||
|||x0 − x|||

= lim
ε→0

max
{γ:|||γ|||=ε}

|||DfN(x0)γ|||
ε

= lim
ε→0

max
{ξ:|||ξ|||=1}

|||DfN(x0)ξ · ε|||
ε

= max
{ξ:|||ξ|||=1}

|||DfN(x0)ξ|||

= |||DfN(x0)|||.

Using the definitions of Λε(N, x0) and Λ(N, x0) we can conclude

lim
ε→0

1

N
log

(
max

{x:|||x0−x|||=ε}

|||fN(x0)− fN(x)|||
ε

)
=

1

N
log |||DfN(x0)|||,

thus, limε→0 Λε(N, x0) = Λ(N, x0).

For ε small enough, the relation between local maxima in the direct expan-
sion rates field and stable manifolds of hyperbolic points can be drawn via the
argument for expansion rates. However, even without these arguments, one can
demonstrate that the maximization property is typical.

For example, suppose the simple case that the stable manifold of a hyperbolic
fixed point is a separatrix serving as the basin boundary between two domains of
attraction of two attracting sets. Then two points initialized on different sides of
the stable manifold have a totally different fate, see Figure 4.1. On the other hand,
two points both initialized on one side belong to the same basin of attraction. In
such cases the stable manifold is expected maximize the direct expansion rate.

More generally, we can consider the Lambda-Lemma 2.1.3. This states that a
disk or curve segment initialized transverse to the stable manifold of a hyperbolic
fixed point will align along the unstable manifold and comes arbitrarily close to it,
see also Figure 2.1. Points on or near the (local) unstable manifold are repelled
from the fixed point at an exponential rate. If pairs of points are initialized
properly, they move along different branches of the manifold. This high stretching
is exactly what the direct expansion rate measures.

4.2.4 Error Estimates

We now want to estimate the error that is made when substituting the expan-
sion rate by the direct expansion rate. Let f : X → X, X ⊂ Rl, be a Cr-
diffeomorphism with r ≥ 2. Suppose we are given a finite initial perturbation ε0
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Figure 4.1: In many cases the stable manifold of a hyperbolic fixed point serves
as a boundary between dynamically distinct regions or even separates different
basins of attraction. Hence two points straddling the manifold have a completely
different fate, which causes a large direct expansion rate.

in x0, with x0, x0 + ε0 as well as their connecting line contained in
◦
X, which is

the set of inner points in X. After one iteration we have

ε1 := f(x0 + ε0)− f(x0) = Df(x0) · ε0 + r0,

with rk := r(xk, εk), k ∈ N, where ([53] p.284, Thm. 168.4)

r
(j)
0 =

l∑
i,k=1

(∫ 1

0

∂2fj

∂xi∂xk
(x0 + tε0)(1− t)dt

)
ε
(i)
0 ε

(k)
0 .

Here the superscript (j) denotes the j-th component. If the partial derivatives
of second order of the components f1, . . . , fl are bounded in X, then

‖r0‖∞ ≤ 1
2
M‖ε0‖2

∞ with M := max
j

l∑
i,k=1

sup
x∈Q

| ∂2fj

∂xi∂xk
(x)|.

The error for further iterates evolves according to

εN = f(xN−1 + εN−1)− f(xN−1)

= DfN(x0)ε0 +
N−1∑
j=1

DfN−j(f j(x0))rj−1 + rN−1.
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We assume that |||Df j(x)||| ≤ λj for some λ > 0. This gives

|||εN||| ≤ |||DfN (x0)ε0|||+
N−1∑
j=1

|||DfN−j(f j(x0))||| · |||rj−1|||+ |||rN−1|||

≤ λN · |||ε0|||+
N−1∑
j=1

λN−j · |||rj−1|||+ |||rN−1|||.

With ‖·‖∞ ≤ ||| · ||| ≤
√

l‖·‖∞ we obtain

|||rj||| ≤ M̃|||εj|||2,

where M̃ = 1
2

√
l ·M . Set

R := max
j∈{0,...,N−1}

|||rj|||.

It follows that

|||εN||| ≤ λN · |||ε0|||+ R

N−1∑
j=1

λN−j + R

= λN · |||ε0|||+ R
N−1∑
j=0

λj .

Hence, for λ 6= 1 we obtain

|||εN|||
|||ε0|||

≤ λN +
R

|||ε0|||
· λN − 1

λ− 1
. (4.1)

When λ < 1, that is, in the case where we have contraction, we can assume
that R = C|||ε0|||2, for some C > 0. Then Equation (4.1) simplifies to

|||εN|||
|||ε0|||

≤ λN + C|||ε0||| ·
λN − 1

λ− 1
≤ λN + C|||ε0||| ·

1

1− λ
.

On the other hand, if λ > 1, that is, in the expansive case, the error estimate
(4.1) can be written as

|||εN|||
|||ε0|||

≤ λN +O(λN−1),

hence, one obtains a very pessimistic result. Therefore, we can conclude that
in the case where λ > 1, for large N , direct expansion rates will typically not
approximate finite-time Lyapunov exponents. They must be seen merely as a
qualitative indicator of stretching, measuring global effects of the full nonlinear
dynamical system, see for example [61]. However, as pointed out in [113], due to
the typically rapid alignment of the initial perturbation with the most unstable
direction associated with the trajectory, this error growth usually does not affect
the qualitative results.
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4.3 Approximation of Expansion Rates

In this section, we propose an algorithm for the numerical approximation of ex-
pansion and direct expansion rate fields in a set oriented approach. We define the
(direct) expansion rate of a box B as the maximum (direct) expansion rate over
all x ∈ B, introduce some strategies for its approximation and show convergence
properties. Other topics like optimal choice of integration steps, choice of test
points, implementation and parallel computing are also addressed. We point out
relations and differences to the relative dispersion approach [12, 61, 108, 113] and
the direct Lyapunov exponent approach in [46, 47, 74, 102].

4.3.1 Set Wise Expansion Rates

Suppose we are given a box collection Bk that is a covering of our region of interest
(e.g. attractor, chain recurrent set, compact set in phase space). We then define
the expansion rate for a box B ∈ Bk as

δ(N, B) := max
x0∈B

Λ(N, x0)

and in an analogous way the direct expansion rate for B as

δε(N, B) := max
x0∈B

Λε(N, x0).

Proposition 4.3.1 Let B ∈ Bk be given. Then

Λ(ε)(N, x) ≤ δ(ε)(N, B) ∀x ∈ B.

Moreover, let Bk be a nested sequence of boxes with Bk ∈ Bk such that x ∈ Bk

for all k and diam Bk = θ · diam Bk−1 for 0 < θ < 1. It follows that

lim
k→∞

δ(ε)(N, Bk) → Λ(ε)(N, x).

Proof: The properties directly follow from the continuity of Λ(N, x) with respect
to x and the fact that we consider the maximum (direct) expansion rate in each
box.

In practice we compute an approximation of δ(N, B) or δε(N, B) using test
point strategies in each box. This will be discussed in the following section.

4.3.2 Test Point Strategies

Since in practice the maximum over an infinite number of points cannot be com-
puted, one needs to use a test point discretization in each box. In this section,
we discuss several choices of test points for the approximation of set wise (direct)
expansion rates.
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Expansion rates For the computation of the expansion rate of a box in systems
of moderate dimension a good choice is to discretize the box by a regular grid,
compute the expansion rates with respect to the grid points and assign their
maximum to the box. As the expansion rate is continuously dependent on x for
fixed N , the error in employing this discretization can be controlled by a dense
enough grid or alternatively by a fine enough box covering. However, as we will
see later, in typical examples it is often sufficient to consider only the center point
of a box. This is especially true for small numbers of iterations or when dealing
with a very fine box discretization. In higher dimensions a grid discretization
often does not make much sense because the number of points would increase too
much. In this case one can take the maximum expansion rate with respect to a
set of equally distributed random points, so-called Monte Carlo points.

Direct expansion rates More problematic is the approximation of the direct
expansion rate of a box. Theoretically, this does not only mean that an infinite
number of points has to be considered but that for each x ∈ B infinitely many
points on the ε-ball around x need to be dealt with too. In a similar context,
Bowman [12] uses a staggered grid of initial conditions and measures the stretch-
ing associated with segments defined by neighboring pairs of points in the grid
and considers the maximum for each grid point. Winkler [113] chooses the four
neighbors of a grid point in a two-dimensional grid and considers the squared rel-
ative dispersion, whereas von Hardenberg et al. [108] even consider eight satellites
of a grid point.

All these approaches have in common that they depend on a grid discretiza-
tion of phase space and hence they can only be used in systems with moderate
dimensions (i.e. two- or three-dimensional space). Moreover, in order to increase
the accuracy of the computations by decreasing the initial perturbation ε the
complete mesh needs to be refined, which causes additional computational load.

In order to approximate the maximum direct expansion rate of a box B in an
arbitrary dynamical system, we seek to have a formulation that is independent
of the dimension of the phase space. Therefore, the maximum two-point relative
dispersion of pairs of Monte Carlo points seems to be an appropriate approxima-
tion of the direct expansion rate of a box. This means that for the approximation
of δε(N, B) the following approach has been implemented:

In B ∈ Bk we choose m equally distributed points xi. Moreover, we randomly
assign to every point a vector vi ∈ {w ∈ Rl : ||w|| = ε} with {v1, ..., vm} again
being equally distributed in such a way that for m → ∞ the vi lie dense on the
boundary of a ball of radius ε about the origin. With yi = xi + vi we get m pairs
of points (xi, yi), i = 1, ...,m, separated by a distance ε. See Figure 4.2 for an
illustration.
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Figure 4.2: Choice of test points in a box and computation of the relative disper-
sion of a pair of test points.

Let MC be a collection of m point pairs (xi, yi) in B constructed as described
above. The approximate direct expansion rate for a set B with respect to
the point pairs MC is given by

δε,MC(N, B) :=
1

N
log

(
max

i∈{1,...,m}

|||fNxi − fNyi|||
ε

)
.

Proposition 4.3.2 Let B ∈ Bk, x ∈ B and N ∈ N. Let MC be a collection of
m point pairs (xi, yi) in B constructed as described above. Then

δε,MC(N, B) ≤ δε(N, B).

Moreover, let Bk be a nested sequence of boxes with Bk ∈ Bk such that x ∈ Bk

for all k and diam Bk = θ · diam Bk−1 for 0 < θ < 1. It follows that

lim
m→∞

lim
k→∞

δε,MC(N, Bk) → Λε(N, x),

where m is the number of test point pairs.

Note that for almost all initial orientations, the perturbation vector aligns with
the most unstable direction [100], so that the method is expected to work satis-
factorily even if only a relatively small number of pairs in each box are considered.

Unlike in other approaches we do not need to refine a given grid structure in
order to increase the accuracy of the computations. Here one has several inde-
pendent choices. One possibility is to increase the number of Monte Carlo points
in all or only specific boxes, on the other hand the box covering or only certain
boxes can be refined. This allows adaptive approaches, where, for example, only
boxes with high expansion rates are refined. Furthermore, the accuracy can be
increased by decreasing ε. Contrary to the other grid-based approaches described
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above, this can be done without increasing the number of points under considera-
tion. Note that using a very small ε is only required if one wants to obtain a good
approximation of the expansion rate. Choosing larger values of ε one measures
increasingly global stretching rather than local effects.

Before we proceed, we illustrate these methods at the Duffing system intro-
duced in Example 2.1.16 in Chapter 2:

Example 4.3.3 (Duffing system) We choose γ = 0 and δ = 0.25 in Equation
2.1:

ẍ + δẋ− x + x3 = γ cos ωt.

These are the parameter values for which the system is autonomous and has
a saddle at the origin and sinks at (±1, 0). We consider a box covering of the
rectangle Q = [−2, 2]× [−2, 2] at depth 12 (4096 boxes). For the direct expansion
rate approach we choose 50 pairs of Monte Carlo points per box as described
above, with the initial distance being 1% of the box radius, that is ε ≈ 0.002.
For the computation of expansion rates we use a uniform 5 × 5 grid per box.
We approximate the desired quantities for different numbers of iterations of the
time-1 flow map and display the results in Figure 4.3.

As expected, the two approaches give qualitatively consistent results. More-
over, for larger N both methods give increasingly accurate approximations of the
stable manifold of the saddle point. Even the quantitative results fit well to the
theoretical result of λ = 0.8828. The absolute differences between the two ap-
proaches are shown in Figure 4.4. As discussed above, the errors grow for large N ,
but nevertheless both methods perform well qualitatively in this example. Note
that the direct expansion rates approach gives especially good results for large
N . This can be accounted for by the fact that for large N the direct expansion
rate tends to measure global effects of the dynamics. Trajectories with respect to
points straddling the stable manifold will diverge at the saddle point along differ-
ent branches of the unstable manifold as indicated by the Lambda-Lemma 2.1.3,
and this stretching is what the direct expansion rate takes into account. The
expansion rate, on the other hand, depicts local effects, namely the stability of
the trajectory.

4.3.3 Choice of Number of Iterations N

As the results of the expansion rates and direct expansion rates computations
are dependent on the number of iterations N , a crucial question is how to choose
N in order to capture the desired structures. For small N , large regions of
the phase space may exhibit similar stretching characteristics, and the invariant
manifolds are not discernible, see Figure 4.6 (N = 1). If N is allowed to grow too
large, however, the final positions of initially neighboring trajectories are generally

50



N = 1 N = 1

N = 3 N = 3

N = 5 N = 5

N = 10 N = 10

Figure 4.3: Direct expansion rate (left column) and expansion rate fields (right
column) for the Duffing system for different numbers of iterations of the time-1
map.
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N = 5 N = 10

Figure 4.4: Absolute difference between direct expansion rate and expansion rate
fields.

uncorrelated (see Figure 4.6, N = 7), and thus makes the direct expansion rate
calculation, in particular, unfaithful. Moreover, as shown in Section 4.2.4, usually
for large N the error in the direct expansion rate is hard to control. Furthermore,
if, as in our case, the dynamical system lives on a compact set in phase space,
then the direct expansion rates for all trajectories will eventually tend to zero. We
therefore seek an intermediate number of iterates that is sufficiently long for the
interesting structures to emerge, but sufficiently short to avoid the above effects.

Scaling results from turbulence studies provide an approach to determine this
optimal number of iterates (see e.g. [9, 10], and especially [113] for a detailed
discussion). We will adapt this purely physical interpretation to our specific con-
text. For this let ε0 denote the initial perturbation in x0, which evolves according
to

εN = f(xN−1 + εN−1)− f(xN−1), for N = 1, 2, . . . .

Suppose that the dynamical system is characterized by two different length
scales l and L. The small length scale l represents a scale below which the
separation εN (i.e. |||eN||| ≤ l) grows exponentially:

|||εN||| = |||ε0||| · eλN ,

where λ > 0.
In contrast, the large length scale L represents the scale of the largest invariant

structures in the flow. Trajectories that are separated by this length scale |||eN||| ≥
L are completely uncorrelated, which gives the so-called diffusive regime, with

〈|||εN|||2〉 ≈ 2DN,
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where D corresponds to the diffusion coefficient in turbulence and 〈·〉 denotes
an average taken over many particle pairs (e.g. an ensemble average); see, for
example, Boffetta et al. [10]. Often the diffusive regime cannot be attained, espe-
cially when one considers a compact invariant set. For separations of intermediate
length scales one typically expects that one observes behavior that is influenced
by both regimes, this is the so-called anomalous regime.

From our point of view, we are most interested in the exponential regime.
Thus, a natural threshold for the number of iterations is the time of transition
from the exponential to the anomalous regime. This captures the stretching
associated with exponential separation of initial conditions without capturing
the diffusive behavior.

Hence, for a given dynamical system, we calculate the average direct expansion
rates with respect to the given box covering B by

〈δε(N, ·)〉B =
1∑

B∈B m(B)

∑
B∈B

m(B)δε(N, B). (4.2)

The exponential regime may be identified as linear growth of N ·〈δε(N, ·)〉B versus
N . The optimal number of iterates is then indicated as an elbow in the graph,
see Figure 4.7.

Note that the results depend on the size of ε and are valid for the direct
expansion rates approach only. However, as we will see later, these ideas will
nevertheless provide some useful information about an appropriate number of
iterates for discerning the relevant structures.

Another option is to consider the average or maximal difference between dif-
ferent expansion rate fields, that is, with respect to different numbers of iterations
N . One plots the average difference for two subsequent scalar expansion rate fields
(i.e. N and N + 1). When the difference graph converges to zero, that is the
expansion rate field does not change on average, it indicates that an appropriate
value for N has been found.

4.3.4 Parallel Computing

As the expansion rates or direct expansion rates are computed per box, so, the
computation does not depend on the complete box covering, the algorithm can be
easily parallelized. A simple approach is to divide our box covering into several
sets of boxes of about the same magnitude and compute the expansion rates for
these packages independently on several compute clients. The results are collected
on a server and can then be combined to obtain the results for the complete
box covering under consideration. For this task we use ParTool [52], a simple
parallelization code that enables us to define jobs and provides a communication
structure between clients and server.
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4.3.5 Examples

The Duffing Oscillator

Once again, we consider the Duffing oscillator (2.1):

ẍ + δẋ− x + x3 = γ cos ωt,

with δ = 0.2, γ = 0.36, ω = 1. We choose Q = [−2, 2] × [−2, 2]. Because of the
periodic forcing we consider a time-2π map and can thus reduce the system to a
two-dimensional autonomous map. Numerically, we find a hyperbolic fixed point
of the Poincaré map at x̄ ≈ (0.04, 0.13). Its one-dimensional stable manifold and
the well-known Duffing attractor formed by its unstable manifold are shown in
Figure 4.5. For the approximation of these structures we used the set oriented
continuation algorithm introduced in the previous chapter.

a) b)

Figure 4.5: Invariant manifolds for the Duffing oscillator, approximated using
the continuation algorithm. a) Unstable manifold of the hyperbolic fixed point
x̄, forming the Duffing attractor; b) part of the stable manifold of x̄.

In order to decide on an appropriate number of iterates, we consider a partition
of Q on depth 12 (4096 boxes). We choose 10 pairs of points per box as described
above (ε ≈ 0.002) and compute the direct expansion rates for N = 1, . . . , 15
iterates. Some results are shown in Figure 4.6. Note that for large N the results
become fuzzy, as expected, but also observe how well they compare to Figure
4.5 b). We plot N · 〈δε(N, ·)〉B (see Equation (4.2), with B denoting the box
covering) versus N in Figure 4.7. We see that N = 5 seems to be an appropriate
number of iterations to use for further investigation as it marks the transition to
the anomalous regime.

We compute the direct expansion rates for N = 5 with respect to finer parti-
tions of the phase space in Figure 4.8, observing that the relation between local

54



N = 1 N = 3

N = 5 N = 7

Figure 4.6: Direct expansion rate fields for the Duffing oscillator for different
numbers of iterations N of the time-2π map.

maxima in the scalar field to the stable manifold of the hyperbolic fixed point
becomes even more obvious.

Additionally, expansion rates for orbits in the time reversed system are com-
puted, uncovering the unstable manifold of the hyperbolic fixed point of the
Poincaré map. We plot the results for both forward and backward time compu-
tations together in Figure 4.9. For this we use a visualization method described
in Winkler [113], who analyzed this model for a different set of parameters using
the relative dispersion technique.

Hénon Map

We now apply our methods to the Hénon map [51]

h(x, y) = (1 + y − ax2, bx),
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Figure 4.7: Average direct expansion rates for the Duffing oscillator.

a) b)

Figure 4.8: Direct expansion rates for the Duffing oscillator, N = 5 for finer
partitions. a) Box covering on depth 14 (16384 boxes); b) box covering on depth
16 (65536 boxes).

with a = 1.4 and b = 0.3. The Lyapunov exponents of the numerically observed
attractor were found to be approximately λ1 = 0.42 and λ2 = −1.62 [6]. The
system has two fixed points (x1, bx1) and (x2, bx2), where

x1,2 =
b− 1±

√
(1− b)2 + 4a

2a
,

one of which is embedded within the attracting set. Its stable manifold bounds
the basin of attraction of the attractor [43].

We consider a covering of part of the basin of attraction for the Hénon at-
tractor with Q = [−1.5, 1.5] × [−0.4, 0.4]. Expansion rates with respect to the
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Figure 4.9: Direct expansion rates (N = 2) for the Duffing oscillator in forward
and backward time uncovering parts of the stable manifold (green) and the un-
stable manifold (red) forming the Duffing attractor.

center points of a box covering on depth 18 (212744 boxes) are computed and
the results for N = 12 and N = 16 are shown in Figure 4.10. Although there
are infinitely many hyperbolic periodic points, the stable manifold of the saddle
point is particularly characterized by large expansion rates. We then consider
a small neighborhood of the saddle point as shown in Figure 4.11. We observe
that the local stable manifold of the saddle appears clearly as a maximizer of the
expansion rate.

For an analysis of these results, we numerically computed the periodic points
of the Hénon map up to period 7 and checked their dominant Lyapunov expo-
nents. For the saddle point we obtain λ(x̄) ≈ 0.65 whereas for the other periodic
orbits we get values between 0.41 and 0.56, remarkably smaller than that of the
fixed point. These observations have also been made in [18], where Lyapunov
exponents for all periodic orbits up to period 10 have been computed.

With our choices of N , we have only sampled periodic orbits of low periods,
which may explain the dominance of the saddle point. However, on the other

57



hand, periodic orbits of higher periods are expected to sample the whole attractor
increasingly better than those of small periods, so that one could assume that
their exponents are of the order of λ1 = 0.42. Therefore, also an application of
Lemma 4.2.7 may provide an explanation for the dominance of the stable manifold
of the hyperbolic fixed point.

a)

b)

Figure 4.10: Expansion rates for a covering of part of the basin of attraction of
the Hénon attractor (black); a) N = 12; b) N = 16.
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Figure 4.11: Expansion rates for N = 20 for a covering of a neighborhood of
the saddle point (black dot) in the Hénon Map (depth 14, 25 grid points per
box). Clearly visible is the stable manifold of the saddle as a maximizer of the
expansion rate. The expansion rate values for the corresponding boxes are in good
agreement with the dominant Lyapunov exponent of the unstable fixed point.
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4.4 Extraction of Invariant Manifolds

Based on the results of the previous section, we propose a set oriented subdivision
algorithm for the extraction of λ-unstable or (λ, N)-unstable sets as candidates
for stable manifolds of hyperbolic periodic points. We prove convergence, and,
additionally, we introduce a selection criterion for the algorithm that does not
need information on the exact size of λ.

4.4.1 The Subdivision Algorithm

Let λ > 0 be given as well as an initial box Q with Q ∩ Aλ 6= ∅ (Q ∩ A(λ,N) 6= ∅,
respectively). The following algorithm proposes a subdivision scheme for the
extraction of Q ∩ Aλ (Q ∩ A(λ,N), respectively):

Algorithm 4.4.1 Given an initial collection B0 one inductively obtains Bk from
Bk−1 for k = 1, 2, . . . in two steps:

1. Subdivision: Construct a new collection B̂k such that⋃
B∈B̂k

B =
⋃

B∈Bk−1

B and diam(B̂k) ≤ θdiam(Bk−1)

for some 0 < θ < 1.

2. Selection: Define the new collection Bk by

Bk = {B ∈ B̂k : δ(ε)(i, B) ≥ λ for i = 1, . . . , k}.

Notably, for the extraction of the A(λ,N) one defines the new collection Bk by

Bk = {B ∈ B̂k : δ(ε)(N − 1 + i, B) ≥ λ for i = 1, . . . , k}.

The subdivision algorithm produces a covering of the set under consideration,
which indeed converges to the set of λ-expansive and (λ, N)-expansive points.

Proposition 4.4.2 Let λ > 0 and Q ⊂ X a compact subset. Let Aλ,Q := Aλ∩Q
be the λ-unstable set with respect to Q and B0 a finite collection of boxes with
Q0 := Q =

⋃
B∈B0

B. Define Qk =
⋃

B∈Bk
B as obtained by the subdivision

algorithm, using δ(·, B) in the selection step. Then

Aλ,Q = Q∞.

Proof: Along similar lines as in Dellnitz and Hohmann [24]:
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1. Aλ,Q ⊂ Qk for all k, as we consider the maximal expansion rate per box,
and hence, Aλ,Q ⊂ Q∞.

2. Show that Q∞ ⊂ Aλ,Q. For contradiction suppose there is a point x ∈
Q∞ such that x /∈ Aλ,Q. As Aλ,Q is compact there is δ > 0 such that
d(x, Aλ,Q) > δ and we also find N ∈ N such that d(Bk(x), Aλ,Q) > δ

2
for

k > N , where Bk(x) ∈ Bk is the box containing x. Consequently, we find
M > N such that Bl(x) ∩ Aλ,Q = ∅ for all l > M , which is impossible by
construction of the algorithm.

3. So we have Q∞ = Aλ,Q and the desired result.

Note that the convergence is in terms of the Hausdorff distance, see [24]. The
convergence to A(λ,N) ∩Q can be proved in an analogous way.

Another possibility is to extract C(λ,N) for a particular N ∈ N. Obviously,
this set contains all candidates of (λ, N)-expansive points. Here, in the selection
step, we keep the box collection Bk with

Bk = {B ∈ B̂k : δ(ε)(N, B) ≥ λ},

so, the number of iterations for the computation of the expansion rate is kept
fixed.

Often, however, one does not know the hyperbolic points responsible for ex-
istence of λ-expansive sets, and therefore also λ is not explicitly known. In that
case the subdivision algorithm above can be altered in the selection step in the
following way

Black-Box-Selection: Define the new collection Bk by

Bk = {B ∈ B̂k : δ(ε)(n, B) ≥ 〈δ(ε)(n, ·)〉B̂k
},

where n = k, n = N − 1 + k or n = N as described above and 〈δ(ε)(n, ·)〉B as in
Equation 4.2. This procedure works well in test cases, as we will see later.

Sometimes it may be useful to carry out two or more subdivision steps at once
before invoking a selection step. This depends on the dimension of the manifold
to be extracted, see Schütze [99] for a detailed discussion on the computational
effort.
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4.4.2 Examples

Undamped Pendulum

The following ordinary differential equation describes the motion of a simple
pendulum without friction or forcing:

ẋ = y

ẏ = sin(x)

The system has saddle points in (π + k · 2π, 0) and centers in (k · 2π, 0),
k ∈ Z. The saddles are connected by heteroclinic orbits, formed by the stable and
unstable manifolds of neighboring fixed points. The eigenvalues of the Jacobian
in the saddle points are ±1, so their dominant Lyapunov exponent is 1. We
consider the time-1 map f(x) := φ1x for initial conditions on the rectangle Q =
[−4, 4] × [−3, 3]. We want to get an approximation of the stable manifolds by
extracting the λ-expansive and (λ, N)-expansive sets for different choices of λ.
The dynamical system is conservative, so, apart from the saddles and their stable
manifolds, all points have zero Lyapunov exponents. The scalar expansion rate
field for N = 10 is shown in Figure 4.12.

Figure 4.12: Expansion rates field with respect to a box covering on depth 14
(16384 boxes). In each box 100 grid points are chosen and N = 10 iterates of the
time-1 map are computed.

For λ we choose 0.5, 0.7 and 0.9. Coverings of the respective λ-unstable sets
are shown in Figure 4.13. We choose 25 grid points per box for the approximation
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of the set wise expansion rate. We start with a box covering on depth 10 and
carry out six steps of the subdivision Algorithm 4.4.1. Note that the coverings
form a nested sequence. In Figure 4.13 an approximation of the λ-expansive sets
for λ = 0.7 after ten subdivision steps is also shown.

Figure 4.13: Box coverings of λ-expansive sets for the pendulum for different
choices of λ. The heteroclinic connection between the two saddles at (±π, 0) is
shown in black. The center points of the covering of A0.7∩Q after ten subdivision
steps are shown in magenta.

Additionally, we demonstrate the results of the subdivision algorithm for λ =
0.5 and for the Black-Box selection criterion in Figure 4.14. Observe the fast
convergence of the latter approach. Moreover, box coverings of different (λ, N)-
expansive sets are given in Figure 4.15.

ABC Flow

We consider the following system of ordinary differential equations

ẋ = A sin z + C cos y

ẏ = B sin x + A cos z

ż = C sin y + B cos x.

This class of flows is known as ABC (Arnold-Beltrami-Childress) flows and it is
notable for being an exact solution of Euler’s equation, exhibiting a nontrivial
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a) b)

Figure 4.14: Subdivision algorithm. a) Nested coverings of A0.5 ∩Q after one to
six subdivision steps. b) Same for Black-Box Selection.

a) b)

Figure 4.15: a) Nested coverings of A(0.5,5) ∩Q after one to six subdivision steps.
b) Box covering of A(0.3,10) ∩Q after ten subdivision steps.

streamline geometry. In our numerical studies we consider the cube [0, 2π]3 and
fix the parameter values A =

√
3, B =

√
2, C = 1. For a numerical analysis

we refer to Haller [46], and to Dombre et al. [36] for an analytical investigation.
The spatial periodicity suggests the employment of Poincaré sections in numerical
studies or the consideration of cube planes, such as in [36] or [46]. Their analysis
gives clear indication of the location of chaotic and regular regions. These are also
visible in Figure 4.16, where we computed the direct expansion rates for different
numbers of iterations of the time-1 map.

We want to extract the two-dimensional stable manifolds of hyperbolic pe-
riodic orbits from the three-dimensional phase space. These, in Haller’s words
[46], hyperbolic material surfaces, form the skeleton of the dynamics. We start
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with an initial box covering on depth 12, choose N = 6 in the subdivision algo-
rithm, and carry out five steps (k = 1, . . . 5) of the subdivision algorithm based on
the expansion rates for the box center points. We combine a double subdivision
step with a selection step discarding those boxes whose expansion rate is below
average (Black-Box approach). The result is shown in Figure 4.17, illustrating
the complicated geometry of the mixing regions. To the best of our knowledge
this has been the first time that these two-dimensional structures have been fully
extracted and visualized.

We also want to extract the centers of the vortices; see [48] for a mathemat-
ically objective definition. These elliptic regions are typically characterized by
near zero expansion rates. For this we employ the same method as described
above but instead we keep the boxes whose expansion rate is below average.
Figure 4.18 shows the result of this computation.
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a) b)

c) d)

Figure 4.16: Direct expansion rates for the ABC-flow. The stable manifolds of
periodic orbits are characterized by large values (red). Also elliptic regions are
clearly visible (dark blue). a) N = 1; b) N = 3; c) N = 5; d) N = 10 (y − z
plane).
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Figure 4.17: Regions in the ABC flow with high expansion, corresponding to
hyperbolic material surfaces.

Figure 4.18: Approximation of hyperbolic (blue) and elliptic regions (green) in
the ABC flow.
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4.5 Expansion in Graphs

As briefly discussed in Chapter 1, the concept of almost invariant sets provides a
partition of phase space that does not explicitly use the geometrical template of
invariant manifolds. It is not untypical that the boundaries between these sets
coincide with invariant manifolds of hyperbolic periodic points as demonstrated
in [28] (see Figure 4.20 c)). Recently developed methods for the approxima-
tion of almost invariant sets make massive use of graph algorithmic techniques
[28, 31, 38], such as implemented in PARTY/GADS [88, 89, 90]. This is a moti-
vation for us to look explicitly for the boundaries between the sets by considering
the information coded in the graph. We briefly show how to obtain a weighted, di-
rected graph from a dynamical system, develop heuristics to detect the structures
of interest in the graph and illustrate the techniques in two examples.

4.5.1 Dynamical Systems and Graphs

Let f : X → X be a dynamical system and let A ⊂ X be a compact invari-
ant set. Then the dynamics on A can be approximated in terms of transition
probabilities between boxes. This allows, for example, the approximation of the
underlying SRB-measure (if it exists), the natural invariant measure. The crucial
observation is that the calculation of invariant measures can be viewed as a fixed
point problem. Let M be the set of probability measures on Rl. Then µ ∈ M
is invariant if and only if it is a fixed point of the Perron-Frobenius operator
P : M→M,

(Pµ)(B) = µ(f−1(B))) for all (measurable) subsets B ⊂ Rl.

Now let Bi ∈ Bk, i = 1, . . . , n, denote the boxes in the covering obtained after
k steps in the subdivision algorithm. Following Ulam [107], the most natural
discretization of the transfer operator P is given by the stochastic matrix PB =
(pij), where

pij =
m(f−1(Bi) ∩Bj)

m(Bj)
, i, j = 1, . . . , n (4.3)

and m denotes Lebesgue measure. So the matrix entry pij gives the probability
of being mapped from box Bj to Bi in one iterate. Note that PB is a weighted,
column stochastic matrix that is typically sparse and thus defines a finite Markov
chain. The transition probabilities can be computed either by a Monte Carlo
method (see e.g. [55]) or, if local Lipschitz constants are known for f , by an
exhaustion technique [64].

The computation of PB is fast because rather than considering the long term
dynamics only one iterate of f per test point is needed. An approximation of the
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natural invariant measure is then given as the eigenvector of PB corresponding to
the eigenvalue 1.

Note that sometimes apart from the eigenvalue at 1 the transition matrix PB
possesses an eigenvalue that is close to 1, indicating the existence of two almost
invariant sets: A1 ∪A2 =

⋃
B∈Bk

B with A1 ∩A2 = ∅. The respective eigenvector
q is an approximation of a signed measure, where the sign structure of the entries
in q determines which almost invariant set each box belongs to.

Now let B be a box covering of A on depth k and PB the transition matrix (e.g.
computed for a grid of initial conditions in each box), and µB an approximation
of the natural invariant measure. Then we can construct a graph G = (V, E)
with vertex set V = Bk and with directed edge set

E = E(B) = {(B1, B2) ∈ B × B : f(B1) ∩B2 6= ∅}.

The function vw : V → R with vw(Bi) = µB(Bi) assigns a weight to the vertices
and the function ew : E → R with ew((Bi, Bj)) = µB(Bi)pji assigns a weight to
the edges. Furthermore, let

Ē = Ē(B) = {{B1, B2} ⊂ B : (f(B1) ∩B2) ∪ (f(B2) ∩B1) 6= ∅}.

This defines an undirected graph Ḡ = (V, Ē) with a weight function ēw :
Ē → R with ēw({Bi, Bj}) = µB(Bj)pij + µB(Bi)pji on the edges. The difference
between the graphs G and Ḡ is that in Ḡ the edge weight between two vertices is
the sum of the edge weights of the two directed edges between the same vertices
in G. Thus, the total edge weights of both graphs are identical. As in typical
graph partitioning problems the cost function to be optimized is a function of the
edge weights, it is often sufficient to consider the undirected graph.

4.5.2 Graph Based Expansion

We now adapt our expansion rate approach to graphs. As the graph algorithms
find almost invariant decompositions without any geometric information we also
restrict ourselves to the analysis of the graphs as defined above. Intuitively,
structures in the graph (for example, a set of vertices) that correspond to stable
manifolds in the underlying dynamical system are expected be characterized by
high stretching. This could be measured in terms of the size or weight of sub-
graphs induced by specific vertices. To make this more precise, we need to briefly
introduce some notation.

Let G = (V, E) be a graph with vertex set V and edge set E. Let vw : V → R
be a weight function on the vertices and let ew : E → R be a weight function on
the edges. For some S ⊂ V let W (S) :=

∑
v∈S vw(v) and for some F ⊂ E let
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W (F ) :=
∑

e∈F ew(e). For some S ⊂ V let S̄ := V \S. For some S, T ⊂ V let
ES,T := {{u, v} ∈ E; u ∈ S, v ∈ T}.

In the following statement, different definitions for the expansion of a vertex v
are given. For each vertex we consider the set of neighboring vertices U(v). This
set is comprised of all vertices that can be reached from v by a path of maximum
length d, where d is a small positive integer. As such paths can be seen as
pseudo-solutions with respect to the initial value v, we expect that they exhibit
similar qualitative characteristics as the respective trajectories in the underlying
dynamical system. We therefore expect that the use of measures related to the
size or weight of U(v) can pinpoint areas of high stretching in the graph and,
thus, in the underlying dynamical system.

Definition 4.5.1 (Expansion of a vertex) For a vertex v ∈ V let U(v) be the
set of vertices from V with a fixed distance of at most d from v. We consider the
following definitions Λ(i,d)(v) for the expansion of a vertex v:

Λ(1,d)(v) = |U(v)| Λ(5,d)(v) =
W (EU(v),U(v))

W (E
U(v),U(v)

)

Λ(2,d)(v) = W (U(v)) Λ(6,d)(v) =
W (E

U(v),U(v)
)

W (EU(v),U(v))

Λ(3,d)(v) = W (EU(v),U(v)) Λ(7,d)(v) =
W (EU(v),U(v))

W (U(v))

Λ(4,d)(v) = W (EU(v),U(v)) Λ(8,d)(v) =
W (E

U(v),U(v)
)

W (U(v))

Λ(1,d)(v) considers the number of vertices in the subgraph with the expecta-
tion that nodes in areas of high stretching will typically span a large subgraph.
Λ(2,d)(v) is the sum of the vertex weights of the subgraph, Λ(3,d)(v) the sum of
the edge weights to edges within the subgraph, whereas Λ(4,d)(v) measures the
weights of edges connecting the subgraph to the rest of the graph. Again one
expects that parts of the graph that are characterized by strong mixing are well
connected to the rest of the graph. The other four measures are combinations of
the former.

4.5.3 Examples

We illustrate our definitions in two examples: the Duffing oscillator and a Poincaré
map in the planar circular restricted three body problem, where transport of as-
teroids can be analyzed as in [28].

Duffing Oscillator

We again come back to the Duffing oscillator (see Example 2.1.16) and consider
a box covering of Q = [−2, 2]× [−2, 2] on depth k = 14 (16384 boxes). Note that
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Q is forward invariant as it contains the Duffing attractor. For the construction
of the weighted, directed graph we compute the transition matrix PB on this
box covering for the time-2π map using 100 grid points per box. Moreover, we
approximate the natural invariant measure as described above.

We want to compare the different measures Λ(i,d)(v) for the expansion of a
vertex v. The results for d = 1 and d = 3 are shown in Figure 4.19.

For i = 1, . . . , 4 and i = 6 the heuristic measures seem to pick up the stable
manifold of the underlying dynamical system. For d = 3 a larger part of the
manifold is unfolded than for d = 1. This observation is in accordance with the
results of the previous sections.

Λ(1,1) Λ(2,1) Λ(3,1) Λ(4,1)

Λ(5,1) Λ(6,1) Λ(7,1) Λ(8,1)

Λ(1,3) Λ(2,3) Λ(3,3) Λ(4,3)

Λ(5,3) Λ(6,3) Λ(7,3) Λ(8,3)

Figure 4.19: Graph based expansion for the Duffing oscillator with respect to a
box covering on depth 14 (16384 boxes). The results for different measures for
d = 1 and d = 3 are shown.
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Transport of Asteroids

We now consider the example discussed in Dellnitz, Junge, Koon, et al. [28] con-
cerning transport between two resonance regions for the planar circular restricted
three body problem (PCRTBP). We only briefly describe the underlying model,
for a detailed problem description we refer to [28].

The PCRTBP is a particular case of the general gravitational problem of three
masses m1, m2, and m3, assuming that the motion of all three bodies takes place
in a common plane. The masses m1 and m2, here the Sun and Jupiter, move on
circular orbits about their common center of mass. We are concerned with the
motion of the massless test particle m3, the third body. The universal constant
of gravitation, G = 1, and the masses of the Sun and the planet are 1− ε and ε,
where ε = m2/(m1 + m2).

Choosing a rotating coordinate system so that the origin is at the center of
mass, the Sun and the planet are on the x-axis at the points (−ε, 0) and (1− ε, 0)
respectively. Let (x, y) be the position of the particle in the plane, then the
equations of motion for the particle in this rotating frame are:

ẍ− 2ẏ = −Ūx ÿ + 2ẋ = −Ūy, (4.4)

where

Ū = −x2 + y2

2
− 1− ε

rS

− ε

rP

− ε(1− ε)

2
.

Here rS and rP denote the distances from the particle to the Sun and Jupiter,
respectively. The system has five fixed points, the libration points L1, . . . , L5.

Equations (4.4) have an energy integral which is related to the Jacobi constant
C. Hence, the motion of the test particle takes place on a 3-dimensional energy
manifold (defined by a particular value of C) embedded in the 4-dimensional
phase space (x, y, ẋ, ẏ).

The value of the energy is an indicator of the type of global dynamics possible
for a particle in the PCRTBP. In the case discussed in this example, the particle
is trapped either exterior or interior to the planet’s orbit, or around the planet
itself; see Figure 4.20 a). For energy values greater than that of L2 there is a
bottleneck around L1 and L2, permitting particles to move between the three
realms.

For an analysis of the dynamics we consider the Poincaré surface-of-section
(s-o-s) defined by y = 0, ẏ > 0, and the coordinates (x, ẋ) on that section, that
is, we plot the x coordinate and velocity of the test particle at every conjunction
with the planet. As a further restriction, we consider only the motion of test
particles in the exterior realm (x < −1), see Figure 4.20 a) for an illustration.
The mixed phase space structure comprised of regular and chaotic regions is
shown in Figure 4.20 b). The system thus defined has a hyperbolic saddle point
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at x̄ = (−2.029579567343744, 0), where its stable and unstable manifolds form
the boundaries between resonance regions.

We consider a box covering of the chain recurrent set [27] on depth 16 (32789
boxes) with Q = [−2.95,−1.05]×[−0.5, 0.5] for the Poincaré map described above,
where ε = 9.5368e− 4 and C = 3.05. The transition matrix PB is computed with
respect to 256 grid points per box. In Dellnitz, Junge, Koon, et al. [28] we have
used the undirected graph induced by B, PB and µB and have shown that graph
algorithms tend to pick up the same regions as bounded by the manifolds, see
Figure 4.20 c).

Therefore we expect to find the relevant invariant manifolds even in the undi-
rected graph. In order to unfold these structures we choose d = 3 and compute
expansion of the vertices for the directed and undirected graph. Results for some
of the measures Λ(i,d) together with parts of the stable and unstable manifold,
computed using the continuation Algorithm 3.2.1 described in Chapter 3, are
shown in Figure 4.21. Note that the structures characterized by high expansion
have striking similarities to the invariant manifolds of the underlying dynamical
system.

4.5.4 Discussion

In this section we have introduced a few heuristic measures for the analysis of
expansive regions in graphs and have illustrated these definitions in two examples.
The expansion Λ(i,d)(v) of a vertex v as defined above seems to produce the desired
results especially for i = 1, . . . , 4. However, the measures need to be tested more
seriously and, of course, analyzed theoretically. Nevertheless, these experiments
are a first step in the analysis of large data sets such as time series.
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Exterior Realm

Particle

Poincare Section

Planetary
Realm

Interior
Realm

Forbidden Realm

a) b)

c)

Figure 4.20: A Poincaré section of the flow in the restricted three-body prob-
lem. (Graphics taken from [28]). a) The location of the Poincaré surface-of-
section (s-o-s). b) The mixed phase space structure of the PCRTBP is shown
on this s-o-s. c) The red and yellow areas are an almost invariant decomposition
into two sets. The border between the two sets roughly matches the boundary
formed by the branches of the stable and unstable manifolds of the fixed point
(−2.029579567343744, 0) drawn as a line.
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Figure 4.21: Transport of asteroids. Analysis of the graph based expansion, where
different measures for d = 3 for the directed (left column) and undirected graph
(right) are used. Parts of the stable and unstable manifold of a hyperbolic fixed
point are superimposed (black).
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Chapter 5

Analyzing Transport in
Non-Autonomous Systems

5.1 Introduction

The analysis of transport in time-dependent dynamical systems has been an active
research area in the past ten years. Obviously, for the numerical investigation of
transport phenomena two main ingredients need to be considered: first one needs
to detect and extract the relevant boundaries in the given dynamical system or
data set. After that transport between these respective areas is quantified in
terms of transport rates or transport probabilities. For this an approximation of
the transport mechanism needs to be derived.

As already discussed in the introduction, once the invariant manifolds are
approximated the transport rates are typically computed using lobe dynamics
or related concepts [17]. However, this requires very detailed information on
the invariant manifolds and an accurate approximation of fine scaled structures.
These are often not available if finite data sets are considered and when numerical
errors are involved. Moreover, while certainly feasible in two-dimensional systems,
the estimation of volumes may cause problems in higher dimensions as well as
in systems that are not volume-preserving. A major problem is also that certain
transport mechanisms may not be explained via lobe dynamics [49, 62].

Here we want to provide alternative techniques for the analysis of transport
in non-autonomous systems. First, in order to detect and extract invariant man-
ifolds, we extend the expansion rate methods introduced in Chapter 4 to non-
autonomous systems. In the time-dependent setting the (direct) expansion rates
do not only depend on the integration time but also on the initial time. Never-
theless, all methods introduced in Chapter 4 are immediately applicable if one
considers single τ -fibers. These provide a set of initial conditions for a fixed ini-
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tial time, the expansion rates are then computed for solutions in phase space (see
Remark 2.2.4). One typically needs to analyze a large number of time slices in
order to be able to observe the temporal behavior of the structures of interest.
To avoid this we propose a set oriented continuation scheme: it uses the fact that
once part of the stable manifold is given for fixed τ , the manifold can be continued
in backward time to obtain a part for time τ−T . The methods are demonstrated
by two examples. We remark that, similar to the autonomous case, we are, in
general, not restricted to the analysis of two- or three-dimensional systems.

In the second part of this chapter we propose a set oriented approach for the
computation of transport rates which is independent of manifolds. Moreover,
our technique can deal with systems that are not volume-preserving without any
additional effort. The method is based on the discretization of Perron-Frobenius
operators such as introduced by Ulam [107]; see also [64] for a detailed discus-
sion of this concept. This method allows the approximation of transport rates
and probabilities between arbitrary sets of interest in non-autonomous systems.
It extends the results proposed in Dellnitz, Junge, Koon, et al. [28] where the
autonomous case has been treated.

5.2 Time-Dependent Invariant Manifolds

Various approaches have been developed over the last ten years for the numerical
approximation of hyperbolic trajectories and their stable and unstable manifolds
in non-autonomous dynamical systems, or even in systems where the velocity
field is only defined for finite time. See Jones and Winkler [61] and Wiggins [112]
for a discussion of different techniques in the context of geophysical fluid flows.

We briefly explain the philosophy of several approaches. A variety of methods
deal with the location of hyperbolic regions, that is, regions that contract and
stretch as they evolve with the flow. One approach is the Eulerian approach
where the velocity field is considered on fixed time slices. Saddle points, so-called
instantaneous stagnation points (ISPs), in these time frozen velocity fields may be
a good first guess for a hyperbolic region in the flow. Although deciding whether
a region is considered hyperbolic is often subjective, the purpose is mainly to find
initial conditions for more refined techniques. The Eulerian approach is used by
Malhotra and Wiggins [78] and Miller et al. [84].

Of course, a curve of ISPs is usually not a trajectory, but in the case where
the time variation of the velocity field is slow it may indicate the existence of
a hyperbolic trajectory staying close to the curve. This is intuitively clear from
perturbation theory; see Haller and Poje [49] for an extension of this result and
Poje and Haller [87] for an application to cross-stream mixing in a double-gyre
ocean model.
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Ide et al. [56], Ju et al. [63], and Mancho et al. [80] introduce a method that
does not require slow time variation. It uses an iteration technique, which, when
it converges, is guaranteed to converge to a hyperbolic trajectory. The curve of
ISPs is used as an initial guess, but it is not required that the trajectory stays in
the proximity of this curve.

Once the underlying hyperbolic trajectory has been approximated the stable
and unstable manifolds can then be obtained using refined continuation tech-
niques. A standard method is the straddling technique as introduced by You,
Kostelich, and Yorke [114]; see [80] for an improved version using sophisticated
point insertion and interpolation schemes. In Mancho et al. [79] this approach is
applied to an oceanographic flow given as a finite data set.

The methods described above compute invariant manifolds based on an ap-
proximation of the underlying hyperbolic trajectory, where the latter seems to be
the crucial part. Often the conditions for the existence of the hyperbolic trajec-
tory are difficult if not impossible to verify in arbitrary systems. Also note that
the methods and applications described above are formulated for two-dimensional
systems.

Therefore, a different philosophy is to look directly for structures in the flow
or data set that behave like invariant manifolds and approximate the manifolds
of interest or at least their candidates. As discussed in Chapter 2 under certain
assumptions the unstable manifold of a hyperbolic trajectory can be shown to
coincide with the global pullback attractor [7, 8, 104]. In Chapter 3 we have
described set oriented methods for the numerical approximations of pullback at-
tractors as introduced by Aulbach et al. [7, 8] and Siegmund [104]. However,
generally, these methods approximate all attracting sets with respect to a given
time slice, where in our case we are usually interested in specific manifolds.

Another family of methods deals with statistical quantities such as finite-time
Lyapunov exponents and exploit the fact that a stable manifold of a hyperbolic
object is repelling (see e.g. Lapeyre [72]). While for analytically given velocity
fields the computation of finite-time Lyapunov exponents, or related concepts like
finite-size Lyapunov exponents [9, 10, 62, 70], is often the method of choice, the
Jacobian is usually not available when the velocity field is given as a finite set of
data points. Apart from the large computational effort, the numerical approxi-
mation of the derivatives introduces additional errors. This problem is at least
partially circumvented by using the relative dispersion methods [12, 61, 108, 113]
addressed in the previous chapter, which highlight areas of high stretching. More-
over, Haller introduces the direct Lyapunov exponent [46, 47], which is obtained
by taking the numerical derivation of particle positions at a specific time with
respect to a dense enough grid of initial conditions; see [109] for a comparison of
the results with experimental measurements.

All these methods take necessary but usually not sufficient conditions for the
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existence of (finite-time) stable manifolds into account. A technique based on the
computation of hyperbolicity times by Haller [45, 46], generalized by Lapeyre et
al. [73] fills this gap. Essentially, the eigenvalue structure of the Jacobian is used
to distinguish between hyperbolic, elliptic and parabolic regions of the flow. By
considering those trajectories that remain in the hyperbolic regime for the longest
time, local stable manifolds are obtained. However, the technique is restricted to
two and three dimensions and is computationally demanding.

Based on the ideas discussed in the previous chapter we extend our theoretical
results and numerical methods to the non-autonomous case in order to detect
candidates for (finite-time) invariant manifolds. However, in the time-dependent
setting the (direct) expansion rates do not only depend on the integration time
but also the initial time. Nevertheless, the methods introduced in Chapter 4 are
immediately applicable if one considers a box covering with respect to single time
slices. The structures of interest on the respective time slice are detected using
the expansion rate or direct expansion rate approach in phase space. Using direct
expansion rates seems to be particularly appropriate when only discrete velocity
data is available and therefore the Jacobian could only be obtained numerically.
The subdivision algorithm can be employed to extract λ-expansive sets on a time
slice. Hence, because of the time-dependence, one typically needs to carry out
these computations for a large number of time slices in order to analyze the
temporal behavior of the structures of interest. To avoid this we propose a set
oriented continuation scheme which works roughly as follows: for some initial
time τ we are given the box covering of the λ-unstable set of points on the τ -fiber
obtained by the subdivision algorithm as introduced in 4. We approximate regions
with the same properties for initial times t < τ by employing a continuation step
as described in Chapter 3, followed by a selection step restricting the box covering
of the t-fiber to the λ-unstable set again.

5.2.1 Theoretical Results

In the same way as in the previous section we can define finite-time Lyapunov
exponents and direct expansion rates for non-autonomous systems. For the re-
mainder of this section we assume that our system under consideration is defined
for infinite times. Characteristics for finite-time velocity fields will be addressed
only briefly.

We consider non-autonomous differential equations of the form

ẋ = f(x, t), with x ∈ Rl, t ∈ R,

where f : Rl × R → Rl is Cr (r ≥ 1) in x and continuous in t. We assume that
the unique solution ϕt,t0x0 to the initial value problem x0 = x(t0) exists for all
t ∈ R.
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Definition 5.2.1 (Expansion rate) Let τ, T ∈ R. The expansion rate or
finite-time Lyapunov exponent is given by

Λ(T ; τ, x) =
1

|T |
log |||DϕT+τ,τx|||

=
1

2|T |
log[λmax((DϕT+τ,τ (x))>DϕT+τ,τ (x)].

In a similar manner we obtain the direct expansion rate.

Definition 5.2.2 (Direct expansion rate) Let ε > 0. The direct expansion
rate is defined as

Λε(T ; τ, x) =
1

|T |
log

(
max

{x:|||x′−x|||=ε}

|||ϕT+τ,τ (x′)− ϕT+τ,τ (x)|||
ε

)
,

where T, τ ∈ R.

Here we have used the absolute value of T in the denominator to deal with
backward time integration. It seems to be natural to consider expansion rates
fields with respect to particular time slices, that is, initial conditions on a τ -fiber
of the non-autonomous set. Note that the computation of the (direct) expansion
rates is carried out in phase space, not in the extended phase space (see also
Remark 2.2.4).

Analogously to the autonomous case we can define (λ, T )-expansive sets.

Definition 5.2.3 ((λ, T )-expansive) Let Σ ⊂ Rl×R be a non-autonomous set
with fibers Σ(τ) ⊂ Rl, τ ∈ R. We call x ∈ Σ(τ) (λ, T )-expansive if there is a
constant λ > 0 and T > 0 such that

Λ(t; τ, x) ≥ λ ∀ t ≥ T > 0.

The set of (λ, T )-expansive points with respect to a τ -fiber is denoted by A(λ,t)(τ).
Let

C(λ,t)(τ) := {x ∈ Σ(τ) : Λ(t; τ, x) ≥ λ}.

Then
A(λ,T )(τ) :=

⋂
t≥T>0

C(λ,t)(τ).

We define the families of time-dependent sets

C(λ,t) := {C(λ,t)(τ)}τ∈R

A(λ,T ) := {Aλ,T (τ)}τ∈R
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The relation between λ-expansive sets and uniformly hyperbolic trajectories
is given in the following Proposition.

Proposition 5.2.4 Let Γ(t) = (γ(t), t) be a uniformly hyperbolic trajectory in E.
Then there is λ > 0 and T > 0 such that Γ(t) ⊂ A(λ,T ).

Proof: Let x0 = γ(0) be a point on the trajectory. Let X(t) := Dϕt,0x0 be
a fundamental matrix solution and X(0) = I. Denote Y (t) := Dϕ0,t(ϕt,0x0).
Clearly from the chain rule it follows that Y (t) = X−1(t), t ∈ R, and also Y (0) =
I. As γ(t) is uniformly hyperbolic we find a projection P , which can be chosen
to be orthogonal (see [34], Lemma 6.1), and dichotomy constants K ≥ 1, µ > 0
such that

|||Y (t)(I − P )||| ≤ Ke−µt,

with t ∈ R. As P is an orthogonal projection we find an orthogonal matrix Q
such that P = Q>P1Q, where P1 is a diagonal matrix with 0s and 1s on the
diagonal. Hence |||I − P ||| = 1. Now we have the following estimate:

1 = |||X(t)Y (t)(I − P )||| ≤ |||X(t)||||||Y (t)(I − P )||| ≤ |||X(t)|||Ke−µt.

So it follows for all t ∈ R that

|||X(t)||| ≥ 1

K
eµt.

As K ≥ 1 and µ > 0, there is T̃ > 0 (i.e. T̃ > log K
µ

) such that 1
K

eµT̃ > 1. Because

of the exponential growth, we can find 0 < λ ≤ µ and T ≥ T̃ such that

1

t
log |||X(t)||| ≥ λ

for all t ≥ T . Relabeling gives that each x0 on γ(t) is (λ, T )-expansive, conse-
quently Γ(t) ⊂ A(λ,T ).

In the same manner as in the autonomous case (Lemma 4.2.3) one can show
the following relations between the stable manifold and λ-expansive sets:

Proposition 5.2.5 Let Γ(t) ⊂ A(λ,T ) be a uniformly hyperbolic trajectory in the
extended phase space. Let Dρ(τ) ∈ (Σ(τ), τ) denote the ball of radius ρ centered
at γ(τ) and define the tubular neighborhood of Γ(t) in E:

N (Γ(t)) :=
⋃
τ∈R

(Dρ(τ), τ).

Let ρ0 be sufficiently small. Then for ρ ∈ (0, ρ0) there is λ ≥ µ > 0 and T̃ ≥ T > 0
such that W s

loc(Γ(t)) ⊂ A(µ,T̃ ), where W s
loc(Γ(t)) ⊂ N (Γ(t)) is the local stable

manifold of Γ(t) as introduced in Theorem 2.2.6.
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Proof: In an analogous way to the autonomous case the statement follows from
the continuity of the expansion rate for fixed times as well as the exponential
convergence of trajectories in the stable manifold to the hyperbolic trajectory.

Notes on finite-time velocity fields

As already remarked in Chapter 2, in the context of finite-time velocity fields we
are restricted to deal with finite-time invariant manifolds. These are typically
not unique and the definition of global manifolds is also problematic.

In this context Haller [46] (see also Haller and Yuan [50], as well as Shadden,
Lekien, and Marsden [102]) uses an alternative concept and considers directly
characteristic structures in two- and three-dimensional non-autonomous flows.
In these systems the structures organizing the dynamics are typically one- or
two-dimensional material lines L(t) and surfaces M(t), that is, smooth curves
and surfaces of fluid particles advected by the velocity field. Now let I ⊂ T
be an open interval within the finite time interval T := [t−, t+]. L(t) or M(t)
are called attracting over I if infinitesimal perturbations from L(t) or M(t)
converge exponentially to the material objects while in I. A material object is
repelling over I if it is attracting over I in backward time, hence infinitesimal
perturbations diverge from L(t) or M(t) at an exponential rate. Haller [46] calls
these attracting or repelling objects finite-time hyperbolic material lines and
surfaces. The objects are also known as Lagrangian coherent structures,
see Haller and Yuan [50] and especially Shadden, Lekien, and Marsden [102] for a
discussion. In the latter manuscript, Lagrangian coherent structures are defined
as ridges in the scalar finite-time Lyapunov exponent field. This requires the
evaluation of the Hessian matrix.

Checking whether material objects are attracting or repelling in Haller’s sense
requires measuring the growth of infinitesimal perturbations normal to the object.
The expansion rate however measures all kinds of stretching. Hence, A(λ,T ) can
be seen as a superset of finite-time hyperbolic objects or material lines. Of course,
the time span under consideration needs to be appropriately reduced, so we use
I instead of R in the definition of λ-expansivity.

In Malhotra et al. [78] and Wiggins [112] a definition for a finite-time hyper-
bolic trajectory is given that is not dichotomy-based. In their setting a trajectory
is finite-time hyperbolic on [t−, t+], if none of its finite-time Lyapunov exponents
are zero on this interval. In the previous paragraphs we have derived a similar
relation between finite-time Lyapunov exponents and the dichotomy concept.

We will not give any explicit finite-time theory when developing the numerical
algorithms in the following section. Nevertheless, in Chapter 6 our methods are
successfully applied to a case where the velocity field is given as a finite data

82



set. In particular, we extract Lagrangian coherent structures in the context of
geophysical fluid flows.

5.2.2 Numerical Methods

The set oriented expansion rates methods introduced in Chapter 4 are immedi-
ately applicable to the non-autonomous and finite-time setting. Instead of dealing
with the entire extended phase space we consider the dynamics with respect to
time slices. Suppose we are given a box collection Bk that is a covering of our
region of interest, in this case a covering of a fiber Σ(τ) of the non-autonomous
set. We then define the expansion rate for a box B ∈ Bk as

δ(T ; τ, B) := max
x∈B

Λ(T ; τ, x),

and in an analogous way the direct expansion rate for B as

δε(T ; τ, B) := max
x∈B

Λε(T ; τ, x0).

These quantities can be efficiently approximated as described in Chapter 4.
Also the subdivision Algorithm 4.4.1 for the numerical extraction of A(λ,T )(τ)
or C(λ,T )(τ) can be employed. Note that, of course, the selection criterion can
only be evaluated at discrete time steps.

However, because of the time-dependence, one typically needs to carry out
these computations for a large number of different time slices in order to analyze
the temporal behavior of the structures of interest. To avoid this computational
load a continuation algorithm is introduced in the following paragraphs.

5.2.3 The Continuation Algorithm

As discussed in Chapter 2 each time slice of the stable manifold is (pullback)
attracting in the time reversed system. So the idea is to first extract the stable
manifold candidate on a given τ -fiber using the subdivision Algorithm 4.4.1. Then
the box covering is mapped to some past time slice at τ−T using the continuation
step in Algorithm 3.3.3, see Remark 3.3.4. In a subsequent corrector step the
required λ-expansive behavior is checked.

Let Q ⊂ Rl and for k = 0, 1, . . . let

Pk =
⋃

B∈Bk

B, with B ∩B′ = ∅ for B 6= B′ ∈ Bk

be a partition of Q on level k, obtained by applying the subdivision step (1.) in
Algorithm 3.1.1 k times with respect to the initial box B0 := Q.
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Algorithm 5.2.6 Let {ϕt,s} be a cocycle with respect to the non-autonomous
differential equation ẋ = f(x, t), x ∈ Rl, t ∈ R. Moreover, let λ > 0, τ ∈ R,
T̃ > 0, h > 0 and n ∈ N be given.

Let Pk be a box partition of the compact set Q on level k consisting of m
boxes. Let BI , where I = {i ∈ {1, . . . ,m} : Bi ∩ A(λ,T̃ )(τ) 6= ∅}, denote the
boxes in a covering of A(λ,T̃ )(τ) ∩ Q (e.g. as obtained by the application of the
subdivision Algorithm 4.4.1). Choose T > 0. Set

ϕ̂(1, τ)BI = BJ̃ ,

where
J̃ := {j ∈ {1, . . . ,m} : Bj ∩ ϕτ−T,τBI 6= ∅}.

Then we compute an approximation of A(λ,T̃ )(τ−T )∩Q following these two steps.

1. Continuation (Predictor step):

BJ̃ = ϕ̂(1, τ)BI .

2. Selection (Corrector steps):
Obtain covering BJ by selecting

J := {j ∈ J̃ : δ(ε)(T̃ + i · h; τ − T,Bj) ≥ λ for i = 0, . . . , n}.

A convergence statement for this algorithm is given in the following Proposition:

Proposition 5.2.7 Let Γ(t) be a uniformly hyperbolic trajectory in the extended
phase space. Let λ > 0 and T̃ > 0 such that W s

loc(Γ(t)) ⊂ A(λ,T̃ ) ⊂ W s(Γ(t)).
Suppose further that Γ(t) ⊂ Q × R and that A(λ,T̃ )(t) ∩ Q is connected for each

t ∈ R. Let τ ∈ R be given. Then for each ε̃ > 0 we find d̃ = diamBk, T > 0
and n ∈ N in the above algorithm (using δ(·, B) in the selection step) such that
dH(QJ , A(λ,T̃ )(τ−T )∩Q) < ε̃. Here QJ = ∪j∈JBj, and dH denotes the Hausdorff
distance.

Proof: Let ε̃ > 0. Let BI , I ⊂ {1, . . . ,m}, denote the boxes of a covering of
A(λ,T̃ )(τ) ∩ Q on depth k obtained by an application of the subdivision Algo-
rithm 4.4.1. Note that every t−fiber of W s

loc(Γ(t)) has a non-empty intersection
with Q. As W s

loc(Γ(t)) ⊂ A(λ,T̃ ) ⊂ W s(Γ(t)), we find T > 0 such that after the
continuation step A(λ,T̃ )(τ − T ) ∩Q ⊂ ϕ̂(1, τ)BI . This follows from the fact that
under time reversal the stable manifold consists of solutions which grow expo-
nentially and especially from the fact that the local stable manifold fiber at time
τ is a generator for the global stable manifold fiber at time τ − t for t →∞. See
also [67] for a related statement.
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Given this coarse covering of A(λ,T̃ )(τ − T ) ∩ Q we find n ∈ N such that the
selection step arrives at a covering of A(λ,T̃ )(τ − T )∩Q where no more boxes are
discarded. This is true because the box level is kept fixed. Note that the accuracy
ε̃ > 0 can be achieved by simply adapting the box diameter d̃ in the partition Pk,
that is, in the subdivision algorithm.

Remarks 5.2.8 1. The condition Γ(t) ⊂ Q × R can be ensured by a time-
dependent coordinate transformation, which moves the hyperbolic trajec-
tory into zero. The new system has the general form ẏ = A(t)y(t) + g(y, t),
where A(t) is the linearization with respect to the hyperbolic trajectory
γ(t), and y(t) = x(t) + γ(t) [63]. In this case, Q may be chosen as a box
with center at the origin.

2. The condition that A(λ,T̃ )(t) ∩Q is connected for every t ∈ R is satisfied if
Q is chosen small enough.

3. Finally, we can relax the above requirements by considering a large enough
finite interval I ⊂ R with τ − T, τ ∈ I.

In typical applications it is often sufficient to extract C(λ,T̃ )(τ). After the con-
tinuation step we carry out only one selection step and thus restrict the covering
to an approximation of C(λ,T̃ )(τ − T ).

5.2.4 Examples

We illustrate our method with two examples. First we consider a variation of the
Duffing oscillator with decaying aperiodic forcing as used in Mancho et al. [80].
The second model contains a simple double gyre structure with an oscillating
separation point as proposed by Shadden, Lekien, and Marsden [102].

Duffing Oscillator with Aperiodic Forcing

Another variation of Duffing’s equation with decaying aperiodic forcing is given
by the following non-autonomous differential equation (see Mancho et al. [80])

ẋ = y

ẏ = x− x3 + εe−(t+2) cos(t + 2).

We fix ε = 0.1. The system exhibits a hyperbolic trajectory which tends to zero for
t →∞. We approximate parts of its stable manifold on different time-slices using
the following set-up. We choose a box covering of the compact set Q = [−2, 2]×
[−2, 2] and depth 14 (16384 boxes). We compute the direct expansion rates using
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20 pairs of Monte Carlo points in each box with initial distance ε ≈ 0.00156
(corresponding to 20% of the box radius). We consider initial times τ ∈ [−6, 0]
and T = 10. The results for different time slices are shown in Figure 5.1. Note
that the stable manifold is asymmetric for τ < 0 but settles down to a figure-8
double homoclinic orbit for larger τ .

τ = −6 τ = −5.5 τ = −4.75

τ = −4.25 τ = −3.75 τ = −3.25

τ = −2.5 τ = −1.25 τ = 0

Figure 5.1: Direct expansion rates for the aperiodically forced Duffing oscillator
with respect to different τ -fibers, choosing T = 10. For the computation 20 pairs
of Monte Carlo points per box of initial distance ε ≈ 0.00156 are used (16384
boxes).

We now show how the continuation algorithm can be used. We extract
A(0.5,5)(0), carrying out six steps of the subdivision Algorithm 4.4.1. The choice
of λ = 0.5 is motivated by the fact that for t ≥ 0 the time dependence becomes
increasingly negligible as the forcing decays exponentially. In the limit one would
obtain an autonomous system with hyperbolic fixed point at the origin with Lya-
punov exponents ±1. So all points on the hyperbolic trajectory and its stable
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manifold have a dominant Lyapunov exponent 1. However, as the trajectory is far
off from zero for negative times (see Figure 5.1), for points on its stable manifold
and rather short integration times we expect finite-time Lyapunov exponents to
be smaller than one, converging to one for large integration times. The quanti-
tative results presented in Figure 5.1 indicate that λ = 0.5 may be a reasonable
choice.

We start with a box covering on depth 10. Each step of the algorithm consists
of two subdivision steps and one selection step. The resulting covering (3801 boxes
on depth 20) is shown in Figure 5.2 a). Based on this approximation we now want
to compute A(0.5,5)(−4). For this we choose T = 4, λ > 0.5, τ = 0, T̃ = 5, h = 1
and n = 5 in Algorithm 5.2.6. Hence the box covering is mapped to the time slice
at τ = −4, where each box is discretized by 48 points uniformly distributed on its
edges plus the center point. The continuation step yields a box collection of 7300
boxes on the −4-fiber, see Figure 5.2 b). In the first selection step 4942 boxes are
discarded, in the second 1000, and in the third step only 30. For k = 4 all boxes
are kept and we obtain a box covering of A(0.5,5)(−4) with 1328 boxes as shown
in Figure 5.2 c). For comparison we also computed a covering of A(0.5,5)(−4)
using the subdivision Algorithm 4.4.1 with the same set-up as described above
for τ = 0. The result is shown in Figure 5.2 d). Although this box covering
consists of as many as 3822 boxes, it compares well qualitatively to the result
obtained by the continuation algorithm.

The computational effort can be estimated in terms of the number of boxes for
which expansion rates are computed, whereas the continuation step is negligible.
Here the continuation algorithm is advantageous: instead of evaluating 15704
boxes (subdivision algorithm on the −4-fiber), in the continuation algorithm the
expansion rates have to be computed for only 12344 boxes.

Double Gyre Flow

We consider the stream-function [102]

Ψ(x, y, t) = A sin(πf(x, t)) sin(πy),

where

f(x, t) = ε sin(ωt)x2 + (1− 2ε sin(ωt))x.

With

ẋ = −∂Ψ

∂y
(x, y, t) (5.1)

ẏ =
∂Ψ

∂x
(x, y, t) (5.2)
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a) b)

c) d)

Figure 5.2: Continuation algorithm for the exponentially forced Duffing oscillator.
a) Covering of A(0.5,5)(0) using the subdivision algorithm. b) Continuation step:
box covering is mapped to past slice at τ = −4. c) Box covering of A(0.5,5)(−4)
after selection steps. d) Covering of A(0.5,5)(−4) using the subdivision algorithm.

we obtain the corresponding systems of differential equations

ẋ = −πA sin(πf(x, t)) cos(πy) (5.3)

ẏ = πA cos(πf(x, t)) sin(πy)
df

dx
(x, t). (5.4)

This can be seen as a periodically perturbed velocity field of a steady Rayleigh-
Bénard flow.

For ε = 0, it corresponds to an autonomous double-gyre pattern on a rectangle
[0, 2]× [0, 1]. For small ε 6= 0 the instantaneous separation point moves along the
x-axis with a period 2π

ω
. For t = 0 the separation point is in the same position as

in the autonomous case whereas for t = π
2ω

the separation point is at its far right

88



position, see Figure 5.3 for an illustration of the velocity fields for fixed t. Note
that the boundary of the rectangle is invariant.

a) b)

Figure 5.3: Double gyre flow for A = 1,ε = 0.25, ω = 2π. a) Velocity field at
t = 0; b) velocity field at t = 0.25.

In spite of its simple dynamics the invariant manifold structure with respect to
the moving separation point is very complicated. To uncover this we fix A = 1,
ε = 0.25, ω = 2π, making the flow periodic with period 1. We choose a box
covering of the compact set Q = [0, 2] × [0, 1] on depth 14 (16384 boxes) and
compute direct expansion rates using 20 pairs of Monte Carlo points of initial
distance ε ≈ 0.0008 (i.e. 20% of the box radius). These computations are done
for different τ and T . The results are shown in Figure 5.4.

Moreover, an animation which illustrates the time-dependence of the struc-
tures of interest can be found at

http://www-math.upb.de/∼padberg/thesis.html.

In order to illustrate the complicated manifold structure, we additionally ap-
proximate the unstable manifold. A superposition of parts of the stable and
unstable manifold for a box covering on depth 16 (65536 boxes) is shown in
Figure 5.5.
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a) b)

c) d)

Figure 5.4: Direct expansion rates for the double gyre flow for ε = 0.25, ω = 2π
and A = 1 with respect to different τ -fibers and T > 0. For the computation 20
pairs of Monte Carlo points per box of initial distance ε ≈ 0.0008 are used (16384
boxes). a) τ = 0, T = 2; b) τ = 0, T = 3; c) τ = 0.3, T = 2; d) τ = 0.7, T = 2 .
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Figure 5.5: Stable (green) and unstable manifolds (red) in the double gyre flow
for ε = 0.25, ω = 2π and A = 1. Direct expansion rates for a box covering on
depth 16 (65536 boxes), using 20 pairs of Monte Carlo points per box of initial
distance ε ≈ 0.0004. The direct expansion rates are computed for τ = 0, T = 2
and T = −2.
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5.3 Computation of Transport Rates

After relevant transport regions have been detected and approximated, another
important task is to quantify the particle transport in terms of transport rates or
transport probabilities. In the case of an area-preserving two-dimensional system
one usually considers the evolution of lobes and computes the area of their inter-
section with the target region, see for example Coulliette and Wiggins [17], Miller
et al. [84], or Lekien [74]. The accuracy of the boundary under time evolution
can be ensured by point insertion techniques [74]. However, the estimation of
areas often becomes difficult due to deformation and multiple intersections. For
example, in Dellnitz, Junge, Koon, et al. [28] it was observed that the iteration
of boundaries and lobes via a Poincaré map was only possible for a small number
of iterates because of the increasingly complicated structure of the lobes. The
extension of this method to higher dimensional systems is problematic for the
same reason. Although considering lobe dynamics is also possible for systems
that are not volume-preserving, it usually makes the analysis more difficult.

A different approach is to start with a number of test particles in the source set
and to record how many of them reach the target region as a function of time, see
for example Gabern et al. [39] for an application of such a Monte Carlo method
to chemical physics, or Gladman et al. [41] for an example related to transport
in the solar system. Note that these methods assume a uniform distribution of
particles in the starting region, which often cannot be justified if it is comprised
of regular and chaotic areas. Moreover, trajectories have to be computed for
very long time intervals which is usually not desirable in the context of chaotic
dynamics.

In Dellnitz, Junge, Koon et al. [28] a set oriented approach for the numerical
detection of almost invariant sets via graph partitioning techniques is introduced.
In this context transport rates are computed by directly using an approximation
of the Perron-Frobenius operator, which is available from the already computed
approximation of almost invariant sets. Moreover, estimates for the discretization
error as well as on upper and lower bounds for the transport rate are derived.
An application of this technique for the analysis of transport of Mars-Crossing
asteroids is discussed in Dellnitz, Junge, Lo et al. [29]. Although the computation
of the transition matrix is computationally expensive, it is important to note that
it already contains all of the necessary information on the dynamics and so one
avoids the approximation of long trajectories.

In this section we want to extend the results in Dellnitz, Junge, Koon et
al. [28] to the context of non-autonomous dynamical systems. We define a time-
dependent family of transfer operators which can be used to compute trans-
port rates and probabilities between arbitrary sets of interest. In particular, our
method is not restricted to the analysis of volume-preserving dynamical systems.
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In addition, the use of boxes for the discretization of the phase space provides
us with a natural setting for the efficient estimation of volumes even in higher
dimensional systems.

To provide a detailed theoretical justification of our approach we also derive
error estimates which improve the results described in [28]. This gives us also
estimates of upper and lower bounds on the transport rate. Moreover, we propose
an adaptive approach for the reduction of the error generalizing the techniques
introduced in [28].

The method is illustrated by two examples. First we consider a Rossby Wave
Flow with aperiodic forcing [78]. Then we compute scattering rates for a Rydberg
atom in crossed magnetic and electric fields [22, 39, 59]. Although this is an
example of an autonomous system, the results demonstrate the strength of the
adaptive method.

An application of these techniques in the context of analyzing transport in
ocean flows is presented in Chapter 6. Here we compute transport rates from
near shore areas to regions in the open sea west of Monterey Bay.

5.3.1 A Transfer Operator Approach

We now want to derive a general framework for the computation of transport
rates in time-dependent dynamical systems. The following description closely
follows that in [28], where the autonomous case has been treated. Let

fk : M → M, k ∈ Z, xk+1 = fk(xk),

be a family of maps and define

f[k,l] := fl−1 ◦ fl−2 ◦ · · · ◦ fk for k < l and f[k,k] = Id.

So f[k,l] maps a point xk ∈ M at time k to some point xl at time l. Let
U1(k), . . . , Unk

(k) ⊂ M a partition of M into nk regions at time k. Let m denote
the Lebesgue measure on M . We are interested in the transport probability

p(R(k), S(l)) =
m(f−1

[k,l](S(l)) ∩R(k))

m(R(k))
,

that is the (conditional) probability that a particle initialized in some region R(k)
at time k is transported to the region S(l) at time l. We denote by

T (R(k), S(l)) := m(f−1
[k,l](S(l)) ∩R(k))

the transport rate, that is, the volume of particles in R(k) that is mapped to
S(l).
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Obviously, the quantification of transport is a question about the evolution of
densities or measures on M .

The evolution of a (signed) measure ν on M can be described in terms of
the transfer operator (or Perron–Frobenius operator) associated with fk. In our
setting this is a family of linear operators Pk : M→M,

(Pkν)(A) = ν(f−1
k−1(A)), A measurable,

on the space M of signed measures on M . We denote by

(P[k,l]ν)(A) = ν(f−1
[k,l](A)) = ν(f−1

k ◦ f−1
k+1 ◦ · · · f

−1
l−1(A))

the transfer operator associated with f[k,l]. Note that P[k,l] is a cocycle:

1. P[k,k] = I,

2. P[l,k] ◦ P[m,l] = P[m,k].

This operator concept relates directly to the transport quantities of interest:

Corollary 5.3.1 Let mR(j) ∈ M be the measure mR(j)(A) = m(A ∩ R(j)) =∫
A

χR(j) dm, where χR(j) denotes the indicator function on the region R(j) at
time j. Then

T (R(k), S(l)) = (P[k,l]mR(k))(S(l)) = m(f−1
[k,l](S(l)) ∩R(k)). (5.5)

Evidently, since we are interested in actually computing the quantities of in-
terest, we need to explicitly deal with the transfer operator. Since an analytical
expression for it will usually not be available, we need to derive a finite dimen-
sional approximation to it.

Discretization of Transfer Operators. As a finite dimensional space MB
of measures on M we consider the space of absolutely continuous measures with
density h ∈ ∆B := span{χB : B ∈ B}, being piecewise constant on the elements
of the partition B. Let QB : L1 → ∆B be the projection

QBh =
∑
B∈B

1

m(B)

∫
B

h dm χB.

Then for every set A that is the union of partition elements we have∫
A

QBh dm =

∫
A

h dm. (5.6)
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For the following statements suppose that the partition B of M into boxes is
time-independent. Then the Galerkin projection (see e.g. Junge [64]) QB of the
transfer operator is also independent of k. Hence a discretization of the transfer
operator P[k,l] with respect to the box collection B is given in terms of a transition
matrix (pij) as introduced in Chapter 4 (Equation 4.3, see also [107]):

pij =
m(f−1

[k,l](Bi) ∩Bj)

m(Bj)
, i, j = 1, . . . , n.

For a detailed discussion on the projection and discretization we refer to Junge [64].

Approximation of Transport Rates. Note that we can write

T (R(k), S(l)) =

∫
S(l)

P[k,l]χR(k) dm.

For some measurable set A let

A =
⋃

B∈B:B⊂A

B and A =
⋃

B∈B:B∩A6=∅

B,

see Figure 5.6 for an illustration.

Figure 5.6: The sets R and R of a region R. The volume of the boundary boxes
is one major contributor to the error in computing transport rates.

Since P[k,l] is positive, we get the following estimate.

Proposition 5.3.2 The transport rate T (R(k), S(l)) is bounded by the following
integrals: ∫

S(l)

P[k,l]χR(k) dm ≤ T (R(k), S(l)) ≤
∫

S(l)

P[k,l]χR(k) dm. (5.7)
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The next step is to replace P[k,l] by QBP[k,l], which is the discretized transfer

operator. This is a transition matrix, which will be denoted by P̃[k,l]. The error
in making such a replacement is given by the estimate in the following Lemma.

Lemma 5.3.3 Let R := R(k), S := S(l) ⊂ M . Then∣∣∣∣∫
S

P[k,l]χR dm−
∫

S

QBP[k,l]χR dm

∣∣∣∣
≤ max

{
m

(
f−1

[k,l](S \ S) ∩R
)

, m
(
f−1

[k,l](S \ S) ∩R
)}

.

Proof: Using Equation (5.6) and the fact that∫
S

QBP[k,l]χR dm ≤
∫

S

QBP[k,l]χR dm ≤
∫

S

QBP[k,l]χR dm (5.8)

we get ∫
S

P[k,l]χR dm−
∫

S

QBP[k,l]χR dm

≤ m
(
f−1

[k,l](S) ∩R
)
−

∫
S

QBP[k,l]χR dm

= m
(
f−1

[k,l](S) ∩R
)
−

∫
S

P[k,l]χR dm

= m
(
f−1

[k,l](S) ∩R
)
−m

(
f−1

[k,l](S) ∩R
)

= m
(
f−1

[k,l](S \ S) ∩R
)

.

Similarly we obtain∫
S

QBP[k,l]χR dm−
∫

S

P[k,l]χR dm ≤ m
(
f−1

[k,l](S \ S) ∩R
)

,

which gives the desired statement.

So the boxes that contribute the most to the error are those that contain
preimages of the boundary of the target set S(l).

However, the statement above is a theoretical result. Usually, it is not desir-
able to deal with the transition matrix P̃[k,l], as for this one needs to compute
long parts of orbits. Instead we work with

P[k,l]B := P̃[l−1,l] · P̃[l−2,l−1] · · · P̃[k,k+1],

which is the product of “one-step” transition matrices, forming a cocycle.
The following Lemma gives a bound on the error:
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Lemma 5.3.4 Let R := R(k), S := S(l) ⊂ M and

Sl = S, Sn−1 = f−1
n−1(Sn), n = l, l − 1, . . . , k + 1;

and
sl = S, sn−1 = f−1

n−1(sn), n = l, l − 1, . . . , k + 1.

Then ∣∣∣∣∫
S

P[k,l]χR dm−
∫

S

P[k,l]BχR dm

∣∣∣∣
≤ max

{
m

(
f−1

[k,l](S \ S) ∩R
)

, m
(
f−1

[k,l](S \ S) ∩R
)}

+ max
{

m
(
(Sk \ f−1

[k,l](S)) ∩R
)

, m
(
(f−1

[k,l](S) \ sk) ∩R
)}

.

Proof: ∣∣∣∣∫
S

P[k,l]χR dm−
∫

S

P[k,l]BχR dm

∣∣∣∣
≤

∣∣∣∣∫
S

(P[k,l] −QBP[k,l])χR dm

∣∣∣∣ +

∣∣∣∣∫
S

(QBP[k,l] − P[k,l]B)χR dm

∣∣∣∣ .

An error estimate for the first term on the right hand side is provided by the
previous Lemma. Hence it remains to show that∣∣∣∣∫

S

(QBP[k,l] − P[k,l]B)χR dµ

∣∣∣∣
≤ max

{
m

(
(Sk \ f−1

[k,l](S)) ∩R
)

, m
(
(f−1

[k,l](S) \ sk) ∩R
)}

.

Obviously one has

m (sk ∩R) ≤
∫

S

P[k,l]BχR dm ≤ m (Sk ∩R) .

Hence, using this estimate as well as Equations (5.6) and (5.8) we obtain∫
S

(QBP[k,l] − P[k,l]B)χR dm

≤
∫

S

QBP[k,l]χR dm−m (sk ∩R)

= m
(
f−1

[k,l](S) ∩R
)
−m (sk ∩R)

= m
(
(f−1

[k,l](S) \ sk) ∩R
)
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and similarly∫
S

(P[k,l]B −QBP[k,l])χR dm ≤ m
(
(Sk \ f−1

[k,l](S)) ∩R
)

,

which gives the desired result.

Note that this error statement is an improvement of a similar one in [28], as
here, setting n = l − k, the error stays bounded for n →∞.

Using Proposition 5.3.2 and Lemma 5.3.4 we obtain the following estimate on
the error between the true transport rate T (R(k), S(l)) and its approximation.
To abbreviate the notation, let eR, eR, uR and uR ∈ Rb be defined by

(eR)i =

{
1, if Bi ⊂ R,
0, else

, (eR)i =

{
1, if Bi ∩R 6= ∅,
0, else

and

(uR)i =

{
m(Bi), if Bi ⊂ R,

0, else,
, (uR)i =

{
m(Bi), if Bi ∩R 6= ∅,

0, else,
,

where i = 1, . . . , b.

Lemma 5.3.5 Let R := R(k), S := S(l) ⊂ M ,

Sl = S(l), Sn−1 = f−1
n−1(Sn), n = l, l − 1, . . . , k + 1;

and
sl = S(l), sn−1 = f−1

n−1(sn), n = l, l − 1, . . . , k + 1.

Then ∣∣T (R(k), S(l))− eS
T P[k,l]B uR

∣∣
≤ eS

T P[k,l]B(uR − uR) + (eS − eS)T P[k,l]BuR

+ max
{

m
(
f−1

[k,l](S \ S) ∩R
)

, m
(
f−1

[k,l](S \ S) ∩R
)}

+ max
{

m
(
(Sk \ f−1

[k,l](S)) ∩R
)

, m
(
(f−1

[k,l](S) \ sk) ∩R
)}

.

Proof: The proof follows directly from Proposition 5.3.2 and Lemma 5.3.4, see
also [28]. Note that an analogous statement can be obtained to estimate the error∣∣T (R(k), S(l))− eS

T P[k,l]B uR

∣∣ .
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This estimate gives a bound on the error between the true transport rate
T (R(k), S(l)) and eS

T P[k,l]B uR, that is the one computed via the transition ma-
trix. Major contributors to the error are not only the elements of the fine parti-
tion B that intersect the boundaries of R(k) and S(l) but also boxes that contain
preimages of the boundary of S(l). So an obvious consequence of Lemma 5.3.5 is
that in order to ensure a certain degree of accuracy of the transport rates, these
boxes need to be refined.

Notably, the numerical effort to compute the approximate transport rate
eS

T P[k,l]B uR = eS
T P̃[l−1,l]P̃[l−2,l−1] · · · P̃[k,k+1] uR essentially consists in n = l − k

matrix-vector-multiplications – where the matrices P̃[i,i+1] are sparse.

Convergence. Using Lemma 5.3.5 one can show convergence for the approxi-
mate transport rate to the true transport rate if the diameter of the boxes in the
covering goes to zero. See [28] for the convergence statement in the autonomous
setting and a proof.

Autonomous transport. If the dynamical system under consideration is au-
tonomous or given as the Poincaré return map of a time-periodic dynamical sys-
tem, the above statements simplify such that one has only to deal with powers of
a single time-independent transition matrix PB. Note that the statements above
also hold for the autonomous case. The autonomous framework with slightly
different results is described in detail in [28].

Adaptive refinement of box covering As shown above, those boxes con-
tribute considerably to the error that either map onto the boundary of the target
set or whose preimage lie on the boundary of the source set. Hence, the adaptive
approach in [28] needs to be refined.

Let R := R(k), S := S(l) ⊂ M with n := l− k > 0. We propose the following
algorithm:

Algorithm 5.3.6 Let B be a box covering of M . Let N := dn
2
e and let P[k,l]B be

the product of transition matrices as defined above.
Determine the boundary boxes:

bR := R \R,

bS := S \ S,

and compute
T (R,S) := eS

T P[k,l]B uR,

T (R,S) := eS
T P[k,l]B ; uR,
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the numerical lower and upper bound on the transport rate T (R(k), S(l)) respec-
tively. Choose J ∈ N.

1. For j = 1, . . . , J :

2. Mark all boxes B for which

f[l−i,l](B) ∩ bS 6= ∅ for i ∈ {1, . . . , N}

or

f−1
[k,k+i](B) ∩ bR 6= ∅ for i ∈ {1, . . . , N}.

(This information is coded in the transition matrices.)

3. Subdivide marked boxes.

4. Compute P[k,l]B .

5. Determine bR, bS, T (R,S), and T (R, S).

The algorithm produces an adaptive covering, refining especially those boxes
that contribute to the error in computing the transport rates. Moreover, the
algorithm gives an upper and lower bound to the transport rate, at least up to
the error estimated in Lemma 5.3.5.

5.3.2 Examples

In order to illustrate the methods we first consider the example of a Rossby
Wave flow which is a non-autonomous system. The second application is from
physical chemistry, where ionization rates for the Rydberg atom in crossed fields
are computed.

Rossby Wave Flow

We first consider a transport example constructed from a Rossby Wave Flow with
non-decaying aperiodic disturbance as suggested by Malhotra and Wiggins [78].
The velocity field is given by

ẋ = c− sin(x) cos(y)− ε
∂f

∂y
(x, y, t),

ẏ = cos(x) sin(y) + ε
∂f

∂x
(x, y, t).
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τ = 0 τ = 2

τ = 5

Figure 5.7: Crossings of stable (green) and unstable manifold (red) in the Rossby
Wave Flow. Direct expansion rates (20 pairs of points) for τ = 0 and T = 30
and T = −30, respectively. Note in particular the deformation of the unstable
manifold as time increases.

with constants c = 0.5 and ε = 0.1. The aperiodic disturbance is chosen as
f(x, y, t) = −1

2
xy tanh2 2t. It causes the pathological nature of the manifolds

crossing, see Figure 5.7, and the creation of a finite and small number of lobes.

In order to test our algorithms we construct the following transport problem:
we fix a box S(l) and are interested in the transport rate of points that are
initialized in the region R(0) bounded by the unstable manifold at τ = 0 as
shown in Figure 5.8. The deformation of the manifold is such that parts of the
interior region will have a nonempty intersection with the target box as time
increases.

In order to describe our results in the framework introduced above, we choose
non-autonomous maps fk, k ∈ Z, by fk := ϕk+1,k, that is, time-1 maps of the
evolution. We consider Q = [0, 6]× [0, 3] and start with a partition on depth 14

101



(16384 boxes) as shown in Figure 5.8.
We want to compute transport rates T (R(0), S(l)) for l = 1, . . . , 6. Note that

in spite of the notation S(l) is time-independent. As we have extracted R(0)
numerically, we only know the respective box coverings R(0) and R(0), whereas
S(l) is directly chosen as a set of boxes.

As the fk are area-preserving, we can compute an upper and lower bound
on the transport rate using a straight-forward approach. We map the boundary
boxes, the yellow boxes in Figure 5.8, by f[0,l] using 48 points on the edges of each
box plus the center point. For different l we compute the area of the intersection
with the target set. As a lower bound we consider the area that is bounded by
images of the boundary boxes excluding the boundary, as an upper bound we use
the area bounded by images of boundary boxes inclusive of the boundary. The
results are shown in Figure 5.9 a).

In order to show how our methods work, we compute the l-step transition
matrices P̃[0,l] as well as P[0,l]B = P̃[l−1,l] · P̃[l−2,l−1] · . . . · P̃[0,1] using 100 grid
points per box. The different results for the numerical upper and lower bounds
as a function of l are given in Figure 5.9 b). We observe, that the results for
P[0,l]B are very close to the transport rates based on the l-step transition matrix

P̃[0,l]. Moreover, the bounds on the transport rates appear much tighter than
using the naive approach, see Figure 5.9 a). This is due to the fact that using the
transition matrices the transport probabilities for every single box are considered,
that means that only the fraction of its volume that is transported to the target
set is taken into account. On the other hand, in the simple straight-forward
computation the entire volume of a transport box is considered.

Figure 5.8: Box partition of phase space for the transport problem in the Rossby
wave flow on depth 14 (16384 boxes).
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a)

b)

Figure 5.9: Upper and lower bound on transport rates for different final times l.
a) Naive approach. b) Estimates computed using the transition matrix P[0,l]B as

well as P̃[0,l].

In order to test the adaptive approach, we choose a covering on depth 10
(1024 boxes), but we refine the boundary boxes (depth 14). Then the adaptive
approach is employed for different numbers of steps J = {1, . . . , 4}. As our
boundary (yellow) is only known for a box level on depth 14, it does not make
sense to refine these boxes within the subdivision algorithm. This would only
mean additional computational effort without gaining new information. So with
the adaptive method, we obtain a box covering on depth 10/14 ( this means that
some boxes are at depth 10 and others at finer levels, where 14 is the maximum),
see Figure 5.10 a). The results for an approximation of p(R(0), S(l)) in terms of
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T (R(0), S(l))/m(R(0)) are given in Figure 5.10 b). Note that the results for the
adaptive approach compare well to the non-adaptive approach, though the former
is computationally advantageous, as the covering consists only of 6206 boxes.

a) b)

Figure 5.10: a) Adaptive partition of phase space for the transport problem on
depth 10/14, choosing J = 4 in the adaptive Algorithm 5.3.6 (6206 boxes). b)
Transport probabilities with respect to a box covering on depth 10/14 and for
different choices of J in Algorithm 5.3.6. For comparison also the results for the
original covering on depth 14 (see Figure 5.8) are shown.

Ionization of the Rydberg atom

We now consider an autonomous dynamical system and describe a model from
chemical physics. The ionization of a Rydberg atom interacting with crossed
electric and magnetic fields resembles a unimolecular chemical reaction. The
activation previous to reaction is given by the initial excitation of a single electron
to a high energy level in such a way that its dynamics can be described using
classical physics. The reaction itself is given when the energy flows through the
ionization channel and the electron is detached, see for example [22, 39, 59].

In the following paragraphs we will deal with the planar Rydberg problem.
For a more detailed description, we refer to the recent work by Dellnitz et al. [22],
where we have also analyzed a higher-dimensional model using set oriented meth-
ods.

The planar Rydberg model is described by the following classical Hamiltonian:

H =
1

2
(p2

x + p2
y)−

1

r
+

1

2
(xpy − ypx) +

1

8
(x2 + y2)− εx,
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where r =
√

x2 + y2 is the distance from the electron to the nucleus of the atom
and ε is the scaled electric field. The equations of motion are given as

ẍ = − x

r3
− ẏ + ε

ÿ = − y

r3
+ ẋ.

The energy in terms of positions and velocities is

E(x, y, ẋ, ẏ) =
1

2
(ẋ2 + ẏ2)− εx− 1

r
.

The system has a unique fixed point, commonly known as the Stark Saddle
Point, at x = 1√

ε
and y = ẋ = ẏ = 0. The energy of the fixed point is E = −2

√
ε

and it is the threshold value for the ionization to be possible.
We choose ε = 0.57765 and we fix an energy level that allows ionization, in our

case E = −1.52. Hence, the position space (x, y) looks as sketched in Figure 5.11.

Figure 5.11: The planar Rydberg problem. Sketch of the position space at an
energy level allowing ionization.

The grey part is energetically not permissable, the interior corresponds to
the situation where the electron is attached, the exterior where the electron is
detached. The fixed point is located in the gateway between the two regions
of interest. As the fixed point is of type saddle×center, there exists a normally
hyperbolic invariant manifold, a periodic orbit in our planar case. Its stable and
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unstable manifolds, the so-called tubes provide the only dynamically possible
way between the interior (electron attached) and the exterior (electron detached)
regions and completely explain the transport mechanism; see also [39, 42, 71, 92].

Figure 5.12: Adaptive box covering of Poincaré surface in the interior region
(see Figure 5.11) using Algorithm 5.3.6 with J = 10. Also shown are the first
intersections of the stable and unstable tubes with the Poincaré section.

We define a Poincaré section in the interior region by y = 0, ẏ > 0, and
x < 0. The tubes, that is, the stable and unstable manifold of the periodic orbit
around the Stark Saddle Point, intersect the Poincaré section infinitely often; see
Figure 5.12 for the first intersection. Note that the resulting map is not area
preserving as points are mapped out through the stable tube.

We want to compute the transport rate from the unstable to the stable tube
intersection. This corresponds to the capture of an electron and its subsequent
ionization, also known as the full-scattering problem. The transport mechanism
for this Poincaré map is such that the particles are mapped from one tube in-
tersection of the unstable tube with the Poincaré section to the next until the
unstable and the stable tubes intersect, enabling particles to leave. In our set-
ting, we use information on the exact location of the first tube intersections only
to define a source and a target set. The data is obtained from a computation
of the stable and unstable manifolds of the hyperbolic periodic orbit in the full
4-dimensional phase space and has been provided by F. Gabern and S. Ross.

Unlike the situation in [28] particles are not transported from the source to
the target set within one iteration of the Poincaré map, but we need at least
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five iterates to observe a positive transport rate. So we need to make sure that
P[0,k]B = P k

B , where k ≥ 5, is approximated as correctly as possible.
We start with a box covering of Q = [−0.235,−0.055] × [−0.8, 0.8] on depth

12, with the boxes containing the tube intersections on depth 24 (7640 boxes). We
choose N = 3, carry out J = 10 steps of the adaptive refinement Algorithm 5.3.6
and obtain a covering consisting of 27640 boxes. For the computation of the
transition matrix 100 grid points are used. The resulting box covering (J = 10) is
shown in Figure 5.12; observe how nicely further intersections of tubes are picked
up. The scattering probabilities are approximated by eSP k

BuR. The transport
probabilities as a function of k for different box coverings obtained within the
adaptive approach for J ∈ {1, . . . , 10} are given in Figure 5.13.

Figure 5.13: Scattering probabilities for different levels of refinement of the trans-
port boxes. J is the number of steps in the adaptive Algorithm 5.3.6.

Observe the impact that the refinement of the transport boxes (not the bound-
ary boxes) has on the probabilities. We remark that the quantitative results
compare well to other approaches [40, 39, 59]. As pointed out in [39], the non-
monotonicity of the scattering profile has been observed in similar problems in
chemistry.
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Chapter 6

Application to Ocean Flows

6.1 Introduction

As one of the five major upwelling regions in the world the central California
coast has received considerable oceanographic study. Upwelling is a phenomenon
where cold nutrient-rich water is driven to the surface due to wind, the angle of
the coastline, and the rotation of the earth. This upwelled water occurs as a cool
band along the coast, separated from warmer offshore waters by a variable series of
fronts, plumes and eddies. Upwelled water supports high levels of phytoplankton,
which forms the basis of the food chain for all marine animals. In this context,
the oceanography of Monterey Bay, a deep embayment in central California, has
received considerable study in the last few years [14, 81].

For example, the Office for Naval Research sponsored Autonomous Ocean
Sampling Network II project [2] (AOSN II) as well as its successor Adaptive
Sampling and Prediction (ASAP) [4] have the objective to integrate sophisticated
platforms and techniques to better observe and predict the ocean. In particular,
the analysis of the upwelling event has been one of the major goals of these
projects. Within the AOSN II field experiment in Monterey Bay in summer 2003
geophysical data has been obtained during the upwelling period through different
sensing devices such as autonomous underwater vehicles, ships, aircraft, as well
as high frequency radar arrays; see Figure 6.1 for an illustration.

In this context, the analysis of the velocity data with the purpose to extract
Lagrangian coherent structures (LCS) plays an important role. These objects
are defined as ridges in the scalar finite-time Lyapunov exponent field [102], see
also Chapter 5. For example, numerical evidence shows that LCS often corre-
spond to temperature fronts [74]. Moreover, the knowledge of these structures is
useful when optimizing the trajectories of underwater gliders [57] or the distribu-
tion of sensors [105]. It is realistic to assume that approximate ocean forecasts
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Figure 6.1: The AOSN II field experiment in Monterey Bay involves several ships
and dozens of floating, diving, and flying oceanographic instruments operating
simultaneously. Their goal is to observe and model water movement, tempera-
ture, and other upwelling-related processes in Monterey Bay over a 4-week period
during August, 2003. In this image of the Monterey Bay study area, the color of
the ocean surface indicates water temperature - cold upwelling water is shown in
blue and warmer water in yellow and red. Image credit: David Fierstein c© 2003,
MBARI [81].

can be made [54] and that the structures of interest are robust to errors in the
forecast [47]. Then real-time computations of LCS may improve the forecast of
interesting mesoscale features, such as fronts, coherent masses of moving fluid -
that might have a different temperature, salinity or fluorescence -, or eddies. This
knowledge is essential to obtain an efficient distribution of sensing devices in order
to reduce errors in the data assimilation. First efforts in this direction have been
made within the AOSN II field experiment [2]. Here LCS were approximated via
direct Lyapunov exponents [47, 74] (DLE), however only taking two-dimensional
velocity data into account.

In the following sections we want to test the methods developed in the previous
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chapters and use them for the analysis of ocean flows. To be more precise, we ap-
ply our techniques to time-dependent two-dimensional data sets, obtained within
the AOSN II project from high frequency radar measurements in Monterey Bay
in summer 2003 [2]. We identify LCS [102] as structures characterized by large di-
rect expansion rates and demonstrate that they correspond to the curves obtained
by considering direct Lyapunov exponents. For the integration and interpolation
of the two-dimensional time-dependent data we use MANGEN [74, 75], which
also takes the different boundary conditions into account. However, in this con-
text very long trajectories need to be considered to obtain a clear picture of the
location of the Lagrangian structures of interest. This is computationally very
expensive and therefore not applicable for real-time (hours) computations in an
experiment. To decrease the computational effort, we propose a different direct
expansion rate approach that only considers the box centers. This alternative
method is very efficient but nevertheless gives a good indication of the location
of areas of high stretching.

Additionally, using the set-up described above, we compute transport rates
from near-shore regions to regions in the open sea west of Monterey Bay. The re-
sults demonstrate the strong time-dependence of the transport processes, having
serious implications for such things as pollution timing as discussed in [74, 75].
We note that, due to the open boundary allowing particles to leave the area under
consideration, previous methods that take advantage of volume-preservation are
difficult to apply.

Moreover, the first set of experiments indicate that our methods allow the
consideration of three-dimensional oceanic flows. Treatment of such data sets will
be essential in the future for being able to analyze genuinely three-dimensional
events such as coastal upwelling. For our analysis we use velocity data provided
by the Harvard Ocean Prediction System (HOPS) [1, 54]. This data set was also
collected and assimilated during the AOSN II field experiment.

6.2 Two-Dimensional Ocean Flows

In this section we will analyze a two-dimensional finite-time velocity field repre-
senting surface velocity data obtained from high frequency radar measurements in
Monterey Bay. The data set represents 1072 time slices of hourly measurements,
covering July 23, 2003 to September 5, 2003. The data has been re-analyzed,
that is gaps are filled, and has been interpolated into a regular 22× 18 grid.

Note that the data is given only with respect to a relatively small region
([122.334◦,−121.821◦] × [36.5659◦, 36.9736◦]). To avoid that too many particles
will be advected out of the region, we choose with

Q = [−122.15,−121.75]× [36.5, 37]
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an initial box that is considerably smaller than the underlying grid, see Figure 6.2.
We consider a covering on depth 14 consisting of 8404 boxes. Notably, a single
box covers an area of approximately 280 m × 430 m, whereas the size of the outer
box Q corresponds to an area of approximately 35.6 km × 55.5 km.

For direct expansion rate computations we consider ten pairs of Monte Carlo
points in each box with initial distance ε = 0.0003125 (20% of box radius),
corresponding to approx. 28 m.

The trajectories are computed using MANGEN [74]. It employs a fourth-
order Runge-Kutta scheme with adaptive step-size control, bi-cubic interpolation
in space and cubic interpolation in time. Moreover, boundary conditions at the
shore and at open boundaries are used. The trajectories are computed over
T = 144 hours choosing a relative tolerance of 10−5. If particles leave the grid,
we set their velocity to zero. Note that trajectories that leave the region are
typically not part of a coherent structure, see for example [98, 106].

The result for such a computation is given in Figure 6.2 b), where magenta and
red structures correspond to objects characterized by high expansion. Observe
how nicely the results compare to the results obtained from the LCS computation
using the direct Lyapunov exponents given in Figure 6.2 a).

Note that in this chapter we will use a slightly different color scheme to visu-
alize structures of maximum expansion. Boxes with negative or zero expansion
rates will be colored blue. Positive expansion rates are indicated by different
shades from magenta to red. Light red corresponds to maximum expansion.

a) b)

Figure 6.2: Comparison of DLE field and the direct expansion rate field using high
frequency radar data obtained with the AOSN II field experiment in Monterey
Bay in summer 2003 [2]. a) DLE field for July 23, 2003, 6:00, computed over 144
hours [101]; b) direct expansion rate field for the same set-up.
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Barriers to Transport Moreover, we demonstrate that the structures detected
by our methods are barriers to transport. We release drifting objects on each side
of the dominant LCS, see Figure 6.3 a). Their positions after they have been ad-
vected by the flow for several hours are shown in Figure 6.3 b)-d). The result
demonstrates not only that the Lagrangian coherent structures bound dynami-
cally distinct regions but also that they repel particles.

a) b)

c) d)

Figure 6.3: Lagrangian coherent structures serve as barriers to transport. Parti-
cles are released on each side of the dominant Lagrangian coherent structure and
advected. The Lagrangian coherent structures are approximated using direct ex-
pansion rates as described in the text. a) Drifting objects are initialized on July
23, 2003, 6:00 GMT. b) Position of the packages and the coherent structures 18
hours later; c) after 30 hours; d) after 42 hours.

Advection of Lagrangian coherent structures Finally, we test how parti-
cles initialized on the LCS are advected by the flow. For this we extract the LCS
by the subdivision algorithm. We start with a covering on depth 14. The selection
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criterion is to keep only those boxes whose direct expansion rate is above average,
where the average is taken over all boxes with positive direct expansion rate. We
subdivide in both coordinate directions and impose the selection criterion again.
Then we integrate the trajectories with respect to the center points of the boxes
in the resulting covering. The results are shown in Figure 6.4. Note that for small
integration times (e.g. 6 or 18 hours) the advected particles stay very close to the
LCS or even on the object. This demonstrates that the structures of interest are
at least approximately Lagrangian, that is, they are material lines moving with
fluid. This confirms the results in [102]. In an experimental context this also
means that the expansion rate field does not need to be computed at every time
instance but can be advected using a flow forecast.

a) b)

c) d)

Figure 6.4: Advection of particles initialized on Lagrangian coherent structures.
a) LCS are extracted using the subdivision algorithm (7246 boxes). Here the
center points of the respective box covering are superimposed on the direct ex-
pansion rate field. b) Advection of the center points over 6 hours, c) 18 hours, d)
42 hours. For clarity only a quarter of the points are shown.
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Faster algorithm However, we have seen that for the approximation of LCS
long trajectories need to be computed and when employing the direct expansion
rate approach, this has to be carried out for a large number of initial conditions
(test points). Hence an algorithm that can be used within an experimental setting
is needed. We therefore propose the following approach. We only consider the
center points of a box and compute an approximate direct expansion rate as
follows:

δfast(T ; τ, Bi) := log

(
max

j

1

T

|||ϕT+τ,τ (ci)− ϕT+τ,τ (nj(ci))|||
|||nj(ci)− ci|||

)
,

where ci denotes the center point of the box Bi and nj(ci) the center point of the
j-th neighboring box of Bi, see Figure 6.5. Obviously, this idea is in spirit of the
relative dispersion methods discussed before.

Figure 6.5: Choice of test points for an alternative approach to obtain coarse
grained picture of LCS - only the center points of the boxes serve as initial
conditions.

We apply this method to our box covering. A comparison between the direct
expansion rate field using 10 pairs of Monte Carlo points per box and the fast
approach using only the center points is shown in Figure 6.6. Though the fast
method provides a coarser picture it gives a good indication of the location of
Lagrangian coherent structures, although only as many as 5% of initial condi-
tions are considered compared to the usual direct expansion rate approach. An
animation of the evolution of the Lagrangian coherent structures approximated
this way can be found at

http://www-math.upb.de/∼padberg/thesis.html.
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a)

b)

Figure 6.6: Approximation of Lagrangian coherent structures using direct expan-
sion rates. a) ‘”Fast” method only using the center points; b) standard direct
expansion rate approach.

6.3 Transport in Monterey Bay

We now want to quantify transport between near shore regions and the open sea.
To describe the results in the notation introduced in Chapter 5, we consider

the non-autonomous mappings

fk = ϕ6(k+1),6k,

where ϕt+τ,τ is the (numerical) evolution of the flow and t = 1 corresponds to
one hour. So fk maps a point to its position six hours in the future. Here k = 0
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corresponds to the date July 23, 2003, 05:00 GMT. We consider source sets Ri and
a target set S, see Figure 6.7 and compute time-dependent transport probabilities
between theses sets.

Note that S and Ri are box sets, that means S = S. Moreover, they are
chosen time-independently, that is S(k) = S for all k. We are now interested

in transport probabilities p(Ri(k), S(l)) = T (Ri(k),S(l))
m(Ri(k))

for different k and l. In
particular, we want to analyze how different release times affect the transport of
particles into the set S.

Based on the box covering described above we compute transition matrices
P̃[k,k+1] using 100 Monte Carlo Points per box. Multiplication yields transition
matrices P[k,l]B which will be employed for the transport calculations as described
in Chapter 5.

The results are shown in Figures 6.7 and 6.8. The different colors of the bars
correspond to different release times. The transport probabilities are then given
as a function of the time since release, where n = 1 corresponds to six hours. So,
transport probabilities within a time span of 72 hours are considered. Although
the setting is very simple the results nevertheless illustrate the serious time-
dependence of the transport mechanism. Note that we do not observe transport
between R3 and S within the time span considered - therefore this result is not
shown in Figure 6.8. This is surprising as R3 is located very close to the target set
in phase space. Such observations, however, may have implications, for example,
on optimal pollution timing [74, 75].

6.4 Three-Dimensional Ocean Flows

We now want to apply our methods to three-dimensional velocity data, obtained
from measurements within the AOSN II project [2]. The data under consideration
has been re-analyzed on the basis of the HOPS ocean model [1, 54]. It covers
August 2, 2003 to September 6, 2003, given at intervals of three hours (281 time
slices) and has been interpolated into a rotated spherical grid with 96× 83× 22
elements. The 22 levels correspond to planes between 1 m and 900 m below
the water surface. In order to be able to use standard interpolation schemes,
we rotate the grid data to a rectangular domain and choose an initial box Q =
[−122,−121.2] × [36, 36.8] × [−80, 0]. We consider a box covering on depth 21
(1230264 boxes). Here the size of a single box corresponds to approximately 560
m × 690 m × 60 cm, which means that two different length scales need to be
dealt with. For our computation we use a fourth-order Runge-Kutta integration
scheme (h = 1, corresponding to 3 hours) as well as linear interpolation in space
and time.

We compute trajectories for T = 48 (i.e. 144 hours). Unfortunately, MAN-
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a)

b)

Figure 6.7: a) Sets under consideration for transport rates with boxes of large
expansion rates for k = 0 superimposed. b) Transport probability p(R(k), S(l)),
where R(k) = ∪i=1,...,4Ri(k), for different k and l, with l = k + n.

GEN does not yet support computations in 3d and therefore trajectories are
integrated and interpolated using MATLAB. That also means, that in these first
experiments we do not take any boundary conditions into account. However, the
data covers a very large region, whereas our box covering is only chosen with re-
spect to a small region. So we expect that particles initialized in the box covering
will hardly leave the large region within the time span under consideration.

Results for the direct expansion rate approach, using 20 pairs of Monte Carlo
points per box with initial distance ε = 0.0015 (50% box radius), are shown in
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a) b)

Figure 6.8: a) Transport probability p(R2(k), S(l)), for different k and l with
l = k + n. b) Transport probability p(R4(k), S(l)).

Figure 6.9. We also use the second approach introduced in Section 6.2, where
only center points are considered, see Figure 6.10. Note that for the visualization
the box covering has been transformed to match the original rotation of the grid.

Both methods give a striking indication of the existence of repelling material
surfaces. We note that to the best of our knowledge this has been the first time
that these structures have been computed and visualized for three-dimensional
ocean flows based on finite-time velocity data. The improvement of these com-
putations using higher order interpolation schemes is subject to future research.
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Figure 6.9: Approximation of Lagrangian coherent structures in Monterey Bay us-
ing re-analyzed data from a three-dimensional ocean model (HOPS data). Com-
putation of direct expansion rates with respect to 20 pairs of Monte Carlo points
per box (1230264 boxes).

Figure 6.10: Approximation of Lagrangian coherent structures in Monterey Bay.
Computation of direct expansion rates considering only the center points (1230264
boxes) as described in Section 6.2.
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Chapter 7

Conclusion

Transport processes play an important role in many natural phenomena. Over
the past twenty years the analogy between the global, geometrical study of non-
linear dynamical systems and transport and mixing studies in classical and fluid
mechanics has been used to obtain a deeper understanding of transport issues in
a variety of systems, notably in geophysical models

For the analysis of transport processes two main ingredients need to be con-
sidered. First, boundaries between dynamically distinct regions are detected and
approximated. In the context of dynamical systems these structures correspond
to invariant manifolds of hyperbolic periodic points or, in time-dependent sys-
tems, of hyperbolic trajectories. Secondly, transport is quantified in terms of
transport rates and probabilities. Here lobe dynamics is often employed to ex-
plain the transport mechanism and derive transport rates.

Much effort has been made to extend the above ideas to finite-time velocity
fields given by a finite set of data. However, most of the methods to extract finite-
time invariant manifolds or Lagrangian coherent structures have been formulated
and applied to the two-dimensional context only. Moreover, lobe dynamics is
hardly applicable to the analysis of flows with general time dependence. Aperi-
odicity, however, is characteristic of finite-time velocity fields.

This thesis contributes to the current research on the detection of invariant
manifolds in non-autonomous dynamical systems and the approximation of trans-
port rates by making use of the advantages of different techniques. In particular,
we have extended the well-established methods related to finite-time Lyapunov
exponents and relative dispersion, and have embedded them in the set oriented
approach first proposed by Dellnitz and Hohmann [23, 24]. We have demon-
strated that this new multilevel technique, the expansion rate approach, allows
for the efficient detection, approximation, and continuation of stable and unstable
manifolds to hyperbolic objects.

In addition, we have presented a set oriented technique for the computation
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of transport rates in dynamical systems with general time dependencies which is
independent of invariant manifolds. The method relies on a discretization of the
Perron-Frobenius operator of the underlying non-autonomous dynamical system
and extends and improves the results in Dellnitz, Junge, Koon et al. [28], where
the autonomous case has been treated. Hence, this approach can also be applied
to dynamical systems where the invariant manifold cannot be obtained accurately
enough to consider lobe dynamics or where the underlying transport mechanism
remains obscure.

Altogether this thesis makes four major contributions to the current research
in the numerical analysis of chaotic transport:

1. Detection and extraction of invariant manifolds in autonomous dynamical
systems,

2. Extraction and continuation of invariant manifolds in non-autonomous dy-
namical systems,

3. Manifold independent approach for the computation of transport rates be-
tween regions of interest in non-autonomous dynamical systems, and

4. Application of these methods to geophysical fluid data obtained from high
frequency radar measurements in Monterey Bay in summer 2003 [2].

Although the methods developed work successfully in the examples considered
within this thesis, there are still a lot of open problems. First of all we have only
extracted candidates of invariant manifolds, that is, we have only considered
necessary but not sufficient conditions. To find sufficient conditions which are
applicable to general flows and which can be evaluated with reasonable numerical
effort is subject to future research.

Another challenging problem is that the computation of transport rates using
transition matrices is computationally demanding. Typically, a discretization of
a subset of phase space needs to be considered that has full dimension. Although
the use of adaptive methods as proposed in Chapter 5 reduces the number of
boxes considerably, the extension to higher dimensional systems (i.e. > 4) remains
problematic. Furthermore, when applying the adaptive refinement algorithm for
the transport boxes, in every step of the algorithm the transition matrices need
to be computed from scratch although only very few boxes have been subdivided.
Hence, more efficient methods need to be designed for quantifying transport.

In this thesis we have made efforts to the analysis of finite-time geophysical
data sets. In a first set of experiments we have also considered graphs, proposing
a first step to the analysis of general time series. However, to deal with an
increasing amount of data obtained from measurements, with the structures of
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interest typically hidden in a huge multi-dimensional data set with many different
scales, is certainly one of the future challenges in scientific computing. How to
analyze such time series and extract from them the information relevant for the
solution of the problem under consideration is largely open.
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[18] P. Cvitanović, R. Artuso, P. Dahlqvist, R. Mainieri, G. Tanner, G. Vattay,
N. Whelan, and Andreas Wirzba. Chaos: Classical and Quantum. Niels Bohr
Institute, Copenhagen, 2003. www.nbi.dk/ChaosBook.

[19] F.S. De Blasi and J. Schinas. On the stable manifold theorem for discrete time
dependent processes in Banach spaces. Bull. London Math. Soc., 5:275–282, 1973.

[20] C. Dellago and Wm.G. Hoover. Are local Lyapunov exponents continuous in
phase space? Physics Letters A, 268:330–334, 2000.

[21] M. Dellnitz, G. Froyland, and O. Junge. The algorithms behind GAIO – Set
oriented numerical methods for dynamical systems. In Ergodic Theory, Analysis,
and Efficient Simulation of Dynamical Systems, pages 145–174, 2001.

[22] M. Dellnitz, K.A. Grubits, J.E. Marsden, K. Padberg, and B. Thiere. Set oriented
computation of transport rates in 3-degree of freedom systems: the Rydberg atom
in crossed fields. Regular and Chaotic Dynamics, 10(2):173–192, 2005.

[23] M. Dellnitz and A. Hohmann. The computation of unstable manifolds using
subdivision and continuation. In H.W. Broer, S.A. van Gils, I. Hoveijn, and
F. Takens, editors, Nonlinear Dynamical Systems and Chaos, pages 449–459.
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[51] M. Hénon. A two dimensional map with a strange attractor. Commun. Math.
Phys., 50, 1976.

[52] M. Hessel. Partool. Script for Parallel Computing, 2002.

126



[53] H. Heuser. Lehrbuch der Analysis - Teil 2. Teubner, Stuttgart, 1995.

[54] HOPS. http://oceans.deas.harvard.edu/HOPS/HOPS.html.

[55] F. Hunt. A Monte Carlo approach to the approximation of invariant measures.
Random Comput. Dynam., 2:111–133, 1994.

[56] K. Ide, D. Small, and S. Wiggins. Distinguished hyperbolic trajectories in time-
dependent fluid flows: analytical and computational approach for velocity fields
defined as data sets. Nonlinear Processes in Geophysics, 9:237–263, 2002.

[57] T. Inanc, S.C. Shadden, and J.E. Marsden. Optimal trajectory generation in
ocean flows. Accepted for the Proceedings of the American Control Conference,
Oregon, Portland, June 2005.

[58] M.C. Irwin. Hyperbolic time-dependent processes. Bull. London Math. Soc.,
5:209–217, 1973.
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