Verbreitung und Eigenschaften von Massenverlagerungsgebieten an der Wellenkalk-Schichtstufe im Thüringer Becken unter besonderer Berücksichtigung geomorphologischer und klimatologischer Steuerungsfaktoren

Dissertation

Zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der

Mathematisch-Naturwissenschaftlich-Technischen Fakultät (mathematisch-naturwissenschaftlicher Bereich) der Martin-Luther-Universität Halle-Wittenberg

von Ingo Beyer geb. am: 19.01.1973 in: Wippra (Sachsen-Anhalt, BRD)

Gutachter:

1. Prof. Dr. Karl-Heinz Schmidt

(Institut für Geographie, Martin-Luther-Universität Halle-Wittenberg)

2. Prof. Dr. Jörg Grunert

(Institut für Geographie, Johannes Gutenberg-Universität Mainz)

3. Prof. Dr. Michael Becht

(Institut für Geographie, Georg-August-Universität Göttingen)

verteidigt am: 26.11. Halle (Saale), (2002)

[http://nbn-resolving.de/urn/resolver.pl?urn=nbn%3Ade%3Agbv%3A3-000004338]

Vorwort

Die vorliegende Dissertation entstand am Institut für Geographie des Fachbereiches Geowissenschaften der Martin-Luther-Universität Halle-Wittenberg. Die der Untersuchung zu Grunde liegenden Geländearbeiten erfolgten in den Jahren 1997 bis 2001 im Rahmen des, von der DFG geförderten Forschungsprojektes "Massenbewegungen an der Muschelkalk-Schichtstufe in Nordhessen und Thüringen", welches Bestandteil des MABIS-Programms (Massenbewegungen in Süd- und Westdeutschland) war. Für die damit verbundene Finanzierung bin ich der DFG sehr dankbar. Während des vierjährigen Bearbeitungszeitraumes standen mir zahlreiche Menschen und Institutionen hilfreich zur Seite, denen ich an dieser Stelle meinen Dank aussprechen möchte.

Meinem Betreuer, Herrn Prof. Dr. K.-H. SCHMIDT (Institut für Geographie der Martin-Luther-Universität Halle-Wittenberg), bin ich für die weit über die fachliche Beratung hinausgehende Betreuung der Arbeit zu tiefstem Dank verpflichtet. Seine Hinweise, die zahlreich geführten Diskussionen und nicht zuletzt die gemeinsamen Geländeaufenthalte gaben mir immer wieder die Gelegenheit, aus seinem reichen wissenschaftlichen Erfahrungsschatz zu profitieren. Ferner bedanke ich mich für die Freiheit, die er mir bei der Bearbeitung der Thematik ließ sowie für das stets kollegiale Arbeitsverhältnis.

Herrn Prof. Dr. M. FRÜHAUF (Institut für Geographie der Martin-Luther-Universität Halle-Wittenberg) und Herrn Prof. Dr. GRUNERT (Institut für Geographie der Johannes Gutenberg-Universität Mainz) danke ich sehr für die Übernahme der weiteren Gutachten.

Für anregende fachliche Hinweise sowie die hilfsbereite Unterstützung bei der Durchführung von Scherversuchen möchte ich Herrn Prof. Dr. Ch. LEMPP und Herrn Dr. Ch. HECHT (beide Institut für Geologische Wissenschaften der Martin-Luther-Universität Halle-Wittenberg) meinen besonderen Dank aussprechen. Herrn Prof. Dr. PÖLLMANN und Frau STELLER (Institut für Geologische Wissenschaften der Martin-Luther-Universität Halle-Wittenberg) sei an dieser Stelle für die Durchführung röntgenographischen Analysen gedankt.

Für die tatkräftige Mitarbeit bei zahlreichen Geländeeinsätzen bin ich Herrn Dipl. Geogr. O. KUMPERT zu besonderem Dank verpflichtet. Ebenso möchte ich Herrn Dipl. Geogr. M. UNBENANNT herzlichst danken. Seine freundschaftlichen Ratschläge, Hinweise und die hilfsbereite Unterstützung hinsichtlich des Umgangs mit der GIS Software haben sehr zum Gelingen der Arbeit beigetragen. Für zahlreiche anregende Hinweise, die für Bearbeitung der Thematik sehr förderlich waren, möchte ich meinen Kollegen Frau Dipl. Geogr. D. KLEY, Herrn Dr. T. VETTER und insbesondere Herrn Dr. M. ZIERDT an dieser Stelle meinen Dank aussprechen. Ferner danke ich

Frau Dipl. Ing. U. NOCKER, Herrn Dr. K. THÜRKOW und Herrn Dipl. Geogr. J. BIRGER für die wertvollen Hinweise hinsichtlich computerkartographischer Arbeitsmethoden sowie Frau E. SCHRÖTER für die Erstellung von Abbildungen und Frau K. SCHULTZ (Labor des Institutes für Geographie der Martin-Luther-Universität Halle-Wittenberg) für die Durchführung von Korngrößenanalysen.

Zahlreiche Studenten haben während der Bearbeitungszeit im Rahmen von Diplom-, Projektarbeiten und studentischen Hilfskrafttätigkeiten bei der Klärung wichtiger Fragestellungen sowie bei den zahlreichen Geländeeinsätzen mitgewirkt. Deren Engagement hat bedeutend zu einer umfangreichen Datenbasis beigetragen. FRAU F. BUKOWSKI, Frau S. LORENZ, Frau C. THIELE, Herrn I. SAHLING, Herrn W. KÖNIG, Herrn CH. HEIDUCK, Herrn M. EICHHORN und Frau K. ZENNER sei dafür herzlichst gedankt.

Dank gebührt Herrn Dr. H. GÄRTNER für die interessanten Diskussionen und Hinweise während gemeinsamer Geländeaufenthalte und Herrn Dipl. Geol. G. JOHNSEN für hilfreiche Hinweise im Zusammenhang mit der Durchführung von Bewegungsmessungen. Herrn Prof. Dr. W. POHL (Technische Universität Braunschweig) danke ich für die Übermittlung von unveröffentlichten Diplomarbeiten sowie Herrn Prof. Dr. J. VÖLKEL (Friedrich-Schiller-Universität Jena) für die hilfreichen Informationen zu den vorgefundenen Deckschichtenkomplexen.

Für die kostengünstige Erteilung von Fahrgenehmigungen für den Untersuchungsraum möchte ich ein besonderes Dankeschön an die Forstämter Leinefelde, Jena, Rudolstadt, Oldisleben, Sondershausen, Heiligenstadt, Ilmenau, Ershausen, Creuzburg und Bleicherode richten.

Ferner möchte ich mich beim DWD für die kostengünstige Bereitstellung von Niederschlagsdaten und ebenso beim Thüringischen Landesvermessungsamt für die Bereitstellung von DHM und Rasterdaten Daten hiermit in aller Form bedanken.

Für zahlreiche Hinweise, Einsichten in Akten und unveröffentlichte Manuskripte danke ich Frau Dipl. Geol. FLOHN (Umweltamt Sondershausen), Herrn Dipl. Ing. KELTERBORN und Dipl. Ing. P.. RAABE (beide Zementwerk Deuna).

Nicht zuletzt gebührt besonderer Dank meiner Familie, die durch Ihre Unterstützung maßgeblich zum Gelingen der Arbeit beigetragen hat.

Ingo Beyer, Halle (Saale) 2002

Inhaltsverzeichnis

Seite

1.	Einfü	ihrung			1	
	1.1	Vorbe	merkunge	n	1	
	1.2	Ursach	nen der M	assenverlagerungen	3	
	1.3	Termi	nologie ur	nd Klassifikation von Massenverlagerungen	5	
	1.4	Stand	Stand der Forschung			
	1.5	Unters	suchungsz	iele	14	
2.	Das U	U ntersuc	hungsgeb	iet	17	
	2.1	Vorbe	merkunge	n	17	
	2.2	Abgre	zung und Grundzüge der geologischen Entwicklung des			
		Thüringer Beckens				
	2.3	Die W	ellenkalk-	Schichtstufe	21	
		2.3.1	Lage un	d Abgrenzung	21	
		2.3.2	Geologi	sche Charakteristik des Wellenkalk-Schichtstufenhanges	23	
			2.3.2.1	Vorbemerkungen	23	
			2.3.2.2	Obere Buntsandstein (Röt)	24	
			2.3.2.3	Der Untere Muschelkalk (Wellenkalk)	28	
		2.3.3	Morpho	logisch-morphometrische Charakteristik der		
			Wellenk	alk-Schichtstufe	29	
			2.3.3.1	Einleitung	29	
			2.3.3.2	Der Stufenhang	30	
			2.3.3.3	Die Stufenfläche	34	
			2.3.3.4	Die Fußfläche	35	
			2.3.3.5	Zeugenberge und Auslieger	36	
			2.3.3.6	Die Buchtung der Schichtstufen- und Schichtkammhänge	37	
			2.3.3.7	Neigungsrichtung und Neigungswinkel der Stufenhänge	39	
			2.3.3.8	Die Exposition der Schichtstufen- und Schichtkammhänge	43	
		2.3.4	Klimatis	sche Verhältnisse des Untersuchungsgebietes	46	
			2.3.4.1	Niederschlagsverteilung	46	
			2.3.4.2	Verteilung von Starkniederschlägen	51	
			2.3.4.3	Temperaturverhältnisse	53	
		2.3.5	Hydrolo	gische Charakteristik des Untersuchungsgebietes	53	
			2.3.5.1	Fließgewässer	53	
			2.3.5.2	Quellen	56	
			2.3.5.3	Die räumliche Verbreitung der Fließgewässer und Quellen	56	
3.	Allge	meine Cl	harakteris	stik der Massenverlagerungen an der		

Wellen	kalk-Schichtstufe im Thüringer Be	cken .	 61
3.1	Verlagerungsmechanismen		 61

	3.2	Forme	nschatz			62
	3.3	Forme	nassoziati	onen, Unterg	liederung und Ausmaße der	
		Masse	nverlager	ungsgebiete.		67
	3.4	Alterse	einordnun	ig der Massen	verlagerungen	69
4.	Meth	odische V	Vorgehen	sweisen bei d	ler Erkundung und Analyse der	
	Mass	enverlag	gerungsge	biete und de	r zu untersuchenden Steuerungsfaktoren	73
	4.1	Vorbe	merkunge	en		73
	4.2	Feldar	beiten			73
	4.3	Ableit	ung der S	teuerungsfakt	oren aus Karten und anderen Quellen	76
	4.4	Labora	oranalysen			
		4.4.1	Bestimn	nung der Kor	ngrößenverteilung	84
		4.4.2	Qualitat	tive Tonminer	ralbestimmung	84
	4.5	Auswe	ertungs- u	nd Darstellun	gsmethoden	84
5.	Erge	bnisse				86
	5.1	Vorbe	merkunge	n		86
	5.2	Charal	kteristik d	er kartierten I	Massenverlagerungsgebiete	86
		5.2.1	Anzahl	und räumlich	e Verbreitung der Massenverlagerungsgebiete	86
		5.2.2	Die von	Massenverla	gerungen betroffenen Stufenhanglängen	88
		5.2.3	Morpho	metrische Au	sprägung der Massenverlagerungsgebiete	89
			5.2.3.1	Die Breite	der Massenverlagerungsgebiete	89
			5.2.3.2	Die mittlere	e Länge der Massenverlagerungsgebiete	93
			5.2.3.3	Das Länger	1-/Breitenverhältnis der Massenverlagerungsgebiete	e 94
			5.2.3.4	Die mittlere	en Flächengrößen der Massenverlagerungsgebiete	97
		5.2.4	Morpho	logische Aus	prägung der Massenverlagerungsgebiete	102
			5.2.4.1	Häufigkeit	und regionale Verbreitung des	
				Massenverl	agerungsformenschatzes	102
				5.2.4.1.1	Die Häufigkeit der Massenverlagerungsgebiete	
					mit Mauerschollen	104
				5.2.4.1.2	Die Häufigkeit der Massenverlagerungsgebiete	
					mit Sturzfließungen	106
				5.2.4.1.3	Die Breite der Massenverlagerungsgebiete mit	
					Mauerschollen und Sturzfließungen	109
			5.2.4.2	Vergesellsc	haftungen des Massenverlagerungsformenschatzes	
				innerhalb d	er Massenverlagerungsgebiete	111
			5.2.4.3	Die Anzahl	unterschiedlicher Massenverlagerungsformen	
			0121110	innerhalb d	er Massenverlagerungsgebiete	113
			5.2.4.4	Die Staffela	anzahl der Massenverlagerungsgebiete	118
			5.2.4.5	Zusamment	fassende Betrachtung der hisheriger Ausführungen	124
		525	Die Aus	nrägung der	Abrißwände der Massenverlagerungsgebiete	124 126
		5.2.5	5251	Der Stufent	nangabschluss (Stufenhangtyn) im Abrißwandberei	ch 126
			5251	Die Lane de	es Ton der Ahrißwand zum Stufenhangshochluss	120
			5.4.5.4	Die Lage u	28 TOP del Abribwand Zuin Stutemangabseniuss	14/

		5.2.5.3 Die Stratigraphische Lage der oberen Abrißwandbereiche	130
5.3 I	Der Ein	fluss der betrachteten dispositiven Steuerungsfaktoren auf die	
r	äumlic	he Variabilität der Massenverlagerungsgebiete	131
5	5.3.1	Vorbemerkungen	131
5	5.3.2	Lithologisch-strukturelle Eigenschaften des Stufenbildners (1) und	
		lithologisch-struktuelle Eigenschaften des Sockelgesteins (2)	132
5	5.3.3	Die Mächtigkeit des Stufenbildners (3)	132
5	5.3.4	Die Mächtigkeit des Sockelgesteins (4)	135
5	5.3.5	Die Mächtigkeitsrelation von Stufenbildner und Sockelgestein (5)	138
5	5.3.6	Der Schichtneigung (6)	142
5	5.3.7	Die Neigungsrichtung (7)	147
5	5.3.8	Der Einfluss der Rötgipssubrosion nach morphologischen Befunden (8)	151
5	5.3.9	Morphometrische Lage zur Erosionsbasis (9)	155
5	5.3.10	Lage im Stufengrundriss (10)	168
5	5.3.11	Exposition (11)	172
5	5.3.12	Lage zum Gewässernetz (12)	179
5	5.3.13	Häufung von Hangquellen (13)	185
5	5.3.14	Mittlere jährliche Niederschlagshöhe und Niederschlagsverteilung (14)	190
5	5.3.15	Höhe und Verteilung von Starkniederschlägen (15)	200
5	5.3.16	Zusammenfassende Betrachtung der untersuchten	
		Steuerungsfaktoren	.209
5.4 E	Beurtei	lung des Gefährdungsrisikos im Umfeld von Mauerschollengebieten	212
Zusamm	nenfass	sung und Ausblick	219
Literatu	rverze	ichnis	223
Verwend	letes K	Cartenmaterial	

9. Anhang

6.

7.

8.

Abbildungsverzeichnis

Abb. 1.1:	Aufwendige Sanierungsarbeiten an der B4 bei Arnstadt (Lokalität Ritterstein)
	infolge akuter Massenverlagerungsgefahr (Quelle: FREIES WORT 1994a)
Abb. 2.1:	Geologische Übersicht des Thüringer Beckens (ohne Quartär)
	(nach PATZELT 1994, verändert) 18
Abb. 2.2:	Geologisch-struktureller Aufbau des Thüringer Beckens
	(Quelle: WAGENBRETH & STEINER 1990)
Abb. 2.3:	Der stratigraphische Aufbau der Muschelkalk- und Wellenkalk-Schichtstufe 24
Abb. 2.4:	Die Korngrößenverteilung (ohne Skelettanteil) zweier Pelitrötproben
	vom Dün südlich der Ortschaft Deuna
	(Analyse: Geographisches Labor der MLU Halle-Wittenberg)
Abb. 2.5:	Mineralogische Zusammensetzung einer Pelitrötprobe von einem
	Wellenkalk-Schichtstufenabschnitt am Dün südl. der Ortschaft Deuna
	(Analyse: Mineralogisches Labor MLU Halle-Wittenberg)
Abb. 2.6:	Reliefelemente der Schichtstufenlandschaft (nach SCHMIDT 1988a verändert) 30
Abb. 2.7:	Stufenhangtypen im Untersuchungsgebiet
Abb. 2.8:	Rezente Erdfallbildungen auf der Fußfläche der Wellenkalk-Schichtstufe
	nahe der Ortschaft Lutter im Oberen Eichsfeld
	[Quelle: Thüringer Allgemeine (1992a)] 35
Abb. 2.9:	Die Ermittlung des Buchtungsindex an kompakten Stufenhängen und an
	Zeugenbergen
Abb. 2.10:	Neigungsrichtung der Schichten an Front-, Achter- und
	Diagonalstufenhängen 40
Abb. 2.11:	Prozentuale Einteilung der untersuchten Schichtstufenhänge in Front-,
	Diagonal- und Achterstufenabschnitte (ohne Schichtkämme)
Abb. 2.12:	Die Expositionsverteilung der Wellenkalk-Schichtstufen- und
	Schichtkammhänge des Untersuchungsgebietes
Abb. 2.13:	Prozentuale Zuordnung der Stufenhanglängen der untersuchten Wellenkalk-
	Schichtstufen- und Schichtkammabschnitte zu den Klassen der mittleren
	jährlichen Niederschlagshöhe im Bereich der Trauf-proximalen Stufenfläche 48
Abb. 2.14:	Der Jahresgang der Niederschläge im Untersuchungsgebiet, dargestellt am
	Beispiel verschiedener Klimastationen
Abb. 2.15:	Der Zusammenhang zwischen durchschnittlicher Jahresniederschlagshöhe
	und der Dichte von Quellen und Fließgewässern erster und zweiter
	Ordnung im Bereich der Wellenkalk-Schichtstufenabschnitte
Abb. 3.1:	Blockverlagerungstypen an der Wellenkalk-Schichtstufe im
	Thüringer Becken
Abb. 3.2:	Der Formenschatz der Massenverlagerungen an der Wellenkalk-Schichtstufe 63
Abb. 3.3:	Spaltenhöhle an der Thomasbrücke bei Martinfeld (Oberes Eichsfeld) 64

Abb. 3.4:	Beispiele für Abrißwände an Massenverlagerungsgebieten an der	
	Wellenkalk-Schichtstufe im Thüringer Becken	65
Abb. 3.5:	Eine Fußscholle und deren Lagerungsverhältnisse am Stirnberg nordöstlich	
	der Ortschaft Rödelwitz (Ilm-Kalk-Platte)	66
Abb. 3.6:	Unterteilung eines Massenverlagerungsgebietes nach	
	KLENGEL & PASEK (1974) (Quelle: Wenzel 1991)	68
Abb. 3.7:	Typische mehrgliedrige Deckschichtenkomplexe auf Fußschollen	72
Abb. 4.1:	Ermittlung der morphometrischen Parameter eines	
	Massenverlagerungsgebietes	74
Abb. 4.2:	Exemplarische Hangprofile von Massenverlagerungsgebieten an der	
	Wellenkalk-Schichtstufe im Thüringer Becken	77
Abb. 4.3:	Ermittlung morphometrischer Parameter an den von Massenverlagerungen	
	betroffenen Wellenkalk-Schichtstufenhängen des Untersuchungsgebietes	
	(abgewandelt nach SCHUNKE 1968)	78
Abb. 4.4:	Lage der auf die Hangneigungsverteilung untersuchten DHM 25	80
Abb. 4.5:	Der Grundriss der Wellenkalk-Schichtstufe	82
Abb. 5.1:	Die von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen	
	Untersuchungsabschnitte, geordnet nach abnehmender	
	Massenverlagerungsbeeinflussung	88
Abb. 5.2:	Einteilung der Massenverlagerungsgebiete nach Breitenklassen	90
Abb. 5.3:	Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen mit	
	der Dichte von Massenverlagerungsgebieten	
	der Breitenklassen 500 – 6000 m.	92
Abb. 5.4:	Einteilung der Massenverlagerungsgebiete nach Längenklassen	93
Abb. 5.5:	Die mittleren Flächengrößen der Massenverlagerungsgebiete der einzelnen	
	Untersuchungsabschnitte, geordnet nach abnehmender Flächengröße	97
Abb. 5.6:	Einteilung der Massenverlagerungsgebiete nach Flächengrößenklassen	98
Abb. 5.7:	Zusammenhang zwischen Breite der Massenverlagerungsgebiete und deren	
	Flächenausdehnung	100
Abb. 5.8:	Zusammenhang zwischen der mittleren Länge der	
	Massenverlagerungsgebiete und deren Flächenausdenung	100
Abb. 5.9:	Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen	
	mit der Dichte von Massenverlagerungsgebieten der mittleren	
	Flächengrößenklassen 50000 – $> 500000 \text{ m}^2$	101
Abb 5 10.	Häufigkeit des Massenverlagerungsformenschatzes in den	101
1100, 2,10,	Massenverlagerungsgebieten	102
Abb 511.	Zusammenhang zwischen den von Massenverlagerungen betroffenen	102
1100, 2,11,	Stufenhanglängen und der Dichte von Mauerschollengehieten innerholb der	
	sinzalnan Untersuchungsabschnitta	104
	emzemen Untersuchungsausemmue	100

Abb. 5.12:	Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen der
	einzelnen Untersuchungsabschnitte mit der Dichte der Sturzfließungen und
	Mauerschollengebiete 109
Abb. 5.13:	Die Breitenausdehnungen der Massenverlagerungsgebiete mit Mauerschollen
	und Sturzfließungen bezogen auf die Anzahl der Massenverlagerungsgebiete
	in den jeweiligen Breitenklassen 110
Abb. 5.14:	Die Häufigkeit unterschiedlicher Massenverlagerungsformen innerhalb der
	Massenverlagerungsgebiete an der Wellenkalk-Schichtstufe im
	Thüringer Becken 113
Abb. 5.15:	Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen der
	einzelnen Untersuchungsabschnitte mit der Dichte der auftretenden
	Massenverlagerungsgebiete mit 6 - 7 Massenverlagerungsformen 115
Abb. 5.16:	Die Breitenausdehnung der Massenverlagerungsgebiete mit 6 - 7
	unterschiedlichen Massenverlagerungsformen
Abb. 5.17:	Die Formenschatzhäufigkeit in den Massenverlagerungsgebieten mit
	Mauerschollen und Sturzfließungen
Abb. 5.18:	Die Staffelanzahl der Massenverlagerungskörper in den
	Massenverlagerungsgebieten des Untersuchungsgebietes
Abb. 5.19:	Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen der
	einzelnen Untersuchungsabschnitte mit der Dichte der auftretenden
	Massenverlagerungsgebiete mit 5 - 7 Staffelabfolgen
Abb. 5.20:	Die Breitenausdehnung der Massenverlagerungsgebiete
	mit 5 - 7 Staffelabfolgen 121
Abb. 5.21:	Beispiele für die staffelartige Anordnung von Massenverlagerungskörpern 123
Abb. 5.22:	Zusammenfassender Vergleich der von Massenverlagerungen betroffenen
	Stufenhanglängen mit den betrachteten Dichteindexwerten
Abb. 5.23:	Durch Massenverlagerungen gebildete markante Traufstufenhang-
	abschlüsse
Abb. 5.24:	Die stratigraphische Lage der oberen Abrißwandbereiche in den
	Massenverlagerungsgebieten des Untersuchungsraumes
Abb. 5.25:	Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen (%)
	der einzelnen Untersuchungsabschnitte mit der
	untersuchungsabschnittsbezogenen, durchschnittlichen
	Stufenbildnermächtigkeit der Massenverlagerungsgebiete
Abb. 5.26:	Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen (%)
100.0.20.	der einzelnen Untersuchungsabschnitte mit der
	untersuchungsabschnittsbezogenen durchschnittlichen
	Sockelgesteinsmächtigkeit der Massenverlagerungsgehiete 137
Abb 5 27.	Die Mächtigkeitsrelation von Sockelgestein und Stufenbildner an den
1100, 0,27,	Massenverlagerungsgehieten an der Wellenkalk-Schichtstufe im
	Thüringer Becken 130
	137

Abb. 5.28:	Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen Untersuchungsabschnitte mit den durchschnittlichen	
	Mächtigkeitsverhältniszahlen	140
Abb. 5.29:	Die relative Stufenhöhe an den Massenverlagerungsgebieten, gemessen	
	vom 4° Fußpunkt bis zum Top der Abrißwand (unterteilt nach	
	Stufenhöhenklassen)	141
Abb. 5.30:	Modellversuch zur unterschiedlichen Massenverlagerungsbeeinflussung an	
	Wellenkalk-Schichtstufen- und Schichtkammhängen in Abhängigkeit	
	von der Schichtneigung	145
Abb. 5.31:	Prozentualer Anteil der von Massenverlagerungen betroffenen	
	Stufenhanglängen in Front-, Diagonal- und Achterstufenpositionen	148
Abb. 5.32:	Schematisches Grundprinzip der Rötgipssubrosion und deren	
	morphologischen Folgen	152
Abb. 5.33:	Vergleich der Horizontal- (dS) und Vertikalentfernungen (dF) gemessen	
	vom 4° Fußpunkt zur Röt-/Wellenkalk-Schichtgrenze an den von	
	Massenverlagerungen betroffenen Stufenhängen	156
Abb. 5.34:	Vergleich der Horizontal- (dH) und Vertikalentfernungen (dV), gemessen	
	vom 4° Fußpunkt zur zum Top der Abrißwand an den von	
	Massenverlagerungen betroffenen Stufenhängen	156
Abb. 5.35:	Vergleich der Horizontal- (dR) und Vertikalentfernungen (dA), gemessen	
	von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand an	
	den von Massenverlagerungen betroffenen Stufenhängen	157
Abb. 5.36:	Durch künstliche Hangversteilung verursachte Massenverlagerung im	
	Tagebau Deuna	161
Abb. 5.37:	Exemplarische Habgneigungskarten an von Massenverlagerungen betroffenen	
	Wellenkalk-Schichtstufenabschnitten im Thüringer Becken	
	(Gebiete: III - Hainleite/X - Ilm-Kalk-Platte)	163
Abb. 5.38:	Vergleichende Histogramme der Häufigkeit der Hangneigungsklassen am	
	Gesamtstufenhang und innerhalb der Massenverlagerungsbebiete am	
	Beispiel der DGM III, V, VIII, X	164
Abb. 5.39:	Der prozentuale Anteil der $> 36^{\circ}$ geneigten Stufenhangflächen der	
	Massenverlagerungsgebiete von der Gesamtfläche der Stufenhänge	
	die > 36° Hangneigungen aufweisen	167
Abb. 5.40:	Die Lage der von Massenverlagerungen betroffenen Stufenhanglängen im	
	Grundriss	168
Abb. 5.41:	Vergleich der Buchtungsindexwerte der Untersuchungsabschnitte mit den	
	von Massenverlagerungen betroffenen Stufenhanglängen (ohne Dün)	171
Abb. 5.42:	Vergleich der Expositionsverteilung der von	
	Massenverlagerungen betroffenen Stufenhänge mit der Expositionsverteilung	
	der Gesamtstufenhänge	172
Abb. 5.43:	Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen	
	mit der Dichte der Fließgewässer, ausgedrückt als Dichteindex	181

Abb. 5.44:	Vergleich der untersuchungsabschnittsbezogenen
	Mauerschollengebietsdichten mit der Dichte der Fließgewässer,
	ausgedrückt als Dichteindex 183
Abb. 5.45:	Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen mit der
	Dichte der Quellen, ausgedrückt als Dichteindex 188
Abb. 5.46:	Die mittlere Jahresniederschlagshöhe an den Gesamtstufenhängen
	und den von Massenverlagerungen betroffenen Stufenhängen
	des Untersuchungsgebietes 190
Abb. 5.47:	Der prozentuale Anteil der von Massenverlagerungen betroffenen
	Gesamtstufenhanglängen innerhalb der Klassen der mittleren jährlichen
	Niederschlagshöhen 193
Abb. 5.48:	Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen mit
	den untersuchungsabschnittsbezogenen, durchschnittlichen
	Jahresniederschlagshöhen 197
Abb. 5.49:	Starkniederschlagsverteilung an den Gesamtstufenhängen und den von
	Massenverlagerungen betroffenen Stufenhängen des Untersuchungsgebietes
	(betrachteter Intervall: Dauer: 60 min / Wiederkehrzeitraum: 1 a) 201
Abb. 5.50:	Starkniederschlagsverteilung an den Gesamtstufenhängen und den von
	Massenverlagerungen betroffenen Stufenhängen des Untersuchungsgebietes
	(betrachteter Intervall: Dauer: 48 min / Wiederkehrzeitraum: 50 a) 202
Abb. 5.51:	Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen der
	einzelnen Untersuchungsabschnitte mit den untersuchungsabschnittsbezogenen,
	gemittelten Starkniederschlagsintensitäten (betrachteter Intervall: Dauer: 1 h /
	Wiederkehrzeitraum: 1 a) 204
Abb. 5.52:	Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen der
	einzelnen Untersuchungsabschnitte mit den untersuchungsabschnittsbezogenen,
	gemittelten Starkniederschlagsintensitäten (betrachteter Intervall: Dauer: 48 h /
	Wiederkehrzeitraum: 50 a) 205
Abb. 5.53:	Zusammenfassende Darstellung des Einflusses der Steuerungsfaktoren:
	jährliche mittlere Niederschlagshöhe sowie Fließgewässer- und Quelldichte
	auf die Massenverlagerungsbeeinflussung der Stufenhänge und deren
	morphologischen Besonderheiten 211
Abb. 5.54:	Gefährdete Objekte im Vorland von Mauerschollen im Falle
	einer Sturzfließung

Tabellenverzeichnis

IV

Tab. 1.1:	Beispiele für dokumentierte Massenverlagerungen an der Wellenkalk-Schichtstufe
T 1 1 0	im Thuringer Becken (nach SCHMIDT & BAUM 1998)
Tab. 1.2:	Klassifikation von Massenverlagerungen nach UNESCO WORKING PARTY FOR
T 1 1 0	WORLD LANDSLIDE Inventory (1993)
Tab. 1.3:	Die untersuchten permanent-dispositiven Steuerungsfaktoren
Tab. 2.1:	Bezeichnung und Länge der untersuchten Wellenkalk-Schichtstufen- und Schichtkammabschnitte
Tab. 2.2:	Die Mächtigkeiten der Wellenkalk- und Rötsedimente im Thüringer Becken
	(zusammengestellt nach SEIDEL 1992, ZIEGENHARDT & JUNGWIRTH 1971,
	DOCKTER 1966)
Tab. 2.3:	Prozentualer Anteil der traufbildenden Härtlingszonen an den Wellenkalk-
	Schichtstufen- und Schichtkammabschnitten des Untersuchungsgebietes
Tab. 2.4:	Die mittlere und maximale absolute Höhenlage der untersuchten Wellenkalk-
	Schichtstufen- und Schichtkammabschnitte
Tab. 2.5:	Die größeren Erosionsreste bzw. Zeugenberge des Untersuchungsgebietes und
	deren Entfernung von den kompakten Wellenkalk-Schichtstufenhängen
Tab. 2.6:	Der Buchtungsindex der untersuchten Wellenkalk-Schichtstufen- und
	Schichtkammabschnitte
Tab. 2.7:	Länge. Schichtneigung und Neigungsrichtung der Wellenkalk-Schichtkämme des
	Untersuchungsgebietes
Tab. 2.8:	Starkniederschlagsintensitäten verschiedener Dauerstufen und
	Wiederkehrzeiträume an den Wellenkalk-Schichtstufen und
	Schichtkammabschnitten des Untersuchungsgebietes, bezogen auf die Längen
	der Untersuchungsabschnitte in Prozent
	(Datengrundlage: DEUTSCHER WETTERDIENST 1997)
Tab. 2.9:	Anzahl von Fließgewässern und Ouellen im Bereich der
	Wellenkalk-Stufenhangabschnitte des Untersuchungsgebietes und das Verhältnis
	Stufenhanglänge zur Fließgewässer- bzw. Quellhäufigkeit (ohne Schichtkämme)57
Tab. 2.10:	Durchschnittliches potentielles Gesamtwasserdargebot der einzelnen
1401 20100	Untersuchungsabschnitte in Abhängigkeit vom durchschnittlichen
	Jahresniederschlag bei einer realen Gebietsverdunstung von 400 mm/a
Tab. 5.1	Die Anzahl der Massenverlagerungsgebiete im Untersuchungsgebiet
Tab. 5.2:	Anzahl und Dichte der Massenverlagerungsgebiete der Breitenklassen
- 401 0121	500 – 6000 m innerhalb der untersuchten Wellenkalk-Schichtstufenabschnitte
	im Thüringer Becken
Tab. 5 3.	Das Längen-/Breitenverhältnis der Massenverlagerungsgehiete im
- 401 0.01	Untersuchungsraum

Tab. 5.4:	Anzahl, Nummer und Dichte der Mauerschollengebiete an den	
	Wellenkalk-Schichtstufenabschnitten im Thüringer Becken	105
Tab. 5.5:	Lage, Lokalbezeichnungen und Breitenausdehnungen der Sturzfließungen im	
	Untersuchungsgebiet	107
Tab. 5.6:	Anzahl und Dichte der Mauerschollengebiete an den	
	Wellenkalk-Schichtstufenabschnitten im Thüringer Becken	108
Tab. 5.7:	Anzahl und Dichte der Massenverlagerungsgebiete mit 6 - 7 unterschiedlichen	
	Massenverlagerungsformen	114
Tab. 5.8:	Anzahl und Dichte der Massenverlagerungsgebiete mit 5 - 7 Staffelabfolgen	120
Tab. 5.9:	Der Stufenhangtyp im Bereich der Massenverlagerungsgebiete	126
Tab. 5.10:	Lage vom Top der Abrißwand im Vergleich zum Steilabfall der Trauf	128
Tab. 5.11:	Die durchschnittlichen Mächtigkeiten des Stufenbildners im Bereich der	
	Massenverlagerungsgebiete der einzelnen Untersuchungsabschnitte	133
Tab. 5.12:	Die durchschnittlichen Mächtigkeiten des Sockelgesteins im Bereich der	
	Massenverlagerungsgebiete der einzelnen Untersuchungsabschnitte	136
Tab. 5.13:	Massenverlagerungsgebiete, deren Stufenhänge Schichtneigungen $> 10^{\circ}$	
	aufweisen	143
Tab. 5.14:	Die beobachteten und theoretisch erwarteten Häufigkeiten von	
	Massenverlagerungsereignissen in den entsprechenden Neigungsrichtungen am	
	Stufenhang	150
Tab. 5.15:	Die Häufigkeit von lokalen, atektonischen Schichtdeformationen und	
	Erdallbildungen im Bereich der Massenverlagerungsgebiete	154
Tab. 5.16:	Die Anstiegswinkel der von Massenverlagerungen betroffenen Stufenhänge	
	der einzelnen Untersuchungsabschnitte	158
Tab. 5.17:	Vergleich der durchschnittlichen Anstiegswinkel der	
	Massenverlagerungsgebiete, die Mauerschollen und Sturzfließungen aufweisen,	
	mit allen übrigen Massenverlagerungsgebieten	159
Tab. 5.18:	Die durchschnittlichen Anstiegswinkel an den Stufenhängen der	
	Massenverlagerungsgebiete, die Mauerschollen aufweisen	160
Tab. 5.19:	Die durchschnittlichen Hangneigungen der untersuchten Stufenhangabschnitte	
	(getrennt für Gesamtstufenhang und Massenverlagerungsgebiete)	165
Tab. 5.20:	Häufigkeitsverteilung der Sonnen- und Schattenseiten an den von	
	Massenverlagerungen betroffenen Stufenhängen und Gesamtstufenhängen der	
	einzelnen Untersuchungsabschnitte	175
Tab. 5.21:	Die beobachteten und theoretisch erwarteten Häufigkeiten von	
	Massenverlagerungsereignissen in den entsprechenden Expositionsrichtungen	
	am Stufenhang	177
Tab. 5.22:	Die Fließgewässerhäufigkeit an den Stufenhängen der Massenverlagerungs-	
	gebiete	180
Tab. 5.23:	Die Häufigkeit von Hangquellen an den von Massenverlagerungen	
	betroffenen Stufenhängen	185

Tab. 5.24:	Vergleich der Quellhäufigkeit an den Gesamtstufenhängen mit der	
	Quellhäufigkeit an den von Massenverlagerungen betroffenen Untersuchungs-	
	abschnitten	187
Tab. 5.25:	Die mittleren jährlichen Niederschlagshöhen an den Massenverlagerungsgebieten	
	mit Mauerschollen und Sturzfließungen	195
Tab. 5.26:	Die Niederschlagsintensitäten der betrachteten Starkniederschlagsintervalle an den	
	Massenverlagerungsgebieten mit Mauerschollen und Sturzfließungen	207
Tab. 5.27:	Die maximalen horizontalen Fahrbahnlängen der Sturzfließungsgebiete im	
	Untersuchungsraum	213
Tab. 5.28:	Klassifizierung des Gefährdungspotentials bezogen auf zu erwartende materielle	
	Schäden im Umfeld der Mauerschollen	214
Tab. 5.29:	Die gefährdeten Objekte innerhalb der höchsten materiellen	
	Gefährdungsstufe und deren Entfernung zu den Mauerschollen	215

Kartenverzeichnis

Karte 1:	Lage und Bezeichnung der Wellenkalk-Schichtstufen- und Schichtkammabschnitte im Thüringer Becken			
Karte 2:	Front-, Diagonal- und Achterstufenhänge an der Wellenkalk-Schichtstufe im Thüringer Becken			
Karte 3:	Exposition der Wellenkalk-Schichtstufen- und Schichtkammabschnitte im Thüringer Becken			
Karte 4:	Karte der mittleren jährlichen Niederschlagshöhen im Thüringer Becken			
Karte 5:	Die Verteilung von Starkniederschlägen im Thüringer Becken (Dauer: 60 min / Wiederkehrzeitraum: 1a)			
Karte 6:	Die Verteilung von Starkniederschlägen im Thüringer Becken (Dauer: 48 h / Wiederkehrzeitraum: 50 a)			
Karte 7:	Das Flussnetz im Thüringer Becken			
Karte 8:	Die Massenverlagerungsgebiete an der Wellenkalk-Schichtstufe im Thüringer Becken			
Karte 9:	Massenverlagerungsgebiete mit Absatzschollen an der Wellenkalk-Schichtstufe im Thüringer Becken			
Karte 10:	Massenverlagerungsgebiete mit Rückenschollen an der Wellenkalk-Schichtstufe im Thüringer Becken			
Karte 11:	Massenverlagerungsgebiete mit Fußschollen an der Wellenkalk-Schichtstufe im Thüringer Becken			
Karte 12:	Massenverlagerungsgebiete mit Wallschollen an der Wellenkalk-Schichtstufe im Thüringer Becken			
Karte 13:	Massenverlagerungsgebiete mit Spaltenbildungen an der Wellenkalk-Schichtstufe im Thüringer Becken			
Karte 14:	Massenverlagerungsgebiete mit Mauerschollen und Sturzfließungen an der Wellenkalk-Schichtstufe im Thüringer Becken			
Karte 15:	Die Anzahl unterschiedlicher Massenverlagerungsformen in den Massenverlagerungsgebieten an der Wellenkalk-Schichtstufe im Thüringer Becken			
Karte 16:	Die Staffelanzahl von Massenverlagerungskörpern innerhalb der Massenverlagerungsgebiete an der Wellenkalk-Schichtstufe im Thüringer Becken			
Karte 17:	Das Gefährdungspotential der Massenverlagerungsgebiete mit Mauerschollen an			
	der Wellenkalk-Schichtstufe im Thüringer Becken			

1. Einführung

1.1 Vorbemerkungen

Massenverlagerungen werden allgemein als hangabwärts gerichtete Bewegungen von Locker- oder Festgesteinen infolge der Schwerkraft definiert (KRAUTER 1990: in SMOLTCZYK 1990). Von den Massentransporten unterscheiden sie sich durch die an der Verlagerung nur untergeordnete Beteiligung von Transportmedien wie Wasser und Eis (PASEK 1974, LESER 1992, GRUNERT & HARDENBICKER 1993). Wasser darf in der Regel jedoch nicht fehlen, da es als ein wichtiger Steuerungsfaktor im Massenverlagerungsprozess fungiert. Generell sind Massenverlagerungen das Resultat komplexer Prozesse die überall dort auftreten können, wo ein hinreichend topographisches Relief vorhanden ist (BRABB 1991).

In vielen Naturräumen der Erde, insbesondere in den Hoch- und Mittelgebirgsregionen, sind Massenverlagerungen Bestandteil der natürlichen Morphodynamik. In verschiedenen Gebieten stellen sie gleichzeitig beträchtliche Naturgefahren dar, die im Kontaktbereich zu menschlichen Nutzungsaktivitäten katastrophale soziale und materielle Schäden nach sich ziehen können (MÜNCHNER RÜCKVERSICHERUNG 2000). Aus den letzten Jahrzehnten sind weltweit zahlreiche Beispiele dafür bekannt geworden (vgl. PLATE et al. 1993; DIKAU & GLADE 2002).

Im Rahmen der Internationalen Dekade für die Reduzierung von Naturkatastrophen (IDNDR) wurde deutlich, dass die Gefährdung durch gravitative Massenverlagerungen bislang unterschätzt wurde (vgl. DIKAU & GLADE 2002). Nach KRAUTER (1990: in SMOLTCZYK 1990) stehen die weltweit durch Massenverlagerungen verursachten Schäden bereits an dritter Stelle hinter denen durch Überschwemmungen und Erdbeben, wobei allein die finanziellen Verluste auf jährlich 15 bis 20 Milliarden US-Dollar geschätzt werden (KRAUTER 1998). Bereits in Deutschland betragen die entstehenden Kosten ca. 100 Millionen DM pro Jahr (KRAUTER 1994). Mit der Ausweitung der Landnutzung durch den Menschen wird das Schadensrisiko in vielen Gebieten weiterhin steigen, womit das Problem auch aus versicherungstechnischer Sicht zunehmend an Bedeutung gewinnt (vgl. MÜNCHNER RÜCKVERSICHERUNG 2000). Vor diesem Hintergrund stellt die Ausweisung der massenverlagerungsanfälligen Naturräume und die Ergründung der ursächlichen Zusammenhänge in deren Auftreten eine bedeutende wissenschaftliche und praxisrelevante Herausforderung dar.

Von der Fläche der Bundesrepublik Deutschland sind nach KRAUTER et al.(1996) ca. 8 Prozent als potentiell massenverlagerungsgefährdet zu bezeichnen. Zu diesen massenverlagerungsgefährdeten Gebieten gehören neben dem Alpenraum (HEIM 1882, 1932, ABELE 1994, MOSER 1999, 2001), dem Rheinischen Schiefergebirge (HEITFELD 1978, KRAUTER 1987, GRUNERT & HARDENBICKER 1991) v.a. auch die in der BRD weit verbreiteten Schichtstufenlandschaften der Trias-, Jura-(HAMMER 1984, BIBUS 1986, SCHÄDEL & STOBER 1988, BIBUS & TERHORST 1999, KALLINICH

1999) und Kreide-Formationen (JOHNSEN 1984b, KLENGEL & RICHTER 1992). In den ausgedehnten Verbreitungsgebieten der Trias ist neben der süddeutschen Keuper-Schichtstufe (TRAUZETTEL 1962, EISENBRAUN & ROMMEL 1986, GLASER & SPONHOLZ 1993), der Muschelkalk-Schichtstufe Unterfrankens (HEIMBACH 1962), v.a. auch die Wellenkalk-Schichtstufe im Thüringer Becken als sehr massenverlagerungsanfällig bekannt (ACKERMANN 1958, JOHNSEN 1974, SCHMIDT 1988b, PRINZ 1997). Die hier vorkommenden Massenverlagerungen sind der Gegenstand der vorliegenden Untersuchung.

Massenverlagerungen gehören zur natürlichen Morphodynamik am Wellenkalk-Schichtstufenhang und sind seit alters her bekannt. Wie Archivauswertungen verdeutlichen [JOHNSEN (1974), SCHMIDT (1988a), SCHMIDT & BAUM (1998)], sind aus historischer Zeit (1600 - 1850) bis hin zur Gegenwart größerer Massenverlagerungen dokumentiert (Tab. 1.1). Eingang in die Archive fanden v.a. spektakuläre Felsstürze im Umfeld besiedelter Räume.

Tab. 1.1:Beispiele für dokumentierte Massenverlagerungen an der Wellenkalk-Schichtstufe im
Thüringer Becken (nach SCHMIDT & BAUM 1998)

Jahr	Hochwert	Rechtswert	Lokalität	
1640	5674658	4373842	"Plesse" bei Wanfried (Nordhessen)	
1835	5654773	4373994	"Kielforst" bei Herleshausen (Nordhessen)	
1880	5702386	4397519	"Krajaer Kopf" bei Kraja ("Bleicheröder Berge" Nordthüringen)	
1895	5665247	4368743	"Manrod" im Königental bei Eschwege (Nordhessen)	
1925	5666393	4367005	"Rabenkuppe" bei Grabburg (Nordhessen)	
1956	5663041	4360235	"Schickeberg" bei Eschwege ("Ringgau" Nordhessen)	
1985	5681524	4362685	"Hörne" nördlich von Eschwege ("Gobert" Nordhessen)	

Einige hundert Mal häufiger als diese Sturzereignisse sind sogenannte Blockverlagerungen an der Wellenkalk-Schichtstufe zu finden (vgl. BEYER 2002). Diese sind definiert als Verlagerungen von Randblöcken einer mächtigen, mehr oder weniger horizontal gelagerten Felsgesteinsplatte im oberen Teil eines Hanges über veränderlich festen tonigen Gesteinen (ZARUBA & MENCEL 1969). Im Mechanismus und Formenschatz unterscheiden sich diese grundlegend von den genannten Felssturzereignissen, wobei sie aber oftmals die Ausgangsformen für diese bilden. Die diesbezüglichen Eigenschaften und Unterschiede werden in Kapitel 3 ausführlicher dargestellt.

Morphodynamisch betrachtet, haben die Massenverlagerungen einen bedeutenden Einfluss auf die Formung des Wellenkalk-Schichtstufenhanges. Nach SCHMIDT (1988b) sind sie der Motor für die Stufenrückverlegung. Gleichzeitig bergen sie ein hohes Gefahrenpotential für vorhandene und noch entstehende Infrastruktur (Siedlungs-, Straßen-, Wege- Versorgungsleitungsbau etc.). Wie die Vergangenheit zeigte, führen Bauvorhaben im Bereich der von Massenverlagerungen betroffenen Wellenkalk-Stufenhänge immer wieder zu Komplikationen im Baugeschehen (vgl. JOHNSEN 1974, KRÜMMLING u.a. 1975). Ein Beispiel aus jüngster Zeit ist vom einem Massenverlagerungsgebiet bei Arnstadt (Lokalität: "Ritterstein") bekannt geworden (vgl. Abb. 1.1). Hier musste 1994 die Bundesstraße 4, die unmittelbar unterhalb des "Ritterstein" verläuft und die Ortschaften Arnstadt und Plaue verbindet, infolge akut bestehender Massenverlagerungsgefahr, durch umfangreiche und kostenintensive Sanierungsmaßnahmen gesichert werden (FREIES WORT 1994 a, b, c; BERGMANN 1996, HÖHNE 1996).

Abb. 1.1: Aufwendige Sanierungsarbeiten an der B4 bei Arnstadt (Lokalität "Ritterstein") infolge akuter Massenverlagerungsgefahr (Quelle: Freies Wort 1994a)

1.2 Ursachen der Massenverlagerungen

Die Ursachen aller Massenverlagerungen sind stets Veränderungen des Gleichgewichts zwischen rückhaltenden und angreifenden Kräften im Hangsystem (HAMMER 1985, KRAUTER 1990: in SMOLTCZYK 1990). Dieses Gleichgewicht kann geomechanisch als das Verhältnis von rückhaltend wirkender Scherfestigkeit (Scherwiderstand des Materials z.B.: Reibung und Kohäsion) und der angreifend bzw. abschiebend wirkenden Scherspannung (Schwerkraft, Gewichtskraft, Oberflächenlasten) betrachtet werden, wobei der Quotient aus Scherwiderstand und Scherspannung die Standsicherheit der Hänge beschreibt (KNOBLICH 1971). Eine Erhöhung der Scherspannung

bzw. Verminderung des Scherwiderstand bedingt Gleichgewichtsänderungen im Hangsystem, die schließlich zu Massenverlagerungen führen können.

Das Auftreten und die Art und Weise einer Massenverlagerung wird durch eine Vielzahl von Faktoren gesteuert, wobei immer mehrere Faktoren gleichzeitig wirken und sich gegenseitig beeinflussen, so dass komplexe Wirkungsbeziehungen entstehen (HAMMER 1985). Nach KRAUTER (1994) sind generell folgende Faktoren zu unterscheiden:

- Morphologie: Höhe, Neigung, Form
- Geologie: Gestein, Lagerung, Tektonik
- Hydrogeologie: Wasserwegsamkeit, Grundwasserstand
- Klima: Niederschlag, Temperatur,
- Biologie: Vegetation
- Zeit

Hinzu kommt der Einfluss des wirtschaftenden Menschen, der durch sein Handeln die Veränderung der genannten Faktoren bewirkt und damit das Auftreten von Massenverlagerungen in zunehmenden Maße beeinflusst.

Generell lassen sich die massenverlagerungsbeeinflussenden Faktoren in permanent (langfristig) wirkende, die nach SCHMIDT (1988b) auch als dispostiv vorbereitende Faktoren bezeichnet werden, und in episodisch (kurzeitig) wirkende Faktoren unterteilen, wobei alle anthropogenen Einflüsse den episodischen Faktoren zuzuordnen sind (KRAUTER 1990: in SMOLTCZYK 1990). Wird eine Massenverlagerung im Wesentlichen durch einen einzelnen Faktor initiiert und besteht ein zeitlich enger Bezug zum Ereignis, ist dieser als auslösender Faktor zu bezeichnen (KRAUTER 1990: in SMOLTCZYK 1990). Auslösende episodische Faktoren sind u.a. seismische Aktivitäten (PLATE et al. 1993). Ereignisse (Starkniederschläge extreme meteorologische bzw. langanhaltende Niederschläge mit großer Intensität) (HAMMER 1985, BIBUS 1986, KRAUTER 1987, SCHMIDT 1988b, BRUNSDEN 1993, GRUNERT & HARDENBICKER 1991, 1993, CROZIER 1999 u.a.) bzw. daraus resultierende stark wechselnde Hangwasserregime (THORNES & AYALA 1998, TILCH 1999, GLADE 2000) sowie menschliche Eingriffe (KRAUTER 1990: in SMOLTCZYK 1990).

Die permanent wirkenden, die Disposition zu Massenverlagerungen begünstigenden Faktoren sind jene natürlichen Faktoren, die indirekt und langfristig gesehen die Verlagerungssensibilität eines Hanges und die Art und Weise einer Massenverlagerung beeinflussen (SCHMIDT 1988b, KRAUTER 1990: in SMOLTCZYK 1990). Diese Faktoren können in verschiedenen Naturräumen in unterschiedlicher Gewichtung und Kombination das Auftreten von Massenverlagerungen

bestimmen, wobei der Einfluss einzelner Faktoren bzw. Faktorenkomplexe, im Vergleich zum auslösenden Faktor oftmals viel schwerer zu ermitteln ist. Als allgemeine Faktoren dieser Art gelten u.a. Erosion, Verwitterung, Schwerkraft, die geologisch-strukturellen und geometrischen (morphometrischen) Eigenschaften des Hangsystems sowie die klimatischen Verhältnisse (Niederschlagshöhe, Niederschlagsverteilung) eines Gebietes (SCHMIDT 1988b, GRUNERT & SCHMANKE 1997, PRINZ 1997, SCHMIDT & BEYER 2001).

Die lithologisch-strukturellen Materialeigenschaften der Gesteine bilden die stets notwendigen Grundvoraussetzungen für die Massenverlagerungsprozesse (vgl. PRINZ 1997). Besonderes anfällig sind die in der Natur häufig anzutreffenden lithologischen Konstellationen "Hart" auf "Weich" d.h., harte, gut wasserwegsame Gesteinsschichten (Kalke, Sandsteine) auf weichen, leicht deformierbaren Gesteinen (Tone, Mergel) (vgl. POISEL & EPPENSTEINER 1983). Derartige Konstellationen sind v.a. auch für Schichtstufenlandschaften typisch, mit der Konsequenz, dass diese immer wieder Schauplatz von Massenverlagerungen sind (vgl. u.a. ACKERMANN 1958, JOHNSEN 1974, 1984b, TRAUZETTEL 1962, HAMMER 1984, BIBUS 1986, EISENBRAUN & ROMMEL 1986, SCHÄDEL & STOBER 1988, SCHMIDT 1988b, KLENGEL & RICHTER 1992, GLASER & SPONHOLZ 1993, BIBUS & TERHORST 1999, KALLINICH 1999).

Der Faktor Klima macht sich langfristig u.a. im Wasserhaushalt und in der Verwitterung des Gebirges bemerkbar, was sich letztendlich in einer meist verminderten Gebirgsscherfestigkeit ausdrückt (KRAUTER 1990: in SMOLTCZYK 1990, TILCH 1999). Da das Klima, insbesondere die Ausprägung der Klimaelemente (z.B. Niederschlagshöhe, Niederschlagsverteilung) v.a. in größeren Untersuchungsgebieten z.T. erheblich variieren können, ist gerade auch von dieser unterschiedlichen Ausprägung eine Beeinflussung auf die räumliche Variabilität von Massenverlagerungen zu erwarten.

1.3 Terminologie und Klassifikation von Massenverlagerungen

Wie der umfangreichen Literatur der letzten hundert Jahre zu entnehmen ist (HEIM 1882, POLLACK 1925, SKEMTON & HUTCHINSON 1969, PASEK 1974, VARNES 1978, HUTCHINSON 1988, REUTER et al 1991, KRAUTER 1990: in SMOLTCZYK 1990, CANADIEN GEOTECHNICAL SOCIETY 1993, Dikau et al 1996), existieren weltweit zahlreiche Klassifikationsmöglichkeiten für Massenverlagerungen. Kriterien dieser Klassifikationsvorschläge sind u.a. die äußeren Erscheinungsformen, die Art der Bewegung, die Geschwindigkeit der Verlagerung sowie die Art verlagerten unterschiedlichen des Materials. Aufgrund der Gewichtung einzelner Klassifikationskriterien sind die verschiedenen Klassifikationsvorschläge nur bedingt kompatibel. Zudem finden in der Natur oftmals progressive Hangentwicklungen statt, die im Einzelnen durch verschiedenartige Massenverlagerungsteilprozesse mit verschiedenen Bewegungsarten, Geschwindigkeiten und Materialien zu verschiedenen Zeiträumen gekennzeichnet sind (vgl. TILCH 1999). Eine eindeutige Massenverlagerungstypisierung wird damit oftmals erschwert. Um eine Übertragbarkeit der im Rahmen der Untersuchung gewonnenen Erkenntnisse auf andere Untersuchungsgebiete zu gewährleisten und um falsche terminologische Analogieschlüsse zu vermeiden, werden die hier vorzustellenden Massenverlagerungen in das internationale Klassifikationsmodell der UNESCO WORKING PARTY FOR WORLD LANDSLIDE INVENTORY (1993) eingeordnet. Hiernach werden die in Table 1.2 wiedergegebenen Grundtypen von Massenverlagerungen unterschieden.

Tab. 1.2:

1.2: Klassifikation von Massenverlagerungen nach UNESCO WORKING PARTY FOR WORLD LANDSLIDE INVENTORY (1993)

Туре	Rock	Debris	Soil
FALL	rock fall	debris fall	soil fall
TOPPLE	rock topple	debris topple	soil topple
SLIDE			
<u>rotational</u>	single (slump)	single	single
	multiple	multiple	multiple
	successive	successive	successive
translational			
non-rotationat Planar	block slide	block slide	slab slide
1 iunui	rockslide	debris slide	mudslide
LATERAL	rock spreading	debris spread	soil (debris)
SPREADING			spreading
FLOW	rock flow	debris flow	soil flow
COMPLEX	e.g. rock avalanche	e.g. flow slide	e.g. slumpearthflow

Die hierbei unterschiedenen 5 Haupttypen sind dabei wie folgt definiert:

Fallen (fall):beginnt mit dem Lösen von Boden- oder Felsmaterial in einem steilen
Hang entlang einer Fläche, auf der geringe oder keine Scherbewegungen
stattfinden. Das Material stürzt dann größtenteils frei fallend, springend
oder rollend ab.

- Kippen (topple):ist eine Vorwärtsrotation aus dem Hang heraus von Blöcken aus Fels- oder
kohäsiven Bodenmaterial um einen Punkt oder eine Achse unterhalb ihres
Schwerpunktes
- Gleiten (*slide*): ist eine hangabwärts gerichtete Bewegung von Boden- oder Felsmassen auf Gleitflächen oder auf verhältnismäßig dünnen Zonen intensiver Scherverformung

Driften (lateral

- *spreading*): ist eine laterale Bewegung von Fels- oder kohäsiven Bodenmassen bei einem gleichzeitigen Einsinken in die liegenden, weniger kompetenten Schichten. Eine intensive Scherung auf Gleitflächen findet nicht statt. Diese Bewegung kann durch Liquifaktion oder Fließen des liegenden, weniger kompetenten Materials entstehen.
- Fließen (*flow*): ist eine räumliche, kontinuierliche Bewegung bei der Scherflächen nur kurzzeitig vorhanden und gewöhnlich nicht erhalten sind. Die Geschwindigkeitsverteilung der bewegten Massen gleicht der einer viskosen Flüssigkeit.

1.4 Stand der Forschung

Mit Massenverlagerungen an der Wellenkalk-Schichtstufe im Thüringer Becken beschäftigen sich zahlreiche v.a. geologisch-morphologisch orientierte Untersuchungen. Neben allgemeinen Formenklassifikationen, zeitlichen Zuordnungen, ingenieurgeologischen Sachverhalten und Bewegungsmessungen sind Untersuchungen zu möglichen Steuerungsfaktoren, die das Auftreten von Massenverlagerungen begünstigen und deren räumliche Variabilität beeinflussen, die zentralen Inhalte dieser Arbeiten. Die Untersuchungen konzentrieren sich dabei i.d.R. auf einzelne Massenverlagerungen bzw. einige wenige Massenverlagerungsgebiete an regional engräumig begrenzten Wellenkalk-Schichtstufenabschnitten. Eine flächendeckende, systematische Erfassung der Massenverlagerungsgebiete an den Wellenkalk-Schichtstufenhängen im Thüringer Becken lag bislang nicht vor. Dementsprechend fehlen bis heute gesicherte Informationen zum Ausmaß der großräumigen Verbreitung der Massenverlagerungen sowie zu möglicherweise bestehenden regionalen Unterschieden. Auch die morphometrischen und morphologischen Eigenschaften der Massenverlagerungsgebiete (Breiten, Längen, Flächen, Formenschatz) und deren regionalen Besonderheiten sind, abgesehen von wenigen Ausnahmen, bislang nur sehr unzulängliche bekannt.

Entsprechend dieser Informationsdefizite werden v.a. die, die räumliche Variabilität der Massenverlagerungen beeinflussenden Steuerungsfaktoren mitunter äußerst kontrovers diskutiert.

Der Formenschatz der Massenverlagerungen an der Wellenkalk-Schichtstufe im Thüringer Becken wurde qualitativ von PLASSE (1924), KIRBIS (1950) und ACKERMANN (1953, 1958) klassifiziert. An ihrer Formenbeschreibung orientieren sich viele folgende Arbeiten.

ACKERMANN (1958, 1959, 1977), JOHNSEN (1974), SCHMIDT & BAUM (1998), BAUM & SCHMIDT (2001) sowie SAHLING (2002) untersuchten die zeitliche Zuordnung der Massenverlagerungen an Teilabschnitten der Wellenkalk-Schichtstufe in Thüringen, Südniedersachsen und Nordhessen. ACKERMANN (1958, 1959, 1977) hat anhand von morphologischen Befunden den Versuch unternommen, eine zeitliche Gliederung der Massenbewegungen für das Jungpleistozän und Holozän auszuarbeiten. Er gliedert mehrere Phasen verstärkter Massenbewegungsaktivität aus, die er auf Zeiten erhöhten Feuchtigkeitsangebotes zurückführt. Im Einzelnen unterscheidet er zwischen einer Jungpleistozänen Fußschollengeneration, einer Älteren Generation des frühen Holozäns und einer Historischen Generation. Letztere entspricht in etwa der kleinen Eiszeit von 1600 - 1900. Die rezente Phase, die nach ihm Mitte des vorigen Jahrhunderts begann und bis heute andauert, ist eine Phase der Formungsruhe. Heute auftretende Massenverlagerungen sieht er als Nachläufer seiner Historischen Generation (ACKERMANN 1959). Auch SCHUNKE (1971), ZIEGENHARDT & JUNGWIRTH (1991) sowie KRÜMMLING et al. (1975) halten die Gegenwart für eine Zeit geringerer Bewegungsaktivität. Demgegenüber halten WEBER (1929), KIRBIS (1950) JOHNSEN (1981) und JOHNSEN & SCHMIDT (2001) die Gegenwart für eine Zeit rezenter Massenverlagerungsaktivität.

Durch Archivauswertungen konnten JOHNSEN (1974), SCHMIDT & BAUM (1998) sowie BAUM & SCHMIDT (2001) den Zeitpunkt einzelne Massenverlagerungen (i.d.R. größere Felsstürze) im Bereich der Wellenkalk-Schichtstufe rekonstruieren (Tab. 1.1). Zurückverfolgen ließen sich einzelne Ereignisse bis in das 12. Jahrhundert (JOHNSEN 1974). Die Recherchen ergaben, dass Angaben zu Massenverlagerungen vor dem 16. Jahrhundert relativ selten sind, die Datenlage sich aber ab 1850 verbessert. Wie SCHMIDT & BAUM (1998) betonen, kann aus der höheren Dichte der verzeichneten Massenverlagerungen im 20. Jahrhundert nicht automatisch eine erhöhte Massenverlagerungsaktivität im Vergleich zu anderen Zeiträumen abgeleitet werden. Vielmehr ist davon auszugehen, dass aus den vorherigen Jahrhunderten die Daten unzureichend überliefert wurden, verloren gingen oder primär nicht registriert wurden. Entsprechend der archivierten Massenverlagerungen konnte aber aufgezeigt werden, dass die Zeit seit 1850 nicht als die von ACKERMANN (1959) postulierte rezente Phase der Stabilität bezeichnet werden kann.

BAUM & SCHMIDT (2001) versuchen mit Hilfe von dentrochronologischen und pollenanalytischen Verfahren einzelne Massenverlagerungen zu datieren. Durch die unzureichende Qualität und Quantität des vorzufindenden Probenmaterials und nur wenigen geeigneten Beprobungsstellen ist die Anwendbarkeit dieser Datierungsverfahren an den Massenverlagerungen an der Wellenkalk-Schichtstufe begrenzt (BAUM & SCHMIDT 2001). Zudem ist bei pollenanalytischen Datierungen zu bedenken, dass i.d.R. nicht das Ereignis selbst datiert wird, sondern die im Anschluss erfolgte Sedimentablagerung (BAUM & SCHMIDT 2001). Trotz der genannten Schwierigkeiten weisen die Ergebnisse auf eine Zunahme der Massenbewegungen im Subboreal, während der kleinen Eiszeit und in den letzten 50 Jahren hin.

SAHLING (2002) unternahm mit Hilfe dentrochronologischer Methoden den Versuch, anhand von Baumwurzeln und Baumstämmen die Öffnungsraten von Spalten an einem Massenverlagerungsgebiet zu rekonstruieren. Dabei konnte nachgewiesen werden, dass sich Bewegungsphasen in Wuchsanomalien der Jahrringe der Baumwurzeln und Stämme, die sich im unmittelbaren Kontaktbereich zur Spalte befinden, widerspiegeln. Im Einzelnen konnten mehrere Aktivitätsphasen jahrgenau ausgegliedert werden, wobei diese mit überdurchschnittlichen Niederschlagseinträgen dieser Zeiträume korrelieren (SAHLING 2002).

Mit ingenieurgeologischen Fragestellungen an Massenverlagerungsgebieten der Wellenkalk-Schichtstufe beschäftigten sich u.a. BERNHARD (1967, 1968), JOHNSEN (1972, 1974, 1978, 1980), JOHNSEN & KLENGEL (1972, 1973), BACHMANN et al. (1974), KRÜMMLING et al. (1975), FISCHER et al. (1975), BRUNHOF (1983), SCHENK (1983), WITTE (1995b). Neben der Beschreibung der Verlagerungsmechanismen werden v.a. Angaben zu bodenmechanischen Sachverhalten, wie Scherwinkelbestimmung (WITTE 1995b, HAß 1996), Konsistenzgrenzenbestimmungen von Fließ-, Ausrollgrenze, Plastizitätszahlen (WITTE 1995b, HAß 1996), Bestimmung der stratigraphischen Lage der Gleitfläche (JOHNSEN u.a. 1978), kluftstatistische Untersuchungen (BACHMANN et al. 1974, WENZEL 1991), Gefüge- und Bindungsformänderungen (BRUNHOF 1983, SCHENK 1983), tonmineralogische Untersuchungen (BRUNHOF 1983, SCHENK 1983, WENZEL 1991, WITTE 1995b, HAß 1996) sowie hydrogeologische Untersuchungen (KRÜMMLING et al. 1975) gemacht. Darüber hinaus liefern diese Arbeiten wichtige baupraktische Hinweise und Empfehlungen sowie allgemeingültige Sachverhalte zur weiteren Bearbeitung der Thematik. Aufgrund der aufwendigen Feld- und Laboranalysen bleiben diese Untersuchungen jedoch auf einige wenige exemplarische Massenverlagerungsgebiete beschränkt.

Mit Bewegungsmessungen und dem damit verbundenen Nachweis der rezenten Aktivität von Massenverlagerungen an der Wellenkalk-Schichtstufe beschäftigten sich u.a. JOHNSEN (1981) und JOHNSEN & SCHMIDT (2001). An 4 exemplarischen Massenverlagerungsgebieten wurden über 25

Jahre (ab 1973) systematische Stahlbandmessungen durchgeführt. Die im Messzeitraum aufgezeichneten Bewegungsbeträge zeigen, dass die Bewegungen kontinuierlich mit Phasen der Beschleunigung und Verlangsamung erfolgten (JOHNSEN & SCHMIDT 2001). Zwischen den Gebieten, aber auch innerhalb eines Gebietes, gibt es, bezogen auf einen gleichen Zeitraum, Unterschiede in Bewegungsraten. Die Bewegungsgeschwindigkeiten den liegen in Größenordnungen von wenigen Millimetern bis einigen Zentimetern pro Jahr. Auch WENZEL (1991) kommt im Rahmen von Bewegungsmessungen an Massenverlagerungsgebieten in Nordhessen zu ähnlichen Ergebnissen. Wie sich bei den Untersuchungen von JOHNSEN (1981) und JOHNSEN & SCHMIDT (2001) zeigte, besteht ein auffälliger Zusammenhang zwischen Perioden erhöhter Niederschläge und Bewegungsbeschleunigungen (JOHNSEN 1981, JOHNSEN & SCHMIDT 2001). Die Beschleunigungen können dabei phasenverschoben zum Niederschlagsereignis einsetzten (JOHNSEN 1981). Zu analogen Feststellungen kommen MORTENSEN & HÖVERMANN (1956) durch Beobachtungen an einem Wellenkalk-Stufenhang bei Göttingen. Zudem wird dieser Zusammenhang durch Bewegungsmessungen stratigraphisch in anderen Massenverlagerungsgebieten bestätigt (GLAWE & MOSER 1989, 1993, MOSER 1999, MOSER & GLAWE 1994, TILCH 1999).

Der Einfluss verschiedener Steuerungsfaktoren, die das Auftreten von Massenverlagerungen begünstigen und deren räumliche Variabilität beeinflussen, bildet einen Schwerpunkt zahlreicher Untersuchungen (vgl. oben). Dabei wird die Bedeutung einzelner, permanent wirkender Steuerungsfaktoren (z.B. Exposition, Schichtneigung und Neigungsrichtung) z.T. sehr kontrovers diskutiert (vgl. auch SCHMIDT 1988b), während morphoklimatische Einflussfaktoren wie z.B. die jährliche Niederschlagshöhe und Niederschlagsverteilung bislang fast gänzlich unberücksichtigt blieben.

WEBER (1929), MÜCKE (1962) und HAß (1996) halten die Auslaugung der Rötgipse für den bestimmenden Faktor der Massenverlagerungsanfälligkeit. Auch JOHNSEN (1974), JOHNSEN & KLENGEL (1972) KRÜMMLING et al. (1975) sowie WITTE (1995b) erkennen darin einen begünstigenden Faktor. Demgegenüber sehen KIRBIS (1950), MORTENSEN & HÖVERMANN (1956), MORTENSEN (1960; 1963), ACKERMANN (1959) und SCHUNKE (1971) darin keine notwendige Voraussetzung für das Auftreten von Massenverlagerungen. SCHNEIDER (1968) konnte durch Bohrungen nachweisen, dass die Gipssubrosion in vielen Fällen zwar massenverlagerungsbegünstigend wirkt, dass aufgrund Vorkommens aber des von Massenverlagerungen über intakten Salinarzyklen, die Rötgipsubrosion keine generelle Voraussetzung für das Auftreten von Massenverlagerungen darstellt. Zu ähnlichen Ergebnissen kommt TILCH (1999). STEINMÜLLER (1968) wiederum hält die Subrosion im Zechsteinsalinar in Verbindung mit der Ausbildung eines Salzhanges für einen massenverlagerungssteuernden Faktor.

Bezüglich des im Zusammenhang mit Massenverlagerungen generell kontrovers diskutierten Expositionseinflusses (vgl. CARRARA et al. 1991) halten KIRBIS (1950), DEUBEL (1964), WENZEL (1991) und KÖNIG (2001) v.a. West-, Nord- und Nordwest-exponierte Hänge, infolge der stärkeren Beschattung und den damit verbundenen größeren Feuchteangebot, für massenverlagerungsbegünstigend. Demgegenüber hält ACKERMANN (1959) Nord- und Nordost-exponierte Hänge für verlagerungsanfälliger. Nach Untersuchungen von SCHMIDT (1988b) und BEYER & SCHMIDT (1999) an kleineren Teilabschnitten der Wellenkalk-Schichtstufe im Thüringer Becken, konnte aus der räumlichen Verbreitung der Massenverlagerungsgebiete bislang keine signifikant bevorzugte Expositionsrichtung nachgewiesen werden.

Nach PLASSE (1924), SCHRÖDER (1929), ACKERMANN (1959), DOCKER (1963), DEUBEL (1964) ZIEGENHARDT & JUNGWIRTH (1971), SEIDEL & STEINMÜLLER (1993) und GRUNDMANN (1998) wirkt ein talwärtiges Schichteinfallen massenverlagerungsbegünstigend. WEBER (1929) lehnt einen derartigen Zusammenhang ab. Auch im Untersuchungsgebiet von BEYER & SCHMIDT (1999) konnte von der Neigungsrichtung der Schichten bislang keine steuernde Beeinflussung der Massenverlagerungshäufigkeit abgeleitet werden. Als massenverlagerungshemmend sehen ACKERMANN (1959), SPÖNEMANN (1966) und SCHUNKE (1968, 1971) große hangwärtige Schichtneigungen (> 12°) an. Zu analogen Ergebnissen kommen SCHMIDT (1988b), BEYER (2002), und in stratigraphisch anderen Gebieten u.a. TILCH (1999).

PASSARGE (1914), PLASSE (1924) und HEMPEL (1955) messen der Auflast und damit der Mächtigkeit des Wellenkalkes über dem Rötgestein eine wesentlich massenverlagerungssteuernde Bedeutung bei. SCHUNKE (1968), SCHMIDT (1988b) und SCHMIDT & BEYER (2001) konnten in Ihren Untersuchungsgebieten einen derartigen Zusammenhang nicht nachweisen. Auch KÖNIG (2001) kommt an dem von ihm untersuchten Wellenkalk-Schichtstufenabschnitt im Gebiet um Jena zu selbigen Ergebnis. Demgegenüber hält KÖNIG (2001) Stufenhänge, die durch eine erhöhte Mächtigkeit des Rötsockelhanges im Vergleich zur Wellenkalkmächtigkeit des Oberhanges gekennzeichnet sind, für massenverlagerungsanfälliger.

SCHMITTHENNER (1920) und KRÜMMLING et al. (1975) sowie in stratigraphisch anderen Gebieten auch TILCH (1999) sehen in der Quellerosion eine steuernde Beeinflussung für das Auftreten von Massenverlagerungen. In den untersuchten Gebieten von SCHUNKE (1968, 1971), SCHMIDT (1988b) und BEYER (1997) (kleinere Teilabschnitte der Wellenkalk-Schichtstufe im Thüringer Becken) konnten einen derartigen Zusammenhang bislang nicht festgestellt werden.

ACKERMANN (1958) hält Massenverlagerungen an Bergvorsprüngen für Ausnahmeerscheinung. Zu ähnlichen Ergebnissen kommt MARTIN (1965), der als Ursache die verkleinerten

Wassereinzugsgebiete im Vorsprungsbereich ansieht. Demgegenüber konnten SCHMIDT (1988b) und BEYER (1997; 2002) aufzeigen, dass v.a. die Vorsprungsbereiche der Wellenkalk-Schichtstufe, bevorzugt deren Flanken, von Massenverlagerungen betroffen sind. Zu analogen Ergebnissen an Massenverlagerungsgebieten der Jura-Schichtstufe an der Schwäbischen Alb kommt TERHORST (1997), KRAUT (1995) und KALLINICH (1999).

In allen Untersuchungen bislang unberücksichtigt blieb der Einfluss der im Untersuchungsgebiet stark variierenden, klimatischen dispositiven Faktoren: jährliche Niederschlagshöhe und jährliche Niederschlagsverteilung. Dies ist um so verwunderlicher, da bereits ACKERMANN (1959) betonte, dass eine verstärkte Massenverlagerungsaktivität an der Wellenkalk-Schichtstufe an ein längerfristig erhöhtes Feuchteangebot gebunden ist. Wie in stratigraphisch vergleichbar aufgebauten Untersuchungsgebieten die Arbeiten von HAMMER (1985), GLASER & SPONHOLZ (1993), MEITZ (1998), THORNES & AYALA 1998, SCHMIDT & MEITZ (2000 a,b) sowie von ZERZERE et al. (1999) und VAN ASCH et al. (1999) verdeutlichen, ist von diesen externen Einflussgrößen unter sonst ähnlichen geologisch-morphologischen Ausgangsbedingungen eine differenzierende morphoklimatische Steuerung der räumlichen Variabilität von Massenverlagerungen zu erwarten.

Wie bereits SCHMIDT (1988b) betont, resultiert das aufgezeigte Bild der unterschiedlichen Einschätzungen aus den nur engräumig begrenzten Untersuchungsgebieten und dem Fehlen einer systematischen quantitativen Untersuchungsgrundlage. Relative Einigkeit besteht lediglich hinsichtlich der von JOHNSEN (1974) zusammengefassten Grundvoraussetzungen: das Vorhandensein relativ flach lagernder, kompetenter Schichten (Muschelkalk) über tonreichen, gut plastifizierbaren, inkompetenten Schichten (Röt) und die Durchschneidung des Schichtkomplexes mindestens bis in das Hangende der inkompetenten Schichten. Bestätigt werden diese allgemeinen Grundvoraussetzungen durch Untersuchungen in strukturell ähnlich aufgebauten Gebieten (vgl. u.a. TRZCINSKIJ 1974, REMMELE 1984, EISENBRAUN & ROMMEL 1986, CARRARA ET AL. 1991, GLASER & SPONHOLZ 1993, TILCH 1999 u.a.). Zudem ist allgemein anerkannt, dass als Auslöser der Massenverlagerungen oftmals Starkniederschläge oder langanhaltende Niederschläge mit hoher Intensität fungieren (JOHNSEN 1974,1984, JOHNSEN & KLENGEL 1972, BACHMANN et al. 1974, SCHMIDT 1988b, WENZEL 1991 u.a.). Auch dieser Zusammenhang wird durch zahlreiche Arbeiten aus anderen Untersuchungsgebieten bestätigt (vgl. HAMMER 1985, BIBUS 1986, SCHÄDEL & STOBER 1988, GRUNERT & HARDENBICKER 1991, BERRISFORD & MATTHEWS 1997, MOSER 1999, TILCH 1999, VAN ASCH et al 1999, ZERZERE et al, 1999, IRIGARAY et al. 1999, CLERICI & PEREGO 2000).

SCHMIDT (1987, 1988a) untersuchte an Schichtstufengebieten des Colorado Plateaus (USA) den steuernden Einfluss verschiedener, dispositiv vorbereitender, lithologisch-struktureller und morphometrischer Faktoren auf die Morphodynamik an Schichtstufenhängen. Die dort ausgearbeitete Systematik übertrug SCHMIDT (1988b) auf Massenverlagerungsgebiete an Teilabschnitten der Wellenkalk-Schichtstufe in Nordhessen mit dem Ziel, die Faktoren zu extrahieren, welche sich beeinflussend auf das Auftreten und die räumliche Verbreitung der Massenverlagerungen auswirken. Im Einzelnen wurden von SCHMIDT (1988b) die dispositivvorbereitenden Faktoren: lithologische Eigenschaften des Stufenbildners, lithologische Eigenschaften des Sockelgesteins, Mächtigkeit des Stufenbildners, Mächtigkeit des Sockelgesteins, Mächtigkeitsrelation, Schichtneigung, Neigungsrichtung, Lage zum Gewässernetz und zur Erosionsbasis, Lage im Stufengrundriss und die Exposition näher untersucht. Der methodische Ansatz beruht auf einem regionalen Dispositionsverfahren (vgl. GRUNERT & SCHMANKE 1997, THEIN 1999) Hierbei wird versucht, anhand von kartierten Massenverlagerungsgebieten die Ausprägung der verschiedenen Faktoren zu analysieren um daraus mittels Häufigkeitsverteilungen zu überprüfen, wie oft und in welcher Ausprägung die verschiedenen Faktoren an Massenverlagerungen gebunden sind (Black-Box-Modell). Der von SCHMIDT (1988b) ausgearbeitete Ansatz wurde vom Autor (BEYER 1997) auf einen Teilabschnitt der Wellenkalk-Schichtstufe im südöstlichen Thüringer Becken (nördl. Rudolstadt) übertragen. Die hier verfolgten Teilaspekte zeigten in ihren Ergebnisse gute Übereinstimmungen und werden, da sie in die vorliegende Arbeit mit einflossen, im Ergebnisteil näher vorgestellt. Mit ähnlichen Ansätzen in stratigraphisch vergleichbaren Untersuchungsgebieten beschäftigten sich u.a. HAMMER (1985), EISENBRAUN & ROMMEL (1986), KRAUT (1995), KALLINICH (1999) und THEIN (1999 in: BIBUS & THERHORST 1999).

Wie die Untersuchungen von CARRARA et al. (1991), GRITZNER et.al. (2001), KÖNIG (2001) und MENENDEZ et al. (2002) zeigen, ist es bei derartigen Fragestellungen von Vorteil, die Faktorenausprägung innerhalb der Massenverlagerungsgebiete mit der Faktorenausprägung vom betrachteten Gesamtgebiet, d.h. auch von jenen Gebieten ohne Massenverlagerungen, zu vergleichen. Diese Vorgehensweise ermöglicht es zu überprüfen, ob die Ausprägung der Steuerungsfaktoren innerhalb der Massenverlagerungsgebiete sich signifikant von der Faktorenausprägung des Gesamtgebietes unterscheiden. Damit können Zufälligkeiten in der Ausprägung der betrachteten Faktoren innerhalb Massenverlagerungsgebieten erkannt und die sich maßgeblich auf die räumliche Variabilität der Massenverlagerungen auswirkenden Steuerungsfaktoren bzw. Faktorenkomplexe klarer selektiert werden. Durch die Nutzung von Geographischen Informationssystemen (GIS) kann diese bislang sehr zeit- und arbeitsaufwendige Parameterbestimmung v.a. für größere Untersuchungsräume erleichtert werden (vgl. CARRARA et al. 1991).

Zusammenfassend ist festzuhalten, dass trotz der Anzahl von Untersuchungen quantitative Informationen über Lage, Größe. Formeninventar und Morphometrie der Massenverlagerungsgebiete bislang nur von sehr wenigen kleineren Teilabschnitten der Thüringer-Wellenkalkschichtstufe vorliegen (ACKERMANN 1953, 1958, JOHNSEN 1984a, SCHMIDT 1988b, WENZEL 1991, SCHENK 1992, BEYER 1997). Auch die geologischen Übersichtskarten (GK25), die größtenteils Ende des 19. Anfang des 20. Jahrhunderst erstellt wurden, geben über die Verbreitung der Massenverlagerungsgebiete nur sehr unzureichend Aufschluss. Angaben über Formeninventar und Ausprägung fehlen hier gänzlich. Erst durch die großflächige systematische Aufnahme der Massenverlagerungsgebiete und deren Eigenschaften in Verbindung mit der Aufnahme potentieller Steuergrößen, können die sich maßgeblich beeinflussend auswirkenden Faktoren klarer herausgestellt sowie Unterschiede in den regionalen Verteilungsmustern aufgezeigt und erklärt werden. Darauf aufbauend besteht die Möglichkeit, die Hangbereiche, von denen eine besonders hohe massenverlagerungsbedingte Gefährdung für Mensch und Infrastruktur ausgeht, als potentielle Risikogebiete auszuweisen. Aus den bisherigen Darlegungen leitet sich die Zielstellung der vorliegenden Untersuchung ab.

1.5 Untersuchungsziele

Die vorliegende Arbeit beinhaltet die Analyse der großräumigen Verbreitung von Massenverlagerungsgebieten an der Wellenkalk-Schichtstufe im Thüringer Becken und deren Eigenschaften unter besonderer Berücksichtigung von morphometrischen und klimatologischen Steuerungsfaktoren.

Grundlage der Untersuchung bildet die erstmalige flächendeckende Erfassung der Massenverlagerungsgebiete an großen zusammenhängenden, tektonisch weitgehend ungestörten Teilabschnitten der Wellenkalk-Schichtstufe in Verbindung mit der systematischen Aufnahme der aufgeführten permanent-dispositiven, in Tabelle 1.3 geologisch-morphologischen und klimatologischen Steuerungsfaktoren. Diese Faktoren bieten den Vorteil, dass sie für die Vielzahl der Massenverlagerungsgebiete relativ unkompliziert und quantitativ hinreichend genau im Gelände, aus topographischen und geologischen Kartenmaterialien sowie aus weiteren Datenquellen (z.B. Deutsche Wetterdienst) ermittelt werden können.

(1)	Lithologisch-strukturelle Eigenschaften des Stufenbildners
(2)	Lithologisch-strukturelle Eigenschaften des Sockelgesteins
(3)	Mächtigkeit des Stufenbildners
(4)	Mächtigkeit des Sockelgesteins
(5)	Mächtigkeitsrelation
(6)	Schichtneigung
(7)	Neigungsrichtung
(8)	Einfluss der Rötgipssubrosion nach morphologisch Befunden
(9)	Morphometrische Lage zur Erosionsbasis (Horizontal-, Vertikaldistanzen, Anstiegswinkel)
(10)	Lage im Stufengrundriss
(11)	Exposition
(12)	Lage zum Gewässernetz
(13)	Häufigkeit von Hangquellen
(14)	Jährliche mittlere Niederschlagshöhe und Niederschlagsverteilung
(15)	Höhe und Verteilung von Starkniederschlägen

Tab. 1.3:Die untersuchten permanent-dispositiven Steuerungsfaktoren

Entsprechend der Untersuchungen von CARRARA et al. (1991), GRITZNER et al. (2001) und MENENDEZ et al. (2002) (vgl. Kap. 1.4) war es dabei wichtig, nicht nur die Ausprägung der Faktoren innerhalb der Massenverlagerungsgebiete, sondern auch die Ausprägung der Faktoren am Gesamtstufenhang, d.h. auch an jenen Stufenhangabschnitten ohne Massenverlagerungen zu erfassen. Auf der Grundlage der vorliegenden Datenbasen konnte dies mit hinreichender Genauigkeit für die Faktoren (1), (2), (6), (7), (11), (12), (13), (14) und (15) erfolgen (vgl. Tab. 1.3). Für die Faktoren (3), (4), (5), (8), (9) war ein solch flächendeckender Vergleich aufgrund der damit verbundenen, sehr aufwendigen Datenerhebung (z.B. morphometrische Lagebeziehungen zur Erosionsbasis) sowie dem Fehlen geeigneter Datenbasen (z.B. flächendeckende DGM) im Rahmen der Untersuchung nicht möglich. Die Analyse und Diskussion beschränkt sich hierbei auf den direkten Vergleich der in den Massenverlagerungsgebieten vorzufindenden Faktorenausprägungen.

Basierend auf den erhobenen Daten, werden im Einzelnen folgende Zielstellungen verfolgt:

1. Aufgabenspezifische Analyse und summarische Beschreibung der morphometrischen und klimatologischen Merkmalsausprägungen der zu untersuchenden Wellenkalk-Schichtstufenabschnitte

- 2. Erstmaliges Aufzeigen der großräumigen Verbreitung der Massenverlagerungsgebiete und Herausarbeiten von räumlichen Verteilungsmustern
- 3. Summarischen Beschreibung der wesentlichen morphologischen und morphometrischen Eigenschaften der Massenverlagerungsgebiete und deren regionale Besonderheiten
- 4. Analyse und Beurteilung des Einflusses der zu untersuchenden Steuerungsfaktoren auf die räumliche Variabilität der Massenverlagerungsgebiete und deren Eigenschaften
- 5. Erstmalige Ausweisung besonders massenverlagerungsgefährdeter Risikogebiete im Umfeld von Siedlungen und Infrastruktureinrichtungen als mögliche Grundlage für zukünftige landschaftsplanerische Vorhaben

2. Das Untersuchungsgebiet

2.1 Vorbemerkungen

Die Wellenkalk-Schichtstufe ist eine Strukturformenlandschaft, die in ihrer Lage und Entstehung eng mit der geologischen Entwicklung des Thüringer Beckens verbunden ist. Aus diesem Grunde folgen in diesem Kapitel zunächst einige Angaben zum erdgeschichtlichen Werdegang dieses Danach werden die geologischen und schwerpunktmäßig die für Großraumes. den Gesamtstufenhang zu analysierenden morphologischen, klimatologischen und hydrologischen Verhältnisse aufgabenspezifisch dargelegt. Diesbezüglich werden in diesem Kapitel bereits eigene Ergebnisse und methodische Vorgehensweisen vorgestellt, was hinsichtlich der später darzustellenden Einordnung der Massenverlagerungen in das physisch-geographische Faktorengefüge von Vorteil ist, da doppelte Ausführungen somit vermieden werden können.

2.2 Abgrenzung und Grundzüge der geologischen Entwicklung des Thüringer Beckens

Im Zentrum Deutschlands gelegen, gehört das Thüringer Becken administrativ zu den Bundesländern Thüringen, Hessen und Sachsen-Anhalt. Mit einer Fläche von ca. 9909 km² (MEYNEN & SCHMIDTTHÜSEN 1959 - 1969) hat es zwischen 51° 28`und 51° 38`nördlicher Breite und 10° 00`und 11° 55`östlicher Länge eine maximale Ost-West-Erstreckung von ca. 155 km bei einer Nord-Süd-Erstreckung von ca. 100 km. Die geologische Begrenzung erfolgt durch die saxonisch gehobenen Grundgebirgshorste des Harzes im Norden und des Thüringer Waldes im Süden und Südwesten. Im Nordosten wird das Thüringer Becken durch die Hermundurische Scholle mit dem Kyffhäuser und durch die Finnestörung, sowie im Osten durch den Übergang zur Leipziger Tieflandsbucht begrenzt. Die südöstliche Begrenzung bildet das Thüringische Schiefergebirge, die nordwestliche die Eichsfeldschwelle, welche Richtung Westen an den Leinetalgraben grenzt und zur Hessischen Senke überleitet (SEIDEL 1992) (Abb. 2.1).

Geologisch gehört das Thüringer Becken zum mesozoischen Tafelgebirgsstockwerk (WALTER 1995) und wird hauptsächlich von den verschieden resistent triassischen Sedimenten Buntsandstein, Muschelkalk und Keuper aufgebaut. Unterlagert werden diese insgesamt bis über 1500 m mächtigen Sedimentstapel von paläozoischen Ablagerungen des Perm (Rotliegend und v.a. Zechstein) und älterer Abteilungen (SEIDEL 1992).

Abb. 2.1: Geologische Übersicht des Thüringer Beckens (ohne Quartär) (nach PATZELT 1994, verändert)

Die geologische Entwicklung des Tafelgebirgsstockwerkes im Thüringer Becken begann mit der Zechsteintransgression in das weiträumig tektonische Senkungsgebiet des Germanischen Beckens (DOCKTER & STEINMÜLLER 1993). Dieses Senkungsgebiet blieb während der gesamten Trias bestehen und ist verantwortlich für die große Mächtigkeit der abgelagerten Sedimente. Innerhalb des Thüringer Beckens sind drei Sedimentationsbereiche zu unterscheiden: *Eichsfeldschwelle, Thüringische Senke* und *Ostthüringisches Randgebiet* (MERZ 1987). Diese sind durch fazielle Mächtigkeitsunterschiede der Zechstein und Triassedimente, die aus epirogen verschiedenen Hebungs- und Senkungsbeträgen resultieren, charakterisiert. Allgemein zeichnet sich die Thüringische Senke durch erhöhte Sedimentmächtigkeiten gegenüber der Eichsfeldschwelle und dem Ostthüringischen Randgebiet aus (MERZ 1987, SEIDEL 1992).

Nach der marinen, zyklisch-salinaren Sedimentation der bis 800 m mächtigen Zechsteinsedimente (SEIDEL 1992, DOCKTER & STEINMÜLLER 1993) kam es während der Buntsandsteinzeit infolge einer Meeresregression zur Ablagerung faziell stark gegliederter, klastischer Sedimente unter wechselnden fluviatilen, limnischen, litoralen und terrestrischen Bedingungen (WALTER 1995). Mit Beginn der Muschelkalkepoche erfolgte eine erneute, langanhaltende Meerestransgression. Hier lagerten sich unter flach marinen Schelfmeerbedingungen die bis zu 300 m mächtigen Muschelkalkesschichten ab (SEIDEL 1992, PATZELT 1994). Eine erneute Meeresregression zur

Keuperzeit führte unter wechselnden Milieubedingungen zur vielgestaltigen Ablagerung des bis 640 m mächtigen Keupersedimentes (PATZELT 1992, WAGENBRETH & STEINER 1990).

Die ehemalige Verbreitung der Jura und Kreidesedimente im Thüringer Becken ist nicht sicher zu rekonstruieren. In tektonischen Grabenzonen zwischen Arnstadt, Gotha und Eisenach (Abb. 2.1) erhaltene gebliebene Sedimente des Unteren Jura (Lias) dokumentieren die Transgression eines Meeresarmes von Westen in das Gebiet (WAGENBRETH & STEINER 1990, PATZELT 1994). Sedimente der untersten Oberkreide sind lediglich im Ohmgebirgsgraben (nordwestliches Thüringer Becken) (Abb.2.1) nachzuweisen (vgl. LANGBEIN &. SEIDEL 1960), so dass davon ausgegangen wird, dass ab der Unterkreide die größte Fläche des Thüringer Beckens Festland und damit Abtragungsgebiet war (PATZELT 1994).

Der heutige strukturelle Bau des Thüringer Beckens wurde stark von der saxonischen Tektonik im Rahmen der alpidischen Gebirgsbildung bestimmt, wobei sich nach SEIDEL (1992) v.a. die orogenen Phasen des Oberen Juras und der Kreide auswirkten. Hierbei kam es im Spannungsfeld zwischen den sich hebenden Grundgebirgsschollen des Harzes und des Thüringer Waldes zur Absenkung und flachen, herzynisch-schüsselförmigen Einmuldung der ehemals horizontal abgelagerten Zechstein und Triasschichten (Abb. 2.2).

Abb. 2.2: Geologisch-struktureller Aufbau des Thüringer Beckens (Quelle: WAGENBRETH & STEINER 1990)

Die stärksten Schichtabsenkungen erfolgten im Zentrum der Mulde nördlich von Erfurt (ROSENKRANZ 1966). Die Einmuldung der Schichten hat zur Folge, dass die stratigraphisch jüngeren Ablagerungen (Keuper) im Muldeninneren und die älteren Schichten (Muschelkalk, Buntsandstein) an den Randbereichen der Mulde flach zur Erdoberfläche ausstreichen (Abb.2.1 und 2.2). Damit waren die strukturellen Grundvorrausetzungen [Ausstrich verschieden resistenter Gesteinsschichten mit gering bis mäßig geneigte Schichtlagerung (vgl. BLUME 1987)] für die Bildung einer Schichtstufenlandschaft geschaffen.

Mit der tektonischen Formung verbunden war die Anlage weitgespannter Sattel- und Muldenstrukturen sowie herzynisch- (NW-SE) bis rheinisch (NNE-SSW) streichender Störungszonen, die das Thüringer Becken im Einzelnen weiter untergliedern (herzynische Störungen: z.B.: Eichenberg-Gotha-Saalfelder-Störungszone, Netraer Graben, Magdalaer Graben, rheinische Störungen: z.B.: Ohmgebirgsgraben) (Abb.2.1 und 2.2).

Das Tertiär ist im Thüringer Becken durch festländische, fluviatile bis limnische Sedimentationsbedingungen gekennzeichnet. Im südlichen (bei Plaue) und nordöstlichen Thüringen Becken (bei Jena) konnten Reste tertiärer Landoberflächen mit intensiven Verwitterungsbildungen nachgewiesen werden (FREYBERG 1923, UNGER & SCHRAMM 1968, ROSENKRANZ 1978, GRUNDMANN 1998). Nach der im Tertiär allmählich abklingenden saxonischen Tektonik, setzten ab dem Pliozän, neotektonische Prozesse ein, die neben epirogenen Senkungen und Hebungen v.a. durch reguläre und irreguläre Ablaugungen des Zechsteinsalinars im Sinne von WEBER (1951) gekennzeichnet sind (SEIDEL 1995). Damit verbunden war die Anlage mehr oder weniger großräumiger Senkungs- und Aufwölbungsstrukturen (z.B. Fahner Höhe, Tannrodaer Gewölbe) (Abb.: 2). Neben dem südlichen Harzvorland (Goldene Aue zwischen Kyffhäuser und Harz) und dem Werra-Kaligebiet in Südwest-Thüringen ist das zum Untersuchungsraum gehörende Gebiet um Arnstadt - Plaue (Ohrdrufer Platte) (Abb.2.1 und 2.2) das bedeutendsten Auslaugungsgebiet im Thüringer Becken (SEIDEL 1995).

Im Pleistozän wurde das Thüringer Becken in unterschiedlichen Maße von den pleistozänen Inlandvereisungen überfahren. Während lückenhafte Ablagerungen des Elstereises (Bändertone, Beckensande, Geschiebemergel etc.) im nordöstlichen und zentralen Thüringer Becken entlang der Linie Mühlhausen, Erfurt, Jena nachzuweisen sind (SEIDEL 1995), gehörten die nordwestlichen, westlichen und südlichen Bereiche des Thüringer Beckens während des gesamten Pleistozäns zum Periglazialraum. Vom Saaleeis wurden nur noch die nordöstlichen Randbereiche (Naumburger Mulde Abb.2.1) des Thüringer Beckens überfahren, die Weichselvereisung erreichte das Gebiet nicht (SEIDEL 1992, THÜRINGER LANDESANSTALT FÜR BODENFORSCHUNG WEIMAR 1994). Das bereits im ausgehenden Tertiär in seinen Grundzügen angelegte Flussnetz wurde im Pleistozän infolge der elster- und saalezeitlichen Eisplombierung teilweise umgestaltet und weiter eingetieft (SEIDEL 1995). In Abhängigkeit von den geologisch-tektonischen Strukturen wurde im Laufe des Quartärs die heutige Oberfläche des Thüringer Beckens und damit auch die Wellenkalk-Schichtstufe gebildet.

2.3 Die Wellenkalk-Schichtstufe

2.3.1 Lage und Abgrenzung

Die Wellenkalk-Schichtstufe im Thüringer Becken gehört morphographisch zum Thüringer Trias-Schichtstufenland (WEBER 1951) und wird naturräumlich den Kalkrandplatten in der Umrahmung des Thüringer Beckens zugeordnet (MEYNEN & SCHMITHÜSEN 1959 - 1969). Im Ausstrichsbereich der verschieden resistenten, flach lagernden, triassischen Gesteinsschichten Oberer Buntsandstein (Röt) und Unterer Muschelkalk (Wellenkalk) erhebt sich die Wellenkalk-Schichtstufe als markantes Landschaftselement mit bis über 200 m Höhenunterschied zum Vorland. Die Ausstrichsbereiche dieser Schichten befinden sich entsprechend der schüsselförmig strukturellen Lagerung der Gesteine (vgl. Kap. 2.2) v.a. in der Umrahmung des Thüringer Beckens (Abb. 2.1).

Mit einer Gesamtlänge von über 1000 km läßt sich die Wellenkalk-Schichtstufe naturräumlich in mehrere Teilabschnitte untergliedern, wobei die einzelnen Abschnitte partiell von tektonischen Störungszonen unterbrochen werden bzw. dort aussetzen, wo der Röt unter die Erdoberfläche taucht (vgl. Karte 1). Zudem sind einige, auf steilere Schichtneigung zurückzuführende Sonderformen des Schichtstufenreliefs vorzufinden. Hierbei handelt es sich um Schichtkämme, die entsprechend der Nomenklatur von SCHUNKE & SPÖNEMANN (1972) durch hangwärts gerichteten Schichtneigungen $> 10 - 12^{\circ}$ gekennzeichnet sind. In ihrer morphologischen Ausprägung unterscheiden sich diese deutlich von der Wellenkalk-Schichtstufenlandschaft, worauf im Einzelnen in diesem Kapitel noch eingegangen wird.

Im Norden des Thüringer Beckens befindet sich der Schichtkamm der Schmücke, der naturräumlich durch den Flusslauf der Unstrut von der sich im Westen anschließenden Hainleite getrennt wird (vgl. Karte 1). Die Hainleite ist in ihrem östlichen Abschnitt zunächst noch als Schichtkamm und südlich von Bad Frankenhausen dann als Schichtstufe ausgebildet. Nach Westen geht die Hainleite ohne landschaftlich markante Grenze in den Schichtstufenabschnitt des Dün über. Nördlich des Dün, von diesem durch den Flusslauf der Wipper getrennt, befinden sich die größeren isolierten Erosionsreste: Bleicheröder Berge, Ohmgebirge und drei kleinere Zeugenberge westlich der Bleicheröder Berge (Hasenburg, Haarburg, Hubenberg) (vgl. Karte 1).
Die westliche Umrahmung des Thüringer Beckens bilden die Wellenkalk-Schichtstufenabschnitte des Oberen Eichsfeldes und des Hainichs. denen im Einzelnen drei kleinere Schichtkammabschnitte zwischengeschaltet sind (vgl. Karte 1). Der Wellenkalk-Schichtstufenhang des Oberen Eichsfeldes ist vom Dün durch einen rheinisch streichenden Störungsausläufer der Ohmgebirgsgrabenzone getrennt. Südlich von Leinefelde beginnend geht das Obere Eichsfeld westlich von Mühlhausen ohne scharfe Grenze in den Hainich über (KAISER 1904). Aufgrund der naturräumlich gleichen Lage wurden im Rahmen der Arbeit beide Gebiete zu einem Untersuchungsabschnitt zusammengefasst, der im Folgenden kurz als Oberes Eichsfeld & Hainich bezeichnet wird (vgl. Karte 1).

Vom Oberen Eichsfeld & Hainich, durch die Eichenberg-Gothaer-Saalfelder-Störungzone getrennt (vgl. Abb. 2.1), befindet sich, in westlicher Richtung vorgelagert, der größere Erosionsrest der Gobert. Südwestlich vom Oberen Eichsfeld & Hainich liegt der durch die Werra abgetrennte Wellenkalk-Schichtstufenabschnitt des Ringgau, dessen Stufenhänge durch verschiedene herzynische Störungszonen (Netra-Graben, Sontra-Graben) unterbrochen werden.

Die südliche Kalktafelumrahmung des Thüringer Beckens bilden der Schichtkamm der Hörselberge östlich von Eisenach, die Ohrdrufer Platte südlich von Arnstadt, Teile der Ilm-Kalk-Platte nördlich von Bad Blankenburg sowie ein westlich der Ilm-Kalk-Platte gelegener Zeugenberg (Singener Berg) (vgl. Karte 1). Die Fortführung der insgesamt häufig von Störungszonen unterbrochenen Ilm-Kalk-Platte (vgl. Karte 1), der Tautenburger Forst sowie die Zeugenberge des Mittleren Saaletales (Hufeisen, Wöllmisse, Gleißberg) bilden die östlichen, das Thüringer Becken umrahmenden Wellenkalk-Schichtstufenabschnitte.

Im Nordosten befinden sich Wellenkalk-Schichtstufenabschnitte im Gebiet der Querfurter Platte, die nach Osten in Richtung Halle-Leipziger-Tieflandsbucht teilweise durch tertiäre und pleistozäne Sedimente verkleibt, d.h. durch Akkumulationsmassen verschüttet sind (vgl. SCHMITTHENNER 1937). Innerhalb des Thüringer Beckens befinden sich Wellenkalk-Schichtstufenhänge an den Flanken der salztektonischen Aufwölbungsstruktur des Tannrodaer Gewölbes.

Von den genannten Teilabschnitten wurden alle Gebiete bis auf das Ohmgebirge, die östlichen Bereiche der Schmücke, das Tannrodaer Gewölbe und die Querfurter Platte (vgl. Karte 1) bezüglich auftretender Massenverlagerungen kartiert. Nicht berücksichtigt wurden dabei die in tektonischen Störungszonen liegenden Stufenhangabschnitte (vgl. Kap. 1.5).

Die Gesamtlänge der untersuchten Wellenkalk-Schichtstufen- (958,2 km) und Schichtkammhänge (21,8 km) beträgt 980 km. Die Teillängen der einzelnen Abschnitte sind in Tabelle 2.1 aufgeführt.

Wellenkalk-Schichtstufen- bzw. Schichtkammabschnitte	Länge
	(km)
Schmücke (Schichtkamm)	5
Hainleite	98
Dün	43
Bleicheröder Berge	26
Oberes Eichsfeld & Hainich	293,8
(3 kleinere Schichtkämme)	Σ 5,2
Gobert	41
Ringgau	71
Hörselberge (Schichtkamm)	7
Ohrdrufer-Platte	65
Ilm-Kalk-Platte	236
Tautenburger Forst	25
Zeugenberge Mittleres Saaletal	64
Σ Schichtstufenabschnitte	958,2
Σ Schichtkammabschnitte	21,8
Gesamt	980

Tab. 2.1:Bezeichnung und Länge der untersuchten Wellenkalk-Schichtstufen- und
Schichtkammabschnitte

2.3.2 Geologische Charakteristik des Wellenkalk-Schichtstufenhanges

2.3.2.1 Vorbemerkungen

Die Wellenkalk-Schichtstufe ist eine an die Gesteinsverhältnisse angepasste Strukturform, die an die Ausstrichsbereiche der Schichtenfolge Röt (Oberer Buntsandstein) und Wellenkalk (Unterer Muschelkalk) gebunden ist (vgl. Abb. 2.3). Innerhalb dieses Zweischichtkomplexes fungiert der inkompetente Obere Buntsandstein (Röt) als Sockelgestein und bildet den unteren Teil des Stufenhanges. Der kompetentere Untere Muschelkalk (Wellenkalk) ist der den Oberhang aufbauende Stufenbildner.

Abb. 2.3: Der stratigraphische Aufbau der Muschelkalk- und Wellenkalk-Schichtstufe

Im Hangenden folgen der zur Flächenbildung neigende salinare Mittlere Muschelkalk und der im Bereich der Trochitenkalke stufenbildende Oberer Muschelkalk (vgl. Abb. 2.3). Letztere Schichtkomplexe bedingen die morphologische Mehrgliedrigkeit der Muschelkalkschichtstufe, haben aber, da sie außerhalb des zu untersuchenden Wellenkalk-Schichtstufenhanges liegen, für die Untersuchung keine weitere Bedeutung.

2.3.2.2 Der Obere Buntsandstein (Röt)

Der Obere Buntsandstein (Röt) besteht aus einer Wechsellagerung litoraler, fluviatiler und limnischer Sedimente (HOPPE & SEIDEL 1974) und ist im Untersuchungsgebiet in Abhängigkeit von den paläogeographischen Ablagerungsbedingungen (*Eichsfeld-Schwelle, Ostthüringisches Randgebiet, Thüringer Senke:* vgl. Kap. 2.2) zwischen 105 und 185 m mächtig (vgl. Tab. 2.2).

Die Ablagerung erfolgte in drei Zyklen, die als Unterer- (Salinarröt), Mittlerer- (Pelitröt) und Oberer Röt (Myophorienfolge) bezeichnet werden (SEIDEL 1965) und sich im Einzelnen weiter untergliedern (vgl. LANGBEIN & SEIDEL 1976).

	Eichsfeldschwelle	Nordrand	Südliches	Ostthüringisches	Thüringische		
		Th. B.*	Th. B.	Randgebiet	Senke		
	(Oberes Eichsfeld &	(Hainleite,	(Ohrdrufer	(Ilm-Kalk-Platte)	(Zentrum Th. B.)		
	Hainich)	Dün)	Platte)				
	(m)	(m)	(m)	(m)	(m)		
Σ Wellenkalk	103	93-106	85-92	105	108		
Schaumkalkzone	5	9-10	7-8	12	8		
Oberer Wellenkalk	19	16-19	19-20	20	20		
Terebratelzone	8	6-8	2-4	3	4		
Mittlerer Wellenkalk	28	18-20	19-20	26	30		
Oolithzone	7	7-9	8	8	7		
Unterer Wellenkalk	36	37-40	30-32	36	40		
Σ Röt	117	130	105-112	123-136	185		
Myophorien-Folge	7	10	15	16-18	20		
Pelitröt-Folge	78	85	60-65	90	98		
Salinarröt- Folge	32	35	30-32	18-28	67		
* Th.B.: Thürir	nger Becken						

Tab. 2.2:Die Mächtigkeiten der Wellenkalk- und Rötsedimente im Thüringer Becken
(zusammengestellt nach: SEIDEL 1992, ZIEGENHARDT & JUNGWIRTH 1971, DOCKTER 1966)

Lithologisch besteht das Röt aus grauen, rotbraunen bis violett gefärbten Ton-Mergelsteinen mit Einlagerungen von Sandstein, Dolomit und bis 10 m mächtigen Knollen- und Fasergipsbänken (PUFF 1963). Mächtige Gipse sind v.a. im Salinarröt zu finden (Basisgipse). Weniger mächtige Knollen- und Fasergipslagen sind auch im Pelitröt enthalten (MORGENEYER 1963, SEIDEL 1992). Die Rötgipse sind subrosionsanfällig, so dass es durch Auslaugungsprozesse zu Massendefiziten kommen kann, in dessen Folge die hangenden Schichten nachsacken und atektonische Schichtdeformationen, die bis in den Wellenkalk reichen können, entstehen. Zudem bedingen diese Vorgänge die Ausbildung von Erdfällen, wie sie im Verbreitungsgebiet des Röts häufig zu finden sind (vgl. SCHNEIDER 1968, MEYNEN & SCHMITHÜSEN 1959 - 1962).

Die Korngrößenzusammensetzung der vielgestaltigen Rötablagerungen ist in Abhängigkeit von der stratigraphischen Position im Röt sehr variabel. Als Beispiel ist in Abbildung 2.4 die Korngrößenzusammensetzung (ohne Skelettanteil) zweier in unterschiedlicher Höhenlage vom oberen Pelitröt (nach LANGBEIN & SEIDEL 1976: Obere Bunte Folge) gewonnenen Proben an einem Massenverlagerungsgebiet vom Dün südöstlich der Ortschaft Leinefelde angeführt (Karte 1).

Abb. 2.4:Die Korngrößenverteilung (ohne Skelettanteil) zweier Pelitrötproben vom Dün südlich der
Ortschaft Deuna (Analyse: Geographisches Labor der M-L-U Halle)

Während die Pelitrötprobe 1 ein schluffige-tonige Korngrößenverteilung zeigt, ist die nur 3 m tiefer 2 95 fein gewonnene Pelitrötprobe zu % bis mittelsandig ausgebildet. Ähnliche WITTE (1995b) Pelitröt Korngrößenzusammensetzungen konnte im eines von Massenverlagerungen betroffenen Wellenkalk-Schichtstufenhanges bei Holzminden (Niedersachsen) nachweisen.

Nach HOPPE & SEIDEL (1974) sind im Röt v.a. die Tonminerale Illit und Glimmer vorhanden. Für LIPPMANN (1956) und BRUNHOFF (1983) ist das nach BACKHAUS (1987) für das Rötmeer charakteristische mixed-layer-Mineral Corrensit das dominierende Röttonmineral. Eigene qualitative tonmineralogische Untersuchungen im Pelitröt eines Massenverlagerungsgebietes am Dün südöstlich der Ortschaft Leinefelde (vgl. oben) zeigten, dass es sich hierbei um ein tonreiches Quarz-Dolomit Gemisch handelt, wobei neben dem Dreischichttonmineral Illit v.a. auch Montorillonit als wichtigster Vertreter der Smectitgruppe, sowie das mixed-layer-Mineral Corrensit und das Zweischichttonmineral Kaolinit vorkommen (vgl. Abb. 2.5). Zu ähnlichen Feststellungen kommen BÜHMANN & RAMBOW (1979) sowie WENZEL (1991).

Abb. 2.5: Mineralogische Zusammensetzung einer Pelitrötprobe von einem Wellenkalk-Schichtstufenabschnitt am Dün südl. der Ortschaft Deuna (Analyse: Mineralogisches Labor M-L-U Halle)

Infolge des Tonreichtums neigen die Rötschichten bei Wasserzutritt zur Plastifizierung und bei Trockenheit zur Ausbildung von bis mehrere Dezimeter tief reichender Trockenrisse, die bei Niederschlägen das Wasser sehr schnell in das Hangsystem abführen können, was aus geomechanischer Sicht zu einer ungünstigen Beeinflussung der Scherfestigkeit führen kann (vgl. TILCH 1999). Hydrogeologisch ist der Röt durch seine primär tonig-mergelige Ausbildung allgemein als wasserstauend zu bezeichnen. Eine Grundwasserführung im Röt ist im Wesentlichen an das Kluftvolumen der den Ton- und Mergelsteinen eingelagerten Sandsteine, Dolomite und Gipse gebunden (HOPPE & SEIDEL 1974).

Geomechanisch ist das Röt ein Halbfestgestein, für dessen mechanisches Verhalten in Abhängigkeit von den wasserstauenden Eigenschaften, der Quellfähigkeit und Plastizität der Tone sowie der Subrosionsanfälligkeit der Gipse, bodenmechanische Gesetzmäßigkeiten gelten (JOHNSEN & KLENGEL 1972, JOHNSEN 1974). Die Ton-Mergelsteine sind stark überkonsolidiert (SCHENK 1983) und mit Kluftabständen < 0,1 m engständig geklüftet (WENZEL 1991). Die Klüfte sind oft horizontspezifisch und nur wenige Zentimeter lang.

Die Ausstrichsbreite des Röt beträgt im Untersuchungsgebiet durchschnittlich 800 - 1200 m. In Abhängigkeit von der Schichtlagerung variiert diese im Einzelnen aber stark. So betragen die Ausstrichsbreiten im Bereich von Schichtkämmen (z.B. Schmücke, Hörselberge) lediglich 100 - 200 m, wohingegen im Umland von Zeugenbergen, wie beispielsweise an den Zeugenbergen im Mittleren Saaletal (Hufeisen, Wöllmisse) oder zwischen dem Ohmgebirge und den Bleicheröder Bergen, maximale Ausstrichsbreiten von 3600 m zu verzeichnen sind. Damit verbunden ist eine spezifische Morphometrie der Stufenhänge an den Zeugenbergen, worauf im Einzelnen in Kapitel 2.3.3.5 eingegangen wird.

2.3.2.3 Der Untere Muschelkalk (Wellenkalk)

Der Untere Muschelkalk (Wellenkalk) stellt ein marines chemisches bis organogenes Schelfmeersediment dar. Entsprechend den paläogeographischen Ablagerungsbedingungen schwankt seine Mächtigkeit im Untersuchungsgebiet zwischen 85 und ca. 110 m (vgl. Tab. 2.2). Unterteilt wird der Untere Muschelkalk in die drei Hauptglieder: Unterer, Mittlerer und Oberer Wellenkalk (vgl. Abb. 2.3). Die Unterteilung erfolgt durch drei Bankzonen: die Oolith-, Terebratelund Schaumkalkzone. Die Bankzonen bestehen aus stark zementierten, oolithisch kristallinen Kalken ohne größere tonige Verunreinigungen (LANGBEIN et al. 1983) und entsprechen den Bereichen höchster Verwitterungsresistenz im Wellenkalk. Einzeln betrachtet, bestehen die Zonen aus zwei bis drei kristallinen Bänken, die durch Mergelzwischenhorizont voneinander getrennt sind, und genauer u.a. von HOPPE & SEIDEL (1974) beschrieben werden. Der CaCO₃-Gehalt dieser kristallinen Kalkbänke beträgt rund 95 - 100 %, was zu einer stärkeren physikochemischen Verkettung dieser Zonen, ähnlich einem steigenden Kalkanteil im Beton, führt (LANGBEIN & SCHWAN 1983). Hierauf begründet sich die hohe Verwitterungsresistenz dieser Bankzonen und die damit verbundenen morphologischen Eigenschaften (Härtlingsbildner) und Nutzungsmöglichkeiten (z.B. Werksteinabbau).

Der Wellenkalk selbst besteht aus kompaktierten, grauen, ebenschichtig bis knauerigen, plattig bis bankigen Mergelkalken mit teilweise starken tonigen Verunreinigungen, wobei die unruhigen Schichtoberflächen namensgebend für den Wellenkalk sind (RÜGER 1937). Neben den knauerig-konglomeratreichen Zonen (vgl. AS- SARUI & LANGBEIN 1987) besteht der Wellenkalk vornehmlich aus einer Art verfestigten Kalkschlamms, der je nach Korngöße als Lutit (< 0,063 mm) bzw. Arenit (0,063 - 2 mm) bezeichnet wird (LANGBEIN & SCHWAN 1983).

Chemisch setzt sich der Wellenkalk zu ca. 75 % aus CaCO₃ zusammen, wobei bei steigendem Tonanteil der CaCO₃-Anteil bis auf 50 % abnehmen kann (LANGBEIN & SCHWAN 1983). Im Vergleich zur Oolith-, Terberatel- und Schaumkalkzone ist der Wellenkalk wesentlich verwitterungsanfälliger, was sich in der im Gelände oftmals zu beobachtenden Hohlkehlenbildung im Wellenkalk widerspiegelt.

Geomechanisch ist der Untere Muschelkalk als Festgestein zu bezeichnen, für dessen mechanisches Verhalten ein engständiges, orthogonales Kluftsystem mit hohem Durchtrennungsgrad verantwortlich ist (JOHNSEN & KLENGEL 1973, WENZEL 1991). Dieses bewirkt eine primäre Entfestigung des Gesteinsverbandes und fördert den Wasserzutritt zu den liegenden, wasserstauenden, plastifizierbaren und subrosionsanfälligen Rötschichten. Im Gegensatz zum Röt, ist der Wellenkalk aufgrund seiner intensiven Klüftung als ein ausgesprochener Aquifer zu bezeichnen. Er besitzt innerhalb der Festgesteinsablagerungen im Thüringer Beckens mit durchschnittlich: $1,8 \times 10^{-2} \text{ m}^2 \text{ H}_2\text{O/s}$ die höchsten Transmissivitätswerte und ist damit einer der wichtigsten Grundwasserleiter Thüringens (THÜRINGER MINISTERIUM FÜR LANDWIRTSCHAFT, NATURSCHUTZ UND UMWELT 1996). Insgesamt hat der Untere Muschelkalk eine durchschnittliche Dichte von 2,44 g / cm³ (LANGBEIN et al. 1983) und neigt aufgrund seines hohen Kalkgehaltes zur Verkarstung.

Die Röt-/Muschelkalkgrenze, die stratigraphisch an die ca. 1 m mächtige und bereits zum Unteren Wellenkalk gehörende, sogenannte Gelbe Grenzbank gelegt wird (vgl. SEIDEL 1992), ist annähernd vollständig von mehreren Metern mächtigen Muschelkalkschutt verhüllt. Dies erschwert mitunter eine eindeutige Grenzziehung zwischen den Gesteinsschichten.

Abgesehen von den paläogeographisch bedingten Mächtigkeitsunterschieden der abgelagerten Rötund Wellenkalksedimente bestehen innerhalb des Untersuchungsgebietes keine für die Großform Wellenkalk-Schichtstufe bedeutsamen Unterschiede in der lithologischen Beschaffenheit der Gesteine (vgl. SCHMIDT 1988b).

2.3.3 Morphologisch-morphometrische Charakteristik der Wellenkalk-Schichtstufe

2.3.3.1 Einleitung

Im morphologischen Bau der Wellenkalk-Schichtstufe sind die wesentlichen Reliefelemente der Schichtstufenlandschaft wiederzufinden (vgl. Abb. 2.6). Die Benennung der einzelnen Reliefelemente erfolgt in Anlehnung an die in der Literatur verwendete Terminologie von BLUME (1971), SCHUNKE & SPÖNEMANN (1972) und SCHMIDT (1988a).

Die Wellenkalk-Schichtstufe ist das landschaftsbestimmende Segment innerhalb der durch die Überlagerung vom Mittleren- und Oberen Muschelkalk doppelt ausgebildeten Muschelkalk-Schichtstufe (vgl. Abb. 2.3 und 2.6). Sie besteht aus drei unterschiedlichen Reliefelementen, einem Steilreliefteil und zwei Flachreliefteilen. Das flächenhafte Reliefelement im Hangenden des Wellenkalkes wird als Stufenfläche, das flächenhafte Reliefelement im Röt als Fußfläche bezeichnet. Das Bindeglied zwischen diesen beiden Flachreliefteilen ist der Stufenhang, der die

eigentliche Geländestufe darstellt. Als Ausgangspunkt der Massenverlagerungen ist dieser für die Untersuchung von besonderer Bedeutung.

Abb. 2.6: Reliefelemente der Schichtstufenlandschaft (nach SCHMIDT 1988a verändert)

2.3.3.2 Der Stufenhang

Bedingt durch den geologischen Aufbau ist der Wellenkalk-Schichtstufenhang morphologisch deutlich zweigegliedert. Der durchschnittlich 35 – 40° geneigte, teilweise auch wandartig versteilte Oberhang befindet sich im stratigraphischen Niveau des kompetenten Unteren Muschelkalkes (Wellenkalk). Häufig bedingen die dem Wellenkalk eingeschalteten Härtlingsbänke (Oolith-, Terebratel-, Schaumkalkzone) (vgl. Kap. 2.3.2.3) die Ausbildung markant vorspringender Hangleisten, die den Oberhang, im Detail betrachtet, weiter untergliedern.

Der Unterhang der Wellenkalk-Schichtstufe ist im stratigraphischen Niveau des inkompetenten Röt ausgebildet und ist mit durchschnittlich 10 - 20° Hangneigung wesentlich geringer geneigt als der Oberhang. Im Einzelnen sind im heterogen zusammengesetzten Rötsockel auch steilere Abschnitte (> 20°) eingeschaltet, die mit leistenbildenden Härtlingszonen [u.a. Sandsteinlagen, Gipse, Dolomitlagen (vgl. Kap. 2.3.2.2)] koinzidieren. Im Übergangsbereich zur der bis zu mehreren Metern verhüllten Röt-/Muschelkalkgrenze steigen die Hangneigungen im Röt auf ca. 20 - 25° an (vgl. SCHUNKE 1968).

An Schichtkämmen, die im humiden Mitteleuropa entsprechend der Definition von SCHUNKE & SPÖNEMANN (1972) durch ein hangwärtiges Schichteinfallen größer 10 - 12° gekennzeichnet sind (vgl. Kap. 2.3.1), wird der Stufenhang als Stirnhang bezeichnet. Stirnhänge befinden sich an den bereits erwähnten Hörselbergen, der Schmücke und an kleineren Teilabschnitten vom Oberen Eichsfeld & Hainich (vgl. Karte 1).

Den Stufenhangabschluss des Oberhanges bildet der Trauf. Der Trauf entspricht dem mehr oder weniger markanten Übergang vom steil geneigtem Oberhang zur flach geneigten Stufenfläche. Dieser Übergang ist im Untersuchungsgebiet hauptsächlich als Trauf mit Walm [Oberhang und Stufenfläche verschneiden sich in einem < 18° geneigtem Hangsegment (SCHUNKE & SPÖNEMANN 1972) (vgl. Abb. 2.7b)] oder als Trauf [Oberhang und Stufenfläche verschneiden sich in First, dem orometrisch höchsten Punkt der Stufe (vgl. Abb. 2.7a)] ausgebildet. Reine Walmstufenhänge, die durch mäßig (< 18 - 20°) geneigte konvexe Oberhänge gekennzeichnet sind, (vgl. Abb. 2.7c) kommen im Untersuchungsgebiet relativ selten vor und sind nur im Scheitelbereich der tief in die Wellenkalk-Schichtstufe eingreifenden Buchten zu finden (vgl. BEYER & SCHMIDT 1999). Insgesamt charakterisiert der Stufenhangabschluss den Stufenhangtyp (z.B. Traufstufenhang, Walmstufenhang).

Abb. 2.7: Stufenhangtypen im Untersuchungsgebiet

Stratigraphisch liegt der Trauf im Untersuchungsgebiet vornehmlich in einer der Härtlingszonen, wohingegen die Wellenkalk-Schichtglieder (Unterer-, Mittlerer-, Oberer Wellenkalk) mit ca. 5 % der Gesamtstufenhanglänge nur in wenigen Fällen traufbildend in Erscheinung treten.

Entsprechend der aus den geologischen Karten (GK 25) abgeleiteten stratigraphischen Lage der Trauf, ist im Gesamtgebiet zu 54 % die Terebratel-Zone, zu 22 % die Oolith-Zone und zu 19 % die Schaumkalkzone die traufbildende Gesteinsschicht. Innerhalb der einzelnen Wellenkalk-Schichtstufenteilabschnitte ergeben sich diesbezüglich jedoch Unterschiede, die zusammengefasst in Tabelle 2.3 dargestellt sind.

Tab. 2.3:Prozentualer Anteil der traufbildenden Härtlingszonen an den Wellenkalk-Schichtstufen-
und Schichtkammabschnitten des Untersuchungsgebietes

Wellenkalk-Schichtstufen-	Länge	Stratigraphische Position der Trauf innerhalb der										
bzw.		Härtlingszonen										
Schichtkammabschnitte	(km)	(% von Gesamtlänge der Teilabschnitte)										
		Oolith-Zone	Schaumkalk-Zone									
Schmücke	5	0	100	0								
Hainleite	98	10	60	28								
Dün	43	79	5	0								
Bleicheröder Berge	26	90	0	0								
Oberes Eichsfeld & Hainich	299	15	60	20								
Gobert	41	40	53	6								
Ringgau	71	26	60	11								
Hörselberge	7	59	6	34								
Ohrdrufer-Platte	65	4	40	34								
Ilm-Kalk-Platte	236	13	62	23								
Tautenburger Forst	25	17	61	6								
Zeugenberge Mittl. Saaletal	64	37	34	10								
Gesamt	980	22	54	19								

So ist am Dün, an den Bleicheröder Bergen und an den Zeugenbergen des Mittleren Saaletales die Oolith-Zone die dominierende traufbildene Gesteinsschicht, wohingegen bei allen anderen Teilabschnitten die Terebratelzone als solche fungiert (vgl. Tab. 2.3). Die Schaumkalkzone ist in keinem der Teilgebiete der dominierende Traufbildner, wenngleich sie auch an der Hainleite, im Obereichsfeld & Hainich, an den Hörselbergen, an der Ohrdrufer Platte sowie der Ilm-Kalk-Platte die zweitwichtigste, traufbildene Härtlingszone darstellt. In einigen Untersuchungsabschnitten sind auch größere Anteile der Wellenkalk-Schichtglieder am stratigraphischen Aufbau der Stufentrauf zu verzeichnen. So sind, bezogen auf die Stufenhanglängen der Teilabschnitte, ca. 22 % der Ohrdrufer Platte, ca. 19 % der Zeugenberge Mittleres Saaletales sowie je 16 % vom Tautenburger Forst und Dün im stratigraphischen Niveau der Wellenkalk-Schichtglieder (Oberer-, Mittlerer-

bzw. Untere Wellenkalk) gelegen. In wenigen Einzelfällen befindet sich der Trauf bereits im stratigraphischen Niveau des Mittleren Muschelkalkes, wie es bspw. lokal an einigen Stufenhängen der Untersuchungsabschnitte Hainleite, Oberes Eichsfeld & Hainich, der Ilm-Kalk-Platte und am Tautenburger Forst zu beobachten ist.

Während der Trauf zur Stufenfläche überleitet, bildet nach der Definition von SCHUNKE (1968) der am Ende des Unterhanges gelegene 4° Fußpunkt (4° Böschungslinie) die Begrenzung des Stufenhanges zur vorgelagerten Fußfläche (vgl. Abb. 2.7). Ist der Stufe vor Erreichen der 4° Böschungslinie eine Tiefenlinie vorgelagert, so bildet diese die Begrenzung des Stufenhanges (vgl. BEYER & SCHMIDT 1999). In Abhängigkeit der stratigraphischen Position der Trauf und der erosiv bedingten Lage des Fußpunktes, der sich vornehmlich im Röt teilweise aber auch im Mittleren Buntsandstein befinden kann, erreicht die Stufe hauptsächlich Höhen zwischen 100 und 150 m, wobei aber auch Höhen unter 50 m und über 150 m beobachtet werden können. Die mit 260 – 270 m höchsten Stufenhänge im Untersuchungsgebiet befinden sich am nördlichen Ringgau (Lokalität: Heldrastein) und an der Westseite der Gobert (Lokalität: Hohestein).

Die mittleren absoluten Höhenlagen der Wellenkalk-Schichtstufen- bzw. Schichtkammabschnitte im Thüringer Becken liegen zwischen 280 und 500 m über NN und sind in Tabelle 2.4 enthalten.

Wellenkalk-Schichtstufen- bzw.	mittlere Höhenlage Trauf	max. Höhenlage Trauf				
Schichtkammabschnitte	(m über NN)	(m über NN)				
Schmücke	290	380				
Hainleite	370	440				
Dün	470	522				
Bleicheröder Berge	440	460				
Oberes Eichsfeld & Hainich	450	493				
Gobert	500	569				
Ringgau	450	513				
Hörselberge	430	484				
Ohrdrufer-Platte	500	604				
Ilm-Kalk-Platte	390	582				
Tautenburger Forst	270	339				
Zeugenberge Mittleres Saaletal	280	404				
Gesamt	280 - 500	604				

Tab. 2.4:Die mittlere und maximale absolute Höhenlage der untersuchten Wellenkalk-Schichtstufen-
und Schichtkammabschnitte

Während der Tautenburger Forst und die Schmücke die niedrigsten mittleren und absoluten Höhenwerte erreichen, ist im Teilabschnitt der Ohrdrufer Platte (Karte 1) (Gebiet der Reinsberge bei Plaue) mit einer absoluten Höhenlage von 604 m über NN der orographisch höchstgelegenste Wellenkalk-Schichtstufenabschnitt im gesamten Thüringer Becken zu finden.

Im Profil zeigt sich der Stufenhang als konkaves Reliefelement (vgl. Abb. 2.7), wobei sich der Bereich der maximalen Konkavität im Unterhang und nur sehr selten im Bereich der Röt-Wellenkalk-Schichtgrenze befindet (BEYER & SCHMIDT 1999). Die Konkavität der Wellenkalk-Schichtstufenhänge ist nach SCHUNKE (1968) und GRUNDMANN (1998) das Ergebnis der pleistozän-versteilend wirkenden Formungsprozesse im Unterhangbereich. Im Detail betrachtet, sind dem Stufenbildner auch konvexe Bereiche eingeschaltet, die mit den ausstreichenden Härtlingszonen koinzidieren bzw. sich im Bereich des Walms befinden (BEYER & SCHMIDT 1999). Die von Massenverlagerungen betroffenen Wellenkalk-Schichtstufenhänge sind nicht durchgehend konkav, sondern besitzen im Akkumulationsbereich des verlagerten Materials engräumig, stark wechselnde Wölbungen und werden deshalb analog ACKERMANN (1959) als "Buckelhänge" bezeichnet. Auch im Unterhangbereich des Rötsockels sind mitunter wechselnde Kurvaturen zu verzeichnen, die auf Erdfallbildungen infolge der Rötgipssubrosion zurückzuführen sind.

2.3.3.3 Die Stufenfläche

Die Stufenfläche ist das sich oberhalb an den Stufenhang anschließende, flächenhaft ausgebildete Reliefelement (vgl. Abb. 2.6). Sie bildet eine mehr oder weniger weit ausgedehnte, ebene bis leicht gewellte, i.d.R. durch abflusslose Muldentäler zertalte Hochfläche mit geringer Reliefenergie. Die Genese der Stufenfläche wurde in der Literatur oft im Zusammenhang mit der Rumpfflächenbildung im Tertiär bzw. im Zusammenhang mit einer zweizyklischen Entwicklung des Schichtstufenreliefs diskutiert. Diesbezüglich sei auf die Untersuchungen von FREYBERG (1923) und ROSENKRANZ (1978) verwiesen.

Die Abdachung der Stufenfläche folgt in der Regel flach geneigt dem regionalen Schichteinfallen, wobei mitunter annähernd horizontale Flächenabschnitte eingeschaltet sind. Die traufproximalen Stufenflächenbereiche befinden sich in einer der traufbildenden Härtlingszonen (Oolith-, Terebratel-, Schaumkalkzone). Wo im Hangenden der Obere Muschelkalk noch erhalten ist, leitet die Stufenfläche über den Mittleren Muschelkalk in den Stufenhang der Trochitenkalkstufe, dem zweitwichtigsten Stufenbildner innerhalb der doppelt ausgebildeten Muschelkalk-Schichtstufe, über (vgl. Abb. 2.3). Dies ist u.a. an Teilabschnitten der Hainleite und der Ilm-Kalk-Platte sehr deutlich zu beobachten.

Im Bereich der durch steiler geneigtes, hangwärtiges Schichteinfallen gekennzeichneten Schichtkämme (> 12° vgl. oben) fehlen die flachen Stufenflächen. Hier sind stärker geneigte, dem Schichteinfallen folgende Stufenrückhänge mit höherer Reliefenergie ausgebildet (vgl. BLUME 1987). Insgesamt sind die Stufenflächen bzw. Stufenrückhänge die orographisch höchsten Bereiche der Wellenkalk-Schichtstufe. Als bedeutendeste Flächen des Niederschlagseintrages und der Grundwasserneubildung im Schichtstufenrelief übernehmen sie eine wichtige Funktion im Hinblick auf die hydrologisch gesteuerte Prozeßmorphodynamik des Stufenhangsystems.

2.3.3.4 Die Fußfläche

Die im Röt, teilweise aber auch im Mittleren Buntsandstein ausgebildete Fußfläche ist das orographisch am tiefsten gelegene Formenelement der Wellenkalk-Schichtstufe. Im Gegensatz zur Stufenfläche ist diese stärker zertalt und weniger großflächig ausgebildet. Die stärkere Zertalung resultiert aus dem engeren und weiter verzweigten Talnetz infolge der zunehmenden Linearerosion im tonig-mergelig ausgebildeten, wasserstauenden und weniger resistenten Röt. Ähnlich dem Unterhang wird die unruhige Morphologie der Fußfläche auch hier durch die auf die Rötgipssubrosion zurückzuführende Ausbildung von Erdfällen verstärkt, wie sie u.a. am Dün aber auch im Oberen Eichsfeld häufig zu beobachten sind (vgl. Abb 2.8).

Abb. 2.8: Rezente Erdfallbildungen auf der Fußfläche der Wellenkalk-Schichtstufe nahe der

Ortschaft Lutter im Oberen Eichsfeld [Quelle: Thüringer Allgemeine (1992a)]

2.3.3.5 Zeugenberge und Auslieger

Im Umland einiger Wellenkalk-Schichtstufenabschnitte befinden sich die schon mehrfach erwähnten größeren Erosionsreste bzw. Zeugenberge (vgl. Karte 1). Diese sind durch allseits stark zerlappte Stufenhänge, die keinerlei Verbindung mehr zu den vorgelagerten, zusammenhängenden Wellenkalkmassiven haben, charakterisiert. Insgesamt wurden 11 dieser in unterschiedlicher Entfernung vom kompakten Stufenhang entfernt liegenden Gebiete in die Untersuchung einbezogen (vgl. Tab. 2.5). Die Zeugenberge befinden sich dabei generell im Vorland von Stufenabschnitten mit flacher Schichtlagerung, wohingegen sie analog der Beobachtungen von SCHUNKE & SPÖNEMANN (1972) im Vorland der durch hohe Einfallswinkel charakterisierten Schichtkämme nicht vorkommen.

Tab. 2.5:Die größeren Erosionsreste bzw. Zeugenberge des Untersuchungsgebietes und deren
Entfernung von den kompakten Wellenkalk-Schichtstufenhängen

Größere Erosionsreste bzw. Zeugenberge	vorgelagerte	kleinste Entfernung zum
(Anzahl)	Wellenkalkmassive	vorgelagerten Wellenkalkmassiv (m)
Zeugenberg südl. Sondershausen (1)	Hainleite	275
Bleicheröder Berge inkl. der drei westl. gelegenen Zeugenberge (4)	Dün	2500 - 6900
Gobert (1)	Oberes Eichsfeld	4000
Zeugenberg östl. der Ohrdrufer-Platte (1)	Ohrdrufer-Platte	600
Singener Berg westl. der Ilm-Kalk-Platte (1)	Ilm-Kalk-Platte	3150
Zeugenberge Mittleres Saaletal (3)	Ilm-Kalk-Platte	2150 - 4500

Die starke Zerlappung der Stufenhänge dokumentiert die fortgeschrittene Auflösung der Zeugenberge. Die Auflösung des Stufenhanges erfolgt auf Kosten der Stufenfläche und zu Gunsten der im stratigraphischen Niveau des Röt ausgebildeten Fußfläche. So sind die Stufenflächen der Zeugenberge im Vergleich zu den kompakten Wellenkalk-Schichtstufenabschnitten generell kleinflächiger. Demgegenüber erreichen die Fußflächen im Umland der Zeugenberge ihre größte Flächenausdehnung, was sich hier in den bereits beschriebenen, maximalen Ausstrichsbreiten des Röt widerspiegelt (vgl. Kap. 2.3.2.2).

Die Trennung der Zeugenberge von den kompakten Wellenkalk-Massiven erfolgte im Laufe der Reliefentwicklung durch die erosive Tätigkeit der Flüsse (z.B. Zeugenberge Mittleres Saaletal, Bleicheröder Berge) im Zusammenhang mit der denudativen Hangentwicklung. Dabei wurde die Abtrennung dieser Gebiete durch tektonischen Störungen teilweise begünstigt, wie es bspw. an der Gobert der Fall ist (vgl. Karte 1). Die Existenz dieser Erosionsreste belegt jedoch eine ehemals großflächigere Verbreitung der Triassedimente und dokumentiert damit die Dynamik der Schichtstufenentwicklung. Aufgrund der Tatsache, dass in den erodierten Zwischenräumen pleistozäne Sedimente (z.B. Schotterkörper in den Tälern oder Lößaufwehungen an den Hängen) abgelagert worden sind, liegt das Mindestalter der Durchtrennung im Pleistozän.

Eine Vorstufe der Zeugenberge sind die sogenannten Auslieger (vgl. Abb. 2.6). Diese befinden sich im unmittelbaren Vorland des Stufenhanges, besitzen aber im Unterschied zu den Zeugenbergen noch eine Verbindung zum stufenbildenden Gestein (vgl. BLUME 1987, SCHMIDT 1988a). Auslieger sind im Untersuchungsgebiet v.a. an erniedrigten, langen Vorsprüngen stark zertalter Wellenkalk-Schichtstufenabschnitte zu finden. Besonders häufig kommen diese u.a. im Oberen Eichsfeld & Hainich sowie im Bereich der Ilm-Kalk-Platte vor (vgl. BEYER 1997).

2.3.3.6 Die Buchtung der Schichtstufen- und Schichtkammhänge

Im Grundriss betrachtet, sind die einzelnen Wellenkalk-Schichtstufen- und Schichtkammabschnitte unterschiedlich stark durch Taleinschnitte in Buchten und Vorsprünge gliedert. Daneben gibt es eine Anzahl relativ geradlinig verlaufender bzw. nicht bis wenig stark gebuchteter Abschnitte (vgl. Karte 1). Die Zertalung der Stufenhänge erfolgt vornehmlich durch kerb- bis kerbsohlentalförmige Trockentäler mit teilweise episodischer Wasserführung.

Die Buchtung des Stufenhanges ist morphometrisch durch den Buchtungsindex nach SCHMIDT (1988a) fassbar. Dieser beschreibt das Verhältnis von wahrer Stufenhanglänge eines Abschnittes zwischen einem Anfangs- und einem Endpunkt, gemessen am Verlauf der Trauf, zur Luftliniendistanz zwischen diesen beiden Punkten (vgl. Abb. 2.9). An Zeugenbergen, die durch eine allseitige Ausbildung von Stufenhängen charakterisiert sind, muss die Luftliniendistanz zwischen dem Anfangs- und Endpunkt in die Berechnung doppelt einfließen. Um die Vergleichbarkeit der Zeugenberge zu den kompakten Stufenhängen zu bewahren, wurde die Lage von Anfangs- und Endpunkt so gewählt, dass sich eine maximale Luftliniendistanz zwischen diesen Punkten ergibt (vgl. Abb. 2.9). Die für die einzelnen Untersuchungsabschnitte und für das Gesamtgebiet ermittelten Buchtungsindizes sind in Tabelle 2.6 dargestellt.

Für die insgesamt 980 km langen Wellenkalk-Schichtstufen- und Schichtkammhänge des Untersuchungsgebietes ergibt sich ein durchschnittlicher Buchtungsindex von 3,1, d.h. auf einem Kilometer Luftlinie erreicht die Stufe eine Länge von durchschnittlich 3,1 km. Innerhalb der einzelnen Teilgebiete ergeben sich, in Abhängigkeit von der hier gewählten naturräumlichen Begrenzung der Untersuchungsabschnitte, z.T. erhebliche Unterschiede (vgl. Tab. 2.6).

Abb. 2.9: Die Ermittlung des Buchtungsindex an kompakten Stufenhängen und an Zeugenbergen

Wellenkalk-Schichtstufen- bzw.	Länge	Buchtungsindex
Schichtkammabschnitte	(km)	
Schmücke	5	1,2
Hainleite	98	2,4
Dün	43	1,8
Bleicheröder Berge	26	4,1
Oberes Eichsfeld & Hainich	299	3,9
Gobert	41	4,4
Ringgau	71	3,0
Hörselberge	7	1,1
Ohrdrufer-Platte	65	3,1
Ilm-Kalk-Platte	236	3,0
Tautenburger Forst	25	2,7
Zeugenberge Mittleres Saaletal	64	4,4
Gesamt	980	3,1

Tab.2.6: Der Buchtungsindex der untersuchten Wellenkalk-Schichtstufen- und Schichtkammabschnitte

Wie bereits der Karte 1 zu entnehmen ist, sind die Schichtkammabschnitte Schmücke und Hörselberge mit Buchtungsindizes um 1 am geringsten gebuchtet, wohingegen das Obere Eichsfeld & Hainich mit Buchtungsindizes von 3,9 gefolgt von der Ohrdrufer Platte (Buchtungsindex 3,1) Ilm-Kalk-Platte und dem Ringgau (Buchtungsindex 3,0) die am stärksten gebuchteten kompakten Wellenkalk-Schichtstufenabschnitte im Thüringer Becken darstellen (vgl. Tab. 2.6).

Die höchsten Buchtungswerte (> 4) zeigen die größeren Erosionsreste und Zeugenberge im Umfeld der Wellenkalk-Schichtstufe wie Bleicheröder Berge, Gobert und Zeugenberge Mittleres Saaletal. Dies resultiert aus der bereits erwähnten Tatsache, dass an Zeugenbergen i.d.R. allseits stark zerlappte Stufenhänge ausgebildet sind (vgl. Kap. 2.3.3.5), die die fortgeschrittene Auflösung dieser Erosionsreste dokumentieren. Die geringsten Buchtungswerte im Bereich der Schichtkämme sind auf das stärkere Schichteinfallen in Verbindung mit einer Abnahme der grundwasserbedingten Formung und der damit einhergehenden geringeren Zerschneidung des Stirnhanges zurückzuführen (SCHUNKE & SPÖNEMANN 1972, SCHMIDT 1988a). Der Dün hat innerhalb der Wellenkalk-Schichtstufenabschnitte mit einem Buchtungsindex von 1,8 den geradlinigsten Stufenverlauf. Dieser im Vergleich zu den anderen Wellenkalk-Schichtstufenabschnitten geringste Buchtungswert ist möglicherweise auf die Ausbildung eines Salzhanges im Zechsteinsalinar zurückzuführen, der sich nach STEINMÜLLER (1968) hier direkt unterhalb des Stufenhanges befindet. Alle übrigen Wellenkalk-Schichtstufenabschnitte weisen Buchtungswerte zwischen 2 und 3 auf und sind somit als normalausgebildet zu bezeichnen.

2.3.3.7 Neigungsrichtung und Neigungswinkel der Stufenhänge

Im Rahmen der Untersuchung zu analysierende, morphologisch wichtige Merkmale von Schichtstufenlandschaften sind die Neigungsrichtung und der Neigungswinkel der am Stufenaufbau beteiligten Gesteinsschichten (vgl. BLUME 1987). Letzterer bedingt die bereits beschriebene Unterscheidung zwischen Schichtstufen- und Schichtkammhängen.

Nach dem großräumig regionalen Schichteinfallen (Neigungsrichtung) können die Schichtstufenhängen grundsätzlich in Front-, Achter- und Diagonalstufenhänge unterteilt werden (BLUME 1987, SCHMIDT 1988a) (vgl. Abb. 2.6 und 2.10). Die Frontstufenhänge sind durch ein hangeinwärts gerichtetes Schichteinfallen charakterisiert, während bei Achterstufenhängen das Schichteinfallen hangauswärts gerichtet ist. Die Diagonalstufenhänge befinden sich, im Stufengrundriss betrachtet, an den Flanken der mehr oder weniger senkrecht in die Front- oder Achterstufen eingeschnittenen Täler und damit senkrecht zur regionalen Einfallsrichtung der Gesteinsschichten (BLUME 1987) (vgl. Abb.2.10).

Abb. 2.10: Neigungsrichtung der Schichten an Front-, Achter- und Diagonalstufenhängen

Die großräumige Schichtneigung und Neigungsrichtung der Wellenkalk-Schichtstufen- und Schichtkammabschnitte ist durch die bereits beschriebene, tektonisch bedingte, schüsselförmig strukturelle Lagerung der triassischen Gesteinsschichten im Thüringer Becken vorgegeben (vgl. Kap. 2.2). So fallen die Röt-Wellenkalkschichten der einzelnen Untersuchungsabschnitte hauptsächlich mit Neigungen zwischen 2 und 8° flach zum Zentrum des Thüringer Beckens ein (ROSENKRANZ 1966). Im Detail betrachtet, ergibt sich dabei folgendes Bild: An der Hainleite ist das großräumige Schichteinfallen mit 3 - 5° nach Süd bis Südwest gerichtet (DOCKTER 1962, 1963, DOCKTER & STEINMÜLLER 1993). Am Dün und an den Bleicheröder Bergen fallen die Schichten schwach nach Süd bis Südost ein (GIEBELHAUSEN 1872, NAUMANN 1904), wohingegen im Oberen Eichsfeld & Hainich ein flaches Schichteinfallen nach Ost bis Ostnordost (KAISER 1904, NAUMANN 1907) und im Bereich der Ohrdrufer Platte flach nach Nord bis Nordost (SCHMID 1889, Ziegenhardt & Jungwirth 1968) vorherrscht. Der 236 km lange WellenkalkSchichtstufenabschnitt der Ilm-Kalk-Platte ist im westlichen Bereich durch ein 2 - 8° Nord bis Nordost gerichtetes Schichteinfallen gekennzeichnet (FRITSCH 1892, ZIMMERMANN 1892, PUFF 1963). Im Gebiet südlich Jena ändert sich die Einfallsrichtung auf 1 - 3° Nordwest (SCHRÖDER 1929, GRUNDMANN 1998), um schließlich bei Jena und an den Zeugenberge des Mittleren Saaletales flach nach Westnordwest umzubiegen (NAUMANN 1915, DEUBEL 1964). Die triassischen Sedimente im Gebiet des Tautenburger Forstes besitzen ein flaches Nordwest- bis Nord-gerichtetes Schichteinfallen (SEIDEL & STEINMÜLLER 1993).

An den Wellenkalk-Schichtkämmen des Untersuchungsgebietes [Schmücke, östliche Hainleite, Teilbereiche des Oberen Eichsfeld & Hainich, Hörselberge (Karte 1)] steigen die Neigungswerte der Schichten auf über 20 ° an (vgl. Tab.2.7), wobei die Neigungsrichtung zum Zentrum des Thüringer Beckens zeigt und damit dem großräumigen Bild der strukturell-schüsselförmigen Gesteinslagerung entspricht. Aufgrund der an Schichtkämmen generell steil (> 10 - 12°) hangwärts einfallenden Schichtlagerung in Verbindung mit dem geradlinigen Verlauf dieser Abschnitte (vgl. Karte 2 und Kap. 2.3.3.6), sind die Stirnhänge als Sonderformen der Frontstufenhänge aufzufassen.

 Tab. 2.7:
 Länge, Schichtneigung und Neigungsrichtung der Wellenkalk-Schichtkämme des Untersuchungsgebietes

Wellenkalk-Schichtkämme	Länge	Schichtneigung/Neigungsrichtung
	(km)	(° / Himmelsrichtung)
Schmücke	5,0	28° / SW
Schichtkamm östl. Bereich der Hainleite	4,6	24° / SW
Oberes Eichsfeld & Hainich	Σ 5,2	
nördlicher Schichtkamm (vgl. Karte 1)		20° / NE
mittlerer Schichtkamm (vgl. Karte 1)		20° / E
südlicher Schichtkamm (vgl. Karte 1)		27° / N
Hörselberge	7,0	25° / NE

Großräumigere Abweichungen von der hauptsächlich zum Zentrum des Thüringer Beckens gerichteten Schichtlagerung sind am Ringgau und im Bereich der Gobert zu verzeichnen (vgl. Karte 1). Der Ringgau ist in seinem Zentrum durch einen tektonischen Grabenbruch (Netra-Graben) geliedert, zu dem die Schichteinfallsrichtung orientiert ist. Infolgedessen weist die Nordflanke des Ringgaus ein südwestwärts gerichtetes, die Südflanke ein nord- bis nordostwärts gerichtetes und die Westflanke ein süd- bis südwestwärts gerichtetes Schichteinfallen auf (MOESTA 1876). Die Gobert befindet sich zwischen den tektonischen Linien des Unterwerra-Sattels im Westen und dem Eichenberg-Gothaer Graben im Osten. Ihre Schichtlagerung ist durch zahlreiche Aufsattelungen und Einmuldungen modifiziert (vgl. KIRBIS 1950, RÖSING & WENZEL 1989, SCHENK 1992). Neben diesen großräumigeren Abweichungen vom normalen Schichtlagerungsbild, kommt es durch Subrosionserscheinungen im Bereich der Rötgipse mitunter zu kleinräumigeren atektonischen Schichtdeformationen (vgl. SCHNEIDER 1968). Auf diesen Sachverhalt wird im Ergebnissteil näher eingegangen.

Aus dem skizzierten Bild des regional großräumigen Schichteinfalles lassen sich durch untersuchungsabschnittsbezogene, einheitliche Expositionsklassifizierungen den Stufenhängen die entsprechenden Neigungsrichtungen zuordnen. Bezugspunkt dieser Zuordnung bildet der auf der Basis der topographischen Karte 1: 10.000 ermittelte Verlauf des Steilabfalls der Trauf, der aufgrund der Buchtung des Stufenhanges einen mehr oder weniger unregelmäßigen Verlauf aufweist. So sind bspw. die Süd- bis Südwest-exponierten Stufenhänge der Hainleite, entsprechend des hier vorherrschenden Süd- bis Südwest-gerichteten Schichteinfallens (vgl. oben), als Frontstufen ausgebildet, während die Nord- bis Nordost-exponierten Hänge Achterstufen und die Südwest- bis Nordwest- bzw. die Nordost- bis Südost-exponierten Hänge Diagonalstufen darstellen. Das sich entsprechend dieser Zuordnung für die einzelnen Wellenkalk-Schichtstufenabschnitte ergebende Verteilungsmuster von Front-, Diagonal- und Achterstufen ist in Karte 2 und Abbildung 2.11 dargestellt. Die Schichtkämme wurden aufgrund ihrer generell fronstufenähnlichen Ausbildung dabei nicht berücksichtigt.

Prozentuale Einteilung der untersuchten Schichtstufenhänge in Front-, Diagonal- und Achterstufenabschnitte (ohne Schichtkämme)

Im Gesamtgebiet dominieren mit ca. 42 % (ca. 402 km) die Diagonalstufenhänge, gefolgt von den Frontstufenhängen, die ca. 38 % (ca. 372 km) der Stufenhänge bilden. Achterstufenhänge (20 % = 206 km) treten demgegenüber deutlich zurück (vgl. Abb. 2.11). Innerhalb der Teilgebiete zeigt sich teilweise ein anderes Verteilungsbild. So sind an der Hainleite, dem Dün und dem Ringgau v.a. Frontstufen ausgebildet. An den Bleicheröder Bergen sind Front- und Achterstufen mit je 40 % Längenanteil gleich verteilt. Ähnlich verhält es sich an der Gobert, wo Front- und Achterstufenhänge je 30 % Längenanteil einnehmen. An der Ilm-Kalk-Platte sind mit je ca. 42 % die Front- und Diagonalstufenhänge gleichmäßig verteilt. In allen anderen Teilgebieten zeigt sich das für das Gesamtgebiet typische Verteilungsmuster mit einer Dominanz der Diagonalstufen, gefolgt von den Front- und Achterstufen.

2.3.3.8 Die Exposition der Schichtstufen- und Schichtkammhänge

Die Exposition der Wellenkalk-Schichtstufen- und Schichtkammhänge des Untersuchungsgebietes ist eine im Zusammenhang mit der räumlichen Variabilität der Massenverlagerungen äußerst kontrovers diskutierte Einflussgröße, die es entsprechend der Aufgabenstellung der Arbeit zu untersuchen gilt. Die Exposition der Stufenhänge wurde analog der Front-, Diagonal- und Achterstufen am Verlauf der Stufentrauf bestimmt. Die Zuordung der Stufenhänge erfolgte nach den unten aufgeführten üblichen 8 Expositionsklassen, die eine Breite von jeweils 45° aufweisen (vgl. BUNDESANSTALT FÜR GEOWISSENSCHAFTEN UND ROHSTOFFE 1994).

Expositionsklassen nach Bundesanstalt für Geowissenschaften und Rohstoffe (1994):

Norden	0 - 22,5° / > 237,5 - 360°	Süden	> 157,5 - 202,5°
Nordosten	> 22,5 - 67,5°	Südwesten	> 202,5 - 247,5°
Osten	> 67,5 - 112,5°	Westen	> 247,5 - 292,5°
Südosten	> 112,5 - 157,5°	Nordwesten	> 292,5 - 337,5°

In Karte 3 ist die Exposition der Schichtstufen- und Schichtkammhänge des Untersuchungsgebietes räumlich dargestellt. Für die einzelnen Untersuchungsabschnitte prozentual zusammengefasst, ergibt sich dabei das in Abbildung 2.12 aufgezeigte Verteilungsbild.

Entsprechend der naturräumlichen, annähernd ovalen Anordnung der Untersuchungsabschnitte in der Umrahmung des Thüringer Beckens (vgl. Karte 3) zeigt sich in der Expositionsverteilung der Stufenhänge für das gesamte Untersuchungsgebiet ein recht ausgeglichenes Bild (vgl. Abb. 2.12).

Abb. 2.12: Die Expositionsverteilung der Wellenkalk-Schichtstufen- und Schichtkammhänge des Untersuchungsgebietes

So sind die Stufenhänge mit den sich jeweils gegenüberliegenden Expositionsrichtungen prozentual relativ gleich häufig vertreten, was sich auch beim Vergleich der in Abbildung 2.12 enthaltenen Sonnen - und Schattenseiten widerspiegelt (49,8 % = 488 km der Stufenhanglänge zur Sonneseite; 50,2 % = 492 km zur Schattenseite exponiert).

Dabei ist im gesamten Untersuchungsgebiet (980 km Stufenhanglänge) eine leichte Dominanz der Nord- (17,6 % = ca. 172,5 km) und Süd-exponierten Stufenhänge (17.1 % = ca. 167,5 km) zu verzeichnen. Demgegenüber sind die Ost- und die West-exponierten Stufenhänge mit 8,3 % (ca. 81 km) bzw. 9,2 % (ca. 90 km) am seltensten vertreten.

Innerhalb der einzelnen Untersuchungsabschnitte ist die Expositionsverteilung erheblich differenzierter. Neben der Lage der einzelnen Abschnitte im Thüringer Becken ist hierfür die Art der Untersuchungsabschnitte (Zeugenberge, Schichtkämme) und in diesem Zusammenhang die Buchtung der Stufenhänge maßgeblich verantwortlich. Nord-exponierte Hänge dominieren an der Hainleite, am Ringgau und an den Zeugenbergen des Mittleren Saaletales. Die Südexposition dominiert an den Stufenhängen der Bleicheröder Berge, an der Gobert, an der Ilm- Kalk-Platte und am Tautenburger Forst. An der Ohrdrufer Platte ist die Mehrzahl der Stufenhänge nach Südost-exponiert. Nordwest-exponierte Stufenhänge dominieren im Oberen Eichsfeld & Hainich.

Auffällig ist, dass mit Ausnahme der Gobert die größeren Erosionsreste Bleicheröder Berge und Zeugenberge Mittleres Saaletal, aufgrund ihrer allseits ausgebildeten Stufenhänge eine ähnlich symmetrische Variation der Expositionsverteilung wie das Gesamtgebiet aufweisen (vgl. Abb. 2.12). Demgegenüber sind die annähernd geradlinig verlaufenden Schichtkämme Schmücke und Hörselberge mit jeweils nur einer dominierenden Expositionsrichtung (Schmücke NE; Hörselberge SW) durch die geringste Variation der Expositionsverteilung gekennzeichnet. Ähnlich, wenn auch nicht ganz so deutlich, verhält es sich am gering gebuchteten Stufenhang des Dün, an dem 41 % der Stufenhänge nach Norden exponiert sind.

Bei der Betrachtung der Expositionsunterschiede zwischen Sonnen- und Schattenseite zeigt sich, dass sowohl an der Schmücke (100 % der Schichtkammlänge), am Dün (81 %), an der Hainleite (71,3 %) als auch am Ringgau (52,8 %) die zur Schattenseite exponierten Stufenänge vorherrschen. Demgegenüber sind im Gebiet der Hörselbergen (97,7 %), der Ilm-Kalk-Platte (61,2 %), am Tautenburger Forst (59,2 %), an der Ohrdrufer Platte (56,7 %) und an der Gobert (54,5 %) die Mehrzahl der Stufen- bzw. Stirnhänge zur Sonneseite exponiert. Im Gebiet Oberes Eichsfeld & Hainich sowie an den Zeugenbergen des Mittleren Saaletales sind die zur Schatten- bzw. Sonnenseite exponierten Stufenhänge annähern gleich verteilt (vgl. Abb. 2.12).

2.3.4 Klimatische Verhältnisse des Untersuchungsgebietes

2.3.4.1 Niederschlagsverteilung

Das im Übergangsbereich vom maritim getönten Westeuropa zum kontinental bestimmten gelegene Osteuropa Untersuchungsgebiet wird dem Klimagebiet der deutschen Mittelgebirgsschwelle, speziell dem Klimabezirk des Mitteldeutschen Berg- und Hügellandklimas zugeordnet (HENDL 1994 IN: LIEDTKE & MARCINEK 1994). Dabei ist das Untersuchungsgebiet durch die Abnahme des ozeanischen Einflusses mit zunehmender Entfernung vom Atlantik von West nach Ost, den hypsometrischen Wandel der thermischen und hygrischen Verhältnisse sowie durch die im Großraum ausgeprägten Luv-Lee-Effekte gekennzeichnet (vgl. METEOROLOGISCHER UND HYDROLOGISCHER DIENST DER DDR 1953). Letztere resultieren aus der Beeinflussung der zu allen Jahreszeiten vorherrschenden, feuchtigkeitsbringenden Westwinde durch die orographischen Hindernisse der umgebenden, höheren Mittelgebirgsbereiche (Thüringer Wald, Harz, Oberes Eichsfeld) (vgl. KOCH 1953). Für die klimatische Kenngröße des mittleren Jahresniederschlages, der entsprechend der Fragestellung der Arbeit eine wichtige Rolle spielt, ergibt sich damit im großräumigen Untersuchungsgebiet ein differenziertes Bild, welches genauer in Karte 4 dargestellt ist. Die Darstellung basiert auf geokodierten, digitalen Niederschlagsdaten des DWD von 307 Stationen der Zeitreihen 1961 - 1990. Die Stationsniederschläge wurden mittels des Programms REGNIE (REGionalisierung räumlicher NIEderschlagsverteilungen) entfernungsabhängig für Rasterfelder von 1 km² räumlich interpoliert. Das Berechnungsverfahren beinhaltet die orographische Höhe, die geographische Breite und Höhe, die Exposition des Geländes und berücksichtigt die Korrektur des Windfehlers (schriftl. Mitt. des DWD 2000).

Der mittlere Jahresniederschlag erreicht auf den Stufenflächen des Untersuchungsgebietes Werte zwischen > 800 mm an den westlich und südwestlich gelegenen Schichtstufenabschnitten (Dün, Oberes Eichsfeld & Hainich, Ringgau, Ohrdrufer Platte) und 500 bis teilweise < 500 mm an den östlich gelegenen Gebieten (Schmücke, Hainleite, Ilm-Kalk-Platte nördl. Jena) (vgl. Karte 4). Die mit > 900 mm höchsten mittleren Jahresniederschläge werden an westlich gelegenen Gobert erreicht, wohingegen die großräumig geringsten Jahresniederschlägen (< 500 mm) im Gebiet der Schmücke zu verzeichnen sind. Die westlichen Gebiete mit ihren Höhenlagen bis über 500 m NN (vgl. Tab. 2.4) und ihren West- bis Nordwest-exponierten Stufenhangabschnitten befinden sich im Luv der atlantisch getönten West-Winde und erhalten damit 200 - 300 mm, z.T. bis über 400 mm mehr Jahresniederschlag als die östlicher gelegenen, kontinentaler geprägten Gebiete (Schmücke, Hainleite, Ilm-Kalk-Platte), die sich im Regenschatten vom Harz, Oberen Eichsfeld und Thüringer Wald befinden (MEYNEN & SCHMITHÜSEN 1959 - 1962). Die Leelage dieser östlichen Abschnitte wird jedoch durch den markanten Anstieg der Wellenkalk-Schichtstufe bis auf Höhenlagen um 400 - 500 m NN (vgl. Tab. 2.4) teilweise kompensiert, so dass die Stufenhänge und Stufenflächen im Vergleich zu ihren orographisch tiefer gelegeneren Vorländer durchschnittlich 50 - 200 mm mehr

Jahresniederschlag erhalten (vgl. Karte 4). Der im ausgesprochenen Lee zum Thüringer Wald und Oberen Eichsfeld & Hainich gelegene, orographisch tiefe zentrale Bereich des Thüringer Beckens (Straußfurt 145 m NN) ist mit mittleren Jahresniederschlägen unter 500 mm (Station Straußfurt: 475 mm) teilweise unter 450 mm (Station Arten: 444 mm) nicht nur der trockenste Raum innerhalb des Thüringer Beckens, sondern nach dem Gebiet um Aseleben im östlichen Harzvorland, auch das zweittrockensten Gebiete Deutschlands (KOCH 1953).

In Abbildung 2.13 sind, bezogen auf die Gesamtlänge der untersuchten Wellenkalk-Schichtstufenund Schichtkammabschnitte (980 km), die Unterschiede der mittleren Jahresniederschlagshöhen der Trauf-proximalen Stufenflächen, aufgeteilt in Niederschlagsklassen mit 50 mm-Intervallen, quantitativ zusammengefasst. Zudem sind die durchschnittlichen mittleren Jahresniederschlagshöhen der einzelnen Teilabschnitte, gewichtet nach den Längenanteilen innerhalb der entsprechenden Niederschlagsklassen, in dieser Abbildung aufgeführt. Für das Gesamtgebiet gilt, dass von den maximalen (> 900 mm) und minimalen (450 - 500 mm) mittleren Jahresniederschlägen im Untersuchungsgebiet generell nur sehr kurze, wenige Kilometer lange Teilabschnitte der Wellenkalk-Schichtstufe bzw. Schichtkämme betroffen sind. Demgegenüber empfängt die Mehrzahl der Trauf-proximalen Stufenflächen Jahresniederschläge von 600 - 850 mm. Insgesamt erhalten 62 % bzw. ca. 607 km der untersuchten Abschnitte durchschnittliche Jahresniederschläge von mehr als 700 mm, wohingegen 48 % bzw. ca. 373 km weniger als 700 mm Jahresniederschlag erhalten. Die durchschnittliche Jahresniederschlagshöhe, bezogen auf das gesamten Untersuchungsgebiet, beträgt 740 mm (vgl. Abb. 2.13).

Innerhalb der untersuchten Teilabschnitte kristallisieren sich deutlich die Gebiete mit höheren durchschnittlichen Jahresniederschlägen in der Reihenfolge: Gobert (840 mm), Dün (800 mm), Ringgau (795 mm), Bleicheröder Berge (780 mm) sowie Oberes Eichsfeld & Hainich (780 mm), Ohrdrufer Platte (755 mm) und Hörselberge (730 mm) heraus. Demgegenüber sind die Untersuchungsabschnitte Zeugenberge Mittleres Saaletal (675 mm), Hainleite (665 mm), Ilm-Kalk-Platte (650 mm), Tautenburger Forst (640 mm) und Schmücke (515 mm) durch z.T. wesentlich geringere durchschnittliche Jahresniederschläge gekennzeichnet. Innerhalb der Teilabschnitte hat die 98 km langen Hainleite Anteile an 7 Niederschlagsklassen (450 - 800 mm) und ist damit, bezogen auf ihre Gesamtlänge, der Stufenabschnitt mit der größten Jahresniederschlagsvariabilität (350 mm). Dies resultiert aus dem Südwest - Nordost gerichteten Verlauf dieses Stufenabschnittes von sehr geringen Niederschlägen südlich von Bad Frankenhausen zu den atlantisch getönten, höher gelegenen und stärker beregneten Abschnitten im Übergang zum Dün. Die mit maximal 100 mm geringsten Jahresniederschlagsvariabilitäten weisen die nur wenige Kilometer langen Teilabschnitte der Hörselberge und Schmücke auf (vgl. Abb.2.13).

Abb. 2.13:Prozentuale Zuordnung der Stufenhanglängen der untersuchten Wellenkalk-
Schichtstufen- und Schichtkammabschnitte zu den Klassen der mittleren jährlichen
Niederschlagshöhe im Bereich der Trauf-proximalen Stufenfläche

Der Jahresgang der Niederschläge im Untersuchungsgebiet ist am Beispiel verschiedener Klimastationen im Umfeld des Untersuchungsgebietes in Abbildung 2.14 dargestellt. Da der Hauptniederschlagsinput in das Stufenhangsystem v.a. auf der Stufenfläche erfolgt (vgl. Kap. 2.3.3.3), sollten sich die gewählten Klimastationen vorzugsweise auf dieser orographisch höher gelegenen und damit stärker beregneten Reliefeinheit befinden. Derartige Stationen standen jedoch nicht für alle Stufenhangabschnitte zur Verfügung, so dass auch Klimastationen in Tallagen mit berücksichtigt werden mussten. Demnach sind kleinere Abweichungen von der reellen durchschnittlichen jährlichen Niederschlagsverteilung am Stufenhang möglich. Um die Unterschiede der untersuchten Wellenkalk-Schichtstufenabschnitte zum zentralen Bereich des Thüringer Trockengebietes zu verdeutlichen, ist zudem eine im Zentrum des Thüringer Beckens gelegene Vergleichsstation aufgeführt. Die einzelnen Stationen wurden nummeriert (A - L) und sind entsprechend ihrer Lage in Karte 4 wiederzufinden.

Der Jahresgang der Niederschläge zeigt im gesamten Untersuchungsgebiet ein deutliches Maximum in den Sommermonaten Juni und Juli, wohingegen die geringsten Niederschläge in allen untersuchten Teilgebieten in den Monaten Februar bzw. März fallen (Abb. 2.14). Daneben ist v.a. an den atlantisch getönten, westlicheren Stufenhangabschnitten (Ringgau, Eichsfeld & Hainich, Dün) ein deutlich sekundäres Wintermaximum in den Monaten Dezember und Januar zu verzeichnen. Dieses tritt jedoch Richtung Zentrum des Thüringer Beckens deutlich zurück (vgl. Station H, L). Zum Teil ist ein weiteres sekundäres Maximum im Oktober zu erkennen, welches sich deutlich an den Stationen D, E, I, J, K abzeichnet.

Insgesamt nimmt der größte Bereich des Untersuchungsgebietes eine Zwischenstellung zwischen dem dominanten Sommerregentyp des Zentralen Thüringer Beckens zum Winterregentyp der höheren Mittelgebirge ein (vgl. DIETZE 1947). Dies verdeutlicht sich auch beim Vergleich der prozentualen Sommer (Mai - Oktober) und Winterniederschläge (November - April). Während in den atlantisch getönteren bzw. gebirgsrandnäheren, westlich und südwestlich gelegenen Untersuchungsabschnitten 40 bis fast 50 % der Jahresniederschläge vom November bis April fallen, sind dies an den östlichen bzw. zentraler gelegen Bereichen nur noch um die 35 % (vgl. Abb. 2.14).

Die Sommerniederschläge sind v.a. auf konvektive Niederschlagsereignisse infolge des Einströmens feuchtkühler Meeresluft aus westlichen Richtungen in das überhitzte Festland zurückzuführen (METEOROLOGISCHE UND HYDROLOGISCHER DIENST DER DDR 1953), wohingegen die Winterniederschläge aus frontengebundenen Advektivniederschlägen resultieren. Dabei sind die Sommerniederschläge sehr intensiv aber nur von kurzer Dauer, während die Winterniederschläge i.d.R. wesentlich länger anhaltend sind (KOCH 1953).

D E F G H I J K	Niederschlagstationen	Höhenlage Datenreihe Ø Jahres- % Winter % Sommer Quelle (Meter ü. NN) niederschlag (Nov-Apr) (Mai-Okt) (mm)	dten 390 1891-1930 633 45,5 54,5 DockTER (1963)	de 305 1971-1989 683 48,2 51,8 METEOROLOGISCHES DIENST DDR (19	335 1961-1999 662 46,7 53,3 DWD LEINEFELDE (schrift). Mitt. 2000	adt 336 1881-1930 703 44,1 55,9 REINHARDT (1934)	170 1891-1930 563 38,4 61,6 MÖLLER (1988)	395 1951-1970 816 43,6 56,4 TOUSSMINT (1979)	210 1891-1930 577 39,3 60,7 MÖLLER (1988)	280 1881-1930 532 35,5 64,5 REINHARDT (1934)	420 1891-1930 621 37,0 63,0 KAUF (1947)	300 1891-1930 579 36,3 63,7 KAUF (1947)	328 1891-1930 601 39,8 60,2 K∧∪F (1947)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
۵		Station Höh (Mete	Großbrendten	Bleicherode	Leinefelde	Heiligenstadt	Eschwege	Renda	Eisenach	Arnstadt	Drößnitz	Maddala	Wetzdorf	
B		sebiet (lainleite	Sleicheröder Berge	Dün	Oberes Eichsfeld	Gobert	Ringgau	Hörselberge	Ohrdrufer - Platte	Im - Kalk - Platte (nördl. Rudolstadt)	Im - Kalk - Platte (westl. Jena)	Tautenburger Forst	and the second

2.3.4.2 Verteilung von Starkniederschlägen

Neben der mittleren jährlichen Niederschlagshöhe ist die Verbreitung von Starkniederschlägen eine sich auf Massenverlagerungen auswirkende, klimatische Einflussgröße (vgl. Kap. 1.2). Starkniederschläge sind nach DYCK & PESCHKE (1995) Niederschläge, die im Verhältnis zur Niederschlagsdauer eine hohe Intensität haben und damit selten auftreten, z.B. durchschnittlich höchstens zweimal jährlich. Vom Untersuchungsgebiet existieren vom DEUTSCHEN 8.5 WETTERDIENST (1997)hochauflösende (8,5)х km) statistisch berechnete Starkniederschlagsdaten mit verschiedenen Intensitäten, Dauerstufen und Wiederkehrzeiträumen, die im Rahmen der Erstellung des KOSTRA-Atlas (vgl. DWD 1997) erhoben wurden. Die Berechnungen basieren auf Niederschlagsmessungen im Zeitintervall von 5 Minuten von deutschlandweit rund 3000 Stationen der Zeitreihe 1961 - 1990, die extremwertstatistisch analog der mittleren Jahresniederschlagshöhe unter Berücksichtigung ausgewertet und orographischer Gegebenheiten flächendeckend regionalisiert wurden (schriftl. Mitt. DWD 2000). Es liegen Niederschlagsintensitäten (in mm) für die Dauerstufe von 15 Minuten bis zu 72 Stunden berechneten Wiederkehrzeiträumen von 1 bis 100 Jahren vor, wobei die und Niederschlagsintensitäten innerhalb einer Dauerstufe mit steigender Wiederkehrzeit zunehmen. Da aus Kostengründen nicht alle Dauerstufen und Wiederkehrzeiträume der Starkniederschläge berücksichtigt werden konnten, wurden im Rahmen der Untersuchung zwei Intervalle näher analysiert. Zum einen wurden ein Starkniederschlagsereignis mit einer kurzen Dauer von 1 Stunde und einem Wiederkehrzeitraum von 1 Jahr, zum anderen ein Ereignis mit einer langanhaltenden Niederschlagsdauer von 48 Stunden und einem Wiederkehrzeitraum von 50 Jahren berücksichtigt. Dabei ist der erste Intervall typisch für die häufig auftretenden konvektiven Sommerniederschläge, wohingegen der zweite ein advektives. häufig Winterhalbjahr auftretendes im Starkniederschlagsereignis repräsentiert. Das räumliche Verteilungsbild der verschiedenen im Untersuchungsgebiet Niederschlagsintensitäten geht aus Karte 5 (Dauer: 1 h: Wiederkehrzeitraum: 1 a) und aus Karte 6 (Dauer: 48 h; Wiederkehrzeitraum: 50 a) hervor. Bezogen auf die Länge der Untersuchungsabschnitte ist dieses Verteilungsbild in Tabelle 2.8 quantitativ genauer dargestellt.

Wie die Karte 5 und Tabelle 2.8 verdeutlichen, sind innerhalb der für konvektive, sommerliche Starkniederschläge repräsentativen Dauerstufe von 1 Stunde und den Wiederholungszeitraum von 1 Jahr die Gebiete höchster Niederschlagsintensität die Stufenhänge vom Oberen Eichsfeld & Hainich, gefolgt von der Gobert, dem Ringgau und der Ohrdrufer Platte während die Schmücke, die Hainleite und der Tautenburger Forst die Untersuchungsgebiete mit dem geringsten Starkniederschlagsintensitäten dieser Dauerstufe darstellen. Im Zentrum des Thüringer Beckens werden die minimalsten Niederschlagsintensitäten dieses Dauerstufen-/Wiederkehrintervalls

erreicht und das, obwohl hier sommerliche Starkniederschläge den größten jährlichen Niederschlagsinput bewirken (vgl. oben). Die am Hainich zu vezeichnenden Maximalintensitäten (vgl. Karte 5) resultieren nach KOCH (1953) aus den häufig zu beobachtenden Aufschauklungseffekten bei Südwestgewittern im Lee des Thüringer Waldes und das Maximum der Ohrdrufer-Platte aus der unmittelbaren Nachbarschaft zu den gewitterreichen Gebirgsflanken des Thüringer Waldes. Insgesamt befinden sich von den 980 km langen untersuchten Wellenkalk-Schichtstufen- und Schichtkammabschnitten 26 % bzw. 255 km Stufenhanglänge innerhalb der Intensitätsklasse 14 - 15 mm, 32,7 % (rund 320 km Stufenhanglänge) in der Klasse 15 - 16 mm, 34,1 % (335 km) in der Klasse 16 - 17 mm und nur 7,2 % (70 in der im Untersuchungsgebiet höchsten Intensitätsklasse von 17 - 18 mm.

Tab. 2.8:Starkniederschlagsintensitäten verschiedener Dauerstufen und Wiederkehrzeiträume an den
Wellenkalk-Schichtstufen und Schichtkammabschnitte des Untersuchungsgebietes,
bezogen auf die Längen der Untersuchungsabschnitte in Prozent (Datengrundlage::
DEUTSCHER WETTERDIENST 1997)

Starkniederschlags-	Ant	Anteil der Starkniederschlagsintensitäten der entsprechenden Dauerstufen und Wiederkehrzeiträume an den Wellenkalk- Schichtstufen und Schichtkammabschnitten des Untersuchungsgebietes (%)										
intensitäten verschiedener Dauerstufen (D) und Wiederkehr- zeiträume (T) (mm)	Schmücke (5 km)	Hainleite (98 km)	Bleicheröder Berge (26 km)	Dün (43 km)	Oberes Eichsfeld & Hainich (299km)	Gobert (41 km)	Ringgau (71 km)	Hörselberge (7 km)	Ohrdrufer- Platte (65 km)	Ilm-Kalk-Platte (236 km)	Zeugenberge Mittleres Saaletal (64 km)	Tautenburger Forst (25 km)
			(D) 1Stu	nde / (7	T) 1Jah	r					
14 - 15	100	100	62,3	61,2	0	0	0	0	0,90	33,5	5,7	100
15 - 16	0	0	37,7	38,8	7,1	0	16,3	100	58,0	66,5	94,3	0
16 - 17	0	0	0	0	69,5	100	83,7	0	40	0	0	0
17 - 18	0	0	0	0	23,4	0	0	0	1,1	0	0	0
			(D) 4	8 Stun	den / (7	r) 50 J a	ahre					
70 - 90	100	73,0	53,2	32,2	0	0	29,2	100	100	100	100	72
90 - 110	0	27,0	46,8	67,8	100	100	70,8	0	0	0	0	28

Ein ähnliches, wenn auch insgesamt homogeneres Bild zeigt das Starkniederschlagsereignis mit der Dauerstufe von 48 Stunden und dem Wiederholungszeitraum von 50 Jahren (vgl. Karte 6, Tab. 2.8). Bezogen auf die Stufenhanglängen der Gebiete sind auch hier die Gobert und das Obere Eichsfeld & Hainich (je 100 %) gefolgt vom nördlichen Bereich des Ringgau (70,8 %) und den westlichen Gebieten des Dün (67,8 %) sowie der Bleicheröder Berge (46,8 %) durch höhere Starkniederschlagsintensitäten gekennzeichnet. Abgesehen von der Schmücke sind demgegenüber die Hainleite, die Hörselberge, die Ilm-Kalk-Platte, die Zeugenberge des Mittleren Saaletales, die größten Gebiete des Tautenburger Forstes sowie die Ohrdrufer Platte, deren gebirgsrandnahen Schichtstufenhänge innerhalb des einstündigen Niederschlagsintervalls noch maximale Starkniederschläge erhalten haben die Gebiete mit (vgl. oben). den geringen Niederschlagsintensitäten des für die advektiven Starkniederschläge typischen Intervalls.

2.3.4.3 Temperaturverhältnisse

Die jährlichen Durchschnittstemperaturen nehmen von > 8,5 °C im zentralen Thüringer Becken (MEYNEN & SCHMITHÜSEN 1959 - 1962) zu den randlichen und orographisch höher gelegenen Wellenkalk-Schichtstufenhängen verschieden stark ab. Während der östliche Abschnitt der Hainleite, die Schmücke und die Stufenhangabschnitte im thermisch begünstigten Mittleren Saaletal (vgl. GRUNDMANN 1998) noch Jahresdurchschnittstemperaturen von kn app über 8 °C aufweisen, sind die Stufenhänge der Ilm-Kalk-Platte nördlich von Rudolstadt mit Durchschnittstemperaturen von 7 – 8 °C gekennzeichnet. Das Obere Eichsfeld & Hainich sowie die Stufenhangabschnitte der Thüringer Wald nahen Ohrdrufer-Platte sind mit Jahresdurchschnittstemperatur von < 7 °C die kühlsten Gebiete des Untersuchungsraumes & SCHMITHÜSEN 1959 - 1962, PUFF 1968). Von hieraus steigen die (MEYNEN Jahresdurchschnittstemperaturen zum Dün, zum Ringgau und den Hörselbergen auf Werte von 7 - 7,8 °C an (MEYNEN & SCHMITHÜSEN 1959 - 1962).

2.3.5 Hydrologische Charakteristik des Untersuchungsgebietes

2.3.5.1 Fließgewässer

Das großräumige Untersuchungsgebiet gehört anteilig zu zwei überregional bedeutenden Einzugsgebieten: dem Elbe- und dem Wesersystem. Die Entwässerung erfolgt damit insgesamt in die Nordsee. Die Oberflächenwasserscheide zwischen beiden Flusssystemen verläuft durch die westlichen Bereiche des Untersuchungsgebietes (vgl. Karte 7). Aufgrund der hier anstehenden verkarstungsanfälligen Muschelkalk- bzw. Wellenkalkgesteine ist dabei zu beachten, dass die Oberflächenwasserscheide nicht identisch sein muss mit der unterirdischen Wasserscheide des Karstentwässerungssystems.

Bezogen auf die Lage der Oberflächenwasserscheide gehören die Wellenkalk-Schichtstufen- und Stirnhänge der Untersuchungsabschnitte Oberes Eichsfeld & Hainich, Hörselberge, Ringgau und der Gobert zum Einzugsgebiet des Wesersystems, während die Stufenhänge der Ohrdrufer-Platte, der Ilm-Kalk-Platte, des Tautenburger Forstes, der Zeugenberge des Mittleren Saaletals, des Düns, der Hainleite, der Bleicheröder Berge sowie der Schichtkamm der Schmücke zum Einzugsgebiet der Elbe gehören (vgl. Karte 7). Von der Gesamtlänge der untersuchten Wellenkalk-Schichtstufenhänge und Stirnhangabschnitte sind demnach 418 km (43 %) dem Wesersystem tributär und 562 km (57 %) dem Elbesystem tributär.

Die das Untersuchungsgebiet hydrologisch trennende Wasserscheide hat im Untersuchungsgebiet einen sehr ungleichmäßigen Verlauf (vgl. Karte 7). Im Norden tritt sie innerhalb des Ohmgebirsgagrabens in das großräumige Untersuchungsgebiet ein, verläuft dann weiterhin an diese Störungszone gebunden durch das flach gewellte Bundsandsteingebiet bei Leinefelde,um dann südlich von Leinefelde am tektonisch gestörten Stufenhang das Obere Eichsfeld vom Dün zu trennen. Im zentralen Oberen Eichsfeld & Hainich verläuft die Wasserscheide sehr nahe der Stufentrauf. Hier verschiebt sich aufgrund der hohen Reliefenergieverhältnisse der Stufenhänge zur Werra das Wesersystem auf Kosten des Elbesystems. Südlich von Mühlhausen biegt der Verlauf der Wasserscheide nach Südost um und erreicht hier fast die westliche Stadtgrenze von Erfurt (vgl. Karte 7). Damit hat das Einzugsgebiet der Weser über die Flüsse Hörsel und Nesse ihren östlichsten Vorposten im Untersuchungsgebiet erreicht und greift damit bereits weit in das zentrale Thüringer Becken ein.

Die Entwässerung des Untersuchungsgebietes erfolgt durch größere Vorfluter von regionaler Bedeutung. So sind die Wellenkalk-Schichtstufenhänge des Dün, der Bleicheröder Berge und der Hainleite dem Flusslauf der Wipper tributär. Die Entwässerung des Stirnhanges der Schmücke erfolgt über kleinere Nebenbäche unmittelbar in die Unstrut, die schließlich nach Querung der Querfurter Platte, nördlich von Naumburg, in die Saale mündet. Die Stufenhänge der Ilm-Kalk-Platte entwässern bis auf kleinere Stufenhangabschnitte bei Stadtilm und dem Zeugenberg Singener Berges (alle nordwestliches Ende der Ilm-Kalk-Platte vgl. Karte 1) in den Flusslauf der Saale. Die Saale als größter Flusslauf im elbetributären Untersuchungsgebiet entwässert die östlich der Saale gelegenen Zeugenberge des Mittleren Saaletales (Wöllmisse, Hufeisen, Gleißberg), den Tautenburger Forst sowie die westlich gelegene Ilm-Kalk-Platte. Dort, wo bei Dornburg der Röt unter die Erdoberfläche abtaucht, verlässt die Saale die Wellenkalk-Schichtstufenhänge der Ilm-Kalk-Platte und des Tautenburger Forstes, um nach der Durchquerung des engen, im Muschelkalk angelegten, mäandrierenden Durchbruchstal bei Naumburg wieder in die Wellenkalk-Schichtstufenlandschaft einzutreten. Die Ilm entwässert den bereits erwähnten Zeugenberg des Singener Berges und einen kleineren Stufenhangabschnitt bei der Ortslage Stadtilm (nordwestlicher Bereich der Ilm-Kalk-Platte). Die Wellenkalk-Schichtstufenhänge der Ohrdrufer-Platte entwässern direkt oder über kleiner Flussläufe (Wipfra) in die Gera, die südlich der Ortslage Plaue aus der Vereinigung von Zahmer und Wilder Gera hervorgeht und nördlich von Erfurt in die Unstrut mündet. Der Stirnhang der Hörselberge ist der westlich von Eisenach in die Werra mündende Hörsel tributär und gehört damit bereits zum Einzugsgebiet der Weser. Ebenfalls zum Einzugsgebiet der Weser gehörend, entwässern die Stufenhänge des Ringgau in die Werra. Gleiches gilt für den Erosionsrest der Gobert und für die stark zerlappten Stufenhänge vom Oberen Eichsfeld & Hainich. Dabei übernimmt die südwestlich des Ohmgebirges in unmittelbarer Nachbarschaft zur Wasserscheide des Elbesystems entspringende Leine die Entwässerung der stark zergliederten Stufenhänge des nordöstlichen und nördlichen Oberen Eichsfeld.

Die Anbindung der meisten Stufen- bzw. Stirnhänge an das regionale Entwässerungsnetz erfolgt durch kleinere episodische oder perennierende Bachläufe vornehmlich der 1. bis 2. Ordnung entsprechend des Strahlerschen Ordungsprinzipes. Diese können auf der Stufenfläche in Form weitegespannter Talmulden beginnen, die sich dann mit dem Eintritt in den Stufenhang zu Tiefenlinien mit kerbsohlen- bis kerbtalförmigen Querschnitt wandeln. Im Einzelnen können die den Stufenhang gliedernden Täler in Stirn und Hangtäler unterteilt werden, wobei die Stirntäler von der Fußfläche aus weit in das Hangsystem eingreifen und damit maßgeblich die bereits beschriebene Buchtung der Stufenhänge beeinflussen während die Hangtäler lediglich auf den Stufenhang beschränkt bleiben (vgl. SCHUNKE 1968). Generell sind perennierend wasserführende Täler im Bereich des Oberhanges der Wellenkalk-Schichtstufe sehr selten. Vielmehr sind hier die meisten Tiefenlinien als Trockentäler ausgebildet, die nur bei langanhaltenden Niederschlägen oder Starkniederschlagsereignissen eine zeitlich begrenzte Entwässerungsfunktion übernehmen (vgl. BEYER 1997).

Auf den tonig-merglig ausgebildeten, wasserstauenden Rötsockelhängen nimmt die Wasserführung der Täler zu. Hier entspringt die Mehrzahl der kleineren Fließgewässer erster und zweiter Ordnung.

2.3.5.2 Quellen

Die Speisung der kleineren Fließgewässer im Sockelhang erfolgt v.a. durch zahlreiche Quellaustritte im Bereich der Röt-/Wellenkalk-Schichtgrenze. Die große Häufigkeit der Quellaustritte macht diesen lithologischen Grenzbereich zum bedeutendsten Quellhorizont im Thüringer Becken (MEYNEN & SCHMITHYSEN 1959 -1962, HOPPE & SEIDEL 1974). Das im verkarstungsanfälligen Muschelkalk schnell in den Klüften versinkende Niederschlagswasser wird im Bereich des tonigen Röt gestaut und kann dann an der Röt-/Wellenkalk-Schichtgrenze (nach HECHT 1966 im Bereich der Myophorienschichten) als Schichtquelle oder als talwärts verschleppte Schuttquelle zu Tage treten. Die Quellaustritte sind dabei durch bandartig diffuse oder punktartig konzentrierte, perennierende oder episodische Wasseraustritte charakterisiert. Morphologisch treten diese oftmals als nischenartige Buchten mit halbkreisförmigen Grundriss in Erscheinung, deren Entstehung auf die Quellerosion zurückzuführen ist.

Die Quellen zeigen für Karstquellen typische niederschlagsabhängige, schnell verlaufenden Schüttungsschwankungen (vgl. SOLLING 1963 IN: PUFF 1963, ZIEGENHARTD & JUNGWIRTH 1968, , JORDAN & WEDER 1995, SEIDEL 1995). Diese beruhen auf der hohe Kommunikation von Oberflächen und Grundwasser infolge des großvolumigen und durch Verkarstungsprozesse erweiterten Kluftsystem im Wellenkalk, in dem das auf die Stufenfläche auftreffende Niederschlagswasser schnell versinken kann. Die innerhalb des Wellenkalk-Schichtstufenreliefs am stärksten beregnete Stufenfläche übernimmt damit eine wichtige Funktion für die Grundwasserneubildung im Stufenhangsystem, wobei sie selbst ein ausgesprochenes Wassermangelgebiet darstellt (vgl. SEIDEL 1995).

Hydrochemisch spiegelt sich in den Quellen der Röt-/Muschelkalkgrenze die lithologische Beschaffenheit der Muschelkalk- bzw. Wellenkalk- und Rötsedimente wider. Die Mineralisation der Wässer ist dabei in Abhängigkeit vom Grad der Ablaugung der Rötgipse und vom Ausmaß der Verkarstung des Muschelkalkes z.T. erheblichen Schwankungen unterworfen. Die Wässer sind mit Härtegraden zwischen $< 40^{\circ}$ bis $> 70^{\circ}$ insgesamt als hart bis sehr hart zu bezeichnen. Diesbezüglich weiteführende Untersuchungen liegen u.a. von HECHT (1966), ZIEGENHARDT & JUNGWIRDT (1968), SEIDEL (1995), BEYER (1997) sowie von JORDAN & WEDER (1999) vor.

2.3.5.3 Die räumliche Verbreitung der Fließgewässer und Quellen

Die räumliche Verbreitung der Fließgewässer und Quellen an den Wellenkalk-Schichtstufenhängen des Untersuchungsgebietes ist in Karte 7 dargestellt, deren Anzahl und Dichte bezogen auf die Stufenhanglänge der einzelnen Untersuchungsabschnitte in Tabelle 2.9.

Tab. 2.9:Anzahl von Fließgewässern und Quellen im Bereich der Wellenkalk-Stufenhangabschnitte
des Untersuchungsgebietes und das Verhältnis Stufenhanglänge zur Fließgewässer- bzw.
Quellhäufigkeit (ohne Schichtkämme)

Untersuchungs-	Anzahl	Anzahl	Verhältnis	Verhältnis
abschnitt	Fließgewässer	Quellen	Stufenhanglänge zur	Stufenhanglänge zur
			Fließgewässerhäufigkeit	Quellhäufigkeit
(Länge in km)			(km Stufenhang / 1	(km Stufenhang / 1 Quelle)
			Fließgewässer)	
Hainleite (93,4)	16	18	5,8	5,1
(ohne Schichtkamm)				
Dün (43)	32	30	1,3	1,4
Bleicheröder Berge	17	20	1,3	1,3
(26)				
Oberes Eichsfeld &	113	126	2,6	2,3
Hainich (293,8)				
(ohne Schichtkämme)				
Gobert (41)	33	42	1,2	0,9
Ringgau (71)	28	45	2,5	1,6
Ohrdrufer Platte (65)	36	40	1,8	1,6
Ilm-Kalk-Platte (236)	55	59	4,3	4,0
Tautenburger Forst	4	3	6,3	8,3
(25)				
Zeugenberge Mittl.	27	17	2,4	3,7
Saaletal (64)				
Gesamt (958,2)	361	400	2,7	2,4

Großräumig betrachtet zeigt sich, dass in den Gebieten mit höheren durchschnittlichen Jahresniederschlägen (Dün, Gobert, Oberes Eichsfeld & Hainich, Ohrdrufer Platte) (vgl. Kap. 2.3.4.1) mehr Quellen und mehr perennierende Fließgewässer im Sockelhangbereich als in den Gebieten mit geringeren mittleren jährlichen Niederschlägen (Hainleite, Schmücke, Ilm-Kalk-Platte, Tautenburger Forst und Zeugenberge Mittleres Saaletal) (vgl. Karte 7) zu verzeichnen sind. In Abbildung 2.15 ist dieser Zusammenhang als Vergleich der durchschnittlichen Jahresniederschläge der einzelnen Untersuchungsabschnitte mit dem Dichteindex der Quellenbzw. Fließgewässerhäufigkeit (Anzahl der Quellen bzw. Fließgewässer erster und zweiter Ordnung im Bereich der Röt-/Wellenkalkschichtgrenze dieser Abschnitte, bezogen auf 1 km Stufenhanglänge) quantitativ zusammengefasst.

Wie daraus hervorgeht, nimmt mit einem Korrelationskoeffizienten von r = 0,84 die Anzahl der Fließgewässer erster und zweiter Ordnung und mit einem r = 0,93 die Anzahl der Quellen mit zunehmenden mittleren Jahresniederschlagshöhen zu (vgl. Abb. 2.16). Demnach ist das niederschlagsreichste Gebiet der Gobert gleichzeitig durch die höchste und das niederschlagsarme Gebiet des Tautenburger Forstes durch die geringste Quell- bzw. Flussdichte gekennzeichnet (vgl. Tab. 2.9). Abweichungen von diesem generellen Bild ergeben sich lediglich an den Schichtkammabschnitten des Untersuchungsgebietes. Hier fließt das Wasser den steilen hangwärts gerichteten Schichteinfallen folgend, entgegengesetzt der Stirnhänge unterirdisch ab. Dadurch sind Stirnhänge, selbst in Gebieten mit höheren mittleren Jahresniederschlägen (z.B. Oberes Eichsfeld & Hainich), generell arm an Fließgewässern bzw. Quellen. Aus diesem Grund wurden in Tabelle 2.9 bzw. Abbildung 2.15 die Schichtkämme auch nicht berücksichtigt.

Die regionalen Häufigkeitsunterschiede der Grund- bzw. Karstwasser gespeisten Quellen und Fließgewässer beruhen auf regional unterschiedlichen Grundwasserneubildungsraten. Die Grundwasserneubildungsrate, ausgedrückt in Millimeter pro Jahr, resultiert aus dem unterirdischen Abflussanteil des potentiellen Gesamtwasserdargebotes, d.h. jener theoretischen Summe, die sich aus der Differenz der mittleren jährlichen Gebietsniederschlagshöhe und der jährlichen Gebietsverdunstung (Evapotranspiration) ergibt. Bei einer für das Untersuchungsgebiet

charakteristischen mittleren jährlichen Gebietsverdunstung von ca. 400 mm (vgl. THÜRINGISCHER MINISTERIUM FÜR LANDWIRTSCHAFT, NATURSCHUTZ UND UMWELT 1996) ergeben sich für die lithologisch-strukturell ähnlich aufgebauten Wellenkalk-Schichtstufenabschnitte des Untersuchungsgebietes, großräumig betrachtet, die gleichen Unterschiede im potentiellen Gesamtwasserdargebot wie bei der bereits geschilderten Verteilung der mittleren jährlichen Niederschlagshöhen. Für die einzelnen Untersuchungsabschnitte ist dieser Zusammenhang in Tabelle 2.10. verdeutlicht.

Tab. 2.10:Durchschnittliches potentielles Gesamtwasserdargebot der einzelnenUntersuchungsabschnitte in Abhängigkeit vom durchschnittlichen Jahresniederschlag bei
einer realen Gebietsverdunstung von 400 mm/a

Untersuchungsabschnitte	Ø Jahres-	Ø potentielles
	niederschlagshöhe	Gesamtwasserdargebot
	(mm/a)	(mm/a)
Schmücke	515	115
Hainleite	655	255
Dün	800	400
Bleicheröder Berge	770	370
Oberes Eichsfeld & Hainich	780	380
Gobert	840	440
Ringgau	795	395
Hörselberge	730	330
Ohrdrufer-Platte	755	355
Ilm-Kalk-Platte	650	250
Tautenburger Forst	640	240
Zeugenberge Mittleres Saaletal	675	275
Gesamt	740	340

Wie daraus hervorgeht, sind die Gebiete die sich durch hohe mittlere Jahresniederschläge auszeichnen (Gobert, Dün, Ringgau), auch die Gebiete, die ein höheres potentielles Gesamtwasserdargebot aufweisen.

Vom jährlichen potentiellen Gesamtwasserdargebot stehen im Mittel für Thüringen ca. 30 % der Grundwasserneubildung zur Verfügung (THÜRINGISCHER MINISTERIUM FÜR LANDWIRTSCHAFT, NATURSCHUTZ UND UMWELT 1996). Auf den verkarstungsanfälligen, stark geklüfteten Wellenkalken, in dem das Niederschlagswasser schnell in das Hangsystem versinken kann, ist die Grundwasserneubildungsrate jedoch wesentlich größer. Wie Untersuchungen vom THÜRINGISCHEN MINISTERIUM FÜR LANDWIRTSCHAFT, NATURSCHUTZ UND UMWELT (1996) zeigen, gehen hier nahezu 100 % des potentiellen Gesamtwasserdargebotes in die Karst- bzw. Grundwasserneubildung über. Morphologisch äußert sich dies darin, dass perennierende Fließgewässer im Bereich der für den Niederschlagsinput bedeutenden Stufenfläche weitgehend fehlen (vgl. Kap. 2.3.3.3).

Entsprechend der vom Jahresniederschlag abhängigen Unterschiede im potentiellen Gesamtwasserdargebot (vgl. Tab. 2.10) ist auch die Grundwasserneubildungsrate regional verschieden. So sind die Gebiete, die durch hohe mittlere Jahresniederschläge gekennzeichnet sind, großräumig betrachtet auch die Gebiete, die höhere Grundwasserneubildungsraten aufweisen (vgl. THÜRINGISCHER MINISTERIUM FÜR LANDWIRTSCHAFT, NATURSCHUTZ UND UMWELT 1996). Bezogen auf die einzelnen Untersuchungsabschnitte, nehmen dabei von der Schmücke (~ 100 mm/a) über den Tautenburger Forst, die Ilm-Kalk-Platte, die Hainleite, die Zeugenberge des Mittleren Saaletales, die Hörselberge, die Ohrdrufer Platte, die Bleicheröder Berge, das Obere Eichsfeld & Hainich, den Ringgau, den Dün und die Gobert (> 400 mm/a) die Grundwasserneubildungsraten zu. Dies spiegelt sich schließlich in den beschriebenen Häufigkeitsunterschieden der Quellen und Fließgewässer im Untersuchungsgebiet wider (vgl. Abb. 2.15).

3. Allgemeine Charakteristik der Massenverlagerungen an der Wellenkalk-Schichtstufe im Thüringer Becken

3.1 Verlagerungsmechanismen

An den Massenverlagerungen der Wellenkalk-Schichtstufe im Thüringer Becken sind entsprechend der Terminologie der UNESCO (1993) (vgl. Kap. 1.3) Sturz-, Kipp-, Gleit- (Rutsch), Drift- (Kriech), Fließbewegungen und deren Kombinationen beteiligt. Die am häufigsten vorkommenden Verlagerungsarten sind Gleit- und Driftbewegungen (vgl. BEYER 2002). Hierbei bewegen sich mehr oder weniger große Wellenkalkblöcke auf der plastifizierten Rötunterlage mit meist kriechender Geschwindigkeit im Millimeterbereich pro Jahr talwärts. Die Driftbewegungen sind in ihrem Anfangsstadium durch eine fast ausschließlich horizontale Bewegungskomponente charakterisiert. Bei den Gleitungen lassen sich je nach Bewegung der Blöcke, Kippung, Rotation und komplex-interne Bewegungen unterscheiden (vgl. Abb. 3.1) (BEYER & SCHMIDT 1999). Bei letzteren aber auch bei fortgeschrittenen Driftbewegungen können neben den einfachen lateralen bzw. vertikalen Bewegungsrichtungen weitere, schräg zu diesen Grundrichtungen ausgerichtete Bewegungskomponenten auftreten (vgl. Abb. 3.1). Wie die Geländebefunde zeigen, ist letzteres die Regelerscheinung.

Abb. 3.1: Blockverlagerungstypen an der Wellenkalk-Schichtstufe im Thüringer Becken

Nach JOHNSEN & KLENGEL (1973) werden die Gleit- und Driftbewegungen zusammengefasst auch als Blockverlagerungen bezeichnet. Entsprechend der Tiefenlage der Gleitfläche, die sich im Röt und damit bis mehrere zehn Meter unter der Geländeoberfläche befindet, handelt es sich bei den Blockverlagerungen um tiefe bis sehr tiefe Massenverlagerungen (vgl. ZARUBA & MENCEL 1961). Wie Untersuchungen von BERRISFORD & MATTHEWS (1997), von VAN ASCH et al. (1999) und von TILCH (1999) verdeutlichen, sind tiefe Massenverlagerungen v.a. dadurch charakterisiert, dass sie in ihrer Kinematik stark abhängig sind von den absoluten jährlichen Niederschlagseinträgen in das Hangsystem und damit v.a. vom jährlichen Grundwasserdargebot und weniger vom oberflächennah anstehenden Wasser, welches eher für flache Massenverlagerungen von Bedeutung ist.

Fließbewegungen erfolgen an der Wellenkalk-Schichtstufe ausschließlich im plastifizierten Rötmaterial, wobei sie aber auch Bewegungen im hangenden Wellenkalk induzieren können. Bei diesem Massenverlagerungstyp kann sich oberflächennahes Wasser beeinflussend auswirken.

Sturzverlagerungen in Form von Steinschlag oder Felsstürzen sind an Steilwände im Wellenkalkmassiv bzw. letztere an exponierte Blockschollen gebunden (BEYER & SCHMIDT 1999). Spektakuläre Felsstürze stehen oft im Zusammenhang mit Kipp- und Gleitereignissen, sind aber im Vergleich zu den Blockverlagerungen insgesamt seltenere Erscheinungen (vgl. WEBER 1951, ACKERMANN 1959, MÜCKE 1962). Aufgrund der sehr schnellen Verlagerung großer Massen (bis > 200000 m³) bergen sie im Bereich der Wellenkalk-Schichtstufe jedoch das größte Gefahrenpotential für Mensch und Infrastruktur.

3.2 Formenschatz

Die Verlagerungsmechanismen bedingen einen typisch morphologischen Formenschatz, der u.a. von KIRBIS (1950), ACKERMANN (1959) und JOHNSEN & KLENGEL (1973) beschrieben wurde. In Abbildung 3.2 ist der an der Wellenkalk-Schichtstufe anzutreffende Hauptformenschatz der Massenverlagerungen zusammengefasst dargestellt. Weiterführende fotodokumentarische Beispiele sind im Anhang A aufgeführt.

Als erste Anzeichen von Blockbewegungen öffnen sich 5 - 20 m, in Ausnahmefällen bis über 100 m hinter dem Stufenrand, sogenannte Zerr- oder Abrißspalten mit Öffnungsweiten bis zu 2 m und Tiefen bis > 10 m. Die Spalten können über 100 m Länge erreichen und verlaufen subparallel bis spitzwinklig zur Trauf. Oftmals sind die Spalten von Baumwurzeln überspannt (vgl. Anhang A) oder aber auch von Humus überdeckt. Durch Humus verhüllte Spalten treten in Form morphologisch weniger deutlicher, linear aneinander gereihter Depressionen im Gelände meist deutlich in Erscheinung.

Mechanisch sind die Spaltenbildungen auf initiale translative Driftbewegungen zurückzuführen, die durch fehlende bzw. geringe Vertikalversatzbeträge und nicht vorhandene Schichtumorientierungen im Vergleich zum festen Massiv gekennzeichnet sind (Abb. 3.1).

Bei gleichzeitigem Einsinken der Schollen in das plastifizierte Rötmaterial, wie es für fortgeschrittene Driftbewegungen charakteristisch ist (UNESCO 1993), entstehen sogenannte Treppenstufen mit Vertikalversatzbeträgen im Dezimeterbereich (vgl. KIRBIS 1950). Diese seltenen, i.d.R. an Gebiete mit intensiven Spaltenbildungen gebundenen Massenverlagerungskörper ähneln in ihrer Form den noch zu beschreibenden Absatzschollen. Eilt bei diesen Bewegungen der Fuß der Scholle dem noch am Massiv angelehnten Top voraus, können Spaltenhöhlen entstehen (vgl. Abb. 3.3; Anhang A). Beispiele dafür sind u.a. im Oberen Eichsfeld (z.B.: Thomasbrücke bei Martinfeld) (Abb. 3.3.) oder im Gebiet der Ohrdrufer Platte (z.B.: Kammerlöcher bei Angelroda) zu finden. Bekannter sind die außerhalb des Untersuchungsgebietes gelegene Goetz-Höhle bei Meiningen oder die Eisgrube am eingefallenen Berg bei Themar (vgl. JOHNSEN 1984).

Abb. 3.3: Spaltenhöhle an der Thomasbrücke bei Martinfeld (Oberes Eichsfeld & Hainich)

Der genannte Formenschatz ist typisch für die initialen Bewegungsphasen am Wellenkalk-Schichtstufenhang. Die Bewegungen können Jahrzehnte bis Jahrhunderte dauern (JOHNSEN 1984) und sind auf den unmittelbaren Bereich der Wellenkalksteilkante beschränkt. Mit steigenden Bewegungsbeträgen ändern sich der Formenschatz und die Kinematik der sich verlagernden Blöcke. Die Bewegungen sind meist komplexer Natur und generell durch Schichtumorientierungen und Lagerungsstörungen im Vergleich zum festen Massiv gekennzeichnet. Zudem können sich die Verlagerungsgeschwindigkeiten erhöhen (vgl. JOHNSEN 1984).

Die bereits erwähnten Absatzschollen sind sehr häufig auftretende Massenverlagerungsformen am Wellenkalk-Schichtstufenhang, die morphologisch den seltener auftretenden Treppenstufen ähneln. Diese, als Flachformen zu beschreibenden Verlagerungskörper, sind durch das Fehlen hangwärtiger Hohlformen, durch interne Rotationen (vgl. Abb. 3.1) und, im Unterschied zu den Treppenstufen, durch größere Flächenausdehnungen und Volumina bei gleichzeitig größeren Vertikalversatzbeträgen charakterisiert. Ähnlich der Treppenstufen sind Absatzschollen sowohl in den abrißwandnahen Oberhangbereichen (vgl. Abb. 3.2) im Unterschied zu diesen v.a. aber auch im Mittel- und Unterhangbereich zu finden (vgl. Anhang A).

Aus den Zerrspalten können sich mit zunehmenden Verlagerungsbeträgen bis über 20 m tiefe Abrißschluchten mit markant hangwärtigen Abrißwänden (vgl. Abb. 3.4) und talwärtig vorgelagerten, felsbastionsähnlich aufragenden Blockschollen entwickeln. Letztere werden entsprechend ihrer akzentuierten Morphologie als "Mauerschollen" bezeichnet (KIRBIS 1950). Besitzen die Mauerschollen noch eine einseitige Verbindung zur Abrißwand, werden diese in der Literatur auch als Türschollen aufgeführt (vgl. ACKERMANN 1959). Markante Abrißschluchten sind in den topographischen Karten oftmals als "Teufels-" oder "Diebeskrippen" bzw. als "Schwedenlöcher" aufgeführt. Der als Top bezeichnete, oberste Bereich der Abrißwand kann mit dem Steilabfall der Trauf identisch sein (vgl. Abb. 3.4 - linkes Bild), oder er liegt einige Meter tiefer als dieser (vgl. Abb. 3.4 – rechtes Bild).

Abb. 3.4: Beispiele für Abrißwände an Massenverlagerungsgebieten an der Wellenkalk-Schichtstufe im Thüringer Becken

Mit fortschreitender Bewegung gleiten die Blöcke zunehmend in Richtung Unterhang. Zudem werden mit höherem Alter und der damit verbundenen Erosion die Formen abgerundeter und ausgeglichener. Aus den "Mauern" entstehen sogenannte "Wallschollen" mit hangwärtigen "Gräben" und schließlich "Rückenschollen" mit hangwärtigen "Mulden" (Terminologie nach KIRBIS 1950) (Abb. 3.2). Die Vertikalversatzbeträge dieser Massenverlagerungskörper können bis über 80 m, die Horizontalversatzbeträge bis über 250 m erreichen.

Die von der Mauer- zur Rückenscholle abnehmende Schroffheit der Formen ist im Gelände deutlich an abnehmenden Höhendifferenzen vom Top der Scholle zur hangwärtigen Hohlform und an abnehmenden Flankeninklinationen zu erkennen. Damit verbunden, nimmt die Schuttummantelung, die Bodenbildung und die Vegetationsbedeckung von der Mauer- zur Rückenscholle zu. So streichen an den akzentuierteren Wällen die verlagerten Gesteinspakete noch oberflächennah aus, wohingegen die Rückenschollen bereits gänzlich von Schutt verhüllt sind.

Die mit teilweise > 300 m Horizontal- und > 100 m Vertikaldistanz am weitesten von der Trauf bzw. der Abrißwand entfernt liegenden Verlagerungskörper sind die nach ACKERMANN (1958) als "Fußschollen" bezeichneten Massenverlagerungsformen (vgl. auch HAß 1996). Diese, wie Inseln bereits weit im Unterhang liegenden großvolumigen Blockschollen, machen sich durch eine vom Sockelhang stark abweichende, schanzentischartige Morphologie (steile talwärtige Flanke und flach hangwärts einfallender schanzentischartiger Top) im Gelände deutlich bemerkbar (vgl. Abb. 3.5 und Anhang A). Fußschollen sind generell durch stark interne Rotationen (asequente Rutschungen) auf kreiszylindrischen Gleitflächen im Röt gekennzeichnet (Abb. 3.1). Erkennbar ist dies an der Schichtlagerung mit teilweise über 30° steilem hangwärtigen Schichteinfallen.

Abb. 3.5: Eine Fußscholle und deren Lagerungsverhältnisse am Stirnberg nordöstlich der Ortschaft Rödelwitz (Ilm-Kalk-Platte)

Die bereits erwähnten Sturzverlagerungen (Felsstürze) bilden die spektakulärsten und gleichzeitig gefährlichsten Massenverlagerungen am Wellenkalk-Schichtstufenhang. In ihrem Auftreten sind

sie an exponierte, talwärts gekippte Mauerschollen gebunden, deren obere Bereiche abstürzen (vgl. SCHUNKE 1971). Dabei erreichen die Sturzbahnen Längen bis zu 350 m, bei verlagerten Volumen in Größenordnungen bis > 200000 m³. Nach der Sturzverlagerung bleibt von der ehemaligen Mauerscholle ein von Blöcken und Schutt ummantelter Schollenstumpf stehen (vgl. Abb. 3.2), wobei die abgestürzten Massen chaotisch gelagerte Blockhalden bilden. Schlagen die verstürzten Wellenkalkblöcke auf einen durchfeuchteten Sockelhang, kann es durch die Wucht des Aufpralls zu Fließbewegungen im Rötmaterial kommen (undrained loading). Dabei wird das Rötmaterial ausgepresst und schiebt sich als Fließzunge, erdgletscherartig talwärts (vgl. MARTIN 1965). Kombinierte Verlagerungen dieser Art (Sturz- und Fließbewegungen) werden nach ACKERMANN (1958) auch als "Sturzfließungen" bezeichnet. Die Sturzfließungen erfolgen meist im Zusammenhang mit extremen meteorologischen Ereignissen (vgl. ACKERMANN 1958, JOHNSEN & KLENGEL 1973, SCHMIDT 1988b).

Als Ausgangsform für Sturzverlagerungen sind die Massenverlagerungsgebiete, in denen Mauerschollen auftreten, die Bereiche am Wellenkalk-Schichtstufenhang, von denen ein besonders hohes potentielles Gefahrenrisiko ausgeht. Im Hinblick auf die in dieser Arbeit vorzunehmende Beurteilung des Gefahrenpotentials in Verbindung mit der Ausweisung von Risikogebieten (vgl. Kap. 1.5), ist die Kenntnis der Lage der Massenverlagerungsgebiete mit Mauerschollen von besonderer Bedeutung.

3.3 Formenassoziationen, Untergliederung und Ausmaße der Massenverlagerungsgebiete

Der in Abbildung 3.2 dargestellte Formenschatz kann sich in einem Massenverlagerungsgebiet sowohl in horizontaler als auch in vertikaler Abfolge vergesellschaften. Dabei weisen die Massenverlagerungskörper in ihrer vertikalen Abfolge eine staffelartige Anordnung auf (vgl. BEYER 2002). Insgesamt können die einzelnen Formen in unterschiedlicher Kombination auftreten, wobei innerhalb eines Massenverlagerungsgebietes nicht alle Formen vorkommen müssen. Einzelne, v.a. breitere Verlagerungskörper weisen z.T. unterschiedliche Bewegungsrichtungen auf. So kann eine Mauerscholle einseitig kippen, während ein anderer Bereich rotiert. Dabei können die Schollen zerreißen, wobei sich sekundäre Abrißwände und Tochterschollen bilden (vgl. BEYER 1997).

Entsprechend der allgemeinen vertikalen Untergliederung eines Massenverlagerungsgebietes nach KLENGEL & PASEK (1974) in (A) Abrißgebiet, (B) Mittlere Bewegungszone und (C) Massenverlagerungsfuß ergibt sich hinsichtlich der beschriebenen Formen am Wellenkalk-Schichtstufenhang das in Abbildung 3.6 dargestellte Bild.

Abb. 3.6:Unterteilung eines Massenverlagerungsgebietes nach KLENGEL & PASEK (1974)(Quelle: WENZEL 1991)

Das Abrißgebiet (A) befindet sich im Oberhangbereich und ist durch steile und oftmals vegetationslosen Abrißwände mit fehlender oder initialer Bodenbildung sowie durch die unmittelbar vorgelagerten Schollenformen (Spalten, Treppenstufen und Mauerschollen) gekennzeichnet. Im Bereich von Sturzfließungen befinden sich in Zone (A) die Schollenstümpfe als Relikte ehemaliger Mauerschollen, deren oberer Bereiche abgestürzt sind. I.d.R. sind die abrißwandnahen Formen die schroffsten im gesamten Massenverlagerungsgebiet, was insbesondere für die Mauerschollen zutrifft. Häufiger fehlen aber auch die frischen Formen und Abrißwandproximal befinden sich weniger akzentuierte Absatz-, Wall- oder Rückenschollen. In solchen Bereichen ist die Abrißwand meist weniger markant ausgebildet, die Bodenbildung und die Vegetationsbestockung ist weiter fortgeschritten, was insgesamt auf ein erhöhtes Alter dieser Massenverlagerungen hindeutet.

Die Mittlere Bewegungszone (B) entspricht dem flacheren unteren Oberhang bzw. Mittelhangbereich (Grenzbereich Röt/Wellenkalk). In vielen Massenverlagerungsgebieten ist hier die Mehrzahl der Verlagerungskörper lokalisiert. Der Formenschatz dieser Zone besteht hauptsächlich aus weniger akzentuierten und insgesamt älter wirkenden Absatz-, Wall- und Rückenschollen bzw. im Bereich von Sturzfließungen aus verstürzten Blöcken. Verallgemeinert ist diese Zone durch eine unübersichtliche Anordnung der Verlagerungskörper gekennzeichnet, was u.a. auf sekundäre Abrisse und Zerreißungserscheinungen zurückzuführen ist. Die Formen sind teilweise mit bis zu mehreren Meter mächtigen Wellenkalkschutt verhüllt. Die Boden- und Vegetationsentwicklung ist im Vergleich zur Zone (A) weiter vorgeschritten.

An der sich anschließenden Massenverlagerungsstirn (C) sind morphologisch deutlich ausgeprägte Schollen mit Ausnahme von Fuß- und Absatzschollen seltener. Häufiger treten wulstartige Aufschiebungen und Auspressungen von Rötmaterial auf, die auf hangaufwärtig erfolgte Schollenbewegungen zurückzuführen sind. Morphologisch besonders markant und großflächig sind solche Formen an der Massenverlagerungsstirn von Sturzfließungen zu finden. Insgesamt erfolgt in Zone C der Übergang zu den flacher geneigten Stufensockelbereichen. An der Stirn der Massenverlagerungsgebiete können Schuttquellen auftreten (vgl. WENZEL 1991).

Die Massenverlagerungsgebiete erstrecken sich Trauf-parallel zusammenhängend auf Breiten zwischen mehreren 10 m bis zu mehreren Kilometern, wobei die Länge der Gebiete, gemessen vom Abriß zur Massenverlagerungsstirn bis über 300 m betragen kann. Dementsprechend betragen die Flächen zwischen mehreren tausend bis zu mehreren hunderttausend Quadratmetern. Die innerhalb eines Massenverlagerungsgebietes verlagerten Volumina bzw. Massen können dabei erheblich sein. So sind Größenordungen von mehreren Millionen Kubikmetern bzw. mehreren Millionen Tonnen verlagerten Materials keine Seltenheit. Wie Untersuchungen von BEYER (1997) zeigen, kann bereits eine Mauerscholle ein Volumen von 300000 m³ und ein Gewicht von 750000 Tonnen erreichen. Fußschollen können diese Dimensionen bei weitem übertreffen (vgl. GRABNER 1970, ZIEGENHARDT & JUNGWIRTH 1971).

3.4 Alterseinordnung der Massenverlagerungen

Eine zeitgenaue absolute Alterseinordnung der Massenverlagerungen an der Wellenkalk-Schichtstufe im Thüringer Becken ist mit Schwierigkeiten verbunden (vgl. Kap. 1.4). Die morphologischen Befunde in Verbindung mit den Ergebnissen vorliegender dentrochronologischer, pollenstratigraphischer Untersuchungsmethoden (vgl. BAUM & SCHMIDT 2001) erlauben jedoch einige allgemeingültige Aussagen. Ausgehend von den morphologischen Befunden zeigen dies bereits ACKERMANN (1959, 1977) für Massenverlagerungskörper an der Wellenkalk-Schichtstufe sowie EISENBRAUN & ROMMEL (1986) für Massenverlagerungskörper an Keuper-Schichtstufenhängen in Baden-Würtemberg auf.

Die im Abrißgebiet am Oberhang gelegenen Mauerschollen und Spaltenbildungen sowie die dazugehörigen schroffen, wandartig versteilten Abrißwände sind entsprechend ihrer frisch akzentuierten Morphologie mit Böschungen bis 90°, der fehlenden Bodenbedeckung und der nur

schütteren Vegetation als die jüngsten Zeugnisse der Massenverlagerungsprozesse anzusprechen. Wie Bewegungsmessungen von JOHNSEN 1981; JOHNSEN & SCHMIDT 2001 sowie WENZEL (1991) belegen, sind an Mauerschollen und Spalten rezente Bewegungen zu verzeichnen, die die Aktualität dieser jungen Verlagerungsformen belegen. SAHLING (2002) konnte mit Hilfe dentrochronologischer Methoden frühere Bewegungsaktivitäten an Spalten datieren, wobei die zeitlich jüngeren Verlagerungsaktivitäten weiter aufgelöst werden konnten (vgl. Kap. 1.4). Auch Säbelwuchs und umgestürzte Bäume bilden zusätzliche Indikatoren, die auf rezente Aktivität dieser Massenverlagerungsformen hinweisen (vgl. SCHMIDT 1988b). Entsprechend der insgesamt frischen Morphologie der Mauerschollen, Spaltenbildungen und Abrißwände sind ca. ≤ 200 Jahre als grober Richtwert des Maximalalters dieser Formen zu veranschlagen. Damit sind diese Formen in Anlehnung an ACKERMANN (1959, 1977) als rezent bis subrezent zu bezeichnen.

Die an Mauerschollen gebundenen, morphologisch heute noch deutlich in Erscheinung tretenden Sturzfließungen gehören ebenfalls zu den jüngeren Verlagerungsformen an der Wellenkalk-Schichtstufe im Thüringer Becken. In Chroniken ist der Zeitpunkt einzelner Verlagerungen mitunter jahres- oder tagesgenau belegt (vgl. JOHNSEN 1974, SCHMIDT 1988b, SCHMIDT & BAUM 1998). In Tabelle 1.1 sind diesbezüglich einige historische und rezente Beispiele aufgeführt (vgl. Kap. 1.1). Auch die Bestockung des Sturzmateriales mit Bäumen liefert wichtige Hinweise zur Feststellung eines Mindestalters. Zudem bilden von erdgletscherartigen Fließzungen umflossene Bäume weitere Anhaltspunkte der Alterseinordnung. Die heute noch sichtbaren Sturzverlagerungen sind i.d.R. als historische (ab dem 15. Jh.) bis rezente Massenverlagerungsformen anzusprechen (vgl. ACKERMANN 1959).

Problematischer ist die Alterseinordnung der Absatz-, Wall- und Rückenschollen sowie der Spaltenbildungen in Form verhüllter Depressionen. Aufgrund ihrer durch die Schuttverhüllung weniger akzentuierten Morphologie, den damit verbundenen geringeren Böschungswinkeln der Verlagerungskörper und der Abrißwände (i.d.R. < 35°), der i.d.R. geschlossenen Vegetationsbedeckung (i.d.R. Waldbestockung älter 100 a) und der fortgeschritteneren Bodenbildung und Humusakkumulation sind diese Massenverlagerungsformen im Vergleich zu den Mauerschollen und frischen Spaltenbildungen generell als älter einzuschätzen. Die genannten Verlagerungskörper sind rezent inaktiv, können aber unter bestimmten Umständen (z.B. Hangversteilung, Abtragen des Widerlagers) reaktiviert werden (vgl. JOHNSEN 1974b, KRÜMMLING et al 1975). Nach exemplarisch pollenanalytischen Untersuchungen von SCHMIDT & BAUM (1998) und BAUM & SCHMIDT (2001) konnte das Mindestalter von Rückenschollen mit jünger als Subboreal (ab 2500 v Chr.) datiert werden, wobei davon auszugehen ist, dass der eigentliche Verlagerungsakt noch wesentlich früher erfolgte (SCHMIDT & BAUM 1998, S. 41). Nach ACKERMANN (1959, 1977) sind die weniger akzentuierten Rücken- und Absatzschollen

Form sowie Spaltenbildungen in schuttverhüllter Depressionen als alte Massenverlagerungsgenerationen des frühen Holozäns anzusprechen, die damit einige tausend Jahre älter als die historischen bis rezenten Formen sind. Die Wallschollen weisen jedoch im Vergleich zu den Rückenschollen steilere Böschungen (> 30°), weniger Schuttummantelung und somit auch weniger intensive Vegetationsbedeckung auf. Sie sind damit in ihrem Habitus insgesamt stärker akzentuiert, womit sie rein morphographisch als genetisch jüngerer einzuschätzen sind. Nach ACKERMANN (1959) entsprechen diese Formen der jüngeren Generation der historischen Massenverlagerungen, die in ihrer Entstehung möglicherweise mit der kleinen Eiszeit (1550 - 1850 n.Chr.), welche nach jüngeren Untersuchungen von BERRISFORD & MATTHEWS (1997) in Nordeuropa eine Phase erhöhter Massenverlagerungsaktivität war, in Verbindung zu bringen sind. Demnach müsste das Alter der Wallschollen zwischen 450 und 150 Jahren betragen.

Die nachweislich ältesten Verlagerungskörper an der Wellenkalk-Schichtstufe im Thüringer Becken sind die Fußschollen (vgl. ACKERMANN 1958, 1959, 1977). Sofern diese Verlagerungskörper singulär auftreten, sind in den Massenverlagerungsgebieten deutlich ausgebildete Abrißwände nicht mehr zu verzeichnen. Die wichtigsten Anhaltspunkte der Alterseinordung der Fußschollen sind erhalten gebliebene, z.T. mehrere Meter mächtige, vielgliedrige Deckschichtenkomplexe und oder in situ erhalten gebliebene Lößaufwehungen. Lößaufwehungen über Massenverlagerungskörpern werden u.a. von DOCKER & STEINMÜLLER (1993) von Massenverlagerungsgebieten der westlichen Hainleite südlich der Ortschaft Hainrode beschrieben. Deckschichtenkomplexe an den bis über 300 m vom Stufenhang entfernt liegenden Fußschollen sind oftmals als Schuttquellen für Wegebaumaßnahmen gut aufgeschlossen. In Abbildung 3.7 sind diesbezüglich zwei Beispiele aufgeführt. Das linke Foto in Abbildung 3.7 zeigt einen auf einer Fußscholle aufgeschlossenen Deckschichtenkomplex an der Lokalität Zietschkuppe, nördlich der Ortschaft Löberschütz (Tautenburger Forst), das rechte Bild einen auf einer Fußscholle gelegenen Deckschichtenkomplex an der Lokalität Stirnberg, nordöstlich der Ortschaft Rödelwitz (Ilm-Kalk-Platte).

Der Habitus der Deckschichtenkomplexe weist auf die typisch periglazialmorphologischen Bildungsbedingungen hin. So sind die Längsachsen der Skelettschuttstücke parallel zum Hanggefälle eingeregelt, was auf solifluidalen Transport hindeutet (vgl. SEMMEL 1985). Innerhalb der vielschichtigen Ablagerungen lassen sich Schichten mit gröberen Skelettkomponenten und stärker löß(lehm)-befrachteten Schichten, die mitunter von humosen Steinsohlen abgeschlossen sind, erkennen. Die lößhaltigen Schichtglieder weisen auf äolische Prozesse, die lößlehmhaltigenauf nachträgliche solifluidale Umlagerungen hin.

Abb. 3.7: Typische mehrgliedrige Deckschichtenkomplexe auf Fußschollen

Nach VÖLKEL (frdl. schriftl. Mitt. vom 08.05.2000) sind die im Bereich der in Abbildung 3.7 im linken Foto dargestellten Fußschollen vorgefundenen vielgliedrigen Deckschichtenkomplexe Anzeichen für deutlich ältere Bildungszeiten als LGM (Last Glacial Maximum). Wie Untersuchungen von SEMMEL (1985) und FRÜHAUF (1991, 1992) verdeutlichen, können löß(lehm) befrachtete Deckschichtenkomplexe auch am Ende des Pleistozäns, insbesondere jungdryaszeitlich entstanden sein. Bezogen auf die Alterseinordung der Fußschollen ergibt sich damit ein Mindestalter von ca. 11000 Jahren. Diesbezüglich weiterführende Untersuchungen stehen bislang noch aus.

Zusammenfassend ist festzuhalten, dass in der Reihenfolge: Spaltenbildungen (in Form frischer Öffnungen), Mauerschollen, Sturzfließungen, gefolgt von Wallschollen, gefolgt von Rücken- und Absatzschollen, das als grober Richtwert aufzufassende, morphographisch abgeleitete Alter der Massenverlagerungsformen zunimmt, wobei die Entstehungszeit dieser Formen insgesamt im Holozän zu suchen ist. Die nachweislich ältesten Massenverlagerungsformen an der Wellenkalk-Schichtstufe im Thüringer Becken sind die Fußschollen, deren Entstehungsalter im Pleistozän liegt. Entsprechend der Assoziation verschieden alter Massenverlagerungsformen in einem Massenverlagerungsgebiet (vgl. Kap. 3.2) müssen die Massenverlagerungsgebiete zu verschiedenen Zeiten wiederholt aktiv gewesen sein. Auf ähnliche Sachverhalte in stratigraphisch vergleichbaren Untersuchungsgebieten weisen u.a. KRAUTER & STEINGÖTTER (1983), CARRARA et al. (1991), THEIN (1999 in: BIBUS & TERHOSRT 1999) und TILCH (1999) hin.

4. Methodische Vorgehensweisen bei der Erkundung und Analyse der Massenverlagerungsgebiete und der zu untersuchenden Steuerungsfaktoren

4.1 Vorbemerkungen

Entsprechend der Zielstellung der Arbeit musste sowohl die Lage, die Ausdehnung, das Formeninventar als auch die Ausprägung der zu analysierenden potentiellen Steuerungsfaktoren von jedem Massenverlagerungsgebiet ermittelt werden. Zusätzlich sollte auch der Gesamtstufenhang, d.h. auch jene Hangabschnitte ohne Massenverlagerungen hinsichtlich der Ausprägung einzelner Faktoren näher charakterisiert werden (vgl. Kap. 1.5). Diesbezüglich wurden bereits in Kapitel 2 ausführlichere Angaben gemacht.

Die für die Untersuchung erforderlichen Daten wurden im Gelände und unter Einbeziehung weiterer Datenquellen erhoben. Die angewandten Methoden der Datenerhebung und Datenverarbeitung werden im Folgenden vorgestellt.

4.2 Feldarbeiten

Die Grundlage der Untersuchung bildete die Geländekartierung der Massenverlagerungsgebiete an den Wellenkalk-Schichtstufenhängen des Untersuchungsgebietes. Luftbildkartierungen erwiesen sich aufgrund der mit durchschnittlich 92 % annähernd geschlossenen Waldbedeckung des Stufenhanges (vgl. Kap. 2.3.7) und der damit im Zusammenhang stehenden Verhüllung der Massenverlagerungsformen als nicht geeignet. Auch die für das Untersuchungsgebiet im Maßstab 1:25.000 flächendeckend vorliegenden geologischen Karten (GK25) bildeten keine zufriedenstellende Basis für die Lageerkundung der Massenverlagerungsgebiete (vgl. Kap. 1.4).

Im Rahmen der Geländekartierungen wurden alle morphologisch deutlich in Erscheinung tretenden Massenverlagerungsgebiete, die Trauf-parallel breiter als 10 m sind und sich außerhalb von größeren tektonischen Störungen befinden, aufgenommen. Die Ausgrenzung der tektonisch gestörten Gebiete erfolgte in Anlehnung an die GK 25 bzw. in Anlehnung an die tektonischen Karten von WEBER (1955) und SEIDEL (1995). Die Kartiergrundlagen bildeten topographische Karten im Maßstab 1:10 000 (TK 10) (vgl. Kap. 8). Kartiert wurde nach der Querprofilmethode von DEMECK (1976), wobei der Stufenhang sowohl an der Trauf, als auch im Mittel- bzw. Unterhangbereich begangen und damit mindestens zweimal traversiert wurde. Um spätere Zuordnungen zu ermöglichen, wurden die aufgenommenen Gebiet durchgehend nummeriert. Im Gelände wurden von jedem Massenverlagerungsgebiet folgende Parameter erfasst:

- geometrische Grundgrößen (Länge, Breite, Fläche)
- Ausprägung der Massenverlagerungskörper (*Formenschatz*) sowie deren Lagebeziehungen (*Staffelanzahl*)
- Ausprägung des Stufenhanges (*Stufenhangtyp*, Lage der Abrißwand, Schichtneigung und Neigungsrichtung)
- hydrologische Gegebenheiten (Quellen) und Anzeichen von Subrosionserscheinungen im Röt (Erdfälle in Verbindung mit atektonischen Lagerungstörungen)
- Lagebeziehungen zu infrastrukturellen Gegebenheiten (*Straßen, Wege, Versorgungsleitungen etc.*)

Die Aufnahme der geometrischen Grundgrößen der Massenverlagerungsgebiete erfolgte mittels eines Lasermessgerätes der Marke LEM 300-GEO der Firma Jenoptik. Die Grundgrößen wurden dabei wie folgt bestimmt (vgl. Abb. 4.1).

Abb. 4.1: Ermittlung der morphometrischen Parameter eines Massenverlagerungsgebietes

Die Breite der Massenverlagerungsgebiete (B) wurden Trauf-parallel im Bereich der Abrißwand gemessen. Die Längen (L) der Massenverlagerungsgebiete, bezogen auf die Horizontale, wurde von der Abrißwand zur Massenverlagerungsstirn bestimmt (vgl. Abb. 4.1). In Gebieten wo die Massenverlagerungsstirn einen sehr unregelmäßigen Verlauf hat, was v.a. bei sehr breiten Massenverlagerungsgebieten häufig zu verzeichnen ist, wurde die kürzeste (Lmin) und längste (Lmax) horizontale Distanz zur Stirn ermittelt. Aus diesen Werten wurde eine durchschnittliche Länge (ØL) der Gebiete errechnet. Aus der Länge bzw. durchschnittlichen Länge und der Breite

der Massenverlagerungsgebiete konnte die mittlere Flächegröße (ØF) für jedes Gebiet errechnet werden (vgl. Abb. 4.1).

Die Aufnahme des Massenverlagerungsformenschatzes erfolgte in Anlehnung an die, in Kapitel 3 dargestellten Klassifizierung, wobei im Einzelnen zwischen den 7 Massenverlagerungsformen Spalten, Mauer-, Wall-, Rücken-, Absatz- und Fußschollen sowie Sturzfließungen unterschieden wurde. Dabei musste überprüft werden, welche der entsprechenden Massenverlagerungsformen in einem Massenverlagerungsgebiet vorkommen. Zudem wurde versucht, die in vertikaler Abfolge häufig vorzufindende staffelartige Anordnung der Massenverlagerungskörper (vgl. Kap. 3) zu erfassen (vgl. Abb. 4.1). Ausgewiesen wurde jeweils die in einem Gebiet maximal zu beobachtende Staffelanzahl. In sehr breiten, unübersichtlichen Gebieten mit einer großen Anzahl chaotisch gelagerter Massenverlagerungskörper war dies teilweise mit Schwierigkeiten verbunden, so dass die hier ausgewiesene Staffelanzahl als Richtwert aufzufassen ist.

Die Bestimmung der Ausprägung des Stufenhanges an den von Massenverlagerungen betroffenen Stufenhangabschnitten erfolgte in Anlehnung an die in Kapitel 2.3.3 vorgestellte Nomenklatur. Hinsichtlich der Art des Stufenhangtyps wurde generell zwischen Trauf-, Trauf mit Walm- und Walm-Stufenhang unterschieden (vgl. Kap. 2.3.3.2). Die Höhenlage der Abrißwand wurde parallel zum Steilabfall der Trauf (Hangneigungen > 18°) entweder direkt mittels eines Höhenmessers (Thommen Classic) bzw. indirekt mittels dem LEM 300-GEO bestimmt. Die lokalen Schichtneigungen der Abrißwände wurde mit einem 360° Geologenkompasses der Firma FPM Holding GmbH bestimmt. Ermittelt wurden der Fallwinkel (in Grad) und die Fallrichtung (in Grad) (Clar-Wert) (z.B. 10/270, d.h. die Schichten fallen mit 10° nach Westen ein). In sehr breiten Massenverlagerungsgebieten wurden mehrere Messungen durchgeführt und wenn möglich, ein für das Gebiet typischer Mittelwert gebildet. In einer Anzahl von Massenverlagerungsgebieten konnten aufgrund schlechter Aufschluss- bzw. engräumig stark wechselnder Lagerungsverhältnisse die Schichtlagerung nicht bestimmt werden.

Sowohl Quellen und Anzeichen von Subrosionserscheinungen (Erdfälle) als auch infrastrukturelle Gegebenheiten wie Straßen, Wege, oberirdische Versorgungsleitungen, Siedlungs- und Nutzbauten die im Bereich der Massenverlagerungsgebiete vorkommen, wurden, sofern sie nicht in den 1:10.000 Karten enthalten waren. bei der Geländekartierung aufgenommen. Die Infrastruktureinrichtungen wurden insbesondere im Bereich der Mauerschollengebiete berücksichtigt, da diese aufgrund ihrer Morphologie die Ausgangsformen für spektakuläre Felsstürze bzw. Sturzfließungen sind (vgl. Kap. 3) und damit die Bereiche mit der höchsten potentiellen Gefährdung für Mensch und Infrastruktur darstellen.

Um die Lagebeziehungen der einzelnen Massenverlagerungskörper am Stufenhang zu verdeutlichen, wurden von zwei exemplarischen Massenverlagerungsgebietsausschnitten mit Hilfe eines elektronischen Tachymeters (Rec Elta RL) der Firma Zeiss hochaufgelöste 3D-Modelle erstellt. Die Vermessungen erfolgten mittels der Anpeilung von Prismenreflektoren, mit denen das Gelände in ca. 5 m Abständen abgerastert wurde.

4.3 Ableitung der Steuerungsfaktoren aus Karten und anderen Quellen

Von jedem Massenverlagerungsgebiet und teilweise auch vom Gesamtstufenhang wurden folgende, bereits in Kapitel 1.3 erwähnte, potentielle, geologisch-morphologische und klimatologische Steuerungsfaktoren ermittelt (vgl. Kap. 1.5):

- (1) Lithologisch-strukturelle Eigenschaften des Stufenbildners*
- (2) Lithologisch-strukturelle Eigenschaften des Sockelgesteins*
- (3) Mächtigkeit des Stufenbildners
- (4) Mächtigkeit des Sockelgesteins
- (5) Mächtigkeitsrelation
- (6) Schichtneigung*
- (7) Neigungsrichtung*
- (8) Einfluss der Rötgipssubrosion nach morphologischen Befunden
- (9) Morphometrische Lage zur Erosionsbasis (Vertikal-, Horizontaldistanzen, Anstiegsverhältnisse)
- (10) Lage im Stufengrundriss
- (11) Exposition*
- (12) Lage zum Gewässernetz*
- (13) Häufigkeit von Hangquellen*
- (14) Mittlere jährliche Niederschlagshöhe und –Niederschlagsverteilung*
- (15) Höhe und Verteilung von Starkniederschlägen*

(* Die grau hinterlegten Parameter wurden vom Gesamtstufenhang, d.h. auch jenen Stufenhangabschnitten ohne Massenverlagerungen bestimmt) (vgl. Kap. 1.5)

Die bereits beschriebenen, großräumig identischen, lithologisch-strukturellen Eigenschaften von Stufenbildner (1) und Sockelgestein (2), wurden aus den geologischen Erläuterungen (z.B. PUFF 1963, DOCKTER & STEINMÜLLER 1993 u.a.) bzw. aus weiterführender Literatur (z.B. SEIDEL 1992) entnommen. An einem exemplarischen Massenverlagerungsgebiet erfolgten quantitative Untersuchungen zur Korngrößenzusammensetzung im Röt und qualitative Untersuchungen zur Tonmineralogie, deren Ergebnisse bereits im Kap. 2.3.2.2 dargestellt wurden. Die diesbezüglich angewandten Labormethoden werden abschließend in diesem Kapitel kurz vorgestellt.

Zur Bestimmung der Faktoren: (3) Mächtigkeit des Stufenbildners, (4) Mächtigkeit des Sockelgesteins, (5) Mächtigkeitsrelation und (9) geometrische Lage zur Erosionsbasis wurden von jedem Massenverlagerungsgebiet Hangprofile erstellt, in denen der gesamte Stufenhang vom 4° Fußpunkt (untere Begrenzung des Stufenhanges im Bereich der 4° Böschungslinie bzw. vorgelagerten Tiefenlinie) bis zur Trauf (obere Begrenzung des Stufenhanges am > 18° Steilabfall) (vgl. Kap. 2.3.3.2) erfasst ist. Abbildung 4.2 zeigt zwei Beispielprofile, weitere sind in Anhang B aufgeführt.

Abb. 4.2: Exemplarische Hangprofile von Massenverlagerungsgebieten an der Wellenkalk-Schichtstufe im Thüringer Becken

Alle Profile wurden einheitlich in die Zentren der jeweilige Massenverlagerungsgebiete gelegt, und mit der Profilorientierung der Anfangs- und Endpunkte sowie der Gebietsnummer vermerkt. Die Profile wurden auf der Basis der TK 10 konstruiert und teilweise durch tachymetrische Vermessungen im Gelände ermittelt. Die graphische Profilerstellung erfolgte in Excel, die einheitliche Skalierung (Längenmaßstab: 1:10.000, Höhenmaßstab: 1:5.000) in Corel Draw. Die Profile wurden sowohl mit den Geländebefunden (Lage der Massenverlagerungskörper, Lage der

Abrißwand) als auch mit den geologischen Merkmalen dieser Hangabschnitte (stratigraphische Lage der Abrißwand, Lage der Röt Wellenkalk-Schichtgrenze), welche von den entsprechenden geologischen Karten (GK 25) übernommen wurden, verschnitten (vgl. Abb. 4.2). Mögliche Ungenauigkeiten können sich hierbei aus der Lage der i.d.R. schuttverhüllten Röt-/ Wellenkalkschichtgrenze ergeben (vgl. Kap. 2.3.2.3).

Anhand der erstellten Profile konnten mit Hilfe der orometrischen Stufenhanganalyse nach SCHUNKE (1968), die im Rahmen der Untersuchung aufgabenspezifisch abgewandelt wurde, die morphometrischen Steuerungsfaktoren (3), (4), (5) und (9) und damit im Zusammenhang stehende weitere morphometrische Kenngrößen abgeleitet werden (vgl. Abb. 4.3).

Abb. 4.3: Ermittlung morphometrischer Parameter an den von Massenverlagerungen betroffenen Wellenkalk-Schichtstufenhängen des Untersuchungsgebietes (abgewandelt nach SCHUNKE 1968)

Die Unterschiede zur orometrischen Stufenhanganalyse von SCHUNKE (1968) bestehen im Wesentlichen darin, dass der First als orographisch höchster Punkt der Schichtstufe nicht berücksichtigt wurde, weil dieser sich im Untersuchungsgebiet oftmals weit im Bereich der Stufenfläche befindet und damit für die unmittelbare Stufenhangmorphometrie keine weitere Bedeutung hat (vgl. BEYER 1997 und Abb. 4.3). Anstelle des Firstes wurde die im Gelände ermittelte Lage vom Top der Abrißwand als geometrischer Fixpunkt in die Analyse einbezogen.

Dieser Fixpunkt kann mit dem $> 18^{\circ}$ Steilabfall der Trauf identisch sein (vgl. Abb. 4.3) oder er befindet sich orometrisch tiefer als dieser (vgl. Kap. 3.3). Unabhängig davon, bezieht sich die morphometrische Profilanalyse bei allen Massenverlagerungsgebieten auf den Top der Abrißwand. Entsprechend der Abbildung 4.3 wurden auf der Basis der erstellten Profile die zu untersuchenden Parameter (3), (4) und (5) wie folgt abgeleitet:

Die Mächtigkeit des Sockelgesteins (4) entspricht der relativen Höhe der Röt-/ Wellekalkschichtgrenze über dem den Stufenhang begrenzenden 4° Fußpunkt (dF). Die Mächtigkeit des Stufenbildners (3) entspricht der relativen Höhe vom Top der Abrißwand zur der Röt-/Wellenkalk-Schichtgrenze (dA) und ergibt sich demnach aus der Differenz der relativen Höhe der Abrißwand über dem 4° Fußpunkt (dV) und der relativen Höhe der Röt-/ Wellenkalkschichtgrenze über dem 4° Fußpunkt (dF) (vgl. Abb. 4.3).

Die relative Höhe der Abrißwand über dem 4° Fußpunkt (dV) entspricht gleichzeitig der relativen Stufenhöhe, gemessen bis zur Abrißwand. Sind die obersten Bereiche der Abrißwand mit dem > 18° Steilabfall der Trauf identisch (vgl. Abb.4.3), entspricht die relative Höhe des 4° Fußpunktes über der Abrißwand (dV) gleichzeitig auch der relativen Stufenhöhe, gemessen bis zum Steilabfall der Trauf (dT). Liegt der Trauf höher als der Top der Abrißwand (vgl. Abb. 4.2 unteres Profil) ist dT > dV.

Aus dem Quotienten von Mächtigkeit des Sockelgesteins (4) und Mächtigkeit des Stufenbildners (3) wurde die Mächtigkeitsrelation (5) ermittelt (vgl. SCHMIDT 1988a). Zudem konnte aus der Differenz von der Horizontalentfernung vom 4° Fußpunkt zur Abrißwand (dH) und der Horizontalentfernung vom 4° Fußpunkt zur Röt-/Wellenkalk-Sichtgrenze (dS) die horizontale Entfernung von der Abrißwand zur Röt-/Wellenkalk-Schichtgrenze (dR) bestimmt werden.

Die geometrische Lage der Stufenhänge zur Erosionsbasis (9) beinhaltet verschiedene Parameter, die den Stufenhang im Aufriss näher charakterisieren. Morphometrisch fassbar sind diese, durch die genannten Horizontal- und Vertikaldistanzen zwischen dem 4° Fußpunkt und den Fixpunkten Röt-/Wellenkalk-Schichtgrenze und Top der Abrißwand. Aus diesen Distanzen wurden über trigonometrische Funktionen (ArcTan) die mittleren Anstiegswinkel vom Fußpunkt zur Schichtgrenze (α), vom Fußpunkt zur Abrißwand (β) und von der Röt-/Wellenkalk-Schichtgrenze zur Abrißwand (γ) bestimmt (vgl. Abb. 4.3). Diese Winkel ermöglichen einen direkten Vergleich der Ausprägung der von Massenverlagerungen betroffenen Stufenhänge.

Die genannten Parameter wurden aufgrund ihrer aufwendigen Ermittlung und im Hinblick auf das großräumige Untersuchungsgebiet nur an den von Massenverlagerungen betroffenen Stufenhängen bestimmt. Die daraus ableitbaren Erkenntnisse basieren demnach auf dem direkten Vergleich der Massenverlagerungsgebiete untereinander. Ein auf die Fläche bezogener Vergleich zwischen Massenverlagerungs- und nicht Massenverlagerungsgebieten erfolgte für die Hangneigung. Diesbezüglich konnte 12 digitale Höhenmodelle (DHM 25, Rasterauflösung 20 x 20 m, Höhengenauigkeit ± 3 m) vom Thüringer Landesvermessungsamt (TLVA 2000) erworben werden, deren Lage so gewählt wurde, dass von fast jedem Untersuchungsabschnitt ein repräsentativer Teilbereich erfasst ist (vgl. Abb.: 4.4). Nicht berücksichtigt werden konnten die Untersuchungsabschnitte Rinngau und Gobert, da von diesen Gebieten zum Zeitpunkt des Erwerbes noch keine DGM 25 vorlagen

Abb. 4.4: Lage der auf die Hangneigungsverteilung untersuchten DHM 25

Die Ableitung der Hangneigung erfolgte im GIS ArcView der Firma ESRI, speziell mit dem Erweiterungstool 3D-Analyst. Auf der Basis der DHM 25 GRID-Daten (20 m Maschenweite) erfolgte mittels des in ArcView verfügbaren Algorithmus zur Hangneigungsableitung nach Horn, die rasterbezogene Ableitung und Klassifizierung der Hangneigung.

Um die differenziert morphologische Ausprägung der Wellekalk-Schichtstufe möglichst repräsentativ abzubilden, wurde von den üblichen Hangneigungsklassifizierungen für Mittelgebirgsbereiche (vgl. GÖBEL, LESER & STÄBLEIN 1973, KUGLER 1982) abgewichen und eine

eigene Hangneigungsunterteilung entwickelt. Insgesamt wurden 8 Hangneigungsklassen (0 - 4°, 5 -7°, 8 - 18°, 19 - 25°, 26 - 35°, 36 - 45°, 46 - 60°, 61 - 90°), die die Ausprägung der Reliefelemente der Wellenkalk-Schichtstufe gut widerspiegeln, unterschieden. Um separate statistische Berechnungen zu ermöglichen, musste der Stufenhang am 4° Fußpunkt (4° Böschungslinie) und am Steilabfall der Trauf (> 18° Böschungslinie) von den übrigen Reliefelementen isoliert werden, was mit Hilfe der im ArcView verfügbaren Option Geoprozessing erfolgte. Des weiteren wurden die mittleren Flächen der Massenverlagerungsgebiete vom Top der Abrißwand bis zur Massenverlagerungsstirn in die Neigungskarte eindigitalisiert. Um auch hier separate statistische Berechnungen zu ermöglichen, wurden die Massenverlagerungsgebiete ebenfalls mittels der GIS Option Geoprozessing vom übrigen Stufenhang isoliert. Somit war es einerseits möglich, Unterschiede der Hangneigungsausprägung zwischen den einzelnen Stufenhangabschnitten und andererseits Unterschiede zwischen der Hangneigungsausprägung der Massenverlagerungsgebiete und den nicht von Massenverlagerungen beeinflussten Stufenhängen zu analysieren.

Die großräumigen Schichtneigungs- (6) und Neigungsrichtungsverhältnisse (7) der einzelnen Untersuchungsabschnitte wurden bereits im Kapitel 2.2.3.7 beschrieben (vgl. Abb. 2.10, vgl. Karte 2). Die Ableitung der Front-, Diagonal-und Achterstufenhänge (Neigungsrichtung) erfolgte in Abhängigkeit von den aus der Literatur entnommenen, großräumig regionalen Schichteinfallmustern der einzelnen Untersuchungsabschnitte und ergab sich damit aus der entsprechenden Klassifikation der an der Trauf ermittelten Stufenhangexposition der jeweiligen Untersuchungsabschnitte (vgl. Kap. 2.3.3.7). Die Massenverlagerungsgebiete wurden entsprechend ihrer Lage am Hang in dieses Schema eingeordnet. Die Angaben beziehen sich auf Kilometer Stufenhanglänge in der entsprechenden Neigungsrichtungsklasse. Sehr breite Massenverlagerungsgebiete, die Anteil an mehreren Neigungsrichtungen haben, wurden metrisch unterteilt und der entsprechenden Neigungsrichtung zugeordnet.

Zur Beurteilung des Einflusses der Rötgipssubrosion (8) wurden die an den Abrißwänden der Massenverlagerungsgebiete aufgenommenen lokalen Schichtneigungen und Neigungsrichtungen mit dem großräumigen Schichtneigungsmuster der Stufenhänge (Front-, Diagonal-, Achterstufenhänge) verglichen, um zu überprüfen, ob diesbezüglich Unterschiede bestehen. Zudem wurden die in den TK 10 und GK 25 ausgewiesenen bzw. während der Geländekartierungen ermittelten, morphologisch deutlich in Erscheinung tretenden Erdfallbereiche zur Lage der Massenverlagerungsgebiete in Beziehung gesetzt. Weiterführende Untersuchungen waren aufgrund der Großräumigkeit des Untersuchungsgebietes im Rahmen der Arbeit nicht möglich.

Die Lage im Stufengrundriss (10) ergibt sich aus der für das Untersuchungsgebiet bereits beschriebenen Buchtung des Stufenhanges (vgl. Kap. 2.3.3.6). Die morphometrische Ermittlung der Buchtung erfolgte auf der Basis der TK 10 in Anlehnung an den Buchtungsindex von SCHMIDT (1988a) (vgl. Abb. 2.9, Kap. 2.3.3.6). Entsprechend der Buchtung des Stufenhanges ergeben sich für die Massenverlagerungen verschiedene Lagemöglichkeiten im Stufengrundriss. Dabei kann man grundsätzlich zwischen Buchtenlage, Lage an einem gestreckten Abschnitt und der Lage an einem Stufenvorsprung unterscheiden, wobei bei Letzteren zwischen Lage an der Vorsprungsflanke und Lage an der Vorsprungsstirn unterschieden wurde. Dabei sind die Vorsprünge durch begrenzende Täler aus der Stufe herausmodellierte Ausbuchtungen des Stufenhanges. Die Stirnlage am Vorsprung entspricht dem vordersten, horizontal konvex gekrümmten Stufenhangbereich. Die Stirnlage geht in die Vorsprungsflanken über, wenn der Trauf geradlinig verläuft. Die Buchtenlage entspricht den horizontal konkav gekrümmten Talschlüssen. Gestreckte Abschnitte sind geradlinig verlaufende Stufenhänge ohne Buchten und Vorsprünge. In Abbildung 4.5 sind die verschiedenen Lagemöglichkeiten schematisch dargestellt.

Abb. 4.5: Der Grundriss der Wellenkalk-Schichtstufe

Die Zuordnung der Massenverlagerungsgebiete zur Lage im Stufengrundriss erfolgte auf der Basis der TK 10, wobei als Zuordnungsbasis auch hier der Verlauf des Steilabfalls der Trauf diente. Sehr breite Massenverlagerungsgebiete, die Anteil an mehreren Lagemöglichkeiten aufwiesen, wurden entsprechend ihrer Ausdehnung im jeweiligen Grundrissbereich metrisch unterteilt. Die Angaben beziehen sich auch hier auf Massenverlagerungsgebietsbreite (m) in der entsprechenden Grundrisslage.

Die Expositionverteilung (11) wurde ähnlich der Neigungsrichtung für das gesamte Untersuchungsgebiet, d.h. sowohl für Massenverlagerungen die von betroffenen Stufenhangabschnitte als auch für die nicht von Massenverlagerungen beeinflussten Stufenhänge untersucht. Analog der für den Gesamtstufenhang in Kapitel 2.3.3.8 dargestellten Vorgehensweise (vgl. Karte 3) erfolgte die Expositionsklassifizierung nach den üblichen 8 Expositionsklassen. Die Ableitung erfolgte auf der Basis der TK 10 entlang des Steilabfalls der Trauf, wobei sich die Angaben wiederum auf Stufenhanglänge in Kilometern in der entsprechenden Expositionsklasse beziehen. Massenverlagerungsgebiete, die in Abhängigkeit vom Verlauf der Trauf Anteil an mehreren Expositionsklassen haben, wurden metrisch unterteilt und den entsprechenden Expositionsklassen zugeordnet.

Bezüglich der Analyse der Faktoren: Lage zum Gewässernetz (12) und Häufigkeit von Hangquellen (13) wurde überprüft, ob innerhalb der Massenverlagerungsgebiete bzw. unmittelbar an die von Massenverlagerungen betroffenen Stufenhänge angrenzend (vorgelagerte Sockelhangund Tiefenlinienbereiche), Quellen und / oder perennierende Fließgewässer auftreten. Die Überprüfung erfolgte in Ergänzung zu den Geländekartierungen auf der Basis der TK 10. Das großräumige Verteilungsbild der Fließgewässer- und Quellhäufigkeit der verschiedenen Untersuchungsabschnitte wurde bereits in Kapitel 2.3.5 beschrieben.

Die für das Untersuchungsgebiet bereits ausführlicher beschriebenen, durchschnittlichen jährlichen Niederschlagshöhen und deren Verteilung (14) (vgl. Kap. 2.3.4.1 und Karte 4) sowie die Starkniederschlagshöhe und deren Verteilung (15) (vgl. Kap. 2.3.4.2 und Karte 5 - 6) basieren auf digitaler Daten des Deutschen Wetterdienstes, die im Einzelnen bereits näher charakterisiert wurden. Für die Bearbeitung der Thematik wurden die Daten mittels ArcView zunächst in ein TIN Format (Triangulated Irregular Network) konvertiert um dieses anschließend in ArcInfo in ein Polygoncoverage umzuwandeln. Nach dem Export in das Programm ArcView konnten mit der Option Geoprozessing die mittleren jährlichen Niederschlagshöhen bzw. die gewählten statistisch berechneten Starkniederschlagshöhen der verschiedenen Dauerstufen-/Wiederkehrzeiträume (vgl. Karte 5 und 6) mit den Stufenhängen bzw. den Massenverlagerungsgebieten des Untersuchungsgebietes verschnitten werden. Basis für die Verschneidung bildete jeweils der im Bereich der niederschlagsreicheren Stufenfläche gelegene Trauf. Damit konnten jedem jedem Massenverlagerungsgebiet Stufenhangabschnitt und die entsprechenden mittleren Jahresniederschläge bzw. die berechneten Starkniederschlagsverteilungen eindeutig zugewiesen

werden. Für die Stufenhänge der einzelnen Untersuchungsabschnitte wurde dies bereits beschrieben (vgl. Kap. 2.3.4.1 und 2.3.4.2).

4.4 Laboranalysen

Zur näheren Charakterisierung der lithologischen Eigenschaften des Sockelbildners im Bereich der Massenverlagerungsgebiete wurden von einem exemplarischen Gebiet (Gelände des Zementwerkes Deuna am Dün) im Bereich der von Wellenkalkmaterial überfahrenen, im Pelitröt gelegenen Gleitfläche sowohl die Korngrößenzusammensetzung als auch qualitativ die Tonmineralogie bestimmt (vgl. Kap.2.3.2.2). Die Probenanalysen erfolgten im physisch-geographischen Labor (Korngröße) bzw. im mineralogischen Labor (qualitative Tonmineralbestimmung) des Fachbereiches Geowissenschaften der Martin-Luther-Universität Halle-Wittenberg.

4.4.1 Bestimmung der Korngrößenverteilung

Von den luftgetrockneten Rötproben wurde zunächst der Feinboden < 2,00 mm durch Trockensiebung abgetrennt. Die Korngrößenbestimmung des Feinbodens erfolgte mittels eines Laserdiffraktometers (Mastersizer, Fa. Malvern Instruments).

4.4.2 Qualitative Tonmineralbestimmung

Die qualtiativ tonmineralogische Bestimmung der Proben erfolgte am Röntgendiffraktometer D5000 der Firma Siemens (Geräteparameter: Winkel: 2 - 32/Bestrahlungszeit: 2 s/ Schrittweite: 0,04/ Blende: V20 ohne Rotation). Das Probenmaterial, jeweils 5 mg der Korngrößenfraktion 63 - 20 μ m, wurde mit 500 μ l H₂O und mit 0,5 Tropfen Ethylenglykol versetzt und auf ein Glasblättchen pipettiert. Die Messungen erfolgten mit einer Kupferröhre (Wellenlänge 1,5 A°).

4.5 Auswertungs- und Darstellungsmethoden

Zur Beurteilung des Faktoreneinflusses wurde ein erweitertes regionales Dispositionsverfahren verwendet (vgl. Kap. 1.4), mit Hilfe dessen überprüft werden sollte, wie oft und in welcher Ausprägung die einzelnen Faktoren an Massenverlagerungen gebunden sind und ob Unterschiede zur Ausprägung der Faktoren am Gesamtstufenhang, d.h. auch jenen Abschnitten ohne Massenverlagerungen, bestehen. Letzteres erfolgte für die Faktoren (1), (2), (6), (7), (11), (12),

(13), (14) und (15) (vgl. Tab. 1.3, Kap. 1.5). Die diesbezüglich quantitative Auswertung der Daten erfolgte in Form üblicher statistischer Verfahren (z.B.: prozentuale Häufigkeiten, Korrelationen, Regressionen) sowie verschiedener statistische Tests (z.B. χ^2 –Test, T-Test), deren Berechnungen mittels der Software SPSS und EXCEL durchgeführt wurde.

Die Karten wurden mittels dem GIS ArcView sowie der Graphiksoftware Corel Draw erstellt. Für die Bearbeitung und Darstellung der tachymetrisch vermessenen Geländemodelle wurde das Programm Surfer 7.0 verwendet. Die Ergebnisse werden in Diagramm- und Tabellenformat das summarisch sowohl für Gesamtgebiet als auch für die ausgewiesenen Teiluntersuchungsabschnitte die Darstellung der vorgestellt. Auf einzelnen Massenverlagerungsgebiete wird weitgehend verzichtet. Diesbezüglich sei auf den Anhang C verwiesen, in dem für jedes Massenverlagerungsgebiet sowohl die Lage (Hoch- und Rechtswerte der Gebietszentren), die geometrischen Grundgrößen (Breite, mittlere Länge, mittlere Flächengröße), das Formeninventar, morphologische Merkmale der Stufenhänge und Abrißwände (Stufenhangtyp, Lage des Top der Abrißwand) als auch die Ausprägung des wesentlichen morphologisch-morphometrischen Steuerungsfaktoren (Schichtmächtigkeiten, Anstiegsverhältnisse, Schichtlagerung) aufgeführt sind. Zudem sind in Anhang A, in Ergänzung zu Abbildung 3.2 (vgl. Kap. 3), weiterführende fotodokumentarische Abbildungen des Formenschatzes einzelner Massenverlagerungsgebiete dargestellt.

5. Ergebnisse

5.1 Vorbemerkungen

Entsprechend der in Kapitel 1.5 formulierten Aufgabenstellungen ist dieses Kapitel thematisch dreigeteilt. Zunächst werden die kartierten Massenverlagerungsgebiete bezüglich ihrer Häufigkeit, ihrer regionale Verbreitungsmuster, ihrer morphometrischen Kenngrößen (Breiten, mittlere Längen, mittlere Flächenausdehnungen) und Merkmalsausprägungen (Formenschatz, Staffelanzahl, Eigenschaften der Abrißbereiche) sowie daraus ableitbare Beziehungen näher charakterisiert. Danach sind die zu betrachtenden Steuerungsfaktoren (vgl. Tab. 1.3) und deren Ausprägung unter Berücksichtigung der in Kapitel 2 beschriebenen Merkmalsausprägungen vom Gesamtstufenhang analysieren und diskutieren. Abschließend erfolgt eine Bewertung zu zu des Massenverlagerungsrisikos, wobei v.a. die Massenverlagerungsgebiete aufgezeigt werden sollen, von denen eine besonders hohe Gefahr für Mensch und Infrastruktur ausgeht.

5.2 Charakteristik der kartierten Massenverlagerungsgebiete

5.2.1 Anzahl und räumliche Verbreitung der Massenverlagerungsgebiete

An den insgesamt 980 km langen Wellenkalk-Schichtstufen- und Schichtkammabschnitten des Untersuchungsgebietes konnten 744 morphologisch deutlich in Erscheinung tretende Massenverlagerungsgebiete ausgewiesen werden. Die räumliche Lage der einzelnen Gebiete ist in der beigefügten Karte 8 und deren Anzahl, bezogen auf die jeweiligen Untersuchungsabschnitte, in Tabelle 5.1 dargestellt.

Wie aus Karte 8 bzw. Tabelle 5.1 hervorgeht, ist die Anzahl der vorgefundenen Gebiete innerhalb der einzelnen Untersuchungsabschnitte verschieden. Bis auf die Teiluntersuchungsgebiete Schmücke und Hörselberge konnten an allen Untersuchungsabschnitten Massenverlagerungsgebiete vorgefunden werden. Dabei ist der 299 km langen Stufenhangabschnitt Oberen Eichsfeld & Hainich das Gebiet mit der größten Anzahl auftretender Massenverlagerungsgebiete (257 Gebiete), wohingegen am Tautenburger Forst die wenigsten Massenverlagerungsgebieten (6 Gebiete) zu verzeichnen sind (vgl. Tab. 5.1). Insgesamt nimmt in der Reihenfolge der Stufenhangabschnitte: Oberes Eichsfeld & Hainich, Hainleite (99 Gebiete), Ilm-Kalk-Platte (90 Gebiete), Bleicheröder Berge (58 Gebiete), Ringgau (52 Gebiete), Gobert und Ohrdrufer Platte (jeweils 47 Gebiete), Dün (46 Gebiete), Zeugenberge Mittleres Saaletal (42 Gebiete), Tautenburger Forst die Anzahl der vorzufindenden Massenverlagerungsgebiete ab.

Untersuchungsabschnitte	Länge (km)	Anzahl der Gebiete	Nr. der Gebiete (vgl. Karte 8)
Schmücke	5	0	-
Hainleite	98	99	1 - 88; 147 - 157
Dün	43	46	158 - 203
Bleicheröder Berge	26	58	89 - 146
OberesEichsfeld & Hainich	299	257	204 - 444; 497 - 512
Gobert	41	47	513 - 559
Ringgau	71	52	445 - 496
Hörselberge	7	0	-
Ohrdrufer-Platte	65	47	560 - 606
Ilm-Kalk-Platte	236	90	607 - 696
Tautenburger Forst	25	6	697 - 700; 702 - 703
Zeugenberge Mittleres Saaletal	64	42	701; 704 - 744
Gesamt	980	744	1 - 744

Tab. 5.1: Die Anzahl der Massenverlagerungsgebiete im Untersuchungsgebiet

Wie Karte 8 verdeutlicht, sind auch innerhalb der einzelnen Untersuchungsabschnitte räumliche Unterschiede im Auftreten der Massenverlagerungsgebiete zu verzeichnen. So nimmt an der Hainleite die Massenverlagerungshäufigkeit von Ost nach West, insbesondere ab der Ortschaft Sondershausen zu. Am Dün ist v.a. der zentral gelegene Stufenhangabschnitt südlich der Ortschaften Vollenborn und Kleinbartloff besonders stark von Massenverlagerungen betroffen. Im Untersuchungsabschnitt Oberes Eichsfeld & Hainich sind hauptsächlich die Stufenhangabschnitte östlich von Heiligenstadt, westlich der Ortschaft Großbartloff und nördlich der Ortschaft Falken (Werra) durch eine geringere Anzahl von Massenverlagerungsgebieten im Vergleich zu den übrigen Stufenhangbereichen gekennzeichnet. Demgegenüber ist das räumliche Verteilungsbild an Bleicheröder Gobert ausgeglichener. den Bergen sowie an der Auffällige Massenverlagerungshäufigkeitsunterschiede sind hier zunächst nicht festzustellen (vgl. Karte 8). Anders verhält es sich wiederum am Ringgau, an dessen nördlichen und westlichen Stufenhangabschnitten (südlich der Ortschaft Weißenborn bzw. westlich von Grandenborn) (vgl. Karte 8) Massenverlagerungen häufiger auftreten als an den südlichen. Im Teiluntersuchungsgebiet der Ohrdrufer Platte sind v.a. die zentral gelegenen Stufenhangabschnitte westlich der Ortschaft Plaue verstärkt von Massenverlagerungen betroffenen. Im Gebiet der Ilm-Kalk-Platte nimmt die Anzahl der Massenverlagerungsgebiete, ähnlich der Hainleite, von Ost nach West zu, wobei eine erhöhte Massenverlagerungskonzentration v.a. nördlich von Bad Blankenburg zu verzeichnen ist. An den östlich der Saale gelegenen Zeugenberge Mittleres Saaletale sind v.a. die nord- und

nordwestlichen Stufenhangbereiche durch eine größere Anzahl von Massenverlagerungsgebieten gekennzeichnet.

5.2.2 Die von Massenverlagerungen betroffenen Stufenhanglängen

Die Anzahl der Massenverlagerungsgebiete eines Untersuchungsabschnittes allein gibt noch keine Auskunft über das Ausmaß der Beeinflussung der Stufenhänge durch Massenverlagerungsprozesse, da die Größen, insbesondere die Breiten der einzelnen Gebiete erheblich variieren können. Bezieht man die summierte Gesamtbreite der vorgefundenen Massenverlagerungsgebiete eines Stufenhangabschnittes auf dessen Stufenhanglänge, ergibt sich die Trauf-parallel von Massenverlagerungen betroffene Stufenhanglänge, die ausgedrückt in Prozent als Maß für die Massenverlagerungsbeeinflussung geeignet ist.

Die 744 Massenverlagerungsgebiete des Untersuchungsgebietes haben eine Trauf-parallele Gesamtbreite von 224 km. Bezogen auf die an der Trauf ermittelte Gesamtstufenhanglänge von 980 km, sind demnach durchschnittlich 22,8 % von Massenverlagerungen betroffen. Innerhalb der einzelnen Untersuchungsabschnitte ergeben sich hierbei jedoch erhebliche Unterschiede. Diese sind geordnet nach abnehmenden von Massenverlagerungen betroffenen Stufenhanglängen in Abbildung 5.1 dargestellt.

Abb. 5.1:Die von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen Untersuchungs-
abschnitte, geordnet nach abnehmender Massenverlagerungsbeeinflussung

Wie aus Abbildung 5.1 hervorgeht, ist der am stärksten von Massenverlagerungen betroffene Stufenhangabschnitt Untersuchungsgebietes die 41 des Gobert. von dessen km Gesamtstufenhanglänge 24,78 km, das entspricht 60,4 %, Massenverlagerungen aufweisen. Demgegenüber ist nach den massenverlagerungsfreien Untersuchungsabschnitten Schmücke und Hörselberge, der Tautenburger Forst das Gebiet, mit der am geringsten von Massenverlagerungen betroffenen Stufenhanglänge (2,1 % =0,515 km) (vgl. Abb. 5.1). Insgesamt nimmt die Massenverlagerungsbeeinflussung der Stufenhänge in der Reihenfolge: Gobert (60,4 %), Bleicheröder Bergen (48,8 %), Dün (41,8 %), Ringgau (41,4 %), Oberes Eichsfeldes & Hainich (25,3 %), Ohrdrufer Platte (23,5 %), Hainleite (18,6 %), Zeugenberge Mittleres Saaletal (17,5 %), Ilm-Kalk-Platte (7,7 %) und Tautenburger Forst (2,1 %) ab (vgl. Abb. 5.1).

5.2.3 Morphometrische Ausprägung der Massenverlagerungsgebiete

5.2.3.1 Die Breite der Massenverlagerungsgebiete

Die abrißwandparallel ermittelten Breitenausdehnungen (vgl. Kap. 4.2 und Abb. 4.1) der einzelnen Massenverlagerungsgebiete schwanken im Untersuchungsgebiet erheblich (vgl. Karte 8). Die minimal beobachtenden Breiteausdehnungen betragen 10 zu ca. m. Im gesamten Untersuchungsgebiet gibt es dafür nur drei Beispiele: das Erste, ist das an den Bleicheröder Bergen gelegene Gebiet 109, das zweite, das am Dün gelegene Gebiet 201 und das Dritte, das an den Zeugenbergen des Mittleren Saaletales gelegene Gebiet 721 (vgl. Karte 8 und Anhang C). Demgegenüber liegen die maximal zu beobachtenden Breitausdehnungen in Größenordungen bis zu mehreren Kilometern. Mit 5,915 km zusammenhängender Trauf-paralleler Erstreckung ist das am Dün, südlich der Ortschaft Niederorschel gelegene Gebiet 193 (vgl. Karte 8), das breiteste Massenverlagerungsgebiet im gesamten Untersuchungsraum. Dabei sind 13,8 % der von Massenverlagerungen betroffenen Stufenhanglänge dieses Untersuchungsabschnittes allein auf dieses eine Gebiet zurückzuführen. Weitere mehrere Kilometer breite Massenverlagerungsgebiete sind u.a. am Ringgau, südlich der Ortschaft Weißenborn (Gebiet 475 = 3,190 km) oder an der Ohrdrufer Platte, östlich der Ortschaft Plaue (Gebiet 590= 2,160 km) zu verzeichnen (vgl. Karte 8). Insgesamt treten Massenverlagerungsgebiete mit solch maximalen bzw. minimalen Breitenausdehnungen im Untersuchungsraum jedoch seltener auf. Die Mehrzahl der Gebiete nimmt eine Zwischenstellung ein.

Um die im Untersuchungsgebiet stark differierenden Gebietsbreiten systematisch analysieren und darstellen zu können, wurden Massenverlagerungsbreitenklassen gebildet, denen die einzelnen Gebiete zugeordnet wurden. Entsprechend der im Gelände zu beobachtenden Größenordnungen wurden folgende Breitenklassen ausgeschieden: < 50 m, 50 - 100 m; 100 - 200 m; 200 - 500 m; 500 - 1000 m, 1000 - 2000 m und 2000 - 6000 m. Dabei wurden die an den Klassengrenzen

liegenden Gebiete (z.B. Gebiet mit 50 m Breite) jeweils der oberen Klasse zugeordnet. Das Ergebnis der Zuordnung ist in Abbildung 5.2 dargestellt.

Abb. 5.2: Einteilung der Massenverlagerungsgebiete nach Breitenklassen

Prozentual auf die Gesamtzahl der im Untersuchungsraum vorkommenden Massenverlagerungen (n = 744) bezogen, weisen demnach 84 Massenverlagerungsgebiete, dies entspricht ca. 11 % Breiten < 50 m auf. 114 Gebiete (ca. 15 %) besitzen Trauf-parallele Breiten von 50 - 100 m, 215 Gebiete (ca. 29 %) Breiten von 100 - 200 m, 204 Gebiete (ca. 27 %) Breiten von 200 - 500 m, 87 (ca. 11,5 %) Breiten von 500 - 1000 m und 36 Gebiete (ca. 5 %) sind der Breitenklasse 1000 - 2000 m zugehörig. Lediglich 4 Gebiete (ca. 0,5 %) (Gebiete 193, 475, 480, 590) sind durch Breiten der Klasse 2000 - 6000 m gekennzeichnet. Insgesamt ist damit die überwiegende Mehrzahl der Massenverlagerungsgebiete (n = 617 dies entspricht ca. 83 %) weniger als 500 m breit. Demgegenüber wesentlich seltener treten Gebiete, die breiter als 500 m sind, auf (n = 127: dies entspricht ca. 17 %) (vgl. Abb. 5.2).

Innerhalb der Untersuchungsabschnitte Unterschiede der einzelnen bestehen in Häufigkeitsverteilung der Massenverlagerungsgebiete mit den entsprechenden Breitenausdehnungen (vgl. Abb. 5.2) So kommen Gebiete der größten Breitenklasse von 2000 -6000 m lediglich am Dün (Gebiet 193), am Ringgau (Gebiete 475 und 480) und an der Ohrdrufer Platte (Gebiet 590) vor (vgl. Karte 8, Anhang C). Auch Massenverlagerungsgebiete der Breitenklasse 1000 - 2000 m treten nicht in allen Untersuchungsabschnitten auf. So fehlen diese an der Hainleite, an den Bleicheröder Bergen, an der Ilm-Kalk-Platte und am Tautenburger Forst. Am Tautenburger Forst sind Massenverlagerungsgebiete, die breiter als 200 m sind, generell nicht zu verzeichnen. Weitere markante Besonderheiten bestehen im Untersuchungsabschnitt Gobert. Im Unterschied zum gesamten Untersuchungsraum, in dem Massenverlagerungsgebietsbreiten < 500 m dominieren (vgl. oben), ist über die Hälfte der Massenverlagerungsgebiete der Gobert (25 Gebiete = 53 %) durch Breitenklassen > 500 - 2000 m gekennzeichnet (vgl. Abb. 5.2). In den übrigen Teilabschnitten zeigt sich mit kleineren Abweichungen das auch für das gesamte Untersuchungsgebiet charakteristische Verteilungsbild, wobei in allen Untersuchungsabschnitten die Gesamtheit der vorkommenden Massenverlagerungen Anteil an mindestens drei (z.B. Tautenburger Forst), die Mehrzahl an mindestens fünf Breitenklassen hat (z.B. Hainleite, Gobert) (vgl. Abb.5.2)

Bemerkenswert sind die in den Untersuchungsabschnitten zu verzeichnenden Dichteunterschiede der insgesamt seltener auftretenden Massenverlagerungsgebiete mit größeren Breitenausdehnungen, insbesondere die der Breitenklassen von 500 – 6000 m. Die Dichte ergibt sich aus dem Quotienten der Anzahl der Massenverlagerungsgebiete dieser Breitenklassen und der an der Trauf ermittelten Stufenhanglänge. Ausgedrückt wird diese als Dichteindex. Dabei nimmt mit steigendem Indexwert die Dichte der auftretenden Gebiete zu. Ein Indexwert von 1 würde bedeuten, dass 100 % der Stufenhanglänge von Massenverlagerungsgebiet zu verzeichnenden Unterschiede sind in Tabelle 5.2 dargestellt.

Tab. 5.2:	Anzahl und Dichte der Massenverlagerungsgebiete der Breitenklassen 500 – 6000 m
	innerhalb der untersuchten Wellenkalk-Schichtstufenabschnitte im Thüringer Becken

Untersuchungsabschnitte	Länge	Anzahl der Gebiete mit 500 – 6000 m Breite	Dichtindex (Quotient aus Anzahl der Gebiete mit
(km)	(km)		und der Stufenhanglänge)
Hainleite	98	8	0,082
Dün	43	9	0,209
Bleicheröder Berge	26	7	0,269
OberesEichsfeld & Hainich	299	40	0,134
Gobert	41	25	0,610
Ringgau	71	15	0,211
Ohrdrufer Platte	65	9	0,138
Ilm-Kalk-Platte	236	6	0,025
Tautenburger Forst	25	0	-
Zeugenberge Mittleres Saaletal	64	8	0,125

Wie daraus hervorgeht, sind die Gobert (Dichteindex: 0,610), gefolgt von den Bleicheröder Bergen (Dichteindex: 0,269)die Untersuchungsabschnitte mit der höchsten Dichte von Massenverlagerungsgebieten der Breitenausdehnungen von 500 – 6000 m. Demgegenüber ist die Ilm-Kalk-Platte (Dichteindex: 0,025) das Gebiet, mit der geringsten Massenverlagerungsgebietsdichte dieser Breitenklasse. Am Tautenburger Forst sind derartige Massenverlagerungen nicht zu verzeichnen (vgl. oben). Insgesamt nimmt die Dichte der Gebiete mit 500 - 6000 m Breitenausdehnung in der Reihenfolge: Gobert, Bleicheröder Berge, Dün, Ringgau, Oberes Eichsfeld & Hainich, Ohrdrufer Platte, Hainleite, Zeugenberge des Mittleren Saaletales und Ilm-Kalk-Platte ab (vgl. Tab. 5.2). Regional betrachtet, bestehen damit in der Dichte dieser Massenverlagerungsgebiete ähnliche Unterschiede wie hinsichtlich der bereits in Kapitel 5.2.1 beschriebenen, von Massenverlagerungen betroffenen Stufenhanglängen. Dieser Zusammenhang ist genauer in Abbildung 5.3 dargestellt.

Abb. 5.3:Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen mit der Dichte von
Massenverlagerungsgebieten der Breitenklassen 500 - 6000 m

Mit abnehmender von Verlagerungen betroffener Stufenhanglänge nimmt auch die Dichte der Massenverlagerungsgebiete der Breitenausdehnung 500 - 6000 m ab (vgl. Abb. 5.3). Dieser Zusammenhang ist mit einem Korrelationskoeffizienten von r = 0,92 hoch signifikant. Somit ist die Gobert nicht nur der Untersuchungsabschnitt der am stärksten von Massenverlagerungen betroffenen Stufenhanglänge, sondern gleichzeitig auch das Gebiet mit der größten Dichte von Gebieten der genannten Breitenausdehnung. Demgegenüber ist der Tautenburger Forst das Gebiet

mit der am geringsten von Massenverlagerungen betroffenen Stufenhanglänge bei gleichzeitigem Fehlen von Massenverlagerungsgebieten dieser Breitenklasse.

5.2.3.2 Die mittlere Länge der Massenverlagerungsgebiete

Die mittleren Längen der Massenverlagerungsgebiete, gemessen vom Top der Abrißwand zur Massenverlagerungsstirn (vgl. Kap. 4.2, Abb. 4.1) schwanken im Untersuchungsgebiet zwischen 10 und maximal 400 Meter. Beispiele für Gebiete mit minimalen Längenausdehnungen < 50 m sind u.a. die Gebiete 66 (Hainleite), 95 (Bleicheröder Berge), 215 (Oberes Eichsfeld & Hainich) und 653 (Ilm-Kalk-Platte). Beispiele für Gebiete mit mittlerer Längenausdehnung von 300 - 350 m sind u.a. die Massenverlagerungsgebiete 113 (Dün), 394 (Oberes Eichsfeld & Hainich), 477 (Ringgau) und 681 (Ilm-Kalk-Platte). Die mit 400 m maximal zu beobachtende mittlere Längenausdehnung weist das Gebiet 602 an der Ohrdrufer Platte auf (vgl. Karte 8 und Anhang C).

Um die unterschiedliche Längenausdehnung für die Gesamtzahl auch der Massenverlagerungsgebiete des Untersuchungsraumes systematisch analysieren zu können, wurden ähnlich der in Kapitel 5.2.3.1 dargestellten Breitenausdehnungen 5 Längenklassen (10-50 m, 50 – 100 m, 100 – 200 m, 200 – 300 m, 300 – 400 m) gebildet, denen die einzelnen Massenverlagerungsgebiete zugeordnet wurden. Das Ergebnis dieser Zuordnung gibt Abbildung 5.4 wieder.

Abb. 5.4: Einteilung der Massenverlagerungsgebiete nach Längenklassen
Wie daraus hervorgeht, weisen von den 744 Massenverlagerungsgebieten 173 Gebiete, dies entspricht ca. 23 %, mittlere Längenausdehnungen von 10 - 50 m auf. 119 Gebiete (ca. 16 %) sind durch mittlere Längen von 50 - 100 m, 256 Gebiete (ca. 35 %) durch mittlere Längen von 100 - 200 m, 164 Gebiete (ca. 23 %) durch mittlere Längen von 200 - 300 m und nur 27 Gebiete (ca. 3 %) durch mittlere Längenausdehnungen von 300 - 400 m charakterisiert Insgesamt ist damit über die Hälfte aller Massenverlagerungsgebiete (n = 452: dies entspricht ca. 62 %) länger als 100 m, wohingegen nur 292 Gebiete (ca. 38 %) mittlere Längen < 100 m aufweisen (vgl. Abb. 5.4).

So sind im Unterschied zum gesamten Untersuchungsraum an der Hainleite (72 % der Gebiete) und am Tautenburger Forst (67 % der Gebiete), Massenverlagerungsgebiete mit Längen < 100 m häufiger vertreten als Gebiete mit Längenausdehnungen > 100 m. An den Zeugenbergen des Mittleren Saaletales sind Gebiete mit Längen größer und kleiner 100 m annähernd gleich verteilt. Massenverlagerungsgebiete der maximalen Längenklasse 300 - 400 m sind an der Hainleite, an der Gobert, an den Zeugenbergen des Mittleren Saaletales sowie am Tautenburger Forstes nicht zu finden. Zudem fehlen am Tautenburger Forst Massenverlagerungsgebiete der Längenklasse 200 -300 m.

Im Unterschied zur Massenverlagerungsgebietsbreite (vgl. Kap. 5.2.3.1) sind bei der mittleren Längenausdehnung der Massenverlagerungsgebiete keine Zusammenhänge zu den von Massenverlagerungen betroffenen Stufenhanglängen zu verzeichnen.

5.2.3.3 Das Längen-/Breitenverhältnis der Massenverlagerungsgebiete

Zur genaueren morphometrischen Charakteristik wurde von jedem Massenverlagerungsgebiet das Längen-/Breitenverhältnis bestimmt. Dieses ergibt sich aus dem Quotienten der mittleren Länge eines Massenverlagerungsgebietes zu dessen Breite und wird als Verhältniszahl ausgedrückt. Dabei können prinzipiell 3 Möglichkeiten auftreten. Zum einen kann ein Massenverlagerungsgebiet breiter als lang sein, was durch Verhältniszahlen < 1 zum Ausdruck kommt, zum anderen kann die Massenverlagerungsgebietslänge größer als dessen Breite sein, was sich in Verhältniszahlen > 1 widerspiegelt. Bei der dritten Möglichkeit sind die Längen- und Breitenausdehnung gleich, wobei die Verhältniszahl den Wert 1 annimmt. Je kleiner bzw. je größer die Verhältniszahlen über bzw. unter 1 werden, desto größer sind die Unterschiede der Breiten- und Längenausdehnungen der einzelnen Gebiete.

Innerhalb der Massenverlagerungsgebiete schwanken die Längen-/Breitenverhältnisse z.T. erheblich. Das im Untersuchungsgebiet zu beobachtende minimalste Längen-/Breitenverhältniss von 0,04, ist im Massenverlagerungsgebiet 742 (Zeugenberge Mittleres Saaletal) zu verzeichnen (vgl. Karte 8 und Anhang C). Dieses Gebiet weist 210 m Breitenausdehnung bei 10 m Längenausdehnung auf. Demgegenüber sind hohe Verhältniszahlen von 4 bis 5 u.a. in den Gebieten 655 (Ilm-Kalk-Platte) und 585 (Ohrdrufer Platte) zu finden. Das maximal zu beobachtende Längen-/Breitenverhältnis von 8 weist das im Oberen Eichsfeld & Hainich gelegene Massenverlagerungsgebiet 207 auf. Hier kommen 15 m Breitenausdehnung auf 120 m Längenausdehnung. Diese maximalen bzw. minimalen Längen-/Breitenverhältnisse sind jedoch Ausnahmeerscheinungen. Die überwiegende Mehrzahl der Massenverlagerungsgebiete (n = 607: entspricht ca. 82 %) sind durch Verhältniszahlen zwischen 0,2 und 1,8 gekennzeichnet.

Für eine systematische Analyse wurden die Längen-/Breitenverhältnisse der Massenverlagerungsgebiete der jeweiligen Untersuchungsabschnitte zusammengefasst und als untersuchungsabschnittsbezogene Mittelwerte in Tabelle 5.3 dargestellt. Da die Werte im Einzelnen streuen, ist auch die Standardabweichung aufgeführt.

Wie aus Tabelle 5.3 hervorgeht, sind von der Gesamtzahl der im Untersuchungsgebiet auftretenden Massenverlagerungen (n = 744) 574 Gebiete, dies entspricht ca. 77 %, durch größere Breiten im Vergleich zu den mittleren Gebietslängen charakterisiert. Bei 158 Gebieten (ca. 21 %) ist das Verhältnis umgekehrt. Hier ist die Länge der Massenverlagerungsgebiete größer als deren Breitenausdehnung. Lediglich in 13 Massenverlagerungsgebieten (entspricht ca. 2 %) ist die auf Längenausdehnung gleich der Breitenausdehnung. Das die Gesamtzahl der Massenverlagerungsgebiete bezogene mittlere Längen-/Breitenverhältnis liegt bei 0,76 (vgl. Tab. 5.3). Insgesamt ist damit festzuhalten, dass Massenverlagerungsgebiete, die breiter als lang sind, die charakteristischen Erscheinungsformen an der Wellenkalk-Schichtstufe im Thüringer Becken darstellen. Bezogen auf die einzelnen Untersuchungsabschnitte ergeben sich auch diesbezüglich einige Unterschiede (vgl. Tab. 5.3).

Während in allen Untersuchungsabschnitten Massenverlagerungsgebiete, die breiter als lang bzw. länger als breit sind vorkommen (vgl. Tab. 5.3), sind Gebiete mit gleichen Längen- und Breitenausdehnungen nur an der Hainleite, an den Bleicheröder Bergen, im Oberen Eichsfeld & Hainich, an der Gobert, an der Ilm-Kalk-Platte sowie an den Zeugenbergen Mittleres Saaletal zu verzeichnen

Untersuchungsabschnitte	Anzahl der Massen-	B>L	B=L	B <l< th=""><th>XAL/B</th><th>S</th></l<>	XAL/B	S	
	verlagerungs- gebiete-						
Hainleite	99	85	1	13	0,61	0,60	
Dün	46	38	-	8	0,74	0,85	
Bleicheröder Berge	58	44	2	12	0,68	0,60	
OberesEichsfeld& Hainich	257	203	3	51	0,70	0,78	
Gobert	47	41	3	3	0,46	0,35	
Ringgau	52	47	-	5	0,50	0,58	
Ohrdrufer-Platte	47	34	-	13	0,87	0,83	
Ilm-Kalk-Platte	90	44	2	44	1,25	0,88	
Tautenburger Forst	6	2	-	4	1,16	0,45	
Zeugenberge Mittleres Saaletal	42	35	2	5	0,64	0,58	
Gesamt	744	573	13	158	0,76	0,75	
$\mathbf{B} > \mathbf{L}$: Anzahl der Massenverlagerungsgebiet die breiter als lang sind $\mathbf{B} = \mathbf{L}$: Anzahl der Massenverlagerungsgebiete die die gleiche Länge und Breite aufweisen							

Tab. 5.3: Das Längen-/Breitenverhältnis der Massenverlagerungsgebiete im Untersuchungsraum

 $\mathbf{B} < \mathbf{L}$: Anzahl der Massenverlagerungsgebiet die länger als breit sind

x / B: Mittelwert des Verhältnis der Länge zur Breite der Massenverlagerungsgebiete

s: Standardabweichung des Längen-/Breitenverhältnisses um den Mittelwert

Das fiir die Mehrzahl der Massenverlagerungen charakteristische Längen-/Breitenverhältnis < 1 (vgl. oben), ist am deutlichsten in den Massenverlagerungsgebieten der Untersuchungsabschnitte Gobert und Ringgau ausgebildet. Mit durchschnittlichen Verhältniszahlen zwischen 0,46 und 0,5 und geringen Standardabweichungen ist die Mehrzahl der Massenverlagerungsgebiete hier deutlich breiter als lang. Anders verhält es sich an der Ilm-Kalk-Platte und am Tautenburger Forst. Hier sind zahlreiche, am Beispiel des Tautenburger Forstes, sogar die Mehrzahl der Gebiete durch Längen-/Breitenverhältnisse > 1 charakterisiert (vgl. Tab. 5.3). Dies bedeutet, dass hier eine größere Anzahl von Gebieten auftritt, die größere Längen (z.T. bis vierfach größer) im Vergleich zur Massenverlagerungsgebietsbreite aufweisen (z.B. Gebiet 655 Ilm-Kalk-Platte). Die Ursachen dafür werden im Zusammenhang mit der Analyse des Massenverlagerungsformenschatzes und dessen Verbreitung diskutiert.

5.2.3.4 Die mittleren Flächengrößen der Massenverlagerungsgebiete

Die 744 Massenverlagerungsgebiete des Untersuchungsraumes haben summiert eine mittlere Gesamtflächengröße von 39,51 km². Anteilig auf die Massenverlagerungsgebiete der einzelnen Untersuchungsabschnitte bezogen, ergibt sich das in Abbildung 5.5, geordnet nach abnehmender Flächengröße, dargestellte Verteilungsbild.

Abb. 5.5: Die mittleren Flächengrößen der Massenverlagerungsgebiete der einzelnen Untersuchungsabschnitte, geordnet nach abnehmender Flächengröße

Wie Abbildung 5.5 verdeutlicht, haben die 257 Massenverlagerungsgebiete vom Untersuchungsabschnitt Oberes Eichsfeld & Hainich mit ~12,39 km² die größte und die 6 Gebiete des Tautenburger Forstes mit ~0,006 km² die kleinste mittlere Gesamtflächenausdehnung. Von den übrigen Untersuchungsabschnitten nimmt in der Reihenfolge: Ringgau (~5,49 km²), Gobert (~4,49 km²), Dün (~3,9km²), Ilm-Kalk-Platte (~3,7 km²), Ohrdrufer Platte (~3,61 km²), Bleicheröder Berge (~2,05 km²), Hainleite (~2 km²) und Zeugenberge Mittleres Saaletal (~1,82 km²) die mittlere Gesamtflächengröße der Massenverlagerungsgebiete ab.

Entsprechend der unterschiedlichen Breiten und Längenausdehnungen schwanken die mittleren Flächengrößen der einzelnen Massenverlagerungsgebiete z.T. erheblich. Die minimal zu beobachtenden Flächenausdehnungen liegen bei 100 - 150 m², wie es u.a. in den Gebieten 721 (Zeugenberge Mittleres Saaletal), 67 (Hainleite) und 180 (Dün) zu beobachten ist (vgl. Karte 8 und Anhang C). Die maximal zu beobachtenden Flächengrößen liegen bei mehreren einhunderttausend

bis zu über eine Millionen Quadratmeter. Das mit 1,774 km² großflächigste Massenverlagerungsgebiet an der Wellenkalk-Schichtstufe im Thüringer Becken ist das am Dün gelegene Gebiet 193, welches gleichzeitig auch das breiteste Gebiet im Untersuchungsraum darstellt (vgl. Kap. 5.2.3.1 und Karte 8 und Anhang C).

Um die unterschiedlichen mittleren Massenverlagerungsgebietsflächengrößen systematisch analysieren und darstellen zu können, wurden wiederum Flächengrößenklassen gebildet, denen die einzelnen Gebiete zugeordnet wurden. Entsprechend der zu beobachteten Flächenausdehnung wurden 6 Flächenklassen (100 - 1000 m², 1000 - 10000 m², 10000 - 50000 m², 50000 - 100000 m², 100000 - 500000 m² und > 500000 m²) ausgeschieden. Dabei wurden die an den Klassengrenzen liegenden Massenverlagerungsgebiete jeweils der oberen Klasse zugeordnet. Das Ergebnis dieser Zuordnung ist in Abbildung 5.6 dargestellt.

Abb. 5.6: Einteilung der Massenverlagerungsgebiete nach Flächengrößenklassen

Wie daraus hervorgeht, weisen von den 744 Massenverlagerungsgebieten 70 Gebiete (ca. 9,4 %) mittlere Flächengrößen von 100 - 1000 m², 177 Gebiete (ca. 23,8 %) mittlere Flächengrößen von 1000 - 10000 m², 282 Gebiete mittlere Flächengrößen von 10000 - 50000 m², 105 Gebiete (ca. 14,1 %) mittlere Flächengrößen von 50000 - 100000 m², 107 Gebiete (ca. 14,4 %) mittlere Flächengrößen von 100000 - 500000 m² und lediglich 3 Gebiete (ca. 0,4 %) mittlere Flächengrößen von > 500000 m² auf.

Insgesamt ist damit die Mehrzahl der im Untersuchungsraum vorkommenden Massenverlagerungsgebiete (n = 634 dies entspricht 85,2 %) durch Flächengrößen < 100000 m² mit einer Dominanz der Flächengrößenklasse 10000 - 50000 m² gekennzeichnet. Demgegenüber treten Massenverlagerungsgebiete der Flächengrößen > 100000 m² (n = 110 Gebiete, dies entspricht 14,8 %) wesentlich seltener auf

Innerhalb der einzelnen Untersuchungsabschnitte ergibt sich aber auch hier ein teilweise differenzierteres Bild (vgl. Abb. 5.6). So sind Massenverlagerungsgebiete der größten Flächenklasse > 500000 m² lediglich an den Untersuchungsabschnitten Dün, Ringgau und Ohrdrufer Platte zu beobachten. Die größte Häufigkeit des Vorkommens von Gebieten mit größeren Flächenausdehnung (> 100000 m²) ist an der Gobert zu verzeichnen. Hier sind 40 % der Gebiete durch Flächengrößen der Klasse 100000 - 500000 m² charakterisiert, wohingegen Massenverlagerungsgebiete der Größenklasse 100 - 1000 m² hier gänzlich fehlen (vgl. Abb. 5.6). Auch am Ringgau und am Tautenburger Forst sind Gebiete der kleinsten Größenklasse (100 – 1000 m²) nicht zu beobachten. Am Tautenburger Forst sind jedoch 5 der 6 Massenverlagerungsgebiete durch Flächengrößen der Klasse 1000 - 10000 m² gekennzeichnet. Flächenausdehnungen > 50000 m² sind hier nicht zu beobachten. Ähnlich dem Tautenburger Forst sind auch an der Hainleite und an den Zeugenbergen des Mittleren Saaletales Massenverlagerungsgebiete der Flächenklasse 1000 - 10000 m² am häufigsten vertreten. Im Unterschied zum Tautenburger Forst kommen hier aber auch Gebiete, die > 50000 und < 1000 m² sind, vor. In allen übrigen Untersuchungsabschnitten zeigt sich mit kleineren Abweichungen das für den Gesamtraum charakteristische Verteilungsbild mit einer Dominanz der Massenverlagerungsgebiete der Flächenklassen 10000 - 50000 und 50000 - 100000 m^2 .

Wie beim Vergleich der mittleren Flächenausdehnung der Massenverlagerungsgebiete (vgl. Abb. 5.6) mit deren Breitenausdehnung (vgl. Abb. 5.2, Kap. 5.2.3.1) auffällt, bestehen hier regional ähnliche Unterschiede. Um dies zu verdeutlichen, wurden in Abbildung 5.7 die Breiten und die mittleren Flächengrößen der einzelnen Massenverlagerungsgebiete gegenübergestellt.

Wie daraus hervorgeht, nimmt mit einem Korrelationskoeffizienten von r = 0,96, die Flächengröße der Massenverlagerungsgebiete mit zunehmender Gebietsbreite signifikant zu (vgl. Abb. 5.7). Demgegenüber kommen die Längenausdehnungen der Massenverlagerungsgebiete in den Flächengrößen weitaus weniger deutlich zur Geltung (vgl. Abb. 5.8).

Abb. 5.7: Zusammenhang zwischen Breite der Massenverlagerungsgebiete und deren Flächenausdehnung

Abb. 5.8: Zusammenhang zwischen der mittleren Länge der Massenverlagerungsgebiete und deren Flächenausdehnung

Zurückzuführen ist dies auf die Tatsache, dass die überwiegende Mehrzahl der Massenverlagerungsgebiete deutlich breiter als lang ist (vgl. Kap. 5.2.3.3) und sich damit die Breitenausdehnungen signifikant in der mittleren Flächenausdehnung widerspiegelt. Dementsprechend sind die Massenverlagerungsgebiete der größeren Breitenausdehnungen (500 -6000 m) gleichzeitig auch die Gebiete mit den größeren mittleren Flächenausdehnungen (vgl. Abb. 5.7).

Im Hinblick auf die geschilderten Dichteunterschiede der Massenverlagerungsgebiete mit Breitenausdehnungen von 500 - 6000 m (vgl. Abb. 5.3) besteht damit auch für die großflächigeren Gebiete (> 50000 m²) ein deutlicher Zusammenhang zu den von Massenverlagerungen betroffenen Stufenhanglängen. Dieser Zusammenhang ist Abbildung 5.9 dargestellt.

Abb. 5.9:Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen mit der Dichte von
Massenverlagerungsgebieten der mittleren Flächengrößenklassen $50000 -> 500000 \text{ m}^2$

Wie daraus hervorgeht, nimmt mit einem Korrelationskoeffizienten von r = 0.94 die Dichte der Massenverlagerungsgebiete, die mittleren Flächengrößen von $> 50000 \text{ m}^2$ aufweisen, analog der Dichte der Gebiete mit Breitenausdehnungen von 500 - 6000 m, mit zunehmender von Massenverlagerungen betroffener Stufenhanglänge signifikant zu. Demnach sind wiederum die stärker von Massenverlagerungen betroffenen Untersuchungsabschnitte wie Bleicheröder Berge, Dün, Ringgau und insbesondere die Gobert gleichzeitig auch die Gebiete, die sich durch die höchste Dichte Massenverlagerungsgebieten von großflächigeren (betrachtete m²) auszeichnen. Demgegenüber Flächengrößenklassen: 50000 bis >500000 sind die Untersuchungsabschnitte mit geringeren von Massenverlagerungen betroffenen Stufenhanglängen wie Hainleite, Zeugenberge Mittleres Saaletal, Ilm-Kalk-Platte durch eine wesentlich geringere Dichte bzw. wie im Fall des Tautenburger Forstes, sogar durch das Fehlen von Massenverlagerungsgebieten dieser Flächengrößen gekennzeichnet.

5.2.4 Morphologische Ausprägung der Massenverlagerungsgebiete

5.2.4.1 Häufigkeit und regionale Verbreitung des Massenverlagerungsformenschatzes

Der in Kapitel 3 beschriebene Massenverlagerungsformenschatz (Spalten, Absatz-, Mauer-, Wall-, Massenverlagerungsgebieten Rücken-. Fußschollen, Sturzfließungen) ist in den des Untersuchungsraumes in unterschiedlicher Häufigkeit und unterschiedlicher regionaler Verbreitung zu finden. Zur Verdeutlichung dessen wurden 6 separate Karten erstellt, in denen jeweils nur die Massenverlagerungsgebiete, in denen die entsprechende Massenverlagerungsform (z.B. Mauerscholle) auftritt, abgebildet sind. In Karte 9 ist diesbezüglich die naturräumliche Lage der Massenverlagerungsgebiete die Absatzschollen, in Karte 10 die Lage der Gebiete die Rückenschollen, in Karte 11 die Lage der Gebiete die Fußschollen, in Karte 12 die Lage der Gebiete die Wallschollen, in Karte 13 die Lage der Gebiete die Spaltenbildungen und in Karte 14 die Lage der Massenverlagerungsgebiete die Mauerschollen und Sturzfließungen aufweisen dargestellt.

Wie bei der Betrachtung der Karten bereits auffällt, nimmt von Karte 9 zu Karte 14 die Anzahl der Massenverlagerungsgebiete, die den entsprechenden Formenschatz aufweisen, ab. Quantitativ betrachtet, ergeben sich dabei die in Abbildung 5.10 getrennt für den Gesamtuntersuchungsraum und für die einzelnen Untersuchungsabschnitte dargestellten Verteilungsmuster.

Von den insgesamt 744 Massenverlagerungsgebieten sind 580 Gebiete, dies entspricht ca. 80 %, durch das Vorkommen von Absatzschollen, 459 Gebiete (= 62 %) durch das Vorkommen von Rückenschollen, 338 Gebiete (= 45 %) durch das Vorkommen von Fußschollen, 226 Gebiete (= 30 %) durch das Vorkommen von Wallschollen, 219 Gebiete (= 29 %) durch das Vorkommen von Spaltenbildungen, 111 Gebiete (= 15 %) durch das Vorkommen von Mauerschollen und lediglich 14 Massenverlagerungsgebiete (= 2 %) durch das Vorkommen von Sturzfließungen gekennzeichnet. Dabei sind in einem Massenverlagerungsgebiet am Ringgau (Gebiet 483) zwei Sturzfließungen zu verzeichnen. Aufgrund der Seltenheit dieser Massenverlagerungsformen wurden beide jeweils separat in Karte 14 übernommen.

Insgesamt ist damit festzuhalten, dass im Formenschatz der meisten Massenverlagerungsgebiete an der Wellenkalk-Schichtstufe im Thüringer Becken v.a. Absatzschollen (580 Gebiete) gefolgt von Rücken- (459 Gebiete) und Fußschollen (338 Gebiete) vorkommen, wohingegen Mauerschollen (111 Gebiete) und insbesondere Sturzfließungen (14 Gebiete) wesentlich seltener auftreten. Bezogen auf das relative Alter der Formen (vgl. Kap. 4.3) sind somit pleistozäne und ältere holozäne Massenverlagerungen in den einzelnen Gebieten häufiger zu verzeichnen als jüngere holozäne Formen. Wie die in den Karten 9 – 14 dargestellten Verteilungsmuster aber Ausdruck bringen, treten die verschieden alten Massenverlagerungsformen dabei konzentriert an den stärker von Massenverlagerungen betroffenen Untersuchungsabschnitten auf. Innerhalb der einzelnen Untersuchungsabschnitte bestehen hierbei einige interessante Unterschiede (vgl. Abb. 5.10).

So sind die Massenverlagerungsgebiete an den Stufenhängen des Tautenbenburger Forstes durch das Fehlen von Spaltenbildungen (vgl. Karte 13), Mauerschollen und Sturzfließungen (vgl. Karte 14) gekennzeichnet. Morphologisch deutlich in Erscheinung tretende Sturzfließungen fehlen zudem an den Stufenhängen der Ohrdrufer Platte sowie an der Ilm-Kalk-Platte und den Zeugenbergen Mittleres Saaletal (vgl. Abb. 5.10, Karte 14). Im Unterschied zu den übrigen Teiluntersuchungsgebieten sind im Tautenburger Forst Gebiete mit Rückenschollen häufiger zu verzeichnen, als Massenverlagerungsgebiete die Absatzschollen aufweisen. Massenverlagerungsgebiete mit Spaltenbildungen treten am Dün öfter auf als Gebiete mit Rückenund Wallschollen (vgl. Abb. 5.10 und Karte 13). Ähnliches gilt für die Hainleite, die Bleicheröder Bergen und die Ohrdrufer Platte, an deren Stufenhängen Massenverlagerungsgebiete mit Spaltenbildungen häufiger auftreten als Gebiete mit Wallschollen. Die Ilm-Kalk-Platte aber auch der Tautenburger Forst sind durch ein besonders häufiges Vorkommen von Massenverlagerungsgebieten mit Fußschollen gekennzeichnet. Hierauf ist das in Kapitel 5.2.3.3 beschriebene, vom Gesamtuntersuchungsgebiet abweichende Längen-/Breitenverhältnis der Massenverlagerungsgebiete dieser Untersuchungsabschnitte zurückzuführen.

Wie bereits im Kapitel 3.2 beschrieben wurde, sind Fußschollen dadurch charakterisiert, dass sie im Vergleich zu anderen Massenverlagerungsformen die größten horizontalen Verlagerungsdistanzen aufweisen und sich somit sehr weit vom Stufenhang entfernt befinden (bis >300 m). Damit verleihen Fußschollen insbesondere Massenverlagerungsgebieten mit nur geringen Breitenausdehnungen eine deutliche Längendominanz im Vergleich zur Gebietsbreite, was sich in den Verhältniszahlen > 1 widerspiegelt (vgl. Tab. 5.3). Dieses Verhalten ist sehr deutlich an den nur wenig breiten Massenverlagerungsgebieten der Stufenhänge der Ilm-Kalk-Platte und des Tautenburger Forstes ausgeprägt.

Für alle Untersuchungsabschnitte gleichermaßen charakteristisch ist, dass im Vergleich zur Gesamtzahl der auftretenden Massenverlagerungsgebiete, jene Gebiete mit Mauerschollen, gefolgt von jenen mit Sturzfließungen am seltensten auftreten oder gar fehlen (vgl. Abb. 5.8 und Karte 14). Da sowohl die Mauerschollen als auch die Sturzfließungen nicht nur die jüngeren Zeugen der Massenverlagerungsaktivität am Wellenkalk-Schichtstufenhang darstellen (vgl. Kap. 3.3), sondern auch im Hinblick auf die im Rahmen der Untersuchung vorzunehmende Gefährdungsbeurteilung von besonderem Interesse sind (vgl. Kap. 4.2), sollen deren naturräumlichen Verteilungsmuster im Folgenden etwas näher beleuchtet werden.

5.2.4.1.1 Die Häufigkeit der Massenverlagerungsgebiete mit Mauerschollen

Die insgesamt 111 Mauerschollengebiete des Untersuchungsraumes sind in unterschiedlicher Häufigkeit auf die einzelnen Untersuchungsabschnitte verteilt. Absolut gesehen, nimmt deren Anzahl in der Reihenfolge der Untersuchungsabschnitte: Oberes Eichsfeld & Hainich (36 Gebiete), Gobert (19 Gebiete), Dün (15 Gebiete), Ringgau (11), Hainleite (9), Ilm-Kalk-Platte (8), Ohrdrufer Platte (6), Bleicheröder Bergen (4) bis hin zu den Zeugenbergen des Mittleren Saaletales (3) ab (vgl. Abb. 5.10). Im Teiluntersuchungsgebiet des Tautenburger Forstes sind keine Mauerschollengebiete zu verzeichnen (vgl. Kap. 5.2.4.1 und Karte 14).

Aussagekräftiger als die absolute Häufigkeit, ist wiederum die Dichte der Mauerschollengebiete, d.h. deren Anzahl bezogen auf die Stufenhanglänge (vgl. auch Kapitel 5.1.3.1). Die sich diesbezüglich ergebenden Dichteindexwerte sind in Tabelle 5.4 dargestellt. Über die dort aufgeführten Gebietsnummern sind Einzelinformationen dem Anhang C bzw. genauere Lageinformationen der Karte 8 zu entnehmen.

Wie Tabelle 5.4 zeigt, sind die Gobert (Dichteindex: 0,46), gefolgt vom Dün (Dichteindex: 0,34), die Untersuchungsabschnitte mit der größten Mauerschollengebietsdichte. Demgegenüber ist die Ilm-Kalk-Platte (Dichteindex: 0,03) noch vor den Zeugenbergen des Mittleren Saaletales (Dichteindex: 0,04), das Gebiet mit der geringsten Dichte auftretender Mauerschollengebiete. Insgesamt nimmt die Dichte der Mauerschollengebiete in der Reihenfolge Gobert, Dün, Bleicheröder Berge, Ringgau, Oberes Eichsfeld & Hainich, Hainleite, Ohrdrufer Platte, Zeugenberge des Mittleren Saaletales und Ilm-Kalk-Platte ab (vgl. Tab. 5.4).

Tab. 5.4:Anzahl, Nummer und Dichte der Mauerschollengebiete an den Wellenkalk- Schichtstufen-
abschnitten im Thüringer Becken

Untersuchungs-	Länge	Anzahl der	Nr. der	Dichteindex
abschnitte		Mauerschollen-	Mauerschollen-	(Quotient aus Anzahl
		gebiete	gebiete	Mauerschollengebiete und
	(km)		(vgl. Karte 8)	Stufenhanglänge)
Hainlaita		0		0.00
Hamelte	98	9	10, 48, 54, 62,65, 79, 87, 148,	0,09
D "		15		0.24
Dün	43	15	161, 164, 168, 169, 170, 171,	0,34
			183, 184, 186, 187, 188, 189,	
			192, 193, 194	
Bleicheröder Berge	26	4	107,112, 123, 137	0,15
OberesEichsfeld	299	36	211, 222, 238, 250, 261, 265,	0,12
& Hainich			267, 270, 275, 276, 281, 287,	
			290, 303, 305, 307, 309, 313,	
			317, 319, 330, 337, 349, 365,	
			367, 375, 381, 384, 402, 403,	
			498, 499, 501, 507, 508, 511	
Gobert	41	19	513, 514, 515, 516, 520, 521,	0,46
			522, 523, 524, 526, 527, 535,	
			541, 542, 546, 547, 550, 552,	
			553	
Ringgau	71	11	446, 447, 448, 466, 472, 473,	0,15
			474, 475, 476, 494, 496	
Ohrdrufer-Platte	65	6	581, 590, 591, 599, 602, 606	0,09
Ilm-Kalk-Platte	236	8	613, 647, 648, 649, 650, 669,	0,03
			676, 693	
Tautenburger Forst	25	0	-	-
Zeugenberge	64	3	706, 718, 722	0,04
Mittleres Saaletal				

Damit zeigt sich, dass auch in der Mauerschollengebietsdichte innerhalb der einzelnen Untersuchungsabschnitte regional ähnliche Unterschiede, wie hinsichtlich der in Kapitel 5.2.2 beschriebenen, von Massenverlagerungen betroffenen Stufenhanglängen bestehen. Dieser Zusammenhang ist in Abbildung 5.11 verdeutlicht.

Abb. 5.11:Zusammenhang zwischen den von Massenverlagerungen betroffenen Stufenhanglängen und
der Dichte von Mauerschollengebieten innerhalb der einzelnen Untersuchungsabschnitte

Mit einem Korrelationskoeffizienten von r = 0,88 nimmt die Dichte der Mauerschollengebiete mit abnehmender, von Verlagerungen betroffener Stufenhanglänge tendenziell ab (vgl. Abb. 5.11). Somit sind die Untersuchungsabschnitte Bleicheröder Berge, Ringgau und insbesondere der Dün und die Gobert nicht nur die Gebiete mit den am stärksten von Massenverlagerungen betroffenen Stufenhanglängen, bei gleichzeitig hohen Dichten der Massenverlagerungsgebiete mit 500 - 6000 Breitenausdehnung, sondern gleichzeitig auch die Gebiete mit der größten m Mauerschollengebietsdichte. Demgegenüber sind die Untersuchungsabschnitte mit geringeren von Massenverlagerungen betroffenen Stufenhanglängen und geringeren Dichten von Massenverlagerungsgebieten mit 500 - 6000 m Breitenausdehnung wie Hainleite, Zeugenberge Mittleres Saaletal, Ilm-Kalk-Platte gleichzeitig durch eine wesentlich geringere Dichte bzw. wie im Fall des Tautenburger Forstes, sogar durch das Fehlen von Massenverlagerungsgebieten mit Mauerschollen gekennzeichnet.

5.2.4.1.2 Die Häufigkeit der Massenverlagerungsgebiete mit Sturzfließungen

Die Sturzfließungen, als seltenste Massenverlagerungsformen am Wellenkalk-Schichtstufenhang, sind generell dadurch charakterisiert, dass sie sich innerhalb größerer Massenverlagerungsgebiete befinden und hier kleinflächigere Teilbereiche mit bis > 200 m abrißwandparalleler Breitenausdehnung einnehmen.

Wie bereits aus Karte 14 hervorgeht, sind lediglich in den nördlichen (Hainleite, Bleicheröder Berge, Dün) und westlichen Untersuchungsabschnitten (Oberes Eichsfeld & Hainich, Gobert, Ringgau) morphologisch deutlich in Erscheinung tretende Sturzfließungen zu verzeichnen, während diese an den südlichen (Ohrdrufer Platte, Ilm-Kalk-Platte) und an den östlichen Untersuchungsabschnitten (Ilm-Kalk-Platte, Tautenburger Forst, Zeugenberge Mittleres Saaletal) fehlen (vgl. Abb. 5.8 und Karte 14). Absolut gesehen, konnten an der Hainleite zwei, am Dün eine, an den Bleicheröder Bergen zwei, im Oberen Eichsfeld & Hainich sowie an der Gobert je eine und am Ringgau acht Sturzfließungen lokalisiert werden. Dabei treten 2 der 8 Sturzfließungen am Ringgau in einem Massenverlagerungsgebiet (Gebiet 483) auf (vgl. Kap. 5.2.4.1).

Die Lage der Sturzfließungen innerhalb der Massenverlagerungsgebiete, deren Lokalbezeichnungen und deren abrißwandparallelen Breitenausdehnungen sind in Tabelle 5.5 dargestellt. Über die hier aufgeführte Nummer sind die einzelnen Gebiete in Karte 14, über die zugehörigen Massenverlagerungsgebietsnummern in Karte 8 wiederzufinden.

Nr.	Nr. des zugehörigen Massenverlagerungs -gebietes	HW	RW	Lokalbezeichnung der Gebiete	Abrißwand parallele Breite (m)
1	54	5694433	4418900	Frauenberg	150
2	87	5698001	4409880	Wöbelsburg	140
3	107	5702386	4397519	Krajaer Kopf	120
4	129	5700311	4397853	Teichkopf	155
5	189	5691899	4395444	Zementwerk Deuna	130
6	528	5681524	4362685	Hörne	90
7	394	5674658	4373842	Plesse	250
8	464	5664523	4373808	nahe Heldrastein	280
9	466	5665623	4372446	Dreiherrenstein	70
10	471	5664345	4370463	südlich von Rambach	90
11	473	5665247	4368743	Manrod	140
12	475	5666393	4367005	Rabenkuppe	140
13	483	5663826	4360981	nahe Schickeberg	100
14	483	5663041	4360235	Schickeberg	100
15	496	5654773	4373994	Kielforst	350

Tab. 5.5:Lage, Lokalbezeichnungen und Breitenausdehnungen der Sturzfließungen im
Untersuchungsgebiet

Interessant sind auch hier die regionalen Dichteunterschiede. Bezogen auf die jeweiligen Untersuchungsabschnitte ergibt sich dabei das in Tabelle 5.6 dargestellte Verteilungsbild.

Tab. 5.6:Anzahl und Dichte der Mauerschollengebiete an den Wellenkalk-Schichtstufenabschnitten
im Thüringer Becken

Untersuchungsabschnitte	Länge	Anzahl der	Dichtindex
		Gebiete mit	(Quotient aus Anzahl Sturzfließungen und
	(km)	Sturzfließungen	Stufenhanglänge)
Hainleite	98	2	0,020
Dün	43	1	0,023
Bleicheröder Berge	26	2	0,077
OberesEichsfeld & Hainich	299	1	0,003
Gobert	41	1	0,024
Ringgau	71	7	0,098
Ohrdrufer-Platte	65	0	-
Ilm-Kalk-Platte	236	0	-
Tautenburger Forst	25	0	-
Zeugenberge Mittleres Saaletal	64	0	-

Wie daraus hervorgeht, nimmt in der Reihenfolge der Untersuchungsabschnitte: Ringgau (Dichteindex: 0,098), Bleicheröder Berge (Dichteindex: 0,077), Gobert (Dichteindex: 0,024), Dün (Dichteindex: 0,023), Hainleite (Dichteindex:0,020) hin zum Oberen Eichsfeld & Hainich (Dichteindex: 0,003) die Dichte der auftretenden Sturzfließungen ab.

Beim Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen Untersuchungsabschnitte mit den Dichteindexwerten der Sturzfließungen (vgl. Tab. 5.6) werden auch hierbei einige Zusammenhänge deutlich, die zusammengefasst in Abbildung 5.12 dargestellt sind.

Wie diese zeigt, ist ähnlich der Mauerschollengebietsdichte (vgl. Abb. 5.11), ein abnehmender Trend der Sturzfließungsdichte mit abnehmenden von Massenverlagerungen betroffenen Stufenhanglängen zu verzeichnen. Dieser Zusammenhang ist mit einem Korrelationskoeffizienten von r = 0,61 jedoch nicht so deutlich ausgeprägt wie für die Mauerschollengebiete.

Abb. 5.12:Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen
Untersuchungsabschnitte mit der Dichte der Sturzfließungen und Mauerschollengebiete

Dies beruht auf der Tatsache, dass v.a. in den stärker von Massenverlagerungen betroffenen Stufenhangabschnitten (Gobert, Bleicheröder Berge, Dün, Ringgau) Dichteunterschiede zwischen auftretenden Mauerschollen- und Sturzfließungsgebiete bestehen (vgl. Abb. 5.12). So weist der Ringgau, der nach Gobert, Dün und Bleicheröder Bergen, erst an 4. Stelle hinsichtlich der Mauerschollengebietsdichte steht. die größte Sturzfließungsdichte im gesamten Untersuchungsgebiet auf. Es folgt das Gebiet der Bleicheröder Berge, welches in der statistischen Mauerschollengebietsdichte erst an dritter Stelle steht. Die Gobert (Dichteindex: 0,024), welche die höchste Mauerschollengebietsdichte im Untersuchungsgebiet aufweist, nimmt nur Platz drei in der Sturzfließungsdichte ein. Der Dün wiederum, der in der Mauerschollendichte Platz zwei einnimmt, steht in der Sturzfließungsdichte erst an 4. Stelle (vgl. Tab. 5.6 und Abb. 5.12).

Mögliche Ursachen für dieses von den Mauerschollen abweichende Verteilungsbild werden im Zusammenhang mit der Erörterung der klimatischen Steuerungsfaktoren insbesondere der Stakniederschlagsverteilung diskutiert.

5.2.4.1.3 Die Breite der Massenverlagerungsgebiete mit Mauerschollen und Sturzfließungen

Entsprechend der Tatsache, dass sowohl die Massenverlagerungsgebiete mit Breitenausdehnungen von 500 - 6000 m als auch die Massenverlagerungsgebiete mit Sturzfließungen und insbesondere

die mit Mauerschollen ähnliche regionale Dichteunterschiede zeigen (vgl. Abb. 5.3, Abb. 5.11 und Abb. 5.12), liegt es nahe, die Breitenausdehnungen der Mauerschollen- und Sturzfließungsgebiete näher zu analysieren. Bezogen auf die in den jeweiligen Gebietsbreitenklassen vorkommende Anzahl von Massenverlagerungsgebieten mit Mauerschollen und Sturzfließungen, ergibt sich dabei das in Abbildung 5.13 dargestellte Verteilungsbild, wobei als Vergleichsbasis die Gesamtzahl der Massenverlagerungsgebiete der jeweiligen Breitenklasse mit aufgeführt wurde.

Abb. 5.13:Die Breitenausdehnungen der Massenverlagerungsgebiete mit Mauerschollen und
Sturzfließungen bezogen auf die Anzahl der Massenverlagerungsgebiete in den jeweiligen
Breitenklassen

Wie Abbildung 5.13 zeigt, sind von den 111 Massenverlagerungsgebieten mit Mauerschollen 62 Gebiete (= ca. 56 %) und von den insgesamt 14 Massenverlagerungsgebieten mit Sturzfließung 9 Gebiete (=ca. 64 %) durch Breitenausdehnungen der Klassen > 500 m gekennzeichnet. Bedenkt man, dass nur 127 der insgesamt 744 Massenverlagerungsgebiete, dies entspricht ca. 17 %, Breitenausdehnung von 500 - 6000 m aufweisen, ist durchschnittlich jedes zweite Gebiet dieser Breitenklassen durch das Vorkommen von Mauerschollen und jedes 14. Gebiet durch das Vorkommen von Sturzfließungen gekennzeichnet. Demgegenüber weisen von den 617 Massenverlagerungsgebieten der Breitenklassen < 500 m durchschnittlich nur jedes 12. Gebiet Mauerschollen und nur jedes 69. Gebiet Sturzfließungen auf. Prozentual nimmt der Anteil der Mauerschollen- und Sturzfließungsgebiete im Vergleich zur Gesamtzahl der Massenverlagerungsgebiete mit steigender Breitenausdehnung exponentiell zu (vgl. Abb. 5.13). So sind von den insgesamt 84 Massenverlagerungsgebieten der Breitenklasse < 50 m zunächst nur 1,2 % (n = 1) durch das Auftreten von Mauerschollen gekennzeichnet, während Sturzfließungen in dieser Massenverlagerungsgebietsbreitenklasse noch nicht auftreten. Demgegenüber weisen von den 87 Gebieten der Breitenklasse 500 - 1000 m bereits 37,9 % (n = 33) Mauerschollen und 16,6 % (n = 6) Sturzfließungen auf. In der höchsten Breitenklasse von 2000 6000 m sind von den insgesamt 4 Massenverlagerungsgebieten 75 % (n = 3) durch auftretende Mauerschollen und 25 % (n = 1) durch auftretende Sturzfließungen gekennzeichnet. Damit wird deutlich, dass Mauerschollen und Sturzfließungen bevorzugt in den breiteren Massenverlagerungsgebieten in zunehmender Häufigkeit auftreten. Dies spiegelt sich letztendlich (mit einzelnen Abweichungen) in den geschilderten Gemeinsamkeiten zwischen der Dichte der Massenverlagerungsgebiete mit Breitenausdehnungen von 500 - 6000 m und der Sturzfließungs- und insbesondere Mauerschollengebietsdichte wider.

5.2.4.2 Vergesellschaftungen des Massenverlagerungsformenschatzes innerhalb der Massenverlagerungsgebiete

Wie ein Vergleich der Karten 9 bis 14 zeigt, kann der bislang separat betrachtete Massenverlagerungsformenschatz in den einzelnen Massenverlagerungsgebieten sowohl vergesellschaftet als auch solitär vorkommen. Solitär bedeutet dabei, dass lediglich eine der sieben Massenverlagerungsformen (z.B. Absatzscholle) in einem Massenverlagerungsgebiet auftritt, unabhängig davon, ob diese Form mehrfach im selben Gebiet zu verzeichnen ist (z.B. 3 Absatzschollen in einem Gebiet).

Von den insgesamt 744 Massenverlagerungsgebieten sind 530 Gebiete, dies entspricht ca. 71 %, durch das Vorkommen von mindestens 2 unterschiedlichen Massenverlagerungsformen 29 gekennzeichnet, wohingegen 214 Gebieten, dies entspricht ca. %. solitäre Massenverlagerungsformen aufweisen (vgl. Anhang C). Damit ist die überwiegende Mehrzahl der an der Wellenkalk-Schichtstufe im Thüringer Becken vorkommenden Massenverlagerungsgebiete durch Formenvergesellschaftungen gekennzeichnet.

Entsprechend der betrachteten 7 Hauptformen (Spalten, Mauer-, Absatz-, Rücken-, Wall-, Fußschollen, Sturzfließungen) können theoretisch maximal 2⁷, d.h. 128 unterschiedliche Kombinationsmöglichkeiten des Massenverlagerungsformenschatzes auftreten. Von diesen 128 Möglichkeiten kommen im Untersuchungsgebiet 65 vor, wobei 5 Möglichkeiten auf solitär

auftretende Massenverlagerungsformen entfallen. Im Folgenden sollen sowohl die solitär auftretenden Massenverlagerungsformen als auch die am häufigsten anzutreffenden Formenvergesellschaftungen kurz vorgestellt werden. Für weiterführende Einzelbetrachtungen sei wiederum auf Anhang C verwiesen.

Von den 214 Massenverlagerungsgebieten, in denen jeweils nur eine Massenverlagerungsform zu beobachten ist, sind 122 Gebiete, dies entspricht ca. 57 %, durch das solitäre Auftreten von Absatzschollen, 43 Gebiete (ca. 20 %) durch das solitäre Auftreten von Fußschollen, 41 Gebiete (ca. 19 %) durch das solitäre Auftreten von Rückenschollen, 5 Gebiete (ca. 2,5 %) (Gebiete: 196, 354, 389, 702, 710) durch das solitäre Auftreten von Wallschollen und 3 Gebiete (ca. 1,5 %) (Gebiete:84, 134, 182) durch das solitäre Auftreten von Spaltenbildungen gekennzeichnet (vgl. Anhang C und Karte 8).

Von den 60 im Untersuchungsgebiet zu beobachtenden Formenvergesellschaftungsmöglichkeiten ist die Vergesellschaftung der Absatz- und Rückenschollen am häufigsten vorzufinden. 77 der 744 Massenverlagerungsgebieten, dies entspricht ca. 10,3 %, weisen diese Kombination auf. Mit 61 Massenverlagerungsgebieten (8,2 %) ist die Kombination: Absatz-, Rücken-, Fußschollen am zweithäufigsten vertreten. Mit 34 Gebieten (4,6 %) folgt die Formenkombination: Spaltenbildungen, Mauer-, Absatz-, Wall-, Rücken-, Fußschollen, gefolgt von je 28 Gebieten (je 3,8 %) der Kombinationen: Absatz-, Wall-, Rücken-, Fußschollen bzw. Spaltenbildungen, Absatz-Rückenschollen. Demgegenüber ist die in 9 Gebieten (Gebiete: 101, 231, 244, 285, 312, 398, 597, 673, 678) zu beobachtende Kombination: Absatz-, Wall- und Fußscholle bereits weniger häufig zu verzeichnen. Die mit je einem Massenverlagerungsgebiet am seltensten vorkommenden Formenvergesellschaftungen sind bspw. Spaltenbildungen mit Rücken- und Fußschollen (Gebiet: 59) bzw. Spaltenbildungen und Wallschollen (Gebiet: 38). In nur 4 Massenverlagerungsgebieten (Gebiete: 466, 473, 475, 496) ist der gesamte an der Wellenkalk-Schichtstufe zu verzeichnende Massenverlagerungshauptformenschatz anzutreffen (vgl. Anhang C).

Trotz der Vielzahl der unterschiedlichen Kombinationsmöglichkeiten, lassen sich einige für die Gesamtzahl der Massenverlagerungsgebiete gültige Regelmäßigkeiten der Formenvergesellschaftungen erkennen. So kommen Mauerschollen und Sturzfließungen nie als solitäre Einzelformen in den Massenverlagerungsgebieten vor, sondern treten generell vergesellschaftet mit anderen Massenverlagerungsformen auf. Sturzfließungen sind nur in solchen Gebieten zu finden, in denen exponierte Mauerschollen vorhanden sind bzw. vorhanden waren (vgl. Kap. 3.2). In 8 der 15 Sturzfließungsgebiete (Gebiete: 1, 2, 3, 5, 9, 11, 12, 15) sind Mauerschollen rezent noch zu verzeichnen (vgl. Tab. 5.5 und Karte 14). Sowohl in den 8 Gebieten mit als auch in den 7 Gebieten ohne rezente Mauerschollen (Gebiete: 4, 6, 7, 8, 10, 2 x 13) sind

Schollenstümpfe als Relikte ehemaliger Mauerschollen, deren oberen Teile durch den Verlagerungsakt verstürzten, vorhanden. I.d.R. sind auch Spaltenbildungen in Form frischer Öffnungen an Mauerschollengebiete gebunden. Demgegenüber sind Spaltenbildungen in Form älterer, schuttverhüllter Depressionen auch außerhalb von Mauerschollengebieten bzw. in einzelnen Massenverlagerungsgebieten solitär vorzufinden. Die drei genannten Gebiete: 84, 134, 182 (vgl. oben) sind durch das Auftreten von Spaltenbildungen in Form schuttverhüllter Depressionen gekennzeichnet.

5.2.4.3 Die Anzahl unterschiedlicher Massenverlagerungsformen innerhalb der Massenverlagerungsgebiete

Interessant systematisch analysieren die Anzahl den und gut zu ist der in Massenverlagerungsgebieten auftretenden unterschiedlichen Massenverlagerungsformen. Wie bereits in Kapitel 5.2.4.3 erwähnt, können in Abhängigkeit vom betrachtenden Formenschatz in einem Gebiet minimal eine und maximal sieben unterschiedliche Massenverlagerungsformen auftreten. Entsprechend der Geländebefunde ergibt sich dabei das in Karte 15 bzw. in Abbildung 5.14 dargestellte Verteilungsbild.

Abb. 5.14: Die Häufigkeit unterschiedlicher Massenverlagerungsformen innerhalb der Massenverlagerungsgebiete an der Wellenkalk-Schichtstufe im Thüringer Becken

Bezogen auf die Gesamtzahl der Massenverlagerungsgebiete (n = 744) zeigt sich, dass mit zunehmender Anzahl unterschiedlicher Massenverlagerungsformen die Anzahl der Gebiete die diese aufweisen abnimmt (vgl. Abb. 5.14). So sind von den 744 Massenverlagerungsgebieten 214 Gebiete (= ca. 29 %) durch das Vorkommen von solitären Massenverlagerungsformen (vgl. Kap. 5.2.4.2), 186 Gebiete (= ca. 25 %) durch das Vorkommen von 2 Massenverlagerungsformen, 155 Gebiete (= ca. 20 %) durch das Vorkommen von 3 Massenverlagerungsformen, 89 Gebiete (= ca. 12 %) durch das Vorkommen von 4 Massenverlagerungsformen, 59 Gebiete (= ca. 8 %) durch das Vorkommen von 5 Massenverlagerungsformen gekennzeichnet (vgl. Abb. 5.14). Lediglich 4 Gebiete im Unterschiedlichen Massenverlagerungsformen gekennzeichnet (vgl. Abb. 5.14). Lediglich 4 Gebiete im Untersuchungsraum (= ca. 1%) weisen alle 7 der an der Wellenkalk-Schichtstufe im Thüringer Becken vorkommenen Massenverlagerungshauptformen auf (vgl. Kap. 5.2.4.2). Damit zeigt sich, dass die überwiegende Mehrzahl der Massenverlagerungsgebiete durch das Vorkommen von mindestens zwei unterschiedlichen Massenverlagerungsformen gekennzeichnet ist.

Bemerkenswert sind in diesem Zusammenhang die bereits aus Karte 15 bzw. Abbildung 5.14 hervorgehenden, regionalen Dichteunterschiede von Massenverlagerungsgebieten, die eine größere Anzahl (insbesondere 6 - 7) unterschiedlicher Massenverlagerungsformen aufweisen. Bezogen auf die Stufenhanglänge der jeweiligen Untersuchungsabschnitte sind diese Dichteunterschiede zusammengefasst in Tabelle 5.7 dargestellt.

Untersuchungsabschnitte	Länge	Anzahl der	Dichtindex
		Gebiete mit 6 - 7	
		unterschiedlichen	(Quotient aus Anzahl der Gebiete mit 6 - 7
		Massenverlagerungs	unterschiedlichen Massenverlagerungsformen
	(km)	formen	und der Stufenhanglänge)
Hainleite	98	7	0,071
Dün	43	7	0,163
Bleicheröder Berge	26	7	0,269
OberesEichsfeld & Hainich	299	32	0,107
Gobert	41	14	0,341
Ringgau	71	15	0,211
Ohrdrufer-Platte	65	6	0,092
Ilm-Kalk-Platte	236	3	0,013
Tautenburger Forst	25	0	-
Zeugenberge Mittleres Saaletal	64	2	0,031

Tab. 5.7:Anzahl und Dichte der Massenverlagerungsgebiete mit 6 - 7 unterschiedlichen
Massenverlagerungsformen

Wie Tabelle 5.7 zeigt, nimmt in der Reihenfolge: Gobert (Dichteindex: 0,341), Bleicheröder Berge (Dichteindex: 0,269), Ringgau (Dichteindex: 0,211), Dün (Dichteindex: 0,163), Oberes Eichsfeld & Hainich (Dichteindex: 0,107), Ohrdrufer Platte (Dichteindex: 0,092), Hainleite (Dichteindex: 0,071), Zeugenberge Mittleres Saaletal (Dichteindex: 0,031), Ilm-Kalk-Platte (Dichteindex: 0,013) die Dichte der Massenverlagerungsgebiete, die 6-7 unterschiedlichen Massenverlagerungsformen aufweisen, ab.

Damit bestehen auch in der Dichte dieser Massenverlagerungsgebiete regional ähnliche Unterschiede wie hinsichtlich der von Massenverlagerungen betroffenen Stufenhanglängen. Dieser Zusammenhang ist in Abbildung 5.15 verdeutlicht.

Abb. 5.15: Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen
 Untersuchungsabschnitte mit der Dichte der auftretenden Massenverlagerungsgebiete mit
 6 - 7 Massenverlagerungsformen

Mit steigender, von Massenverlagerungen betroffener Stufenhanglänge nimmt auch die Dichte der Massenverlagerungsgebiete mit 6 - 7 unterschiedlichen Massenverlagerungsformen zu (vgl. Abb. 5.15) Dieser Zusammenhang ist mit einem Korrelationskoeffizienten von r = 0.98 statistisch hochsignifikant. Somit sind die Untersuchungsabschnitte Dün, Bleicheröder Berge, Ringgau und insbesondere die Gobert nicht nur die Gebiete mit der am stärksten von Massenverlagerungen betroffenen Stufenhanglängen, bei gleichzeitig hohen Dichten der Massenverlagerungsgebiete mit 500 - 6000 m Breitenausdehnung sowie hohen Mauerschollen- und Sturzfließungsgebietsdichten,

sondern gleichzeitig auch die Gebiete mit der größten Dichte von Massenverlagerungsgebieten, die 6 bis 7 unterschiedliche Massenverlagerungsformen aufweisen. Demgegenüber sind die Untersuchungsabschnitte Hainleite, Zeugenberge Mittleres Saaletal, Ilm-Kalk-Platte, die sich sowohl durch geringere von Massenverlagerungen betroffene Stufenhanglängen als auch durch geringere Dichten von Massenverlagerungsgebieten mit 500 -6000 m Breitenausdehnung sowie geringere Mauerschollen- bzw. Sturzfließungsgebietsdichten auszeichnen, gleichzeitig auch durch eine wesentlich geringere Dichte bzw. wie im Fall des Tautenburger Forstes, sogar durch das Fehlen von Massenverlagerungsgebieten mit 6 - 7 Massenverlagerungsformen gekennzeichnet.

Betrachtet man wiederum die Breitenausdehnungen der Massenverlagerungsgebiete mit 6 - 7 unterschiedlichen Massenverlagerungsformen, ergibt sich das in Abbildung 5.16 dargestellte Bild. Als Vergleichsbasis ist auch hier die Gesamtzahl der Massenverlagerungsgebiete der entsprechenden Breitenklassen mit aufgeführt.

Abb. 5.16:Die Breitenausdehnung der Massenverlagerungsgebiete mit 6 - 7 unterschiedlichen
Massenverlagerungsformen

Es zeigt sich, dass 18 der 41 Massenverlagerungsgebiete (= ca. 44 %) die diese hohe Formenschatzhäufigkeit aufweisen, durch Breitenausdehnungen > 500 m gekennzeichnet sind. Demgegenüber sind 23 Gebiete (= ca. 56 %, durch Breitenausdehnungen < 500 m charakterisiert. Bezogen auf die Gesamtzahl der Massenverlagerungsgebiete mit Breitenausdehnungen von 500 - 6000 m (n = 127) ist demnach durchschnittlich jedes 7. Gebiet durch das Vorkommen von 6 -

unterschiedlichen Massenverlagerungsformen gekennzeichnet, wohingegen von den 617 7 Massenverlagerungsgebieten der Breitenklassen < 500 m durchschnittlich nur jedes 27. Gebiet dieser hohen Formenschatzhäufigkeiten aufweist. Prozentual betrachtet, nimmt dabei auch hier die Häufigkeit der Gebiete mit 6 - 7 Massenverlagerungsformen mit steigender Breitenausdehnung zu 5.16). sind den insgesamt 114 Gebieten der Breitenklasse (vgl. Abb. So von 50-100 m zunächst nur 1,7 % durch diese Formenschatzhäufigkeiten gekennzeichnet. Demgegenüber weisen von den 87 Massenverlagerungsgebieten der Breitenklasse 500 - 1000 m bereits 13,8 % und von den 4 Gebieten der Breitenklasse von 2000 - 6000 bereits 25% diese Formenschatzhäufigkeit auf. Damit wird deutlich, dass nicht nur Sturzfließungen und Mauerschollen bevorzugt in den breiteren Massenverlagerungsgebieten in zunehmender Häufigkeit auftreten, sondern das die breiteren Massenverlagerungsgebiete insgesamt auch durch höhere Formenschatzhäufigkeiten gekennzeichnet sind. Somit bestehen auch zwischen der Formenschatzhäufigkeit und der Häufigkeit der Mauerschollen- und Sturzfließungsgebiete Zusammenhänge, die in Abbildung 5.17 genauer dargestellt sind.

Abb. 5.17:Die Formenschatzhäufigkeit in den Massenverlagerungsgebieten mit Mauerschollen und
Sturzfließungen

Wie diese Abbilung zeigt, sind 70 der 111 Mauerschollengebiete(= ca. 63 %) und 9 der 14 Sturzfließungsgebiete (= ca. 64%) durch das gleichzeitige Auftreten von 5 bis 6 weiteren Massenverlagerungsformen gekennzeichnet. Ähnlich der in Kapitel 5.2.4.1.3 geschilderten Breitenausdehnung (vgl. Abb. 5.13), nimmt auch hier mit zunehmender Formenschatzhäufigkeit der prozentuale Anteil der Massenverlagerungsgebiete mit Mauerschollen und Sturzfließungen exponentiell signifikant zu. So sind von den insgesamt 186 Massenverlagerungsgebieten, die zwei unterschiedliche Massenverlagerungsformen aufweisen, nur 3 Gebiete (= 1,6 %) durch auftretende Mauerschollen gekennzeichnet, wohingegen Sturzfließungen hier noch nicht vorkommen. Demgegenüber weisen von den 59 Gebieten mit 5 Massenverlagerungsformen bereits 30 Gebiete Mauerschollen (= 51 %) und 2 Gebiete (= 3,4 %) Sturzfließungen sowie von den 37 Gebieten mit 6 Massenverlagerungsformen bereits 36 Gebiete Mauerschollen (= 97,3 %) und 3 Gebiete (= 8,1 %) Sturzfließungen auf. Diese Verhaltensmuster spiegeln sich letztendlich in den geschilderten Dichtegemeinsamkeiten (Dichte der Massenverlagerungsgebiete mit 500 - 6000 m Breitenausdehnung, Dichte der Mauerschollen- und Sturzfließungsgebiete und Dichte der Massenverlagerungsgebiete mit 6 - 7 unterschiedlichen Massenverlagerungsformen) wider.

5.2.4.4 Die Staffelanzahl der Massenverlagerungsgebiete

Im Rahmen der Geländearbeiten wurde versucht, von jedem Massenverlagerungsgebiet die in vertikaler Abfolge vorzufindende, staffelartige Anordnung der Massenverlagerungskörper in Form der Staffelanzahl zu erfassen (vgl. Kap. 4.2). Das sich diesbezüglich für den Untersuchungsraum ergebende Verteilungsbild ist in Karte 16 räumlich und in Abbildung 5.18 quantitativ zusammengefasst dargestellt.

Wie Abbildung 5.16 zum Ausdruck bringt, können in einem Massenverlagerungsgebiet in vertikaler Abfolge minimal l und maximal 7 Staffeln vorkommen. Von der Gesamtzahl der Massenverlagerungsgebiete des Untersuchungsraumes weisen 187 Gebiete (= ca. 25 %) lediglich 1 Staffel, 201 Gebiete (= ca. 27 %) 2 Staffeln, 193 Gebiete (= ca. 26 %) 3 Staffeln, 98 Gebiete (= ca. 13 %) 4 Staffeln, 53 Gebiete (ca. 7 %) 5 Staffeln und je 6 Gebiete (je ca. 1 %) 6 bzw. 7 Staffeln auf. Damit ist, abgesehen von einer Ausnahme, die Mehrzahl der an der Wellenkalk-Schichtstufe im Thüringer Becken vorkommenden Massenverlagerungsgebiete durch das Vorkommen von mindestens 2 Massenverlagerungsstaffeln gekennzeichnet. Die Ausnahme ist der Untersuchungsabschnitt Tautenburger Forst, an dem lediglich die Hälfte der dort vorkommenden Massenverlagerungsgebiete (n = 6) durch Staffelzahlen > 1 gekennzeichnet ist (vgl. Abb. 5.18).

Abb. 5.18: Die Staffelanzahl der Massenverlagerungskörper in den Massenverlagerungsgebieten des Untersuchungsgebietes

Innerhalb der einzelnen Untersuchungsabschnitte sind aber auch hier regionale Abweichungen von dem für die Gesamtzahl der Massenverlagerungsgebiete geschilderten Verteilungsbild zu verzeichnen. Wie aus Karte 16 bzw. Abbildung 5.17 hervorgeht, sind diese am auffälligsten für die insgesamt seltener auftretenden Gebiete mit 5 bis 7 Staffelabfolgen (n = 66 Gebiete). So sind bspw. Massenverlagerungsgebiete mit den höchsten zu verzeichnenden Staffelabfolgen (6 - 7) lediglich an den Stufenhangabschnitten Gobert, Dün, Ringgau, Ohrdrufer Platte und Ilm-Kalk-Platte zu finden. Zur genaueren Analyse der diesbezüglich bestehenden Unterschiede wurde die untersuchungsabschnittsbezogene Dichte der Massenverlagerungsgebiete 7 mit 5 bis Staffelabfolgen ermittelt. Die sich ergebenden Dichteindexwerte sind in Tabelle 5.8 dargestellt.

Wie diese zeigt, nimmt in der Reihenfolge der Untersuchungsabschnitte Gobert (Dichteindex: 0,488), Ringgau (Dichteindex: 0,127), Ohrdrufer Platte (Dichteindex: 0,108), Dün (Dichteindex: 0,093), Bleicheröder Berge (Dichteindex: 0,077), Oberes Eichsfeld & Hainich (Dichteindex: 0,057), Ilm-Kalk-Platte (Dichteindex: 0,025) und Hainleite (Dichteindex: 0,010) die Dichte der Massenverlagerungsgebiete, die 5 - 7 Staffelabfolgen aufweisen, ab. Sowohl am Tautenburger Forst als auch im Gebiet der Zeugenberge Mittleres Saaletal konnten Massenverlagerungsgebiete mit 5 - 7 Staffelabfolgen nicht vorgefunden werden.

Untersuchungsabschnitte	Länge (km)	Anzahl der Gebiete mit 5 - 7 Staffelabfolgen	Dichtindex (Quotient aus Anzahl der Gebiete mit 5 - 7 Staffelfolgen und der Stufenhanglänge)
Hainleite	98	1	0.010
Dün	43	4	0.093
Bleicheröder Berge	26	2	0,077
OberesEichsfeld & Hainich	299	17	0,057
Gobert	41	20	0,488
Ringgau	71	9	0,127
Ohrdrufer-Platte	65	7	0,108
Ilm-Kalk-Platte	236	6	0,025
Tautenburger Forst	25	0	-
Zeugenberge Mittleres Saaletal	64	0	-

 Tab. 5.8:
 Anzahl und Dichte der Massenverlagerungsgebiete mit 5 - 7 Staffelabfolgen

Vergleicht man die genannten Dichteunterschiede mit der von Massenverlagerungen betroffenen Stufenhanglänge der jeweiligen Untersuchungsabschnitte, lassen sich auch hier regionale Gemeinsamkeiten erkennen, die zusammengefasst in Abbildung 5.19 dargestellt sind.

Abb. 5.19:Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen
Untersuchungsabschnitte mit der Dichte der auftretenden Massenverlagerungsgebiete mit
5 - 7 Staffelabfolgen

Mit einem Korrelationskoeffizienten von r = 0.75 nimmt die Dichte der Massenverlagerungsgebiete mit 5 - 7 Formenstaffeln bei abnehmender, von Verlagerungen betroffener Stufenhanglänge ab. Somit sind auch hierbei die Untersuchungsabschnitte Ringgau, Dün, Bleicheröder Berge, Oberes Eichsfeld & Hainich, Ohrdrufer Platte und insbesondere die Gobert nicht nur die Gebiete mit den am stärksten von Massenverlagerungen betroffenen Stufenhanglängen bei gleichzeitig größten Dichten der Gebiete mit 500 - 6000 m Breitenausdehnung, den größten Mauerschollen- und Sturzfließungsgebietsdichten und den größten Dichten der Gebiete mit 6 - 7 unterschiedlichen Massenverlagerungsformen, sondern gleichzeitig auch die Untersuchungsabschnitte mit der 5 - 7 Dichte der Gebiete mit Formenstaffeln. Demgegenüber treten größten die Untersuchungsabschnitte Hainleite, Zeugenberge Mittleres Saaletal und Ilm-Kalk-Platte auch bei diesem Vergleich hinter den stärker von Massenverlagerungen betroffenen Untersuchungsabschnitten deutlich zurück. An den nur wenig von Massenverlagerungen beeinflussten Stufenhängen des Tautenburger Forstes sind Gebiete mit 5 - 7 Staffelabfolgen nicht zu verzeichnen.

Betrachtet man die Breitenausdehnung der Massenverlagerungsgebiete mit 5 - 7 Staffelabfolgen, ergibt sich das in Abbildung 5.20 dargestellt Bild.

Abb. 5.20:

Die Breitenausdehnung der Massenverlagerungsgebiete mit 5 - 7 Staffelabfolgen

Wie daraus hervorgeht, sind 50 der 66 Massenverlagerungsgebiete, die 5 - 7 Staffelabfolgen aufweisen (= ca. 76%) durch Breitenausdehnungen > 500 m charakterisiert wohingegen. nur 16 Gebiete (= ca. 24%) Gebietsbreiten < 500 m aufweisen. Prozentual betrachtet nimmt dabei auch hier die Häufigkeit der Gebiete mit 5 - 7 Staffelabfolgen mit steigender Breitenausdehnung zu (vgl. Abb. 5.20). So sind von den insgesamt 215 Massenverlagerungsgebieten der Breitenklasse 100 -200 m zunächst nur 0,5 % (n = 1) durch dieser Staffelhäufigkeit gekennzeichnet. Demgegenüber weisen von den 87 Massenverlagerungsgebieten der Breitenklasse 500 - 1000 m bereits 32,2 % (n = 28) und von den 4 Massenverlagerungsgebieten der Breitenklasse von 2000 -6000 bereits 100 % (n = 4) 5-7 Formenstaffeln auf. Damit kommt auch bei diesem Vergleich klar zu Ausdruck, dass höhere Staffelanzahlen bevorzugt in den breiteren Massenverlagerungsgebieten in zunehmender Häufigkeit zu verzeichnen sind, was sich letztendlich auch in den geschilderten Dichtegemeinsamkeiten widerspiegelt (vgl. Abb. 5.19). Auf die Tatsache, dass die breiteren Massenverlagerungsgebiete gleichzeitig auch die Gebiete sind, in denen zunehmend gehäuft Mauerschollen und Sturzfließungen sowie hohe Formenschatzhäufigkeiten zu verzeichnen sind, wurde bereits hingewiesen (vgl. Abb. 5.13 und 5.16).

Vergleicht man die Formenschatzhäufigkeit der Massenverlagerungsgebiete mit den dort vorzufindenen Staffelzahlen (vgl. Anhang C) zeigt sich, dass mit einem Korrelationskoeffizient von r = 0.70 hier zwar ein positiver Trend zwischen zunehmender Formenschatzhäufigkeit und zunehmender Staffelanzahl besteht, im Einzelnen aber auch Abweichungen zu verzeichnen sind. Zurückzuführen sind diese auf die Tatsache, dass sich die Staffelabfolge der Massenverlagerungskörper auch aus gleichgearteten Massenverlagerungsformen zusammensetzten kann. So können beispielsweise Rücken- oder Absatzschollen in einem Massenverlagerungsgebiet in vertikaler Abfolge mehrfach auftreten. Zur Verdeutlichung dessen, sind in Abbildung 5.21 die Staffelabfolgen zweier tachymetrisch vermessener Massenverlagerungsgebietsausschnitte dargestellt.

Das obere Beispiel zeigt einen Ausschnitt vom an der Ilm-Kalk-Platte gelegenen Gebiet 667, das untere Beispiel einen Ausschnitt vom am Dün gelegenen Gebiet 193. Während im oberen Beispiel eine Wall- und eine Rückenscholle modellartig in zweigestaffelter vertikaler Abfolge auftreten, sind im unteren Beispiel insgesamt 6 Staffelabfolgen zu verzeichnen, wobei hier Rücken- und Absatzschollen in vertikaler Abfolge doppelt vorkommen. Da derartige Konstellationen in einzelnen Massenverlagerungsgebiete häufiger zu verzeichnen sind, wird klar, weshalb zwischen der Anzahl unterschiedlicher Massenverlagerungsformen und der Staffelanzahl eines Massenverlagerungsgebietes keine hochsignifikante Übereinstimmung besteht.

Abb. 5.21: Beispiele für die staffelartige Anordnung von Massenverlagerungskörpern

5.2.4.5 Zusammenfassende Betrachtung der bisherigen Ausführungen

Wie aus den bisherigen Ausführungen hervorgeht, bestehen sowohl in der Verbreitung als auch in den morphometrischen und morphologischen Merkmalsausprägungen der Massenverlagerungsgebiete an der Wellenkalk-Schichtstufe im Thüringer Becken markante regionale Unterschiede. Mit einzelnen Abweichungen lassen sich dabei immer wiederkehrende räumliche Verhaltensmuster erkennen. So sind die stärker von Massenverlagerungen betroffenen Untersuchungsabschnitte wie Gobert, Bleicheröder Berge, Dün und Ringgau gleichzeitig auch die Gebiete, die sich durch größere Dichten von Massenverlagerungsgebiete mit > 500 m Bereitenausdehnung, größere Dichten von Massenverlagerungsgebieten mit $> 50000 \text{ m}^2$ mittlerer Flächenausdehnung, größere Dichten von Massenverlagerungsgebieten mit Mauerschollen und Sturzfließungen, größere Dichten von Massenverlagerungsgebieten mit 6 - 7 unterschiedlichen Massenverlagerungsformen sowie und durch größere Dichten von Massenverlagerungsgebieten mit 5 - 7 Staffelzahlen im Vergleich zu den übrigen Untersuchungsabschnitten auszeichnen (vgl. Abb. 5.22).

Abb. 5.22:Zusammenfassender Vergleich der von Massenverlagerungen betroffenenStufenhanglängen mit den betrachteten Dichteindexwerten

Dabei wurde deutlich, dass insbesondere zwischen der Breite der Massenverlagerungsgebiete und den betrachteten Merkmalsausprägungen Zusammenhänge bestehen. So sind die Gebiete, die sich durch Breiten > 500 m auszeichnen, nicht nur die großflächigeren Massenverlagerungsgebiete, sondern tendenziell auch die Gebiete, in denen gehäuft Mauerschollen und Sturzfließungen auftreten bzw. deren Formeninventar und Staffelanzahl insgesamt größer ist als in Gebieten mit kleineren Breitenausdehnungen (< 500 m). Damit ist die Gebietsbreite nicht nur ein rein morphometrisches Maß, sondern gleichzeitig auch ein Indikator für unterschiedliche Massenverlagerungsaktivitäten. die 500 So ist Mehrzahl der > m breiten Massenverlagerungsgebiete als aktiver einzustufen als jene mit geringeren Breitenausdehnungen (< 500 m), was sich in den beschriebenen Merkmalsausprägungen (gehäuftes Vorkommen von Mauerschollen und Sturzfließungen etc.) widerspiegelt.

Im Hinblick auf die beschriebenen Formenvergesellschaftungen und das relative Alter der einzelnen Massenverlagerungsformen lassen sich zusammenfassend einige allgemeingültige Schlussfolgerungen ziehen. Da die Mehrzahl der Massenverlagerungsgebiete (ca. 71 %) Vergesellschaftungen von mindestens zwei mehr oder weniger unterschiedlich alten Massenverlagerungsformen aufweisen, müssen die Massenverlagerungsgebiete zu verschiedenen Zeiten immer wieder aktiv gewesen sein. Von stratigraphisch anders aufgebauten Untersuchungsgebieten wird dieser Sachverhalt u.a. von KRAUTER & STEINGÖTTER (1983), CARRARA et al. (1991), THEIN (1999 in: BIBUS & TERHOSRT 1999) und TILCH (1999) beschrieben. Zurückzuführen ist dies u.a. auf das, durch die Massenverlagerungsprozesse primär entfestigte Gesteinsgefüge dieser Hangabschnitte und der damit verbundenen Abnahme der Materialscherfestigkeit. Bei ungünstiger Veränderung des Hanggleichgewichtes können diese Gebiete immer wieder reaktiviert werden, was sie langfristig instabil erscheinen lässt (vgl. KRAUTER & STEINGÖTTER 1983, CARRARA et al. 1991).

aufgezeigte Verteilungsbild der durch verschieden alte Massenverlagerungsformen Das gekennzeichneten Gebiete (vgl. Karte 9 - 14) verdeutlicht, dass die regional unterschiedliche Massenverlagerungsbeeinflussung der Stufenhänge bereits zu früheren Zeiten bestand. In den stärker betroffenen Untersuchungsabschnitten (Gobert, Bleicheröder Berge, Dün, Ringgau) treten sowohl ältere als auch jünger Massenverlagerungsformen (Mauerschollen, Sturzfließungen) gehäuft auf, was sich u.a. in einer erhöhten Formenschatzhäufigkeit dieser Gebiete widerspiegelt (vgl. Karte 15 und Abb. 5.22). Damit sind die bereits zu früheren Zeiten verstärkt von betroffenen Untersuchungsabschnitte Massenverlagerungen auch heute noch die massenverlagerungsaktiveren Bereiche, wobei die vergleichsweise geringe Anzahl von Mauerschollen- und Sturzfließungsgebieten belegt, dass die Aktivität heute insgesamt schwächer ist. Von den 224 km massenverlagerungsbeeinflussten Stufenhanglängen sind ca. 37 % (~83 km) durch das Auftreten jüngerer Mauerschollen- und Sturzfließungsgebiete gekennzeichnet, was bezogen auf die gesamte Stufenhanglänge (980 km) ca. 8,5 % entspricht.

5.2.5 Die Ausprägung der Abrißwände der Massenverlagerungsgebiete

5.2.5.1 Der Stufenhangabschluss (Stufenhangtyp) im Abrißwandbereich

Im Rahmen der Geländearbeiten wurde der den Stufenhangtyp charakterisierende Stufenhangabschluss (Trauf, Trauf mit Walm, Walm) für jedes einzelne Massenverlagerungsgebiet erfasst (vgl. Kap. 2.3.3.2). Dabei zeigte sich, dass der Stufenhangabschluss zwischen den einzelnen Massenverlagerungsgebieten aber auch innerhalb eines Massenverlagerungsgebietes variieren kann. So ist bspw. der Stufenhangabschluss am 1320 m breiten Massenverlagerungsgebiet 192 (Dün) (vgl. Karte 8) auf 160 m Breite (=Stufenhanglänge) als Trauf mit Walm und auf 1100 m Breite als Trauf ausgebildet (vgl. Anhang C).

Um die Ausprägung der Stufenhangabschlüsse systematisch analysieren zu können, wurde die abrißwandparallele Ausdehnung der in den einzelnen Massenverlagerungsgebieten vorzufindenden Stufenhangabschlüsse summiert und prozentual zu der von Massenverlagerungen betroffenen Stufenhanglängen (=summierte Gesamtbreite der Massenverlagerungsgebiete) der einzelnen Untersuchungsabschnitte ins Verhältnis gesetzt. Das Ergebnis dieser Zuordnung ist in Tabelle 5.9 dargestellt.

Untersuchungsabschnitte	von Massenverlagerungen betroffene Stufenhanglänge	Stufenhangtyp im Bereich der Massenverlagerungsgebiete (% von der von Massenverlagerungen betroffenen Stufenhanglänge)		
	(km)	Trauf- Trauf mit Wah		
TT • 1 •/	19 220	10.6		
Hamleite	18,220	19,6	80,4	
Dün	17,985	68,6	31,4	
Bleicheröder Berge	12,700	44,8	55,2	
OberesEichsfeld & Hainich	75,690	35,4	64,6	
Gobert	24,780	52,4	47,6	
Ringgau	29,410	59,9	40,1	
Ohrdrufer-Platte	15,310	52,8	47,2	
Ilm-Kalk-Platte	18,220	49,0	51,0	
Tautenburger Forst	0,515	68,0	32,0	
Zeugenberge Mittleres Saaletal	11,170	66,7	33,3	
Gesamt	224,00	46,3	53,7	

Tab. 5.9: Der Stufenhangtyp im Bereich der Massenverlagerungsgebiete

Wie Tabelle 5.9 zeigt, ist der Stufenhangabschluss der insgesamt 224 km von Massenverlagerungen betroffener Stufenhanglänge auf 120,4 km (= 53,7 %) als Trauf mit Walm und auf 103,7 km (= 46,3 %) als Trauf ausgebildet. Die leichte Dominanz der Trauf mit Walmstufenhänge an den Massenverlagerungsgebieten der Wellenkalk-Schichtstufe im Thüringer Becken steht im Gegensatz zu der von SCHUNKE (1971, 12) vertretenen Auffassung, dass v.a. Traufstufenhänge bevorzugt von Massenverlagerungen betroffen sind. Während Trauf und insbesondere Trauf mit Walmstufenhänge im Bereich der Massenverlagerungsgebieter relativ häufig vorkommen, konnten reine Walmstufenhänge an den Massenverlagerungsgebieten des Untersuchungsraumes nicht lokalisiert werden.

Innerhalb der einzelnen Untersuchungsabschnitte ergeben sich Abweichungen zu dem für die Gesamtheit der Massenverlagerungsgebiete geschilderten Verteilung (vgl. Tab. 5.9). Während an den Bleicheröder Bergen, im Oberen Eichsfeld & Hainich, an der Ilm-Kalk-Platte und insbesondere an der Hainleite der Trauf mit Walmstufenhangabschluss im Bereich der Massenverlagerungsgebiete vorherrscht, überwiegen in den übrigen Untersuchungsabschnitten die Traufstufenhänge. Besonders deutlich ist dies am Stufenhangabschnitt des Dün zu beobachten.

5.2.5.2 Die Lage vom Top der Abrißwand zum Stufenhangabschluss

Interessant ist die morphologische Lage der obersten Bereiche der Abrißwände (Top der Abrißwände) im Vergleich zum Stufenhangabschluss. Wie bereits aus den in Anhang B enthaltenen Hangprofilen hervorgeht, gibt es dabei prinzipiell 2 Möglichkeiten (vgl. auch Kap. 3.3). Zum einen kann der Top der Abrißwand mit dem Steilabfall (> 18°) der Trauf identisch sein (z.B. Massenverlagerungsgebiet 108), zum anderen kann der Top der Abrißwand sich orometrisch unterhalb dieses morphometrischen Fixpunktes befinden (z.B. Massenverlagerungsgebiet 403) (vgl. Anhang B). Wie die Geländebefunde zeigen, können ähnlich der Stufenhangabschlüsse (vgl. Kap. 5.2.5.1) in einem Massenverlagerungsgebiet auch beide Varianten auftreten. So sind bspw. von den insgesamt 550 m breiten Gebiet 170 (Dün) (vgl. Karte 8) 410 m der obersten Bereiche der Abrißwand identisch mit dem Steilabfall der Trauf, wohingegen 140 m der Abrißwand sich einige Meter tiefer als dieser befinden. Analog der Analyse der Ausprägung der Stufenhangabschlüsse wurde auch hier die Lage der obersten Abrißwandbereiche der Massenverlagerungsgebiete summiert und zu der von Massenverlagerungen betroffenen Stufenhanglängen (=summierte Gesamtbreite der Massenverlagerungsgebiete) der jeweiligen Untersuchungsabschnitte prozentual ins Verhältnis gesetzt. Das Ergebnis dieser Zuordnung ist in Tabelle 5.10 dargestellt.

Untersuchungsabschnitte	von Massenverlagerungen betroffene	Lage des Top der Abrißwand (% von der von Massenverlagerungen betroffenen Stufenhanglänge)		
	Stufenhanglänge	Top der Abrißwand	Top der Abrißwand	
	(km)	= Steilabfall der	≠ Steilabfall der	
		Trauf	Trauf	
Hainleite	18,220	28,6	71,4	
Dün	17,985	83,0	17,0	
Bleicheröder Berge	12,700	87,3	12,7	
OberesEichsfeld & Hainich	75,690	43,2	56,8	
Gobert	24,780	51,6	48,4	
Ringgau	29,410	51,6	48,4	
Ohrdrufer-Platte	15,310	67,3	32,7	
Ilm-Kalk-Platte	18,220	41,5	58,5	
Tautenburger Forst	0,515	44,7	55,3	
Zeugenberge Mittleres Saaletal	11,170	72,4	27,6	
Gesamt	224,00	52,7	47,3	

Wie Tabelle 5.10 zeigt, sind die obersten Abrisswandbereiche an 52,7 % (= 118 km) der von Massenverlagerungen betroffenen Stufenhanglängen mit dem der Steilabfall der Trauf identisch, wohingegen an 43,7 % (= 106 km) der Stufenhanglängen der Top der Abrißwand einige Meter tiefer liegt als der Steilabfall der Trauf. Regional ergeben sich aber auch hier einige Unterschiede. So befindet sich an der Mehrzahl der von Massenverlagerungen betroffenen Stufenhänge der Untersuchngsabschnitte: Hainleite (71,4 %), Oberes Eichsfeld & Hainich (56,8 %), Ilm-Kalk-Platte (58,5 %) und Tautenburger Forst (55,3 %) die obersten Abrißwandbereiche tiefer als der Steilabfall der von Massenverlagerungen betroffenen Stufenhänge der Steilabfall der Trauf, wohingegen in allen anderen Untersuchungsabschnitten die Mehrzahl der von Massenverlagerungen betroffenen Stufenhänge identische Lagen vom Top der Abrißwand und Steilabfall der Trauf aufweisen.

Die Positionen der oberen Abrißwandbereiche zum Stufenhangabschluss dokumentieren den unterschiedlich weit fortgeschrittenen, massenverlagerungsbedingten Formungsimpuls auf die Wellenkalk-Schichtstufe. Dort wo die Abrißwand mit dem Steilabfall der Trauf bzw. mit dem Steilabfall der Trauf mit Walmstufenhänge zusammenfällt, ist die Umgestaltung des Stufenhanges in seiner vertikalen Erstreckung bereits weiter fortgeschritten als dort, wo die Abrißwand sich orometerisch tiefer als der Steilabfall der Trauf befindet. Oftmals ist die Ausbildung der markanten Traufstufenhangabschlüsse im Bereich der Massenverlagerungsgebiete ursächlich auf die

Massenverlagerungen selbst zurückzuführen. So werden mögliche ehemalige Walmstufenhangabschlüsse infolge der Blockschollenverlagerung scheibenweise abgetragen, mit dem Resultat, dass neben einer steilen Abrißwand ein markanter scharfkantigen Traufübergang zur Stufenfläche entsteht (vgl. Abb. 5.23). Sehr deutlich ist dies den v.a. an Massenverlagerungsgebieten des Dün, der Bleicheröder Bergen, der Gobert, der Ohrdrufer Platte und am Ringgau zu beobachten.

Abb. 5.23: Durch Massenverlagerungen gebildete markante Traufstufenhangabschlüsse

Bezogen auf die einzelnen Teilgebiete zeigt sich tendenziell, dass die stärker von Massenverlagerungen betroffenen Stufenhangabschnitte (Dün, Bleicheröder Berge, Gobert, Ringgau, Ohrdrufer Platte) häufiger durch identische Lagen vom Top der Abrißwand und dem Steilabfall der Trauf gekennzeichnet sind und damit insgesamt stärker zurückverlagert wurden. Demgenenüber liegt an den weniger stark von Massenverlagerungen betroffenen Stufenhängen (Hainleite, Ilm-Kalk-Platte, Tautenburger Forst) die Mehrzahl der Abrißwände orometrisch tiefer als der Steilabfall der Trauf, d.h. die Rückverlagerung der Stufenhänge ist hier noch nicht so weit fortgeschritten (vgl. Tab. 5.10). Im Hinblick auf die Genese des Walmes, der in der Literatur sowohl als Bildungsprodukt aus feucht glazialen Formungsprozessen (vgl. ROHDENBURG 1965, SCHMIDT & MEITZ 2000) sowie als Relikt prätertiärer Rampenhänge (SCHUNKE 1969, SCHUNKE & SPÖNEMANN 1972) bzw. tertiärer Verkleibungsprozesse (SCHMITTHENNER 1954) diskutiert wird, ist festzuhalten, dass. sofern reliktische Walmstufenhangabschlüsse im Bereich der Massenverlagerungsgebiete ehemals großflächiger vorhanden waren, ein großer Teil dieser durch nachfolgende Massenverlagerungsprozesse bereits umgebildet bzw. abgetragen worden ist.
5.2.5.3 Stratigraphische Lage der oberen Abrißwandbereiche

Die aus der Verschneidung der Hangprofile mit den geologischen Karten (GK 25) ermittelte stratigraphische Lage des Abrißwände (vgl. Kap. 4.3) ergibt sich aus der Höhenlage der oberen Abrißwandbereiche an den Wellenkalk-Schichtstufenhängen. Sowohl für den Gesamtraum als auch für die einzelnen Untersuchungsabschnitte ist die stratigraphische Lage vom Top der Abrißwände in Abbildung 5.24 dargestellt.

Abb. 5.24: Die stratigraphische Lage der oberen Abrißwandbereiche in den Massenverlagerungsgebieten des Untersuchungsraumes

Wie dieser Abbildung zu entnehmen ist, liegen ähnlich der in Kapitel 2.3.3.2 beschriebenen stratigraphischen Lagen der Trauf auch die obersten Abrißwandbereiche der Massenverlagerungsgebiete bevorzugt in einer der Härtlingszonen. So sind von den 744 Massenverlagerungsgebieten des Untersuchungsraumes 474 Gebiete (= 64 %) durch obere Abrißwandpositionen im Niveau der Härtlingszonen gekennzeichnet. Im Unterschied zur Stufen-Trauf, deren stratigraphische Position sich v.a. in der Terebratel-Zone und nachgeordnet in der Oolith-Zone befindet (vgl. Tab. 2.3), liegen die obersten Abrißwandbereiche v.a. in der Oolith-

Zone (356 Gebiete) gefolgt von der Terebratel-Zone (116 Gebiete). Diese Unterschiede resultieren aus den beschriebenen Lagedivergenzen vom Top der Abrißwand zum Stufenhangabschluss (vgl. Kap.5.2.5.2). Neben diesen bevorzugten Positionen befindet sich in 111 Massenverlagerungsgebieten (= 15 %) der Top der Abrißwand im stratigraphischen Niveau des Unteren Wellenkalkes und in 126 Gebieten (=17 %) im stratigraphischen Niveau des Mittleren Wellenkalkes. Nur in sehr selten Fällen fungiert der Oberer Wellenkalk (18 Gebiete) bzw. die Schaumkalk-Zone (2 Gebiete) als Träger der obersten Bereiche der Abrißwand (vgl. Abb. 5.24). In 2 Ausnahmegebieten [Massenverlagerungsgebiete 5 (Hainleite) und 400 (Oberen Eichsfeld & Hainich)] (vgl. Karte 8) befindet sich der Top der Abrißwand bereits im stratigraphischen Niveau des Mittleren Muschelkalkes. Dies ist darauf zurückzuführen, dass diese, im eigentlichen Sinne bereits außerhalb der Wellenkalk-Schichtstufen liegende lithologische Einheit (vgl. Kap. 2.3.2.1) sich hier lokal mit der Trauf der Stufenhänge verschneidet, wobei die Lage vom Steilabfall der Trauf und die Lage der Abrißwand identisch sind (vgl. Anhang C).

Das beschriebene Verteilungsbild (Dominanz der Oolith-Zone als Träger der oberen Abrißwandbereiche) ist mit Ausnahme der Untersuchungsabschnitte Ringgau und Tautenburger Forst, an denen sich die Abrißwände vornehmlich in der Terebratel-Zone (Ringgau) bzw. stratigraphischen Niveau des Unteren bzw. Mittleren Wellenkalkes (Tautenburger Forst) befinden, für alle Untersuchungsabschnitte typisch (vgl. Abb. 5.24). Insgesamt werden damit die bereits von WEBER (1929, S. 389) in Westthüringen (Oberes Eichsfeld & Hainich) gemachten Beobachtungen, dass sich die Abrißwände vorwiegend nur bis zum stratigraphischen Niveau der Terebratelzone erstrecken, auch für den Gesamtuntersuchungsraum bestätigt.

5.3 Der Einfluss der betrachteten dispositiven Steuerungsfaktoren auf die räumliche Variabilität der Massenverlagerungsgebiete

5.3.1 Vorbemerkungen

In diesem Kapitel wird der Einfluss der in Tabelle 1.3 (vgl. Kap. 1.5) aufgeführten Steuerungsfaktoren auf die beschriebenen, räumlichen Verteilungsmuster der Massenverlagerungsgebiete untersucht. Dabei basiert die Analyse der Faktoren (3) Mächtigkeit des Stufenbildners, (4) Mächtigkeit des Sockelgesteins, (5) Mächtigkeitsrelation, (8) Einfluss der Rötgipssubrosion, (9) morphometrische Lage zur Erosionsbasis und (10) Lage im Stufengrundriss auf einem Vergleich der entsprechenden Merkmalsausprägungen zwischen den Massenverlagerungsgebieten der einzelnen Untersuchungsabschnitte (vgl. Kap. 1.5). Für die Faktoren (1) lithologisch-strukturelle Eigenschaften des Stufenbildners, (2) lithologisch-strukturelle

Eigenschaften des Sockelgesteins, (6) Schichtneigung, (7) Neigungsrichtung, (11) Exposition, (12) Lage zum Gewässernetz, (13) Häufigkeit von Hangquellen, (14) mittlere jährliche Niederschlagshöhe und Niederschlagsverteilung und (15) Höhe und Verteilung von Starkniederschlägen wurde auch der Gesamtstufenhang, d.h. auch die nicht von Massenverlagerungen betroffenen Stufenhangabschnitte in die Analyse einbezogen.

5.3.2 Lithologisch-strukturelle Eigenschaften des Stufenbildners (1) und lithologischstrukturelle Eigenschaften des Sockelgesteins (2)

Die bereits in den Kapiteln 2.3.2.2 und 2.3.2.3 beschriebene lithologische Konstellation: stark klüftiger, wasserwegsamer und relativ verwitterungsresistenter Wellenkalk (Stufenbildner) über weniger resistenten, wasserstauenden, tonigen, plastifizierbaren und subrosionsanfälligen Röt (Sockelgestein) bildet die notwendige Grundvoraussetzungen für das Auftreten von Massenverlagerungen an der Wellenkalk-Schichtstufe im Thüringer Becken (vgl. BERNHARD 1968, JOHNSEN & KLENGEL 1972, SCHMIDT 1988b, BEYER & SCHMIDT 1999). Da die Lithologie des Röt-Wellenkalk-Schichtpaketes bis auf primär paläogeographisch bedingte Mächtigkeitsunterschiede (vgl. SEIDEL 1992 und Tab. 2.2) im Untersuchungsgebiet relativ einheitlich ist, ist davon auszugehen, dass die Faktoren (1) lithologisch-strukturelle Eigenschaften des Sockelgesteins und (2) lithologisch-strukturelle Eigenschaften des Stufenbildners keine räumliche Variation der Massenverlagerungsgebiete im Untersuchungsraum bedingen. Dies bestätigt sich u.a. auch darin, dass Massenverlagerungsgebiete regional auch über größere Entfernungen sehr häufig und z.T. in annähernd geschlossener Verbreitung auftreten (vgl. Kap. 5.2.1 und 5.2.2 und Karte 8).

5.3.3 Die Mächtigkeit des Stufenbildners (3)

Die aus den Hangprofilen ermittelte Mächtigkeit des Stufenbildners entspricht der relativen Höhe vom Top der Abrißwand über der Röt-/Wellenkalk-Schichtgrenze (dA) (vgl. Kap. 4.3). Die an den Massenverlagerungsgebieten des Untersuchungsraumes zu verzeichnenden Stufenbildnermächtigkeiten schwanken zwischen minimal 5 m (z.B. Massenverlagerungsgebiet 98) und maximal 105 m (z.B. Massenverlagerungsgebiet 705). Diese Schwankungen resultieren aus der bereits beschriebenen, unterschiedlichen stratigraphischen Positionen der obersten Abrißwandbereiche im Unteren Muschelkalk (5.2.5.3). Für die Massenverlagerungsgebiete der einzelnen Untersuchungsabschnitte sind die durchschnittlichen Stufenbildnermächtigkeiten in Tabelle 5.11 dargestellt. Detaillierten Mächtigkeitsinformationen zu der einzelnen Gebieten sind im Anhang C enthalten.

Wie aus Tabelle 5.11 hervorgeht, liegt die mittlere Mächtigkeit des Stufenbildners im Bereich der Massenverlagerungsgebiete bei ~54 m (mit s = 22 m). Mit geringfügigen graduellen Abweichungen sind solche Mächtigkeiten für alle Untersuchungsabschnitte typisch, wobei die maximal zu beobachtende durchschnittliche Stufenbildnermächtigkeit im Gebiet der Ohrdrufer Platte (~69 m) und die minimale durchschnittliche Stufenbildnermächtigkeit im Untersuchungsabschnitt Dün (~46 m) zu verzeichnen ist.

Tab. 5.11:Die durchschnittlichen Mächtigkeiten des Stufenbildners im Bereich der
Massenverlagerungsgebiete der einzelnen Untersuchungsabschnitte

Untersuchungsabschnitte	Ø Mächtigkeiten des	Standardabweichung (s)
	Stufenbildners	
	(m)	(m)
Hainleite	54	19
Dün	46	18
Bleicheröder Berge	56	17
OberesEichsfeld & Hainich	51	17
Gobert	58	23
Ringgau	60	21
Ohrdrufer-Platte	69	19
Ilm-Kalk-Platte	54	21
Tautenburger Forst	50	25
Zeugenberge Mittleres Saaletal	51	22
Gesamt	54	22

Vergleicht man die prozentual von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen Untersuchungsabschnitte mit den untersuchungsabschnittsbezogenen, durchschnittlichen Stufenbildnermächtigkeiten der Massenverlagerungsgebiete (vgl. Tab. 5.11) ergibt sich das in Abbildung 5.25 dargestellte Verteilungsbild.

Wie Abbildung 5.25 zeigt, lassen sich aus den durchschnittlichen Stufenbildnermächtigkeiten keine signifikanten Zusammenhänge zu den von Massenverlagerungen betroffenen Stufenhanglängen ableiten (r = 0,19). Selbst die stärker von Massenverlagerungen betroffenen Stufenhangabschnitte (Gobert, Bleicheröder Berge, Dün, Ringgau) weisen keine Mächtigkeitsvergrößerungen des

Stufenbildners auf (vgl. Tab. 5.11). Teilweise ist eher das Gegenteil der Fall. So sind die am geringsten von Massenverlagerungen betroffenen Stufenhangabschnitte (Tautenburger Forst, Ilm-Kalk-Platte, Hainleite) durch größere durchschnittliche Stufenbildnermächtigkeiten gekennzeichnet als der stark von Massenverlagerungen betroffene Untersuchungsabschnitt Dün (vgl. Abb. 5.25). Insgesamt spiegelt sich in den Mächtigkeitswerten die bevorzugte Lage der Abrißwandbereiche in den stratigraphisch tiefer liegenden Schichtgliedern des Unteren Muschelkalkes wider (vgl. Kap. 5.2.5.3).

Abb. 5.25:Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen (%) der einzelnen
Untersuchungsabschnitte mit der untersuchungsabschnittsbezogenen, durchschnittlichen
Stufenbildnermächtigkeit der Massenverlagerungsgebiete

Bedenkt man, dass das gesamte Wellenkalkschichtpaket Mächtigkeiten bis ~110 m erreicht (vgl. Kap. 2.3.2.3), wird deutlich, dass im Gegensatz zu der von PASSARGE (1914), PLASSE (1924) und HEMPEL (1955) vertreten Auffassung (vgl. Kap. 1.4), die Auflast und damit die Mächtigkeit des Wellenkalkes keine Zusammenhänge zu räumlichen Variabilität der Massenverlagerungsgebiete erkennen lässt. Bestätigt wird dies auch dadurch, das bereits ab 5 bis 10 m Wellenkalkmächtigkeit Massenverlagerungen auftreten (z.B. Gebiete: 98, 202, 513) (vgl. Anhang C). Zusammenfassend ist damit festzuhalten, dass entsprechend der erhobenen Daten die Mächtigkeit des Stufenbildners nicht zur Erklärung der räumliche Variabilität der Massenverlagerungsgebiete herangezogen werden kann. (vgl. SCHMIDT & BEYER 2001, BEYER 2002). Zu analogen Ergebnissen kommt SCHUNKE (1968) im Rahmen von Untersuchungen im Leine-Weser-Bergland.

5.3.4 Die Mächtigkeit des Sockelgesteins (4)

Die für die Massenverlagerungsgebiete ermittelte Mächtigkeit des Sockelgesteins entspricht der relativen Höhe der Röt-/Wellenkalk-Schichtgrenze über dem 4° Fußpunkt (dF) (vgl. Kap. 4.3), welcher die morphometrische Begrenzung des Unterhanges zur Fußfläche darstellt (vgl. SCHUNKE 1968 und Kap. 2.3.3.2). Aufgrund der Tatsache, dass sich in den verschiedenen Untersuchungsabschnitten in einer Anzahl von Massenverlagerungsgebieten (n = 83) der 4° Fußpunkt bereits im stratigraphischen Niveau des Mittleren Bundsandsteins befindet [z. B. Gebiet: 185, 451, 492 (vgl. Anhang B)], ist dabei zu beachten, dass die ermittelten Sockelmächtigkeiten nicht nur den Oberen Bundsandstein (Röt) als eigentliches Sockelgestein, sondern partiell auch Teilmächtigkeiten des Mittlere Bundsandsteins enthalten. Im Hinblick auf eine einheitliche, der Schichtstufenmorphometrie gerecht werdenden Stufenhanganalyse (vgl. SCHUNKE 1968) erwies sich diese Vorgehensweise als notwendig.

Die Mächtigkeiten des Stufensockels schwanken an den von Massenverlagerungen betroffenen Stufenhängen des Untersuchungsgebietes zwischen minimal 5 m (z.B. Massenverlagerungsgebiete 349, 400, 571) und maximal 200 m (z.B. Massenverlagerungsgebiet 527), wobei sich bei Sockelmächtigkeiten > 150 m der Fußpunkt i.d.R. bereits im stratigraphischen Niveau des Mittleren Bundsandsteins befindet. Die allgemeine Grundvorausetzung, dass der Röt für die Massenverlagerungsprozessse am Stufenhang aufgeschlossen sein muss (vgl. WEBER 1929, JOHNSEN 1974), ist an allen Massenverlagerungsgebieten erfüllt.

Zur näheren Analyse dieses Faktors wurden die untersuchungsabschnittsbezogenen, durchschnittlichen Mächtigkeiten des Sockelgesteins der Massenverlagerungsgebiete ermittelt, die zusammen mit den berechneten Standardabweichungen in Tabelle 5.12 dargestellt sind. Weiterführende Einzelangaben sind wiederum dem Anhang C zu entnehmen.

Bezogen auf die Gesamtzahl der Massenverlagerungsgebiete, beträgt die durchschnittliche Mächtigkeit des Sockelgesteins \sim 52 m (mit s = 33 m) (vgl. Tab. 5.12). Im Unterschied zur Mächtigkeit des Stufenbildners sind innerhalb der einzelnen Untersuchungsabschnitte hier aber größere Mächtigkeitsschwankungen zu verzeichnen. So sind v.a. die Massenverlagerungsgebiete der Zeugenberge (Bleicheröder Berge, Gobert, Zeugenberge des Mittleren Saaletales) durch größere durchschnittliche Sockelgesteinsmächtigkeiten im Vergleich zu den Massenverlagerungsgebieten der übrigen Untersuchungsabschnitten gekennzeichnet (vgl. Tab. 5.12). Die größten durchschnittlichen Sockelmächtigkeiten (~ 88m) werden dabei im Untersuchungsabschnitt Gobert erreicht. Zurückzuführen ist dies auf die unmittelbar angrenzende Lage dieses Abschnittes zur tief eingeschnittenen Werra, die hier die lokale Erosionsbasis bildet.

Untersuchungsabschnitte	Ø Mächtigkeiten des	Standardabweichung (s)
	Sockelgesteins	
	(m)	(m)
Hainleite	28	23
Dün	57	28
Bleicheröder Berge	58	32
Oberes Eichsfeld & Hainich	48	30
Gobert	88	36
Ringgau	58	30
Ohrdrufer-Platte	40	32
Ilm-Kalk-Platte	55	28
Tautenburger Forst	42	16
Zeugenberge Mittleres Saaletal	77	40
Gesamt	52	33

Tab. 5.12:Die durchschnittlichen Mächtigkeiten des Sockelgesteins im Bereich der
Massenverlagerungsgebiete der einzelnen Untersuchungsabschnitte

Die erhöhten Sockelmächtigkeiten der Zeugenberge resultieren aus der bereits in Kapitel 2.3.3.5 beschrieben, allseits fortgeschrittenen Auflösung dieser Stufenhangbereiche, die sich in einer stärkeren Herausmodellierung des Sockelhanges widerspiegelt. Dabei sind erhöhte Sockelmächtigkeiten nicht nur für die von Massenverlagerungen betroffenen Stufenhangabschnitte, sondern generell auch für die Gesamtheit der Zeugenbergsockelhänge typisch.

Vergleicht man die von Massenverlagerungen betroffene Stufenhanglänge der einzelnen Untersuchungsabschnitte mit der untersuchungsabschnittsbezogenen, durchschnittlichen Mächtigkeit des Sockelgesteins im Bereich der Massenverlagerungsgebiete (vgl. Tab. 1.12), ergibt sich das in Abbildung 5.26 dargestellte Bild.

Abb. 5.26:Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen (%) der einzelnen
Untersuchungsabschnitte mit der untersuchungsabschnittsbezogenen, durchschnittlichen
Sockelgesteinsmächtigkeit der Massenverlagerungsgebiete

Auch zwischen der durchschnittlichen Sockelmächtigkeit und den von Massenverlagerungen betroffenen Stufenhanglängen besteht kein deutlich signifikanter Zusammenhang (r = 0.45). Im Einzelnen weist zwar die am stärksten von Massenverlagerungen betroffene Gobert gleichzeitig auch die höchsten durchschnittliche Sockelmächtigkeit auf (vgl. oben), es folgen aber die Zeugenberge Mittleres Saaletal (~ 77 m), die in der von Massenverlagerungen betroffenen Stufenhanglänge jedoch erst an 8. Stelle stehen. Erst an dritter Stelle folgen die Bleicheröder Berge, deren durchschnittliche Sockelmächtigkeiten (~58 m) im Vergleich zur Gobert ca. 30 m geringer sind, die in der von Massenverlagerungen betroffenen Stufenhanglänge aber Platz 2 einnehmen. Ähnlich verhält es sich beim Vergleich von Ilm-Kalk-Platte, Ohrdrufer Platte und Hainleite. So weist die in ihrer Massenverlagerungsbeeinflussung noch hinter der Hainleite und der Ilm-Kalk-Platte Ohrdrufer Platte stehenden eine größere durchschnittliche Sockelgesteinsmächtigkeit (~55 m) auf, die sogar vergleichbar ist mit der des Dün (~57 m), der in der von Massenverlagerungen betroffenen Stufenhanglänge jedoch an dritter Stelle steht.

Wie bereits erwähnt sind die an den Massenverlagerungsgebieten der Zeugenberge zu verzeichnenden höheren Sockelmächtigkeiten generell auch für die nicht von Massenverlagerungen

betroffenen Sockelhänge der Zeugenberge typisch (vgl. oben). Es kann demnach nicht ohne weiteres auf eine allein sockelmächtigkeitsbedingte Massenverlagerungsbevorzugung dieser Bereiche geschlossen werden. Bereinigt man die Korrelation der in Tabelle 5.12 enthaltenen Werte von denen der Zeugenberge, zeigt sich für alle übrigen Untersuchungsabschnitte (in denen absolut gesehen 80 % der insgesamt 744 Massenverlagerungsgebiete auftreten) noch klarer, dass zwischen erhöhten Sockelmächtigkeiten und der unterschiedlichen Massenverlagerungsbeeinflussung der Stufenhänge keine signifikanten Zusammenhänge bestehen (r = 0,38).

Auch der Vergleich der absoluten Häufigkeiten der Massenverlagerungsgebiete, die hohe bzw. geringen Sockelgesteinsmächtigkeiten aufweisen (zugrundegelegter Mächtigkeitsgrenzwert: 70 m), verdeutlicht, dass die überwiegende Mehrzahl der Massenverlagerungsgebiete (n = 554 bzw. 75 %) durch geringere und nur 90 Massenverlagerungsgebiete (= 25 %) durch größere Sockelmächtigkeiten als 70 m gekennzeichnet sind (vgl. Anhang C).

Basierend auf der vorliegenden Datenbasis läßt sich zusammenfassend schlussfolgern, dass der Obere Bundsandstein (Röt) für die Massenverlagerungsprozesse am Stufenhang zwar aufgeschlossen sein muss (vgl. oben), dass sich aber allein aus den unterschiedlichen Sockelgesteinsmächtigkeiten der von Massenverlagerungen betroffenen Stufenhänge, keine signifikanten Zusammenhänge zur räumlichen Variabilität der Massenverlagerungsgebiete erkennen lassen. Zu ähnlichen Ergebnissen im Rahmen von Untersuchungen an einzelnen Massenverlagerungsgebieten am Ringgau und an der Gobert kam bereits SCHMIDT (1988b).

Um mögliche Zufälligkeiten hierbei mit Sicherheit auszuschließen, müssten in einem weiteren Schritt die Sockelmächtigkeiten der Stufenhänge mit und ohne Massenverlagerungen miteinander verglichen werden, was aufgrund der Großräumigkeit des Arbeitsgebietes und dem Fehlen geeigneter flächendeckender Datenbasen (z.B. hochauflösende DGM) im Rahmen der Untersuchung jedoch nicht möglich war (vgl. Kap.5.1).

5.3.5 Die Mächtigkeitsrelation von Stufenbildner und Sockelgestein (5)

Die Mächtigkeitsrelation entspricht dem Quotienten aus Mächtigkeit des Sockelgesteines (4) zur Mächtigkeit des Stufenbildners (3) und wird quantitativ als Verhältniszahl ausgedrückt (vgl. SCHMIDT & BEYER 2001). Dabei zeigen Verhältniszahlen > 1 an, dass die Mächtigkeit des Sockelgesteins die des Stufenbildners übersteigt, bei Verhältniszahlen < 1 ist es umgekehrt und Verhältniszahlen = 1 weisen auf gleiche Mächtigkeiten von Sockelgestein und Stufenbildner hin.

Entsprechend der vorzufindenden Mächtigkeitsunterschiede schwanken die Verhältniszahlen an den von Massenverlagerungen betroffenen Stufenhängen zwischen minimal 0,05 (z.B. Massenverlagerungsgebiete 239, 690) und maximal 8 - 8,5 (z.B. Massenverlagerungsgebiete 140, 303, 513) (vgl. Anhang C).

In Abbildung 5.27 sind die Mächtigkeitsrelationen der Massenverlagerungsgebiete prozentual sowohl für den Gesamtraum als auch für die einzelnen Untersuchungsabschnitte dargestellt.

Abb. 5.27:Die Mächtigkeitsrelation von Sockelgestein und Stufenbildner an den Massenverlagerungs-
gebieten der Wellenkalk-Schichtstufe im Thüringer Becken.

Wie zu sehen ist, sind ca. 54 % aller Massenverlagerungsgebiete durch größere Mächtigkeiten des Stufenbildners im Vergleich zum Sockelgestein gekennzeichnet. In ca. 41 % der Gebiete ist das Verhältnis umgekehrt und ~5 % der Massenverlagerungsgebiete weisen gleiche Mächtigkeiten von Sockelgestein und Stufenbildner auf. Innerhalb der einzelnen Untersuchungsabschnitte ergeben sich hierbei einige Abweichungen. So ist die Mehrzahl der Massenverlagerungsgebiete der Zeugenberge (Gobert, Zeugenberge Mittleres Saaletal) durch größere Sockelmächtigkeiten im Vergleich zum Stufenbildner gekennzeichnet, wobei sich auch hierin die generell fortgeschrittene Auflösung dieser Erosionsreste widerspiegelt. Demgegenüber weist die Mehrzahl der Massenverlagerungsgebiete der Untersuchungsabschnitte Hainleite, Oberes Eichsfeld & Hainich und Ohrdrufer Platte größere Stufenbildnermächtigkeiten im Vergleich zum Sockelgestein auf.

Massenverlagerungsgebiete, die sowohl größere als auch kleinere Stufenbildnermächtigkeiten im Vergleich zum Sockelgestein aufweisen, auftreten (vgl. Abb. 5.25). Abgesehen von der Gobert sind die diesbezüglichen bestehenden Unterschiede jedoch gering.

Bildet man aus den Mächtigkeitsverhältniszahlen der einzelnen Massenverlagerungsgebiete untersuchungsabschnittsbezogene, durchschnittliche Mächtigkeitsverhältniszahlen (z.B. Hainleite: 0,62; Dün: 1,39; Ohrdrufer Platte: 0,58) und vergleicht diese mit den von Massenverlagerungen betroffenen Stufenhanglängen der entsprechenden Untersuchungsabschnitte, ergibt sich das in Abbildung 5.28 dargestellte Bild.

Abb. 5.28:Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen
Untersuchungsabschnitte mit der durchschnittlichen Mächtigkeitsverhältniszahlen

Auch bei diesem Vergleich lassen sich Stufenhänge keine deutlichen Zusammenhänge zur großräumigen Verbreitung der Massenverlagerungsgebiete ableiten (r = 0,4). Die Gobert ist zwar auch hier der Untersuchungsabschnitt der insgesamt die größten Mächtigkeitsrelationen aufweist, es folgen jedoch die Zeugenberge Mittleren Saaletal, die weniger stark von Massenverlagerungen betroffen sind. Insgesamt spiegeln sich auch hierin die erosiv bedingten, generell erhöhten Sockelmächtigkeiten im Bereich der Zeugenberge wider. Bereinigt man die in Abbildung 5.28 dargestellte Korrelation Zeugenbergabschnitten, sich für die von den zeigt übrigen Untersuchungsabschnitte noch klarer, dass kein signifikanter Zusammenhang zwischen Mächtigkeitsrelation und der unterschiedlichen Massenverlagerungsbeeinflussung der Stufenhänge gegeben ist (r = 0,37). Zu analogen Feststellungen im Rahmen von Untersuchungen am Ringgau und der Gobert kommt auch SCHMIDT (1988b).

Aus der addierten Mächtigkeit von Stufenbildner (3) und Sockelgestein (4) ergibt sich die relative Stufenhöhe gemessen vom 4° Fußpunkt zum Top der Abrißwand (dV) (vgl. Kap. 4.3). In Abhängigkeit von der Lage vom Top der Abrißwand (vgl. Kap. 5.2.5.2) muss die relative Stufenhöhe bis zur Abrißwand (dV) nicht zwangsläufig identisch sein mit der relativen Stufenhöhe, gemessen bis zum Steilabfall der Trauf (dT). Letztere kann aufgrund der oftmals orometrisch höheren Lage des Steilabfalls der Trauf (vgl. Kap. 5.2.5.2) größere relative Höhen aufweisen. Für die einzelnen Massenverlagerungsgebiete sind beide Stufenhöhen (dV und dT) in Anhang C aufgeführt. An dieser Stelle sollen die relativen Stufenhöhen vom 4° Fußpunkt bis zum Top der Abrißwand näher vorgestellt werden.

Die relative Stufenhöhe bis zum Top der Abrißwand schwankt im Untersuchungsgebiet zwischen minimal 10 - 20 m (z.B. Massenverlagerungsgebiete 98; 229) und maximal 260 m (z.B. Massenverlagerungsgebiet: 527) (vgl. Anhang C und Karte 8). In Abbildung 5.29 sind die im Bereich der Massenverlagerungsgebiete zu beobachtenden Stufenhöhen, aufgeteilt nach Stufenhöhenklassen (< 50; 50 - 100, 100 - 150, > 150 m), für die einzelnen Untersuchungsabschnitte und für den Gesamtraum dargestellt.

Die relative Stufenhöhe an den Massenverlagerungsgebieten, gemessen vom 4° Fußpunkt bis zum Top der Abrißwand (unterteilt nach Stufenhöhenklassen)

Von den 744 Massenverlagerungsgebieten sind ca. 44 % durch Stufenhöhen von 100 – 150 m, ca. 37 % durch Stufenhöhen von 50 - 100 m, ca. 13 % durch Stufenhöhen der Klasse > 150 m und ca. 6 % durch Stufenhöhen der Klasse < 50 m gekennzeichnet (vgl. Abb. 5.29). Damit ist die überwiegende Mehrzahl der Stufenhänge der Massenverlagerungsgebiete (ca. 81 %) durch Stufenhöhen der mittleren Höhenklassen (50 - 100 und 100 - 150 m) charakterisiert. Dies trifft gleichermaßen für alle Untersuchungsabschnitte zu, wenn auch an den Zeugenbergen Mittleres Saaletal und insbesondere an der Gobert durchschnittlich mehr Massenverlagerungsgebiete durch Stufenhöhen >150 m gekennzeichnet sind, wobei sich auch hierin die bereits erwähnten, erhöhten Sockelmächtigkeiten dieser Untersuchungsabschnitte widerspiegeln. Entsprechend dieses relativ einheitlichen Verteilungsbildes ist festzuhalten, dass auch die relative Stufenhöhe, gemessen vom 4° Fußpunkt bis zum Top der Abrißwand, keine signifikante Beeinflussung auf die räumliche Variabilität der Massenverlagerungsgebiete erkennen lässt. Bestätigt wird dies, wenn man die untersuchungsabschnittsbezogenen, durchschnittlichen relativen Stufenhöhen der Massenverlagerungsgebiete bildet und mit den von Massenverlagerungen betroffenen Stufenhanglängen der Untersuchungsabschnitte korreliert. Mit einem Korrelationskoeffizienten von r = 0,4 ist auch hier kein deutlich signifikanter Zusammenhang zur unterschiedlichen Massenverlagerungsbeeinflussung der Stufenhänge zu verzeichnen.

5.3.6 Die Schichtneigung (6)

Im Untersuchungsgebiet fallen die am Aufbau der Wellenkalk-Schichtstufe beteiligten triassischen Sedimente (Oberer Buntsandstein, Untere Muschelkalk) je nach Lage der einzelnen Untersuchungsabschnitte mit durchschnittlich 2 - 8° flach zum Zentrum des Thüringer Beckens ein (vgl. Kap. 2.3.3.7). Zurückzuführen ist dies auf die tektonisch bedingte, schüsselförmig-strukturelle Formung des Thüringer Beckens (vgl. Kap. 2.2).

Diese flache Schichtlagerung mit Neigungen < 10° ist annähernd flächendeckend sowohl für die Mehrzahl der Stufenhangabschnitte mit als auch, entsprechend den aus der Literatur entnommenen Angaben (vgl. WEBER 1929, DOCKTER & STEINMÜLLER 1962, ROSENKRANZ 1966, ZIEGENHARDT & JUNGWIRTH 1968, PUFF 1963, SEIDEL & STEINMÜLLER 1993 u.a.), für die Mehrzahl der Massenverlagerungen 40 Stufenabschnitte ohne typisch. Nur an der 744 Massenverlagerungsgebiete (ca. 5 %), konnten im Abrißwandbereich lokale Schichtneigungserhöhungen $> 10^{\circ}$ vorgefunden werden. Die Ursachen für solche punktuellen Schichtverstellungen werden im Zusammenhang mit der Analyse des Faktors (8) Einfluss der Rötgipssubrosion näher diskutiert.

In Tabelle 5.13 sind die untersuchungsabschnittsbezogenen, durchschnittlichen Schichtneigungen der Massenverlagerungsgebiete mit den berechneten Standardabweichungen sowie die Anzahl und Nummer der Massenverlagerungsgebiete die Schichtneigungen $> 10^{\circ}$ aufweisen, aufgeführt. Da aufgrund teilweise schlechter Aufschlussverhältnisse die Schichtneigung nicht von allen Gebieten bestimmt werden konnten, beziehen sich die in Tabelle 5.13 gemachten Angaben lediglich auf 531 der insgesamt 744 Massenverlagerungsgebiete. Weiterführende Einzelinformationen sind aus dem Anhang C zu entnehmen.

Untersuchungsabschnitte	Øδ	s	n >10°	Nummer der				
				Massenverlagerungsgebiete mit				
	(°)	(°)		Schichtneigungen > 10°				
				(vgl. Anhang C und Karte 8)				
Hainleite	6	3	2	45; 82				
Dün	6	3	2	177; 192				
Bleicheröder Berge	5	3	1	90				
Oberes Eichsfeld & Hainich	6	4	13	209; 228; 234; 257; 269; 305; 346; 353; 367;				
				402; 442, 506				
Gobert	7	3	5	516, 522; 523; 544; 552				
Ringgau	7	3	6	450; 456; 466; 467; 482; 496				
Ohrdrufer-Platte	7	3	4	563; 572; 579; 595				
Ilm-Kalk-Platte	7	4	7	609; 619; 630; 646; 675; 690; 694				
Tautenburger Forst	7	2	-	-				
Zeugenberge Mittleres Saaletal	5	2	-	-				
Gesamt	6	4	40					
Øδ: untersuchungsabschnittsbez	ogene dur	chschnittl	iche Schich	ntneigung der Massenverlagerungsgebiete (°)				
s: Standardabweichung der du	rchschnitt	lichen Scł	nichtneigun	ng (°)				
$n > 10^{\circ}$: Anzahl der Massenverlagerungsgebiete mit Schichtneigungen $> 10^{\circ}$								

Tab. 5.13: Massenverlagerungsgebiete, deren Stufenhänge Schichtneigungen > 10° aufweisen

Wie aus Tabelle 5.13 hervorgeht, beträgt die durchschnittliche Schichtneigung an den Stufenhängen der Massenverlagerungsgebiete ~ 6° (mit s = 4°), was dem in der Literatur angegebenen Normalbild entspricht. Dies trifft mit graduell geringfügigen Abweichungen für alle Untersuchungsabschnitte zu, womit sich die bereits von JOHNSEN (1974) zusammengefasste, zweite allgemeine Grundvoraussetzung für das Auftreten von Massenverlagerungen: "flach lagernde Schichtpakete" (vgl. Kap. 1.4) bestätigt. Rückschlüsse auf die regional unterschiedliche Massenverlagerungsbeeinflussung der Stufenhänge lassen sich aufgrund des homogenen Verteilungsbildes (vgl. Tab. 5.13) nicht ziehen, d.h. die Grundvoraussetzung, flache

Schichtlagerung, muss zwar erfüllt sein, die räumliche Variabilität der Massenverlagerungsgebiete kann damit aber nicht erklärt werden.

Neben diesen insgesamt sehr homogenen Schichtneigungsverhältnissen weicht an 5 Untersuchungsabschnitten das flach zum Zentrum des Thüringer Beckens gerichtete Schichteinfallen über größere Distanzen vom regionalen Schichtneigungsbild ab. Im Einzelnen handelt es sich hierbei um die Untersuchungsabschnitte Schmücke, östlicher Bereich der Hainleite, 3 kleinere Abschnitte im Teiluntersuchungsgebiet Oberes Eichsfeld & Hainich, (1.: nördlich der Gobert; 2.: östlich der Ortschaft Eschwege; 3.: nördlich der Ortschaft Treffurt) (vgl. Karte 8) sowie um die Hörselberge (vgl. Karte 1 und 8). Diese Untersuchungsabschnitte sind durch ein hangwärts, zum Zentrum des Thüringer Beckens gerichtetes Schichteinfallen $\ge 20^{\circ}$ charakterisiert (vgl. Tab. 2.7). Dies führte hier zur Ausbildung von Schichtkämmen, worauf bereits in Kapitel 2.3.3.7 ausführlicher eingegangen wurde.

An den Stirnhängen der genannten 5 Wellenkalk-Schichtkämme sind im Unterschied zu den durch flache Schichtlagerungen gekennzeichneten Wellenkalk-Schichtstufenhängen keine Massenverlagerungen zu verzeichnen (vgl. Karte 8 und Kap. 5.2.1). Mögliche Ursachen dafür werden bereits von SCHUNKE (1971) und TILCH (1999) im Rahmen von Untersuchungen im Leine-Weser-Bergland diskutiert. So nimmt, mit zunehmender Schichtneigung, die grundwasserbedingte Formung und Durchfeuchtung der Stufen - bzw. Stirnhänge ab. Insbesondere in ausgeprägten Kluftwasserleitern, stellen sich mit zunehmender Schichtneigung steile hydraulische Gradienten im Kluftaquifer ein, so dass bei einem hangwärts gerichteten Schichteinfallen, das Wasser vom Stirnhang schnell abgeführt wird (vgl. TILCH 1999). Dies äußert sich letztendlich in der bereits in bzw. Kapitel 2.3.5.3 beschriebenen Wasser-Quellenarmut der Stirnhänge des Untersuchungsgebietes. Da die Verfügbarkeit von Wasser ein wichtiger Faktor für Massenverlagerungsprozesse ist (vgl. Kap. 1.2), die Verfügbarkeit jedoch mit zunehmender Schichtneigung am Stirnhang limitiert wird (vgl. oben), wurde mit Hilfe eines einfachen, vergleichenden Modellaufbaus eines Schichtstufen- und eines Schichtkammreliefs der Einfluss der Schichtneigung auf die Massenverlagerungsprozesse näher untersucht (vgl. Abb. 5.30).

Das Modell wurde im Maßstab 1 : 800 erstellt und entspricht im Fall des Wellenkalk-Schichtstufenhanges den morphometrischen Verhältnissen am Dün und im Fall des Wellenkalk-Stirnhanges den morphometrischen Schichtneigungsverhältnissen des im Oberen Eichsfeld & Hainich, nördlich der Ortschaft Mackenrode, gelegenen Schichtkammes "Eichstruther Kopf" (vgl. Karte 8).

Abb. 5.30:Modellversuch zur unterschiedlichen Massenverlagerungsbeeinflussung an Wellenkalk-
Schichtstufen- und Schichtkammhängen in Abhängigkeit von der Schichtneigung

Als Sockelmaterial wurde Pelitröt verwendet, welches aus dem am Dün gelegenen, durch Bergbautätigkeiten (Zementtagebau Deuna) gut aufgeschlossenen Massenverlagerungsgebiet 193 (vgl. Karte 8) entnommen wurde. Die lithologischen Eigenschaften des Sockelgesteins (Tonmineralogie und Korngrößenverteilung) entsprechen denen in Abbildung 2.4 und 2.5 (vgl. Kap. 2.3.2.2) dargestellten Zusammensetzungen. Als Stufenbildner diente Unterer Wellenkalk der, um das orthogonale Kluftsystem zu modellieren, vorab in Quader zerschnitten wurde. Die Sockelhänge wurden im Falle des Stirnhanges (x) mit einer hangwärtigen Schichtneigung von ca. 21° und im Falle des Schichtstufenhanges (xx) mit 4° angelegt (vgl. Abb. 5.30 a). Der Sockelhang des Schichtkammes weist aufgrund seines steileren Schichteinfallens eine geringer Ausstrichsbreite (gemessen bis zum 4° Fußpunkt) als der Schichtstufenhang auf. Auf den Sockelhang wurde als Gipsmodell eine Schicht Würfelzucker, aufgetragen, da dieser sich bezüglich seiner im Vergleich zum Gips größeren Lösungsfreudigkeit, für den Versuch als geeigneter erwies (frdl. Anregung von Dr. ZIERDT, Inst. f. Geogr. Halle) (vgl. Abb. 5.30 b). Auf den Würfelzucker wurde wiederum eine Schicht Pelitröt und schließlich die zerschnittenen Wellenkalkquader aufgetragen (vgl. Abb. 5.30 c und d). Anschließend wurden beide Versuchsanordnungen mit je ca. 3 1 Wasser künstlich beregnet (vgl. Abb. 5.30 e).

Bereits nach kurzer Zeit setzten am Schichtstufenmodell (xx) erste Reaktionen ein, während der Schichtkamm unbeeinflusst blieb. Die Reaktionen wurden videotechnisch festgehalten. Zunächst öffneten sich traufnahe Spalten und einzelne Blöcke begannen treppenstufenähnlich abzusinken. Gleichzeitig kam es an der Röt-/Wellenkalk-Schichtgrenze zu Wasseraustritten am Stufenhang. Kurze Zeit später schlug die Bewegung in eine talwärts gerichtete Rotation um (Topple) (vgl. Abb. 5.30 f). Bei einer talwärtigen Kippung von ca. 15° stürzten die Blöcke schließlich ab (Fall: Felssturz) (vgl. Abb. 5.30 g und h).

Während der gesamten Zeit blieb der Schichtkamm trotz gleicher Feuchtigkeitszugabe und gleicher Materialzusammensetzung unbeeinflusst von Massenverlagerungsprozessen. Selbst die als Gipsmodelle fungierenden Würfelzucker wurden an den vordersten Stirnhangbereichen nicht aufgelöst (vgl. Abb. 5.30 g), was auf das Fehlen von Wasseraustritten am Stirnhang zurückzuführen ist (vgl. Abb. 5.30 h). Das Wasser wurde der steilen Schichtneigung folgend schnell hangabwärts abgeführt und stand damit denen am Schichtstufenhang ablaufenden Prozessen (Initiierung von gravitativen Massenverlagerungen) am Stirnhang nicht zur Verfügung. Insgesamt spiegeln sich in dieser einfachen Versuchsanordnung die in der Natur anzutreffenden Verhältnisse deutlich wider.

Entsprechend der bisherigen Ausführungen ist zusammenfassend festzuhalten, dass sich die bereits von SCHUNKE (1971) und TILCH (1999) gewonnen Erkenntnisse auch auf die Wellenkalk-

Schichtstufe im Thüringer Becken übertragen lassen. So treten die Massenverlagerungsgebiete im Untersuchungsraum generell nur dort auf, wo großräumig flache Schichtlagerungen $< 12^{\circ}$ vorherrschen, was an den Wellenkalk-Schichtstufenhängen der Fall ist (vgl. oben). Bei über größeren Distanzen hangwärts gerichteten Schichtneigungen $> 12^{\circ}$, wie es für Schichtkämme typisch ist, setzten die hier beschriebenen Massenverlagerungsprozesse aufgrund des am Stirnhang herrschenden Wassermangels abrupt aus. Dies ist, wie ein Blick auf Karte 4 verdeutlicht, unabhängig vom jährlichen Niederschlagseintrag in das Hangsystem. So treten weder am Schichtkamm der Schmücke (Ø Jahresniederschlag: 515 mm) noch an den Schichtkämmen im wesentlich stärker beregneten Untersuchungsabschnitt Oberes Eichsfeld & Hainich (Ø Jahresniederschlag: 780 mm) Massenverlagerungen auf. Unter natürlichen Bedingungen sind die Stirnhänge der Schichtkämme damit die gegenüber Massenverlagerungsprozessen stabilsten Hangabschnitte im Untersuchungsgebiet.

5.3.7 Die Neigungsrichtung (7)

Neben der Schichtneigung (6) ist die Neigungsrichtung (7) der am Aufbau der Stufenhänge beteiligten Gesteinschichten ein Faktor, der im Zusammenhang mit Massenverlagerungsprozesse diskutiert wird (vgl. Kap.1.4). Für das Sonderrelief der Schichtkämme wurde dieser Einfluss aufgezeigt (vgl. Kap. 5.3.6). Die Neigungsrichtung der von Massenverlagerungen betroffenen Stufenhänge ergibt sich aus der Zuordnung der Massenverlagerungsgebietsbreiten zu der in Kapitel 2.3.3.7 beschriebenen Front-, Diagonal- und Achterstufenverbreitung (vgl. Karte 2). Dabei wurden die Massenverlagerungsgebiete, die Anteil an mehreren Neigungsrichtungen haben, metrisch unterteilt (vgl. Kap. 4.3). So befindet sich bspw. das insgesamt 995 m breite Massenverlagerungsgebiet 26 (Hainleite) (vgl. Karte 8) auf 500 m Breite in Fronstufenposition, auf 140 m Breite in Diagonalstufenposition und auf 355 m Breite in Achterstufenposition (vgl. Anhang C). Massenverlagerungsgebietsbreiten Aus den summierten der entsprechenden Stufenhangpositionen ergeben sich die von Massenverlagerungen betroffenen Stufenhanglängen der entsprechenden Stufenhangpositionen. Für die Summe der von Massenverlagerungen betroffenen Stufenhanglängen (240 km) als auch für die untersuchungsabschnittsbezogenen Teillängen ergibt sich dabei das in Abbildung 5.31 dargestellt Verteilungsbild.

Wie aus Abbildung 5.31 hervorgeht, sind mit Ausnahme des Tautenburger Forstes in allen Stufenhangpositionen Massenverlagerungen zu verzeichnen. Von der Gesamtheit der von Massenverlagerungen betroffenen Stufenhanglängen befindet sich der größte Anteil in Frontstufenpositionen (46,7 % = ~112 km). Mit 33,8 % (~81 km) folgen die Diagonalstufenpositionen und schließlich mit 19,5 % (~47 km) die Achterstufenpositionen.

Abb. 5.31:Prozentualer Anteil der von Massenverlagerungen betroffenen Stufenhanglängen in Front-,
Diagonal- und Achterstufenpositionen

Innerhalb der einzelnen Untersuchungsabschnitte ergibt sich ein teilweise abgewandeltes Bild. So fehlen am Tautenburger Forst Massenverlagerungen an Frontstufenhängen bei einer gleichzeitigen Dominanz von Massenverlagerungen in Achterstufenposition (~60 %). Auch an den Zeugenbergen Mittleres Saaletal sind Massenverlagerungen in Frontstufenposition weniger häufig zu verzeichnen als jene in Diagonal- bzw. Achterstufenpositionen (vgl. Abb. 5.31). Ähnlich verhält es sich im Gebiet der Gobert. An der Ohrdrufer Platte befindet sich die Mehrzahl der Massenverlagerungen in Diagonalstufen- gefolgt von Achterstufenpositionen. Die Frontstufenpositionen treten hier leicht zurück. Demgegenüber dominieren am Dün Massenverlagerungen in Frontstufenpositionen, wohingegen Massenverlagerungen an Achterstufenhängen hier fast gänzlich zurücktreten (vgl. Abb. 5.31).

Wie die Abbildung 5.31 zeigt, lassen sich aus diesem sehr heterogenen Verteilungsbild keine deutlichn Zusammenhänge zwischen einzelnen Stufenhangpositionen und verstärkter Massenverlagerungsbeeinflussung erkennen. Es scheinen zwar an den weniger stark von Massenverlagerungen betroffenen Untersuchungsabschnitten Tautenburger Forst und Zeugenberge Mittleres Saaletal v.a. Achterstufenhänge bevorzugt von Massenverlagerungen betroffen zu sein, für die Hainleite, die ebenfalls eine nur geringe Massenverlagerungsbeeinflussung aufweist, trifft dies jedoch nicht zu.

In einem weiteren Schritt wurde überprüft, wie sich die Verteilung der von Massenverlagerungen betroffenen Stufenhanglängen in den entsprechenden Stufenhangpositionen von der im Kapitel 2.3.3.7 beschrieben Neigungsrichtungsverteilung der Gesamtheit der Stufenhänge (vgl. Abb. 2.11 und Karte 2) unterscheidet. Dazu bietet sich zunächst der unmittelbare Vergleich von Abbildung 2.11 (Kap. 2.3.3.7) und Abbildung 5.31 an. Wie sich dabei zeigt, ist das Häufigkeitsbild bezogen auf die Gesamtheit der betrachteten Stufenhänge (958,2 km) und die Gesamtheit der von Massenverlagerungen betroffenen Stufenhanglängen (240 km) nur leicht verschoben. Während im Gesamtgebiet v.a. Diagonalstufenhänge (41,8 %) gefolgt von Fronstufenhängen (38 %) dominieren (vgl. Abb. 2.11), sind die Massenverlagerungen etwas häufiger in Frontstufenpositionen (46,7 %) zu verzeichnen (vgl. Abb. 5.31). Innerhalb der einzelnen Untersuchungsabschnitte ergibt sich dabei folgendes Bild: Während an der Hainleite, am Dün, an den Bleicheröder Bergen, an der Gobert, am Ringgau und an der Ohrdrufer Platte die Verteilungsmuster weitgehend ähnlich sind, sind in den Untersuchungsabschnitten Oberes Eichsfeld & Hainich, Ilm-Kalk-Platte, Tautenburger Forst und Zeugenberge Mittleres Saaletal einige leichtere Abweichungen zu verzeichnen. Am Tautenburger Forst bspw. befindet sich ca. 60 % der von Massenverlagerungen betroffenen Stufenhänge in Achterstufenpositionen und das, obwohl die Achterstufenhänge in der Gesamtverteilung hier am seltensten (23,6 %) vertreten sind. Demgegenüber treten an den Frontstufenhängen, die hier 26,7 % der Gesamtstufenhanglänge ausmachen, keine Massenverlagerungen auf. Auch an den Zeugenbergen Mittleres Saaletal verschiebt sich das Verhältnis der von Massenverlagerungen betroffenen Stufenhanglängen leicht zu Gunsten der Achterstufenposition, wobei hier insgesamt aber immer noch die Diagonalstufenhänge dominieren.

Um zu überprüfen, ob die sich aus dem Verteilungsbild ergebenden Unterschiede wirklich signifikant sind, wurden mit Hilfe des χ^2 -Testes (Chi-Quadrat-Test) die Stufenhanglängen der einzelnen Untersuchungsabschnitte mit und ohne Massenverlagerungen in den entsprechenden Stufenhangpositionen verglichen. Der χ^2 -Testes ist danach ausgerichtet, eine empirische Verteilung an einer theoretischen Verteilung zu überprüfen (vgl. ZöFEL 1992). Für den vorliegenden Fall wird erwartet, dass die Verteilung der Front-, Diagonal- und Achterstufenhänge im Gesamtgebiet (= empirische Verteilung) mit der Verteilung der Front-, Diagonal- und Achterstufenhänge der von Massenverlagerungen betroffenen Stufenhängen (= theoretische Verteilung) übereinstimmt. Diese Annahme entspricht der Nullhypothese, die es mit Hilfe des Testes zu bestätigen oder zu widerlegen gilt. Dazu wurden aus den beobachteten Häufigkeiten zunächst die erwarteten Häufigkeiten errechnet, mit denen die entsprechenden Neigungsrichtungspositionen an den Stufenhängen vertreten sind. Auf der Basis der beobachteten und erwarteten Häufigkeiten lässt sich das χ^2 bestimmen. Die entsprechenden Häufigkeiten und die berechneten χ^2 Werte sind in Tabellen 5.14 dargestellt.

Untersuchungs -abschnitte	Neigungs- richtung	beobachtete (C	oachtete Häufigkeit (O) (Häufigkeit 2)	Chi-Quadrat-Test (χ^2)
					$)* \sum_{l/2} O_{l/2} + \sum_{l/2} O_{l/2}$	$=\sum \frac{(O_{1/2} - E_{1/2})^2}{E_{1/2}}$
		O ₁ (gesamter Stufenhang)	O ₂ (von Massen- verlagerungen betroffener Stufenhang)	E ₁ (gesamter Stufenhang)	E ₂ (von Massen- verlagerungen betroffener Stufenhang)	
		(km)	(km)	(km)	(km)	
Hainleite	Frontstufen Diagonalstufen Achterstufen	43,245 33,065 17,090 Σ 93,4	10,84 5,05 2,33 Σ 18,22	45,257 31,893 16,250	8,828 6,222 3,170	1,08 χ^2 krit; 0,05 = 7,81
Dün	Frontstufen Diagonalstufen Achterstufen	32,21 8,90 1,89 Σ 43	16,070 1,860 0,055 Σ 17,985	34,042 7,587 1,371	14,238 3,173 0,574	1,77 χ^2 krit; 0,05 = 7,81
Bleicheröder Berge	Frontstufen Diagonalstufen Achterstufen	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,22 2,28 4,20 Σ 12,7	11,166 5,079 9,755	5,454 2,481 4,765	0,28 χ^2 krit; 0,05 = 7,81
Oberes Eichsfeld & Hainich	Frontstufen Diagonalstufen Achterstufen	87,845 140,145 65,810 Σ 93,8	32,85 29,11 13,73 Σ 7 5,69	95,971 134,583 63,246	24,724 34,672 16,294	$\begin{array}{c} \textbf{4,98} \\ \chi^2 _{krit; \ 0,05} = 7,81 \end{array}$
Gobert	Frontstufen Diagonalstufen Achterstufen	12,38 16,24 12,38 Σ 41	8,57 9,62 6,59 Σ 24,78	13,058 16,118 11,824	7,892 9,742 7,146	0,17 $\chi^2_{krit; 0,05} = 7,81$
Ringgau	Frontstufen Diagonalstufen Achterstufen	39,195 23,430 8,375 Σ 71	18,265 8,160 2,985 Σ 29,41	40,630 22,337 8,033	16,83 9,253 3,327	0,41 $\chi^2_{krit; 0,05} = 7,81$
Ohrdrufer Platte	Frontstufen Diagonalstufen Achterstufen	18,135 28,665 18,200 Σ 65	3,49 7,59 4,23 Σ 15,31	17,502 29,343 18,154	4,123 6,912 4,276	0,20 χ^2 krit; 0,05 = 7,81
Ilm-Kalk-Platte	Frontstufen Diagonalstufen Achterstufen	100 100 36 Σ 236	7,54 6,51 4,17 Σ 18,22	99,833 98,876 37,291	7,707 7,634 2,879	0,81 χ^2 krit; 0,05 = 7,81
Tautenburger Forst	Frontstufen Diagonalstufen Achterstufen	6,675 12,425 5,900 Σ 25	0 0,205 0,31 Σ 0,515	6,54 16,76 8,24	0,130 0,345 0,170	0,42 χ^2 krit; 0,05 = 781
Zeugenberge Mittleres Saaletal	Frontstufen Diagonalstufen Achterstufen		0,78 5,26 5,13 Σ 11,17	10,089 32,268 21,643	1,761 5,632 3,777	1,24 $\chi^2_{krit; 0,05} = 7,81$
Gesamtgebiet	Frontstufen Diagonalstufen Achterstufen	361,155 400,790 196,255 Σ 958,2	104,625 75,645 43,730 Σ 224	377,525 386,161 194,513	88,255 90,274 45,472	6,75 $\chi^2_{krit; 0,05} = 7,81$

Tab. 5.14:Die beobachteten und theoretisch erwarteten Häufigkeiten von Massenverlagerungs-
ereignissen in den entsprechenden Neigungsrichtungen am Stufenhang

Wie Tabelle 15.4 zeigt, sind weder im Gesamtgebiet noch in den einzelnen Untersuchungsgebieten signifikante Unterschiede zwischen den beobachteten und erwarteten Häufigkeitsverteilungen zu verzeichnen. Die berechneten χ^2 -Werte sind in allen Fällen kleiner als die der χ^2 -Tabelle zu entnehmenden kritischen Werte ($\chi^2_{\rm krit; 0.05} = 7,81$ bei 3 Freiheitsgraden) (vgl. ZöFEL 1992). Selbst am Tautenburger Forst und an den Zeugenbergen Mittleres Saaletal, an denen KöNIG (2001) eine Massenverlagerungsbevorzugung der Achterstufenpositionen sieht, jedoch gleichzeitig selbst zum Ausdruck bringt, dass diesbezüglich nur eine sehr geringe Korrelation besteht (KöNIG 2001, S. 89), konnten keine signifikanten Unterschiede verzeichnet werden. Somit kann die Nullhypothese, dass die beobachteten und theoretisch erwarteten Häufigkeiten zwischen den von Massenverlagerungen betroffenen und den massenverlagerungsfreien Stufenhängen übereinstimmen, angenommen werden. Zusammenfassend ist damit festzuhalten, dass von der Neigungsrichtung mit Ausnahme des Schichtkammreliefs (> 12° hangwärtige Schichtneigung) (vgl. Kap. 5.3.6) keine steuernde Beeinflussung auf die räumliche Variabilität der Massenverlagerungen im Untersuchungsgebiet ausgeht. Bestätigt werden diese Ergebnisse durch die Untersuchungen von WEBER (1929) und SCHMIDT (1988b).

5.3.8 Der Einfluss der Rötgipssubrosion nach morphologischen Befunden (8)

Die insbesondere von WEBER (1929, 1951) als Hauptursache der Massenverlagerungsprozesse angenommene Rötgipssubrosion (vgl. Kap. 1.4) resultiert aus der Ablaugung der bis 10 mächtigen Gipslagen im Oberen Bundsandstein (vgl. Kap. 2.3.3.2). Die Subrosion der Gipse führt zu einem Massendefizit im Sockelhang, welches durch Senkungserscheinungen und Nachsackungen der hangenden Schichten (Wellenkalk) ausgeglichen wird, was zur Bildung von Abrißspalten und schließlich zu Massenverlagerungen führen kann. Von zahlreichen Autoren (vgl. u.a. SCHNEIDER 1968, JOHNSEN & KLENGEL 1973; FISCHER et al 1975, KRÜMMLING et al. 1975) werden derartige Erscheinungen an der Wellenkalk-Schichtstufe beschrieben. Deutliche morphologische Anzeichen von Subrosionsvorgängen sind einerseits die im Bereich des Rötsockels relativ häufig auftretende Erdfälle (vgl. Kap. 2.3.3.4), andererseits atektonische Schichtdeformationen, die v.a. an den vordersten Bereichen der frei zum Vorland exponierten Stufenhänge auftreten (vgl. Abb. 5.32). Diese Schichtdeformationen führen zu lokalen Abweichungen vom generellen Schichtlagerungsbild und damit zu Abweichungen innerhalb der beschriebenen, großräumigen Neigungsrichtungsverteilung (Front-, Diagonal- und Achterstufen). In Abhängigkeit vom horizontalen Ausmaß der Gipssubrosion kann dabei an den Trauf-distalen Schichtkomplexen die Schichtlagerung noch dem großräumig tektonisch bedingten Bild entsprechen (generell flaches Einfallen zum Zentrum des Thüringer Beckens), während mit zunehmender Annäherung an den Steilhang Schichtdeformationen, die sich in talwärts (vgl. Abb. 5.32) aber auch in hangwärtigen

und seitlich gerichteten Bewegungskomponenten widerspiegeln, auftreten. Fassbar sind diese Abweichungen durch vergleichende Schichtmessungen sowie durch die Lageerkundung der Erdfälle.

Abb. 5.32: Schematisches Grundprinzip der Rötgipssubrosion und deren morphologischen Folgen

Anhand dieser Merkmalsausprägungen (atektonische Schichtdeformationen, Erdfallbildungen im Umland der Massenverlagerungsgebiete) sollte der Einfluss der Rötgipssubrosion auf die Massenverlagerungshäufigkeit überprüft werden. Da großräumig tektonisch gestörte Gebiete aus der Untersuchung von vornherein ausgeklammert wurden (vgl. Kap. 1.5 und 4.2), ist davon auszugehen, dass es sich bei den aufgenommenen Schichtdeformationen tatsächlich um subrosionsbedingte atektonische Unstetigkeiten handelt.

Die für die Massenverlagerungsgebiete im Abrißwandbereich ermittelten Schichtlagerungswerte [Schichtneigung (°) / Neigungsrichtung (°)] sind in Anhang C aufgeführt. Sofern Abweichungen zur großräumig regionalen Schichtlagerung ermittelt werden konnten, sind diese für die entsprechenden Gebiete dort vermerkt. So ist bspw. der Stufenhang des an der Hainleite gelegenen Massenverlagerungsgebietes 13 (vgl. Karte 8) entsprechend des großräumigen Schichtlagerungsbildes (Schichten fallen flach nach Süd - Südwest ein) (vgl. Kap. 2.3.3.7) als Frontstufe ausgebildet, wohingegen im Abrißwandbereich die Schichten mit 4° nach Norden (350°) einfallen (vgl. Anhang C). Im Unterschied zu der in Kapitel 5.3.6 betrachteten Schichtneigung war bei diesem Vergleich die Größe des Neigungswinkels nicht entscheidend.

Morphologisch deutlich in Erscheinung tretende Erdfallbildungen konnten im Rahmen der Untersuchung nur berücksichtigt werden, sofern sie in den TK 10 enthalten waren oder sich im unmittelbaren Umland der Massenverlagerungsgebiete befanden und damit während der Geländekartierung lokalisiert werden konnten. Die hier ausgewiesenen Erdfälle sind demnach keine vollständige Bestandsaufnahme.

Entsprechend der aufgenommenen Daten ergibt sich für die Massenverlagerungsgebiete des Untersuchungsraumes das in Tabelle 5.15 zusammengefasst dargestellte Bild. Die Schichtlagerungsverhältnisse konnten dabei an 531 der insgesamt 744 Massenverlagerungsgebiete näher bestimmt werden.

Wie aus Tabelle 5.15 hervorgeht, sind 291 der 531 Gebiete (= 55 %) durch deutliche atektonische Schichtdeformationen im Abrißwandbereich, die zu Abweichungen vom großräumigen Schichtlagerungsbild führen (Δ N), gekennzeichnet. Zudem konnten an 93 Massenverlagerungsgebieten in unmittelbarer Nachbarschaft Erdfälle (E) lokalisiert werden, wobei 37 dieser Gebiete gleichzeitig atektonische Schichtdeformationen aufweisen (vgl. Tab. 5.15).

Innerhalb der einzelnen Untersuchungsabschnitte schwanken die an den Stufenhängen der Massenverlagerungsgebiete zu beobachtenden Schichtlagerungsabweichungen. So weisen 37 % der näher untersuchten Massenverlagerungsgebiete der Gobert und ~83 % der am Tautenburger Forst gelegenen Gebiete atektonische Schichtdeformationen im Stufenhangbereich und damit einhergehend Abweichungen vom generellen Schichtlagerungsbild auf. Zusammenhänge zu den unterschiedlich stark von Massenverlagerungen betroffenen Stufenhanglängen sind jedoch nicht zu So sind sowohl in den stärker von Massenverlagerungen betroffenen verzeichnen. Stufenhangabschnitten größere (Bleicheröder Berge) und kleinere (Gobert) Häufigkeiten atektonisch bedingter Schichtabweichungen zu verzeichnen, als auch in den nur wenig stark betroffenen Untersuchungsabschnitten (Tautenburger Forst / Ilm-Kalk-Platte). Ähnlich verhält es sich bei der beobachteten Erdfallhäufigkeiten. Auch diese kommen, mit Ausnahme des Tautenburger Forstes, an Massenverlagerungsgebieten aller Untersuchungsabschnitte vor, wobei die Mehrzahl jedoch dort auftritt, wo die Schichtlagerung nicht bestimmt werden konnte bzw. wo keine deutlichen Abweichungen zum großräumigen Schichtlagerungsbild zu verzeichnen waren. Insgesamt erweisen sich die Erdfälle damit als weniger geeignete Indikatoren für mögliche atektonische Schichtdeformationen am Stufenhang.

Untersuchungsabschnitte	Ν	ΔN	Δ Ν (%)	ΣΕ	E N				
Hainleite	63 von 99	27	43	4	1				
Dün	32 von 46	18	56	16	8				
Bleicheröder Berge	37 von 58	22	59	12	4				
Oberes Eichsfeld & Hainich	199 von 257	125	63	27	11				
Gobert	35 von 47	13	37	9	3				
Ringgau	45 von 52	20	44	5	1				
Ohrdrufer-Platte	33 von 47	18	55	5	4				
Ilm-Kalk-Platte	56 von 90	30	54	5	1				
Tautenburger Forst	6 von 6	5	83	-	-				
Zeugenberge Mittleres Saaletal	25 von 42	13	52	10	4				
Gesamt	531 von 744	291	55	93	37				
N: Anzahl der Massenverlagerungsgebiete an denen die Schichtlagerung im Abrißwandbereich bestimmt werden konnte (als Vergleich ist die Gesamtzahl der Massenverlagerungsgebiete des jeweiligen Untersuchungsgebechnittes mit aufgeführt)									

Anzahl der Gebiete die in ihrer Schichtlagerung Abweichungen zur generellen Neigungsrichtung

Neigungsrichtung aufweisen, bezogen auf die Gesamtzahl der Gebiete an denen die Schichtlagerung näher

Anzahl der Erdfälle, die im Bereich der Massenverlagerungsgebiete mit abweichenden Schichtlagerungen

 Δ N (%): prozentualer Anteil der Gebiete, die in ihrer Schichtlagerung Abweichungen zur generellen

Gesamtzahl der lokalisierten Erdfälle im Bereich der Massenverlagerungsgebiete

Tab. 5.15:Die Häufigkeit von lokalen, atektonischen Schichtdeformationen und Erdfallbildungen im
Bereich der Massenverlagerungsgebiete

Wenn auch nicht die Gesamtzahl der Massenverlagerungsgebiete hinsichtlich ihrer Schichtlagerung untersucht werden konnte, wird entsprechend des geschilderten Verteilungsbildes deutlich, dass die Rötgipssubrosion, in deren Folge es zu atektonischen Schichtdeformationen kommt, sich im Sinne von WEBER (1929, 1951) möglicherweise begünstigend auf die gravitativen Hangprozesse auswirkt, dass diese aber keine notwendige Voraussetzung für das Auftreten der Massenverlagerungen darstellt. Die unterschiedlichen räumlichen Verbreitungsmuster der Massenverlagerungsgebiete können aus der Subrosionsanfälligkeit der Rötgipse und deren Folgen nicht zufriedenstellend erklärt werden. Zu ähnlichen Ergebnissen kommen bereits ACKERMANN (1959) und SCHNEIDER (1968) sowie in stratigraphisch vergleichbaren Untersuchungsgebieten SCHUNKE (1971) und TILCH (1999). Untermauert werden diese Erkenntnisse durch hydrochemische Untersuchungen an Quellaustritten im Sockelhangbereich unterhalb von Massenverlagerungsgebieten (vgl. BEYER 1997, 135). Dabei konnten selbst an jüngeren

 ΔN :

ΣΕ:

EN:

aufweisen

Liegen

bestimmt werden konnte

Mauerschollengebieten keine Anzeichen erhöhter Sulfatgehalte, die Rückschlüsse auf eine aktive Gipssubrosion erlauben, festgestellt werden.

5.3.9 Morphometrische Lage zur Erosionsbasis (9)

Die morphometrische Lage der von Massenverlagerungen betroffenen Stufenhänge zur Erosionsbasis ergibt sich aus den Vertikal- und Horizontalentfernungen zwischen dem 4° Fußpunkt bzw. der unmittelbar vorgelagerten Tiefenlinie (lokale Erosionsbasis) und den Fixpunkten Röt-/Wellenkalk-Schichtgrenze und Top der Abrißwand (vgl. SCHMIDT & BEYER 2001) (vgl. Kap. 4.3 und Abb. 4.3). Aus diesen Distanzen lassen sich die Anstiegsverhältnisse und daraus über trigonometrische Funktionen (ARCTAN) die entsprechenden Anstiegswinkel zwischen den genannten Punkten berechnen. Im Rahmen der Untersuchung wurden 3 Winkel berücksichtigt (α : *Anstiegswinkel vom 4° Fußpunkt zur Röt-/Wellenkalk-Schichtgrenze*, β : *Anstiegswinkel vom Fußpunkt zun Top der Abrißwand*; γ : *Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand*; γ : *Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand*; γ : *Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand*; γ : *Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand*; γ : *Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand*; γ : *Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand*; γ : *Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand*; γ : *Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand*; γ : *Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand*; γ : *Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand*; γ : *Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand*; γ : *Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand*; γ : *Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand*; γ : *Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand*; γ : *Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze*; *B*: *Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze*; *B*: *An*

Betrachtet man, ausgehend vom 4° Fußpunkt, die Vertikal- und Horizontaldistanzen der von Massenverlagerungen betroffenen Stufenhänge zu den genannten Fixpunkten, zeigt sich, dass diese sehr unterschiedliche Werte annehmen. So liegen die Horizontalentfernungen vom Fußpunkt zum Top der Abrißwand (dH) zwischen minimal 20 m und maximal 1010 m, die dazugehörigen Vertikalentfernungen (dV) zwischen minimal 10 m und maximal 260 m. Gleiches gilt für die gemessenen Horizontal- und Vertikaldistanzen vom Fußpunkt zur Röt-/Wellenkalk-Schichtgrenze [(dS min: 5 m; dS max: 895 m / dF min: 5 m; dF max: 200 m)] sowie für die Distanzen von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand [(dR min: 10 m; dR max: 420 m / dA min: 5 m; dA max: 105 m)] (vgl. Anhang C).

Aus der Einzelbetrachtung dieser sehr heterogenen Werte lassen sich zunächst keine Gemeinsamkeiten an den von Massenverlagerungen betroffenen Stufenhängen erkennen. Stellt man jedoch die jeweiligen Horizontal- und Vertikaldistanzen gegenüber, werden einige Regelmäßigkeiten deutlich, die in Abbildung 5.33 [Vertikal- und Horizontaldistanzen vom 4° Fußpunkt zur Röt-/Wellenkalk-Schichtgrenze (dS/dR)], in Abbildung 5.34 [Vertikal- und Horizontaldistanzen vom 4° Fußpunkt zum Top der Abrißwand (dV/dH)] und in Abbildung 5.35 [Vertikal- und Horizontaldistanzen von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand (dR/dA)] dargestellt sind.

Abb. 5. 33: Vergleich der Horizontal- (dS) und Vertikalentfernungen (dF), gemessen vom 4° Fußpunkt zur Röt-/Wellenkalk-Schichtgrenze an den von Massenverlagerungen betroffenen Stufenhängen

Abb. 5. 34: Vergleich der Horizontal- (dH) und Vertikalentfernungen (dV), gemessen vom 4° Fußpunkt zum Top der Abrißwand an den von Massenverlagerungen betroffenen Stufenhängen

Abb. 5. 35: Vergleich der Horizontal- (dR) und Vertikalentfernungen (dA) gemessen von der Röt-/ Wellenkalk-Schichtgrenze zum Top der Abrißwand an den von Massenverlagerungen betroffenen Stufenhängen

Wie zu sehen ist, weisen alle von Massenverlagerungen betroffenen Stufenhänge trotz unterschiedlicher absoluter Horizontal- und Vertikaldistanzen ähnliche Anstiegsverhältnisse und damit ähnlich Anstiegswinkel zwischen den jeweils betrachteten Fixpunkten auf. Im Einzelnen beträgt der vom 4° Fußpunkt zur Röt-/Wellenkalk-Schichtgrenze ermittelte durchschnittliche Anstiegswinkel α 12° (mit s = 5°) (vgl. Abb. 5.33), der vom 4° Fußpunkt zum Top der Abrißwand ermittelte durchschnittliche Anstiegswinkel β 16° (mit s = 4°) (vgl. Abb. 5.34) und der von der Röt-/Wellenkalk-Schichtgrenze der Abrißwand zum Top ermittelte durchschnittliche Anstiegswinkel γ 24° (mit s = 8°) (vgl. Abb.5.35). Auffällig dabei ist, dass v.a. der für den Oberhang typische Anstiegswinkel γ größere Variationen im Vergleich zu α und β aufweist, was sich in der etwas geringeren Korrelation der Werte widerspiegelt (r = 0.76) (vgl. Abb. 5.35). Zurückzuführen ist dies auf die Tatsache, dass Abhängigkeit vom in Alter der Massenverlagerungen die Abrißwände markant und steil (v.a. Mauerschollenund Sturzfließungsgebiete) oder bereits stärker abgetragen und damit flacher ausgebildet sein können (v.a. Gebiete wo nur Rücken-, Absatz- und Fußschollen) (vgl. Kap. 3.4).

Betrachtet man die durchschnittlichen Anstiegswinkel innerhalb der einzelnen Untersuchungsabschnitte, ergibt sich das in Tabelle 5.16 dargestellte Bild.

Tab.: 5.16:	Die Anstiegswinkel der von Massenverlagerungen betroffenen Stufenhänge der einzelnen
	Untersuchungsabschnitte

Untersuchungsabschnitte	L	Øα	S	Øβ	s	Øγ	s
	(%)	(°)	(°)	(°)	(°)	(°)	(°)
Hainleite	18,6	12	6	17	4	23	6
Dün	41,8	11	4	15	4	29	11
Bleicheröder Berge	48,8	12	6	15	4	23	5
Oberes Eichsfeld & Hainich	25,3	12	4	16	4	25	7
Gobert	60,4	13	3	16	3	26	8
Ringgau	41,4	13	4	17	3	25	7
Ohrdrufer-Platte	23,5	11	6	16	5	22	7
Ilm-Kalk-Platte	7,7	11	3	16	4	24	6
Tautenburger Forst	2,1	22	11	23	9	26	7
Zeugenberge Mittleres Saaletal	11,17	11	3	14	3	25	10

L: von Massenverlagerungen betroffene Stufenhanglänge (%)

 $\emptyset \alpha$: durchschnittlicher Anstiegswinkel vom Fußpunkt zur Röt-/Wellenkalk-Schichtgrenze

Ø β : durchschnittlicher Anstiegswinkel vom Fußpunkt zum Top der Abrißwand

Ø y: durchschnittlicher Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand

s: Standardabweichung

Die Auswertung zeigt, dass sich mit Ausnahme des Tautenburger Forstes die durchschnittlichen Anstiegswinkel in allen Untersuchungsabschnitten ähneln. Die Unterschiede am Tautenburger Forst resultieren aus der Tatsache, dass die hier vorkommenden 6 Massenverlagerungsgebiete sich generell an Stufenhängen befinden, an denen die morphometrische Begrenzung des Unterhanges durch die unmittelbar den Stufenhang benachbarten, tief eingeschnittenen Tälern der Saale und Nebenbäche erfolgt. Dies führt hier zu einer starken horizontalen Verkürzung des Unterhanges, so dass sich hohe Vertikaldistanzen bei gleichzeitig sehr geringen Horizontaldistanzen ergeben, was schließlich in den erhöhten Anstiegswinkeln zum Ausdruck kommt. Abgesehen von dieser Ausnahme sind in übrigen Untersuchungsabschnitten, den trotz unterschiedlicher Massenverlagerungsbeeinflussung, ähnliche mittlere Anstiegswinkel zu verzeichnen.

Vergleicht man diese Anstiegswinkel mit denen von SCHUNKE (1968) im Leine-Weser-Bergland für ungestörte Wellenkalk-Stufenhänge ermittelten Anstiege, die gemessen vom 4° Fußpunkt bis zur Trauf durchschnittlich 10° betragen, sind die hier ermittelten Werte um ca. 6° deutlich erhöht. Da aufgrund der unterschiedlichen Untersuchungsgebiete und der z.T. bestehenden Lagedivergenzen zwischen Steilabfall der Trauf und dem Top der Abrißwand (vgl. Kap. 5.2.5.2) die Werte aber nicht unmittelbar vergleichbar sind, können zunächst noch keine eindeutigen Rückschlüsse auf eine möglicherweise durch die Hangsteilheit bedingte Massenverlagerungsbeeinflussung abgeleiten werden. Um dies vertiefent zu ergründen, wurden in einem weiteren Schritt die durchschnittlichen Anstiege der jüngeren Massenverlagerungsgebiete mit Mauerschollen und Sturzfließungen (vgl. Karte 14) mit den durchschnittlichen Anstiegen aller übrigen Massenverlagerungsgebiete verglichen. Das sich daraus ergebende Bild ist in Tabelle 5.17 dargestellt.

Tab. 5.17:Vergleich der durchschnittlichen Anstiegswinkel der Massenverlagerungsgebiete, dieMauerschollen und Sturzfließungen aufweisen, mit allen übrigen Massenverlagerungsgebieten

betrachtete Gebiete	n	Øα	S	Øβ	S	Øγ	s
		(°)	(°)	(°)	(°)	(°)	(°)
Massenverlagerungsgebiete die weder							
Mauerschollen noch Sturzfließungen	628	11	6	15	4	24	7
aufweisen							
Massenverlagerungsgebiete mit	111	13	4	17	3	27	9
Mauerschollen							
Massenverlagerungsgebiete	14	14	2	19	3	29	7
mit Sturzfließungen							
n: Anzahl der Massenverlagerungsgebiete							
$\emptyset \alpha$: durchschnittlicher Anstiegswinkel vom Fuß	Ø a: durchschnittlicher Anstiegswinkel vom Fußpunkt zur Röt-/Wellenkalk-Schichtgrenze						
Ø β : durchschnittlicher Anstiegswinkel vom Fußpunkt zum Top der Abrißwand							
Ø γ : durchschnittlicher Anstiegswinkel von der Röt-/Wellenkalk-Schichtgrenze zum Top der Abrißwand							
s: Standardabweichung							

Festzustellen ist, dass die durchschnittlichen Anstiegswinkel der Mauerschollen und insbesondere der Sturzfließungsgebiete im Vergleich zu den Massenverlagerungsgebieten, in denen nur holozäne und pleistozäne Ruheformen (Absatz-, Rücken-, Wall-, Fußschollen) vorkommen, deutlich erhöht sind. Je nach betrachteten Winkel sind 2 bis 5° erhöhte Anstiege zu verzeichnen. Die Anwendung des T-Test zeigt, dass diese Unterschiede auf dem 0,1 % Niveau höchst signifikant sind.

Die erhöhten Anstiege im Bereich dieser jüngeren Massenverlagerungen treffen mit wenigen Ausnahmen gleichermaßen für alle Untersuchungsabschnitte zu. Für die Mauerschollengebiete ist dies in Tabelle 5.18 verdeutlicht. Im Einzelnen sind im Untersuchungsgebiet ab Anstiegswinkeln $(\beta) < 15^{\circ}$ keine Sturzfließungen und ab Anstiegswinkeln $(\beta) < 10^{\circ}$ keine Mauerschollen mehr zu verzeichnen. Die überwiegende Mehrzahl dieser Gebiete weist jedoch wesentlich größere Anstiege $(\geq 16^{\circ})$ auf (vgl. Anhang C).

Untersuchungsabschnitte	n	Øα	S	Øβ	s	Øγ	S	
		(°)	(°)	(°)	(°)	(°)	(°)	
Hainleite	9	12	4	17	4	23	6	
Dün	15	13	5	17	3	36	13	
Bleicheröder Berge	4	16	5	16	2	23	4	
Oberes Eichsfeld & Hainich	36	12	3	17	3	27	7	
Gobert	19	14	3	17	3	28	8	
Ringgau	11	14	4	19	3	28	6	
Ohrdrufer-Platte	6	11	2	17	2	22	5	
Ilm-Kalk-Platte	8	13	2	17	2	25	4	
Tautenburger Forst	-	-	-	-	-	-	-	
Zeugenberge Mittleres Saaletal	3	13	3	15	4	20	6	
n: Anzahl der Massenverlagerungsgebi	ete die Mauer	schollen aufwo	eisen					
\emptyset β : durchschnittlicher Anstiegswinkel vo	om Fußpunkt	zum Top der A	Abrißwand					
	on der Röt-/W	ellenkalk-Schi	chtgrenze zur	n Top der Abr	ißwand			

Tab. 5.18:Die durchschnittlichen Anstiegswinkel an den Stufenhängen der Massenverlagerungs-
gebiete, die Mauerschollen aufweisen

Die zwischen 2 und 5° höheren Anstiege erscheinen zunächst nicht groß. Bedenkt man jedoch, dass es sich hierbei nicht um Hangneigungen, sondern um Anstiegserhöhungen über größere Horizontaldistanzen handelt, wird deutlich, dass bereits 1° beträchtlich sein kann. Hinzu kommt, dass an potentiell massenverlagerungsanfälligen Hängen, und dazu gehört auch die Wellenkalk-Schichtstufe (vgl. PRINZ 1997), auch geringe Veränderungen der Hanggeometrie große Auswirkungen auf das Hangstabilität haben können. Im Allgemeinen erhöhen sich mit steigender Hangsteilheit die Schubspannungen bei gleichzeitiger Entlastung der verbleibenden Schichten, was zur Abnahme der Scherfestigkeit führen kann (vgl. PRINZ 1997; S. 278). Da der Oberhang festliegt, wird die Hangversteilung durch hangwärtige Verlagerungen des Fußpunktes und damit durch eine Versteilung des Rötsockels bei gleichzeitiger Reduktion des Hangwiderlagers bedingt. Ursachen dafür sind erosive Prozesse am Sockelhang, worauf im Einzelnen bei der Betrachtung der Faktoren: Lage im Stufengrundriss (10) und Lage zum Gewässernetz (12) nochmals näher eingegangen wird.

Ein Beispiel einer jüngeren Massenverlagerung am Dün (Abschnitt des Gebietes 189) (vgl. Karte 8) verdeutlicht den direkten Einfluss der Hangversteilung auf die Massenverlagerungsdisposition eines Hanges. Hier, im Tagebau des Zementwerkes Deuna, wurde ab 1975 Rötmaterial vom Sockel der Wellenkalk-Schichtstufe als Zuschlagstoff für die Zementherstellung abgebaut. Dabei wurde der Sockelhang derart versteilt, das es zur Reaktivierung ältere Massenverlagerungen kam (vgl.

s:

Standardabweichung

FISCHER et la 1975). Die morphometrischen Verhältnisse vor und nach dem Abbau sind in Abbildung 5.36 dargestellt.

Abb. 5.36: Durch künstliche Hangversteilung verursachte Massenverlagerung im Tagebau Deuna

Vor dem Rötabbau betrug hier der Anstieg vom Fußpunkt zur Röt-/ Wellenkalk-Schichtgrenze (α_1) ca. 10°. Nach dem Anschnitt des Stufensockels und Abbau des Widerlagers wurde der Fußpunkt hangwärts verlagert, womit sich der Anstiegswinkel des Sockelhanges (α_2) um ca. 6°, auf 16° erhöhte. Infolgedessen kam es zur Reaktivierung älterer, bis dahin ruhender Massenverlagerungskörper und schließlich zu einer anthropogen initiierten Sturzfließung.

Eine erhöhte Hangsteilheit wird von einer Vielzahl von Autoren als maßgeblich die Massenverlagerungen beeinflussender Faktor angeführt (vgl. JOHNSEN & KLENGEL 1973, HAMMER 1985, KRAUTER 1987 in: SMOLTCZYK 1987; PLATE et al 1993, PRINZ 1997, TILCH 1999). SCHUNKE (1971, 29) sieht in der vorzeitlichen, pleistozäne Hangsteilheit eine der wichtigsten Ursachen der Massenverlagerungsprozesse an den Stufenhängen, wobei er die holozänen Massenverlagerungen als Ausgleichsbewegungen auf die vorzeitliche Hangsteilheit zurückführt (vgl. SCHUNKE 1968, 195). Dabei ist jedoch zu bedenken, dass auch holozäne fluvialerosive Prozesse die Hangsteilheit nachhaltig beeinflussen können. So erfolgten v.a. auch in den feuchten, niederschlagsreichen Phasen des Atlantikums (vgl. SCHÖNWIESE 1979) nachweislich starke Eintiefungen der Fliessgewässer (HOHL 1985), die zu Hangversteilungen führten. Das es in dieser Phase verstärkt zu Massenverlagerungen kam, betont auch PRINZ (1997). Auch aus dem Mittelalter sind nachweislich feuchtere, erosionsstarke Phasen bekannt, in denen verstärkt Massenverlagerungen auftraten (vgl. SPUREK 1972, BERRISFORD & MATTHEWS 1997). Zudem

können auch rezente lokale Ereignisse enorme Eintiefungs- und Hangversteilungstendenzen bewirken, so dass eine pleistozänen Hangsteilheit nicht notwendigerweise als primäre Ursache der Massenverlagerungsprozesse heranzuziehen ist.

Mit dem Erliegen eines Versteilungsimpulses kommt es jedoch zur Stabilisierung der Stufenhänge. Da der Fußpunkt nun festliegt, die Schollengleitungen den Oberhang aber gleichzeitig zurückverlagerten, kommt es zu Abflachungstendenzen der Stufenhänge. Im Untersuchungsgebiet trifft dies auf 628 Massenverlagerungsgebiete zu. Dies sind jene Gebiete, die in ihrem Formenschatz ältere Massenverlagerungsformen (Absatz-, Rücken-, Wall-, Fußschollen) aufweisen Anstiegeswinkel gleichzeitig durchschnittlich geringer und deren sind als die der Massenverlagerungsgebiete, in denen rezent jüngere Massenverlagerungsformen auftreten (vgl. Tab. 5.17).

Wie die für das gesamte Untersuchungsgebiet typischen, relativ einheitlichen geringeren Anstiegswinkel der älteren Massenverlagerungsgebiete und die generell erhöhten Anstiege an den von jüngeren Massenverlagerungen betroffenen Stufenhängen verdeutlichen, ist die sich aus den Lagebeziehungen zur Erosionsbasis ergebende Hangsteilheit, eine sich auf die räumliche Variabilität der Massenverlagerungsgebiete maßgeblich auswirkende Steuerungsgröße. Entsprechend der Beobachtungen an jüngeren Massenverlagerungsgebieten (Mauerschollen und Sturzfließungen) erweisen sich rezente Anstiegswinkel von 13 - 14° (α) bzw. 17 - 19° (β) im Untersuchungsgebiet als kritisch (vgl. Tab. 5.17). Geringere Anstiege lassen rezent aktive Massenverlagerungsprozesse unwahrscheinlich werden.

Neben den Anstiegswinkeln können die auf die Fläche bezogenen Neigungsverhältnisse zur Charakteristik der Massenverlagerungsgebiete herangezogen werden. Diesbezüglich wurden 12 digitale Geländemodelle (DGM 20) ausgewertet, wobei die Neigungsverhältnisse der Massenverlagerungsgebiete mit den Neigungsverhältnissen des jeweiligen Gesamtstufenhanges verglichen wurden. Die Lage der DGM ist in Abbildung 4.4 (vgl. Kap. 4.3) dargestellt. Abbildung 5.37 enthält zwei Beispiele der aus den DGM abgeleiteten Hangneigungskarten.

In Abbildung 5.38 sind die durchschnittlichen Neigungsverhältnisse der Gesamtstufenhänge den Neigungsverhältnissen der von Massenverlagerungen betroffenen Stufenhangflächen exemplarisch für die DGM III, V, VIII und X gegenübergestellt.

Abb. 5.37:Exemplarische Hangneigungskarten an von Massenverlagerungen betroffenen Wellenkalk-
Schichtstufenabschnitten im Thüringer Becken (Gebiete: III: Hainleite / X: Ilm-Kalk-Platte)

Abb. 5.38: Vergleichende Histogramme der Häufigkeit der Hangneigungsklassen am Gesamtstufenhang und innerhalb der Massenverlagerungsgebiete am Beispiel der DGM III; V; VIII; X

Betrachtet man die Stufenhangneigung der 8 vergleichenden klinographische Histogramme, zeigt sich, dass ab der Hangneigungsklasse 8 - 18° die Flächenanteile der höheren Neigungsklassen generell abnehmen (vgl. Abb. 5.38). Dies trifft sowohl für die Massenverlagerungsgebiete als auch für die betrachteten Gesamtstufenhänge aller mittels DGM analysierten Abschnitte zu. Fasst man die Flächenanteile der Hangneigungen > 18° zusammen, wird jedoch deutlich, dass diese Flächenanteile in den Massenverlagerungsgebieten im Unterschied zum Gesamtstufenhang, generell erhöht sind. Wie aus Abbildung 5.38 hervorgeht, dominieren in den Massenverlagerungsgebieten jeweils die mittleren Neigungswinkelklassen von 19 - 35°, während v.a. die unteren (< 18°) aber auch die oberen (> 36°) Neigungsklassen demgegenüber zurücktreten. Letzteres gilt auch für den Gesamtstufenhang, wobei hier jedoch die dominierende Hangneigungsklasse 8 - 18° darstellt. Fasst man die in Abbildung 5.38 dargestellten Unterschiede in Form von durchschnittlichen Mittelwerten zusammen, ergibt sich das in Tabelle 5.19 dargestellte Bild.

Tab: 5.19:	Die durchschnittlichen Hangneigungen der untersuchten Stufenhangabschnitte (getrennt für
	Gesamtstufenhang und Massenverlagerungsgebiete)

Gebiete und dazugehöriger		Ø Hangneigung vom	s	Ø Hangneigung der	S
U	Intersuchungsabschnitt	Gesamtstufenhang		Massenverlagerungs-	
				gebiete	
		(°)		(°)	
Ι	(Hainleite)	15,6	8,6	30,4	7,8
II	(Hainleite)	13,7	7,9	22,8	7,1
III	(Hainleite)	16,5	8,8	22,3	9,1
IV	(Dün)	14,0	9,7	24,1	9,7
V	(Bleicheröder Berge)	13,2	7,5	19,7	7,7
VI	(Dün)	12,5	7,4	17,2	7,2
VII	(Oberes Eichsfeld & Hainich)	13,1	8,2	19,5	8,4
VIII	(Oberes Eichsfeld & Hainich)	15,4	7,7	21,9	7,8
IX	(Ohrdrufer Platte)	13,5	7,3	17,4	8,2
X	(Ilm-Kalk-Platte)	15,9	7,9	20,6	8,7
XI	(Ilm-Kalk-Platte)	13,2	7,4	18,9	7,4
XII	(Zeugenberge Mittleres Saaletal)	12,9	7,1	20,9	9,0
s: S	tandardabweichung	·			

Wie daraus hervorgeht, sind die durchschnittlichen Hangneigungen im Bereich der Massenverlagerungsgebiete im Vergleich zu den durchschnittlichen Hangneigungen der Gesamtstufenhänge generell erhöht. Im Einzelnen schwanken sie zwischen ~17° am Dün und ~30°
an der Hainleite. Demgegenüber liegen die durchschnittlichen Neigungswerte der gesamten Stufenhänge zwischen minimal ~13° an den Zeugenbergen Mittleres Saaletal und maximal 16,5° an der Hainleite (vgl. Tab. 5.19). Diese Unterschiede resultieren einerseits aus der Längenausdehnung der Massenverlagerungsgebiete, die i.d.R. auf die Oberund Mittelhangpositionen beschränkt bleiben und damit weniger Flächenanteil an den flacher geneigten Unterhangabschnitten haben, zum anderen aus der Tatsache, dass die vom Stufenhang gelösten Wellenkalkschollen mehr oder weniger steile Abrißwände hinterlassen, die sich in den durchschnittlich höheren Hangneigungen dieser Gebiete niederschlagen. Aus diesen Lagepositionen erklärt sich auch die Dominanz der mittleren Hangneigungsklassen (19 - 25° und 26 - 35°) innerhalb der Massenverlagerungsgebiete (vgl. oben). Zudem ist hierbei zu bedenken, dass v.a. größere, verlagerte Schollenkomplexe dem ehemals konkaven Stufenhang v.a. in den Mittelhangbereichen ein gebuckeltes Relief verleihen (vgl. ACKERMANN 1959, SCHUNKE 1968). Auch diese morphologischen Formen spiegeln sich in den Hangneigungskarten deutlich wider (vgl. Abb. 5.37, z.B. Massenverlagerungsgebiete 79 und 619) und führen ebenfalls zu einer Erhöhung der mittleren Hangneigungswerte. Bemerkenswert ist auch die Tatsache, dass sich in den Hangneigungskarten die stärker geneigten Sockelhangbereiche der rezenten Mauerschollen- und Sturzfließungsgebiete deutlich abzeichnen. In Abbildung 5.37 betrifft dies die Gebiete 79 und 87 (beides Massenverlagerungsgebiete, in denen Mauerschollen auftreten), deren Sockelhangbereiche lokal Neigungen von 26 - 35° aufweisen. Ähnliche Beobachtungen machten SCHUNKE (1971) und BEYER (1997).

Die aus Tabelle 5.19 hervorgehenden, insgesamt geringeren durchschnittlichen Hangneigungswerte der Massenverlagerungsgebiete am Dün, der Bleicheröder Berge, der Ohrdrufer Platte und der Ilm-Kalk-Platte resultieren aus der größeren Anzahl von Gebieten mit größeren Längenausdehnungen (> 200 m) (vgl. Kap. 5.2.3.2 und Abb. 5.4), was im Fall der Ilm-Kalk-Platte auch auf das vermehrte Vorkommen von Fußschollen zurückzuführen ist (vgl. Kap. 5.2.4.1). An der Hainleite hingegen sind Massenverlagerungen größerer Längenausdehnungen wesentlich seltener zu verzeichnen, so dass die Flächenausdehnung dieser auf die insgesamt steileren Mittel- und Oberhangbereiche beschränkt bleiben, was sich wiederum in den hohen durchschnittlichen Mittelwerten niederschlägt. Zudem ist zu bedenken, dass aufgrund der räumlichen Begrenzung der DGM nicht alle Massenverlagerungsgebiete erfasst wurden.

Interessant ist die Verteilung der am Stufenhang insgesamt seltener zu verzeichnenden Hangneigungen > 36° . Wie diesbezüglich Abbildung 5.37 zeigt, sind solch hohen Neigungen v.a. an den Flanken bzw. Stirnbereichen der Stufenvorsprünge zu finden, wobei dort auch gehäuft Massenverlagerungen zu verzeichnen sind. Bezieht man die > 36° geneigten Flächenanteile der

Massenverlagerungsgebiete auf die $> 36^{\circ}$ geneigten Flächenanteilen der entsprechenden Gesamtstufenhänge, ergibt sich das in Abbildung 5.39 dargestellt Bild.

Abb. 5.39: Der prozentuale Anteil der > 36° geneigten Stufenhangflächen der Massenverlagerungsgebiete von der Gesamtfläche der Stufenhänge die >36° Hangneigungen aufweisen

Von den > 36° geneigten Flächenanteilen der Gesamtstufenhänge sind zwischen minimal 8,5 % (Gebiet I: Hainleite) und maximal 96,4 % (Gebiet VI: Dün) von Massenverlagerungen betroffen. Dies bedeutet, dass die höheren Hangneigungswerte nicht generell an Massenverlagerungsgebiete gebunden sind, wenn auch die höchsten Neigungswerte (> 61°) fast ausschließlich in den Massenverlagerungsgebiete auftreten, was auch hier auf die teilweise Ausbildung nahezu senkrechter Abrißwände zurückzuführen ist (vgl. Abb. 5.37). Vor allem in den DGM Abschnitten I; II; IV; VIII; X; XI; und XII kommen verstärkt auch $> 36^{\circ}$ geneigte Stufenhänge ohne Massenverlagerungen vor. Wie bei einem Vergleich mit Karte 8 auffällt, handelt es sich hierbei jedoch um Stufenhangabschnitte an denen Massenverlagerungsgebiete insgesamt weniger häufig zu verzeichnen sind. An den stärker massenverlagerungsbeeinflussten Abschnitten III (Hainleite), V (Bleicheröder Berge), VI (Dün), VII (Oberes Eichsfeld & Hainich) und IX (Ohrdrufer Platte) hingegen, ist die überwiegende Mehrzahl der $> 36^{\circ}$ geneigten Stufenhangbereiche gleichzeitig auch von Massenverlagerungen betroffen. Daraus schlußfolgernd kann man festhalten, dass höhere Stufenhangneigungen für die Massenverlagerungen zwar förderlich und typisch sind, dass aber aufgrund des Vorkommens von massenverlagerungsfreien, > 36° geneigten Stufenhangabschnitten die räumliche Variabilität der Massenverlagerungsgebiete nicht allein von der Stufenhangneigung bestimmt wird. Die aus den DGM abzuleitenden maximalen Hangneigungen (> 60°) geben jedoch, da sie i.d.R. an die Abrißwände der Massenverlagerungsgebiete gebunden sind (vgl. oben), auch ohne vorherige Geländekenntnis bereits wichtige Informationen zur Lage der Massenverlagerungsgebiete am Wellenkalk-Schichtstufenhang.

5.3.10 Lage im Stufengrundriss (10)

Auf den Einfluss des Faktors Lage im Stufengrundriss auf die Verbreitung der Massenverlagerungen an der Wellenkalk-Schichtstufe machte erstmals SCHMIDT (1988b) aufmerksam. Der Stufengrundriss resultiert aus der Zerschneidung der Stufenhänge durch die Täler, die den Stufenhang in Buchten und Vorsprünge gliedern. Ein morphometrisches Maß dafür ist der Buchtungsindex (vgl. Kap. 2.3.3.6). Entsprechend der Stufenhangzergliederung ergeben sich prinzipiell 4 unterschiedliche Grundrisspositionen: Bucht, gestreckter Abschnitt, Vorsprung (Flanke); Vorsprung (Stirm). (vgl. Kap. 4.3 und Abb. 4.5). Ordnet man die in Anhang C enthaltenen Breiten der einzelnen Massenverlagerungsgebiete den entsprechenden Grundrisspositionen metrisch zu, ergibt sich das in Abbildung 5.40 dargestellte Verteilungsbild.

Abb. 5.40: Die Lage der von Massenverlagerungen betroffenen Stufenhänge im Grundriss

Wie hieraus hervorgeht, treten entgegen der Auffassungen von ACKERMANN (1958, 183) und MARTIN (1965, 59), die die Massenverlagerungen an Bergvorsprüngen für Ausnahmeerscheinungen halten, ~76 % der Massenverlagerungen an der Wellenkalk-Schichtstufe im Thüringer Becken an Stufenvorsprüngen auf, wobei hier ca. 62 % auf die Vorsprungsflanken

und ca. 14 % auf die Stirnbereiche entfallen. Demgegenüber befinden sich nur ~24 % der Massenverlagerungen an gestreckten Stufenhangabschnitten. In Buchtenlagen sind im gesamten Untersuchungsgebiet keine Massenverlagerungen zu verzeichnen. Ein Blick auf Karte 8 verdeutlicht diese Unterschiede eindrucksvoll. Zu vergleichbaren Feststellungen am Ringgau und der Gobert kam bereits SCHMIDT (1988b) und an den Schichtstufenhängen der Schwäbischen Alp auch KRAUT (1995), TERHORST (1997) und KALLINICH (1999).

Innerhalb der einzelnen Untersuchungsabschnitte ergeben sich, abgesehen vom Dün und vom Tautenburger Forst, mit kleineren Abweichungen, ähnliche Verteilungsmuster (vgl. Abb. 5.40). Am Tautenburger Forst befinden sich alle 6 Massenverlagerungsgebiete an Stufenvorsprüngen, wobei die Stirn- (52 %) und Flankenpositionen (ca. 48 %) in etwa gleichhäufig betroffen sind. Massenverlagerungen an gestreckten Abschnitten fehlen hier jedoch. Am Dün hingegen ist das Verteilungsbild fast umgekehrt. Hier sind ca. 83 % der von Massenverlagerungen betroffenen Stufenhänge an gestreckten Stufenhangabschnitten zu finden, wohingegen nur 18 % auf die Vorsprünge entfallen (12 % Flanke; 6 % Stirn) (vgl. Abb. 5.40). Prinzipiell sind am Dün, trotz vergleichbar flacher Schichtlagerung zu den den benachbarten Gebieten (vgl. Kap. 2.3.3.7 und Kap. 5.3.6), nur sehr wenige markant ausgebildete Vorsprünge zu verzeichnen, was sich schließlich in den sehr geringen Buchtungswerten (Buchtungsindex: 1,8) dieses Untersuchungsabschnittes zum Ausdruck kommt (vgl. Tab. 2.6, Kap. 2.3.3.6). Der Grund hierfür ist in Anlehnung an STEINMÜLLER (1965, S. 92) möglicherweise in der Ausbildung eines Salzhanges im Zechsteinsalinar zu suchen, der sich, wie Bohrungen belegen, hier unmittelbar unter der Steilkante vom Dün befindet. Gleichzeitig sieht STEINMÜLLER (1965, 94) in der Zechsteinsubrosion den Hauptgrund für die große Massenverlagerungshäufigkeit am Dün. Die Zechsteinsubrosion könnte damit für diese Unterschiede in Frage kommen, zumal auch im Bereich der Ohrdrufer Platte bei Plaue, welches nach SEIDEL (1995, 422) eines der bedeutendsten Auslaugungsgebiete im Thüringer Becken darstellt (vgl. Kap. 2.2), lokal ebenfalls eine größerer Massenverlagerungshäufigkeit zu verzeichnen ist (vgl. Karte 8), im Unterschied zum Dün die Buchtung hier aber wesentlich größere Werte annimmt (Buchtungsindex: 3,1). Weitere Bohrungen könnten hier möglicherweise nähere Aufschlüsse bringen. Generell sind aber auch weniger intensiv von Subrosionserscheinungen geprägte Stufenhangabschnitte wie Gobert und Bleicheröder Berge besonders stark von Massenverlagerungen betroffen (vgl. Kap. 5.2.2). Zudem stimmen die Anstiegsverhältnisse der Massenverlagerungsgebiete am Dün mit denen der anderen Untersuchungsabschnitte überein (vgl. 5.3.9), so dass die Zechsteinsubrosion möglicherweise als begünstigend-ergänzender Faktor, aber nicht notwendiger Weise als Ursache in Betracht zu ziehen ist. Für die Rötgipssubrosion wurde darauf bereits in Kapitel 5.3.8 hingewiesen.

Die in den übrigen Untersuchungsabschnitten zu verzeichnende Massenverlagerungsbevorzugung

der Stufenvorsprünge, insbesondere der Flankenbereiche, resultiert aus der Tatsache, dass die Vorsprungsflanken sich im unmittelbaren Einflussbereich der perennierend oder episodisch wasserführenden Täler befinden, wo es durch Seitenerosion zur Verlagerung des Fußpunktes und damit zur Verkürzung der Horizontaldistanzen kommen kann. Damit verbunden, können sich die Anstiegsverhältnisse am Stufenhang, insbesondere am Rötsockel, kritisch erhöhen (vgl. Kap. 5.3.9). Aus dem Abbau der Widerlagers resultieren größere Schubspannungen bei gleichzeitiger Entlastung der verbleibenden Schichten und abnehmender Scherfestigkeit, was schließlich zu Massenverlagerungsprozessen führen kann. Abbildung 5.37 verdeutlicht diese Zusammenhänge eindrucksvoll. So geht daraus klar hervor, dass die Mehrzahl der Massenverlagerungen sich an Flankenpositionen befindet, die verkürzte Horizontaldistanzen und damit verbunden, höhere Anstiegswinkel und gleichzeitig auch großflächig höhere Hangneigungen aufweisen (insbesondere Hangneigungen > 35°). Damit wird deutlich, dass eine pleistozän überlieferte Hangsteilheit (vgl. SCHUNKE 1968, 1971) keine notwenige Voraussetzung für das Auftreten der Massenverlagerungen ist (vgl. Kap. 5.3.9).

In den Buchten mit ihren insgesamt größeren Horizontaldistanzen und geringeren Anstiegswinkeln bei gleichzeitig geringeren Hangneigungen (i.d.R. $< 20^{\circ}$) treten im gesamten Untersuchungsgebiet keine Massenverlagerungen auf (vgl. Abb. 5.40 und Karte 8). Die flacheren Anstiegsverhältnisse bedingen, dass diese Stufenhangbereiche gegenüber den gravitativen Massenverlagerungsprozessen stabil sind.

In den Stirnbereichen der Vorsprünge sind Massenverlagerungen nur zu finden, wenn sich ähnliche hohe Anstiegswerte und Neigungen, wie an den Vorsprungsflanken, einstellen. Wie Geländebefunde zeigen (vgl. auch Abb. 5.37), ist dies aber nur an wenigen und wenn, dann meist an kürzeren Vorsprüngen der Fall (vgl. BEYER & SCHMIDT 1999). Die Mehrzahl der Stirnbereiche der Stufenvorsprünge ist durch größere Horizontaldistanzen bei gleichen Vertikaldistanzen im Vergleich zu den Vorsprungsflanken gekennzeichnet und damit insgesamt weniger steil ausgebildet. Zudem konnte festgestellt werden, dass die von Massenverlagerungen betroffenen Stufenvorsprünge relativ schmal sind, wobei die Mehrzahl Breitenausdehnungen < 300 m aufweist. Insgesamt ist an den Stirnbereichen der sockelhangversteilende Tiefenlinieneinfluss naturgemäß weniger deutlich ausgeprägt als an den Vorsprungsflanken, die sich über größere Strecken im unmittelbar angrenzenden Kontaktbereich zur Tiefenlinie befinden. Damit einhergehen die genannten Unterschiede

Betrachtet man sich das in Karte 8 dargestellte Verteilungsbild der Massenverlagerungsgebiete, wird deutlich, dass mit Ausnahme des Dün v.a. an den stark gebuchteten Stufenhangabschnitten die Massenverlagerungen verstärkt auftreten. So sind bspw. am Untersuchungsabschnitt Oberes Eichsfeld & Hainich annähernd alle Stufenvorsprünge von Massenverlagerungen betroffen. Vergleicht man die sich aus der naturräumlichen Begrenzung der Untersuchungsabschnitte ergebenden Buchtungsindexwerte (vgl. Tab. 2.6; Kap. 2.3.3.6) der einzelnen Untersuchungsabschnitte mit den von Massenverlagerungen betroffenen Stufenhanglängen der jeweiligen Gebiete (vgl. Abb. 5.1; Kap. 5.2.2), ergibt sich das in Abbildung 5.41 dargestellte Verteilungsbild. Dabei wurde der Dün aufgrund seiner morphologischen Besonderheiten (geradliniger Stufenverlauf) nicht berücksichtigt.

Abb. 5.41:Vergleich der Buchtungsindexwerte der Untersuchungsabschnitte mit den von
Massenverlagerungen betroffenen Stufenhanglängen (ohne Dün)

Wie dieses Verteilungsbild zeigt, nimmt mit einem Korrelationskoeffizienten von r = 0,6 die Massenverlagerungshäufigkeit mit steigender Buchtung tendenziell zu. Innerhalb der einzelnen Untersuchungsabschnitte sind jedoch auch größere Abweichungen dazu zu verzeichnen. So sind die sehr stark gebuchteten Stufenhänge der Zeugenberge Mittleres Saaletal (Buchtungsindex: 4,4) nur vergleichsweise gering von Massenverlagerungen betroffen (von Massenverlagerungen betroffene Stufenhanglänge ~17,5 %), wobei aber auch hier v.a. die am stärksten gebuchteten, nordwestlichen und nördlichen Stufenhangabschnitte Massenverlagerungs-konzentrationen aufweisen (vgl. Karte 8 und Kap. 5.2.1). Demgegenüber ist der Ringgau oder aber das Obere Eichsfeld & Hainich durch kleinere Buchtungswerte, bei gleichzeitig wesentlich größeren von Massenverlagerungen betroffenen Stufenhanglängen gekennzeichnet (vgl. Abb. 5.41). Ähnlich verhält es sich an der Ilm-Kalk-Platte, die gleiche Buchtungswerte wie der Rinngau aufweist (Buchtungsindex: 3,0), an deren Stufenhängen Massenverlagerungen jedoch viel seltener auftreten.

Wie auch hierzu ein Blick auf Karte 8 zeigt, existieren v.a. an den weniger stark von Massenverlagerungen betroffenen Stufenhangabschnitten (Ilm-Kalk-Platte, Hainleite, Zeugenberge Mittleres Saaletal) zahlreiche Vorsprünge, an denen keine Massenverlagerungen zu verzeichnen sind. Obwohl die Vorsprungsbereiche die für Massenverlagerungen anfälligsten Stufenhangabschnitte an der Wellenkalk-Schichtstufe sind (vgl. Abb. 5.40), wird damit deutlich, dass die unterschiedlich starke Massenverlagerungsbeeinflussung der einzelnen Untersuchungsabschnitte nicht allein auf die Vorsprungshäufigkeit bzw. auf die Buchtung zurückgeführt werden kann. Mögliche Ursachen dafür werden im Zusammenhang mit der Diskussion der Lage zum Gewässernetz erörtert.

Zusammenfassend ist festzuhalten, dass der Faktor Stufengrundriss aufgrund der engen Wechselwirkungen zu den Anstiegsverhältnissen maßgeblich die Lage der Massenverlagerungen an den Stufenhängen bestimmt, aber dass bezogen auf das Gesamtgebiet die großräumliche Variabilität der Massenverlagerungen jedoch nicht allein aus diesem Faktor erklärt werden kann.

5.3.11 Exposition (11)

Um mögliche Einflüsse des äußerst kontrovers diskutierten Faktors Exposition auf die Verbreitung der Massenverlagerungsgebiete näher ergründen können, wurden zunächst die zu Massenverlagerungsgebietsbreiten entsprechend ihrer Lage zur Himmelsrichtung metrisch den 8 sich Expositionsklassen zugeordnet (vgl. Kap. 4.3). Das daraus für die einzelnen Untersuchungsabschnitte ergebende Verteilungsbild ist in Abbildung 5.42 dargestellt. Entsprechend der vorzunehmenden Vergleiche zur der Expositionsverteilungen der Gesamtstufenhänge (vgl. Kap. 2.3.3.8) wurde diese als Vergleichsbasis in Abbildung 5.42 übernommen.

Vergleich der Expositionsverteilung der von Massenverlagerungen betroffenen Stufenhänge mit der Expositionsverteilung der Gesamtstufenhänge

Abb.:5.42 (3/3):Vergleich der Expositionsverteilung der von Massenverlagerungen betroffenenStufenhänge mit der Expositionsverteilung der Gesamtstufenhänge

Wie aus Abbildung 5.42 hervorgeht, sind in allen Expositionsklassen Massenverlagerungen zu verzeichnen. Bezogen auf die Gesamtheit der von Massenverlagerungen betroffenen Stufenhänge (n=224 km) ergibt sich dabei folgendes Bild: 20,7 % der betroffenen Stufenhanglängen befinden sich in Nord-, 11,5 % in Nordost-, 5,7 % in Ost-, 10,2 % in Südost-, 10 % in Süd-, 12,2 % in Südwest-, 9,9% in West- und 20,8 % in Nordwestexposition. Innerhalb der einzelnen Untersuchungsabschnitte variiert dieses Verteilungsbild z.T. erheblich (vgl. Abb. 5.42).

An der Hainleite ist die Mehrzahl der von Massenverlagerungen betroffenen Stufenhänge Nord-(~35 %) bzw. Nordwest-exponiert (~16 %), wohingegen in Süd- (~3 %) und Westexposition (~2 %) Massenverlagerungen nur untergeordnet auftreten (vgl. Abb. 5.42). Ähnlich verhält es sich am Dün (46 % Nord-; 36 % Nordwest-exponiert), an den Bleicheröder Bergen (~20 % Nord-; ~23 % Nordwest-exponiert), im Oberen Eichsfeld & Hainich (~21 % Nordwest-exponiert), an der Gobert (~20 % Nordwest-exponiert) und am Ringgau (~35 % Nord-; ~17 % Nordwest-exponiert). Gleichzeitig sind in diesen Untersuchungsabschnitten Massenverlagerungen in Ostexposition jeweils am seltensten zu verzeichnen. Am Dün fehlen zudem Massenverlagerungen an Südexponierten Hängen. An der Ohrdrufer Platte ist die Mehrzahl der von Massenverlagerungen betroffenen Stufenhänge Nordwest- (~23 %) bzw. Südost-exponiert (~23 %), wohingegen an Ost-(~2 %) und Süd-exponierten Hängen (~3%) Massenverlagerungen hier wesentlich seltener auftreten. An der Ilm-Kalk-Platte dominieren Massenverlagerungen in Südexposition (~22 %). Am Tautenburger Forst treten die betroffenen Gebiete nur an Südwest- (~44 %) und West- exponierten (~56 %) Stufenhängen auf. An den Zeugenbergen Mittleres Saaletal dominiert die Nord- (~35 %) und Nordwestexposition (~24 %), während an Ost- sowie an Südost- bis Südwest- exponierten Stufenhängen Massenverlagerungen wesentlich seltener zu verzeichnen sind (vgl. Abb. 5.42).

Ordnet man die Verteilung der von Massenverlagerungen betroffenen Stufenhänge den Sonnenund Schattenseiten zu, ergibt sich das in Tabelle 5.20 dargestellte Bild. Auch hier ist als Vergleichsbasis die Häufigkeitsverteilung vom Gesamtstufenhang aufgeführt, worauf im folgenden nochmals näher eingegangen wird.

Tab. 5.20:Häufigkeitsverteilung der Sonnen- und Schattenseiten an den von Massenverlagerungen
betroffenen Stufenhängen und den Gesamtstufenhängen der einzelnen
Untersuchungsabschnitte

Untersuchungsabschnitte	Schattenseite	Schattenseite	Sonnenseite	Sonnenseite
	MVG	Gesamt-	MVG	Gesamt-
(Gesamtstufenhanglänge km / von Massenverlagerungen betroffene		stufenhang		stufenhang
Stufenhanglänge km)	(%)	(%)	(%)	(%)
Hainleite (98 / 18,22)	75,0	71,3	25,0	28,7
Dün (43 / 17,985)	91,2	81	8,8	19,0
Bleicheröder Berge (26 / 12,7)	61,1	51,3	39,9	48,7
Oberes Eichsfeld &	50,6	50,5	49,4	49,5
Hainich (299 / 75,69)				
Gobert (41 / 24,78)	45,2	45,4	54,8	54,6
Ringgau (71/29,41)	71,1	52,9	28,9	47,1
Ohrdrufer Platte (65 / 15,31)	40,9	43,3	59,1	56,7
Ilm-Kalk-Platte (236 / 18,22)	40,1	38,8	59,9	61,2
Tautenburger Forst(25 / 0,515)	0	40,8	100	59,2
Zeugenberge Mittleres	69,6	49,8	30,4	50,2
Saaletal (64 / 11,17)				
Gesamt (968/224)	57,9	50,2	42,1	49,8
MVG: Massenverlagerungsgebiete			•	

Bezogen auf die Gesamtheit der Massenverlagerungen zeigt sich, dass etwas mehr als die Hälfte der betroffenen Stufenhanglängen (57,9 %) an den Schattenseiten und 42,1 % an den Sonnenseiten der Wellenkalk-Schichtstufe liegen (vgl. Tab. 5.20). Innerhalb der einzelnen Untersuchungsabschnitte treten an der Hainleite, am Dün, an den Bleicheröder Bergen, am Ringgau und an den Zeugenbergen Mittleres Saaletal Massenverlagerungen häufiger an den Schattenseiten auf. Im Oberen Eichsfeld ist die Verteilung annähernd gleich. Demgegenüber tritt an der Gobert, an der Ohrdrufer Platte, an der Ilm-Kalk-Platte und insbesondere am Tautenburger

Forst die Mehrzahl der von Massenverlagerungen betroffenen Stufenhänge an den Sonnenseiten auf.

Vergleicht man die in Abbildung 5.42 aufgeführten, beobachteten Expositionshäufigkeiten vom Gesamtstufenhang mit den beobachteten Expositionshäufigkeiten der von Massenverlagerungen betroffenen Stufenhangabschnitte (vgl. Abb. 5.42) zeigt sich, dass im betrachteten Gesamtraum zwischen der Süd- und der Nordwestexposition leichtere Unterschiede bestehen. Im Einzelnen nimmt der von Massenverlagerungen betroffene Stufenhanganteil in der Südexposition ab, während er in der Nordwestexposition leicht zunimmt. Für die einzelnen Untersuchungsabschnitte ergibt sich dabei folgendes Bild.

Während an der Hainleite, am Dün, an den Bleicheröder Bergen, im Oberen Eichsfeld & Hainich, an der Gobert, am Ringgau, an der Ohrdrufer Platte und an der Ilm-Kalk-Platte das Verteilungsbild der Exposition zwischen Gesamtstufenhang und von Massenverlagerungen betroffenen Stufenhängen relativ einheitlich ist (vgl. Abb. 5.42), sind an den Zeugenbergen Mittleres Saaletal und insbesondere am Tautenburger Forst einige Abweichungen zu verzeichnen (vgl. Abb. 5.42). Am Tautenburger Forst dominiert am Gesamtstufenhang die Südexposition, Massenverlagerungen treten hier aber nur an Südwest- und West-exponierten Hängen auf. Da es sich beim Einfluss der Exposition um mögliche, sich auf die Massenverlagerungen auswirkende Feuchtigkeitsunterschiede handelt (vgl. Kap. 1.4), können entsprechend der am Tautenburger Forst vorzufindenden Expositionsverteilung (100 % der Massenverlagerungsgebiete an der Sonnensseite) (vgl. Tab. 5.20) daraus resultierende Unterschiede für diesen Untersuchungsabschnitt, von vornherein ausgeschlossen werden. An den Zeugenbergen Mittleres Saaletal treten ~60 % der Massenverlagerungen an Nord- und Nordwest-exponierten Hängen auf, wobei nur ~36 % der Gesamtstufehänge diese Expositionsrichtungen aufweisen. Demgegenüber befinden sich an den Süd-exponierten Hängen, die hier 23,4 % der Gesamtstufenhänge ausmachen, nur 7,5 % der von Massenverlagerungen betroffenen Stufenhänge. Hier scheinen die Schattenseiten leicht bevorzugt zu sein. Der in Tabelle 5.20 dargestellte Vergleich zwischen Sonnen- und Schattenseite verdeutlicht diese Unterschiede.

Um eine statistisch fundierte Aussage treffen zu können, ob ein Zusammenhang zwischen der Massenverlagerungshäufigkeit und der Exposition besteht, wurde der χ^2 -Test durchgeführt. Entsprechend der Anlage des Testes (vgl. ZÖFEL 1992), wurde die Erwartung festgelegt, dass die Expositionsverteilung der von Massenverlagerungen betroffenen Stufenhänge der Expositionsverteilung am Gesamtstufenhang entspricht (=Nullhypothese). Das Ergebnis diese Tests ist für die einzelnen Untersuchungsabschnitte in Tabelle 5.21 dargestellt.

Untersuchungs -abschnitte	Exposition	beobachtete (C	e Häufigkeit))	erwartete Häufigkeit (E)		$\begin{array}{c} \textbf{Chi-Quadrat-Test} \\ (\chi^2) \end{array}$
				$=\frac{(O_1+O_2)*\sum O_{1/2}}{\sum O_1+\sum O_2}$		$=\sum \frac{(O_{1/2} - E_{1/2})^2}{E_{1/2}}$
		O ₁ (gesamter Stufenhang) (km)	O2 (von Massen- verlagerungen betroffener Stufenhang) (km)	E ₁ (gesamter Stufenhang) (km)	E2 (von Massen- verlagerungen betroffener Stufenhang) (km)	
Hainleite	N NE E	33,026 19,012 9,016	6,320 2,830 1,570	33,178 18,418 8,926	6,168 3,424 1,660	
	SE S SW W NW	5,978 8,918 7,938 5,292 8,820 Σ98	2,605 0,525 1,020 0,400 2,950 Σ18,22	7,237 7,963 7,554 4,800 9,925	1,346 1,480 1,404 0,892 1,845	3,49 $\chi^2_{\text{krit; 0,05}} = 15,507$
Dün	N NE E SE SW W NW	17,845 5,504 2,322 0,688 1,720 1,161 4,601 9,159	8,325 1,370 0,200 0,215 0 0,220 1,145 6,510	18,452 4,847 1,778 0,637 1,213 0,974 4,051 11,048	$7,718 \\ 2,027 \\ 0,744 \\ 0,266 \\ 0,507 \\ 0,407 \\ 1,695 \\ 4,621$	3,14 $\chi^2_{\text{ krit; 0,05}} = 15,507$
Bleicheröder Berge	N NE E SE S SW W NW	5,512 3,380 1,508 1,768 6,292 3,770 0,858 2,938 Σ26	2,480 2,025 0,405 0,815 1,865 1,895 0,360 2,855 Σ12,7	5,369 3,631 1,285 1,735 5,480 3,806 0,818 3,892	2,623 1,774 0,628 0,848 2,677 1,859 0,400 1,9010	1,27 $\chi^2_{\text{ krit; 0,05}} = 15,507$
Oberes Eichsfeld & Hainich	N NE E SE S SW W NW	41,561 32,890 29,800 31,395 39,169 37,375 39,867 46,943 Σ299	9,845 7,940 4,740 8,415 8,845 10,290 9,885 15,730 275,69	41,022 32,582 27,563 31,768 38,315 38,036 39,702 50,013	10,384 8,248 6,977 8,042 9,699 9,629 10,050 12,660	$2,06 \\ \chi^2_{\text{ krit; 0,05}} = 15,507$
Gobert	N NE E SE SW W NW	2,830 5,576 3,895 4,889 7,298 5,289 4,889 6,334 Σ41	1,60 3,43 1,34 2,83 2,79 4,37 3,59 4,83 Σ24,78	$2,761 \\ 5,613 \\ 3,263 \\ 4,811 \\ 6,288 \\ 6,020 \\ 5,285 \\ 6,958 $	1,669 3,393 1,972 2,908 3,800 3,639 3,194 4,206	1,22 $\chi^2_{\text{ krit; 0,05}} = 15,507$

Tab. 5.21:Die beobachteten und theoretisch erwarteten Häufigkeiten von Massenverlagerungs-
ereignissen in den entsprechenden Expositionsrichtungen am Stufenhang

Untersuchungs -abschnitte	Exposition	01	02	E ₁	E ₂	χ ²
Ringgau	N NE E SE SW W NW	13,341 11,766 3,976 5,183 7,728 12,211 8,348 8,447 Σ71	10,295 4,640 0,875 1,525 2,980 2,640 1,360 5,095 Σ29,41	16,713 11,601 3,430 4,743 7,572 10,501 6,865 9,576	6,923 4,805 1,421 1,965 3,136 4,350 2,843 3,966	5,28 $\chi^2_{\text{krit; 0,05}} = 15,507$
Ohrdrufer Platte	N NE E SE SW W NW	8,385 4,810 5,720 14,950 10,985 5,265 5,655 9,230 Σ65	1,14 1,25 0,31 3,56 0,48 2,71 2,29 3,57 Σ15,31	7,709 4,905 4,880 14,981 9,279 6,455 6,430 10,360	$1,816 \\ 1,155 \\ 1,150 \\ 3,529 \\ 2,186 \\ 1,520 \\ 1,515 \\ 2,440$	5,01 $\chi^2_{\text{krit; 0,05}} = 15,507$
Ilm-Kalk-Platte	N NE E SE SW W NW	28,556 24,052 21,712 39,774 63,012 27,140 14,526 17,228 Σ236	2,510 1,630 0,900 1,945 3,925 3,165 1,875 2,270 Σ18,22	28,839 23,841 20,991 38,729 62,140 28,133 15,226 18,101	2,227 1,841 1,621 2,990 4,797 2,172 1,175 1,397	2,50 $\chi^2_{\text{krit; 0,05}} = 15,507$
Tautenburger Forst	N NE E SE SW W NW	3,850 2,250 0,450 2,60 6,750 2,625 2,825 3,650 Σ25	0 0 0 0 0,225 0,290 0 Σ0,515	3,772 2,205 0,441 2,548 6,614 2,792 3,052 3,576	$\begin{array}{c} 0.078\\ 0.045\\ 0.009\\ 0.052\\ 0.136\\ 0.058\\ 0.063\\ 0.074\\ \end{array}$	1,74 $\chi^2_{\text{krit; 0,05}} = 15,507$
Zeugenberge Mittleres Saaletal	N NE E SE SW W NW	16,000 5,312 3,574 7,680 14,946 6,015 3,520 6,953 Σ64	3,91 0,93 0,22 0,77 0,85 0,81 0,97 2,71 Σ11,17	16,951 5,314 3,230 7,194 13,449 5,811 3,823 8,227	2,959 0,928 0,564 1,256 2,347 1,014 0,667 1,436	3,49 $\chi^2_{\text{krit; 0,05}} = 15,507$

Wie aus Tabelle 5.21 hervorgeht, sind in den einzelnen Untersuchungsabschnitten keine beobachteten und signifikanten Unterschiede zwischen den erwarteten Expositionshäufigkeitsverteilungen zu verzeichnen. Die berechneten χ^2 -Wert sind in allen Fällen kleiner als die der χ^2 –Tabelle ($\chi^2_{krit; 0,05}$ = 15,075; bei 8 Freiheitsgraden). Selbst am Tautenburger Forst und an den Zeugenbergen Mittleres Saaletal, sind statistisch keine signifikanten Unterschiede gegeben. Die im Gesamtuntersuchungsgebiet zu verzeichnende, leichte Erhöhung der Massenverlagerungshäufigkeit in den Nordwestlagen (vgl. Abb. 5.42) resultiert aus der stärkeren Massenverlagerungsbeeinflussung der nordwestlichen Untersuchungsabschnitte (Gobert, Oberes Eichsfeld & Hainich, Ringgau), deren Gesamtstufenhänge prinzipiell erhöhte Anteile in nordwestlichen Expositionsrichtungen aufweisen (vgl. Abb. 2.12).

Wie auch die statistische Auswertung untermauert, sind die Unterschiede der Expositionsverteilung nicht signifikant. Somit kann die Nullhypothese, dass die beobachteten und theoretisch erwarteten Häufigkeiten zwischen den von Massenverlagerungen betroffenen Stufenhängen und den Gesamtstufenhängen übereinstimmen, angenommen werden. Daraus schlußfolgernd ist festzuhalten, dass die Exposition als Steuerungsfaktor der Massenverlagerungen an der Wellenkalk-Schichtstufe im Thüringer Becken ausgeschlossen werden kann, was den Ergebnissen von SCHMIDT (1988b) und SCHMIDT & BEYER (2001) entspricht.

Wie bereits in Kapitel 3.1 erwähnt wurde, handelt es sich bei den Blockverlagerungen um sehr tiefe Massenverlagerungen (Gleitflächen bis mehrere zehn Meter unter der Wellenkalk-Oberfläche). Wie die Untersuchungen von BERRISFORD & MATTHEWS (1997), VAN ASCH et al. (1999) und TILCH (1999) klar aufzeigen, haben für solch tiefe Massenverlagerungen oberflächennahe Feuchtigkeitsunterschiede keine Bedeutung. Da die Exposition aber gerade die oberflächennahen Feuchtigkeitsunterschiede bedingt, was sich u.a. in den Vegetationsunterschieden zwischen Sonnen- und Schattenseiten sehr gut widerspiegelt, wird verständlich, weshalb die Exposition die räumliche Variabilität der Massenverlagerungen an der Wellenkalk-Schichtstufe nicht beeinflusst.

5.3.12 Lage zum Gewässernetz (12)

Die Analyse des Faktors Lage zum Gewässernetz (12), als mögliche, sich auf die räumliche Variabilität der Massenverlagerungen auswirkende Steuergröße, erfolgte durch die Überprüfung der Fließgewässerhäufigkeit an den betroffenen Stufenhängen. Dabei wurden sowohl die an die Massenverlagerungsgebiete angrenzenden als auch die unmittelbar im Tiefenlinienbereich vorgelagerten perennierenden Fließgewässer erfasst (vgl. Kap. 4.3). Die Karten 8 und 7 geben über die diesbezüglichen Verteilungsmuster bereits näher Auskunft. Für den Gesamtstufenhang wurde die Gewässerhäufigkeit und deren regionale Unterschiede bereits in Kapitel 2.3.5.3 dargestellt, vergleichende Betrachtungen werden in diesem Kapitel folgen.

Die an den von Massenverlagerungen betroffenen Stufenhängen des Untersuchungsraumes zu verzeichnende Fließgewässerhäufigkeit ist in Tabelle 5.22 aufgeführt. Wie diese zeigt, sind von den insgesamt 744 Massenverlagerungsgebieten 638 Gebiete, dies entspricht ca. 86 %, durch Vorkommen rezenter Fließgewässer an den betroffenen Stufenhängen gekennzeichnet. Dieser hohe Anteil trifft gleichermaßen für alle Untersuchungsabschnitte zu, wobei die Werte im Einzelnen

zwischen 72 % an der Hainleite und 100 % an der Gobert bzw. am Tautenburger Forst schwanken (vgl. Tab.5.22).

Untersuchungsabschnitte	n	n _F	Anteil n _F von n	Σ Länge n	Σ Länge n _F	Anteil Länge n _F von n
			(%)	(km)	(km)	(%)
Hainleite	99	71	72	18,220	15,030	83
Dün	46	42	91	17,985	17,695	98
Bleicheröder Berge	58	48	82	12,700	12,165	96
Oberes Eichsfeld & Hainich	257	232	90	75,690	72,395	96
Gobert	47	47	100	24,780	24,780	100
Ringgau	52	48	92	29,410	27,500	94
Ohrdrufer-Platte	47	40	85	15,310	14,030	92
Ilm-Kalk-Platte	90	68	75	18,220	13,900	76
Tautenburger Forst	6	6	100	0,515	0,515	100
Zeugenberge Mittleres Saaletal	42	36	86	11,170	9,620	87
Gesamt	744	638	86	224	206	92
n: Gesamtzahl der Mas	senverlager	ungsgebiete				
n _F : Anzahl der Massenv	erlagerungs	gebiete, dere	en Stufenhänge	sich im Konta	ktbereich zu	
Fließgewässern befi	nden					
Σ Länge n: von Massenverlager	ungen betrof	fene Stufen	hanglänge (= S	umme der Mas	sen-	
verlagerungsgebiets	breiten)					
Σ Länge n _F : von Massenverlager	ungen betrof	ffene Stufen	hanglänge, die	sich aus der Su	ımme der Gebi	etsbreiten
der Massenverlager	rungsgebiete	ergibt, dere	en Stufenhänge	sich im Kontak	tbereich zu Fli	eßgewässern
befinden						

Tab. 5.22: Die Fließgewässerhäufigkeit an den Stufenhängen der Massenverlagerungsgebiete

Bezieht man die Fließgewässerhäufigkeit an den von Massenverlagerungen betroffenen Stufenhängen auf die summierte Breite dieser Gebiete, ergeben sich die von Massenverlagerungen betroffenen Stufenhanglängen, die von Fließgewässern beeinflusst sind. Vergleicht man diese mit den gesamten von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen Untersuchungsabschnitte, werden die Lagebeziehungen zum Gewässernetz noch deutlicher (vgl. Tab. 5.22). So sind bspw. von den insgesamt 18,22 km msassenverlagerungsbeeinflußter Stufenhanglänge der Hainleite bereits ~83 % und von den insgesamt 15,31 km betroffener Stufenhanglänge der Ohrdrufer Platte bereits ~92 % durch angrenzende Fließgewässer gekennzeichnet. Diese im Vergleich zur Anzahl der Massenverlagerungsgebiete höheren prozentualen Längenanteile verdeutlichen, dass v.a. auch die breiteren und damit auch die großflächigeren Massenverlagerungsgebiete (> 500 m) (vgl. Kap. 5.2.3.1 und Kap. 5.2.3.4) verstärkt dort auftreten, wo Fließgewässer am Stufenhangbereich zu verzeichnen sind.

Wie bereits aus den bisherigen Ausführungen hervorgeht, treten die Massenverlagerungen bevorzugt dort auf, wo auch perennierende Fließgewässer die betroffenen Stufenhänge tangieren. Da dies aber für alle Untersuchungsabschnitte gleichermaßen zutrifft (vgl. Tab. 5.22), kann die regional unterschiedliche Massenverlagerungshäufigkeit allein aus diesem Verteilungsbild noch nicht erklärt werden.

In einem weiteren Schritt wurden die prozentualen Anteile der von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen Untersuchungsabschnitte (vgl. Kap. 5.2.2) mit den untersuchungsabschnittsbezogenen Dichteindexwerten der Fließgewässer (Fließgewässer / km Stufenhanglänge) verglichen (vgl. Kap. 2.3.5.3; Abb. 2.15). Das sich daraus ergebende Verteilungsbild ist in Abbildung 5.43 dargestellt. Dabei wurden die Untersuchungsabschnitte nach abnehmender, Massenverlagerungerungsbeeinflussung geordnet. Die Schichtkämme (Schmücke, östl. Hainleite etc.) fanden aufgrund des generellen Fehlens von Massenverlagerungen hierbei keine Berücksichtigung (vgl. Kap. 5.3.6).

Abb. 5.43: Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen mit der Dichte der Fließgewässer, ausgedrückt als Dichteindex

ERGEBNISSE

Wie Abbildung 5.43 aufzeigt, nimmt mit abnehmender Dichte der am Stufenhang zu verzeichnenden Fließgewässer gleichzeitig auch die von Massenverlagerungen betroffenen Stufenhanglängen ab. Dieser Zusammenhang ist mit einem Korrelationskoeffizienten von r = 0.86hochsignifikant. Im Einzelnen weist der im Untersuchungsraum am stärksten von Massenverlagerungen betroffene Stufenhangabschnitt der Gobert gleichzeitig auch die höchste Fließgewässerdichte auf, wohingegen am Tautenburger Forst, wo Massenverlagerungen am seltensten vorkommen, die geringste Fließgewässerdichte zu verzeichnen ist (vgl. auch Kap. 3.3.5.3). Bezieht man die vorgefundene Verteilung auf die hydrologisch getrennten, dem Elbebzw. Wesersystem zugehörigen Stufenhänge (vgl. Kap. 2.3.5.1), so zeigt sich, dass von der insgesamt 418 km Stufenhanglänge des Wesersystems ~31 % (~130 km) und von der 562 km Stufenhanglänge des Elbesystem ~17 % (~94 km) Massenverlagerungen aufweisen. Auch hierin spiegeln sich die regional unterschiedlichen Fließgewässerdichten und ihre Beziehung zu den regionalen Massenverlagerungshäufigkeiten wider.

Wie hier klar zum Ausdruck kommt, besteht im Untersuchungsgebiet ein sehr starker Zusammenhang zwischen den großräumigen Verbreitungsmustern der Massenverlagerungsgebiete und dem Faktor Lage zum Gewässernetz besteht. Allein 70 % der Varianz der regional unterschiedlichen Massenverlagerungsverbreitung erklärt sich aus den Lagebeziehungen zum Gewässernetz. Die Ursachen dafür liegen in der fluvial-erosiven Hangunterschneidung begründet, die zur Fußpunktverlagerung (Verkürzung der Horizontaldistanzen) und damit zur Stufenhangversteilung führt, was sich förderlich auf die Massenverlagerungsprozesse auswirkt (vgl. Kap. 5.3.9). Prinzipiell können dort, wo räumlich mehr Fließgewässer vorhanden sind, die fluvialerosive Hangunterschneidungsprozesse auch mehr Stufenhänge erfassen als dort, wo weniger Fließgewässer vorkommen, was sich schließlich in den in Abbildung 5.43 dargestellten Verteilungsbild widerspiegelt. Zu ähnlichen Feststellungen in anderen Untersuchungsgebieten kommen BERNHARD (1967), EISENBRAUN & ROMMEL (1986), PLATE et.al. (1993) sowie MOSER (1999), der in der fluvialen Hangunterschneidung den Motor für die Massenverlagerungsprozesse sieht.

Insbesondere auch die jüngeren Massenverlagerungsgebiete, die in ihrem Formenschatz Mauerschollen und Sturzfließungen aufweisen, befinden sich abgesehen von einer Ausnahme (Massenverlagerungsgebiet 16), generell an Stufenhängen, die im Einflussbereich angrenzender Fließgewässer liegen. Wie in den Kapiteln 5.2.4.1.1 und. 5.2.4.1.2 aufgezeigt werden konnte, nimmt die Sturzfließungs- und insbesondere die Mauerschollenhäufigkeit mit abnehmender von Massenverlagerungen betroffener Stufenhanglänge ab. Entsprechend der geschilderten Zusammenhänge zwischen Massenverlagerungshäufigkeit und Fließgewässerdichte zeigt demnach v.a. auch die Mauerschollengebietshäufigkeit einen engen Zusammenhang zum unterschiedlich

Abb. 5.44: Vergleich der untersuchungsabschnittsbezogenen Mauerschollengebietsdichten mit der Dichte der Fließgewässer, ausgedrückt als Dichteindex

Bei den Sturzfließungen ist dieser Zusammenhang nicht so deutlich ausgeprägt (r = 0,6). Dies beruht auf der Tatsache, dass diese plötzlichen Massenverlagerungen zusätzlich von anderen, v.a. episodischen Auslösemechanismen (bspw. heftige Starkniederschläge oder lang anhaltende Niederschläge großer Intensität) getriggert werden (vgl. Kap. 3.2). Ähnliche Zusammenhänge beschreiben HAMMER (1985) vom Nordbayrischen Deckgebirge und BIBUS (1986) von der Schwäbischen Alp. Die Vorbedingungen der Sturzfließungen sind jedoch mechanisch insgesamt recht ungünstige Ausgangssituationen, wie im Fall der Wellenkalk-Schichtstufe: talwärts gekippten Mauerschollen als Ausgangsformen für diese Verlagerungsprozesse (vgl. Kap. 3.2). Da Mauerschollen gehäuft an Stufenhangabschnitten mit hohen Gewässerdichten auftreten (vgl. oben), lassen auch die Vorbedingungen der Sturzfließungen Zusammenhänge zur Lage im Gewässernetz erkennen lassen.

Letztendlich ist auch die bevorzugte Vorsprungslage der Massenverlagerungsgebiete (vgl. Kap. 5.3.10) maßgeblich auf den Einfluss der Fließgewässer zurückzuführen. Die Flankenbereiche der Vorsprünge befinden sich im unmittelbaren Einflussbereich der Fließgewässer, womit der

Versteilungsimpuls hier besonders wirksam werden kann. Da jedoch nicht alle Vorsprünge in ihren benachbarten Tiefenlinienbereichen rezent Fließgewässer aufweisen, wird verständlich, weshalb die Buchtung der Stufenhänge für sich allein betrachtet die großräumliche Variabilität der Massenverlagerungen nicht befriedigend erklären kann (vgl. Kap. 5.3.10). Dort wo die Fließgewässer fehlen, sind zwischen den Vorsprüngen lediglich Trockentäler ausgebildet, in denen ein langfristig wirksamer erosiver Versteilungsimpuls nicht gegeben ist, mit der Folge, dass Massenverlagerungen hier wesentlich seltener zu verzeichnen sind. So sind v.a. die durch geringe Fließgewässerdichten gekennzeichneten Untersuchungsabschnitte (Ilm-Kalk-Platte, Hainleite, Tautenburger Forst) durch das Auftreten zahlreicher Vorsprünge charakterisiert, denen der an die Fließgewässer gebundene Erosionsimpuls fehlt. Gleichzeitig sind dies die Vorsprünge, an denen Massenverlagerungen nicht bzw. wesentlich seltener zu verzeichnen sind (vgl. Karte 8). Demgegenüber kommen stärker Massenverlagerungen in den von betroffenen Untersuchungsabschnitten (Gobert, Ringgau, Oberes Eichsfeld) an fast jedem Vorsprung rezente Fließgewässer vor, wobei gleichzeitig auch an fast jedem Vorsprung Massenverlagerungen auftreten (vgl. Karte 8). Damit wird deutlich, dass die Faktoren Lage im Stufengrundriss und Lage zum Gewässernetz sich überlagern und das v.a. die Kombination beider die Verbreitung der Massenverlagerungsgebiete zufriedenstellend erklären kann.

Da die Mehrzahl der Massenverlagerungsgebiete in ihrem Formenschatz ältere, rezent inaktive Massenverlagerungsformen aufweisen (vgl. Kap. 5.2.4.5) und zudem die Anstiegswinkel dieser Gebiete im Vergleich zu den Gebieten mit jüngeren Formen (Mauerschollen, Sturzfließungen) einheitlich flacher sind (vgl. Kap. 5.3.10), ist davon auszugehen, dass die fluvialerosiven Zerschneidungs- und damit Hangversteilungsprozesse zu früheren Zeitpunkten aktiver waren (vgl. Kap. 5.3.9). Damit ist das heute anzutreffende Verteilungsmuster der Massenverlagerungsgebiete auch ein Spiegelbild früherer fluvialer Abtragungsverhältnisse, wobei sich am Grundprinzip aber nichts ändert. Eine überlieferte, pleistozäne Hangsteilheit (vgl. SCHUNKE 1968, 1971) ist entsprechend der vorgefundenen Verteilungsmuster für die Erklärung der Massenverlagerungshäufigkeit nicht notwendig (vgl. Kap. 5.3.9).

Zusammenfassend ist festzuhalten, dass der Faktor Lage zum Gewässernetz eine maßgeblich die räumliche Variabilität der Massenverlagerungsgebiete beeinflussende Steuergröße ist. Mit zunehmender Gewässernetzdichte im Stufenhangrelief nimmt die Ereignishäufigkeit im Untersuchungsgebiet signifikant zu. Zu analogen Ergebnissen in stratigraphisch anderen Untersuchungsräumen kommen CARARRA et al (1991), THEIN (1999) und KRAUT (1999: in BIBUS & TERHORST 1999).

5.3.13 Häufigkeit von Hangquellen (13)

Die Häufigkeit von Hangquellen (13) wurde ähnlich dem Faktor: Lage zum Gewässernetz analysiert, indem überprüft wurde, wie oft Quellen an den von Massenverlagerungen betroffenen Stufenhängen zu verzeichnen sind (vgl. Kap. 4.3). Dabei wurden sowohl die perennierenden Quellen, deren Lage auf der Basis der TK 10 überprüft wurde, als auch weitere, im Rahmen der Geländekartierungen erfassten Quellaustritte, die nicht in den TK 10 enthalten sind, berücksichtigt. Entsprechend des im Wellenkalk ausgebildeten Karstwassersystems kann es sich bei letzteren auch um episodische Quellaustritte handeln (vgl. Kap. 5.3.5.2), die in Abhängigkeit vom Niederschlagseintrag Schüttungen aufweisen oder zeitweise versiegen. Dementsprechend stellt die im Rahmen der Geländekartierung erhobene Datenbasis lediglich einen Näherungswert an die wahren Verhältnisse dar. Diffuse Wasseraustritte konnten im Rahmen der Untersuchung nicht berücksichtigt werden.

Die an den von Massenverlagerungen betroffenen Stufenhängen zu verzeichnenden Quellhäufigkeit ist Tabelle 5.23 dargestellt. Das räumliche Verteilungsbild geht aus Karte 8 bzw. Karte 7 hervor.

Untersuchungsabschnitte	n	n _Q	Anteil n _Q von n	Σ Länge n	Σ Länge n _Q	Anteil Länge	
			(%)	(km)	(km)	n _O von n (%)	
Hainleite	99	15	15	18,22	4,135	23	
Dün	46	20	44	13,985	14,415	78	
Bleicheröder Berge	58	19	33	12,7	5,170	41	
Oberes Eichsfeld & Hainich	257	90	35	75,69	37,450	50	
Gobert	47	27	57	24,78	17,320	70	
Ringgau	52	20	39	29,41	21,025	71	
Ohrdrufer-Platte	47	17	36	15,31	10,340	67	
Ilm-Kalk-Platte	90	26	29	18,22	6,435	35	
Tautenburger Forst	6	0	0	0,515	0	0	
Zeugenberge Mittleres Saaletal	42	7	17	11,17	4,14	37	
Gesamt	744	241	32	224	120,43	54	
n: Gesamtzahl der Massenve	erlagerungsgel	biete					
n _Q : Anzahl der Massenverlag	erungsgebiete	, deren Stufenh	länge sich im Kor	ntaktbereich zu Qu	uellen befinden		
Σ Länge n: von Massenverlagerunger	n betroffene S	tufenhangläng	e (= Summe der M	Massenverlagerun	gsgebietsbreiten)		
Σ Länge n_Q : von Massenverlagerunge	n betroffene S	tufenhangläng	e, die sich aus de	r Summe der Brei	ten der		
Massenverlagerungsgebiete ergibt, deren Stufenhänge sich im Kontaktbereich zu Quellen befinden							

Tab. 5.23: Die Häufigkeit von Hangquellen an den von Massenverlagerungen betroffenen Stufenhängen

Insgesamt weisen 241 der 744 Massenverlagerungsgebiete, dies entspricht ca. 32 %, Quellaustritten auf (vgl. Tab. 5.23). Innerhalb der einzelnen Untersuchungsabschnitte nimmt in der Reihenfolge: Gobert (~57 %), Dün (~44 %), Ringgau (~39 %), Ohrdrufer Platte (~36 %), Oberes Eichsfeld & Hainich (~35 %), Bleicheröder Berge (~33 %), Ilm-Kalk-Platte (~29 %), Zeugenberge Mittleres Saaletal (~17 %) bis hin zur Hainleite (~15 %) der prozentuale Anteil der Massenverlagerungsgebiete, die durch Quellaustritte charakterisiert sind, ab. Am Tautenburger Forst waren keine Quellaustritte an den von Massenverlagerungen betroffenen Stufenhängen zu verzeichnen.

Bezieht Quellhäufigkeit der betroffenen Stufenhänge die auf die Breite der man Massenverlagerungsgebiete, ist auch hier auffällig, dass der von Massenverlagerungen betroffenen Stufenhanglängenanteil im Vergleich zur absoluten Quellhäufigkeit deutlich höher ist (vgl. Tab. 5.23). So nehmen bspw. am Dün die 44 % der Massenverlagerungsgebiete (n = 20) die Quellen aufweisen bereits 78 % der von Massenverlagerungen betroffenen Stufenhanglänge (n = 14,415 km) ein. Auch hier ist dies darauf zurückzuführen, dass v.a. die breiteren - (> 500 m) bzw. großflächigeren (> 50000 m²) Massenverlagerungsgebiete, die die insgesamt auch aktiveren Gebiete darstellen (vgl. Kap. 5.2.4.5), verstärkt Quellaustritte aufweisen. Bemerkenswert ist dabei auch, dass v.a. die breitesten Gebiete (>1 km), abgesehen von wenigen Ausnahmen (Gebiete 291, 718), i.d.R. gleichzeitig durch mehrere Quellaustritte am Sockelhang gekennzeichnet sind [vgl. u.a. Gebiete 193 (Dün), 473 und 475 (Ringgau), 590 (Ohrdrufer Platte)] (vgl. Karte 8).

Betrachtet man die Häufigkeit der Quellaustritte an den betroffenen Stufenhängen, die Mauerschollen und Sturzfließungen aufweisen, ergibt sich ähnlich der Fließgewässerhäufigkeit ein deutlich häufiges Zusammentreffen von diesen Massenverlagerungsgebieten und Hangquellen. Von den insgesamt 111 Mauerschollengebieten sind 74 Gebiete, dies entspricht ca. 67 %, durch Quellaustritte gekennzeichnet, von den 14 Massenverlagerungsgebieten mit Sturzfließungen sind es 13 (keine Quellaustritte konnten im Gebiet: 54 Lokalität Frauenberg ausfindig gemacht werden). Im Vergleich zu Gesamtzahl der Gebiete, von denen lediglich 33 % Quellen aufweisen (vgl. Tab. 5.23), ist die Quellhäufigkeit in den jüngeren Massenverlagerungsgebieten damit deutlich höher.

Wie bereits aus Tabelle 5.23 hervorgeht, nimmt die Quellhäufigkeit an den insgesamt stärker von Massenverlagerungen betroffenen Untersuchungsabschnitten zu. Um genauere Aussagen über eine mögliche Beeinflussung der Quellaustritte auf die unterschiedlich räumliche Variabilität der Massenverlagerungsgebiete treffen zu können, bietet sich ein Vergleich zur Gesamthäufigkeit der im Untersuchungsgebiet zu verzeichnenden Quellen an (vgl. Tab. 2.9, Kap. 2.3.5.3). Entsprechend der vorliegenden Datenbasis ergibt sich dabei das in Tabelle 5.24 dargestellte Verteilungsbild. Da an einem Massenverlagerungsgebiet auch mehrer Quellen auftreten können (vgl. oben), ist dabei zu

beachten, dass die Gesamtzahl der von Quellen beeinflussten Massenverlagerungsgebiete nicht identisch mit der Gesamtzahl der Quellen ist, die an diesen vorkommen.

Untersuchungsabschnitte	Gesamtzahl der im	Anzahl der Quellen die sich	Anteil
	Untersuchungsgebiet	Kontaktbereich der	
	zu verzeichnenden	Massenverlagerungsgebiete	
	Quellen	befinden	(%)
Hainleite	18	15	83
Dün	30	27	90
Bleicheröder Berge	20	19	95
Oberes Eichsfeld & Hainich	126	98	78
Gobert	42	37	88
Ringgau	45	39	87
Ohrdrufer-Platte	40	27	68
Ilm-Kalk-Platte	59	35	60
Tautenburger Forst	3	0	0
Zeugenberge Mittleres Saaletal	17	14	71
Gesamt	400	311	78

Tab. 5.24:Vergleich der Quellhäufigkeit an den Gesamtstufenhängen mit der Quellhäufigkeit an den
von Massenverlagerungen betroffenen Untersuchungsabschnitten

Wie Tabelle 5.24 zeigt, treten von den insgesamt 400 zu verzeichnenden Quellpunkten 311, dies entspricht ca. 78 %, an den von Massenverlagerungen betroffenen Stufenhängen auf. Dieser hohe Anteil trifft mit graduellen Abweichungen und mit Ausnahme des Tautenburger Forstes, an denen keine Quellaustritte im Umland der Massenverlagerungen lokalisiert werden konnten (vgl. oben), für alle Untersuchungsabschnitte zu. Obwohl von den 744 Massenverlagerungsgebieten nur 242 Gebieten Quellaustritte aufweisen (vgl. Tab. 5.23), wird deutlich, dass sich die Quellen v.a. an den von Massenverlagerungen betroffenen Stufenhangabschnitten konzentrieren. Dies kann darauf hindeuten, dass diese Bereich karsthydrologische Sonderpositionen darstellen (vgl. ACKERMANN 1958, 184), die durch ein erhöhtes Wasserangebot den Stufenhang insgesamt instabiler und damit massenverlagerungsanfälliger werden lassen. Dafür spricht die hohe Quellhäufigkeit an den Mauerschollen- und Sturzfließungsgebieten. Andererseits ist aber auch davon auszugehen, dass diese Quellaustritte erst im Zusammenhang mit dem Massenverlagerungsprozessen und den damit verbundenen Störungen der hanginternen Entwässerungsverhältnisse entstanden sind. Für letzteres

sprechen Beobachtungen von WENZEL (1991) an Sturzfließungen am Rinngau und an der Gobert, sowie von KRAUT (1995, 47), die an der schwäbischen Alp das Entstehen von Wasseraustritten auf den Massenverlagerungsprozess zurückführt. Insgesamt tragen die Quellen jedoch zur Durchfeuchtung und Plastifizierung der Hangablagerungen bei, mit der Folge, dass die Scherfestigkeit dieses Widerlagers sich verringert (vgl. TILCH 1999).

Vergleicht man die Dichteindexwerte der Quellhäufigkeit (Quelle / km Stufenhanglänge) (vgl. Kap. 2.3.5.3; Abb. 2.15) mit den prozentualen Anteilen der von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen Untersuchungsabschnitte, ergibt sich das in Abbildung 5.45 dargestellte Verteilungsbild.

Abb. 5.45: Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen mit der Dichte der Quellen, ausgedrückt als Dichteindex

Wie hieraus hervorgeht, nimmt annähernd linear die Ouelldichte mit zunehmender Massenverlagerungsbeeinflussung der Stufenhänge zu. Dieser Zusammenhang ist mit einem Korrelationskoeffizienten von r = 0.95 höchst signifikant. Im Einzelnen ist auch hier der am stärksten von Massenverlagerungen betroffene Untersuchungsabschnitt Gobert gleichzeitig auch das Gebiet mit der größten Quelldichte, wohingegen der Tautenburger Forst gleichzeitig das Gebiet mit der geringsten Massenverlagerungsbeeinflussung und der geringsten Quelldichte darstellt. Da die Dichte der Sturzfließungs- und insbesondere der Mauerschollengebiete analog den von Massenverlagerungen betroffenen Stufenhanglängen regional abnimmt (vgl. Kap. 5.2.4.1.1 und 5.2.4.1.2), trifft dieses von der Quelldichte abhängige Verteilungsbild gleichermaßen auch für diese jüngeren Massenverlagerungsgebiete zu. Die oben erwähnten Häufigkeiten (67 % der Mauerschollen und 95 % der Sturzfließungsgebiete weisen Quellaustritte auf) betätigen dies.

Damit zeigt sich, dass anders als bisher von SCHMIDT (1988b), BEYER (1997) und BEYER & SCHMIDT (1999) im Rahmen lokaler Beobachtungen angenommen wurde, bei der Betrachtung des Gesamtgebietes ein starker räumlicher Zusammenhang zwischen erhöhter Quelldichte und zunehmender Massenverlagerungsbeeinflussung an der Wellenkalk-Schichtstufe im Thüringer Becken besteht. Zurückzuführen ist dies auf die vom Niederschlagseintrag abhängige, regional unterschiedliche Durchfeuchtung der Stufenhänge. Höhere Durchfeuchtungen bedingen stärkere Deformationen im duktilen Rötsockel und abnehmende Scherfestigkeiten, bei gleichzeitig erhöhten Poren- bzw. Kluftwasserdrücken im Wellenkalk, was schließlich die Massenverlagerungsprozesse begünstigt (vgl. auch JOHNSEN 1974a,b, 1984, PRINZ 1997). Damit ist weniger der von SCHMITTHENNER (1920) im Zusammenhang mit der Diskussion über die Stufenrückverlegung geprägte Begriff der Quellerosion entscheidend, denn diese geht rezent über die Ausbildung kleiner Quellnischen kaum hinaus (vgl. Kap. 2.3.5.2) als vielmehr die Durchfeuchtung der Stufenhänge, für die die Quellaustritte schließlich Indikatoren darstellen. Nimmt die hanginterne Durchfeuchtung der talwärts exponierten Stufen- bzw. Sockelhänge ab, nimmt gleichzeitig auch die Massenverlagerungsbeeinflussung ab. Ein Extrembeispiel dafür ist das Schichtkammrelief (vgl. Kap. 5.3.6). Die Häufung von Hangquellen ist damit ein geeigneter Indikator zur Identifizierung potentieller Massenverlagerungsgebiete.

Zusammenfassend ist festzuhalten, dass die Häufigkeit der Hangquellen als Indikator der unterschiedlichen Durchfeuchtung der Stufenhänge sehr deutliche Zusammenhänge zur räumlichen Variabilität der Massenverlagerungen, insbesondere auch zu den jüngeren Mauerschollen- und Sturzfließungsgebieten erkennen lässt (vgl. Abb. 5.45). Zu analogen Feststellungen im Rahmen von Untersuchungen im Leine-Weser-Bergland kam auch TILCH (1999). Bedenkt man zudem, dass noch unzählige, nur schwer fassbare, diffuse, flächenhafte Wasseraustritte an der Röt-Wellenkalk-Schichtgrenze existieren (vgl. SCHUNKE 1971, PRINZ 1997), ist davon auszugehen, dass der Anteil der Massenverlagerungsgebiete die durch Wasseraustritte gekennzeichnet sind, noch erheblich zunimmt. Dabei muss jedoch die Durchfeuchtung der Stufenhänge in enger Wechselwirkung mit der linearen Fließgewässererosion und der daraus resultierenden Hangversteilung gesehen werden. Beide sind unter lithologisch-strukturell und morphologisch ähnlichen Ausgangsbedingungen abhängig vom Niederschlagseintrag.

5.3.14 Mittlere jährliche Niederschlagshöhe und Niederschlagsverteilung (14)

Um Aussagen über den Einfluss der mittleren jährlichen Niederschlagshöhen und dessen Verteilung auf die räumliche Variabilität der Massenverlagerungsgebiete treffen zu können, wurden zunächst die mittleren Jahresniederschlagssummen an den von Massenverlagerungen betroffenen Stufenhängen ermittelt. Als Zuordnungsbasis dienten die in Klassen unterteilten Niederschlagshöhen der traufproximalen Stufenflächenbereiche der betroffenen Stufenabschnitte (vgl. Kap. 4.3). Für die Gesamtzahl der Stufenhänge des Untersuchungsraumes wurde die Niederschlagsverteilung bereits in Kapitel 2.3.4.1 vorgestellt (vgl. Karte 4). Diesbezügliche vergleichende Darstellungen folgen in den sich anschließenden Ausführungen.

Aus der Zuordnung der von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen Untersuchungsabschnitte zu den Klassen der mittleren jährlichen Niederschlagshöhen, ergibt sich das in Abbildung 5.46 dargestellte Verteilungsbild, wobei als Vergleichsbasis die Niederschlagsverteilung der entsprechenden Gesamtstufenhänge mit aufgeführt ist.

Abb. 5.46 (1/3):

Die mittlere Jahresniederschlagshöhe an den Gesamtstufenhängen und den von Massenverlagerungen betroffenen Stufenhängen des Untersuchungsgebietes

Abb. 5.46 (2/3):

Die mittlere Jahresniederschlagshöhe an den Gesamtstufenhängen und den von Massenverlagerungen betroffenen Stufenhängen des Untersuchungsgebietes

Wie aus Abbildung 5.46 zeigt, sind im Untersuchungsgebiet Massenverlagerungen ab mittleren Jahresniederschlagshöhen von 500 - 550 mm/a zu verzeichnen. In dieser Niederschlagsklasse befinden sich jedoch lediglich ~250 m (= 0,1 %), der insgesamt 224 km von Massenverlagerungen betroffenen Gesamtstufenhanglänge. Anteil an diesen 250 m haben das an der Hainleite gelegene Massenverlagerungsgebiet 2 und ein Teilabschnitt des an den Zeugenbergen Mittleres Saalatal gelegenen Gebietes 701 (vgl. Karte 8). Beide Gebiete sind aufgrund des dort vorzufindenden Formenschatzes (v.a. Absatz-, Rücken-, Fußschollen, Spaltenbidlungen in Form verhüllter Depressionen) als älter einzustufen.

Ab der Niederschlagsklasse 550 - 600 mm/a nimmt die Massenverlagerungsbeeinflussung deutlich zu. In dieser Niederschlagsklasse sind bereits 2,9 % (= 6,6 km) der betroffenen Stufenhanglängen zu verzeichnen. Von dieser Niederschlagsklasse an, vergrößert sich der Anteil der von massenverlagerungsbeeinflussten Stufenhanglängen kontinuierlich bis zur Niederschlagsklasse 750 - 800 mm/a (vgl. Abb. 5.47). Mit 32,4 % (= 72,57 km) tritt in dieser Klasse die Mehrzahl der im Untersuchungsgebiet zu verzeichnenden massenverlagerungsbeeinflussten Stufenhänge auf. Mit steigenden mittleren Jahresniederschlägen (> 800 mm) nimmt der Längenanteil der betroffenen Stufenhänge bis zur Niederschlagsklasse > 900 mm/a wiederum ab, wobei in dieser Klasse nur noch 0,5 % (= 1,215 km) der von Massenverlagerungen betroffenen Stufenhanglänge zu verzeichnen sind. Insgesamt sind damit 82,5 % (= 184,8 km) der betroffenen Stufenhanglängen an Schichtstufenhängen zu finden, die mittlere jährliche Niederschlagshöhen > 700 mm aufweisen.

Dieses für den Gesamtraum typische Verteilungsbild trifft mit graduellen Abweichungen auch für die einzelnen Untersuchungsabschnitte zu. Auch hier nehmen die von Massenverlagerungen betroffenen Stufenhanglängen mit steigenden Jahresniederschlägen zunächst zu, um dann in der jeweils höchsten Niederschlagsklasse wiederum abzunehmen (vgl. Abb. 5.46). Dieses Verhalten resultiert aus der Tatsache, dass von den höchsten Jahresniederschlägen der einzelnen Untersuchungsabschnitte i.d.R. jeweils nur sehr kurze Stufanhangabschnitte betroffen sind (vgl. Kap. 2.3.4.1).

Vergleicht man die Jahresniedserschlagsverteilung der von Massenverlagerungen betroffenen Stufenhänge der einzelnen Untersuchungsabschnitte mit den in Abbildung 5.46 enthaltenen Jahresniederschlagsverteilungen der entsprechenden Gesamtstufenhänge fällt auf, dass mit steigenden mittleren Jahresniederschlägen die prozentuale Anteil der betroffenen Stufenhanglängen zunimmt oder anders gesagt, der Anteil der Stufenhänge an denen keine Massenverlagerungen zu verzeichnen sind abnimmt. Zur Verdeutlichung dessen, ist in Abbildung 5.47 der prozentuale Anteil der massenverlagerungsbeeinflussten Stufenhanglängen von den Gesamtstufenhanglängen innerhalb der einzelnen Niederschlagsklassen dargestellt.

Abb. 5.47:Der prozentuale Anteil der von Massenverlagerungen betroffenen Gesamtstufenhanglängen
innerhalb der Klassen der mittleren jährlichen Niederschlagshöhen

Abgesehen von der Niederschlagsklasse 550 - 600 mm/a, nimmt der Anteil der massenverlagerungsbeeinflussten Gesamtstufenhanglängen mit steigenden mittleren Jahresniederschlägen zu (vgl. Abb. 5.47). Dieser Zusammenhang ist mit einem Korrelationskoeffizienten von r = 0.93 höchst signifikant. Während von den 6.78 km Gesamtstufenhanglänge, die durch Niederschläge der Klasse 500 - 550 mm/a gekennzeichnet sind, lediglich 4 % Massenverlagerungen aufweisen, sind es von den 231,7 km Gesamtstufenhanglänge der Niederschlagsklasse 750 - 800 mm/a bereits 31 %. Ab mittleren Jahresniederschlagshöhen > 850 mm nimmt die von Massenverlagerungen betroffene Stufenhanglänge sprunghaft zu. Von den insgesamt 28,815 km Gesamtstufenhanglänge, die diese mittleren Jahresniederschlägshöhen aufweisen, weisen über 60 % und damit mehr als die Hälfte der Gesamtstufenhänge von Massenverlagerungen auf.

Dieses für den Gesamtraum typische Verteilungsbild ist mit einzelnen graduellen Abweichungen für alle Untersuchungsabschnitte typisch. Die leicht erhöhten Massenverlagerungshäufigkeit innerhalb der Niederschlagsklasse 550 - 600 mm/a resultiert aus der Tatsache, dass die Gesamtstufenhanglängen, die diese Niederschlagshöhen aufweisen, ähnlich der Stufenhänge mit den höchsten mittleren Jahresniederschlägen (vgl. oben), relativ kurz sind und damit einen nur sehr geringen Anteil an der Gesamtstufenhanglänge haben (4,3 %) (vgl. Abb. 5.46). Damit wirken sich die hier auftretenden Massenverlagerungsgebiete, die insgesamt jedoch nur 2,9 % der von Massenverlagerungen betroffenen Stufenhanglänge ausmachen, in Form erhöhter prozentualer Anteile unmittelbar auf diesen Vergleich aus. Dies trifft v.a. auf die Untersuchungsabschnitte Hainleite, Tautenburger Forst, Zeugenberge Mittleres Saaletal zu. Aber auch hier befindet sich der überwiegende Mehrzahl der massenverlgerungsbeeinflussten Stufenhanglängen in den Niederschlagsklassen > 600 mm/a, also deutlich darüber (vgl. Abb. 5.46).

Wie das Verteilungsbild klar zum Ausdruck bringt, nimmt mit steigenden mittleren Jahresniederschlagshöhen die Massenverlagerungshäufigkeit an den Stufenhängen signifikant zu. Dies bestätigt sich auch, wenn man den Durchschnittswert der mittleren Jahresniederschlagshöhen an den von Massenverlagerungen betroffenen Stufenhängen bildet. Dieser liegt bei 770 mm/a und ist im Vergleich zudem für die 980 km Gesamtstufenhanglänge charakteristischen durchschnittlichen Jahresniederschlagswert, der bei 740 mm/a liegt (vgl. Kap. 2.3.4.1), um 30 mm/a höher. Lässt man zudem die Schichtkammabschnitte (n = 21,8 km) aufgrund ihres schichtlagerungsbedingten Fehlens von Massenverlagerungen (vgl. Kap. 5.3.6) außen vor, verringert sich der Mittelwert der Gesamtstufenhänge auf 730 mm mittlere Jahreniederschlagshöhe, d.h. der Unterschied zu den von Massenverlagerungen betroffenen Stufenhängen beträgt bereits 40 mm/a. Der T-Test zeigt, dass diese Feuchteunterschiede auf dem 0,1 % Niveau höchst signifikant sind.

Bemerkenswert sind auch hier die zu verzeichnenden mittleren jährlichen Niederschlagshöhen an den Massenverlagerungsgebiete die in ihrem Formenschatz Mauerschollen und Sturzfließungen aufweisen (vgl. Karte 14). Die diesbezüglich anzutreffenden Verteilungsmuster sind in Tabelle 5.25 dargestellt.

Tab. 5.25:	Die mittleren jährlichen Niederschlagshöhen an den Massenverlagerungsgebieten mit
	Mauerschollen und Sturzfließungen

Mittlere Jahresniederschlag in Niederschlagsklassen mit 50 mm Intervallen	Massenverlagerungs- gebiete mit Mauerschollen	Anteil	Massenverlagerungs- gebiete mit Sturzfließungen	Anteil
(mm/a)	(Anzahl)	(%)	(Anzahl)	(%)
550-600	3	2,7	-	-
600-650	1	0,9	-	-
650-700	10	9,0	1	7,1
700-750	8	7,2	1	7,1
750-800	30	27,0	4	28,6
800-850	47	42,3	5	35,7
850-900	10	9,0	3	21,4
>900	2	1,8	-	-
Gesamt	111	100	14	100

Diese Zusammenstellung zeigt, dass die ersten Mauerschollengebiete im Untersuchungsraum ab mittleren Jahresniederschlagshöhen der Klasse 550 - 600 mm auftreten - die ersten Sturzfließungen aber erst ab Jahresniederschlagshöhen der Klasse 650 - 700 mm. Der zu verzeichnende Anteil der Mauerschollengebiete (2,7 %) in dieser untersten Niederschlagsklasse ist jedoch insgesamt sehr gering. 89 der 111 Mauerschollengebiete, dies entspricht ~80 %, treten erst ab mittleren jährlichen Niederschlagshöhen > 750 mm auf. Das gleiche Verteilungsbild zeigt sich bei den Sturzfließungen. Auch hier sind 12 der insgesamt 14 Gebiete, (~86 %) an Stufenhängen zu finden, die durch jährliche mittleren Niederschlagshöhen > 750 mm gekennzeichnet sind (vgl. Tab. 5.25). Damit wird deutlich, dass höhere mittlere Jahresniederschläge v.a. auch das verstärkte Auftreten dieser jüngeren Massenverlagerungsformen begünstigen.

Bei den in den Niederschlagsklassen 550 - 600 mm/a auftretenden 3 Mauerschollengebieten handelt es sich um die Gebiete 48 (beide Hainleite), 613 und 693 (beide Ilm-Kalk-Platte) (vgl. Karte 8). Abgesehen vom Massenverlagerungsgebiet 613 sind alle genannten Gebiete durch atektonische Schichtdeformationen oder im Fall des Gebietes 48 zusätzlich durch enorme

Röthangversteilungen ($\alpha = 18^{\circ}$) gekennzeichnet (vgl. Anhang C). Bei der in der Niederschlagsklasse 650 - 700 mm/a zu verzeichnenden ersten Sturzfließung handelt es sich um das Gebiet 54 (Lokalität Frauenberg) (vgl. Kap. 5.2.4.1.2), welches gleichzeitig eine Mauerscholle und ebenfalls atektonische Schichtdeformationen aufweist. Diese Umstände wirkten sich möglicherweise begünstigend auf die hier auftretenden Mauerschollen und Sturzfließungen aus, indem die hier im Vergleich zur Mehrzahl der Mauerschollen- und Sturzfließungsgebiete zu verzeichnenden 100 bis 200 mm geringeren Jahresniederschläge durch diese Faktoren kompensiert wurden.

Ähnlich der Mauerschollenund Sturzfließungsgebiete zeigen auch die breitesten Massenverlagerungsgebiete des Untersuchungsraumes (> 1000 m Breitenausdehnung), die gleichzeitig die höchste Formenschatzhäufigkeit aufweisen und insgesamt als aktiver einzustufen sind (vgl. Kap. 5.2.4.5), enge Lagebeziehungen zur Höhe der mittleren jährlichen Niederschläge. So sind von den insgesamt 40 Massenverlagerungsgebieten, die diese hohen Breitenausdehnungen aufweisen (vgl. Kap. 5.2.3.1), 37 Gebiete (~93 %) durch Niederschläge > 750 mm gekennzeichnet, wobei der größte Teil (n = 24) hier an Stufenhängen vorkommt, an denen Jahresniederschläge von 800 - 850 mm zu verzeichnen sind.

Die Verteilung trifft niederschlagsabhängige für die überwiegende Mehrzahl der Massenverlagerungsgebiete zu. Auch die Gebiete, in denen lediglich ältere, rezent inaktive Massenverlagerungsformen (insbesondere Wall-, Rücken-, Absatzschollen) vorkommen, und dies ist die Mehrzahl der Gebiete (vgl. Kap. 5.2.4.1), treten , wie Abbildung 5.47 verdeutlicht, gehäuft an den rezent stärker beregneten Stufenhangabschnitten auf. Diese Tatsache spricht dafür, dass zu früheren Zeiten noch höhere Niederschläge zu verzeichnen waren, die zur verstärkten Aktivierung dieser Massenverlagerungen führten. Infrage dafür könnten die feuchteren Phasen des Atlantikums (SCHÖNWIESE 1979, PRINZ 1997, BERRISFORD & MATTHEWS 1997), mit denen vermutlich die Entstehung der Mehrzahl der Rücken und Absatzschollen in Verbindung zu bringen ist und die mittelalterliche Klimaverschlechterung (vgl. SPUREK 1972, BERRISFORD & MATTHEWS 1997), auf die vermutlich die Mehrzahl der Wallschollen zurückzuführen ist, kommen. Letztendlich zeigt sich aber auch hierin, dass die Massenverlagerungsprozesse v.a. auf sich ändernde hygrische Verhältnisse reagieren.

Auch die im Untersuchungsgebiet nachweislich ältesten Massenverlagerungsformen der Fußschollen (vgl. Kap. 3.4) zeigen regional ähnliche Verteilungsmuster. Bedenkt man jedoch, dass diese Massenverlagerungen im Pleistozän unter anderen klimatischen Rahmenbedingungen erfolgten (vgl. ACKERMANN 1959, BERNHARD 1967, 1968, SCHUNKE 1971, Prinz 1997), ist davon auszugehen, dass neben der Niederschlagsverteilung hier auch der auftauende Permafrost maßgeblich für das Auftreten dieser Formen mitverantwortlich ist. Dafür sprechen die großen

Verlagerungsdistanzen (teilweise > 300 m), die von keiner anderen Massenverlagerungsform erreicht werden sowie die generell einheitlichen Lagerungsverhältnisse dieser großvolumigen Blockschollen mit einheitlich, intern rotierten, hangwärts gerichteten Schichtlagerungen (vgl. Kap. 3.2), was auf antithetische Bewegungen auf dem auftauenden Sockelhang hindeutet.

Vergleicht man nun die regional unterschiedlichen mittleren Jahresniederschlagshöhen (vgl. Karte 4) mit den Verteilungsmustern der Massenverlagerungsgebiete (vgl. Karte 8) zeigt sich, dass hier räumlich gute Übereinstimmungen bestehen. Um dies zusammenfassend zu verdeutlichen, wurden in Abbildung 5.48 die untersuchungsabschnittsbezogenen, durchschnittlichen mittleren Jahresniederschlagshöhen (vgl. Kap. 2.3.4.1) den von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen Untersuchungsabschnitte gegenübergestellt.

Abb. 5.48: Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen mit den untersuchungsabschnittsbezogenen, durchschnittlichen Jahresniederschlagshöhen

Wie daraus klar hervorgeht, nehmen mit steigenden Jahresniederschlägen die betroffenen Stufenhanglängen der einzelnen Untersuchungsabschnitte kontinuierlich zu. Dieser Zusammenhang ist mit einem Korrelationskoeffizienten von r = 0,92 statistisch hochsignifikant. Das heißt ~85 % der Varianz der unterschiedlichen Massenverlagerungsbeeinflussung der einzelnen Untersuchungsabschnitte sind allein aus der unterschiedlichen Niederschlagsverteilung erklärbar.

Im Einzelnen ist wiederum die Gobert der Untersuchungsabschnitt, der die höchste Jahresniederschläge empfängt und an dem gleichzeitig auch die größte Massenverlagerungsdichte zu verzeichnen ist. Bei den hier charakteristischen durchschnittlichen Jahresniederschlägen von

knapp unter 850 mm sind über 60 % der Stufenhänge von Massenverlagerungen betroffen (vgl. Abb. 4.48). Lässt man die Buchtenlagen, an denen Massenverlagerungen generell nicht vorkommen, außen vor (vgl. Kap. 5.3.10), sind bei diesen Niederschlagshöhen an annähernd allen Stufenhangabschnitten Massenverlagerungen zu verzeichnen (vgl. Karte 8). Demgegenüber ist der Tautenburger Forst wiederum das Gebiet mit den geringsten Jahresniederschlägen bei gleichzeitig geringster Massenverlagerungsbeeinflussung der Stufenhänge. Da mit abnehmenden, von Massenverlagerungen betroffenen Stufenhanglängen auch gleichzeitig die Sturzfließungs- und insbesondere die Mauerschollengebietsdichten abnehmen (vgl. Kap. 5.2.4.1.1. und 5.2.4.1.2 und Karte 14), ist auch deren räumliches Verteilungsbild maßgeblich auf die unterschiedlichen Jahresniederschlagshöhen zurückzuführen (vgl. auch Tab. 5.25). Gleiches gilt für die breiteren bzw. großflächigeren Massenverlagerungsgebiete, die zudem die größte Formendiversität und Staffelanzahlen aufweisen (vgl. Kap. 5.2.3.4 und 5.2.4.4 und Karte 15 und 16).

Die Ursachen für diese, von den Jahresniederschlagshöhen abhängige Verteilungen der Massenverlagerungsgebiete und deren morphologischen Merkmale, müssen in der unterschiedlich starken Durchfeuchtung der Sockelhänge und damit verbunden, in der unterschiedlichen Gefügeauflockerung, Plastifizierung und Quellung des tonig ausgebildeten Rötmaterials sowie in unterschiedlich starken kluft- bzw. porengebundenen Grundwasserströmungsdrücke begründet liegen. Da in den verkarstungsanfälligen Wellenkalken nahezu 100 % des abzüglich der jährlichen Evapotranspiration (~400 mm/a) anfallenden Niederschlages in das Karstsystem übergehen (vgl. Kap. 2.3.5.3), steht für die hanginternen hydrologischen Prozesse regional unterschiedlich viel Grundwasser zur Verfügung. Wie aufwendig instrumentarisierte Untersuchungen von TILCH (1999) an exemplarischen Massenverlagerungsgebieten eines vergleichbaren Schichtstufenhanges im Leine-Weser-Bergland klar zum Ausdruck bringen, besteht zwischen erhöhten jährlichen Grundwasserneubildungsraten und zunehmender Massenverlagerungsaktivität ein direkter Zusammenhang. Auch die Untersuchungen von THORNES & AYALA (1998) sowie von VAN ASCH et al. (1999) bestätigen, dass die Verbreitung tiefer Massenverlagerungen v.a. von den absoluten jährlichen Niederschlagseinträgen in das Hangsystem abhängig ist. Die im Einzelnen dabei ablaufenden Prozesse sind bislang jedoch noch wenig erforscht.

Da die Durchfeuchtung maßgeblich die Kohäsion und schließlich die Scherfestigkeit des als Gleitbasis dienenden Rötmaterials beeinflusst (vgl. JOHNSEN & KLENGEL 1973, JOHNSEN 1974a, PRINZ 1997), ist bei unterschiedlicher Durchfeuchtung eine unterschiedliche Massenverlagerungsbeeinflussung zu erwarten, was sich schließlich in dem aufgezeigten räumlichen Verteilungsbild der Massenverlagerungen widerspiegelt. Vergleichende Betrachtungen der Verwitterungszustände sowie der bodenphysikalischen und bodenchemischen Kennwerte an

199

den unterschiedlich stark befeuchteten Sockelhängen im Sinne von EINSELE et al (1985) könnten hier möglicherweise nähere Auskünfte bringen.

Die unterschiedlichen Niederschlagshöhen sind letztendlich auch für die unterschiedlichen Quellund Fließgewässerhäufigkeiten der Untersuchungsabschnitte verantwortlich (vgl. Kap. 2.3.5.3), die ebenfalls einen signifikanten Zusammenhang räumlichen Variabilität der zur Massenverlagerungsgebiete erkennen lassen (vgl. Kap. 5.3.12 und 5.3.13). Auch die sich auf die der Massenverlagerungsgebiete begünstigend auswirkende Lagekombination Verbreitung Stufenvorsprung (insbesondere Flankenpositionen) und angrenzendes Fließgewässer (vgl. Kap. 5.3.12) ist maßgeblich auf die Niederschlagshöhe zurückzuführen. Dort, wo mehr Niederschlag fällt (> 750 mm/a), sind häufiger perrenierende Fließgewässer, die an den unmittelbar angrenzenden Vorsprungsflanken stufenhangversteilend wirksam werden können, zu verzeichnen, als dort, wo weniger Niederschlag (< 750 mm/a) fällt (vgl. Karte 4 und Karte 7 und 8). Insgesamt zeigt sich damit, dass in den Untersuchungsabschnitten mit höheren mittleren Jahresniederschlägen (in den westlichen Gebiete teilweise bis 300 mm mehr Niederschlag als in den östlichen) (vgl. Karte 4) das Wasser als festigkeits- und spannungsänderndes sowie erosiv wirkendes Medium (Tiefenlinienerosion und Sockelhangversteilung) auch stärker massenverlagerungsbeeinflussend wirksam werden kann, als in Gebieten die trockener sind. Der ganze Zusammenhang ist demnach als Kausalkette zu verstehen, an dessen Anfang die räumliche Variabilität des Jahresniederschlagshöhe steht.

Entsprechend der aufgzeigten Zusammenhänge ist festzuhalten, dass an der Wellenkalk-Schichtstufe Thüringer Becken morphologisch strukturell ähnlichen im unter Ausgangsbedingungen (flache Schichtlagerung, Durchschneidung des Schichtpaketes bis zum Röt, durchschnittliche Sockelhangsteilheit ~12°) die unterschiedlichen Niederschlagshöhen und deren Verteilung (14) die maßgeblich, die großräumliche Variabilität der Massenverlagerungsgebiete bestimmende Einflussgröße ist. Das Ausmaß der Massenverlagerungsprozesse an den Wellenkalk-Schichtstufenhängen ist damit in erster Linie feuchtegesteuert. Die rezent Massenverlagerungen (Mauerschollen und Sturzfließungen) treten verstärkt ab > 750 mm Jahresniederschlag auf (vgl. Tab. 5.25). Da die Mehrzahl der Massenverlagerungsgebiete ältere, rezent inaktive Formen aufweist (Absatz, Rücken-, Wallschollen), deren räumliches Verteilungsbild aber ebenfalls der beschriebenen Gesamtverteilung entspricht (mehr Massenverlagerungsgebiete die diesen Formenschatz aufweisen an den westlichen und nordwestlichen stärker beregneten Untersuchungsabschnitten (vgl. Kap. 5.2.4.1 und Karten 9, 10, 12, 13), ist davon auszugehen, dass zu früheren Zeiten erhöhte Feuchtigkeitsangebote mit regional ähnlichen Verteilungsmuster gegeben waren, die bereits damals die regional unterschiedliche Massenverlagerungshäufigkeit bedingten. Wie Karte 11 verdeutlicht, trifft dies auch für die ältesten Massenverlagerungsformen

der Fußschollen zu. Auch hier nimmt die Dichte der Gebiete, die diese Formen aufweisen, mit zunehmenden rezenten Niederschlägen bzw. analog zunehmender von Massenverlagerungen betroffener Stufenhanglänge vom Tautenburger Forst zur Gobert hin zu. (Korrelation mit untersuchungsabschnittsbezogenen, rezenten durchschnittlichen mittleren jährlichen Niederschlagshöhen r = 0,8). Wie bereits erwähnt ist hierbei jedoch zu bedenken, dass sich die pleistozänen (periglaziale) Klimabedingungen, insbesondere der Permafrost, modifizierend auf den Verlagerungsprozess auswirkten (vgl. oben). So ist bspw. an der Ilm-Kalk-Platte eine höhere Dichte an Fußschollen zu verzeichnen (Dichteindex: 0,27) als an der insgesamt stärker von Massenverlagerungen betroffenen Hainleite (Dichteindex: 0,21). Mögliche Ursachen hierfür könnten expositionsbedingte, thermische Unterschiede gewesen sein, die sich in unterschiedlich schnellen Auftauprozessen des Permafrostes der Sockelhänge niederschlugen.

Insgesamt ist dieser einfache Befund: zunehmende Jahresniederschläge = zunehmende Massenverlagerungsbeeinflussung, um so erstaunlicher, als dass darüber in der Literatur bislang nichts veröffentlicht wurde, sondern eher Faktoren diskutiert werden, die, wie aufgezeigt werden konnte, bedingt oder keinen Einfluss auf die großräumige Variabilität nur der Massenverlagerungen erkennen lassen. Vermutlich ist dies jedoch darauf zurückzuführen, dass die regionalen Verteilungsmuster der Massenverlagerungsgebiete an der Wellenkalk-Schichtstufe im Thüringer Becken bislang unbekannt waren, womit großräumige Vergleiche mit der Niederschlagsverteilung rein spekulativ geblieben wären. Von stratigraphisch vergleichbar aufgebauten Untersuchungsgebieten sind die niederschlagsbzw. feuchteabhängigen Massenverlagerungsverbreitungen und deren morphologische Ausstattungsunterschiede bereits seit längeren bekannt. SCHMIDT & MEITZ (2000) konnten derartige Zusammenhänge an Schichtstufenhängen des Colorado Plateau nachweisen, THORNES & AYALA (1998) sowie von VAN ASCH et al. (1999) in Spanien.

5.3.15 Höhe und Verteilung von Starkniederschlägen (15)

Starkniederschläge werden in der Literatur oft als episodischer Auslöser von Massenverlagerungen genannt (vgl. Kap. 1.2). Für die Wellenkalk-Schichtstufe im Thüringer Becken sind derartige Zusammenhänge insbesondere für die zu verzeichnenden Sturzfließungen bekannt (vgl. JOHNSEN & KLENGEL 1973, JOHNSEN 1984, RÖSING & WENZEL, SCHMIDT 1988b, WENZEL 1991). Im Rahmen der Arbeit wurden für das großräumige Untersuchungsgebiet der Einfluss von zwei flächendeckend vorliegenden, statistisch berechneten Starkniederschlagsintervallen mit verschiedenen Intensitäten, Dauerstufen und Wiederkehrzeiträumen näher untersucht (vgl. Kap. 2.3.4.2). Der erste Intervall (Dauer: 1 h, Wiederkehrzeitraum: 1 a) (vgl. Karte 5) ist typisch für die

häufig auftretenden, sommerlichen konvektiven Starkniederschläge, der zweite Intervall (Dauer: 48 h, Wiederkehrzeitraum: 50 a) (vgl. Karte 6) repräsentiert ein advektives Starkniederschlagsereignis Niederschlägen mit lang anhaltenden hoher Ergiebigkeit. Die diesbezüglich im Gesamtuntersuchungsgebiet vorzufindenden räumlichen Verteilungsmuster wurden bereits in Kapitel 2.3.4.2 vorgestellt (vgl. Karten 5 und 6). Die folgenden Ausführungen basieren auf der Zuordnung der Massenverlagerungsgebietsbreiten zu den Niederschlagsintensitäten der entsprechenden Starkniederschlagsintervalle (vgl. Kap. 4.3). Für die Gesamtzahl der Massenverlagerungen ergibt sich dabei das in den Abbildung 5.49 und Abbildung 5.50 dargestellte Verteilungsbild. Als Vergleichsbasis ist die jeweiliger Starkniederschlagsverteilung der entsprechenden Gesamtstufenhänge mit aufgeführt.

n = 224 km von Massenverlagerungen betroffene Stu	fenhanglänge/n	=968 kmGesamtstuf	fenhanglänge	(ohneSchmücke&	Hörselberge	
MVG Hainleite		100				
S Hainleite		100				
MVG Dün	4	46,3 53,7				
S Dün		61,2		38,8		
MVG Bleicheröder Berge		63,2		36,8		
S Bleicheröder Berge		62,3		37,7		
MVG Obers Eichsfels & Hainich		73		27		
S Oberes Eichsfeld & Hainich	7,1	69,5		23,	4	
MVG Gobert	100					
S Gobert	100					
MVG Ringgau	22,1 77,9					
S Ringgau	u 16,3 83,7					
MVG Ohrdrufer Platte		71,6		25,5	2,9	
S Ohrdrufer Platte	0,9	58		40	1,1	
MVG Im-Kalk-Platte	8,5		91,5			
S Im-Kalk-Platte	33,5		6	6,5		
MVG Tautenburger Forst		1	00			
S Tautenburger Forst		1	00			
MVG Zeugenberge Mittleres Saaletal]	100			
S Zeugenberge mittleres Saaletal	<mark>5,7</mark>		94,3			
MVG Gesamt	18,4	29,9	4	41,2	10,5	
S Gesamt	25,3	27,1		39,5	8,2	
MVG: von Mass enverlagerungen betroffene Stufenhanglänge 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100 Stufenhanglänge (%) S: Ges armts tufenhanglänge % Starkniederschlag: Dauer 1 h / Wiederkehrzeitraum 1 a 14-15 mm 15-16 mm 16-17 mm 17-18 mm						

Abb. 5.49: Starkniederschlagsverteilung an den Gesamtstufenhängen und den von Massenverlagerungen betroffenen Stufenhängen des Untersuchungsgebietes (betrachteter Intervall: Dauer: 60 min / Wiederkehrzeitraum: 1 a)
n =224 km von Massenverlagerungen betroffene Stufe	nchnglänge/n=96	8 kmGesamt	stufenhangläng	je (ohneSchn	nücke & Hörs el berj	ge)
MVG Hainleite		65,3			34,7	
S Hainleite		73			27	
MVG Dün	23,9			76,1		
S Dün	32,2			67,8		
MVG Bleicheröder Berge	46	,7		53	,3	
S Bleicheröder Berge		53,2			46,8	
MVG Obers Eichsfels & Hainich			100			
S Oberes Eichsfeld & Hainich			100			
MVG Gobert			100			
S Gobert			100			
MVG Ringgau	13,6		86,4	40		
S Ringgau	29,2			70,80		
MVG Ohrdrufer Platte			100			
S Ohrdrufer Platte			100			
MVG Im-Kalk-Platte			100			
S Im-Kalk-Platte			100			
MVG Tautenburger Forst			100			
S Tautenburger Forst		72			28,00	
MVG Zeugenberge Mittleres Saaletal			100			
S Zeugenberge mittleres Saaletal			100			
MVG Gesamt	31,8			68,2		
S Gesamt		53			47	
09 MVG: von Massenverlagerungen betroffene Stufenhanglänge S: Gesamtstufenhanglänge	% 10% 20% Starknieder	30% 40 Stufe schlag: D	% 50% 6 enhangläng auer 48 h) mm □ 90-	60% 70% ge(%) /Wiede 110mm	80% 90% rkehrzeitra	1) 9 un

Abb. 5.50:Starkniederschlagsverteilung an den Gesamtstufenhängen und den von
Massenverlagerungen betroffenen Stufenhängen des Untersuchungsgebietes
(betrachteter Intervall: Dauer: 48 min / Wiederkehrzeitraum: 50 a)

In den für die sommerlichen Konvektivniederschläge typischen Intervall (vgl. Abb.5.49 und Karte 5) liegen von den insgesamt 224 km von Massenverlagerungen betroffenen Stufenhanglängen (n = 744 Massenverlagerungsgebiete) ~16 % (36,62 km) in der Intensitätsklasse 14 - 15 mm, ~27 % (59,65 km) in der Intensitätsklasse 15 - 16 mm, ~ 48% (106,88 km) in der Intensitätsklasse 16 - 17 mm und lediglich ~9 % (20,85 km) in der Intensitätsklasse 17 - 18 mm. Damit befindet sich etwas mehr als die Hälfte (~57 %) aller betroffenen Stufenhänge in Gebieten, die die höheren Starkniederschlagsintensitäten dieses Intervalls (16 - 17 mm und 17 - 18 mm) aufweisen. Innerhalb der einzelnen Untersuchungsabschnitte sind an den massenverlagerungsbeeinflußten Stufenhängen

vom Oberen Eichsfeld & Hainich die höchsten Niederschlagsintensitäten zu verzeichnen, wohingegen die jeweils einheitlich niedrigsten Intensitäten (14 - 15 mm) die Stufenhänge der Hainleite und des Tautenburger Forstes empfangen. Insgesamt nehmen in der Reihenfolge der Untersuchungsabschnitte: Oberes Eichsfeld & Hainich, Gobert, Ringgau, Ohrdrufer Platte, Zeugenberge Mittleres Saaletal, Ilm-Kalk-Platte, Dün, Bleicheröder Berge sowie Hainleite und Tautenburger Forst die zu verzeichnenden Starkniederschläge dieses Intervalls ab (vgl. Abb. 5.49). Der Vergleich zwischen den Gesamtstufenhängen und den von Massenverlagerungen betroffenen Stufenhängen der entsprechenden Untersuchungsabschnitte zeigt, dass, abgesehen von leichten gradueller Abweichungen, keine signifikanten Unterschiede in der Verteilung der betrachteten Starkniederschläge bestehen. Der χ^2 -Test bestätigt dies für alle Untersuchungsabschnitte (errechneter χ^2 - Wert für Gesamtgebiet: 4,99; $\chi^2_{krit: 0.05} = 9,488$ bei 4 Freiheitsgraden).

Betrachtet man die Verteilung des für die advektiven langanhaltenden Starkniederschläge typischen Intervalls (vgl. Abb. 5.50 und Karte 6) zeigt sich, dass ~32 % (71,335 km) der von Massenverlagerungen betroffenen Stufenhanglängen in der Niederschlagsintensitätsklasse 70 - 90 mm und ~68 % (162,665 km) Intensitätsklasse 90 - 110 mm liegen. Insgesamt ist damit die überwiegende Mehrzahl betroffenen Stufenhänge durch die höheren Starkniederschlagsintensitäten des betrachteten Intervalls (Dauer: 48 h / Wiederkehrzeitraum: 50 a) gekennzeichnet. Innerhalb der einzelnen Untersuchungsabschnitte sind die massenverlagerungsbeeinflussten Stufenhänge der Gebiete Gobert und Oberes Eichsfeld & Hainich durch die flächendeckend höchsten Starkniederschläge gekennzeichnet. Danach folgen die Gebiete Ringgau, Dün, Bleicheröder Berge, Hainleite und schließlich die Untersuchungsabschnitte Ohrdrufer Platte, Ilm-Kalk-Platte, Tautenburger Forst und Zeugenberge Mittleres Saaletal, an denen jeweils die flächendeckend geringsten Starkniederschlägen des betrachteten Intervalls zu verzeichnen sind (vgl. Abb. 5.50). Der Vergleich zwischen den Gesamtstufenhängen und den von Massenverlagerungen betroffenen Stufenhängen der einzelnen Untersuchungsabschnitte zeigt, dass auch hier nur leichtere graduelle Abweichungen aber keine signifikanten Unterschiede in der Verteilung der betrachteten Starkniederschläge zu verzeichnen sind. Anders verhält es sich, wenn man die Häufigkeitsverteilung des Gesamtgebietes betrachtet (vgl. Abb. 5.50). Hier erbrachte der χ^2 -Test einen signifikanten Unterschied auf dem 0,1 % Niveau (χ^2 = 30,22; $\chi^2_{krit: 0,01}$ = 13,81 bei 2 d.h. Gesamtstufenhängen zu Freiheitsgraden), die an den beobachtende Starkniederschlagsverteilung unterscheidet sich hier von der der Massenverlagerungsgebiete. Bezogen auf den gesamten Untersuchungsraum, tritt die Mehrzahl der Massenverlagerungsgebiete (~68 %) an Stufenhängen auf, die die höchsten Niederschlagsintensitäten des betrachteten Intervalls aufweisen (vgl. oben) und das, obwohl sich die Mehrzahl der Gesamtstufenhänge (~53 %) in der niedrigsten Niederschlagsintensitätsklasse des betrachteten Intervalls befindet. Dieser Unterschied ist statistisch höchst signifikant.

Vergleicht man die von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen Untersuchungsabschnitte mit den, auf die entsprechenden Stufenhanglängen bezogenen, gewichteten mittleren Starkniederschlagsintensitäten des jeweils betrachteten Intervalls, werden die oben geschilderten Unterschiede noch deutlicher. Die den gewichteten Mittelwerten zugrunde liegenden Intensitäten entsprechen den jeweils höchsten Werten der auftretenden Intensitätsklassen (z.B. Intervall 70 - 90 mm; Berechnung mit 90 mm). Abbildung 5.51 zeigt die Verteilungsmuster für den für die sommerlichen Konvektivniederschläge typischen Intervall (Dauerstufe: 1 h / Wiederkehrzeitraum: 1 a) und Abbildung 5.52 die Zusammenhänge für den für die advektiven Starkniederschläge typischen Intervall (Dauerstufe: 48 h / Wiederkehrzeitraum: 50 a).

 Abb. 5.51: Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen Untersuchungsabschnitte mit den untersuchungsabschnittsbezogenen, gemittelten Starkniederschlagsintensitäten (betrachteter Intervall: Dauer: 1 h / Wiederkehrzeitraum: 1 a)

Wie Abbildung 5.51 für den für die sommerlichen Starkniederschläge typischen Intervall bestätigt, bestehen zwischen den unterschiedlich stark von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen Untersuchungsabschnitte und den untersuchungsabschnittsbezogenen gemittelten Starkniederschlagsintensitäten keine deutlichen Zusammenhänge (r = 0,43). Im Einzelnen ist zwar die am stärksten von Massenverlagerungen betroffene Gobert durch hohe Starkniederschlagsintensitäten gekennzeichnet, ähnlich hohe bzw. noch höhere Intensitäten sind aber auch an Stufenhangabschnitten zu finden, an denen Massenverlagerungen wesentlich weniger häufig zu verzeichnen sind (z.B. Obers Eichsfeld & Hainich, Ohrdrufer Platte) (vgl. Abb. 5.51). Noch offensichtlicher wird dies, wenn man die Untersuchungsabschnitte Dün bzw. Bleicheröder Berge betrachtet, die im Vergleich zu den wesentlich geringer massenverlagerungsbeeinflussten Untersuchungsabschnitten Ilm-Kalk-Platte und Zeugenberge Mittleres Saaletal geringere mittlerer Starkniederschlagsintensitäten aufweisen. Damit kommt zum Ausdruck, dass die großräumliche Variabilität der Massenverlagerungsgebiete nicht maßgeblich von diesen, für sommerliche Konvektivniederschläge typischen Starkniederschlagsintervall beeinflusst wird.

 Abb. 5.52: Vergleich der von Massenverlagerungen betroffenen Stufenhanglängen der einzelnen Untersuchungsabschnitte mit den untersuchungsabschnittsbezogenen, gemittelten Starkniederschlagsintensitäten (betrachteter Intervall: Dauer: 48 h / Wiederkehrzeitraum: 50 a)

Demgegenüber lassen sich bei dem für die advektiven langanhaltenden Niederschläge mit hoher Intensität typischen Intervall (Dauer: 48 h / Wiederkehrzeitraum: 50 a) bereits signifikantere Zusammenhänge zur unterschiedlichen Massenverlagerungsbeeinflussung der Stufenhänge erkennen (r = 0,69). Wie aus Abbildung 5.52 hervorgeht, sind die stark von Massenverlagerungen betroffenen Untersuchungsabschnitte (Gobert, Bleicheröder Berge, Dün, Ringgau,Oberes Eichsfeld & Hainich) generell durch hohe mittlere Starkniederschlagsintensitäten dieses Intervalls gekennzeichnet, wohingegen die insgesamt weniger stark von Massenverlagerungen betroffenen Untersuchungsabschnitte (Zeugenberge Mittleres Saaletal, Ilm-Kalk-Platte, Tautenburger Forst) mit einzelnen graduellen Abweichungen geringere mittlere Starkniederschlagsintensitäten aufweisen. Wie Untersuchungen von TILCH (1999, S. 164 ff.) an Massenverlagerungsgebieten an Malm-Kalk-Stufenhängen im Leine-Weser-Bergland bestätigen, sind v.a. die im Winterhalbjahr zu verzeichnenden, mehrere Tage anhaltenden Advektivniederschläge mit hoher Intensität jene, die die Massenverlagerungsprozesse maßgeblich beeinflussen. Zurückzuführen ist dies nach TILCH (1999) auf kontinuierlich hohe Poren- bzw. Kluftwasserdrücke die im verkarstungsanfälligen Gestein von einer kontinuierlichen Grundwasserneubildungsrate abhängig sind. Diese längerfristig höheren Poren- bzw. Kluftwasserdrücke spiegeln sich deutlich in der Massenverlagerungsdynamik wider. Plötzlich einsetzender Frost und zufrierende Quellen verstärken dies. Auf ähnliche Weise wirkt sich die zeitliche Überlagerung einer plötzlich einsetzenden Schneeschmelze in Verbindung mit zusätzlichen Niederschlägen aus. Demgegenüber kommt es bei weniger ergiebigen, kurz andauernden Sommerniederschlägen schnell zur Stagnation bzw. zu einem Abfall der Porenwasserdruckanstiege (PWD), was auf die geringen Retentionseigenschaften des Karstsystems TILCH 1999, 165). Zudem sind zurückzuführen ist (vgl. die Interzeptionsund Evapotranspirationsverluste im Sommerhalbjahr naturgemäß größer, so dass prinzipiell weniger Wasser dem Hangsystem zur Verfügung steht. Nach TILCH (1999) wirken sich diese kurzen sommerlichen Konvektivniederschläge ohne vorherige Auffüllung des Grundwasserspeichers insgesamt weniger massenverlagerungsfördernd aus. Da es sich bei der Wellenkalk-Schichtstufe um ein, der Malm-Kalk-Schichtstufe lithologisch vergleichbar aufgebautes Hangsystem handelt, ist mit hoher Wahrscheinlichkeit davon auszugehen, dass diese Mechanismen auch hier greifen. Die signifikant gehäufte Verteilung der Massenverlagerungsgebiete in den höheren Intensitätsklassen des für die langanhaltenden Advektivniederschläge typischen Intervalls deutet darauf hin.

Die Ausführungen bisherigen basieren auf der Gesamtheit der vorzufindenden Massenverlagerungsgebiete (n = 744). Das die Mehrzahl davon lediglich ältere, rezent inaktive Massenverlagerungsformen aufweisen, wurde bereits mehrfach erwähnt. Die aufgezeigten Verteilungsmuster deuten jedoch darauf hin, dass die regional unterschiedlichen klimatischen insbesondere die hygrischen Verhältnisse zu den Zeiten in denen diese Massenverlagerungsgebiete aktiv waren, den heutigen räumlichen Niederschlagsverteilungsmustern ähnelten. Entsprechend des häufigen Auftretens dieser älteren Formen ist aber davon auszugehen, dass der Niederschlagseintrag zu den damaligen Zeiten insgesamt höher war als heute. Interessant ist nun auftretenden der Vergleich insgesamt seltenerer jüngeren Mauerschollender und Sturzfließungsgebiete mit den betrachteten Starkniederschlagsintervallen. Wie Bewegungsmessungen von JOHNSEN (1981) und JOHNSEN & SCHMIDT (2000) klar zum Ausdruck bringen, besteht zwischen der Bewegungskinematik der von ihnen untersuchten Mauerschollen und den Niederschlagseintrag in das Hangsystem ein enger Zusammenhang. Mit höheren Niederschlagseinträgen in das Hangsystem nehmen die Bewegungsgeschwindigkeiten zu (vgl. JOHNSEN & SCHMIDT 2000, 109). Das Auftreten der Sturzfließungen ist, wie bereits erwähnt, i.d.R.

mit intensiven Kurzzeitniederschlägen bzw. mit lang anhaltenden, intensiven Starkniederschlägen in Verbindung zu bringen (vgl. ACKERMANN 1958, JOHNSEN & KLENGEL 1973, JOHNSEN 1984, RÖSING & WENZEL, SCHMIDT 1988b, WENZEL 1991). Von den im Untersuchungsgebiet zu verzeichnenden Sturzfließung sind von 4 (Nr.: 6 Hörne; 7 Plesse; 11 Manrod; 14 Schickeberg) (vgl. Karte 14 und. Tab. 5.5) über das Jahr hinausgehende genauere Zeitangaben (Datum bzw. Monat) der erfolgten Hauptverlagerung bekannt (vgl. SCHMIDT & BAUM 1998; SCHMIDT & BEYER 2002: in Vorbereitung). Dabei zeigt sich, dass 3 der Sturzfließungen (Nr.: 6, 11, 14) an Sommertagen erfolgten, an denen häftige Starkniederschlägen zu verzeichnen waren. Eine Sturzfließung (Nr. 7) ereignete sich im Zusammenhang mit einem heftigen Winterstarkniederschlägsereignis. Allen der genannten Sturzereignissen gingen jedoch jeweils Perioden erhöhter Niederschläge voraus.

Betrachtet man die Verbreitung der Mauerschollen- und Sturzfließungsgebiete (vgl. Karte 14) innerhalb der betrachteten Starkniederschlagsverteilungen (vgl. Karte 5 und Karte 6), ergibt sich das in Tabelle 5.26 dargestellte Verteilungsbild.

Tab. 5.26:Die Niederschlagsintensitäten der betrachteten Starkniederschlagsintervalle an den
Massenverlagerungsgebieten mit Mauerschollen und Sturzfließungen

Intensitäten des Starkniederschlags- intervalls (Dauer 1h / Wiederkehrzeitraum: 1a)	Μ	S	Intensitäten des Starkniederschlags- intervalls (Dauer 1h / Wiederkehrzeitraum: 1a)	М	S
(mm)	(Anzahl) (%)	(Anzahl) (%)	(mm)	(Anzahl) (%)	(Anzahl) (%)
14 – 15	22	3	70 - 90	31	3
	(20%)	(21%)		(30%)	(21%)
15 - 16	24	4			
	(22%)	(29%)			
16 - 17	58	7	90 - 110	89	11
	(52%)	(50%)		(70%)	(79%)
17 - 18	7	-			
	(6%)				
Gesamt	111	14		111	14
	(100%)	(100%)		(100%)	(100%)
M: Massenverlagerungsgebiete mit Mauerschollen					
S: Massenverlagerungsgebiete mit S	Sturzfließunger	1			

Wie Tabelle 5.26 zeigt, ist in dem für die konvektiven Sommerniederschläge typischen Intervall die Streuung der Mauerschollen- und Sturzfließungsgebiete in den verschiedenen Intensitätsklassen ähnlich groß, wie bei der betrachteten Gesamtzahl der Massenverlagerungsgebiete (vgl. Abb. 5.51). Von den Mauerschollengebieten sind 65 Gebiete (= 58 %) in den beiden höhere Intensitätsklassen

gelegen, wobei die Klasse 16 - 17 mm hier dominiert. In der höchsten im Untersuchungsgebiet anzutreffenden Intensitätsklasse sind lediglich noch 7 Mauerschollengebiete zu verzeichnen. Wie ein Blick auf Karte 5 und Karte 14 verdeutlicht, befinden sich diese Gebiete alle an einem Stufenhangabschnitt im Teiluntersuchungsgebiet Oberes Eichsfeld & Hainich (Gebiete: 365, 367, 375, 381, 384, 402, 403) (vgl. Karte 8). Im Vergleich zu den benachbarten, durch geringere Niederschlagsintensitäten gekennzeichneten Stufenhangabschnitten (vgl. Karte 5), kommen Mauerschollen trotz erhöhter Niederschlagsintensitäten hier wesentlich seltener vor (vgl. Karte 14). Ähnlich verhält es sich bei den Sturzfließungen, wobei in der höchsten Intensitätsstufe (17 - 18 mm) diese Massenverlagerungsformen nicht auftreten. 50 % der Sturzfließungsgebiete sind in den beiden unteren Niederschlagsintensitätsklassen zu verzeichnen und 50 % treten in der Intensitätsklasse 16 - 17 mm auf (vgl. Tab. 5.26). Analog der Gesamtzahl der Massenverlagerungsgebiete lässt sich aus diesem Verteilungsbild kein bevorzugtes Auftreten der jüngeren Massenverlagerungsformen mit höheren Niederschlagsintensitäten ableiten.

Anders verhält es sich bei dem für die advektiven Starkniederschläge typischen Intervall (vgl. Tab. 5.26). Hier sind jeweils nur 30 % der Mauerschollen- bzw. nur 21 % der Sturzfließungsgebiete in der unteren Niederschlagsintensitätsklasse (70 - 90 mm) zu verzeichnen, wohingegen 70 % der Mauerschollengebiete bzw. 79 % der Sturzfließungsgebiete sich in der höheren Intensitätsstufe (90 – 110 mm) befinden. Zwei der drei durch geringere Niederschlagsintensitäten gekennzeichneten Sturzfließungsgebiet (Gebiete: 54; 129) weisen atektonische Schichtdeformationen auf (vgl. Anhang C). Gleiches trifft für die 16 der 30 Mauerschollengebiete zu, die sich in der niedrigeren Niederschlagsintensitätsklasse befinden. Möglicherweise wirkten sich hier die atektonischen Schichtverstellungen begünstigend auf das Auftreten dieser Massenverlagerungsformen aus. Insgesamt belegt das geschilderte Verteilungsbild der Mauerschollen- und Sturzfließungsgebiete innerhalb des für die langanhaltenden advektiven Starkniederschläge typischen Intervalls jedoch, dass im Vergleich zur Gesamtzahl der Massenverlagerungsgebiete (vgl. oben) hier eine noch deutlichere Lagebevorzugung in den höheren Niederschlagsintensitäten zu verzeichnen ist.

Zusammenfassend ist festzuhalten, das v.a. die höheren Intensitäten des für die advektiven langanhaltenden Starkniederschläge typischen Intervalls (Dauer: 48 h / Wiederkehrzeitraum: 50 a) vergleichsweise stärkere Zusammenhänge zur räumlichen Variabilität der Massenverlagerungsgebiete erkennen lassen, als die Niederschlagsintensitäten des für die sommerlichen Konvektivniederschläge typischen Intervalls (Dauer: 1 h / Wiederkehrzeitraum: 1a), in dem die Verteilung der Massenverlagerungsgebiete eine wesentlich stärkere Streuung aufweist (vgl. Abb. 5.51 und Tab. 5.26). Im Vergleich zu den langjährigen mittleren Jahresniederschlägen (vgl. Kap. 5.3.14) sind die zu verzeichnenden Zusammenhänge der betrachteten Starkniederschlagsverteilungen jedoch wesentlich undeutlicher. Es ist aber davon auszugehen, dass in Gebieten mit insgesamt höheren mittleren Jahresniederschlägen, einsetzende, insbesondere langanhaltende Starkniederschläge, das Auftreten der Massenverlagerungen wesentlich begünstigen. Die hydrologischen Vorbedingungen, im Sinne eines generell erhöhten Wasser- bzw. Grundwasserdargebotes, sind demnach maßgeblich entscheidend. Sind diese Vorbedingungen erfüllt, können, wie im Fall der Sturzfließungen deutlich wurde (vgl. oben), auch kurzeitige Starkniederschläge den Verlagerungsprozess auslösen. Allein aus der Starkniederschlagsverteilung kann die räumliche Variabilität der Massenverlagerungsgebiete jedoch nicht zufriedenstellend erklärt werden. Zu analogen Ergebnissen kommt TILCH (1999).

5.3.16 Zusammenfassende Betrachtung der untersuchten Steuerungsfaktoren

Wie bei der Analyse der hier betrachteten Steuerungsfaktoren offensichtlich geworden ist, konnten die bereits von JOHNSEN (1974) zusammengefassten drei Grundvoraussetzungen: resistenter, geklüfteter und stark wasserwegsamer Wellenkalk über verwitterungsanfälligen, tonigen und plastifizierbarem Röt [=lithologisch-strukturellen Eigenschaften des Stufenbildners (1), lithologisch-strukturellen Eigenschaften des Sockelgesteins (2)] (vgl. Kap. 5.3.2), eine generell flach ($\leq 10^{\circ}$) geneigte Schichtlagerung [= Schichtneigung (6)] (vgl. Kap. 5.3.6) und die Durchschneidung des Schichtkomplexes bis zum Röt, als allgemein notwendige Vorbedingungen für das Auftreten der Massenverlagerungen bestätigt werden. Aufgrund der im gesamten Untersuchungsraum zu verzeichnenden einheitlichen Ausprägung dieser Vorbedingungen, können die unterschiedlichen räumlichen Verteilungsmuster der Massenverlagerungsgebiete damit aber nicht erklärt werden.

Während die genannten Grundvoraussetzung generell erfüllt sein müssen, konnten entgegen den in der Literatur geführten Diskussionen (vgl. Kap. 1.4) von den Faktoren: Mächtigkeit des Stufenbildners (3) (vgl. Kap. 5.3.3), Mächtigkeit des Sockelgesteins (4) (vgl. Kap. 5.3.4), Mächtigkeitsrelation (5) (vgl. Kap. 5.3.5), Neigungsrichtung (7) (vgl. Kap. 5.3.7), Einfluss der Rötgipssubrosion (8) (vgl. Kap. 5.3.8) sowie von der Exposition (11) (vgl. 5.3.11) keine signifikanten Zusammenhänge zur räumlichen Varaibilität der Massenverlagerungen abgeleitet werden.

Demgegenüber zeigen die Faktoren: Lage zur Erosionsbasis (9) (vgl. Kap. 5.3.9), Lage im Stufengrundriss (10) (vgl. Kap. 5.3.10), Lage zum Gewässernetz (12) (vgl. Kap. 5.3.12), Häufigkeit von Hangquellen (13) (vgl. Kap. 5.3.13) und die mittlere jährlichen Niederschlagshöhe und Niederschlagsverteilung (14) (vgl. Kap. 5.3.14) sehr deutliche Zusammenhänge zur räumlichen

Variabilität der Massenverlagerungen und deren morphologischen Besonderheiten. Als maßgeblich die anderen Faktoren beeinflussende Steuergröße, stellt sich dabei die in der Literatur bislang noch nicht in Erwägung gezogene mittlere jährliche Niederschlagshöhe heraus. Die vom Niederschlagseintrag abhängigen Steuerungsmechanismen sind sehr vielfältig und komplex.

Mit zunehmenden Jahresniederschlagshöhen nimmt die Fließgewässerhäufigkeit und damit verbunden, die potentiellen Möglichkeiten der erosiv bedingte Sockelhangversteilung zu (vgl. Kap. 5.3.12). Dabei können sich v.a. in den stärker beregneten Gebieten aufgrund der höheren Fließgewässeranzahl großflächiger, erhöhte Anstiegswinkel an den Stufenhängen ausbilden (vgl. Kap. 5.3.9). Da es sich bei den, den Fließgewässern benachbarten Stufenhangbereichen naturgemäß v.a. um Stufenvorsprünge, insbesondere um deren Flanken handelt, werden diese versteilten Vorsprungsflanken, infolge der zunehmenden Schubspannungen bei gleichzeitigem Abbau des Widerlages bevorzugt von Massenverlagerungen frequentiert (vgl. Kap. 5.3.10). Im Vergleich zu den stärker beregneten Gebieten sind an den Stufenhängen, die geringere durchschnittliche Jahresniederschläge aufweisen, weniger häufig Fließgewässer zu finden. Dementsprechend existieren hier auch weniger Vorsprünge, an denen ein langfristig stufenhangversteilender Erosionsimpuls wirksam ist, was dazu führt, dass in den insgesamt trockeneren Gebieten die Anzahl der Vorsprünge, die Massenverlagerungen aufweisen abnimmt, und das obwohl, wie die Buchtungswerte belegen, die Anzahl der Vorsprünge auch hier groß sein kann (vgl. Kap. 5.3.12).

Mit zunehmenden Jahresniederschlag nimmt auch die Quellendichte als Indikator verstärkter Stufenhangdurchfeuchtung zu. Gleichzeitig steigt der Anteil der von Massenverlagerungsen betroffenen Stufenhanglängen, wobei eine zunehmende Anzahl der Massenverlagerungsgebiete Quellaustritte aufweist (vgl. Kap. 5.3.13). Damit verbunden ist das Grundwasserdargebot in den stärker beregneten Gebieten insgesamt höher. Ein erhöhtes Grundwasserdargebot forciert die Destabilisierungsprozesse (Plastifizierung, Quellung, Gefügelockerung) im tonig ausgebildeten Rötsockel und fördert die Disposition der Stufenhänge für Massenverlagerungen (vgl. Kap. 5.3.14).

Insgesamt kristallisieren sich das Wasser und die damit verbundenen Wirkungspfade (Quellen, Fließgewässer, Grundrisslage, Anstiegsverhältnisse) bei gegebenen Grundvoraussetzungen (flache Schichtlagerung, Durchschneidung des Hanges bis zum Röt, Sockelhanganstiege $\geq 12^{\circ}$) als maßgebliche, die großräumige Variabilität der Massenverlagerungen an der Wellenkalk-Schichtstufe bestimmende Steuerungsfaktoren heraus. Dies verdeutlicht sich sowohl in der Verbreitung der jüngeren rezenten Massenverlagerungsgebiete als auch in den räumlichen Verteilungsmustern der älteren, rezent inaktiven Massenverlagerungen. Für all diese Gebiete ist gleichermaßen typisch, dass sie in zunehmender Anzahl immer dort auftreten, wo die Jahresniederschläge insgesamt höher sind (vgl. Kap. 5.3.14). Besonders auffällig ist dies für die jüngeren Massenverlagerungsformen der Mauerschollen und Sturzfließungen, die rezent verstärkt erst ab > 750 mm Jahresniederschlag auftreten (vgl. Kap. 5.3.14). Gleichermaßen sind die mit abnehmenden, von Massenverlagerungen betroffenen Stufenhanglängen zu verzeichnenden morphologischen Merkmalsunterschiede (Aktivitätsunterschiede) der Massenverlagerungsgebiete (z.B. Dichte der Massenverlagerungsgebiete der Breitenklassen 500 - 6000 m bzw. der Flächengrößenklassen 50000 - 500000 m², Dichte der Massenverlagerungsgebiete mit 5 - 7 Staffelabfolgen) (vgl. Kap. 5.2.4.5) maßgeblich auf die regionale Variabilität der Niederschlagshöhen und den damit im Zusammenhang stehenden Wirkungspfaden zurückzuführen. Zusammengefasst ist dieser Zusammenhang in Abbildung 5. 53 dargestellt.

Abb. 5.53: Zusammenfassende Darstellung des Einflusses der Steuerungsfaktoren: jährliche mittlere Niederschlagshöhe sowie Fließgewässer- und Quelldichte auf die Massenverlagerungsbeeinflussung der Stufenhänge und deren morphologischen Besonderheiten

Schließlich erweist sich auch die Verteilung der betrachteten Starkniederschlagsintervalle (15) als die räumliche Variabilität der Massenverlagerungsgebiete begünstigender, aber nicht zwingend notwendiger Steuerungsfaktor (vgl. Kap. 5.3.15). Insbesondere der für die advektiven

Starkniederschläge repräsentative Intervall (Dauer 48 h / Wiederkehrzeitraum: 50 a) zeigt eine gute Übereinstimmung mit den Verteilungsmustern der Massenverlagerungsgebiete und auch hier insbesondere mit jenen, die in ihrem Formenschatz Mauerschollen und Sturzfließungen aufweisen. Dieser Zusammenhang ist aber in enger Wechselwirkung mit der jährlichen Niederschlagshöhe und den damit verbundenen hydrologischen Vorbedingungen (höhere Grundwasserbildungsraten) zu sehen. Es ist davon auszugehen, dass mit höheren Wasserangebot nicht nur die langanhaltenden Starkniederschläge (Dauer: 48 h / Wiederkehrzeitraum: 50 a) sondern auch die kürzeren Starkniedersintervalle (Dauer: 1 h / Wiederkehrzeitraum: 1 a) zunehmend massenverlagerungsbeeinflussend wirksam werden können (vgl. Kap. 5.3.15). Die räumliche Verbreitung der Massenverlagerungsgebiete mit Sturzfließungen deutet darauf hin.

5.4 Beurteilung des Gefährdungspotentials im Umfeld von Mauerschollengebieten

Die Mauerschollen stellen die morphologischen Ausgangsformen für die abrupt verlaufenden Sturzfließungen dar (vgl. Kap. 3.2). Aufgrund der sehr schnellen Verlagerung großer Volumina (>200000m³) über größere Horizontaldistanzen, sind die Sturzfließungen als die gefährlichsten Massenverlagerungsformen an der Wellenkalk-Schichtstufe im Thüringer Becken einzustufen.

Die hier vorzunehmende Gefahrenbeurteilung basiert auf der theoretischen Annahme, dass sich aus allen Mauerschollen Sturzfließungen entwickeln können. Die Lage der Massenverlagerungsgebiete die Mauerschollen aufweisen, konnte im Rahmen der Geländearbeiten ermittelt werden. Die diesbezüglichen Verteilungsmuster wurden bereits in Kapitel 5.2.4.1.1 vorgestellt (vgl. Karte 14). Durch vergleichende Beobachtungen an den im Untersuchungsgebiet vorkommenden Sturzfließungen (vgl. Karte 14) wurden die maximalen horizontalen Fahrbahnlängen des verlagerten Materials bestimmt. Die in den Sturzfließungsgebieten am Sockelhang zu verzeichnenden Rötfließzungen, die in diesem Fall die Massenverlagerungsstirn bilden (vgl. Kap. 3.3), sind in den ermittelten Distanzen enthalten. Tabelle 5.27 zeigt die beobachteten Werte.

Die Fahrbahnlängen der Sturzfließungen schwanken zwischen ~200 m am Teichkopf bzw. an der Hörne (Sturzfließungen 4 und 7) und maximal ~350 m an der Plesse bzw. am Kielforst (Sturzfließungen 7 und 15) (vgl. Tab. 5.27). Diese Längenunterschiede werden von verschiedenen Parametern (Rauhigkeit, Hangneigung, Rollgeschwindigkeit, Fallhöhe, Wassergehalt und Materialkonsistenz) gesteuert (vgl. MEIßEL 1996), worauf hier im Einzelnen nicht weiter eingegangen werden soll. Die aus allen Gebieten gebildete durchschnittliche Fahrbahnlänge liegt bei ~260 m.

Nr. Sturzfließungs- gebiet	Nr. des zugehörigen Massenverlagerungs- gebietes	Lokalbezeichnung der Gebiete	maximale horizontale Fahrbahnlänge des verlagerten Materials
(vgl. Karte 14)	(vgl. Karte 8)		(m)
1	54	Frauenberg	~270
2	87	Wöbelsburg	~270
3	107	Krajaer Kopf	~260
4	129	Teichkopf	~200
5	189	Zementwerk Deuna	~240
6	528	Hörne	~200
7	394	Plesse	~350
8	464	nahe Heldrastein	~340
9	466	Dreiherrenstein	~240
10	471	südlich von Rambach	~290
11	473	Manrod	~240
12	475	Rabenkuppe	~290
13	483	nahe Schickeberg	~210
14	483	Schickeberg	~220
15	496	Kielforst	~350

Tab. 5.27:	Die maximalen	horizontalen	Fahrbahnlängen	der Sturzfl	ließungsgebiet	e im

Untersuchungsraum

Ausgehend von den maximal zu beobachteten Fahrbahnlängen (~350 m) (vgl. Tab. 5.27) wurde, entsprechend des Gebotes der größtmöglichen Vorsorge, 350 m als kritischer Bereich auf das hangabwärts gelegene Umfeld aller Mauerschollen übertragen. Ist vor Erreichen der 350 m eine Tiefenlinie und damit verbunden ein markanter Gefällewechsel zu verzeichnen (nach Erreichen der Tiefenlinie steigt der Hang zur gegenüberliegenden Seite wieder an), endet der kritische Bereich bereits im Tiefenlinienniveau. Die die Fahrbahnlängen im Einzelnen beeinflussenden Parameter (vgl. oben) wurden aufgrund der Vielzahl der Mauerschollengebiete dabei nicht berücksichtigt. Die hier vorgestellte Gefahrenbeurteilung ist demnach vereinfacht und als erste Bestandsaufnahme zu verstehen.

In einem zweiten Schritt wurde überprüft, ob und welche Infrastruktureinrichtungen sich in dieser kritischen ~350-m-Zone befinden. In Abhängigkeit der vorzufindenden Infrastruktureinrichtungen, die im Falle einer Sturzfließung zerstört werden könnten, wurde entsprechend der zu erwartenden materiellen Schäden, das von den Mauerschollen ausgehende Gefährdungspotential in 3 Klassen unterteilt (vgl. Tab. 5.28).

Tab. 5.28:	Klassifizierung des Gefährdungspotentials bezogen auf zu erwartende materielle Schäden
	im Umfeld der Mauerschollen

Gefährdungspotentiale	In die Klassifizierung einfließende Objekte
(eingestuft nach der Höhe der zu erwartenden materiellen Schäden)	
geringe materielle Gefährdung	unbefestigte Waldwege, Wald
mittlere materielle Gefährdung	befestigte (geschotterte, asphaltierte) Forststraßen
hohe materielle Gefährdung	Siedlungen, Versorgungsleitungen, Brunnen, Straßen, Teiche, öffentliche Plätze, rekultivierte Flächen

Die Gebiete in denen sich lediglich einfache, unbefestigte Forst- oder Waldwege im kritischen Bereich unterhalb der Mauerschollen befinden, wurden mit der untersten Gefährdungsklasse "geringe materielle Gefährdung" belegt (vgl. Tab. 5.28). Eine "mittlere materielle Gefährdung" charakterisiert die Gebiete, in denen befestigte, d.h. geschotterte bzw. asphaltierte Forststraßen im kritischen Bereich zu verzeichnen sind. Bedenkt man, dass ein durchschnittlich 4 m breiter geschotterter Waldweg pro laufenden Meter bereits ~100 DM Baukosten verursacht (frdl. Mitt. Forstamtsleiter FAHRIG, Leinefelde 18.11.2000), wird bei stufenhangparallelen Sturzfließungsbreiten bis zu 350 m (z.B. Kielforst) (vgl. Tab. 5.5; Kap. 5.2.4.1.2) deutlich, dass sich die Beträge im Schadensfall erheblich summieren können. Die dritte Gefährdungsstufe "hohe materielle Gefährdung" wurde für Gebiete vergeben, in denen sich Siedlungen (Häuser, Gärten) und Infrastruktureinrichtungen wie Versorgungsleitungen, Brunnen, Teiche, asphaltierte Straßen im kritischen 350-m-Bereich befinden. Wenn sich mehrere, den verschiedenen Klassen zugehörige Infrastruktureinrichtungen unterhalb einer Mauerscholle befinden, wurde das Gebiet jeweils nach der Infrastruktureinrichtung klassifiziert, von der die höchsten materiellen Schäden zu erwarten sind.

Entsprechend der Zuordnung der einzelnen Mauerschollengebiete zu diesen 3 Gefährdungsstufen ergibt sich das in Karte 17 dargestellte Bild. Wie dem zu entnehmen ist, geht von der Mehrzahl der Mauerschollengebiete eine geringe (n = 30 Gebiete) bis mittlere (n = 64 Gebiete) materielle Gefährdung aus. Ein in den letzten Jahren verstärkt betriebener, forstwirtschaftlicher Waldwegebau verschiebt das Bild jedoch zunehmend zu Gunsten der mittleren materiellen Gefährdungsklasse. Höhere materielle Gefährdungen sind im Untersuchungsgebiet an 17 der 111 Mauerschollengebiete zu verzeichnen (vgl. Karte 17). Um welche gefährdeten Objekte es sich in den einzelnen Gebieten handelt und in welcher Horizontalentfernung sich diese von den Mauerschollen befinden, ist in Tabelle 5. 29 dargestellt.

Tab. 5.29:	Die gefährdeten Objekte innerhalb der höchsten materiellen Gefährdungsstufe und
	deren Entfernung zu den Mauerschollen

Mauerschollengebiet in der höchsten materiellen Gefährdungsstufe (Nr.)	gefährdete Objekte	Horizontal- entfernung Objekte zur Mauerscholle
(vgl. Karte 8)		(m)
79	Siedlungsrand Ortschaft Wernrode	~300
161	110 kV Stromleitung	~260
184	Brunnen	~290
189	rekultivierte Bergbaulandschaft	~160
192	110 kV Stromleitung	~150
238	Verbindungsstraße Heiligenstadt – Flinsberg	~190
250	Siedlungsrand Heiligenstadt	~210
267	Teiche, Stromleitung, Verbindungsstraße Lutter – Kalteneber	~110
330	Siedlungsrand Großbartloff, Verbindungsstraße Großartloff – Wachstedt	~270
466	Verbindungsstraße Schnellmannshausen – Groß-Bürschla	~330
472	Verbindungsstraße Rambach – Rittmannshausen	~270
475	Parkplatz, Schutzhütte	~350
476	Verbindungsstraße Weißenborn - Röhrda	~350
498	Siedlungsrand Tahlwenden, Stromleitung	~300
511	Siedlungsrand Röhrig	~300
541	Siedlungsrand Hitzelrode	~250
590	Rand der Bungalowsiedlung Klein Breitenbach, Brunnen	~300
606	Verbindungsstraße Angelroda – Gräfenroda, Parkplatz mit Wanderhütte	~170
693	Siedlungsrand Ammerbach, Verbindungsstraße Ammerbach – Nennsdorf	~210
706	Siedlungsrand Pennickental	~270

Wie aus der Tabelle 5.29 hervorgeht, lassen die Horizontalentfernungen der meisten Objekte zu den Mauerschollen im Ernstfall eine zerstörerische Beeinflussung wahrscheinlich werden. In Abbildung 5.54 sind exemplarisch für die Gebiete 193 (Dün), 267 (Oberes Eichsfeld & Hainich) und 606 (Ohrdrufer Platte) die räumlichen Lagebeziehungen der gefährdeten Objekte genauer dargestellt.

Abb. 5.54: Gefährdete Objekte im Vorland von Mauerschollen im Falle einer Sturzfließung

Im Fall des am Dün gelegenen Gebietes 193, würde eine sich ereignende Sturzfließung die ca. 150 m entfernten Mastanlagen einer 110 kV Oberstromleitung erfassen (vgl. Abb. 5.53). In dem im Oberen Eichsfeld & Hainich gelegenen Gebiet 267 befinden sich in nur ~110 m Horizontalentfernung zur Mauerscholle zwei gefüllte Teiche mit einem Gesamtfassungsvermögen von ~13000 m³. Sollten die Teiche bei einer Sturzverlagerung zerstört werden, würden die Wassermassen in sehr kurzer Zeit die nur 350 m talabwärts gelegene Siedlung Lutter erreichen. Zudem befindet sich zwischen den Teichen und dem Stufenhang eine Stromleitung sowie eine an die Teiche angrenzende Landstraße, die die Ortschaften Lutter und Kalteneber verbindet. Im Gebiet 606 würden im Ernstfall die nur 170 m von den Hauptmauerscholle entfernt gelegene Verbindungsstraße zwischen den Ortschaften Angelroda und Geraberg sowie ein Parkplatz und eine Wanderhütte mit hoher Sicherheit zerstört werden. Ob in diesen Gebieten rezent eine erhöhte Sturzverlagerungsgefahr besteht, ist am ehesten durch Bewegungsmessungen zu ergründen. Bewegungsmessungen von JOHNSEN & SCHMIDT (2000) verdeutlichen, dass abstürzenden Blöcken Zeiten erhöhter Bewegungsraten vorausgehen.

Wie im Kapitel 5.2.4.1.1 beschrieben wurde, sind v.a. in den nördlichen (Dün, Bleicheröder Berge) und westlichen Untersuchungsabschnitten (Gobert, Ringgau, Oberes Eichsfeld & Hainich) verstärkt Mauerschollen zu verzeichnen. Die Ursachen dafür wurden bereits genannt (vgl. v.a. Kap. Entsprechend Niederschlag abhängigen 5.3.14). der v.a. vom Kinematik der Massenverlagerungsprozesse, die sich sowohl in den Bewegungsmessungen an Mauerschollen (vgl. JOHNSEN 1981, JOHNSEN & SCHMIDT 2000) als auch im Auftreten der Sturzfließungen widerspiegelt (vgl. Kap. 5.3.15), ist insbesondere an den Mauerschollen der westlichen und Untersuchungsabschnitte, nördlichen die sowohl höhere mittlere Jahresniederschläge (> 800 mm / a) als auch höhere langanhaltende (vgl. Karte 6) sowie höhere kurzzeitige (vgl. Karte 5) Starkniederschlagsintensitäten empfangen, auch in Zukunft mit einem erhöhten Sturzfließungsrisiko zu rechen. Dazu trägt auch die Tatsache bei, dass in den westlichen Bereichen des Untersuchungsraumes rezent eine Zunahme der winterlichen Niederschläge zu verzeichnen ist (vgl. RAPP & SCHÖNWIESE 1996). Die derzeit nachweislich aktivste Mauerscholle befindet sich im Massenverlagerungsgebiet 107 (Sturzfließungsgebiet 3: Krajaer Kopf). Hier erfolgten bereits in der 1984). der Vergangenheit mehrere Sturzverlagerungen (vgl. JOHNSEN Mit rezenten Bewegungsraten von mehreren Zentimetern pro Jahr (JOHNSEN & KOSTAK 1980, JOHNSEN 1981, JOHNSEN & SCHMIDT 2000) bei gleichzeitig starker Kippung der Mauerscholle ist hier in naher Zukunft mit einer weiteren Sturzverlagerung zu rechnen (vgl. Anhang A: Gebiet 107).

Abgesehen von zerstörten Waldflächen und Forstwegen und mit Ausnahme des Zementwerkes Deuna (Gebiet 190: vgl. Karte 8) sind durch Sturzfließungen verursachte größere Schäden bislang nicht zu verzeichnen. Eine 1975 im Zementwerk Deuna durch anthropogene Eingriffe initiierte Sturzfließung zerstörte die für den Röttagebau angelegten Abbaukulissen (vgl. Kap.5.3.9). Zudem gab es erhebliche Probleme beim Bau einer Zufahrtsstraße zum Wellenkalk-Tagebau (vgl. FISCHER et al. 1975). Die Nachbewegungen dauern bis heute an (vgl. SCHMIDT et al. 2001), wobei der Röttagebau in den neunziger Jahren stillgelegt und rekultiviert worden ist. Aufgrund dieser aufwendigen Rekultivierungsmaßnahmen wurde das Gebiet entsprechend der noch zu verzeichnenden Mauerscholle als Gebiet mit hoher materieller Gefährdung eingestuft (vgl. Karte 17 und Tab. 5.29).

Neben den Mauerschollengebieten exsistieren eine große Anzahl ältere Massenverlagerungsgebiete, die von verschiedensten Infrastruktureinrichtungen unmittelbar tangiert werden. So verläuft durch das Massenverlagerungsgebiet 287 die Landstraße zwischen den Ortschaften Kalteneber und Dieterode. Gleiches trifft für das Gebiet 253 zu, durch welches die Landstraße zwischen Heiligenstadt und Bernterode verläuft. Auch im Gebiet 193 quert eine von Rüdigershagen nach Mühlhausen führende, viel befahrene Landstraße die hier vorzufindenden Massenverlagerungskörper (Absatz-, Rückenschollen). In den im Oberen Eichsfeld & Hainich gelegenen Massenverlagerungsgebieten 334 und 339 führt je ein Tunnel der heute stillgelegten Eisenbahnstrecke Leinefelde - Geismar durch die vordersten Bereiche der Bergsporne an denen sich die Massenverlagerungen befinden. Neben diesen Verkehrsverbindungen existieren zudem zahlreiche Gebäude, die auf ältere Massenverlagerungskörpern, insbesondere auf Fußschollen, Beispiele dafür sind das Gaststättenlokal erbaut wurden. u.a. Iberghaus im Massenverlagerungsgebiet 249, Bunkeranlagen im Massenverlagerungsgebiet 244 bzw. eine Teile der Bungalowsiedlungen Kleinbreitenbach im Massenverlagerungsgebiet 590 (Ohrdrufer Platte).

Insgesamt ist festzuhalten, dass abgesehen vom Zementwerk Deuna (vgl. oben) und abgesehen von einzelnen kostenaufwendige Präventionsmaßnahmen (z.B. Massenverlagerungsgebiet 565: Ritterstein bei Arnstadt) (vgl. Kap. 1.1 und Abb. 1.1) größere Schäden durch Massenverlagerungen an der Wellenkalk-Schichtstufe bislang nicht bekannt geworden sind. Dies resultiert aus der Tatsache, dass die steilen Schichtstufenhänge, mit Ausnahme der Forstwirtschaft, von anderen Nutzungsaktivitäten bislang weitgehend verschont geblieben sind. Wie zahlreiche Autoren bestätigen (vgl. DOCKTER 1962, 1964, PUFF 1963, ZIEGENHARDT & JUNGWIRTH 1971, JOHNSEN 1974b, DOCKTER & STEINMÜLLER 1993), ist die Röt-Wellenkalk-Schichtgrenze insgesamt aber als äußerst kritischer - unsicherer Baugrund zu bewerten. Ausnahmen bilden lediglich die Schichtkämme, die aufgrund ihres steilen, hangwärtigen Schichteinfallens gegenüber Massenverlagerungsprozesse stabiler sind (vgl. Kap. 5.3.6). Unsachgemäße Böschungsein- und anschnitte können auch ältere, bis dahin latent inaktive Massenverlagerungen reaktivieren, die, sofern Mauerschollen vorhanden sind, sogar in den katastrophalen Sturzfließungen kulminieren können (vgl. Zementwerk Deuna). Die aufgezeigten, anthropogenen Aktivitäten im näheren Umfeld der Mauerschollengebiete verdeutlichen, dass sich im Falle von Sturzverlagerungen, einzelne Bereiche als potentiell gefährdet herausstellen. Die hier aufgezeigte Verbreitung der Massenverlagerungsgebiete (vgl. Karte 8) sowie die vereinfachte Gefahrenabschätzung für den Bereich der Mauerschollengebiete (vgl. Karte 17) kann für zukünftige landschaftsplanerische Vorhaben eine mögliche Grundlage und Entscheidungshilfe bieten.

6. Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurde die großräumige Verbreitung von Massenverlagerungen an der Wellenkalk-Schichtstufe im Thüringer Becken und deren Eigenschaften sowie der Einfluss verschiedener Steuerungsfaktoren, die das räumliche Verteilungsbild bestimmen, untersucht.

An 12 naturräumlich begrenzten Wellenkalk-Schichtstufenabschnitten mit einer Gesamtlänge von 980 km konnten 744 Massenverlagerungsgebiete mit einer Gesamtbreite von 224 km ausgewiesen werden. Damit sind durchschnittlich 22,8 % der Stufenhänge von Massenverlagerungen betroffen. Regional ergeben sich hierbei jedoch erhebliche Unterschiede. Von den betrachteten Untersuchungsabschnitten nimmt in der Reihenfolge: Gobert, Bleicheröder Berge, Dün, Ringgau, Oberes Eichsfeld & Hainich, Ohrdrufer Platte, Hainleite, Zeugenberge Mittleres Saaletal, Ilm-Kalk-Platte, Tautenburger Forst die Massenverlagerungsbeeinflussung der Stufenhänge ab. An den Schichtkämmen Hörselberge und Schmücke treten keine Massemnverlagerungen auf.

In den Massenverlagerungsgebieten vergesellschaften sich pleistozäne und holozäne, rezent inaktive Massenverlagerungsformen rezenten Formen (Mauerschollen, mit jüngeren Sturzfließungen), wobei letztere wesentlich seltener zu verzeichen sind. Das Nebeneinander unterschiedlich alter Formen zeigt, dass die instabilen Wellenkalk-Stufenhänge zu verschiedenen Zeiten wiederholt aktiv waren. Die jüngeren Massenverlagerungen treten dabei räumlich konzentriert, an den bereits zu früheren Zeiten verstärkt von Massenverlagerungen betroffenen Untersuchungsabschnitten, auf. In Abhängigkeit von der Intensität der Massenverlagerungsbeeinflussung bestehen deutliche Unterschiede in den morphometrischen und morphologischen Merkmalsausprägungen der Massenverlagerungsgebiete. Dabei erweist sich die Breite der Gebiete als geeigneter Indikator für unterschiedliche Massenverlagerungsaktivitäten.

Aufbauend auf den vorgefundenen Verteilungsmustern wurde der Einfluss von 15 morphologischen und klimatologischen Steuerungsfaktoren auf die großräumliche Variabilität der Massenverlagerungen untersucht. Einzelne der Faktoren werden in der Literatur teilweise sehr kontrovers diskutiert. Von den 15 analysierten Faktoren zeigen 5 deutliche Zusammenhänge zu räumlichen Variabilität der Massenverlagerungen.

Abgesehen von einigen allgemeingültigen Grundvoraussetzungen lassen die Faktoren: lithologischstrukturelle Eigenschaften von Stufenbildner und Sockelgestein, Mächtigkeit des Stufenbildners, Mächtigkeit des Sockelgesteins, Mächtigkeitsrelation, Schichtneigung, Neigungsrichtung, Exposition keine Zusammenhänge Rötgipssubrosion und erkennen. Die untersuchten Starkniederschlagsverteilungen deuten auf eine begünstigende Beeinflussung hin, können aber die räumliche Variabilität der Massenverlagerungen nicht zufriedenstellend erklären und sind demnach für deren Auftreten nicht zwingend erforderlich.

Signifikante Zusammenhänge zur räumlichen Variabilität der Massenverlagerungen konnten aus den Faktoren: Lage zur Erosionsbasis, Lage im Stufengrundriss, Lage zum Gewässernetz, Häufigkeit von Hangquellen und von der jährlichen mittleren Niederschlagshöhe abgeleitet werden. Dabei kristallisiert sich die, in der Steuerungsfaktorendiskussion bislang vernachlässigte Jahresniederschlagshöhe als die maßgeblich beeinflussende Steuergröße heraus, wobei zwischen dieser und den 4 weiteren sich begünstigend auswirkenden Faktoren enge Wechselwirkungen bestehen.

Im Untersuchungsgebiet nimmt mit zunehmenden mittleren Jahresniederschlägen der Anteil der von Massenverlagerungen betroffenen Stufenhänge kontinuierlich zu. Dies gilt insbesondere auch für die jüngeren Massenverlagerungen, die verstärkt erst ab mittleren Jahresniederschläghen von 750 mm auftreten. Mit zunehmenden Jahesniederschlägen wird die grundwasserbedingte Formung und damit verbunden, die Destabilisierung der tonigen Rötsockel intensiviert. Die dabei im Einzelnen ablaufenden Prozesse sind sehr komplex und bislang nur anfänglich bekannt. Die Befunde zeigen jedoch sehr deutlich, dass eine kontinuierlich höhere Durchfeuchtung der Stufenhänge sich maßgeblich begünstigend auf das Auftreten dieser tiefen Massenverlagerungen auswirkt.

Mit zunehmender Massenverlagerungsbeeinflussung nimmt gleichermaßen auch die Fließgewässer- und Quellhäufigkeit zu, wobei auch dies unter gleichen lithologisch-strukturellen Grundvoraussetzungen direkt abhängig vom jährlichen Niederschlagseintrag ist. Durchschnittlich 86 % der von Massenverlagerungen betroffenen Stufenhänge befinden sich im unmittelbaren Einflussbereich von Fließgewässern. Die Fließgewässer wirken sich linearerosiv versteilend auf die Stufenhänge, insbesondere auf die Rötsockel aus. An versteilten Stufenhängen erhöhen sich die Schubspannungen gleichzeitigem bekanntlich bei Abbau des Widerlagers, was massenverlagerungsförderlich ist. Die Sockelhänge der älteren rezent inaktiven Massenverlagerungsgebiete sind durchschnittlich 2 - 3° flacher als die Sockelhänge der Massenverlagerungsgebiete, die jüngere Massenverlagerungsformen aufweisen.

Quellen als Indikatoren für erhöhte Hangdurchfeuchtung deuten auf verstärkte hydrologische Destabilisierungsprozesse der Rötsockelhänge hin. Von den im Untersuchungsgebiet erfassten Quellaustritten treten 78 % an den von Massenverlagerungen betroffenen Stufenhängen auf. Besonders häufig sind diese in den Gebieten, die jüngere Massenverlagerungen aufweisen, zu verzeichnen.

Die Fließgewässer sind maßgeblich für die Grundrissgestaltung der Stufenhänge verantwortlich. Die überwiegende Mehrzahl der Massenverlagerungen tritt an den Stufenvorsprüngen, und hier bevorzugt an deren Flanken, auf. Dies sind die Stufenhangabschnitte, die sich im unmittelbaren Einflussbereich der versteilend wirksam werdenen Fließgewässer befinden. Bei mittleren Jahresniederschlägen >800 mm sind an annähernd allen Vorsprungsflanken Fließgewässer und gleichzeitig auch Massenverlagerungen zu verzeichnen. In Buchtenlagen, in denen der seitlich linearerosive Versteilungsimpuls stark abgeschwächt ist, sind die Stufenhänge insgesamt flacher ausgebildet. Massenverlagerungen kommen hier nicht vor.

Die vorzufindenen Verteilungsmuster verdeutlichen, dass dort, wo langfristig mehr Niederschlag fällt, die hangdestabilisierenden Prozesse auch intensiver und großräumiger wirksam werden als dort, wo langfristig weniger Niederschlag zu verzeichnen ist. Der ganze Mechanismus ist als Kausalkette zu verstehen, an dessen Anfang die langfristigen Niederschlagshöhen stehen. Da die älteren und jüngeren Massenverlagerungsgebiete regional in ähnlich unterschiedlicher Häufung vorkommen, ist davon auszugehen, dass diese Steuermechanismen auch zu früheren Zeiten ihre Gültigkeit hatten, wenn auch mit verstärkter Intensität. Insgesamt zeigt sich, dass die Verbreitung der Massenverlagerungen an der Wellenkalk-Schichtstufe nicht zufällig ist, sondern nach klaren Gestzmäßigkeiten funktioniert.

Basierend auf der morphologischen Bestandsaufnahme konnte für die Massenverlagerungsgebiete in denen Mauerschollen vorkommen, eine erste Gefährdungsabschätzung vorgenommen werden. Diese begründet sich aus der Tatsache, dass Mauerschollen die Ausgangsformen für größerer Sturzverlagerungen (Sturzfließungen) sind. Mit Sturzbahnen von über 300 m stellen diese eine potentielle Gefahr für angrenzende Siedlungs- und Infrastruktureinrichtungen dar. Von den 111 Mauerschollengebieten ist im Fall einer Sturzfließung in 17 Gebieten mit größeren Schäden zu rechnen. Mit der sich in Westeuropa abzeichnenden Erhöhung der Winterniederschläge wird in den ohnehin stärker von Massenverlagerungen betroffenen, westlichen Untersuchungsabschnitten, in denen auch verstärkt Mauerschollen auftreten, das Massenverlagerungsrisiko zunehmen.

Aufbauend auf den hier gewonnen Erkenntnissen könnten in zukünftigen Studien GIS-basierte Modelle abgeleitet und gezielt auf vergleichbare Gebiete übertragen werden, in denen die Verbreitung instabiler Hangbereiche bislang nur wenig bekannt ist. Entsprechend der aufgezeigten Steuergrößen sind insbesondere auch von der Massenverlagerungshydrologie, deren Prozesserforschung noch in den Anfängen steckt, wichtige Kenntniszuwächse zu erwarten. Die hier vorgestellten Ergebnisse stellen eine mögliche Grundlage für diesbezüglich weiterführende Untersuchungen dar.

7. Literaturverzeichnis

- ABELE, G. (1994): Felsgleitungen im Hochgebirge und ihr Gefahrenpotential.- Geographische. Rdsch., H.7 8, 414 420.
- ACKERMANN, E. (1953): Der aktive Bergrutsch südlich der Mackenröder Spitze in geologischer Sicht.- Nach. Akad. d Wiss. Göttingen, II. Mathm.-Phys.-Chem. Abt. Nr. 5, 67 - 83.
- ACKERMANN, E. (1958): Die Sturzfließung am Schickeberg südlich Eschwege.- Notizbl. Hess. L.-A. f. Bodenforsch., 87, 172 187, 1 33.
- ACKERMANN, E. (1959): Der Abtragungsmechanismus an der Wellenkalk-Schichtstufe. Bewegungsarten der Massenverlagerungen und morphologische Formen.- Z. f. Geomorph. N.F., 3, 193 - 226 u. 283 – 304.
- ACKERMANN, E. (1977): Zeitliche und raümliche Gliederung der Rutschfließung an der Wellenkalk-Schichtstufe.- In.: Exkursionsführer Geotagung 1977, Exk. L., 113 - 120, Göttingen.
- AS- SARURI, M. & R. LANGBEIN (1987): Verbreitung und Entstehung intraformationeller Konglomerate im Unteren Muschelkalk Thüringens (Mittlere Trias).- Z. geol. Wiss., Bd. 15, 4, 511 519.
- BACHMANN, G., ELSE, K. u. PUTSCHER, S. (1974): Auftreten und Ursachen von Rutschungen in einer Kalksteinlagerstätte.- Zschr. Geol. Wiss., Bd. 2, 3, 315 324.
- BACKHAUS, E. (1987): Baugeologie der Lockergesteine.- In: Grundbautaschenbuch, Bd. 1, Berlin.
- BAUM, I. & K.-H. SCHMIDT (2001): Temporal classification of mass movements on the Wellenkalk scarp in Thuringia and northern Hesse- possibilities and limitations.- Z. Geomorph. N.F., Suppl.-Bd. 125, 25 - 41.
- BERGMANN, E. (1996): Der Ritterstein bei Arnstadt –eine naturräumliche Betrachtung.- Aus der Vergangenheit v. Arnstadt u. Umgebung, 6, 123 140.
- BERICHTE D. ERSTEN DDR-RUTSCHUNGSTAGUNG (Massenbewegungen an Böschungen).- Z. geol. Wiss. Berlin 1974.
- BERRISFORD, M.S. & MATTHEWS, J.A. (1997): Phases of anhanced rapid mass movements in climatic variations during the Holocene: a synthesis.- In: FRENZEL, B. et al. (Hrsg) (1997): Rapid mass movements as a source of climatic evidence for the Holocene, 409 440..
- BERNHARD, H. (1967): Massenverlagerungen an der Röt/ Muschelkalkgrenze.- Mitt. deutsch. Geol. Ges., Bd. 119, 585 586.
- BERNHARD, H. (1968): Alte Rutschungserscheinungen an der Grenze Röt/ Muschelkalk im nördlichen Hessen.- Mitt. aus dem Geol. Inst. d. Techn. Uni. Hannover, 8, 21 - 33.
- BEYER, I. (1997): Verbreitung und Morphometrie von Massenverlagerungen an der Wellenkalk- Schichtstufe im Raum nördlich von Rudolstadt (Thüringer Becken).- Dipl. Arb., Univ. Halle., Inst. Geogr., (unveröff.).
- BEYER, I. & K.-H. SCHMIDT (1999): Untersuchungen zur Verbreitung und Morphometrie von Massenverlagerungen an der Wellenkalk-Schichtstufe im Raum nördlich von Rudolstadt (Thüringer Becken).- Hall. Jb. Geowiss, R.A, 21, 67 - 82.
- BEYER, I. (2002): Massenverlagerungen an der Wellenkalk- Schichtstufe im Thüringer Becken und ihre Abhängigkeit von morphometrischen Steuerungsfaktoren.- Trierer Geogr. Studien, 25, 143 - 160.
- BIBUS, E. (1986): Die Rutschung am Hirschkopf bei Mössingen (Schwäbische Alb) Geowissenschaftliche Rahmenbedingungen.- Geoökodynamik, 7, 333 360.

- BIBUS, E. & TERHORST, B. (1999): Angewandte Studien zu Massenbewegungen.-Tübinger Geowissenschaftliche Arbeiten, D, 5, 1 - 241.
- BLUME, H. (1987): Probleme der Schichtstufenlandschaften.- Darmstadt.
- BRUNHOF, W. (1983): Geomechanische Eigenschaften halbfester Tonsteine der oberen Röt- Folge in der westlichen Kuppenrhön.- Diss. Univ. Kiel.
- BRUNSDEN, D. & IBSEN, M.-L. (1994): The temporal causes of landslides on the south-coast of Great Britain.- In: CASALE, R., MANTECHI, R. & FLAGEOLLET, J.-C. (eds.): Temporal occurence and forecasting of landslides in European Community.- European Commission, Science Research Development, 339 - 383.
- BUNDESANSTALT FÜR GEOWISSENSCHAFTEN UND ROHSTOFFE (1994): Bodenkundliche Kartieranleitung.-Hannover.
- BUNDESMINISTERIUM FÜR UMWELT, NATURSCHUTZ UND REAKTORSICHERHEIT (2000): Hydrologischer Atlas von Deutschland.- Bonn.
- BÜHMANN, D. & RAMBOW, D. (1979): Der Obere Buntsandstein (Röt) bei Borken/Hessen, Stratigraphie und Tonmineralogie.- Geol. Jb. Hessen, 107, 125 - 138.
- CARRARA, A., CARDINALI, M., DETTI, R., GUIZZATI, F., PASQUI, V., & P. REICHENBACH (1991): GIS techniques and statistical models in evaluating landslide hazard.- Earth Surf. Processes Landforms 16, 427 - 445.
- CLERICI, A. & S. PEREGO (2000): Simulation of the Parma River blockage by the Corniglio landslide (Northern Italy).- Geomorphology 33, 1 23.
- CROZIER, J. (1999): Prediction of rainfall-triggered landslides: A Test of the antecedent water satus model.-Earth Surf. Process. Landforms 24, 825 - 833.
- DEMEK, J. (1976): Handbuch der geomorphologischen Detailkartierung.- Wien.
- DEUBEL, (1964): Erläuterungen zur Geologischen Karte der DDR 1:25 000 Blatt 5036 Bürgel.- Berlin.
- DEUTSCHER WETTERDIENST (1997): Starkniederschlagshöhen für Deutschland KOSTRA Atlas.-Offenbach a.M..
- DIETZE, G. (1947): Über den Jahresgang der Niederschlagshöhe in Thüringen.- Mitt. d. Thüringischen Landeswetterwarte, 8, 1 57.
- DIKAU, R., BRUNDSDEN, D., SCHROTT, L. & IBSEN, L. (1996): Landslide Recognition.- Chichester.
- DIKAU, R. & T. GLADE (2002): Gefahren und Risiken durch Massenbewegungen.- Geogr. Rdsch. 54, 1, 38 45.
- DOCKTER, J. (1962): Erläuterungen zur Geologischen Spezialkarte der DDR 1:25.000 Blatt 4630 Schernberg.- Berlin.
- DOCKTER, J. (1963): Erläuterungen zur Geologischen Spezialkarte der DDR 1:25.000 Blatt 4631 Sondershausen.- Berlin.
- DOCKTER, J. & A. STEINMÜLLER (1993): Erläuterungen zur Geologischen Karte 1:25.000 von Thüringen Blatt 4530 Nordhausen (Süd).- Weimar.
- DYCK, S. & PESCHKE, G. (1995): Grundlagen der Hydrologie.- Verlag für Bauwesen, Berlin.
- EINSELE, G., HEITFELD K.-H., LEMPP CH., & K. SCHETELIG (1985): Auflockerung und Verwitterung in der Ingenieurgeologie: Übersicht, Feldansprache, Klassifikation (Verwitterungsprofile).- In: Ingenieurgeologische Probleme im Grenzbereich zwischen Locker- und Festgestein.-2 - 28, Berlin.

- EISENBRAU, I. & ROMMEL, W. (1986): Rutschungen in Keupergesteinen des Stromberges (Baden-Württemberg).- Jber. Mitt. Oberrhein. Geol. Ver., N.F. 68, 271 - 285.
- FRÜHAUF, M. (1991): Neue Befunde zur Lithologie, Gliederung und Genese der periglazialen Lockermaterialdecken im Harz: Fremdmaterialnachweis und Decksedimenterfassung.- Petr. Geogr. Mitt., Jg. 135, 4, 249 - 255.
- FRÜHAUF, M. (1992): Die Bedeutung jungdryaszeitlicher geomorphologischer Prozesse für die Landschaftsgenese in den Mittelgebirgen.- Z. geol. Wiss., 20, 3, 239 244.
- IRIGARAY C., FERNANDEZ, T., EL HAMDOUI & J. CHACON (1999) : Verification of landslide susceptibility mapping: a case study.- Earth Surf. Processes Landforms 24, 537 544.
- FISCHER, P., FÖRSTER, W., MOLEK, H. &. .REUTER, F. (1975): Ingenieurgeologische, bodenmechanische und geophysikalische Probleme beim Straßenbau im Bereich der Röt/Muschelkalkgrenze.- Zschr. F. angew. Geol., Bd. 21, 7, 332 - 335.
- FREIES WORT (1994a): Geologische Untersuchung des Baugrundes reicht nicht aus.- Nr. 4, S. 3, 06.01.1994.
- FREIES WORT (1994b): Felsteile sind schon abgebrochen.- Nr. 58, S. 2, 10.03.1994.
- FREIES WORT (1994C): Weitere Probebohrungen wurden gemacht.- Nr. 105, 30.05.1994.
- FRITSCH, K. v. (1892): Erläuterungen zur geologischen Spezialkarte von Preußen und den Thüringischen Staaten Blatt 5233 Remda.- Königl. Preußische Geol. Landesanstalt, Berlin.
- FREYBERG, B. (1923): Die tertiären Landoberflächen in Thüringen.- Fortsch. d. Geol. u. Paläontol. H. G, 1 77.
- GIEBELHAUSEN, K. (1872): Erläuterungen zur geologischen Spezialkarte von Preußen und den Thüringischen Staaten Blatt 5638 Keula.- Königl. Preußische Geol. Landesanstalt, Berlin.
- GLADE, T. (2000): Modelling landslide triggering rainfalls in different regions of New Zealand- the soil water status model.- Z. Geomorp. N.F., Suppl.-Bd. 122, 63 82.
- GLASER, R. & SPONHOLZ, B. (1993): Erste Untersuchungen von Hangrutschungen an der Frankenhöhe.-Würzb. Geogr. Arb., 87, 339 - 354.
- GLAWE, U. & MOSER, M. (1989): Erste Untersuchungsergebnisse zur Kinematik der Bergzerreißung Treßdorfer Höhe (Karnische Alpen).- Jb. Geol. B.-A., Bd. 132, 4, 629 - 644.
- GLAWE, U. & MOSER, M. (1993): messtechnische und theoretische Bearbeitung von Bergzerreißungen und Blockbewegungen.- Felsbau, Jg.11, 5, 235 250.
- GNEIST, M. (1999): Geomorphologischer Vergleich von zwei Hangrutschungen am Nordrand des Thüringer Beckens. Dipl.-Arb.,Univ.Halle. Inst. f. Geogr. (unveröff.).
- GÖBEL, P., LESER, H. & G. STÄBLEIN (1973): Geomorphologische Kartierung. Richtlinien zur Herstellung geomorphologischer Karten 1:25.000.
- GRABNER, J. (1970): Geologische Untersuchungen in der Umgebung von Wanfried.- Dipl. Arb. Univ. Frankfurt, (unveröff.)
- GRITZNER, M.-L., A. MARCUS, R. ASPINALL & S.-G. CUSTER (2001): Assessing landslide potential using GIS, soil wetness modelling and topographic attributes, Payette River, Idaho.-Geomorphology 37, 149 - 165.
- GRUNDMANN, L. (1998): Rudolstadt und das Mittlere Saaletal.- Werte der Deutschen Heimat, 58, 1 246.
- GRUNERT, J. & HARDENBICKER, U. (1991): Hangrutschungen im Bonner Raum- ihre Genese und Kartierung für Planungszwecke.- Z. Geomorp. N.F., Suppl.-Bd. 89, 35 48.

- GRUNERT, J. & HARDENBICKER, U. (1993): Gravitative Hangangabtragung im Bonner Raum während des Holozäns.- Würzb. Geogr. Arb.,87, 325 - 338.
- GRUNERT, J. & SCHMANKE, V. (1997): Hangstabilität im Südwesten Bonns.- Geogr. Rdsch., 49, 10, 584 590.
- HAMMER, H. (1985): Systematische Untersuchungen von Rutschungen im Nordbayrischen Deckengebirge.-Veröff. d. Grundbauinst. d. Landesgewerbeanst. Bayern, 42, 1 - 103, Nürnberg.
- HAß, O. (1996): Geologische Kartierungen und ingenieurgeologische Untersuchungen von Rutschungen am Burgberg bei Breven, Kreis Holzminden. Dipl. Arb., TU Braunschweig, (unveröff.).
- HECHT, G. (1966): Trinkwassererschließung im Rötausstrich auf dem Meßtischblatt Bürgel.- Geologie, 7, 810 821, Berlin.
- HEIM, A. (1882): Über Bergstürze.-1.Aufl., Zürich.
- HEIM, A. (1932): Bergsturz und Menschenleben.- 1. Aufl. Zürich.
- HEIMBACH, W. (1962): Gravitative Deformationen im Muschelkalk Unterfrankens.- Geol. Jb., Bd.100, 527 536.
- HEMPEL, L. (1955): Studien über Verwitterung und Formenbildung im Muschelkalkgestein.-Gött. Geogr. Abh., 18, 1 - 112.
- HENNINGSEN, D. & G. KATZUNG (1992): Einführung in die Geologie Deutschlands.- Stuttgart.
- HEITFELD, K.-H. (1978): Beispiele von Felsrutschungen im Nordteil des Rheinischen Schiefergebirges.- Ber.3. Nat.Tag.Felsmech., Achen, 337 366, Essen (DGEG).
- HEITFELD, K.-H. (Hrsg.) (1985): Ingenieurgeologische Probleme im Grenzbereich zwischen Locker- und Feststeinen.- Heidelberg.
- HOHL, R. (1985) (Hrsg.): Die Entwicklungsgeschichte der Erde.-Werner Dausien Hanau/Main, 7. Auflg., Hanau.
- HÖHNE, U. (1996): Stichpunktartige Manuskripe zur Sanierung B4 im Bereich Ritterstein.- 1 3, (unveröff.).
- HOPPE, W. & G. SEIDEL (1974): Geologie von Thüringen.- Leipzig/ Gotha.
- HUTCHINSON, J.N. (1988): General Report: Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology.- Proceed. 5th Int. Symp. Landslides in Lausanne, 1, 3 35.
- JOHNSEN, G. (1974a): Blockbewegungen an der Wellenkaltrauf Thüringens.- Z. geol. Wiss., 2, 4; 449 455.
- JOHNSEN, G. (1974b): Baumaßnahmen an der Wellenkalksteilstufe Thüringens.- Bauplanung-Bautechnik, Jg. 28, 4, 180 182.
- JOHNSEN, G. (1981): Bewegungsmessungen im Bereich von Blockrutschungen an der Röt/Wellenkalk-Schichtstufe Thüringens.- Zschr. f. angew. Geol., 27, 8, 386 - 392.
- JOHNSEN, G. (1984a): Beobachtungen an einem aktiven Bergrutsch an den Bleicheröder Bergen bei Kraja.- Beitr. z. Heimatkunde a. Stadt u. Kreis Nordhausen, 9, 26 34.
- JOHNSEN, G. (1984b): Hangbewegungen vom Block-Typ östlich Berggießhübel.- In: Ingenieurgeologische Untersuchungen im Fels, Vortrags- und Exkursionstagung der GGW 1984 in Freiberg, 29 38.
- JOHNSEN, G. u. KLENGEL, K. J. (1973): Blockbewegungen an der Wellenkalksteilstufe Thüringens in ingenieurgeologischer Sicht.- Engeneering Geology, 7, 231 - 257.

- JOHNSEN, G. u. KOSTAK, B. (1980): Zusammenhang zwischen den Niederschlägen und der Aktivität der Hangdefprmationen - Messungen im Gebiet Kraja (Nordthüringen).- Casopis pro mineralogii a geologii, roc. 25, c. 2, 1980. (tschech.)
- JOHNSEN, G. & K.-H- SCHMIDT (2000): Measurement of block displacement velocities on the Wellenkalk-scarp in Thuringia.- Z.f. Geomorph., Suppl. Bd. 123, 93 110.
- JORDAN, H. & H.-J. WEDER (1999): Hydrogeologie- Grundlagen und Methoden.- Stuttgart.
- KAISER, E. (1904): Erläuterungen zur Geologischen Karte von Preußen und benachbarter Bundesstaaten, Blatt 4727, Lengefeld.- Königl. Preuss. Geol. Landesanstalt und Bergakademie, Berlin.
- KALLINICH, J. (1999): Verbreitung, Alter und geomorphologische Ursachen von Massenverlagerungen an der Schwäbischen Alb auf der Grundlage von Detail und Überschichtskartierungen.- Tübinger Geographische Arbeiten, D, 4, 1 - 166.
- KAUF, H. (1947): Die Einwirkung der Orographie des Mittleren Saaletales auf die Niederschlagsverteilung-Teil I Mittlere Niederschlagsverhältnisse in der Umgebung von Jena.- Mitt. Der Thüringischen Landeswetterwarte, 8, 31 - 57.
- KIRBIS, G. (1950): Beiträge zur Morphologie der Goburg.- Gött. Geogr. Abh., 5, 1 42.
- KLENGEL, K. J. u. PASEK, J. (1974): Zur Terminologie von Handbewegungen.- Zschr. angew. Geol., Bd. 20, 3, 128 132.
- KLENGEL, K.J. & H.C. RICHTER (1992): Geologischer Aufbau und Baugrundverhältnisse von Dresden und seiner Umgebung.- Vorträge Baugrundtagung Dresden, 3 10, Essen (DGGT).
- KNOBLICH, K. (1971): Zur Scherfestigkeit und Rutschempfindlichkeit der Tone.- Giessener Geol. Schr., 2, 1-177.
- KOCH, H.-G. (1953): Wetterheimatkunde von Thühringen.- Jena
- KÖNIG, W. (2001): Morphometrische Analyse von Wellenkalk-Schichtstufenhängen im Raum Jena.- Dipl. Arb. Univ. Halle, Inst. Geogr., (unveröff.).
- KRAUT, C. (1995): Der Einfluß verschiedener Geofaktoren auf die Rutschempfindlichkeit an der Schichtstufe der Schwäbischen Alb.- Dipl. Arb. Univ. Tübingen, Inst. Geogr., (unveröff.)
- KRAUTER, E. (1990): Phänomenologie natürlicher Böschungen (Hänge) und ihrer Massenbewegungen. In: Grundbau-Taschenbuch, 3. Aufl., 1 - 46.
- KRAUTER, E. (1994) Hangrutschungen und deren Gefährdungspotential für Siedlungen.- Geogr. Rdsch., 7 8, 422 428.
- KRAUTER, E. (1998): Rutschungen unter Kontrolle? Monitoring und Stabilisierung von Massenbewegungen.-Geospektrum, 4, 20 - 24.
- KRAUTER, E., LIPPOMANN R., MOSER, M., MÜLLER, B. & PRINZ, H. (1996): Kinematical-geotechnical aspects of landslides in Germany.-Proceed. 7th Int. Symp. Landslides in Trondheim, 1, 251 256.
- KRÜMMLING, H., E. TORNACK, J. WIEFEL & K. WUCHER (1975): Massenverlagerungen an der Röt-Muschelkalk-Schichtstufe Nordwest-Thüringens.- Zschr. angew. Geol., 21, 552 - 558.
- KUGLER, H. (1982): Ausgewählte Verfahren der allgemeingeomorphologischen Reliefkennzeichnung für die geomorphologische Übersichtskartierung.- Petermanns Geogr. Mitt., 281, 42 55.
- LANGBEIN R. & G. SEIDEL (1960): Zur Geologie im Gebiet des Holunger Grabens (Ohmgebirgsgrabenzone).-Geologie, Jg. 9, H.1, 36 - 56.
- LANGBEIN, R. & G. SEIDEL (1976): Zur Ausbildung des oberen Teils des Bundsandsteins im Thüringer Becken.- Z. geol. Wiss., Jg. 4, 1, 751 - 769.

LANGBEIN, R., PETER, H. U. H.J. SCHWAHN (1983): Karbonat- und Sulfatgesteine.- Leipzig.

- LIEDTKE, H. & J. MARCINEK (1994) (Hrsg.): Physische Geographie Deutschlands.- 1. Auflg., Gotha.
- LIPPMANN, F. (1956): Clay minerals from the röth member of the triassic near Göttingen (Germany).- J. Sedim. Petrol., 26, No. 2, 125 139.
- MARTIN, W. (1965): Geologie der Umgebung von Weißenborn auf Blatt 4826 Eschwege (Nordhessen).-Dipl. Arb. Univ. Frankfurt, Inst. f. Geogr., (unveröff).
- MEITZ, P. (1998): Höhenstufendifferenzierungen von Schichtstufenhängen auf dem Colorado Plateau Der Einfluß von Lithologie und Klima.- Diss. Univ. Halle, Inst. F. Geogr. (unveröff.).
- MEIBL, G. (1996): Entwicklung eines Modells zur Berechnung der Reichweite von Felsstürzen.- Angewandte Geographische Informationsverarbeitung VIII, Beitraäge zum AGIT – Symposium, 3. – 5. Juli 1996, Salzburger Geographische Materialien, 24, 243 - 248.
- MENENDEZ DUARTE, R. & J. MARQUINEZ (2002): The influence of environmental and lithologic factors on rockfall at a regional scale: an evaluation using GIS.- Geomorphology, 43, 117 136.
- MERZ, G. (1987): Zur Petrographie, Stratigraphie, Paläögeographie und Hydrologie des Muschelkalks (Trias) im Thüringer Becken.- Z. geol. Wiss., Bd. 15, 1, 457 473.
- METEOROLOGISCHER DIENST DER DDR, HAUPTAMT FÜR KLIMATOLOGIE POTSDAM (Hrsg.) (1976-1989): Monatlicher Wetterbericht für das Gebiet der Deutschen Demokratischen Republik.- Potsdam.
- MEYNEN, E., SCHMITHÜSEN, J., GELLERT, J., NEEF, E., MÜLLER- MINY, H. & SCHULTZE, J.H. (1959 62): Handbuch der naturräumlichen Gliederung Deutschlands.- Bad Godesberg.
- MORGENEYER, W. (1963): Die Gliederung des Röts westlich des Saaletal.- Dipl. Arb. Univ. Halle, (unveröff.)
- MORTENSEN, H. & J. HÖVERMANN (1956): Der Bergrutsch an der Mackenröder Spitze bei Göttingen. Ein Beitrag zur Frage der klimatisch bedingten Hangentwicklung.- Premier Rapport de la Commission pour l'Etude des Versants, 149 - 155.
- MORTENSEN, H. (1960): Neues über den Bergrutsch südlich der Mackenröder Spitze und über die holozäne Hangformung an Schichtstufen im mitteleuropäischen Klimabereich.- Zschr. f. Geomorph., Suppl. Bd. 1, 114 - 123.
- MORTENSEN, H. (1963): Hangformung in der näheren und weiteren Umgebung von Göttingen, Nachr. D. Akad. D. Wiss. in Göttingen, II. math.-Phys. Kl., 1963, 279 288.
- MOSER, M. & GLAWE, U. (1994): Das Nassfeld in Kärnten- geotechnisch betrachtet.- Abh. Geol.B.-A., 50, 319 340.
- MOSER, M. (1999): Großhangbewegungen im alpinen Raum.- Relief Boden Paläoklima, 14, 97 116.
- MOSER, M. (2001): Untersuchungen zur Bilanzierung gravitativer Massenbewegungen in Locker- und Festgesteinen der Nördlichen Kalkalpen.- DFG Zwischenbericht zum Projekt-Nr. Mo 248/14 - 1, 1 – 17.
- MOESTA, F. (1876): Erläuterung der geologischen Spezialkarte von Preußen und den Thüringischen Staaten, Blatt 4826 Eschwege.- Königl. Preußische Geol.. Landesanstalt, Berlin.
- MÖLLER, K. (1988): Reliefentwicklung und Auslaugung in der Umgebung des Unterwerra-Sattels (Nordhessen).- Berliner Geogr. Abh., 48, 1 187.
- MÜCKE, E. (1962): Die Formung der nordthüringischen Muschelkalkschichtstufe.- Wiss. Zschr. d. Univ. Halle, Math.-Nat. R. XI/10, 1213 - 1222.

MÜNCHNER RÜCKVERSICHERUNG (2000): Naturkatastrophen- Stand der Dinge.- Sonderheft Millenium.

- NAUMANN, E. (1904): Erläuterungen zur geologischen Spezialkarte von Preußen und benachbarter Bundesstaaten, Blatt 4627 Dingelstädt.- Königl. Preußische Geol. Landesanstalt, Berlin.
- NAUMANN, E. (1907): Erläuterungen zur geologischen Spezialkarte von Preußen und benachbarter Bundesstaaten, Blatt 4827 Treffurt.- Königl. Preußische Geol. Landesanstalt, Berlin.
- NAUMANN, E. (1915): Erläuterungen zur geologischen Spezialkarte von Preußen und benachbarter Bundesstaaten, Blatt 5035 Jena.- Königl. Preußische Geol. Landesanstalt, Berlin.
- PASEK, J. (1974): Haupttypen und Ursachen der Hangbewegungen.- Zschr. Geol. Wiss., Bd. 2, 4, 315 324, Berlin.
- PASSARGE, S. (1914): Morphologie des Meßtischblattes Stadtremda.- Mitt. Geogr. Ges. Hamburg, 28, 1 221.
- PATZELT, G. (1994): Streifzüge durch die Erdgeschichte Nordwest-Thüringens.-Geographische. Bausteine, Neue Reihe, 1 - 96.
- PLASSE, J. (1923): Bergstürze im Unteren Muschelkalk bei Jena und Kahla.- Mitteilungen der Geographischen Gesellschaft zu Jena, 37, 42 52.
- PLATE, E, CLAUSEN, L., HAAR, U., KLEEBERG, H.-B., KLEIN, G. MATTHEß, G., ROTH, R. & SCHMINKE, U. (1993): Naturkatastrophen und Katastrophenvorbeugung.- Bericht zur IDNDR, Weinheim.
- POISEL, R. &. W. EPPENSTEINER (1983): Gang und Gehwerk einer Massenbewegung- Teil 2: Massenbewegungen am Rand des Systems >>Hart auf Weich<<.- Felsbau, 7, 16 - 20.
- POLLACK, V. (1925): Über bisherige Klassifikation der Boden- oder Massenbewegungen und deren Verwertung.- Zschr. F. Geomorphologie, Bd. 1, 302 339.
- PUFF, P. (1963): Erläuterungen zur geologischen Spezialkarte der Deutschen Demokratischen Republik Blatt 5234 Rudolstadt.- Berlin.
- RAPP, J. & C.D. SCHÖNWIESE (1996): Atlas der Niederschlags- und Temperaturtrends in Deutschland 1891 1960.- Frankfurter Geow. Arb., 35, 1 253.
- REINHARDT, H. (1934): Niederschlagsschwankungen in Thüringen.- Mitt. Der Thüringischen Landeswetterwarte, 6, 1 40.
- REUTER, F., KLENGEL, K.J. & J. PASEK (1992): Ingenieurgeologie.- 3. Aufl., Leipzig/Stuttgart.
- RICHTER, R. (1885): Erläuterungen zur geologischen Spezialkarte von Preußen und den Thüringischen Staaten Blatt 5234 Rudolstadt.- Königl. Preußische Geol. Landesanstalt, Berlin.
- ROHDENBURG, H. (1965): Die Muschelkalk-Schichtstufe am Ostrand des Sollings und Bramwaldes.- Gött. Geogr. Abh., 3, 1 - 83.
- ROSENKRANZ, E. (1966): Physische-geographischer Überblick über das Thüringer Becken und seine Randgebiete (Bezirk Erfurt).- Ztschr. F. d. Erdkundeunterricht, 18, 163 173.
- ROSENKRANZ, E. (1978): Die Reliefgliederung am Ostrande des Thüringer Beckens.- Peterm. Geogr. Mitt., Jg. 122, 30 36.
- ROSENKRANZ, E. (1985): Geomorphologische Forschungen in Thüringen. Geogr. Ber., 115, 2, 133 149.
- RÖSING, F. & B. WENZEL (1989): Der Bergrutsch am Nordhang der Hörne bei Bad Sooden-Allendorf (Nordhessen) am 21. 7. 1985.- Geol. Jb. Hessen, 117, 237 - 250.
- Rüger, L. (1937): Der Wellenkalk.- Ber. z. Geolog. v. Thüringen, Bd IV, H.1 6, 137 155.

- SAHLING, I. (2002): Möglichkeiten der dendrogeomorphologischen Analyse der Öffnungsraten von Spalten an der Wellenkalk-Schichtstufe im südlichen Thüringer Becken.- Dipl.-Arb., Univ. Halle. Inst. f. Geogr. (unveröff.).
- SCHÄDEL, K. & STOBER, I. (1988): Rezente Großrutschungen an der schwäbischen Alb.- Jh. Geol. Landesamt Baden- Württemberg, 30, 413 439.
- SCHENK, D. (1983): Auswirkung der Verwitterung auf Festigkeit und Mikrogefüge überkonsolidierter Tonsteine der oberen Röt-Folge (Rhön).- Diss. Univ. Kiel.
- SCHENK, U. (1992): Die Rutschungen an der Wellenkalk-Schichtstufe der Gobert.- Dipl.-Arb. Uni. Berlin, Inst. f. Geogr., (unveröff.).
- SCHMANKE, V., KIRSCHHAUSEN, D. & GRUNERT, J. (1996): Bodengefährdung durch Hangrutschungen.-Mitt. Dt. Bodenkundl. Ges., 79, 427 - 430.
- SCHMID, E.E. (1889): Erläuterung der geologischen Spezialkarte von Preußen und den Thüringischen Staaten, Blatt 5131 Arnstadt.- Königl. Preußische Geol. Landesanstalt, Berlin.
- SCHMIDT, K.-H. (1988a): Die Reliefentwicklung des Colorado Plateaus.- Berliner Geogr. Abh., 49, 1 183.
- SCHMIDT, K.-H. (1988b): Die Wellenkalkschichtstufe in Nordhessen.- Ber. dt. Landeskunde, 62, 337 355.
- SCHMIDT, K.-H. & I. BAUM (1998): Massenbewegungen an der Muschelkalk-Schichtstufe in Nordhessen und Thüringen.- DFG-Abschlussber., SCHM 472/10 - 1, 1 - 45.
- SCHMIDT, K.-H., BEYER, I. & KUMPERT, O. (2000): Massenbewegungen an der Muschelkalk-Schichtstufe in Nordhessen und Thüringen.- DFG-Abschlussber., SCHM 472/10 - 2, 1 - 28.
- SCHMIDT, K.-H. & P. MEITZ (2000a): Schichtstufenhänge auf dem Colorado Plateau, USA- lithologische Steuerung und klimatische Höhenstufendifferenzierung.- Die Erde, 131, 181 204.
- SCHMIDT, K.-H. & P. MEITZ (2000b): Effects of increasing humidity on slope geomorphology: cuesta scarps on the Colorado Plateau, USA.- The Hydrology-Geomorphology Interface, 261, 165 181.
- SCHMIDT, K.-H. & I. BEYER, (2001): Factors controlling mass movement susceptibility on the Wellenkalk-scarp in Hesse and Thuringia.- Z Geomorph. N.F., Suppl.-Bd. 125, 43 - 63.
- SCHMITTHENNER, H. (1939): Die Muschelkalkstufe in Ostthüringen.- Ber. d. Sächs. Akad. d. Wiss. Leipzig, Math.-Phys. Kl. XCI, 85 - 118.
- SCHMITTHENNER, H. (1954): Die Regeln der morphologischen Gestaltung im Schichtstufenland.- Pet. Geogr. Mitt., Jg. 98, 3 - 10.
- SCHNEIDER, H.-E. (1968): Gipsführung und Auslaugungserscheinungen im Röt von Deuna (Eichsfeld) und ihre Bedeutung für die Zementindustrie.- Z. angew. Geol., 14, H. 1, 18 25.
- SCHÖNWIESE, C.D. (1979): Klimaschwankungen.- Verständl. Wissenschaft, 115, 1 181, Heidelberg.
- SCHRÖDER, E. (1929): Erläuterungen zur Geologischen Karte von Preußen und benachbarten deutschen Ländern, Blatt 5135 Kahla.- Königl. Preußische Geol. Landesanstalt, Berlin.
- SCHUNKE, E. (1968): Die Schichtstufenhänge im Leine-Weser-Bergland in Abhängigkeit vom geol. Bau und Klima.- Gött. Geogr. Abh., 43, 1 219.
- SCHUNKE, E. (1969): Die Schichtstufenhänge des Leine-Weser-Berglandes, Methoden und Ergebnisse ihrer Untersuchung.- Geol. Rdsch., 58, 446 464.
- SCHUNKE, E. (1971): Die Massenverlagerungen an den Schichtstufen und Schichtkämmen des Leine-Weser-Berglandes.- Nachr. Akad. Wiss. Göttingen, 2. Math.-Phys. Kl., 3, 47 - 77.

- SCHUNKE, E. & J. SPÖNEMANN (1972): Schichtstufen und Schichtkämme in Mitteleuropa.- Göttinger Geogr. Abh., 60, 65 - 92.
- SEIDEL, G. (1965): Zur geologischen Entwicklungsgeschichte des Thüringer Beckens.- Geolg. Jg. 14, Nr. 50, 1 115.
- SEIDEL, G. (1990): Zur Gliederung der Wellenkalk- Folge (Muschelkalk) zwischen Jena und Freyburg.- Z. Geol. Wiss., Bd. 18, 7, 825 - 835.
- SEIDEL, G. (1992): Thüringer Becken.- Sammlung Geologischer Führer, 85, 1 204.
- SEIDEL, G. (1995): Geologie von Thüringen.- Stuttgart.
- SEIDEL, G. & STEINMÜLLER, A. (1993): Erläuterungen zur Geologischen Karte 1:25.000 von Thüringen Blatt 4936 Camburg.- Weimar.
- SEMMEL, A. (1985): Periglazialmorphologie.-Darmstadt.
- SEMMEL, A. (1996): Geomorphologie der Bundesrepublik Deutschland.- Stuttgart.
- SKEMPTON, A.W. & HUTCHINSON, J. (1969): Standsicherheit von natürlichen Böschungen. 7. Int. Kongreß für Bodenmechanik und Grundbau.- Mexiko.
- SPÖNEMANN, J. (1966): Geomorphologische Untersuchungen an Schichtkämmen des Niedersächsischen Berglandes.- Göttinger Geogr. Abh., 36.
- SPUREK, M. (1972): Historical cataloque of slice phenomena.- Studia geographica, 19, 1 178, Brno.
- STEINMÜLLER, A. (1965): Zusammenhänge zwischen Auslaugung, Lagerungs- und Oberflächenformen im thüringischen Eichsfeld.- Z.angew. Geol., 11, 90 - 95.
- TOUSSAINT, B. (1979): Der Ringgau, ein natürliches Groß-Lysimeter dargestellt am Wasserhaushalt der Breitauer Kressenteichquelle unter besonderer Berücksichtigung der Karsthydrologie.- Geol. Jb., C21, 99 135.
- TERHORST, B. (1996): Kartierlegende für Massenbewegungen und Hangformen, Maßstabsbereich 1:10.000 1:2.500.- Tübingen, (unveröff.).
- TERHORST, B. (1997): Formenschatz, Alter und Ursachenkomplexe von Massenverlagerungen an der schwäbischen Juraschichtstufe unter besonderer Berücksichtigung von Boden- und Deckschichtenentwicklung. Tübinger Geogr. Abh., D, 02, 1 - 212.
- THORNES, J.-B. & I. A. AYALA (1998): Modelling mass failure in a Mediterranean mountain environment: climatic, geological, topographical and erosional controls.- Geomorphology, 24, 87 100.
- THÜRINGER ALLGEMEINE (1992a): Im Eichsfeld tat sich zwischen Uder und Lutter plötzlich die Erde auf.-Ausgabe 247, 2, vom 20.10.1992.
- THÜRINGER ALLGEMEINE (1992b): Gipsauswaschung: Erdloch entstand- Geologen bestätigen Vermutung.-Ausgabe 248, 11, vom 21.10.1992.
- THÜRINGER MINISTERIUM FÜR LANDWIRTSCHAFT, NATURSCHUTZ UND UMWELT (1996): Grundwasser in Thüringen Bericht zur Menge und Beschaffenheit, 1 163, Gotha.
- TILCH, N. (1999): Rutschungs-Suszeptibilität im südlichen Niedersachsen Von der Anatomie der Rutschung bei Brunkensen/Alfeld zur Prognose instabiler Hanglagen.- Braunschweiger Geowissenschaftliche Arbeiten, 22, 1 - 184.
- TRAUZETTEL, G. (1962): Die Rutschungen der Württembergischen Knollenmergel.-Arb. u. Mitt. Geol. Paläontol. Inst. TH Stuttgart, N.F. 32, 1 182.
- TRZCINSKIJ, J.B. (1974): Rutschungen und Böschungsdeformationen in Flußtälern Ostsibiriens.- Zschr. geol. Wiss., 4, 457 465.

- UNESCO WORKING PARTY FOR WORLD LANDSLIDE INVENTORY (UNESCO) (1993): Multilingual Glossary for Landslides.- Canadien Geotechnical Society.
- UNGER, K. P. & SCHRAMM, H. (1968): Alttertiäre Rotlehme auf Muschelkalk in NE-Thüringen.- Jb. Geol., 2, 521 535.
- VAN ASCH, TH. W. J., BUMA, J. & L.P.H. VAN BEEK (1999): A view on some hydrological triggering systems in landslides.- Geomorphology, 30, 25 32.
- VARNES, D.J. (1978): Slope movement types and processes.- In: Landslide-Analysis and Control, Transportation Research Board Special Report, 176, National Acd. of Sciences, pp. 11 - 33.
- WAGENBRETH, O. & W. STEINER (1990): Geologische Streifzüge.- Dtsch. Verlag Grundstoffindustrie, 4. Auflg., Leipzig.
- WALTER, R. (1995): Geologie von Mitteleuropa.-E. Schweizbart`sche Verlagsbuchhandlung, 6. Auflg., Stuttgart.
- WEBER, H. (1929): Geomorphologische Studien in Westthüringen.- Forsch. dt. Landes u. Volkskd., 27, 269 -473.
- WEBER, H. (1951): Auslaugung.- Zeitschr. f. d. Erdkundeunterricht, 9, 403 416.
- WEBER, H. (1952): Fragen der Oberflächengestaltung in der thüringischen Zechstein- und Trias-Landschaft.-Hall. Jahrb. f. mitteldt. Erdgeschichte, 1, 175 - 259.
- WEBER, H. (1955): Einführung in die Geologie Thüringens.- Berlin.
- WENZEL, B. (1991): Zur Lithostratigraphie und Sedimentologie des Röt und zu den Massenverlagerungen an der Röt-/Muschelkalkgrenze in Nordhessen.- Giessener Geol. Schr., 53, 1 229.
- WITTE, M. (1995a): Untersuchungen instabiler Hangbereiche an der Röt-Muschelkalkgrenze am Westufer der Weser bei Holzminden.- Teil a. Dipl. Kartierung., TU Braunschweig, (unveröff.)
- WITTE, M. (1995b): Untersuchungen instabiler Hangbereiche an der Röt-Muschelkalkgrenze am Westufer der Weser bei Holzminden.- Teil B. Dipl. Arb., TU Braunschweig, (unveröff.).
- ZARUBA, Q. & V. MENCL (1961): Ingenieurgeologie.- Berlin.
- ZARUBA, Q. & V. MENCL (1969): Landslides and Their Control.- Elseveer, 205 pp. Amsterdam 205 pp.
- ZIEGENHARDT, W. & JUNGWIRTH, J. (1968): Erläuterungen zur geologischen Spezialkarte der Deutschen Demokratischen Republik, Blatt 5231 Plaue.- Berlin.
- ZIMMERMANN, E. (1892): Erläuterung der geologischen Spezialkarte von Preußen und den Thüringischen Staaten, Blatt 5232 Stadt Ilm.- Königl. Preußische Geol. Landesanstalt, Berlin.
- ZÖFEL, P. (1992): Statistik in der Praxis.- Stuttgart-Jena.

8. Verwendetes Kartenmaterial

Topographische Karten

1:100.000

C 4726 Mühlhausen (Thüringen)	Thüringer LVA, 2. Auflage, 1996
C 4730 Nordhausen	Thüringer LVA, 2. Auflage, 1996
C 4734 Halle (Saale)	Thüringer LVA, 2. Auflage, 1997
C 5126 Eisenach	Thüringer LVA, 2. Auflage, 1996
C 5130 Erfurt	Thüringer LVA, 1. Auflage, 1992
C 5134 Jena	Thüringer LVA, 3. Auflage, 1998
C 5530 Suhl	Thüringer LVA, 2. Auflage, 1996
C 5534 Saalfeld (Saale)	Thüringer LVA, 2. Auflage, 1996

1:25.000

M-32-47-C-b Remda	Ministerium f. Nationale Verteidigung Militärtopographischer Dienst (Hrsg.): Ausgabe 1990,
	Stand 1987.
M-32-47-D-a Teichel	Ministerium f. Nationale Verteidigung Militärtopographischer Dienst (Hrsg.): Ausgabe 1990,
	Stand 1987.
M-32-47-D-b Engerda	Ministerium f. Nationale Verteidigung Militärtopographischer Dienst (Hrsg.): Ausgabe 1990,
	Stand 1987.
4528 Worbis	Thüringer LVA (Hrsg.): Ausgabe 1993, Stand 1993
4529 Bleicherode	Thüringer LVA (Hrsg.): Ausgabe 1993, Stand 1993
4626 Heilbad Heiligenstadt	Thüringer LVA (Hrsg.): Ausgabe 1999, Stand 1999
4627 Leinefelde	Thüringer LVA (Hrsg.): Ausgabe 1997, Stand 1997
4726 Grebendorf	Thüringer LVA (Hrsg.): Ausgabe 1997, Stand 1997
4727 Küllstedt	Thüringer LVA (Hrsg.): Ausgabe 1994, Stand 1994
4826 Eschwege	Hessisches LVA (Hrsg): Ausgabe 1995, Stand 1992
4827 Treffurt	Thüringer LVA (Hrsg.): Ausgabe 1998, Stand 1998
4926 Herleshausen	Hessisches LVA (Hrsg): Ausgabe 1995, Stand 1992
4927 Creuzburg	Thüringer LVA (Hrsg.): Ausgabe 1997, Stand 1997
4928 Mihla	Thüringer LVA (Hrsg.): Ausgabe 1998, Stand 1998

1:10.000

Stand 1986M-32-21-C-c-3 BirkenfeldeMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1985M-32-21-C-d-1 Heilbad HeiligenstatuMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1985M-32-21-C-d-2 WingerodeMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1986M-32-21-C-d-3 Heilbad HeiligenstatuMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1986M-32-21-C-d-4 GeisledenMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1986M-32-21-C-d-4 GeisledenMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1986	M-32-20-D-d-4 Hohengandern	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988,
M-32-21-C-c-3 BirkenfeldeMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1985M-32-21-C-c-4 UderMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1985M-32-21-C-d-1 Heilbad HeiligenstadtMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1986M-32-21-C-d-2 WingerodeMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1986M-32-21-C-d-3 Heilbad HeiligenstadtMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1985M-32-21-C-d-4 GeisledenMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1986		Stand 1986
Stand 1985M-32-21-C4 UderMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1985M-32-21-C-d-1 Heilbad HeiligenstadtMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1986M-32-21-C-d-2 WingerodeMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1985M-32-21-C-d-3 Heilbad HeiligenstadtMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1985M-32-21-C-d-4 GeisledenThüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1985	M-32-21-C-c-3 Birkenfelde	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988,
M-32-21-C-c-4 UderMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1985M-32-21-C-d-1 Heilbad HeiligenstadtMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1986M-32-21-C-d-2 WingerodeMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1985M-32-21-C-d-3 Heilbad Heiligenstadt SMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1985M-32-21-C-d-4 GeisledenMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1986		Stand 1985
Stand 1985M-32-21-C-d-1 Heilbad HeiligenstadtKinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1986M-32-21-C-d-2 WingerodeMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1985M-32-21-C-d-3 Heilbad Heiligenstadt SMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1986M-32-21-C-d-4 GeisledenThüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1985	M-32-21-C-c-4 Uder	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988,
M-32-21-C-d-1 Heilbad HeiligenstadtMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1986M-32-21-C-d-2 WingerodeMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1985M-32-21-C-d-3 Heilbad Heiligenstadt SMinisterium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1985M-32-21-C-d-4 GeisledenThüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1985		Stand 1985
M-32-21-C-d-2 Wingerode Stand 1986 M-32-21-C-d-3 Heilbad Heiligenstatt 8 Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1985 M-32-21-C-d-4 Geisleden Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1986	M-32-21-C-d-1 Heilbad Heiligenstadt	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988,
M-32-21-C-d-2 Wingerode Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1985 M-32-21-C-d-3 Heilbad Heiligenstadt S Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1986 M-32-21-C-d-4 Geisleden Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1985		Stand 1986
M-32-21-C-d-3 Heilbad Heiligenstadt S M-32-21-C-d-4 Geisleden Stand 1985 M-32-21-C-d-4 Geisleden Stand 1986 M-32-21-C-d-4 Geisleden Stand 1985 M-32-21-C-d-4 Geisleden Stand 1985 M-32-31-C-d-4 Geisleden Sta	M-32-21-C-d-2 Wingerode	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988,
M-32-21-C-d-3 Heilbad Heiligenstadt S Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988, Stand 1986 M-32-21-C-d-4 Geisleden Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1985		Stand 1985
M-32-21-C-d-4 Geisleden Stand 1986 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1985	M-32-21-C-d-3 Heilbad Heiligenstadt S	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988,
M-32-21-C-d-4 Geisleden Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1985		Stand 1986
	M-32-21-C-d-4 Geisleden	Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1985

M-32-21-D-b-4 Haynrode	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1989,
	Stand 1985
M-32-21-D-c-3 Kreuzebra	Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1985
M-32-21-D-c-4 Birkungen	Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1985
M-32-21-D-d-3 Niederoschel	Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1985
M-32-21-D-d-4 Deuna	Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1985
M-32-22-C-a-3 Kraja	Thüringer LVA (Hrsg.) Ausgabe 1995, Stand: 1985
M-32-22-C-a-4 Bleicherode	Thüringer LVA (Hrsg.) Ausgabe 1995, Stand: 1985
M-32-22-C-c-1 Sollstedt	Thüringer LVA (Hrsg.) Ausgabe 1995, Stand: 1985
M-32-22-C-c-2 Obergebra	Thüringer LVA (Hrsg.) Ausgabe 1995, Stand: 1985
M-32-22-C-c-3 Vollenborn	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1990
M-32-22-C-d-1 Kleinbrendten N	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1989,
	Stand 1985
M-32-22-C-d-2 Hainrode	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1989,
	Stand 1985
M-32-22-D-c-1 Großfurra	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1989,
	Stand 1985
M-32-22-D-c-2 Sondershausen N	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988,
	Stand 1986
M-32-22-D-c-3 Schernberg N	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1990
M-32-22-D-c-4 Sondershausen	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1988,
	Stand 1986
M-32-22-D-d-3 Sondershausen O	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1985,
	Stand 1986
M-32-22-D-d-4 Hachelbich	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1990
M-32-33-A-a-1 WüstheuterodeW	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1986
M-32-33-A-a-2 Wüstheuterode	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1986
M-32-33-A-a-3 Asbach- Sickenberg	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1984
M-32-33-A-a-4 Wiesenfeld	Thüringer LVA (Hrsg.) Ausgabe 1995, Stand: 1986
M-32-33-A-b-1 Kalteneber	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1986
M-32-33-A-b-2 Heuthen	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1986
M-32-33-A-b-3 Ershausen	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1986
M-32-33-A-b-4 Großbarloff	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1986
M-32-33-A-c-2 Kella	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1986
M-32-33-A-d-1 Geismar	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1986
M-32-33-A-d-2 Lengefeld u.Stein	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1986
M-32-33-A-d-4 Hildebrandshausen	Thuringer LVA (Hrsg.) Ausgabe 1993, Stand: 1986
M-32-33-B-a-3 Kullstedt	Thuringer LVA (Hrsg.) Ausgabe 1993, Stand: 1986
M-32-33-B-C-1 Struth	Thuringer LVA (Hrsg.) Ausgabe 1993, Stand: 1986
M-32-33-B-C-3 Diedori	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1986
M-32-33-C-b-1 Grobburschia	Thüringer LVA (Hrsg.) Ausgabe 1995, Stand: 1986
M 32 33 C b 3 Dombooh	Thüringer LVA (Hrsg.) Ausgabe 1995, Stand: 1986
M 22 22 C h 4 Sahaalaan	Thüringer LVA (Hrsg.) Ausgabe 1995, Stand: 1984
M-32-33-C-D-4 Schnellmannshausen	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M 22 23 C a 4 Naggalrädar	Thüringer LVA (Hrsg.) Ausgabe 1995, Stand: 1984
M 32 33 C d 2 Chourburg	Thuringer LVA (Hrsg.) Ausgabe 1995, Stand: 1984
M 32 33 C d 3 Horloshoveen	Thüringer L VA (Hrsg.) Ausgabe 1995, Stand: 1987
M-32-33-C-d-4 Dfordsdorf Sniahra	Thuringer LVA (Hrsg.) Ausgabe 1092, Stand: 1984
M-32-33-C-u-+ Fiel usuofi-Spicifia	Thüringer LVA (Hrsg.) Ausgabe 1003 Stand: 1987
M. 32-33-D-a-1 Bellion	Thuringer L VA (Hrsg.) Ausgabe 1993, Stand: 1987
M. 32. 34. R. h. 2 Holzongol	Thuringer LVA (Hrsg.) Ausgabe 1001 Stand: 1006
	- maringer 20111 (11105.) 11005000 1771, Dunia, 1700

M-32-35-A-a-1 Seega	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1991
M-32-35-A-a-2 Düppel	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1991
M-32-35-A-b-1 Oldisleben	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1992
M-32-35-A-b-2 Heldrungen	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1992
M-32-36-C-d-3 Dornburg	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990,
	Stand 1987
M-32-36-C-d-4 Frauenprießnitz	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990,
	Stand 1987
M-32-45-B-b-4 Sattelstädt	Thüringer LVA (Hrsg.) Ausgabe 1991, Stand: 1986
M-32-46-D-a-2 Gossel	Thüringer LVA (Hrsg.) Ausgabe 1994, Stand: 1993
M-32-46-D-a-4 Liebenstein	Thüringer LVA (Hrsg.) Ausgabe 1995, Stand: 1986
M-32-46-D-b-1 Siegelbach	Thüringer LVA (Hrsg.) Ausgabe 1995, Stand: 1986
M-32-46-D-b-2 Arnstadt S	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-46-D-b-3 Plaue	Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1986
M-32-46-D-b-4 Wipfra	Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1986
M-32-46-D-c-2 Geraberg	Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1986
M-32-46-D-d-1 Martinroda	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1986
M-32-46-D-d-2 Bücheloh	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1986
M-32-47-C-a-3 Niederwillingen	Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987
M-32-47-C-a-4 Stadtilm	Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987
M-32-47-C-b-3 Großhettstedt	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-b-4 Remda	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-c-1 Singen	Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987
M-32-47-C-c-2 Gösselborn	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-d-1 Solsdorf	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-d-2 Sundremda	Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-d-4 Quittelsdorf	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990,
M-32-47-C-d-4 Quittelsdorf	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel	 Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz	 Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt M-32-47-D-b-3 Engerda	 Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt M-32-47-D-b-3 Engerda M-32-47-D-b-4 Heilingen	 Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt M-32-47-D-b-3 Engerda M-32-47-D-b-4 Heilingen M-32-47-D-c-1 Lichstedt	 Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt M-32-47-D-b-3 Engerda M-32-47-D-b-4 Heilingen M-32-47-D-c-1 Lichstedt M-32-47-D-c-3 Bad Blankenburg	 Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt M-32-47-D-b-2 Reinstädt M-32-47-D-b-4 Heilingen M-32-47-D-b-4 Heilingen M-32-47-D-c-1 Lichstedt M-32-47-D-c-3 Bad Blankenburg M-32-48-A-a-2 Jena N	 Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1995, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt M-32-47-D-b-3 Engerda M-32-47-D-b-4 Heilingen M-32-47-D-c-1 Lichstedt M-32-47-D-c-3 Bad Blankenburg M-32-48-A-a-2 Jena N M-32-48-A-a-3 Jena W	 Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt M-32-47-D-b-3 Engerda M-32-47-D-b-4 Heilingen M-32-47-D-c-1 Lichstedt M-32-47-D-c-3 Bad Blankenburg M-32-48-A-a-2 Jena N M-32-48-A-a-3 Jena W M-32-48-A-a-4 Jena	 Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt M-32-47-D-b-2 Reinstädt M-32-47-D-b-3 Engerda M-32-47-D-b-4 Heilingen M-32-47-D-c-1 Lichstedt M-32-47-D-c-3 Bad Blankenburg M-32-48-A-a-2 Jena N M-32-48-A-a-3 Jena W M-32-48-A-a-4 Jena M-32-48-A-a-4 Jena	 Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1995, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt M-32-47-D-b-3 Engerda M-32-47-D-b-4 Heilingen M-32-47-D-c-1 Lichstedt M-32-47-D-c-3 Bad Blankenburg M-32-48-A-a-2 Jena N M-32-48-A-a-3 Jena W M-32-48-A-a-4 Jena M-32-48-A-b-1 Neugönna M-32-48-A-b-2 Tautenburg	 Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt M-32-47-D-b-2 Reinstädt M-32-47-D-b-3 Engerda M-32-47-D-b-4 Heilingen M-32-47-D-c-1 Lichstedt M-32-47-D-c-3 Bad Blankenburg M-32-48-A-a-2 Jena N M-32-48-A-a-2 Jena N M-32-48-A-a-4 Jena M-32-48-A-b-1 Neugönna M-32-48-A-b-2 Tautenburg M-32-48-A-b-3 Jena Ziegenhain	 Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt M-32-47-D-b-2 Reinstädt M-32-47-D-b-3 Engerda M-32-47-D-b-4 Heilingen M-32-47-D-c-1 Lichstedt M-32-47-D-c-3 Bad Blankenburg M-32-48-A-a-2 Jena N M-32-48-A-a-3 Jena W M-32-48-A-a-4 Jena M-32-48-A-b-1 Neugönna M-32-48-A-b-2 Tautenburg M-32-48-A-b-3 Jena Ziegenhain M-32-48-A-b-4 Jenalöbnitz	 Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt M-32-47-D-b-3 Engerda M-32-47-D-b-4 Heilingen M-32-47-D-c-1 Lichstedt M-32-47-D-c-1 Lichstedt M-32-47-D-c-3 Bad Blankenburg M-32-48-A-a-2 Jena N M-32-48-A-a-2 Jena N M-32-48-A-a-3 Jena W M-32-48-A-a-4 Jena M-32-48-A-b-1 Neugönna M-32-48-A-b-2 Tautenburg M-32-48-A-b-3 Jena Ziegenhain M-32-48-A-b-4 Jenalöbnitz M-32-48-A-c-1 Jena SW	 Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt M-32-47-D-b-2 Reinstädt M-32-47-D-b-3 Engerda M-32-47-D-b-4 Heilingen M-32-47-D-c-1 Lichstedt M-32-47-D-c-3 Bad Blankenburg M-32-48-A-a-2 Jena N M-32-48-A-a-3 Jena W M-32-48-A-a-4 Jena M-32-48-A-b-1 Neugönna M-32-48-A-b-2 Tautenburg M-32-48-A-b-3 Jena Ziegenhain M-32-48-A-b-4 Jenalöbnitz M-32-48-A-c-1 Jena SW M-32-48-A-c-2 Jena S	 Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, S
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt M-32-47-D-b-2 Reinstädt M-32-47-D-b-3 Engerda M-32-47-D-b-4 Heilingen M-32-47-D-c-1 Lichstedt M-32-47-D-c-3 Bad Blankenburg M-32-48-A-a-2 Jena N M-32-48-A-a-2 Jena N M-32-48-A-a-4 Jena M-32-48-A-b-1 Neugönna M-32-48-A-b-2 Tautenburg M-32-48-A-b-2 Tautenburg M-32-48-A-b-3 Jena Ziegenhain M-32-48-A-b-4 Jenalöbnitz M-32-48-A-c-1 Jena SW M-32-48-A-c-2 Jena S M-32-48-A-c-3 Zimmritz	 Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1992, S
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt M-32-47-D-b-2 Reinstädt M-32-47-D-b-3 Engerda M-32-47-D-b-4 Heilingen M-32-47-D-c-1 Lichstedt M-32-47-D-c-1 Lichstedt M-32-47-D-c-3 Bad Blankenburg M-32-48-A-a-2 Jena N M-32-48-A-a-3 Jena W M-32-48-A-a-3 Jena W M-32-48-A-b-1 Neugönna M-32-48-A-b-2 Tautenburg M-32-48-A-b-2 Tautenburg M-32-48-A-b-3 Jena Ziegenhain M-32-48-A-c-1 Jena SW M-32-48-A-c-2 Jena S M-32-48-A-c-3 Zimmritz M-32-48-A-c-3 Zimmritz M-32-48-A-c-4 Rothenstein	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1991, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt M-32-47-D-b-2 Reinstädt M-32-47-D-b-3 Engerda M-32-47-D-b-4 Heilingen M-32-47-D-c-1 Lichstedt M-32-47-D-c-1 Lichstedt M-32-47-D-c-3 Bad Blankenburg M-32-48-A-a-2 Jena N M-32-48-A-a-2 Jena N M-32-48-A-a-3 Jena W M-32-48-A-a-4 Jena M-32-48-A-b-1 Neugönna M-32-48-A-b-2 Tautenburg M-32-48-A-b-3 Jena Ziegenhain M-32-48-A-b-4 Jenalöbnitz M-32-48-A-c-1 Jena SW M-32-48-A-c-2 Jena S M-32-48-A-c-3 Zimmritz M-32-48-A-c-3 Zimmritz M-32-48-A-c-4 Rothenstein M-32-48-A-c-4 Rothenstein M-32-48-A-d-1 Drackendorf	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1991, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1991, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1991, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987
M-32-47-C-d-4 Quittelsdorf M-32-47-D-a-1 Haufeld M-32-47-D-a-2 Lengefeld M-32-47-D-a-3 Teichröda M-32-47-D-a-4 Teichel M-32-47-D-b-1 Drößnitz M-32-47-D-b-2 Reinstädt M-32-47-D-b-2 Reinstädt M-32-47-D-b-3 Engerda M-32-47-D-b-4 Heilingen M-32-47-D-c-1 Lichstedt M-32-47-D-c-3 Bad Blankenburg M-32-48-A-a-2 Jena N M-32-48-A-a-2 Jena N M-32-48-A-a-3 Jena W M-32-48-A-a-4 Jena M-32-48-A-b-1 Neugönna M-32-48-A-b-2 Tautenburg M-32-48-A-b-2 Tautenburg M-32-48-A-b-3 Jena Ziegenhain M-32-48-A-b-4 Jenalöbnitz M-32-48-A-c-1 Jena SW M-32-48-A-c-2 Jena S M-32-48-A-c-3 Zimmritz M-32-48-A-c-4 Rothenstein M-32-48-A-c-4 Rothenstein M-32-48-A-d-1 Drackendorf M-32-48-A-d-2 Schöngleina	Ministerium f. Nationale Verteidigung-Militärtopographischer Dienst (Hrsg.) Ausgabe 1990, Stand 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1991, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1988 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1993, Stand: 1987 Thüringer LVA (Hrsg.) Ausgabe 1992, Stand: 1987

M-32-48-C-a-2 Kahla	Thüringer LVA (Hrsg.) Ausgabe 1993,	Stand: 1987
M-32-48-C-a-3 Orlamünde	Thüringer LVA (Hrsg.) Ausgabe 1993,	Stand: 1987

Geologische Karten

1:400.000

THÜRINGER LANDESANSTALT FÜR BODENFORSCHUNG WEIMAR (1994) (Hrsg.):

1:25.000

4528 Worbis Kgl. Preuss. Geolog. Landesanst.(1853) (Hrsg.). 4529 Bleicherode Kgl. Preuss. Geolog. Landesanst.(1853) (Hrsg.). 4530 Hayn (Nordhausen Süd) Kgl. Preuss. Geolog. Landesanst.(1853) (Hrsg.). 4625 Witzenhausen Kgl. Preuss. Geolog. Landesanst.(1878) (Hrsg.). 4626 Heiligenstadt Kgl. Preuss. Geolog. Landesanst.(1902) (Hrsg.). 4627 Dingelstedt Kgl. Preuss. Geolog. Landesanst.(1902) (Hrsg.). 4628 Niederorschel Kgl. Preuss. Geolog. Landesanst.(1853) (Hrsg.). 4629 Groß-Keula (Keula) Kgl. Preuss. Geolog. Landesanst.(1953) (Hrsg.). 4630 Immenrode (Schernberg) Kgl. Preuss. Geolog. Landesanst.(1853) (Hrsg.). 4630 Schernberg Zentrales Geolog. Inst. Berlin (1959) (Hrsg.), 2. Auflg. 4631 Sondershausen Kgl. Preuss. Geolog. Landesanst. (Hrsg.). 4631 Sondershausen Zentrales Geolog. Inst. Berlin (1961) (Hrsg.),2. Auflg 4632 Frankenhausen Kgl. Preuss. Geolog. Landesanst.(1925) (Hrsg.). 4726 Kella (Grebendorf) Kgl. Preuss. Geolog. Landesanst.(1902) (Hrsg.). 4727 Lengenfeld (Küllstedt) Kgl. Preuss. Geolog. Landesanst.(1902) (Hrsg.). 4732 Kindelbrück Kgl. Preuss. Geolog. Landesanst.(1892) (Hrsg.). 4826 Eschwege Kgl. Preuss. Geolog. Landesanst.(1972) (Hrsg.). 4827 Treffurt Kgl. Preuss. Geolog. Landesanst.(1907) (Hrsg.). 4926 Netra (Herleshausen) Kgl. Preuss. Geolog. Landesanst.(1872) (Hrsg.). 4927 Creuzburg Kgl. Preuss. Geolog. Landesanst.(1907) (Hrsg.). 4936 Camburg Kgl. Preuss. Geolog. Landesanst. (Hrsg.). 5027 Eisenach Kgl. Preuss. Geolog. Landesanst.(1912) (Hrsg.). 5028 Wutha (Eisenach Ost) Kgl. Preuss. Geolog. Landesanst.(1904) (Hrsg.). 5035 Jena Kgl. Preuss. Geolog. Landesanst.(1927) (Hrsg.) 5036 Bürgel Zentrales Geolog. Inst. Berlin (1961) (Hrsg.), 2. Auflg 5131 Arnstadt Kgl. Preuss. Geolog. Landesanst.(1887) (Hrsg.). 5133 Kranichfeld Kgl. Preuss. Geolog. Landesanst.(1892) (Hrsg). 5134 Blankenhain Kgl. Preuss. Geolog. Landesanst.(1892) (Hrsg.). 5135 Kahla Kgl. Preuss. Geolog. Landesanst.(1929) (Hrsg.). 5230 Crawinkel Oberhof Kgl. Preuss. Geolog. Landesanst.(1898) (Hrsg.). 5231 Plaue Kgl. Preuss. Geolog. Landesanst.(1898) (Hrsg.). 5232 Stadt Ilm Kgl. Preuss. Geolog. Landesanst.(1892) (Hrsg.). 5233 Stadt Remda (Remda) Kgl. Preuss. Geolog. Landesanst.(1892) (Hrsg.). 5234 Rudolstadt Zentrales Geolog. Inst. Berlin (1968) (Hrsg.), 3. Auflg. 5234 Rudolstadt Kgl. Preuss. Geolog. Landesanst.(1892) (Hrsg.). 5235 Orlamünde Zentrales Geolog. Inst. Berlin (1956) (Hrsg.). 5333 Schwarzburg (Blankenburg) Kgl. Preuss. Geolog. Landesanst.(1892) (Hrsg.).

Thüringen Geologische Übersicht 1: 400 000.-1. Aufl., Justus Perthes Verlag Gotha.

Angaben zur Person

Name:	Ingo Beyer
Geburtsdatum:	19.01.1973
Geburtsort:	Wippra (Sachsen-Anhalt)
Familienstand:	ledig
Staatsangehörigkeit:	deutsch
Ausbildung:	
1979 – 1989	Polytechnische Oberschule Vatterode
	10-Klassenabschluss
1989 – 1992	Berufsbildende Schulen des Landkreises Aschersleben
	Landwirt mit Abitur
1992 – 1998	Martin-Luther-Universität Halle-Wittenberg
	Studium zum Diplom- Geograph,
	Spezialisierungsrichtung: Physische Geographie-
	Geoökologie
1998 – 2002	Martin-Luther-Universität Halle-Wittenberg
	Promotionsstudent
Berufstätigkeit:	
1998 – 2002	Martin-Luther-Universität Halle-Wittenberg
	wissenschaftlicher Mitarbeiter am Fachbereich
	Geowissenschaften, Institut für Geographie, Arbeitsgruppe
	Physische Geographie

Halle (Saale), 2002-06-25

Ingo Beyer

Erklärung

Hiermit versichere ich, die vorliegende Arbeit selbstständig und nur unter Verwendung der angegebenen Hilfsmittel angefertigt zu haben. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Halle (Saale), 2002-06-25

Ingo Beyer

Spaltenbildungen

Gebiet 514

Gebiet 496

Gebiet 313

Gebiet 319

Gebiet 722

Gebiet 471

Gebiet 268

Gebiet 606

Gebiet 590

Gebiet 189

Gebiet 475

Absatzschollen

Gebiet 308

Mauerschollen

Gebiet 107

Gebiet 590

Gebiet 552

Gebiet 541

Gebiet 74

Gebiet 683

Gebiet 706

Gebiet 193

Gebiet 649

Gebiet 676

Gebiet 476

Gebiet 466

Gebiet 261

Wallschollen

Gebiet 184

Gebiet 234

Gebiet 277

Gebiet 563

Gebiet 445

Gebiet 337

Gebiet 553

Gebiet 690

Gebiet 467

Gebiet 546

Gebiet 275

Gebiet 367

Gebiet 16

Gebiet 667

Rückenschollen

Gebiet 104

Gebiet 148

Gebiet 490

Gebiet 328

Gebiet 462

Gebiet 701

Gebiet 88

Gebiet 464

Gebiet 434

Gebiet 310

Gebiet 358

Gebiet 423

Sturzfließungen

Gebiet 189

Gebiet 528

Gebiet 107

Gebiet 483

Gebiet 54

Gebiet 496

Gebiet 473

Gebiet 394

Fußschollen

Gebiet 642

Gebiet 690

Gebiet 653

Gebiet 318

Gebiet 681

Gebiet 672

Nr.	Lage		Gebiets	größer	n	Staffe	eln & F	orme	nscha	tz	Stufe		Abriß		Neigun	gsricht	ung		Grund	riß		Lage zı	ır Eros	ionsba	sis					
	RW	HW	Breite L	änge	Fläche	ST S	SMS	SP /	A W	R FU	TW	Т	T=A	T#A	F	D	A Clar	Abw.	Fla.	Sti.	Ger.	dS	dH	dR	dF	dV	dA	dT	α	βγ
			(m)	(m)	(m²)						(m)	(m)	(m)	(m)	(m)	(m)	(m) (° / °)	FDA	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(°)	(°) (°)
Hain	leite																													
1	4437443	5687140	65	50	3250	2			1	1	65			65	65		n.b.	nb	65			250	385	135	40	90	50	105	9	13 20
2	4432293	5687840	75	150	11250	3		1	1	1	75			75		75	4/205	0		75		205	245	40	80	125	45	160	21	27 48
3	4431635	5688272	130	70	9100	1		1		1		130		130	130		10/180	0		130		260	370	110	30	70	40	120	7	11 20
4	4429483	5688782	225	50	11250	1			1	1	225			225	150	75	7/10	1	165	60		120	370	250	20	105	85	125	10	16 19
5	4428993	5688887	75	70	5250	2			1		75			75	75		n.b.	nb		75		340	590	250	30	115	85	140	5	11 19
6	4428729	5688928	230	90	20700	3			1	1	230			230	230		n.b.	nb		230		200	495	295	20	95	75	130	6	11 14
7	4428309	5689243	235	50	11750	2			1	1	235		235		235		n.b.	nb	235			210	445	235	25	85	60	85	7	11 15
8	4428112	5689342	30	20	600	1				1	30		30		30		n.b.	nb	30			175	350	175	25	90	65	90	8	15 20
9	4427812	5689132	35	20	700	1			1	1	35			35		35	10/180	0		35		25	245	220	5	90	85	115	11	20 21
10	4427736	5688963	70	60	4200	1				1	70			70		70	10/180	0		70		10	250	240	5	70	65	115	27	16 15
11	4427112	5688619	130	170	22100	1				1	130		130			130	n.b.	nb	130			30	235	205	10	70	60	70	18	17 16
12	4427252	5689205	420	90	37800	3		1	1	1		420	420		270	150	5/10	1	380	40		55	165	110	15	70	55	70	15	23 27
13	4424480	5689921	145	30	4350	2		1	1	1	145			145	145		4/350	1	145			450	600	150	40	90	50	115	5	9 18
14	4423459	5690484	220	60	13200	3			1	1	220			220	220		10/30	1	220			295	460	165	30	90	60	120	6	11 20
15	4423185	5690526	115	40	4600	2			1	1	115	000		115	115	400	10/50	1	115			70	200	130	10	60	50	95	8	17 21
16	4422167	5690691	380	160	60800	3	1		1	1 1	100	380		380	280	100	5/350	1 	380	100		40	225	185	5	90	85	110	10	22 25
17	4421708	5601264	120	190	19000	2		I	I	1	120			120	100	120	n.b.	nD		120	100	22	210	100	10	75	00	110	10	20 23
10	4421308	5601706	100	180	5050	2			4	1	100		105	100	100	105	n.d.	nd			100	240	240	160	20	100	45	100	17	10 10
19	4421072	5601000	105	20	5250				1		105	40	105			105	11.D.	1	40		105	340	105	170	55	120	15	120	10	13 21
20	4421715	5602070	40	20	1900	2		4	1			40	40				40 4/5 00 p b	l nh	40			170	195	20	25	75	10	75	19	21 31
21	4421244	5602225	90	120	21450	2			1	1 1		90 165	90 15	150	165		90 II.D.	nb	90 165			100 540	205	160	30 70	140	40 70	160	7	10 20
22	4421237	5602276	125	120	16200	2			1	1		125	15	125	125		5/175		125			205	270	65	55	05	10	120	15	10 22
23	4420049	56022/7	05	120	3800	2			1	1		05		95	155	95	3/175	1	95			205	105	90	5	93 50	40	85	18	19 32
25	4420333	5692349	120	210	25200	2		1	י 1	1 1		120		120	120	33	4/180	0	35		120	210	375	165	60	145	85	160	16	20 27
26	4419777	5692212	995	40	39800	3		1 .	' 1 1	1	995	120		995	500	140	355 5/160	0	945	50	120	335	495	160	50	120	70	145	9	13 24
27	4419808	5691923	160	30	4800	2		1	1 1	1	160			160	160	110	2/185	0 0	010	00	160	25	70	45	5	20	15	50	11	16 18
28	4419503	5691920	165	30	4950	2		1	1	1	165			165	165		5/200	0 0		165	100	50	175	125	10	60	50	85	11	19 22
29	4419398	5691869	20	15	300	2		•	1	•	20			20	20		n.b.	nb	20			330	445	115	50	95	45	125	9	12 21
30	4419350	5691827	60	20	1200	2			1		60			60	60		n.b.	nb	60			285	385	100	45	95	50	125	9	14 27
31	4419274	5691770	60	20	1200	1			1		60			60	60		n.b.	nb	60			320	395	75	45	90	45	125	8	13 31
32	4419140	5691496	255	40	10200	2			1 1	1	255			255	255		6/330	1	255			300	435	135	40	80	40	120	7	10 17
33	4418841	5691293	20	30	600	1			1		20			20		20	6/310	1	20			125	235	110	20	65	45	95	9	16 22
34	4419035	5690946	90	50	4500	3		1	1 1	1	90			90			90 3/195	0		90		20	105	85	10	45	35	70	27	23 22
35	4419226	5690920	100	40	4000	2		1 '	1 1	1	100			100		100	n.b.	nb		100		15	90	75	5	35	30	60	18	21 22
36	4419430	5690764	15	15	225	1			1	1	15			15		15	n.b.	nb		15		65	130	65	10	35	25	60	9	15 21
37	4419605	5690631	150	40	6000	3		1 .	1 1	1	110	40	150			80	70 9/100	1	110	40		10	115	105	5	45	40	45	27	21 21
38	4419054	5690647	145	30	4350	1		1	1		145			145	145		5/40	1			145	35	170	135	5	50	45	85	8	16 18
39	4418631	5690704	135	30	4050	1			1		135			135		135	8/270	1	135			20	135	115	5	45	40	55	14	18 19
40	4418714	5690484	80	20	1600	1			1		80			80		80	1/20	1	80			15	145	130	5	45	40	80	18	17 17
41	4418717	5690160	55	30	1650	2		1 .	1	1	55			55		55	10/50	1		55		65	150	85	5	50	45	75	5	18 28
42	4418650	5689921	50	30	1500	3		1	1	1	50			50		50	4/50	1		50		25	135	110	5	40	35	65	11	17 18
43	4418529	5689660	65	30	1950	2		1	1	1	65			65		65	3/15	1		65		35	70	35	5	25	20	40	8	20 30
44	4417641	5691360	55	20	1100	1			1		55			55		55	n.b.	nb		55		125	255	130	15	60	45	100	7	13 19
45	4417721	5691738	185	60	11100	3		1	1	1	185			185		185	12/320	1		185		120	405	285	10	65	55	110	5	9 11
46	4417657	5692168	105	40	4200	2		1 .	1 1	1	105			105		105	n.b.	nb	105			20	100	80	5	40	35	90	14	22 24

Nr.	Lage		Gebiets	ebietsgrößen reite Länge Fläche			ln & F	orm	enscl	natz		Stufe		Abriß		Neigun	gsricht	ung		Grund	riß		Lage zu	ır Erosi	ionsba	isis						
	RW	HW	Breite I	_änge	Fläche	ST S	S M	SP	A W	/ R	FU	ΤW	Т	T=A	T#A	F	D	A Clar	Abw.	Fla.	Sti.	Ger.	dS	dH	dR	dF	dV	dA	dT	α	β	γ
			(m)	(m)	(m²)							(m)	(m)	(m)	(m)	(m)	(m)	(m) (° / °)	FDA	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(°)	(°)	(°)
47	4417982	5692155	195	70	13650	3		1	1 '	11			195	195				195 n.b.	nb		195		180	300	120	25	60	35	60	8	11	16
48	4418173	5692528	195	40	7800	2	1	1		1		195			195		195	3/5	1	195			15	140	125	5	30	25	60	18	12	11
49	4418418	5692480	140	50	7000	3				1		140			140			140 n.b.	nb		140		170	345	175	25	75	50	95	9	12	16
50	4418574	5692913	550	80	44000	3		1	1	1		550		550			550	n.b.	nb	550			270	520	250	35	105	70	105	7	11	16
51	4418497	5693409	585	110	64350	3			1 1	1 1		585			585	320	265	n.b.	nb	445	140		5	180	175	5	75	70	75	45	23	22
52	4418542	5693960	60	50	3000	3		1	1 1	1 1		60			60			60 2/325	1	60			225	325	100	55	100	45	125	13	17	24
53	4419137	5694259	45	30	1350	1			1	1		45		45			45	5/80	1		45		220	280	60	70	115	45	115	18	22	37
54	4418984	5694389	225	250	56250	3	1 1	1		1			225	225		225		10/210	1	225			315	465	150	65	160	95	160	12	19	32
55	4418599	5694491	440	210	92400	3			1 '	1 1	1	80	360		440	440		4/340	1	440			210	305	95	65	115	50	155	17	21	28
56	4418290	5694399	85	40	3400	2			1	1		85			85		85	4/240	0		85		40	175	135	5	70	65	95	7	22	26
57	4418007	5694555	55	50	2750	1				1		55			55		55	5/192	0	55			15	155	140	5	60	55	85	18	21	21
58	4417797	5694701	105	200	21000	2		1	1		1		105	105		105		3/272	1	105			250	430	180	55	145	90	145	12	19	27
59	4417561	5694876	115	200	23000	2		1		1	1		115		115	115		n.b.	nb	115			545	670	125	85	135	50	170	9	11	22
60	4416982	5695013	250	70	17500	3			1 '	1 1		250			250	250		n.b.	nb		250		390	555	165	65	140	75	145	10	14	24
61	4416769	5694978	150	60	9000	2			1 '	1		150			150	150		n.b.	nb	130	20		30	130	100	5	40	35	85	10	17	19
62	4416355	5695039	95	60	5700	2	1	1		1		95			95	70	25	5/160	0	55	40		125	250	125	25	70	45	100	11	16	20
63	4416063	5695156	270	80	21600	2	1		1 '	1 1		270		35	235	270		4/220	0		270		165	440	275	20	95	75	100	7	12	15
64	4415763	5695325	285	80	22800	3			1 '	1 1		285			285	285		n.b.	nb	235	50		230	520	290	30	100	70	120	7	11	13
65	4415582	5694994	80	20	1600	1				1		80		80			80	5/190	0	80			15	105	90	5	40	35	40	18	21	21
66	4415331	5694953	30	10	300	2			1			30		30			30	n.b.	nb	30			35	110	75	5	40	35	40	8	20	25
67	4415308	5695004	15	10	150	1			1			15		15			15	n.b.	nb		15		40	105	65	5	40	35	40	7	21	28
68	4415315	5695077	35	20	700	2			1	1		35			35		35	n.b.	nb		35		45	105	60	10	35	25	45	12	18	23
69	4415305	5695134	15	30	450	2			1	1		15			15		15	n.b.	nb	15			35	125	90	5	40	35	55	8	18	21
70	4415286	5695344	210	70	14700	3		1	1 '	1		210		210		210		8/30	1		210		40	250	210	10	85	75	85	14	19	20
71	4415105	5695309	45	20	900	2		1	1			45		45			45	n.b.	nb	45			40	120	80	5	45	40	45	7	21	27
72	4415009	5695274	15	10	150	1			1			15		15			15	n.b.	nb	15			40	130	90	10	45	35	45	14	19	21
73	4415031	5695713	255	130	33150	3		1	1 '	1 1	1		255	255		160	95	5/180	0	215	40		270	545	275	35	110	75	110	7	11	15
74	4414627	5695755	405	90	36450	4			1 '	1		405			405	405		3/180	0	405			140	270	130	30	90	60	110	12	18	25
75	4413873	5696289	520	200	104000	4		1	1 '	1 1	1	340	180		520	520		3/130	0	520			365	380	15	70	80	10	145	11	12	34
76	4413233	5696468	85	30	2550	2			1	1			85	85		85		6/140	0	85			200	415	215	40	135	95	135	11	18	24
77	4412543	5696318	75	20	1500	1		1	1	1			75	75			75	4/230	0	75			50	230	180	15	105	90	105	17	25	27
78	4412380	5696490	165	100	16500	4			1 '	1 1	1	165		20	145	130	35	10/190	0	75	90		230	445	215	30	105	75	130	7	13	19
79	4411836	5696736	630	210	132300	5	1	1	1 '	1 1	1	520	110	100	530	450	180	5/160	0	560	70		95	290	195	25	130	105	130	15	24	28
80	4411015	5696690	245	230	56350	4		1	1 '	1 1			245	210	35		245	10/32	1		245		190	395	205	45	120	75	120	13	17	20
81	4410961	5696849	120	100	12000	2		1	1	1		120		50	70	120		n.b.	nb	120			15	160	145	5	85	80	85	18	28	29
82	4410986	5697209	760	200	152000	3		1	1	1	1	760		230	530		260	500 12/200	0	760			210	385	175	50	100	50	125	13	15	16
83	4411018	5697527	480	180	86400	3		1	1	1	1	480			480	480		5/160	0	480			355	400	45	80	115	35	130	13	16	38
84	4410706	5697597	25	10	250	1		1				25		25		25		n.b.	nb			25	380	435	55	75	110	35	120	11	14	33
85	4410515	5697632	155	220	34100	2			1	1	1	155		155		155		10/220	0	155			210	320	110	50	115	65	115	13	20	31
86	4410175	5697756	40	30	1200	2		1		1 1		40		40			40	5/220	0		40		395	500	105	55	100	45	100	8	11	23
87	4410019	5698103	510	200	102000	4	1 1	1	1 '	1 1		510		510		290	220	6/190	0	410	100		240	385	145	55	115	60	115	13	17	22
88	4409121	5697604	360	210	75600	3		1	1 '	1 1	1	360		50	310	150	210	5/290	1	320	40		170	350	180	35	95	60	120	12	15	18
147	4408366	5697447	400	70	28000	3		1	1	1		400			400	400		4/170	0			400	100	210	110	30	80	50	95	17	21	24
148	4408156	5697795	790	150	118500	3	1	1	1 '	1	1	790			790			790 2/180	0	790			50	185	135	15	75	60	90	14	21	24
149	4408370	5698097	405	130	52650	1		1	1	1		405			405	405		7/130	0	405			100	210	110	15	80	65	95	10	21	30
150	4407648	5698307	205	230	47150	3	1	1	1 '	1 1	1	205			205	205		söhlig	0			205	400	510	110	55	120	65	135	8	13	30
151	4407255	5698346	45	200	9000	3		1	1	1	1	45			45	45		7/170	0			45	380	540	160	50	120	70	130	7	12	22

Nr.	Lage		Gebiets	größe	n	Staffe	eln & I	Form	ensc	hatz		Stufe		Abriß		Neigun	gsricht	ung		Grund	riß		Lage zı	ır Eros	ionsba	asis						
	RW	HW	Breite	Länge	Fläche	ST	S M	SP	ΑV	V R	FU	TW	Т	T=A	T#A	F	D	A Clar	Abw.	Fla.	Sti.	Ger.	dS	dH	dR	dF	dV	dA	dT	α	β	γ
			(m)	(m)	(m²)							(m)	(m)	(m)	(m)	(m)	(m)	(m) (° / °)	FDA	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(°)	(°)	(°)
152	4406711	5698415	40	20	800	1		1	1			40		40			40	n.b.	nb		40		100	235	135	20	75	55	75	11	18	22
153	4406059	5698525	340	60	20400	2		1	1	1		340		340		340		9/132	1			340	165	345	180	25	85	60	95	10	14	18
154	4405628	5698678	155	30	4650	2		1	1	1		155		50	105		155	7/155	0		155		120	250	130	15	65	50	70	7	15	21
155	4404697	5698405	60	10	600	3		1	1	1		60		60		60		5/140	0			60	160	340	180	30	90	60	90	11	15	18
156	4404373	5698328	85	150	12750	2		1	1		1	85		85		85		n.b.	nb		85		100	210	110	15	55	40	55	9	15	20
157	4404233	5698295	60	20	1200	2		1	1	1		60		60		60		3/180	0		60		80	180	100	10	50	40	50	7	16	22
Dün																																
158	4404172	5698584	30	60	1800	1		1	1			30		30				30 n.b.	nb		30		100	150	50	15	45	30	45	9	17	31
159	4404236	5698619	25	80	2000	2		1	1			25		25				25 n.b.	nb	25			150	190	40	30	55	25	55	11	16	32
160	4404408	5698752	180	110	19800	3		1	1	1	1		180	180			180	3/170	0	160	20		190	280	90	30	70	40	70	9	14	24
161	4403429	5698428	680	200	136000	4	1	1	1	1 1	1		680	680		680		5/170	0			680	320	400	80	40	115	75	115	7	16	43
162	4402751	5697994	225	120	27000	3		1	1				225	225		225		4/310	1			225	380	440	60	90	125	35	125	13	16	30
163	4402450	5697770	115	130	14950	3		1	1	1			115	115		115		4/120	0	115			500	620	100	90	150	60	160	10	13	31
164	4402187	5697517	170	40	6800	2	1	1		1		170			170	120	50	6/220	0	170			190	220	30	30	75	45	110	9	19	56
165	4401636	5697413	165	130	21450	3			1	1	1		165		165	165		4/160	0			165	500	640	140	85	145	60	185	10	13	23
166	4401214	5697621	185	150	27750	3			1	1 1	1	185			185	185		n.b.	nb			185	600	725	125	100	150	50	180	10	12	22
167	4400452	5697520	310	140	43400	3		1	1	1 1	1	310			310	310		5/145	0			310	380	480	100	80	140	60	200	12	16	31
168	4399949	5697355	345	210	72450	4	1	1	1	1	1	345			345	345		4/120	0			345	340	380	40	100	150	50	155	16	21	51
169	4399567	5697335	145	200	29000	4	1	1	1	1 1	1		145		145	145		8/40	1			145	400	450	50	100	140	40	155	14	17	39
170	4399116	5697293	550	300	165000	4	1	1	1	1 1	1	40	510	410	140	550		5/25	1			550	430	470	40	110	145	35	145	15	17	41
171	4398623	5697128	220	180	39600	3	1	1	1		1		220		220	220		10/30	1			220	450	470	20	100	140	40	160	12	16	63
172	4398318	5696443	30	10	300	1		1	1				30	30		30		7/120	0			30	330	450	120	55	120	65	120	10	15	28
173	4398146	5695951	85	20	1700	1			1	1			85	85		85		6/350	1			85	430	580	150	55	130	75	130	7	12	27
174	4398244	5695263	270	150	40500	3		1	1	1 1	1		270	270		270		7/260	1			270	370	540	170	60	115	55	115	9	12	18
175	4398153	5695013	30	80	2400	1			1				30	30		30		n.b.	nb		30		170	300	130	30	85	55	85	10	16	23
176	4398056	5694916	145	130	18850	2		1	1	1			145	145		145		n.b.	nb	145			400	550	150	50	105	55	105	7	11	20
177	4397932	5694563	95	10	950	1		1	1				95	95		95		13/23	1			95	305	390	85	55	95	40	95	10	13	25
178	4397864	5694280	65	20	1300	2		1	1				65	65		65		n.b.	nb			65	270	380	110	45	95	50	95	10	14	23
1/9	4397822	5694180	80	110	8800	3		1		1			80	45		80		8/15	1		45	80	320	380	60	65	95	30	95	11	14	27
180	4397767	5694115	15	10	150	1		1	1	1			15	15		15		10/350	T A		15	400	170	200	30	40	70	30	70	13	19	45
181	439/65/	5694079	120	20	2400	2		1	1				120	120		120		10/360	ן הא			120	180	230	50	35	105	35	105	11	17	35
102	439/4/2	5604144	55 40	10	5000 6000	2	1	1	1				20	55 40		20		0/16E	an	55		40	380	470	90	50 70	105	45	105	9	12	21
103	4397339	5094141	40	150	1650	2	1		1	1			40	40		40		2/100	1		EE	40	430	400	50	70	120	40 50	120	10	10	29
104	4397231	5602671	265	160	59400	2	1	1	1	1 1	1		265	265		265		2/40	1		55	265	640	495	20	100	120	25	120	0	13	31
196	4397303	5602299	300	120	20000	2	1	1	1		1		200	300		300		2/40	1			200	520	595	50 65	100	145	25	145	9 11	11	25
187	4397230	56028/1	580	200	116000	5	1	1	1	1 1	1		580	580		580		3/1/0	0			580	JZ0 440	540	100	75	140	4J 65	140	10	14	33
188	4396447	5602351	640	200	128000	1	1	1	1	1 1	1	50	500	640		640		3/140 4/60	1			640	370	100	120	55	140	60	125	0	13	27
189	4395494	5691914	1150	200	230000	4	1 1	1	1	1	1	350	800	1150		1150		4/80	1			1150	260	410	150	65	120	55	120	14	16	19
190	4394607	5601388	750	210	157500	5		1	1	1 1	1	250	500	750		750		3/182	0			750	370	540	170	60	120	70	120	9	13	22
191	4393328	5690869	80	60	4800	1		'	1	1	'	80	000	80		80		n h	nh			80	300	470	170	55	95	40	100	10	11	13
192	4392574	5690831	1260	300	378000	6	1	1	1	1 1	1	160	1100	1260		1260		14/100	1			1260	520	690	170	70	155	85	155	23	24	27
193	4388946	5691132	5915	300	1774500	7	1	1	1	1 1	1	1750	4165	5315	600	5615	300	10/350	1			5915	480	730	250	60	140	80	140	23	21	18
194	4386888	5691029	220	170	37400	4	1	1	1			1700	220	220	000	5015	220	6/270	1	120	100	0010	15	250	235	5	80	75	75	18	18	18
195	4385787	5691251	1775	150	266250	3		1	1	1 1	1	1465	310	1085	690	1175	600	3/185	0	1505	270		320	455	135	40	85	45	85	7	11	18
196	4385011	5691069	85	10	850	1		•	•	1	'		85		85		85	10/220	0			85	40	160	120	10	45	35	60	14	16	16
197	4384948	5691496	45	10	450	2			1			45	55	45	00		45	n.b.	nb			45	110	255	145	15	55	40	55		12	16
				. 0		. –																								-	<u> </u>	

Nr.	Lage		Gebiets	größe	n	Staffe	eln & F	orme	ensch	atz	S	tufe		Abriß		Neigun	gsricht	tung		Grund	riß		Lage zu	ur Erosi	ionsba	isis						
	RW	HW	Breite	Länge	Fläche	ST	S M	SP	A W	RI	U	TW	Т	T=A	T#A	F	D	A Clar	Abw.	Fla.	Sti.	Ger.	dS	dH	dR	dF	dV	dA	dT	α	β	γ
			(m)	(m)	(m²)							(m)	(m)	(m)	(m)	(m)	(m)	(m) (°/°)	FDA	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(°)	(°)	(°)
198	4384988	5691662	90	20	1800	1				1		90		90			90	n.b.	nb			90	330	420	90	45	65	20	65	8	9	12
199	4384972	5691852	30	10	300	1			1			30		30			30	n.b.	nb			30	360	415	55	50	65	15	65	8	9	15
200	4384940	5691947	25	10	250	1			1			25		25			25	n.b.	nb		25		340	410	70	50	65	15	65	9	9	11
201	4384307	5692422	10	30	300	1			1			10		10		10		n.b.	nb		10		20	55	35	5	30	25	40	14	29	35
202	4383990	5692715	100	40	4000	2		1		1		100		100			100	n.b.	nb	80	20		70	80	10	20	30	10	30	16	21	45
203	4382684	5692795	135	80	10800	2			1 1	1		135		135			135	4/160	0	135			210	280	70	35	75	40	75	10	15	30
Bleic	heröder E	Berge																														
89	4400669	5700518	605	170	102850	3		1	1 1	1	1	505	100	605			100	505 5-9°/140	0	545	60		490	680	190	70	135	65	135	8	11	19
90	4400347	5700745	660	200	132000	4		1	1	1	1	480	180	450	210	660		11°/191	0	660			405	490	85	80	125	45	135	11	15	28
91	4399528	5700715	670	190	127300	3		1	1		1	520	150	670		670		5°/10	1			670	145	325	180	15	90	75	90	6	16	23
92	4398801	5701277	130	40	5200	2				1		130		130			130	n.b.	nb	130			40	210	170	5	70	65	70	7	18	21
93	4399180	5701394	90	50	4500	2		1	1	1		90		90				90 n.b.	nb		90		140	280	140	20	85	65	85	8	17	25
94	4399298	5701395	45	20	900	1			1			45			45			45 5°/322	1			45	150	260	110	25	80	55	95	10	17	27
95	4399390	5701400	15	10	150	1				1		15			15			15 n.b.	nb	15			170	270	100	30	80	50	95	10	17	27
96	4399482	5701397	105	80	8400	1		1	1	1		105		105				105 5°/258	0	105			200	345	145	35	105	70	105	10	17	26
97	4399729	5701397	230	200	46000	2		1	1		1	150	80	230			50	180 3°/326	1	190	40		270	375	105	55	120	65	120	11	18	32
98	4399682	5/01/31	55	20	1100	1				1		55		55				55 2°/280	1	55			10	20	10	5	10	5	20	27	27	27
99	4399816	5701822	40	80	3200	2			1	1		050	40	40		15	10	15 5°/290	1	10	30	050	430	550	120	85	125	40	125	11	13	18
100	4399528	5702001	250	250	62500	3			1 1	1	1	250		250		250		4°/290	1			250	590	745	155	105	150	45	150	10	11	16
101	4399166	5702125	180	210	37800	3			1 1		1	180		180		180		sohlig	0			180	280	455	175	80	140	60	140	16	17	19
102	4398896	5702176	110	210	23100	2			1	1	1	110		110	450	110		n.b.	nb			110	515	640	125	85	140	55	140	10	12	24
103	4398542	5702354	180	200	36000	3		1	1 1	1	1	180		30	150	180		4%/208	0			180	505	615	110	85	135	50	150	10	12	24
104	4398299	5702481	215	270	58050	3		1	1	1	1	215	400	215		215		n.b.	nb	400	50	215	610	740	130	95	150	55	150	40	11	23
105	4397925	5702590	450	100	45000	4		1	1 1	1		20	430	450		450		n.p.	nb	400	50	405	400	530	130	95	165	70	165	13	17	28
106	4397668	5/023/5	135	30	4050	2		1		1		100	135	135		135		3*/190	0			135	415	540	125	80	160	80	160	11	17	33
107	4397542	5702247	100	200	22800	2	1 1	I	1	1		160	20	100		100	00	6°/160	1	100		160	460	500	120	95	100	70 50	100	11	10	29
100	4397210	5702011	190	120	22800	3			1	I		100	30	190		100	90	5°/350	1	190		10	205	390 255	00	95 10	145	50 70	145	27	14	31
109	4397210	5701792	00	20	1900	1		1	1			10	00	00			00	5 /340 7º/190	1			00	20	200	235	10	00 70	60	00 70	21 11	17	10
111	4397237	5701657	160	170	27200	2		1	1		1	160	90	90 160		160	90	5°/200	1	160		90	415	230	145	75	150	75	150	10	15	27
112	4390033	5701312	470	300	1/1000	1	1	1	1 1	1	1	100	70	100	370	470		57300 n h	nh	100		370	413	715	245	70	165	05	165	0	13	21
112	4395289	5700825	800	300	240000	5			1 1	1	1	130	670	800	570	600	200	4º/355	1	800		510	385	580	195	85	140	55	140	12	13	16
114	4395161	5700481	35	10	350	1			1		'	100	35	35		000	200	35 8°/35	1	35			420	530	110	65	115	50	115	9	12	24
115	4395222	5700464	15	10	150	1			1				15	15				15 9°/30	1	15			500	620	120	70	125	55	125	8	11	25
116	4395372	5700450	95	170	16150	3			. 1	1	1		95	95				95 10°/110	0	95			450	565	115	80	125	45	125	10	12	21
117	4395640	5700450	230	140	32200	2			1	1		160	70	00	230			230 n.b.	nb			230	475	550	75	75	105	30	120	.0	11	22
118	4396031	5700476	185	210	38850	3		1	1	1	1	185		185				185 1°/120	0			185	485	600	115	85	130	45	130	10	12	21
119	4396441	5700246	30	10	300	1			1	-		30			30			30 n.b.	nb	30			285	440	155	60	120	60	120	12	15	21
120	4396634	5700119	280	150	42000	3			1 1	1		220	60	280				280 5°/10	1	280			405	585	180	65	130	65	130	9	12	20
121	4396916	5699953	115	100	11500	2			1			90	25	115				115 söhlig	0	115			395	570	175	55	130	75	130	8	13	23
122	4397022	5699940	40	20	800	1			1				40	40				40 6°/330	1	-	40		180	370	190	40	120	80	120	12	18	23
123	4396755	5700411	680	140	95200	3	1	1	1 1	1		80	600	680		680		3°/25	1	680			10	145	135	5	50	45	50	27	19	18
124	4396964	5700704	150	40	6000	2		1	1			150		150				150 6°/222	0	150			10	135	125	5	60	55	60	27	24	24
125	4397559	5700849	175	20	3500	2			1	1		175		50	125		175	8°/330	1	175			5	135	130	5	60	55	60	45	24	23
126	4397392	5700654	65	30	1950	2		1		1		65			65		20	45 10°/240	0	-	65		135	310	175	25	85	60	100	11	15	19
127	4397720	5700694	30	10	300	1			1			30			30			30 n.b.	nb	30			90	230	140	20	95	75	95	12	22	28
128	4398025	5700519	35	10	350	1			1	1		35			35		35	n.b.	nb		35		180	420	240	20	85	65	100	6	11	15

Nr.	Lage		Gebiets	größe	n	Staffe	eln & F	orme	enscha	atz	Stufe		Abriß		Neigun	gsrich	tung		Grund	riß		Lage zı	Ir Eros	ionsba	asis						
	RW	HW	Breite	Länge	Fläche	ST S	S M	SP	A W	RF	U TW	Т	T=A	T#A	F	D	A Clar	Abw.	Fla.	Sti.	Ger.	dS	dH	dR	dF	dV	dA	dT	α	β	γ
			(m)	(m)	(m²)						(m)	(m)	(m)	(m)	(m)	(m)	(m) (° / °)	FDA	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(°)	(°)	(°)
129	4397762	5700355	155	110	17050	1	1			1	155			155	155		8°/20	1		155		110	280	170	25	90	65	90	13	18	21
130	4397984	5700140	310	80	24800	3		1	1 1	1	90	210	310				310 n.b.	nb	310			230	305	75	65	130	65	130	16	23	41
131	4398256	5700071	25	80	2000	1			1		25			25			25 n.b.	nb			25	275	430	155	55	110	55	120	11	15	19
132	4398702	5700098	40	10	400	1				1	40			40			40 n.b.	nb			40	235	490	255	45	105	60	120	11	12	13
133	4398821	5700046	90	210	18900	3		1	1	1	1	90	90				90 2°/340	1	90			275	460	185	60	120	60	120	12	15	18
134	4398938	5700037	25	10	250	1		1			25		25				25 n.b.	nb			25	270	465	195	55	115	60	130	11	14	17
135	4399384	5700033	370	220	81400	3		1	1 1	1	1 370		370				370 n.b.	nb			370	460	590	130	70	135	65	135	9	13	27
136	4399702	5700170	70	10	700	1			1			70	70				70 10°/10	1			70	305	530	225	35	100	65	100	6	11	16
137	4399877	5699978	465	140	65100	3	1	1	1 1	1		465	465			265	200 6°/50	1	345	120		115	325	210	30	100	70	100	15	17	18
138	4400346	5700099	135	180	24300	3			1 1	1		135	135			135	6°/50	1		135		180	380	200	50	120	70	120	16	18	19
139	4400390	5700358	90	10	900	2		1	1	1	90			90			90 n.b.	nb	90			415	620	205	55	120	65	120	7	11	18
140	4393878	5701021	90	60	5400	2			1	1	90		90			90	n.b.	nb		90		465	490	25	85	95	10	95	10	11	22
141	4393527	5701050	290	140	40600	3		1	1	1	1 130	160	290				290 5°/245	0	290			610	640	30	100	115	15	115	9	10	27
142	4393651	5701159	490	150	73500	3		1	1 1	1	210	280	490		490		6°/190	0	490			765	845	80	95	120	25	120	7	8	17
143	4393121	5701411	430	80	34400	3				1	1	430	430		210	50	170 n.b.	nb	370	60		405	430	25	75	90	15	90	11	12	31
144	4394955	5702850	510	120	61200	3		1	1 1	1	280	230	510			510	7°/95	1	510			700	790	90	100	155	55	155	8	11	31
145	4394703	5703053	310	200	62000	3		1	1	1	1 200	110	310		310		n.b.	nb	230	80		660	760	100	100	160	60	160	9	12	31
146	4394792	5702713	580	200	116000	5		1	1 1	1	1	580	580			320	260 n.b.	nb	560	20		590	730	140	120	165	45	165	11	13	18
Ober	es Eichsfe	eld & Hai	nich																												
204	4381082	5692260	415	120	49800	3		1	1 1	1	1 310	105	415		415		5/160	0	415		I	300	380	80	75	105	30	105	13	16	22
205	4380443	5692909	585	260	152100	4		1	1	1	1 585			585	340	245	5/170	0	545	40		425	500	75	60	90	30	125	8	10	22
206	4379942	5693152	45	220	9900	3			1		1 45		45		45		n.b.	nb	45			420	525	105	60	105	45	105	8	11	24
207	4379785	5693253	15	120	1800	2		1	1		1	15	15		15		13/230	0	15			110	195	90	40	95	55	95	20	26	31
208	4379344	5693755	40	20	800	3			1		40		40			40	n.b.	nb	40			12	160	150	5	60	55	60	14	20	21
209	4379171	5693927	330	250	82500	3		1	1	1	1 330		330		330		12/210	0	330			340	595	255	40	130	90	130	7	12	20
210	4378574	5694247	715	100	71500	3		1	1 1	1	1 475	340	715		565	150	8/195	0	575	140		195	400	205	25	100	75	100	7	15	20
211	4377591	5694672	825	180	148500	5	1	1	1 1	1	1 670	155	825		825		9/180	0	755	70		480	550	70	75	115	40	115	9	12	29
212	4376456	5695280	1500	250	375000	4		1	1	1	1 1300	200	1500		1500		10/215	0			1500	550	625	75	65	120	60	120	7	11	38
213	4375533	5695463	110	120	13200	2		1	1	1	110		110			110	n.b.	nb		110		410	530	120	50	95	45	95	7	10	21
214	4374510	5695407	70	20	1400	1			1	1	70		70			70	10/80	1	70			210	340	130	25	70	45	70	7	11	19
215	4374449	5695478	50	10	500	2			1			50	50			50	n.b.	nb	50			330	400	70	45	75	30	75	8	11	23
216	4373208	5695579	35	20	700	1			1	1	35		35		35		n.b.	nb		35		470	595	125	70	115	45	115	9	11	19
217	4372716	5695468	115	200	23000	2			1		1 115		115		115		n.b.	nb	115			505	605	100	80	120	40	120	9	11	20
218	4372463	5695427	105	20	2100	1				1	105		105		105		7/175	0			105	525	655	130	85	130	45	130	9	11	19
219	4372154	5695088	25	10	250	2		1	1			25	25		25		5/175	0			25	415	510	95	70	125	55	125	10	14	30
220	4372093	5695022	25	10	250	1		1	1			25		25	25		6/178	0			25	525	600	75	90	130	40	140	10	12	31
221	4372057	5694511	220	80	17600	3			1		220			220		220	6/35	1	220			285	340	55	75	105	30	135	15	17	29
222	4372220	5694419	75	20	1500	1	1		1	1	75			75		75	7/105	0	75			200	290	90	35	80	45	105	10	15	25
223	4372539	5694525	135	80	10800	3			1	1	135			135			135 7/175	0	135			165	240	75	30	80	50	105	10	18	34
224	4372807	5694328	165	40	6600	2			1 1	1	165			165	165		8/10	1			165	75	158	85	15	60	45	80	11	21	29
225	4372615	5694100	65	30	1950	1			1	1		65		65	65		2/240	1	65			180	230	50	40	75	35	100	12	18	35
226	4372594	5693897	110	140	15400	2			1		1 110			110		110	2/190	0	110			235	300	65	35	75	40	115	9	14	32
227	4372899	5693596	35	10	350	1			1		35			35		35	8/200	0	35			95	135	40	10	30	20	80	7	13	27
228	4372920	5693531	40	10	400	1			1		40			40		40	14/190	0	40			85	105	20	10	30	20	65	8	13	31
229	4372941	5693463	55	10	550	1			1		55			55		55	6/225	1	55			30	60	30	5	20	15	50	9	18	27
230	4372111	5693139	135	180	24300	3			1	1	1 135		135	-	135		n.b.	nb	135			180	265	85	30	75	50	75	8	16	30
231	4372139	5692820	435	150	65250	3			1 1		1 435			435	435		5/290	1			435	155	255	100	30	80	50	90	10	17	27

Nr.	Lage		Gebiets	größe	n	Staffe	eln & F	orme	nscha	tz	Stufe		Abriß		Neigun	gsricht	tung		Grund	riß		Lage zu	ır Erosi	ionsba	isis						
	RW	HW	Breite I	Länge	Fläche	ST	SM	SP /	A W	R FL	тw	Т	T=A	T#A	F	D	A Clar	Abw.	Fla.	Sti.	Ger.	dS	dH	dR	dF	dV	dA	dT	α	β	γ
			(m)	(m)	(m²)						(m)	(m)	(m)	(m)	(m)	(m)	(m) (° / °)	FDA	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(°)	(°)	(°)
232	4372220	5692475	100	70	7000	3			1	1	100			100	100		6/300	1			100	105	185	80	20	70	50	95	12	21	31
233	4372497	5692008	235	20	4700	1		1	1		235			235	235		n.b.	nb	235			105	185	80	20	70	50	90	11	21	32
234	4372713	5691601	245	80	19600	3			1	1		245	245		245		15/175	0	245			60	170	110	20	80	60	80	20	25	28
235	4372822	5691276	25	10	250	1			1		25			25		25	n.b.	nb	25			15	65	50	5	30	25	75	18	25	27
236	4372630	5691074	30	10	300	2			1		30			30	30		n.b.	nb		30		75	165	90	15	55	40	100	11	18	24
237	4372528	5690861	365	120	43800	3		1	1	1 1	365			365	250	115	5/195	0	315	50		40	170	130	5	60	55	90	7	19	23
238	4372355	5690423	430	150	64500	4	1	1	1	1 1	430			430	330	100	5/200	0	360	70		100	200	100	15	75	60	106	9	21	31
239	4371862	5690405	165	220	36300	3			1	1 1	165		165				165 n.b.	nb		165		25	290	265	5	100	95	100	11	19	20
240	4372023	5690659	115	200	23000	3			1	1 1	115			115			115 n.b.	nb			115	25	230	205	5	80	75	105	11	19	20
241	4372103	5690812	100	120	12000	2			1	1	100			100			100 6/340	1			100	30	140	110	5	55	50	75	9	21	24
242	4372217	5691035	280	140	39200	2			1	1	280			280			280 6/320	1	280			20	165	145	5	60	55	85	14	20	21
243	4372142	5691663	105	150	15750	2			1		105			105			105 n.b.	nb	105			245	355	110	30	80	50	95	7	13	24
244	4371854	5691899	490	200	98000	3			1 1	1	490		490				490 n.b.	nb	490			220	370	150	30	95	65	95	8	15	23
245	4371527	5692106	150	150	22500	3			1	1	150			150		150	n.b.	nb		150		70	215	145	10	65	55	80	8	17	21
246	4371475	5693059	190	140	26600	3			1 1		190		190				190 n.b.	nb	190			155	310	155	25	85	60	85	9	15	21
247	4371426	5693505	120	20	2400	1			1		120		120			120	n.b.	nb		120		65	270	205	10	50	40	65	9	11	11
248	4371047	5694016	25	100	2500	2			1	1	25		25				25 n.b.	nb			25	70	255	185	10	75	65	80	8	16	19
249	4370497	5694312	125	120	15000	3			1	1	125			125	125		5/40	1			125	580	665	85	90	140	50	160	9	12	31
250	4370136	5694159	470	130	61100	4	1	1	1 1	1 1	150	320		470	470		3/80	1			470	500	600	100	75	145	70	165	9	13	35
251	4369807	5693928	35	10	350	1				1		35		35	35		n.b.	nb			35	465	570	105	70	135	65	145	9	13	32
252	4369490	5693699	40	30	1200	2			1	1	40			40	40		5/23	1		40		125	180	55	45	85	40	105	20	25	36
253	4369158	5693339	100	40	4000	1				1	100		100			100	7/5	1	100			350	480	130	55	115	60	115	9	13	25
254	4368803	5693570	70	100	7000	1			1		70		70			70	7/180	0		70		350	485	135	60	115	55	125	10	13	22
255	4368520	5693546	110	100	11000	1			1		110			110		110	n.b.	nb			110	420	550	130	65	110	45	150	9	11	19
256	4368323	5693531	60	20	1200	1			1	1	60		60			60	2/200	0			60	370	530	160	65	120	55	120	10	13	19
257	4367960	5693692	350	150	52500	3		1	1	1 1	260	90	300	50	150	200	15/125	0	220	130		410	525	115	75	145	70	145	10	16	31
258	4367838	5693544	40	130	5200	2				1		40		40	40		2/285	1			40	615	715	100	85	150	65	155	8	12	33
259	4367942	5693411	40	100	4000	2			1			40		40	40		4/270	1			40	710	820	110	105	165	60	175	9	11	29
260	4368411	5692789	1290	200	258000	5			1	1 1	1290			1290	500	790	5/230	1	1130	160		470	575	105	80	155	75	160	10	15	35
261	4368891	5692161	1180	200	236000	5	1	1	1 1	1 1	1180			1180	780	400	6/175	0	1000	180		240	315	75	55	115	60	130	13	20	39
262	4369620	5691894	305	90	27450	2			1	1	305			305		305	2/5	1	305			70	185	115	10	70	60	90	8	21	27
263	4369877	5691774	55	20	1100	1				1	55			55	55		n.b.	nb		55		20	140	120	5	50	45	80	14	20	21
264	4369771	5691538	130	60	7800	3			1 1		130			130	130		2/330	1		130		25	155	130	5	60	55	85	11	21	23
265	4369363	5691092	810	200	162000	4	1	1	1 1	1	810		660	150	810		6/310	1	750	60		330	540	210	50	145	95	145	9	15	24
266	4369415	5690350	620	150	93000	3			1 1	1 1	620		400	220	100	520	7/200	1	570	50		225	340	115	35	100	65	115	9	16	30
267	4369550	5689764	310	70	21700	3	1		1 1	1	310		160	150	150	160	5/195	1	280	30		125	200	75	20	60	40	70	9	1/	28
268	4369236	5689401	65	90	5850	1				1	65			65			65 7/85	0		65		120	220	100	15	55	40	90	1	14	22
269	4368883	5689792	60	110	6600	3			1	1 1	60			60			60 25/270	1	60			285	365	80	50	90	40	105	10	14	27
270	4368479	5689917	545	220	119900	4	1		1 1	1 1	055	545	545	055		055	545 4/340	1	515	30		290	460	170	55	120	65	120	11	15	21
2/1	4368105	5689481	355	120	42600	3			1 1	1 1	355			355		355	3/195	1	225	130	000	220	310	90	45	90	45	110	11	16	27
272	4367690	5689611	200	110	22000	2			1	1	200		200				200 n.b.	nb		0.5	200	40	180	140	10	65	55	65	14	20	21
2/3	430//55	20098/5	35	10	350	1			 / /		35		05	740			35 5/310	1	005	35		265	320	25	50	405	30	100	11	14	29
2/4	430/955	5690560	825	200	165000	3 F	4		1 1 4 4	1	825	205	60 605	740		C0F	025 10/95	0	825	100		485	620	135	60 445	135	50	150	10	12	20
2/5	430/095	5691201	885	250	221250	5	1	Т	1 1 4	1	520	305	685	200	045	685	200 3/25	0	765	120		795	890	95	115	1/5	6U 75	1/5	8	11	32
2/6	4367309	5690791	945	200	189000	4	Т		 4 4	1 1	945		240	945	945		4/170	0	945			335	405	130	05	140	/5 75	150	11	17	30
2//	436/062	2090166	310	110	34100	3			1 1 4	1	310	20	310	20	310	20	5/230	1	310	20		145	330	185	25 25	100	15	100	10	17	22
2/8	4366764	5690018	- 30	10	300	2			1			- 30		30		30	4/10	1		30		100	180	80	25	55	30	80	14	17	21

Nr.	Lage		Gebiets	sgröße	n	Staff	eln & F	Form	ensch	atz		Stufe		Abriß		Neigun	gsrich	tung		Grund	riß		Lage zu	ır Erosi	ionsba	asis						
	RW	HW	Breite	Länge	Fläche	ST	S M	SP	A W	R	FU	ΤW	Т	T=A	T#A	F	D	A Clar	Abw.	Fla.	Sti.	Ger.	dS	dH	dR	dF	dV	dA	dT	α	β	γ
			(m)	(m)	(m²)							(m)	(m)	(m)	(m)	(m)	(m)	(m) (° / °)	FDA	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(°)	(°)	(°)
279	4366637	5689938	165	30	4950	2			1				165		165	165		6/280	1	125	40		140	260	120	20	60	40	80	8	13	18
280	4366289	5690610	385	350	134750	3			1	1	1	385		385				385 n.b.	nb	385			405	650	245	70	140	70	140	10	12	16
281	4365983	5690633	760	150	114000	3	1	1	1 1	1			760	400	360	760		2/10	0	760			365	440	75	55	95	40	95	9	12	28
282	4365781	5690197	95	20	1900	2			1	1		95		95		95		n.b.	nb		95		440	525	85	55	95	40	95	7	10	25
283	4365705	5690096	35	10	350	1			1			35		35		35		9/10	1		35		325	440	115	45	90	45	90	8	11	21
284	4365360	5689170	325	180	58500	3		1	1 1	1	1		325	325		325		5/90	0			325	380	450	70	65	110	45	110	10	13	33
285	4365176	5688495	185	150	27750	3			1 1		1		185	185		185		n.b.	nb	135	50		345	435	90	55	90	35	90	9	12	21
286	4365355	5688251	155	180	27900	2		1	1 1	1			155	155			155	9/315	1	155			535	600	65	95	135	40	135	10	13	32
287	4367859	5687022	1290	220	283800	4	1		1 1	1		230	1060	1290		600	690	10/270	1			1290	380	465	85	50	90	40	100	7	12	25
288	4368800	5686251	415	180	74700	4		1	1	1	1		415	335	80	415		6-10/130	0	415			435	515	80	65	115	50	115	9	12	32
289	4369164	5686204	145	200	29000	3			1		1	145		145				145 n.b.	nb	145			700	755	55	90	110	20	110	7	9	20
290	4369810	5686303	1240	180	223200	4	1	1	1 1	1	1	445	795	1240			1090	150 16/35	1			1240	350	440	90	60	105	45	105	10	13	27
291	4370738	5686469	1610	210	338100	5		1	1 1	1	1	545	1065	1610			1110	500 5/20	1	1430	180		480	585	105	95	145	50	145	11	14	26
292	4370048	5687029	50	10	500	1			1				50	50			50	3/20	1		50		70	195	125	15	65	50	65	12	18	22
293	4370251	5687066	160	30	4800	1				1			160		160		160	10/340	1	160			65	105	40	35	65	30	80	28	32	37
294	4370648	5687281	55	10	550	1				1		55			55			55 n.b.	nb	55			85	200	115	15	70	55	90	10	19	26
295	4370531	5687393	40	30	1200	2			1			40			40			40 10/280	1		40		15	90	75	5	45	40	70	18	27	28
296	4370969	5687299	120	70	8400	2			1 1	1			120		120		120	3/10	1		120		285	370	85	45	85	40	110	9	13	25
297	4371047	5687507	45	10	450	1			1			45		45				45 5/15	1	45			30	125	95	5	55	50	55	10	24	28
298	4371418	5687242	35	20	700	1			1			35			35	35		n.b.	nb		35		30	180	150	5	60	55	90	10	18	20
299	4371607	5687076	125	150	18750	3			1	1	1		125		125		125	4/185	1	125			385	565	180	45	115	70	140	7	11	21
300	4372098	5686809	325	210	68250	4		1	1	1	1	110	215	250	75	100	225	5/250	1	235	90		445	580	135	65	140	75	140	9	13	29
301	4372469	5686996	45	10	450	1			1			45			45			45 n.b.	nb	45			265	375	110	40	85	45	100	9	13	22
302	4372645	5687265	240	120	28800	2			1 1			240			240			240 10/70	0	240			125	265	140	25	75	50	100	11	16	20
303	4373001	5686887	210	140	29400	4	1	1	1 1	1	1		210		210	210		8/90, 6/70) 0	150	60		220	230	10	80	90	10	125	20	21	45
304	4373115	5686596	190	150	28500	3			1		1	190			190		190	6-10/35	1	160	30		200	290	90	40	90	50	105	11	17	29
305	4373270	5686311	280	240	67200	5	1		1 1	1	1	210	70	160	120	280		13/270	1	280			410	505	95	65	115	50	115	9	13	28
306	4373369	5686181	145	170	24650	2			1		1	145			145			145 n.b.	nb	145			725	820	95	95	140	45	160	7	10	25
307	4373621	5686575	680	170	115600	4	1	1	1 1	1	1		680	330	350			680 6/312	1	600	80		475	610	135	70	120	50	135	9	11	20
308	4373997	5687276	335	140	46900	2			1	1	1	210	100	135	200			335 5/34	1	335			105	280	175	25	75	50	90	13	15	16
309	4374485	5686726	1150	170	195500	3	1	1	1 1		1	640	510	290	860	350	800	5/120	0	1120	30		195	255	60	50	115	65	120	15	24	47
310	4374840	5686383	845	200	169000	5		1	1 1	1	1	690	155	160	685	550	295	3/350	1	645	200		220	280	60	50	95	45	120	13	19	37
311	4374980	5685641	780	150	117000	4			1 1	1	1	520	260	470	310	350		430 7/156	0	750	30		245	330	85	85	145	60	145	19	24	35
312	4375872	5685455	130	210	27300	4			1 1		1	80	50	130			130	5/19	1		130		280	345	65	50	85	35	85	10	14	28
313	4375437	5684967	1085	260	282100	5	1	1	1 1	1	1	765	320		1085	835	250	10 /360	1	915	170		475	565	90	80	135	55	150	10	13	31
314	4374814	5684425	255	210	53550	3			1	1	1		255	255			255	5/190	1	255			210	305	95	45	100	55	100	12	18	30
315	4374485	5684609	240	220	52800	3		1	1 1	1	1	240			240		240	2/360	1	190	50		345	425	80	60	100	40	115	10	13	27
316	4374173	5684762	255	300	76500	5		1	1	1	1	80	175	175	80		255	8/315	1	225	30		565	690	125	95	150	55	150	10	12	24
317	4373851	5684191	1000	210	210000	5	1	1	1 1	1	1	430	570	790	210	850	150	5/50	0	880	120		320	515	195	70	135	65	135	12	15	18
318	4373768	5683480	150	170	25500	2		1	1			150		150		150		4/250	1			150	500	620	120	95	145	50	145	11	13	23
319	4373452	5682697	1040	120	124800	4	1	1	1 1		1	390	650	260	780	1040		6/260	1			1040	585	640	55	105	135	30	150	10	12	29
320	4374202	5680686	200	200	40000	1					1		200		200			200 4/270	1	200			430	490	60	75	115	40	135	10	13	34
321	4374173	5681026	90	60	5400	1			1	1		90		90				90 2/260	1	90			580	710	130	75	125	50	125	7	10	21
322	4374184	5681488	135	70	9450	2			1			135			135			135 10/90	0		135		460	525	65	85	115	30	125	10	12	25
323	4374339	5681900	550	150	82500	3			1	1	1	550			550		400	150 6/340	1	510	40		365	450	85	80	120	40	140	12	15	25
324	4373989	5682925	125	100	12500	1				1		125		125				125 n.b.	nb		125		230	360	130	45	95	50	95	11	15	21
325	4374490	5683174	35	10	350	2			1			35			35	35		2/90	0	15	20		25	95	70	5	40	35	60	11	23	27
Nr.	Lage		Gebiets	größe	n	Staffe	eln & F	orme	enschat	z	Stufe		Abriß		Neigun	gsricht	ung		Grund	riß		Lage zu	ır Erosi	ionsba	asis							
-----	----------	---------	---------	-------	--------	--------	---------	------	---------	------	-------	-----	-------	-----	--------	---------	----------------	------	-------	------	------	---------	----------	----------	----------	----------	-----	-----	-----	---------		
	RW	HW	Breite	_änge	Fläche	ST	S M	SP .	A W	R FU	TW	Т	T=A	T#A	F	D	A Clar	Abw.	Fla.	Sti.	Ger.	dS	dH	dR	dF	dV	dA	dT	α	βγ		
			(m)	(m)	(m²)						(m)	(m)	(m)	(m)	(m)	(m)	(m) (° / °)	FDA	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(°)	(°) (°)		
326	4374549	5682975	45	10	450	1		1	1			45		45	45		7/65	0	5	40		130	215	85	30	75	45	90	13	19 28		
327	4374767	5682629	450	200	90000	4			1	1 1		450		450		450	2/195	1	380	70		320	430	110	50	105	55	120	9	13 27		
328	4375195	5682214	200	180	36000	3			1	1		200	120	80	200		8/80	0	130	70		400	560	160	65	135	70	135	9	13 24		
329	4375411	5682033	260	200	52000	4		1	1 1	1 1	170	90	120	140		260	8/65	0	190	70		130	260	130	40	90	50	100	17	19 21		
330	4375784	5681413	900	190	171000	5	1	1	1 1	1 1	465	435	120	780	400	500	5/80	0	750	150		200	240	40	50	85	35	125	14	19 41		
331	4376438	5681413	45	20	900	2			1			45		45		45	10/40	0	45			125	170	45	35	60	25	95	16	19 29		
332	4378098	5684095	490	170	83300	3		1	1 1	1	170	320	280	210	200	290	10/185	1	330	160		130	305	175	20	100	80	100	9	18 25		
333	4378410	5683384	615	150	92250	4			1 1	1	615			615	615		10/80	0	395	220		70	230	160	15	85	70	100	12	20 24		
334	4376563	5680572	160	100	16000	3			1 1	1 1	160		160			160	söhlig	0		160		335	490	155	55	130	75	130	9	15 26		
335	4376614	5680240	220	150	33000	3			1	1 1		220	180	40	220		9/270	1			220	175	280	105	35	85	50	115	11	17 26		
336	4376651	5679882	295	150	44250	3			1	1 1	185	110		295	295		5/210	1	295			75	230	155	10	80	70	90	7	19 24		
337	4376023	5679911	185	200	37000	4	1	1	1	1 1	25	160	185		70		115 6/330	1	145	40		270	435	165	60	135	75	135	12	17 24		
338	4375673	5680038	180	130	23400	3			1		180		180				180 5/80	0	180			305	395	90	65	110	45	110	12	16 27		
339	4375574	5680090	135	140	18900	2			1	1		135	135		135		n.b.	nb	135			510	540	30	105	145	40	145	12	15 53		
340	4375489	5679880	200	160	32000	3			1	1 1		200		200	200		söhlig	0	200			625	710	85	130	175	45	190	12	14 28		
341	4375551	5679617	355	150	53250	3			1	1 1	070	355	400	355	355		sohlig	0	355			700	750	50	135	185	50	200	11	14 45		
342	4375452	5679135	460	200	92000	4			1 1	1 1	370	90	180	260	460	400	sonlig	0	460			455	565	110	105	180	75	180	13	18 34		
343	4376026	5678396	160	120	19200	1				1	160		005	160	005	160	n.b.	nd	160	005		215	310	95	45	80	35	105	12	15 20		
344	4376285	5677746	235	180	42300	3			1	1 1	235		235	100	235	100	3/280	1		235		410	200	145	100	150	50	150	13	15 19		
345	43/0/13	5670200	650	120	07500	2		1	1	1 1	100	650		650		100	5/5U 15/120	0		100	650	350	390	40	60 50	110	30	135	13	16 3/		
340	4377349	5679460	200	120	97500	3		I	1	1 1	200	000		200		200	10/130	1			200	215	295	80 25	50	80 70	30	125	13	10 24		
247	43779040	5679220	200	120	24000	3			1	1 1	200			200	260	200	5/290	1	220	20	200	235	200	155	50	65	20	105	12	10 38		
340	4370049	5677822	470	150	70500	5	1	1	1 1	1 1	180	200	200	180	470		3/200	1	200	80		305	100	185	60	135	75	135	11	16 20		
350	4377522	5677228	360	100	36000	1	'	'	1	1 1	360	230	230	140	470	360	söblig	0	550	00	360	375		145	65	125	60	140	10	13 20		
351	4377206	5677031	115	120	13800	2			1		115		220	115		115	n h	nh	115		000	395	445	50	80	110	30	140	11	14 31		
352	4377260	5676857	170	80	13600	2				1	170			170		170	10/220	1	170			425	450	25	85	110	25	150	11	13 45		
353	4377465	5676613	155	110	17050	2			1	1	155			155		155	14/240	1	95	60		280	435	155	45	100	55	120	9	13 19		
354	4377764	5676533	30	20	600	1			1	-		30	30		30		nb	nb		30		105	230	125	15	65	50	65	8	16 22		
355	4378148	5676624	430	320	137600	4			1	1 1	430			430		430	3/130	0	430			260	415	155	50	115	65	135	11	16 23		
356	4378508	5676891	280	290	81200	3			1	1		280		280		280	4/140	1	280			260	350	90	50	100	50	135	11	16 29		
357	4378783	5677114	160	240	38400	4			1	1 1	160			160		160	5/280	1		160		275	450	175	55	125	70	130	11	16 22		
358	4379240	5677153	495	190	94050	4			1 1	1 1	495			495	50	445	4/90	0	415	80		100	310	210	30	100	70	115	17	18 18		
359	4379569	5677581	180	60	10800	2			1	1	180			180			180 n.b.	nb	180			50	175	125	10	60	50	85	11	19 22		
360	4379800	5677415	180	70	12600	3			1		180			180	180		4/220	1	180			35	120	85	15	60	45	80	23	27 28		
361	4379850	5677150	115	50	5750	2			1	1	115			115		115	5/70	0		115		40	150	110	5	50	45	75	7	18 22		
362	4379940	5676914	135	90	12150	4			1	1	135		135			135	6/320	1		135		25	195	170	5	75	70	75	11	21 22		
363	4379702	5676790	170	120	20400	3			1 1	1	170		170			170	6/315	1		170		105	295	190	20	85	65	85	11	16 19		
364	4379323	5676624	550	140	77000	4			1	1	550		550			550	n.b.	nb			550	130	275	145	40	90	50	90	17	18 19		
365	4378796	5676245	630	180	113400	4	1	1	1 1	1 1	180	450	490	140	430	200	5/285	1	590	40		195	430	235	50	105	55	105	15	13 13		
366	4378931	5675640	140	170	23800	2			1	1	140			140		140	5/350	1			140	100	185	85	25	65	40	95	14	19 25		
367	4377971	5675646	915	240	219600	5	1		1 1	1 1	750	165	500	250	200	715	13/360	1	885	30		215	360	145	60	125	65	130	16	20 24		
368	4378366	5675114	165	180	29700	3			1	1	55	110		165	165		3/230	1	105	60		260	350	90	70	105	35	130	15	17 21		
369	4378778	5675018	585	100	58500	3			1 1	1	470	115	585		100	485	10/200	1	485	100		190	420	230	40	105	65	105	12	14 16		
370	4379206	5675020	40	80	3200	2			1		40			40		40	n.b.	nb		40		175	290	115	25	55	30	90	8	11 15		
371	4379647	5675254	410	100	41000	4		1	1	1	310	100	270	140		410	7/160	0	410			95	250	155	25	85	60	85	15	19 21		
372	4380182	5675093	420	100	42000	3		1	1	1	420		420		80	340	10/260	1	380	40		110	215	105	25	70	45	65	13	17 23		

Nr.	Lage		Gebiets	größe	n	Staffe	eln & F	orme	enscl	hatz		Stufe		Abriß		Neigun	gsricht	ung		Grund	riß		Lage zu	ır Erosi	ionsba	asis						
	RW	HW	Breite I	Länge	Fläche	ST	SM	SP /	ΑW	/ R	FU	ΤW	Т	T=A	T#A	F	D	A Clar	Abw.	Fla.	Sti.	Ger.	dS	dH	dR	dF	dV	dA	dT	α	β	γ
			(m)	(m)	(m²)							(m)	(m)	(m)	(m)	(m)	(m)	(m) (° / °)	FDA	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(°)	(°)	(°)
373	4380353	5674831	280	60	16800	4			1	1		280		280			280	6/10	1	280			30	120	90	15	55	40	55	27	25	24
374	4379624	5674681	360	180	64800	3			1 .	1 1	1	130	230	280		50	310	8/340	1	320	40		190	290	100	55	80	25	80	16	16	14
375	4379603	5674310	200	160	32000	3	1		1 .	1 1		70	130	360			200	4/30	1	200			85	245	160	30	75	45	75	19	17	16
376	4379170	5674320	140	200	28000	3			1	1	1	140		200			140	4/350	1	140			135	280	145	35	75	40	75	15	15	16
377	4379035	5674317	45	180	8100	2				1	1	45		140			45	6/345	1		45		210	335	125	50	110	60	110	16	18	22
378	4378775	5674162	215	110	23650	3			1	1		215		45			215	6/330	1	215			220	375	155	50	110	60	105	13	16	21
379	4378275	5674258	300	90	27000	2			1	1		300		215			300	5/350	1		300		230	330	100	50	95	45	85	12	15	24
380	4377961	5674437	80	20	1600	1			1	1		80		300			80	n.b.	nb		80		170	270	100	40	80	40	80	13	17	22
381	4377411	5674834	770	270	207900	4	1	1	1	1	1	690	80	540	230	160	200	410 7/30	1	720	50		370	445	75	80	130	50	130	12	16	34
382	4376742	5675218	160	200	32000	4			1	1 1	1	160		160				160 7/70	0	130	30		130	270	140	40	85	45	85	17	17	18
383	4376679	5675524	150	180	27000	3			1		1	150			150			150 6/240	1			150	400	480	80	90	130	40	150	13	15	27
384	4376487	5675768	290	150	43500	3	1		1	1		290		180	110		200	90 10/30	1	180	110		400	485	85	110	150	40	160	16	17	25
385	4376075	5675993	580	250	145000	5			1	1 1	1	580		500	80		380	200 5/20	1	490	90		500	520	20	60	80	20	160	7	9	72
386	4375673	5676094	120	90	10800	1			1			120			120			120 7/155	1	120			500	730	230	85	115	30	170	10	12	7
387	4375670	5675897	320	250	80000	4		1	1	1 1	1	185	135	230	90	320		10/230	1	280	40		340	485	145	75	95	20	120	12	12	8
388	4375862	5675459	100	120	12000	1				1		100			100	100		n.b.	nb	100			370	515	145	80	110	30	125	12	12	12
389	4375950	5675301	130	110	14300	1				1		130			130	130		3/295	1		130		195	405	210	60	115	55	115	17	16	15
390	4373512	5676141	150	300	45000	4			1	1		100	50	150				150 10/60	0	110	40		15	435	420	20	110	90	110	53	14	12
391	4373294	5676014	280	90	25200	2		1	1	1			280	280		280		6/220	1	280			220	345	125	55	110	55	140	14	22	24
392	4373823	5675080	45	100	4500	1			1			45		45		45		n.b.	nb		45		285	360	75	85	135	50	135	17	21	34
393	4373800	5674994	70	100	7000	2			1			70		70		70		9/345	1	70			260	390	130	80	140	60	140	17	21	25
394	4373841	5674701	250	350	87500	1	1	1					250	200	50	250		6/140	0		250		415	525	110	120	205	85	205	16	21	38
395	4374002	5674372	350	210	73500	3			1		1		350			350		10/80	0	350			415	715	300	90	190	100	205	12	15	18
396	4374326	5674149	330	40	13200	1			. '	1 1		330			330		330	9/120	0	330			370	520	150	80	140	60	200	12	15	22
397	4374723	5673809	130	200	26000	3		1	1	. 1		130			130	130		10/40	0	80	50		90	330	240	20	120	100	160	12	20	22
398	4375019	5673490	530	170	90100	3			1	1	1	530			530	50	480	10/220	1	420	110		290	525	235	75	160	85	200	15	17	20
399	4375587	5673669	150	50	7500	1			1			150		470	150		150	n.b.	nb		150	470	70	280	210	10	105	95	105	8	21	24
400	4375961	56/3/4/	170	150	25500	1			1			170		170	405		170	n.p.	nD		405	170	40	210	170	5	65	60	65	7	17	19
401	4375989	5673324	105	50	5250	3		1	1	1	4	105	205		105	005	105	8/10	1	005	105		80	220	140	10	85	75	85	1	21	29
402	43/50/8	5672950	395	150	59250	4	1	4	1	1	1	00	395		395	395		15/35	1	335	60		170	3/5	200	40	140	100	175	13	20	21
403	4373408	5072550	300	160	72000	5	1	I	ן ג ו	11		220	260		360	360	400	2/160 aählig	1	320	40		300	5/5	220	60	140	15	100	10	13	19
404	4374931	5672454	480	100	12000	3			1	1 1		220	260		460		460	soniig	1	460		410	520	745	225	80 95	140	40	1/5	10	10	20
405	4374404	5672220	200	220	41000	3			1			200		100	410		200	4/20	1	200		410	400 275	590	150	60 60	120	40 60	125	0	12	20
400	4373623	5672272	200	190	44000	3			1	1 1		200		100	260	100	200	2/220	1	1200	120		605	925	120	125	120	55	210	11	12	22
407	4373023	56710/1	200	150	40000	3			1	1 I		200			200	55	100	3/300	1	130	55		215	225	120	50	100	50	125	12	17	23
400	4373237	5671707	105	180	18000	3			1	1 1 1		105			105	105		9/3 4/310	1	105	55		215	380	120	55	100	50	125	11	16	20
403	4373230	5671318	240	200	10300	2			1	1		105	240		240	105	240	-+/510 n.h	nh	240			165	355	100	25	100	75	140	0	16	20
410	4373/03	5671365	80	180	1//00	1			1	'		80	240		240		240	80 5/110	0	80			00	270	180	20	90	70	135	12	18	21
412	4373042	5671285	180	230	/1//00	3			1	1		180			180		180	6/360	1	180			185	330	145	50	100	50	160	15	17	10
413	4374160	5670965	100	230	7000	3			1			100			100	100	100	0/500 n b	nh	100	100		170	275	105	40	80	40	150	13	16	21
414	4374160	5670732	100	70	7000	1			1			100			100	100		n.b.	nb		100		300	380	80	65	110	45	175	12	16	29
415	4374220	5670441	170	260	44200	1			•		1	170			170	170		n b	nh	170	100		285	380	95	35	90	55	130	7	13	30
416	4374505	5670366	80	60	4800	1			1		'	80			80	170	80	n b	nh		80		265	420	155	35	95	60	130	7	11	21
417	4374874	5670369	120	40	4800	2			•	1		120			120		50	120 10/130	0		120		110	240	130	25	80	55	135	13	18	23
418	4374988	5670571	50	20	1000	1				1		50			50			50 n b	nh		50		40	120	80	10	35	25	115	14	16	17
419	4375325	5670491	325	50	16250	2		1	1	1		325			325	325		10/330		285	40		85	175	90	25	55	30	90	16	17	18
-	= 2																							-		-				-		

Nr.	Lage		Gebiets	größe	n	Staffe	eln & F	orme	nscha	tz	Stufe		Abriß		Neigun	gsrich	tung		Grund	riß	1	Lage zu	ır Erosi	ionsba	asis						
	RW	HW	Breite I	Länge	Fläche	ST	SMS	SP A	A W	R FL	J TW	Т	T=A	T#A	F	D	A Clar	Abw.	Fla.	Sti.	Ger.	dS	dH	dR	dF	dV	dA	dT	α	β	γ
			(m)	(m)	(m²)						(m)	(m)	(m)	(m)	(m)	(m)	(m) (° / °)	FDA	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(°)	(°)	(°)
420	4375434	5670037	355	80	28400	3			1	1	355			355	150	205	9/250	1	295	60		260	390	130	50	95	45	125	11	12	19
421	4375727	5670078	160	60	9600	2			1		160			160		160	6/180	1	120	40		350	460	110	60	100	40	125	10	12	20
422	4376153	5670096	195	50	9750	1			1		195			195	195		5/300	1	195			110	185	75	35	75	40	110	18	21	28
423	4376225	5669816	220	30	6600	2			1	1	220			220		220	5/20	1		220		220	310	90	40	85	45	115	10	15	27
424	4376350	5669925	165	120	19800	3			1	1	165			165			165 10/130	0	165			100	220	120	20	70	50	100	11	18	23
425	4376371	5670148	175	160	28000	2		1 '	1 1		175			175			175 5/125	0	175			65	225	160	20	90	70	110	17	22	24
426	4376371	5670332	155	100	15500	2			1		155			155			155 7/100	0			155	55	240	185	10	80	70	110	10	17	21
427	4376539	5670605	250	70	17500	1			1		250			250			250 6/140	0	110	140		50	165	115	10	60	50	95	11	18	23
428	4376749	5671235	95	30	2850	2		1 '	11		95			95	95		6/250	1			95	20	120	100	5	65	60	60	14	47	31
429	4376801	5670745	50	30	1500	1			1		50			50	50		n.b.	nb	50			20	45	25	5	30	25	85	14	34	45
430	4376793	5670408	50	20	1000	1				1	50			50	50		7/260	1	50			35	110	75	10	50	40	90	16	22	28
431	4376762	5670182	160	90	14400	1				1	160			160	160		söhlig	0		160		35	160	125	5	50	45	95	8	17	20
432	4377035	5669689	110	70	7700	2				1	85	25		110			110 2/230	1	70	40		80	150	70	20	65	45	100	14	23	33
433	4377185	5670828	90	20	1800	2			1		90			90			90 n.b.	nb	90			190	330	140	25	80	55	110	7	13	21
434	4377279	5671147	485	110	53350	3			1	1	485			485			485 7/110	0	455	30		130	280	150	20	95	75	110	9	17	27
435	4377336	5671503	120	120	14400	1				1	120			120			120 n.b.	nb		120		235	350	115	40	105	65	95	10	11	30
436	4377196	5671635	70	50	3500	1			1		70		70				70 n.b.	nb	70			120	300	180	20	90	70	90	10	17	21
437	4378101	5671305	115	170	19550	1			1		115		115		115		n.b.	nb		115		40	335	295	5	95	90	95	7	16	17
438	4378114	5670945	120	70	8400	2			1		120			120		120	n.b.	nb	120			110	200	90	25	90	65	90	13	18	36
439	4377821	5670740	270	70	18900	2		1	1	1		270		270	270		5/320	1	270			85	225	140	20	80	60	100	13	20	23
440	4377704	5670236	295	70	20650	2			1	1	295			295	295		5/240	1	275	20		130	265	135	25	90	65	115	11	19	26
441	4377559	5669764	120	50	6000	2			1		120			120	120		6/250	1		120		95	255	160	15	80	65	110	9	17	22
442	4375763	5669256	135	90	12150	2				1	135		135			50	85 40/20	1	85	50		115	255	140	40	95	55	95	19	20	21
443	4378088	5667948	225	100	22500	2				1		225		225	225		8/190	1	225			450	500	50	110	135	25	145	13	15	27
444	4379922	5666420	325	180	58500	3			1		1	325		325		325		1			325	105	415	310	35	110	75	120	18	16	13
497	4365098	5692387	180	200	36000	2			1	1	180		110	70		180	4/205	1	180			745	810	65	110	140	30	140	9	10	25
498	4364348	5692626	1540	210	323400	4	1		1		830	710	760	780	850	690	6/131	0	1460	80		250	440	190	50	125	75	125	11	16	21
499	4362907	5692199	1630	180	293400	5	1		1	1	600	1030	620	1010	1000	380	250 9/54	0	1510	120		410	515	105	90	160	70	160	12	17	34
500	4362805	5691213	200	170	34000	4			1	1	1	200		200	200		8/226	1	200		400	460	555	95	80	125	45	135	10	13	25
501	4362709	5690999	100	80	8000	3	1		1	1		100		100	100		3/148	1	400		100	210	305	95	50	100	50	105	13	18	28
502	4362662	5690852	100	180	18000	3			11	1	210	740	150	100	100	100	3/118	0	100	40		110	240	130	30	105	45	455	15	17	19
503	4301003	5091017	1050	200	210000	4			11	1	310	140	150	900		120	930 10/243	ا	1010	40		415	242	130	75	135	00	155	10	14	20
504	4301077	5091007	260	120	46900	2			1		260	110	120	240		110	11.D.	nb	260	30		100	200	120	35	00	20	00	10	16	10
505	4300730	5602020	800	150	40000	2 1			1	1	1 300	410	120	240	200		500 H.D.		780	20		105	295	130	40	110	40	90	10	10	27
507	4360333	5602694	1260	150	120000	4	1		1 1	1	1 390	1260	440	1260	1260		10/150	0	700	20	1260	410	490 560	155	80	145	40 65	160	10	15	21
508	4300333	5680505	660	210	138600	5	1		1 1	1	1	660	550	1200	1200	300	360 3/285	1	610	50	1200	405	575	110	85	145	40	125	10	12	20
500	4363096	56808/2	000	210	2700	2			1 I	1	'	900	000	110		500	90 n h	nh	010	50	90	175	215	40	35	65	30	65	11	17	37
510	4363714	5690008	190	60	11400	3			1	1	1	190	170	20		190	5/8	110	190		30	285	330	40	50	80	30	80	10	13	34
511	4363845	5690220	180	60	10800	3	1			1	i l	180	140	40		180	2/213	1	180			265	330	45 65	60	85	25	85	13	15	21
512	4364717	5601570	130	80	10400	2			1	1	130	100	140	130		130	5/198	1	130			125	320	195	30	85	55	95	13	15	16
Gobe	rt	0001010	100	00	10100	-				•	100			100		100	0/100		100			120	020	100	00	00	00	00	10	10	
512	4266706	569/110	70	70	4000	4	1		1 1		70			70			70 5/22	0	70			200	210	10	80	00	10	05	15	16	1E
513	4300/90	569/176	540	120	4900	4	1	1	1 I 1 1		1 ⁷⁰	540	260	280		540	10 0/3Z 5/32	0	540			200	310	10	00 90	90 110	20	90 110	10	10	40
514	4300313	5694170	540 680	140	04000	5	1	1	1 I	1		040 690	420	200		040 690	5/32 10/2F	0	680			290	520	160	00 75	120	30 45	120	10	10	16
516	4365289	5685052	1210	140	2200	1	1	1 -	1 1	1	i l	1210	430 900	200	1100	110	12/0	1	1210			300	JZ0 455	110	05	120	40 55	150	16	19	27
517	4364208	5685414	280	180	50400	3	1	۰ ,	1 1	1	1 160	1210	00e 60	220	80	200	9/128	1	230	50		265	380	115	90 70	135	65	155	15	20	21
517	4004230	5005414	200	100	00400	5			1 1	1	100	120	00	220	00	200	3/120	0	200	50		200	300	113	10	100	05	100	15	20	50

Nr.	Lage		Gebiets	sgröße	n	Staf	feln & I	Form	nensc	hatz		Stufe		Abriß		Neigun	gsrich	tung		Grund	riß		Lage zu	ur Eros	ionsba	asis						
	RW	HW	Breite	Länge	Fläche	ST	S M	SP	ΑV	V R	FU	ΤW	Т	T=A	T#A	F	D	A Clar	Abw.	Fla.	Sti.	Ger.	dS	dH	dR	dF	dV	dA	dT	α	β	γ
			(m)	(m)	(m ²)							(m)	(m)	(m)	(m)	(m)	(m)	(m) (°/°)	FDA	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(°)	(°)	(°)
518	4363643	5685775	240	50	12000	3				1 1		240			240		240	9/40	C	240			170	360	190	15	90	75	110	5	14	21
519	4363227	5686563	510	210	107100	5				1	1	160	350	470	40	510		4/330	1	450	60		415	595	180	95	180	85	180	13	17	25
520	4362971	5685823	670	200	134000	5	1	1	1	1 1	1		670	610	60	670		10/77	C	670			195	440	245	60	165	105	165	17	21	23
521	4363208	5685500	1070	220	235400	5	1		1	1 1	1	720	350	520	550		760	310 10/77	C	1050	20		490	810	320	95	200	105	200	11	14	18
522	4364625	5684432	630	230	144900	4	1	1	1	1	1		630	630			460	170 13/198	1	630			320	450	130	60	100	40	155	11	12	17
523	4364598	5683758	1480	220	325600	5	1	1	1	1	1	980	500	1480		1180	300	13/273	1			1480	515	615	100	90	165	75	165	10	15	37
524	4364320	5683194	140	90	12600	3	1		1	1		140		40	100		140	5/271	1	140			320	435	115	100	165	65	165	17	21	30
525	4364096	5683003	480	120	57600	5		1	1	1 1		480		50	430	190	290	6/158	C	480			325	475	150	60	125	65	135	10	15	23
526	4363783	5682555	530	200	106000	6	1		1	1	1	410	120	70	460	530		4/193	1	430	100		390	535	145	105	200	95	200	15	20	33
527	4363713	5681638	1240	200	248000	7	1		1	1	1	520	720	190	1050	1240		9/246	1			1240	650	710	60	200	260	60	270	17	20	45
528	4362526	5681462	780	180	140400	7	1		1	1	1		780	440	340	270	510	10/176	C	590	190		625	710	85	155	220	65	220	14	17	37
529	4362472	5681155	150	150	22500	6			1	1	1	150			150			150 n.b.	nb	150			480	535	55	135	160	25	185	16	16	24
530	4362917	5681252	80	40	3200	2			1			80			80		80		nb	80			625	635	10	150	160	10	190	13	14	45
531	4363039	5682603	180	180	32400	3			1	1	1		180		180		180	n.b.	nb	180			240	435	195	60	160	100	185	14	20	27
532	4362181	5682887	310	170	52700	4				1	1		310		310		310	n.b.	nb	310			430	560	130	115	185	70	205	15	18	28
533	4362518	5684079	500	180	90000	4			1	1	1	500			500	500		2/203	C	500			405	520	115	85	135	60	165	12	16	27
534	4363219	5684200	50	20	1000	1			1			50		50			50	n.b.	nb	,	50		330	460	130	60	120	60	120	10	15	25
535	4363168	5680856	780	170	132600	5	1	1	1	1 1	1		780	120	660	520	260	9/97	C	690	90		825	1010	185	180	255	75	255	12	14	22
536	4363842	5680996	720	220	158400	5		1	1	1 1	1	430	290	560	160			720 n.b.	nb	650	70		790	890	100	145	190	45	190	10	12	24
537	4364393	5681098	240	190	45600	3			1	1	1	240		70	170			240 5/140	C	180	60		215	335	120	50	90	40	90	13	15	18
538	4364921	5681133	580	150	87000	3			1	1	1	210	370	120	460		580	5/68	C			580	250	385	135	60	120	60	120	13	17	24
539	4364948	5680664	430	120	51600	3				1 1	1	430		30	400			430 n.b.	nb	,	430		265	325	60	60	110	50	120	13	19	40
540	4364948	5680330	130	180	23400	3			1	1 1	1		130	60	70			130 5/194	1		130		385	565	180	95	170	75	170	14	17	23
541	4364622	5680003	580	250	145000	4	1		1	1	1	580		250	330		290	290 10/180	C	480	100		280	425	145	80	150	70	150	16	19	26
542	4364616	5679537	280	200	56000	5	1	1	1	1	1		280	40	240		180	100 n.b.	nb	240	40		500	580	80	105	145	40	150	12	14	27
543	4364646	5678930	570	260	148200	3			1	1	1	570		30	540			570 2/58	1	470	100		395	555	160	105	155	50	185	15	16	17
544	4364611	5678433	220	110	24200	4			1	1 1		220		60	160			220 15/200	C		220		295	505	210	60	130	70	130	11	15	18
545	4364557	5678093	190	70	13300	2			1			190			190			190 n.b.	nb	140	50		310	345	35	70	100	30	110	13	16	41
546	4365480	5678344	1180	180	212400	7	1	1	1	1 1	1	200	980	200	980	460	720	10/240	C	1130	50		355	540	185	105	200	95	200	17	20	27
547	4365361	5679491	800	200	160000	5	1		1	1	1		800	190	610	800		8/256	C			800	570	730	160	95	150	55	200	10	12	31
548	4365523	5679949	110	180	19800	3			1	1	1	110			110	110		6/277	C			110	565	750	185	95	155	60	180	10	12	18
549	4365690	5680170	300	90	27000	2			1	1			300		300	300		5/324	C			300	525	720	195	95	185	90	210	10	15	25
550	4366472	5680486	770	100	77000	5	1	1	1	1			770	660	110	110	660	6/358	1	770			340	470	130	90	155	65	155	15	18	27
551	4366745	5680432	100	90	9000	3		1	1				100	80	20		100	6/358	1	100			485	590	105	80	130	50	130	9	12	26
552	4366208	5680729	1110	200	222000	5	1	1	1	1 1	1	530	580	1110			1110	12/82	1	840	270		410	465	55	105	135	30	135	15	16	29
553	4365234	5681425	970	210	203700	5	1	1	1	1 1	1	970		970				970 6/207	C	900	70		325	450	125	60	100	40	100	10	12	18
554	4364943	5682320	100	130	13000	3				1		100		100				100 n.b.	nb	100			190	455	265	25	100	75	100	7	12	16
555	4365210	5682687	760	190	144400	4			1	1	1	760		250	510			760 n.b.	nb			760	355	490	135	60	115	55	115	10	13	22
556	4365436	5683186	870	200	174000	5		1	1	1 1	1	870		870			870	n.b.	nb	870			285	355	70	60	95	35	95	12	15	27
557	4364937	5683698	630	150	94500	3			1	1	1	630		510	120			630 9/157	C			630	465	600	135	80	120	40	120	10	11	17
558	4364859	5684168	100	30	3000	1			1			100		50	50			100 9/157	C			100	350	485	135	55	95	40	95	9	11	17
559	4363813	5679410	440	170	74800	3			1	1			440	250	190			440 9/190	1	380	60		290	400	110	85	125	40	125	16	1/	20
Ring	gau																															
445	4379248	5665331	525	80	42000	3			1	1 1		525			525		525	7/50	C			525	260	275	15	70	90	20	105	15	19	53
446	4378353	5664960	1420	170	241400	4	1	1	1	1 1	1	540	880		1420		1420	6/175	1			1420	165	270	105	55	110	55	135	18	22	27
447	4377250	5664949	335	160	53600	3	1		1	1 1	1	35	300	285	50		335	2/165	1	265	70		315	500	185	95	185	90	185	17	20	26
448	4376985	5665222	420	140	58800	4	1	1	1	1 1	1	420		230	190			420 10/115	C	330	90		570	680	110	135	195	60	195	13	16	29

Nr.	Lage		Gebiets	größe	n	Staff	eln & I	Forme	nschatz	z	Stufe		Abriß		Neigung	gsricht	tung		Grund	riß		Lage zu	ır Erosi	ionsba	asis						
	RW	HW	Breite I	Länge	Fläche	ST	S M	SP /	A W I	r fu	TW	Т	T=A	T#A	F	D	A Clar	Abw.	Fla.	Sti.	Ger.	dS	dH	dR	dF	dV	dA	dT	α	β	γ
			(m)	(m)	(m²)						(m)	(m)	(m)	(m)	(m)	(m)	(m) (°/°)	FDA	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(°)	(°)	(°)
449	4376879	5665715	260	200	52000	3			1	1 1	200	160		260			260 10/210	1	260			610	650	40	145	175	30	200	13	15	37
450	4376339	5665512	65	20	1300	1			1		65			65		65	14/360	1		65		400	440	40	105	130	25	195	15	17	32
451	4376293	5665056	375	150	56250	2			1	1 1		375		375	375		n.b	nb			375	480	550	70	100	115	15	200	12	12	12
452	4376301	5664672	165	130	21450	1			1			165		165	165		n.b.	nb			165	310	420	110	75	115	40	155	13	15	20
453	4375992	5664420	70	100	7000	2			1		70			70		70	n.b.	nb		70		85	180	95	30	75	45	105	19	23	25
454	4375808	5664316	250	140	35000	4			1	1		250		250	250		6/145	0	250			220	530	310	100	160	60	190	24	17	11
455	4375673	5663746	180	60	10800	2		1	1		180			180		180	5/140	0	180			160	260	100	35	80	45	105	12	17	24
456	4374941	5661130	130	60	7800	3		1	1	1	130		130		130		13/300	1	130			115	375	260	15	110	95	110	7	16	20
457	4374261	5661758	310	40	12400	2			1	1	190	120		310		310	n.b.	nb	310			375	480	105	45	90	45	120	7	11	23
458	4374150	5662731	670	110	73700	3			1	1	670			670	670		3/360 im	N 1	670			110	310	200	40	80	40	100	20	13	11
459	4373610	5663227	200	70	14000	1				1	200			200	200		9/75	1	200			125	230	105	30	70	40	80	13	17	21
460	4374018	5663419	160	20	3200	1				1	160			160			160 3/195	0	160			125	185	60	30	60	30	100	13	18	27
461	4374267	5663437	160	40	6400	1			1	1		160	90	70	160		9/175	0	160			50	200	150	10	55	45	85	11	16	17
462	4374422	5663759	115	30	3450	1				1	115			115		115	5/180	0		115		45	190	145	10	45	35	90	12	13	13
463	4374189	5664301	230	70	16100	2			1		230			230	230		n.b.	nb	230			395	565	170	55	110	55	155	8	11	18
464	4373672	5664534	280	250	70000	5	1	1	1 1	1		280	30	250	280		10/180	0	280			340	435	95	80	160	80	180	13	20	40
465	4373493	5664822	355	200	71000	3			1	1 1	100	255		355		355	7/190	0			355	55	290	235	20	115	95	145	20	22	22
466	4373019	5665497	1940	240	465600	6	1 1	1	1 1	1 1		1940	1560	380	1070	290	580 11/190	0	560	180	1200	210	350	140	75	160	85	160	20	25	31
467	4371649	5665489	300	180	54000	4			1 1	1 1	300			300	300		17/10	1	300			300	365	65	65	100	35	130	12	15	28
468	4371182	5665364	735	160	117600	4			1 1	1 1	735		80	655		735	2/210	0	525	210		490	585	95	110	170	60	175	12	16	32
469	4371166	5664825	210	80	16800	2			1	1		210		210		210	6/250	0	170	40		170	240	70	70	110	40	130	22	25	30
470	4371146	5664249	455	200	91000	5		1	1 1	1 1	455		455		455		10/20	1			455	260	415	155	65	125	60	125	14	17	21
471	4370092	5664262	1585	180	285300	4	1	1	1 1	1 1	1155	430	1345	240	1135	450	10/205	0	1385	200		230	360	130	60	125	65	125	15	19	25
472	4369369	5664879	455	90	40950	2	1	1	1	1		455	455		255	200	4/270	0		455		215	360	145	65	120	55	120	17	18	21
473	4368486	5665152	1350	190	256500	5	1 1	1	1 1	1 1		1350	1150	200	1350		6/185	0	1190	160		200	305	105	55	135	80	135	16	24	37
474	4368126	5665652	485	150	72750	4	1	1	1	1 1	485		485			140	345 7/180	0	270	215		230	305	75	55	110	55	110	13	20	36
475	4367991	5666353	3190	260	829400	6	1 1	1	1 1	1 1	1295	1895	2440	750	2430	90	670 8/200	0	3060	130		300	450	150	70	150	80	180	13	18	28
476	4365752	5666254	1785	240	428400	6	1	1	1 1	1 1	485	1300	1665	120	1785		3-5/200	0			1785	265	390	125	35	115	80	115	. /	16	33
477	4364769	5666418	260	300	78000	4			1 1	1 1	260	~~~	260	= 0	190	70	3/320	1	260			300	540	240	55	140	85	140	10	15	19
478	4364520	5666042	295	190	56050	4			1	1 1		295	225	70		295	n.b.	nb	295			260	370	110	45	105	60	105	10	16	29
479	4362654	5665172	130	30	3900	2			1	1	130	4000	130	400	4540	130	6/50	1	4050	130		205	315	110	60	115	55	115	16	20	27
480	4361560	5664399	2210	200	442000	5		1	1 1	1 1	890	1320	1720	490	1510	420	280 7/165	0	1050	~~~	1160	195	415	220	50	135	85	135	15	18	21
481	4360846	5665331	1215	150	9000	1				1 4 4	E 4 E	60	60 1005	250	250	065	60 8/330	1	1045	60 70		370	495	125	65	130	65	130	10	15	27
482	4360823	566004620	1315	250	328750	5	4	4	11	1 1	515	800	1065	250	350	965	8/260	1	1245	10		245	510	205	50	145	95	145	11	10	20
403	4360698	5003317	1525	240	100000	0	1	1	1	1 1	100	020	250	12/0	11/5	350	9/155	0	1305	160		245	440	195	45	135	90	135	10	10	22
404	4360242	5001091	460	210	100800	4			11	1 1	195	200	35	440	200	280	0/340	1	430	50	240	200	215	10	35	10	30	140	10	14	20
400	4303093	5057149	310	40	12400	2			1	1		310		310	310		0/300	0			310	310	440 570	150	60 70	125	00 70	130	10	10	21
400	4303703	5057520	220	120	26900	3			1	1		220		220	40		7/290	1			220	420	370	175	70	140	70	155	7	14	20
407	4303942	5057497	230	20	2000	4			1	1		230	100	230	230		1/209	1	100		230	145	200	175	75	100	75	100	10	10	23
400	4304007	5657066	120	30	5200	1			1	1		120	100	120	120		4/330	1	120			140	300	190	20	00	70	05	7	10	20
409	4304341	5659424	200	120	24000	2			1	1		200		200	200		0/220	1	165	25		105	330	125	20	110	70	120	12	10	21
450	43657/1	5658472	200	100	17100	2			1	' 1		200		200	200	90	3/320 10/3/9	1	40	50		240	360	120	40 50	120	70	120	12	18	20
431	4366609	5658220	370	240	88800	2			1	1 1	370	90		370	370	90	10/340 2/28	۱ م	370	50		570	710	1/0	05	160	65	120	10	12	25
492	4367166	5658048	500	120	60000	3			1	· · · 1	5/0	500		500	220	70	- 1 ,20 210 7/326	1	410	٩n		190	390	200	35 45	115	70	125	13	16	20 10
49/	4368838	5657554	700	160	112000	3	1		, 1 1	1 1		700		700	700	10	210 1/320 A/7	0	410	30	700	210	350	140	50	100	50	120	13	16	20
495	4360310	5657197	210	20	4200	1	1		· · 1			210	150	60	210			nh	210		100	85	230	145	20	75	55	80	13	18	20
-33	1003013	0001101	210	20	-1200				•		1	210	100	00	210		11.0.	un	210			5	200	140	20	15	00	50	10	10	<u> </u>

RW HW Breite Lange Filade ST S M V R W T = A <th>Nr.</th> <th>Lage</th> <th></th> <th>Gebiets</th> <th>größe</th> <th>n</th> <th>Staff</th> <th>eln & F</th> <th>orme</th> <th>nscha</th> <th>tz</th> <th>Stufe</th> <th></th> <th>Abriß</th> <th></th> <th>Neigun</th> <th>gsrich</th> <th>tung</th> <th></th> <th>Grund</th> <th>riß</th> <th> </th> <th>Lage zu</th> <th>ır Erosi</th> <th>ionsba</th> <th>sis</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Nr.	Lage		Gebiets	größe	n	Staff	eln & F	orme	nscha	tz	Stufe		Abriß		Neigun	gsrich	tung		Grund	riß		Lage zu	ır Erosi	ionsba	sis						
image image <th< th=""><th></th><th>RW</th><th>HW</th><th>Breite</th><th>Länge</th><th>Fläche</th><th>ST</th><th>SM</th><th>SP /</th><th>A W</th><th>R FL</th><th>J TW</th><th>Т</th><th>T=A</th><th>T#A</th><th>F</th><th>D</th><th>A Clar</th><th>Abw.</th><th>Fla.</th><th>Sti.</th><th>Ger.</th><th>dS</th><th>dH</th><th>dR</th><th>dF</th><th>dV</th><th>dA</th><th>dT</th><th>α</th><th>β</th><th>γ</th></th<>		RW	HW	Breite	Länge	Fläche	ST	SM	SP /	A W	R FL	J TW	Т	T=A	T#A	F	D	A Clar	Abw.	Fla.	Sti.	Ger.	dS	dH	dR	dF	dV	dA	dT	α	β	γ
496 873867 6564707 109 20 20 100 162 0 100<				(m)	(m)	(m²)						(m)	(m)	(m)	(m)	(m)	(m)	(m) (° / °)	FDA	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(°)	(°)	(°)
Obstructure Platte Set VietA VietA VietA VietA	496	4373867	5654767	1090	200	218000	4	1 1	1 .	1 1	1 '	1	1090	770	320	1090		16/22	0	1090			135	395	260	30	115	85	115	12	16	18
560 424865 6620 360 590 230 70 170 100 170 110 100 561 4248657 6630310 100 130 24700 1 1 190 190 190 914 610 1400 600 255 500 205 155 165 170 100 100 90 90 90 90 12/259 1 400 600 225 500 225 155 155 165 170 100 110 11 90 90 90 12/259 1 300 505 277 455 55 </th <th>Ohro</th> <th>drufer Plat</th> <th>te</th> <th></th>	Ohro	drufer Plat	te																													
ise1 4425460 653034 90 2470 1 1 90 91/46 1 150 40 60 30 20 10 00 0 0 </th <th>560</th> <th>4424657</th> <th>5629320</th> <th>600</th> <th>350</th> <th>210000</th> <th>4</th> <th></th> <th></th> <th>1</th> <th>1</th> <th>1 600</th> <th></th> <th>310</th> <th>290</th> <th></th> <th></th> <th>600 4/348</th> <th>0</th> <th>600</th> <th></th> <th></th> <th>360</th> <th>590</th> <th>230</th> <th>70</th> <th>170</th> <th>100</th> <th>170</th> <th>11</th> <th>16</th> <th>23</th>	560	4424657	5629320	600	350	210000	4			1	1	1 600		310	290			600 4/348	0	600			360	590	230	70	170	100	170	11	16	23
isea 442557 653744 290 70 70 10 90 <th>561</th> <th>4425469</th> <th>5630310</th> <th>190</th> <th>130</th> <th>24700</th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th>1 190</th> <th></th> <th></th> <th>190</th> <th></th> <th>190</th> <th>9/146</th> <th>1</th> <th>150</th> <th>40</th> <th></th> <th>60</th> <th>350</th> <th>290</th> <th>10</th> <th>100</th> <th>90</th> <th>110</th> <th>10</th> <th>16</th> <th>17</th>	561	4425469	5630310	190	130	24700	1					1 190			190		190	9/146	1	150	40		60	350	290	10	100	90	110	10	16	17
563 4425780 563744 230 150 150 1 1 90 90 90 12266 1 95 225 270 145 45 15 70 100 100 100 230 7733 11 200 200 770 95 120 250 200 <th>562</th> <th>4425571</th> <th>5630734</th> <th>490</th> <th>270</th> <th>132300</th> <th>5</th> <th></th> <th></th> <th>1</th> <th>1</th> <th>1 490</th> <th></th> <th>30</th> <th>460</th> <th></th> <th>490</th> <th>6/180</th> <th>1</th> <th>490</th> <th></th> <th></th> <th>295</th> <th>500</th> <th>205</th> <th>50</th> <th>155</th> <th>105</th> <th>170</th> <th>10</th> <th>17</th> <th>27</th>	562	4425571	5630734	490	270	132300	5			1	1	1 490		30	460		490	6/180	1	490			295	500	205	50	155	105	170	10	17	27
564 442833 1631746 230 10 230 77.83 1 230 95 220 125 20 90 70 95 220 230 80 75 80 75 80 75 95 75 <t< th=""><th>563</th><th>4425780</th><th>5631424</th><th>90</th><th>170</th><th>15300</th><th>2</th><th></th><th></th><th></th><th>1</th><th>1 90</th><th></th><th></th><th>90</th><th></th><th>90</th><th>12/296</th><th>1</th><th></th><th>90</th><th></th><th>225</th><th>370</th><th>145</th><th>45</th><th>115</th><th>70</th><th>140</th><th>11</th><th>17</th><th>26</th></t<>	563	4425780	5631424	90	170	15300	2				1	1 90			90		90	12/296	1		90		225	370	145	45	115	70	140	11	17	26
565 442816 563268 210 200 920 210 320 0 210 150 442817 563120 4428475 563120 4428475 563120 4428475 563120 4428475 563120 4428475 563120 4428475 563120 4428475 563120 4428475 563120 4428475 563120 442847 56303898 190 160 300 10 100 <	564	4425831	5631746	230	150	34500	3			1 1	1	1	230	90	140		230	7/283	1	230			95	220	125	20	90	70	95	12	22	29
566 4428/43 5632292 310 200 6200 2 1 310 310 6/24 0 256 60 45 240 195 15 100 18 566 4424657 5631730 442867 5631730 442867 5631730 100 <t< th=""><th>565</th><th>4425816</th><th>5632558</th><th>210</th><th>80</th><th>16800</th><th>2</th><th></th><th></th><th>1</th><th></th><th>210</th><th></th><th>90</th><th>120</th><th></th><th>210</th><th>3/20</th><th>0</th><th></th><th>210</th><th></th><th>30</th><th>80</th><th>50</th><th>15</th><th>65</th><th>50</th><th>95</th><th>27</th><th>39</th><th>45</th></t<>	565	4425816	5632558	210	80	16800	2			1		210		90	120		210	3/20	0		210		30	80	50	15	65	50	95	27	39	45
567 4424876 5631730 40 120 400 100 n.b. n.b 40 105 330 22.5 20 102 110 568 442467 5630398 190 100 30400 1 100 190 n.b. nb 190 135 22.5 90 30 80 50 80 12 577 4424364 6530392 100 200 2 1 100 190 100 70 200 100 70 200 100 70 200 100 70 200 100 70 200 100 100 1010	566	4425423	5632292	310	200	62000	2			1		1	310	310			310	6/24	0	250	60		45	240	195	15	100	85	100	18	23	24
568 442467 5631260 440 50.242 1 40 40 50.242 1 40 50.242 1 40 50.242 1 40 50.242 1 40 50.242 1 40 50.242 1 40 50.242 1 40 40 90.2 20 10.20 20 <	567	4424876	5631730	40	120	4800	1					1	40	40			40	n.b.	nb		40		105	330	225	20	120	100	120	11	20	24
669 442447 6530988 190 100 100 100 130 130 225 90 30 80 50 80 120 677 4423164 6630398 40 70 200 20 20 110 100	568	4424657	5631260	40	30	1200	1			1			40		40		40	5/242	1	40			165	295	130	35	105	70	120	12	20	28
570 4423814 5630392 20 10 20 20 20 11/351 0 20 150 215 65 30 55 30 55 30 55 30 55 30 55 30 55 30 55 50 50 50 50 50 50 50 50 50 50 50 5	569	4424407	5630898	190	160	30400	1					1 190		190			190	n.b.	nb	190			135	225	90	30	80	50	80	12	20	29
571 442162 5803464 40 70 20 70 2800 70 757 74 74 <th>570</th> <th>4423814</th> <th>5630392</th> <th>20</th> <th>10</th> <th>200</th> <th>2</th> <th></th> <th></th> <th>1</th> <th></th> <th>20</th> <th></th> <th>20</th> <th></th> <th></th> <th>20</th> <th>11/351</th> <th>0</th> <th></th> <th></th> <th>20</th> <th>150</th> <th>215</th> <th>65</th> <th>25</th> <th>55</th> <th>30</th> <th>55</th> <th>10</th> <th>15</th> <th>25</th>	570	4423814	5630392	20	10	200	2			1		20		20			20	11/351	0			20	150	215	65	25	55	30	55	10	15	25
572 4421802 5630060 50 70 3500 1 1 50 50 50 50 50 50 50 50 50 50 50 10 200 225 125 100 5 55 50 10 100 110 10 100 100 <	571	4421562	5630464	40	70	2800	2			1			40	40			40	9/343	0		40		40	250	210	5	90	85	90	7	20	22
573 4422644 562982 1	572	4421802	5630060	50	70	3500	1				1	50		50				50 12/203	1		50		25	125	100	5	55	50	55	11	24	27
575 4422212 5629968 580 220 1280 2 1 1 1 590 590 590 10231 1 550 135 375 240 30 115 85 125 12 576 4422542 5629044 10 50 550 1 1 10 110 10 110 110 110 100 100 100 60 150 245 150 80 70 100 10 577 4422323 562376 120 120 1 <	573	4422644	5629820	110	200	22000	3			1		1 110			110			110 4/193	1			110	85	265	180	15	90	75	105	10	19	23
575 4422721 5629228 130 200 28000 2 1 1 1 130 130 4/321 0 130 4/00 575 175 575 6422721 5629242 5629444 110 5500 1	574	4422221	5629968	590	220	129800	2			1		1 590			590			590 10/231	1			590	135	375	240	30	115	85	125	12	17	19
576 4422542 5629044 110 50 5500 1 1 110 110 11/2 0 110 60 150 245 35 25 65 40 65 10 10 10 100 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 120 100 110 <th>575</th> <th>4422721</th> <th>5629228</th> <th>130</th> <th>200</th> <th>26000</th> <th>2</th> <th></th> <th></th> <th>1</th> <th></th> <th>1 130</th> <th></th> <th></th> <th>130</th> <th></th> <th>130</th> <th>4/321</th> <th>0</th> <th>130</th> <th></th> <th></th> <th>400</th> <th>575</th> <th>175</th> <th>75</th> <th>155</th> <th>80</th> <th>160</th> <th>11</th> <th>15</th> <th>25</th>	575	4422721	5629228	130	200	26000	2			1		1 130			130		130	4/321	0	130			400	575	175	75	155	80	160	11	15	25
577 4422032 5628492 60 70 422032 5628492 60 70 422032 562876 140 180 2500 3 1 1 140 140 9/95 1 140 120 25 95 25 85 40 65 90 7 579 4422483 5621961 1200 120 44000 2 1 1 1200 370 830 1200 12120 205 110 155 205 125 100 125 215 100 125 215 100 125 10 125 215 100 125 215 100 125 10 125 215 100 10 125 100 125 215 100 125 10 105 10 100 110 100 110 100 110 100 110 100 110 100 100 110 100 100 10 100 100 100 100 100 100 100 100 100	576	4422542	5629044	110	50	5500	1			1		110			110	110		11/21	0	110			60	195	135	10	80	70	100	10	22	27
578 4423325 5625776 140 140 140 140 140 140 140 120 120 120 150 457 4423325 5621361 120 120 140 2 1 1 1 120 370 830 120 12/324 0 120 100 35 5 50 45 80 66 90 7 13 580 4423602 5623376 180 20 330 10 110 330 205 160 135 5 50 45 80 110 150 160 135 5 50 45 80 110 120 10 120 10 120	577	4422032	5628492	60	70	4200	2			1		60		60			60	n.b.	nb		60		150	245	95	25	65	40	65	10	15	23
579 4422483 5621961 1200 120 14000 2 1 1 1200 370 830 1200 12/324 0 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 120 1	578	4423325	5625776	140	180	25200	3			1	1 .	1 140			140		140	9/295	1		140		125	295	170	15	80	65	90	7	15	21
580 4423196 5623376 180 200 36000 3 1 1 180 110 110 110 <	579	4422483	5621961	1200	120	144000	2			1	1		1200	370	830	1200		12/324	0	1200			110	395	285	25	125	100	125	13	18	19
581 4423602 5622926 180 40 7200 2 1 1 180 180 n.b. nb 180 335 555 220 40 100 60 110 7 582 4423997 5623354 90 30 2700 1 1 90 90 90 n.b. nb 90 330 620 220 335 120 75 120 66 583 4424855 5623618 40 20 800 1 1 1 40 40 n.b. nb 40 150 250 150 250 250 150 20 150 120 8 586 4424875 5624431 200 90000 4 1 1 1 200 200 200 410 10 1 30 340 <th< th=""><th>580</th><th>4423196</th><th>5623376</th><th>180</th><th>200</th><th>36000</th><th>3</th><th></th><th></th><th>1</th><th>1</th><th>180</th><th></th><th></th><th>180</th><th></th><th></th><th>180 4/274</th><th>1</th><th>150</th><th>30</th><th></th><th>25</th><th>160</th><th>135</th><th>5</th><th>50</th><th>45</th><th>80</th><th>11</th><th>17</th><th>18</th></th<>	580	4423196	5623376	180	200	36000	3			1	1	180			180			180 4/274	1	150	30		25	160	135	5	50	45	80	11	17	18
582 442399 5623354 90 30 2700 1 1 1 90 90 n.b. nb 90 330 620 290 35 120 75 120 6 583 4424085 5623464 50 20 1000 1 1 1 50 50 n.b. nb 50 285 620 330 620 290 330 10 80 110 6 584 442420 5623618 40 20 800 1 20	581	4423602	5622926	180	40	7200	2	1			1	180			180	180		n.b.	nb			180	335	555	220	40	100	60	110	7	10	15
583 4424085 5623464 50 20 100 1 1 50 50 n.b. nb 50 285 620 335 30 110 80 110 6 584 4424220 5623618 40 20 800 1 - 1 40 40 40 n.b. nb 40 175 480 305 20 105 85 424895 5624431 200 200 100 80 10 6 586 4424877 5624431 220 230 50600 3 1 1 1 200 200 400 160 275 495 20 60 140 12 2 587 4424722 5625386 450 200 9000 4 1 1 1 450 450 450 9/131 1 450 350 10 75 10 12 10 1 1 1 1 1 1 100 100 7/148 1 160 300	582	4423997	5623354	90	30	2700	1			1	1		90	90		90		n.b.	nb			90	330	620	290	35	120	75	120	6	11	15
584 4424220 5623618 40 20 800 1 1 40 40 n.b. nb 40 1/5 480 305 20 105 85 120 6 585 4424820 5624431 220 230 50600 3 1 1 1 20 220 220 220 4/267 1 60 160 275 495 220 60 140 12 88 120 6 586 4424872 562431 220 230 500 450 450 450 9/131 1 450 350 55 205 65 120 6 120 1 1 1 1 450 340 340 7/354 0 160 160 300 535 235 55 125 70 125 10 150 10 10 1 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10 10	583	4424085	5623464	50	20	1000	1				1		50	50		50		n.b.	nb			50	285	620	335	30	110	80	110	6	10	13
586 4424895 5624491 20 250 12500 2 1 1 1 50 50 60 6.6. 60 60 250 525 275 35 110 75 120 8 586 4424897 5624431 220 230 50600 3 1 1 1 200 220 220 4/267 1 60 160 275 495 220 60 140 12 14 1 1 1 200 220 220 220 4/267 1 60 160 275 495 220 60 140 12 14 1 1 1 1 1 1 1 1 1 1 1 1 450 350 50 9131 1 60 9131 1 60 9131 1 60 300 535 235 55 125 70 125 10 15 10 10 10 10 10 10 10 10 10 10	584	4424220	5623618	40	20	800	1				1		40		40	40		n.b.	nb			40	175	480	305	20	105	85	120	6	12	16
586 4424877 5624431 220 230 50600 3 1 450 360 9/131 1 450 350 555 205 65 120 55 120 11 1 588 4424941 5625983 340 220 74800 3 -1 1 1 340 340 340 7/354 0 300 535 235 55 125 70 125 10 150 10 10 11 1	585	4424895	5624190	50	250	12500	2			1			50	000	50	50		n.b.	nb		400	50	250	525	275	35	110	75	120	8	12	15
587 4424722 5825388 450 200 90000 4 1 1 1 450 450 9/131 1 450 350 555 205 65 120 55 120 11 588 4424922 5625383 340 220 74800 3 7 1 1 340 340 340 7/354 0 340 300 535 235 55 125 70 125 10 589 4425315 5626588 190 180 34200 4 1	586	4424877	5624431	220	230	50600	3			1 1	1	220	450	220		450	220	4/267	1	60	160	450	275	495	220	60	140	80	140	12	16	20
588 4424941 5625983 340 220 74800 3 - 1 1 340 340 7/354 0 - 340 5625983 340 7/354 0 - 340 5625983 340 7/354 0 - 340 5625983 340 7/354 0 - 340 5625983 340 7/354 0 - 340 5625983 340 7/354 0 - 340 5625983 340 7/354 0 - 340 5625983 340 7/354 0 - 340 340 1	587	4424722	5625386	450	200	90000	4			1	1		450	450		450		9/131	1			450	350	555	205	65	120	55	120	11	12	15
589 4425315 5626588 190 180 34200 4 1 1 1 190 <th< th=""><th>588</th><th>4424941</th><th>5625983</th><th>340</th><th>220</th><th>74800</th><th>3</th><th></th><th></th><th></th><th>1</th><th>'</th><th>340</th><th>340</th><th></th><th>340</th><th>400</th><th>7/354</th><th>0</th><th>400</th><th>20</th><th>340</th><th>300</th><th>535</th><th>235</th><th>55</th><th>125</th><th>70</th><th>125</th><th>10</th><th>13</th><th>17</th></th<>	588	4424941	5625983	340	220	74800	3				1	'	340	340		340	400	7/354	0	400	20	340	300	535	235	55	125	70	125	10	13	17
591 4424605 5627166 2160 510 6608000 7 1	589	4425315	5620588	190	180	34200	4	4	1	1 1		500	190	190	70		190	7/148	1	160	30		280	455	175	6U 1E0	125	65	125	12	15	20
591 442401 502/366 720 500 770 115	590	4424609	5627596	2160	310	000600		1	1	11	1	1 520	1640	2090	220		1000	500 5/245	1	1930	230	700	700	835	130	150	210	50	210	12	14	24
592 4425251 5827010 180 90 180 180 180 180 180 180 180 6/505 0 180 515 515 200 55 110 55 110 160 6/505 0 180	591	4424001	5627610	120	310	223200	2	1	۲.	1	1	420	100	490	230	100	420	300 8/348	0	100		720	215	110 E1E	200	115	100	70	100	10	13	31
593 4423377 5023021 240 210 50400 2 1 1 240 240 10. 10 240 365 530 105 50 105 8 594 4427101 5628103 260 350 91000 5 1 1 260 260 8/294 1 220 40 425 700 275 70 130 60 130 9 595 4427543 5627699 150 130 19500 2 1 1 150 150 14/106 0 150 150 225 75 20 70 50 80 70	592	4423231	5620021	240	90	F0400	2			1 1	' .		240	240		240		0/300 n.h	0	160		240	265	515	200	55	100	55	105	0	12	10
595 4427101 5028103 200 530 5100 53 1 1 200 200 6/254 1 220 40 423 700 213 70 130 60 150 9 595 4427543 5627699 150 130 19500 2 1 1 150 150 14/106 0 150 150 205 75 20 70 50 80 7	593	4425577	56291021	240	210	01000	2 5			1		1	240	240		240		11.D. 8/204	10	220	40	240	425	200	275	70	120	50 60	100	0	11	12
	505	4427101	5627600	200	120	10500	2			1			200	150		150		14/106	0	150	40		420	225	275	20	70	50	130	3	20	24
	596	4427543	5627024	70	80	5600	2			1		1	70	150	70	150		70 n h	nh	70			135	125	200	20	70	55	80	á	10	11
507 427092 5027324 70 50 500 2 1 1 1 70 70 70 101.0 10 70 133 423 230 20 73 53 50 9	507	4427092	5628155	520	310	161200	2			1 1		520	70	520	10		260	260 7/327		10		520	400	42J 635	230	20 65	165	100	165	9	15	23
598 4424679 5528666 460 300 138000 4 1 1 1 1 460 460 7/51 0 460 325 485 100 90 165 75 165 13	508	4423004	5628666	460	300	138000	4			1	1	1 460		520	460		460	7/51	0			460	385	485	100	00	165	75	165	13	10	37
599 4224399 5625397 420 200 84000 4 1 1 1 1 420 100 320 420 474 1 270 150 260 470 210 60 135 75 135 13	599	4424399	5625397	420	200	84000	4	1	1	1	1 .	1 420		100	320		400	420 4/74	1	270	150	400	260	470	210	60	135	75	135	13	16	20
600 4433949 5624933 520 280 145600 5 1 1 1 1 1 1 520 520 520 520 3256 1 480 40 505 755 755 250 80 145 65 145 9	600	4423949	5624933	520	280	145600	5		1	1 1	1	520		520	520			520 3/56	1	480	40		505	755	250	80	145	65	145	9	11	15
601 423827 50 20 1000 1 1 1 1 50 50 50 b b b 50 50 50 50 50 b b 50 50 50 50 50 50 50 50 50 50 50 50 50	601	4423827	5624437	50	200	1000	1		'.	1	1	50		520	50			50 n h	nh	400	50		5	125	120	5	50	45	70	45	22	21
602 424628 5625973 1080 400 432000 7 1 1 1 1 1 1080 970 110 500 580 120 100 1020 60 390 715 325 90 185 95 185 13	602	4424628	5625973	1080	400	432000	7	1	1 .	1	1	1	1080	970	110		500	580 2/308	0	1020	60		390	715	325	90	185	95	185	13	15	16
603 4419084 5621148 450 90 40500 2 1 1 4 450 450 150 100 b mb 390 60 35 135 100 5 45 40 45 8	603	4419084	5621148	450	90	40500	2	•	•	1	1		450	450		150	300	n b	nh	390	60		35	135	100	5	45	40	45	8	18	22
604 4419461 5621613 40 30 1200 2 1 1 40 40 40b. nb 40 20 175 155 5 50 45 50 14	604	4419461	5621613	40	30	1200	2			1	1	1	40	40			40	n.b.	nb		40		20	175	155	5	50	45	50	14	16	16

Nr.	Lage		Gebiets	größe	n	Staffe	eln & F	orme	enscha	atz	Stufe		Abriß		Neigun	gsricht	ung		Grund	riß		Lage zı	ur Erosi	ionsba	isis						
	RW	HW	Breite I	Länge	Fläche	ST :	S M	SP /	A W	R FL	ТW	Т	T=A	T#A	F	D	A Clar	Abw.	Fla.	Sti.	Ger.	dS	dH	dR	dF	dV	dA	dT	α	β	γ
			(m)	(m)	(m²)						(m)	(m)	(m)	(m)	(m)	(m)	(m) (° / °)	FDA	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(°)	(°)	(°)
605	4419860	5621966	60	20	1200	1			1			60	60			60	n.b.	nb		60		30	385	355	5	95	90	95	10	14	14
606	4419820	5622709	1300	250	325000	7	1	1	1	1 '	750	550	1300			1300	7/150	1			1300	185	365	180	35	110	75	110	11	17	23
llm-k	alk-Platte	•																													
607	4447988	5620975	290	340	98600	5			1	1 '	290		200	90		290	8/98	1	230	60		170	505	335	30	130	100	130	10	15	17
608	4446436	5620528	160	110	17600	2				1 '	160		160			160	n.b.	nb		160		110	265	155	15	75	60	75	8	16	21
609	4446529	5620140	260	120	31200	2			1		260		260				260 15/110	1	230	30		205	435	230	30	100	70	100	9	13	17
610	4446564	5619507	190	100	19000	2			1		190			190			190 n.b.	nb	150	40		80	170	90	15	45	30	70	11	15	18
611	4446775	5619433	120	90	10800	2			1	1	120		120			120	n.b.	nb		120		310	450	140	40	105	65	105	7	13	25
612	4447148	5619629	220	250	55000	5			1	1 '	220		220				220 7/164	1		220		360	545	185	70	125	55	125	11	13	17
613	4448106	5619929	400	300	120000	4	1	1	1	1 '		400		400		120	280 2/326	0	310	90		375	485	110	75	140	65	160	11	16	31
614	4448498	5619570	310	200	62000	2				1 '	80	230	80	230		230	80 7/306	1	270	40		185	425	240	55	140	85	165	17	18	19
615	4448813	5619133	330	200	66000	2			1	1 '		330		330			330 4/347	0		330		115	275	160	25	105	80	130	12	21	27
616	4449505	5618952	150	160	24000	1					150			150			150 n.b.	nb	120	30		465	555	90	70	110	40	125	9	11	24
617	4449839	5618898	90	140	12600	1			1		90		90				90 n.b.	nb		90		420	570	150	65	115	50	115	9	11	18
618	4449191	5618490	100	330	33000	1						100	100		100		n.b.	nb		100		375	510	135	70	140	70	140	11	15	27
619	4448449	5618191	520	360	187200	5		1	1	1 '		520	520		520		11/216	1	520			490	655	165	85	150	65	150	10	13	21
620	4447737	5618750	790	350	276500	5			1	1 '		790	630	160	790		2/278	1	790			560	780	220	100	195	95	195	10	14	23
621	4446731	5618957	660	290	191400	2				1		660	660		660		n.b.	nb			660	480	650	170	85	165	80	180	10	14	25
622	4445876	5619512	120	220	26400	1						120	120		120		n.b.	nb			120	535	690	155	95	170	75	170	10	14	26
623	4445130	5619659	120	250	30000	1						120	120		120		n.b.	nb			120	300	435	135	55	125	70	125	10	16	27
624	4444703	5619462	160	200	32000	1						160	000	160	160		n.b.	nb	140	20		485	555	70	95	140	45	175	11	14	33
625	4444497	5619718	200	270	54000	1						200	200		200		n.b.	nb	200			455	595	140	95	165	70	165	12	16	27
626	4444241	5619890	90	200	18000	2						90		90		90	n.p.	nd	400	90		615	700	85	115	165	60	205	11	14	35
627	4444379	5620042	130	190	24700	1						130		130		130	n.p.	an	130		110	320	410	90	70	130	00	150	11	10	30
620	4444546	5620332	70	170	8400	1			1			70		70	70	110	6/07 E/E1	0	70		110	300	400	45	10	105	30	135	10	15	30
620	4444001	5620656	20	120	10400	1			1		80	70		20	20		5/51 11/245	0	80			200	200	60 60	40	90	45	120	10	21	29
621	4443730	5621107	200	60	17400	2			1	1	200			200	00	200	6/110	1	240	50		230	125	55	20	50	20	130	16	21	20
632	4443027	5621300	260	120	31200	2				1 ·	260			260	260	230	5/64	0	240	50		135	220	85	30	75	15	110	12	10	23
633	4442660	5620985	350	140	49000	2			1	· .	350			350	200	350	3/312	1	320	30		310	395	85	55	70	15	95	10	10	10
634	4442424	5620754	190	60	11400	1			'	1	190			190	190	000	5/124	1	190	00		365	525	160	45	110	55	125	7	12	19
635	4440780	5621058	50	180	9000	1				•	50			50	50		n b	nb	100		50	90	225	135	30	90	60	110	18	22	24
636	4440293	5620847	60	210	12600	1					60			60		60	n b	nb		60	00	190	300	110	35	80	45	115	10	15	22
637	4439518	5620636	120	270	32400	1						120		120	120		n.b.	nb			120	245	330	85	55	95	40	135	12	16	25
638	4433030	5622476	980	210	205800	3			1	1 .		980	400	580		580	400 n.b.	nb	980		-	520	715	195	95	170	75	170	10	13	21
639	4432863	5622116	160	220	35200	1						160	160		160		n.b.	nb		160		320	485	165	60	125	65	125	11	15	21
640	4433118	5622160	130	230	29900	1						130	130		130		n.b.	nb	130			330	525	195	60	130	70	130	10	14	20
641	4433320	5622248	140	230	32200	1					140		140		140		n.b.	nb	140			365	560	195	55	115	60	115	9	12	17
642	4442877	5626543	160	220	35200	2			1		160			160	160		4/333	0		160		470	685	215	55	115	60	145	7	10	16
643	4442200	5626570	530	240	127200	2				1 '	530			530	530		4/5	0			530	290	515	225	45	115	70	130	9	12	17
644	4441480	5626385	340	100	34000	2			1	1		340	340		340		5/356	0	340			410	540	130	75	135	60	135	10	14	25
645	4437694	5627545	140	90	12600	2			1	1		140	140				140 9/193	1	140			300	555	255	55	140	85	140	10	14	18
646	4434980	5626412	140	50	7000	2			1		140			140	140		11/83	0			140	15	55	40	5	25	20	80	18	24	27
647	4447234	5626596	230	150	34500	2	1	1	1		230		230		230		10/150	1	230			270	480	210	50	110	60	110	11	13	16
648	4447348	5627861	300	120	36000	3	1		1 1		300			300		300	5/144	1	300			125	180	55	30	55	25	100	13	17	24
649	4447927	5627931	500	210	105000	5	1		1	1 .	500		500			500	4/300	1	500			115	255	140	30	95	65	95	15	20	25
650	4447919	5627571	150	150	22500	3	1		1		150		150		150		10/150	1	70	80		135	250	115	35	90	55	90	15	20	26

Nr.	Lage		Gebiets	größei	n	Staffe	eln & F	orme	nscha	atz	Stufe		Abriß		Neigun	gsricht	tung		Grund	riß		Lage zu	ır Erosi	ionsba	sis						
	RW	HW	Breite	Länge	Fläche	ST	SM	SP /	A W	R FL	J TW	Т	T=A	T#A	F	D	A Clar	Abw.	Fla.	Sti.	Ger.	dS	dH	dR	dF	dV	dA	dT	α	β	γ
			(m)	(m)	(m²)						(m)	(m)	(m)	(m)	(m)	(m)	(m) (°/°)	FDA	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(°)	(°)	(°)
651	4448130	5626666	315	250	78750	1					1 315			315		315	n.b.	nb	185	130		300	355	55	85	125	40	160	16	19	36
652	4449755	5627430	130	180	23400	2			1		1 130			130	130		n.b.	nb	130			335	425	90	65	105	40	140	11	14	24
653	4449913	5627545	30	10	300	1			1		30		30		30		5/330	0	30			355	515	160	75	160	85	160	12	17	28
654	4450150	5627510	230	210	48300	2					1 230			230	230		n.b.	nb			230	500	605	105	85	125	40	165	10	12	21
655	4450773	5628054	90	370	33300	2			1		1 90			90		90	n.b.	nb		90		545	670	125	100	140	40	175	10	12	18
656	4450642	5628335	160	180	28800	1					1 160			160		160	n.b.	nb		160		475	560	85	85	125	40	140	10	12	25
657	4450123	5628880	130	30	3900	1			1			130	130			130	7/100	1	130			20	150	130	5	60	55	60	14	22	23
658	4450405	5629381	70	30	2100	1				1	70			70		70	8/40	0	200			50	100	50	10	20	10	90	11	11	11
659	4451626	5629240	200	50	10000	1			1		200			200			200 10/20	0		70		30	80	50	10	35	25	85	18	24	27
660	4451529	5628871	155	200	31000	1					1 155			155		155	n.b.	nb		155		35	125	90	5	50	45	100	8	22	27
661	4452828	5628353	150	90	13500	1			1	1	150			150			150 10/300	0		150		160	260	100	45	95	50	130	16	20	27
662	4452934	5628124	150	310	46500	1					1 150			150		150	10/300	1	150			405	550	145	90	135	45	140	12	14	17
663	4453312	5627993	200	200	40000	2		1			1	200	200		200		9/220	0	200			190	325	135	60	110	50	110	18	19	20
664	4456606	5628177	220	210	46200	1					1 220			220		220	n.b.	nb	220			215	340	125	55	95	40	105	15	16	18
665	4456571	5628449	300	280	84000	3		1	1 1	1	1 300			300			300 4/330	0	300			350	455	105	65	110	45	145	11	13	23
666	4456352	5628667	260	140	36400	2		1		1	260			260			260 2/352	0	260			200	290	90	45	80	35	120	13	16	21
667	4456093	5628681	200	170	34000	2			1	1	200			200			200 4/10	0	200			180	330	150	40	85	45	120	12	15	17
668	4456608	5629505	150	240	36000	1					1 150			150	150		n.b.	nb		150		455	490	35	85	105	20	125	11	12	30
669	4457612	5629534	90	250	22500	2	1		1		1 90		90		90		2/18	0		90		290	385	95	70	120	50	120	13	17	28
670	4459385	5628775	80	210	16800	1					1	80		80	80		3/350	0	80			225	310	85	55	100	45	135	13	18	28
671	4459666	5628462	250	280	70000	4			1 1	1		250	250		250		3/32	0	250			330	405	75	70	115	45	115	12	16	31
672	4460292	5628358	100	300	30000	3			1		1	100	100		100		4/38	0		100		230	380	150	55	130	75	130	13	19	27
673	4460666	5628070	300	190	57000	3			1 1		1	300		300		300	10/340	0	300			210	270	60	35	70	35	75	10	15	30
674	4460807	5627991	170	160	27200	2			1	1	1 170		170			170	10/34	0	170			180	230	50	55	70	15	70	17	17	17
675	4461195	5628419	170	290	49300	4			1	1	1 170			170	50	120	17/220	1	110	60		480	670	190	80	135	55	140	10	11	16
676	4461828	5627764	150	290	43500	6	1	1	1 1	1	1	150	150		50	100	5/234	1	90	60		280	410	130	85	150	65	150	17	20	27
677	4462566	5627188	120	220	26400	1					1 120		120			120	n.b.	nb	120			260	305	45	70	100	30	100	15	18	34
678	4464002	5629426	200	180	36000	3			1 1		1	200	70	130			200 10/200	1			200	480	640	160	80	155	75	155	10	13	25
679	4462872	5629700	140	170	23800	1					1 140			140			140 n.b.	1		140		460	570	110	85	130	45	180	10	13	22
680	4462501	5630139	200	160	32000	1					1 200			200			200 3/260	1		200		380	430	50	75	115	40	155	11	15	39
681	4461415	5631535	100	300	30000	1					1	100	100		100		1/20	0	100			190	360	170	45	150	105	150	13	23	32
682	4463886	5631099	75	210	15750	2			1		1 75			75	75		7/187	1		75		510	655	145	95	175	80	190	11	15	28
683	4464264	5631272	180	130	23400	4			. 1	1		180	180				180 n.b.	nb	180			240	335	95	40	85	45	119	10	14	25
684	4464361	5631959	220	150	33000	2			1		1	220		220	220		6/310	0		220		100	245	145	30	100	70	140	17	22	26
685	4465300	5628854	140	170	23800	1					1	140	140		140		n.b.	nb	140			590	680	90	90	130	40	130	9	11	23
686	4465509	5629160	125	210	26250	2				1	1 125			125	125		n.b.	nb	125			510	545	35	85	100	15	115	10	10	23
687	4466937	5633452	90	50	4500	1				1	90			90		90	10/264	1	90			15	120	105	5	60	55	90	18	25	26
688	4468499	5636748	65	40	2600	1		1	1		65			65		65	n.b.	nb	25	40		40	220	180	5	80	75	125	(20	22
689	4469222	5636791	130	100	13000	3			1 1	1		130		130		130	5/140	1	130			30	270	240	5	75	70	120	9	16	16
690	4469542	5636752	115	290	33350	2			1			115		115		115	13/140	1		115		40	450	410	5	100	95	160	<u>/</u>	12	13
691	4469899	5636708	80	180	14400						80			80		08	n.b.	nb	70	50	80	40	430	390	5	95	90	157	(12	13
692	4470467	5638173	120	270	32400	1					120	400		120		120	10/40	1	70	50		400	670	270	70	150	80	170	10	12	15
693	4468834	5640770	100	110	11000	2	1			1		100	400	100		000	100 4/180	1	100	000		230	340	110	45	95	50	120	11	16	24
694	4468204	5641879	280	180	50400	3			⊓ 1 ₄	1		280	160	120	100	280	20/156	1	100	280		260	340	80	/5	115	40	115	16	19	27
695	4468801	5642429	100	230	23000	2			1		'l	100		100	100	000	8/160	1	100	00		295	335	40	70	90	20	100	13	15	27
696	4468981	5644185	300	80	24000	2			1 1	1	50	250		300		200	100 10/190	1	210	90		15	260	245	5	70	65	95	18	20	15

Nr.	Lage		Gebiets	größe	n	Staffe	eln & F	orme	nscha	tz	Stufe		Abriß		Neigung	gsricht	tung		Grund	riß		Lage zı	ır Erosi	ionsba	isis					
	RW	HW	Breite I	Länge	Fläche	ST	SM	SP A	A W	R FU	TW	Т	T=A	T#A	F	D	A Clar	Abw.	Fla.	Sti.	Ger.	dS	dH	dR	dF	dV	dA	dT	α	β
			(m)	(m)	(m²)						(m)	(m)	(m)	(m)	(m)	(m)	(m) (° / °)	FDA	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(°)	(°) (°
Taute	enburger	Forst																												
697	4477447	5650953	50	70	3500	1				1	50			50			50 7/32	1		50		105	180	75	60	110	50	130	30	31 34
698	4477440	5650708	40	70	2800	2			1	1		40		40			40 8/15	1	40			70	150	80	60	115	55	170	41	38 3
699	4479206	5648610	80	110	8800	1				1		80		80			80 4/225	1		80		420	660	240	45	130	85	145	6	11 19
700	4480541	5648164	230	150	34500	2			1	1 1		230	230			90	140 6/280	0	210	20		110	310	200	35	100	65	100	18	18 18
702	4479786	5652899	65	40	2600	1			1		65			65		65	10/70	1		65		95	135	40	25	40	15	130	15	17 2
703	4479894	5652798	50	60	3000	2			1	1	50			50		50	5/70	1		50		65	115	50	25	55	30	125	21	26 30
Zeug	enberge l	Mittleres	Saaleta	l							•																			
701	4479199	5646944	700	200	140000	4		1 '	1 1	1 1	I	700	700	T		700	5/244	1	700			640	710	70	110	150	40	150	10	12 28
704	4473191	5642461	100	30	3000	1			1		100			100			100 7/215	1	60	40		320	400	80	55	105	50	140	10	15 32
705	4471827	5641825	500	210	105000	3			1	1 1		500	500			500	5/320	0	500			285	525	240	85	190	105	190	17	20 24
706	4472665	5641587	450	180	81000	2	1	1		1		450		450		450	5/20	0	450			185	280	95	55	105	50	160	17	21 28
707	4473284	5640997	650	200	130000	4			1 1	1 1	550	100		650			650 8/340	0	570	80		210	470	260	35	125	90	150	10	15 19
708	4472557	5640673	700	210	147000	3			1	1		700	700			700	n.b.	nb	700			410	615	205	110	200	90	200	15	18 24
709	4473309	5640026	70	190	13300	3				1 1		70		70		70	5/200	1	40	30		230	480	250	35	130	95	175	9	15 2
710	4473385	5639918	50	50	2500	1			1			50		50		50	2/200	1	30	20		380	620	240	60	160	100	220	9	15 23
711	4474018	5645030	1450	210	304500	3			1	1 1	1450		1110	340		600	850 3/357	0	1180	270		795	875	80	160	215	55	225	11	14 3
712	4475177	5645430	340	270	91800	4			1	1 1		340	340				340 4/141	1	340			655	710	55	140	180	40	180	12	14 36
713	4475788	5645271	220	170	37400	3				1 1		220	120	100			220 6/211	1		220		365	385	20	80	110	30	110	12	16 56
714	4476263	5645390	240	170	40800	2				1 1		240	240				240 7/299	0		240		545	610	65	100	145	45	145	10	13 3
715	4476753	5645710	310	140	43400	1				1		310	310			310	5/220	1	310			305	420	115	45	100	55	100	9	13 20
716	4476936	5646160	80	60	4800	1			1		80		80				80 3/262	0	80			540	625	85	65	105	40	105	7	10 2
717	4476303	5646621	110	60	6600	1			1			110		110	110		3/14	0			110	410	475	65	90	120	30	140	12	14 2
718	4475875	5647581	1310	190	248900	4	1		1	1 1	780	530	430	880		150	1160 4/20	0	1110	200		785	860	75	160	185	25	185	11	12 18
719	4476306	5647135	80	40	3200	2			1 1		80		80			80	2/244	1		80		590	700	110	95	145	50	145	9	12 24
720	4476670	5646916	200	170	34000	3			1	1 1	200		80	120			200 8/85	1	200			280	420	140	70	125	55	125	14	17 2 [·]
721	4476731	5646851	10	10	100	1			1			10	10			10	n.b.	nb		10		410	695	285	60	140	80	140	9	11 10
722	4477066	5646711	320	200	64000	4	1	1 '	1 1	1 1	320		320			120	200 4/10	0	220	100		350	610	260	60	130	70	130	10	12 1
723	4477623	5646531	640	100	64000	2			1 1	1		640	490	150	470		170 3/341	0	590	50		270	505	235	55	120	65	120	11	13 16
724	4477343	5645962	200	60	12000	3			1	1		200	200		200		n.b.	nb	170	30		365	510	145	50	105	55	105	8	12 2
725	4477983	5644825	130	20	2600	2			1	1		130	130			130	n.b.	nb		130		585	630	45	90	110	20	105	9	10 12
726	4476134	5644843	70	170	11900	1				1		70	70			70	8/356	0			70	630	690	60	125	165	40	165	11	13 34
727	4474547	5644858	80	10	800	1			1			80	80			80	4/351	0			80	490	650	160	90	180	90	180	10	16 29
728	4473065	5643390	150	140	21000	3			1			150	150			120	30 6/64	1	110	40		895	940	45	160	205	45	205	10	12 4
729	4473687	5643314	640	130	83200	3			1	1 1		640	640			640	n.b.	nb	530	110		790	850	60	135	185	50	185	10	12 40
730	4474346	5643267	320	220	70400	4			1 1	1 1		320	320				320 4/112	1	300	20		820	880	60	140	185	45	200	10	12 3
731	4474749	5642983	170	180	30600	2			1	1 1		170	1/0				170 n.b.	nb	170	40		/15	845	130	90	150	60	150	<u>/</u>	10 2
732	4475436	5642199	40	20	800	2			1			40	40				40 n.b.	nb		40		425	5/5	150	50	105	55	105	1	10 20
733	4475652	5642224	40	20	800	2			11			40	40				40 n.b.	nb		40		45	195	150	10	70	60	70	12	20 22
734	4475965	5642918	60	40	2400	2			1			60	60				60 n.b.	nb		60		535	685	150	105	145	40	145	11	12 1
735	4476047	5642886	30	20	600	2			1			30	30			30	n.b.	nb	30			315	395	80	60	100	40	100	11	14 2
/36	4476850	5643070	50	30	1500				1			50	50			50	50 n.b.	nb	50	FO		150	210	100	45	80	35	80	17	21 30
131	44/0908	5643037	50	20	1000				1			50	50			50	n.p.	nb		50		2/5	440	105	45	80	35	80	9	10 12
/ 38	4477640	5642731	40	10	400				1		60	40	40			40	n.p.	nb		40		325	460	135	45	80	35	80	8	10 1
739	4477054	5042505	60	20	1200	2			1		60		60			40	n.p.	nb		40		105	∠15 490	110	20	50	30	50	11	10 1
740	4411951	20420/0	40	10	2000	2			1		40	60	40			40	n.D.	nb		40		350	400	130	25 15	80 60	3U 4E	00 60	9	10 1
741	44/044/	0042443	υø	10	000	3		-	I			υø	υø			υø	n.p.	מוז		υø		110	310	200	15	υa	40	υø	Ö	11 1.

Nr.	Lage		Gebietsgrö	ößen	Staffelr	n & Form	enschatz		Stufe		Abriß		Neigung	gsrichtu	ing		Grund	riß		Lage zu	ur Erosi	ionsba	sis					
	RW	HW	Breite Län	ge Fläche	ST S	M SP	AWF	FU	ΤW	Т	T=A	T#A	F	D	A Clar	Abw.	Fla.	Sti.	Ger.	dS	dH	dR	dF	dV	dA	dT	α	β γ
740	4470040	5040447	(m) (i	m) (m ²)	2		4		(m)	(m)	(m)	(m)	(m)	(m)	(m) (° / °)	FDA	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(°)	(°) (°)
742	4478940 4473234	5642447 5643239	210 140	10 2100 30 4200	3		1			210 140	210 140			140	210 n.b. 6/64	nb 1		210	140	315	205 385	90 70	20 95	35 130	35	35 130	10	10 10 19 27
744	4473827	5643052	60 1	30 7800	1			1	60			60		60	4/245	1		60		315	355	40	65	90	25	100	12	14 32
Erlä	uterunge	en der A	bkürzun	gen																								
		N1	NL	mmar daa N	100000		maaaabi			#a 0\						-												
		INI .	INUI		lassein	venagen	ingsgebie	eles (1	yı. Na	te oj				eigun	Fontet	j ufo bozo		f dia N	10000	nvorlag	orupad	annin	tebroit	(m)				
		ane I											г Г	`	Diagor	nalstufa l	hezode	nauf	dia Ma	assonv	orlanor	unasa	ahiate	broito	(m)			
		RW	Re	chtswert										,	Achter	stufe he	zoden	auf die		senverl	anerun	unysy Insreh	ietshr	eite (n	(11) 1)			
		HW	Ho	chwert									, i	Clar	Clar-W	/ert-Sch	ichtme	ssuna	/Finfa	allswink	cel ° / F	infalls	richtu	na °)	''			
			1100										A	bw. FD	A Abwei	chunaen	zur Fr	ont D	Diagon	nal od	er Acht	terstuf	enrich	tuna				
		Staffelan	zahl & Fo	rmenschat	z								1		Abwei	chuna va	on der l	Neiaur	nasrici	htuna z	u verze	eichne	n					
		ST	Sta	ffelanzahl									n	.b.	Schich	tlagerun	g und	damit	Abwei	ichunge	en nich	t besti	mmba	ar				
		S	Stu	ırzfließung												Ũ	0			Ũ								
		М	Ма	uerscholle									L	.age zı	r Erosion	sbasis												
		A	Abs	satzscholle									d	S	Horizo	ntaldista	nz Fuß	Spunkt	- Röt	- / Well	enkalk	- Schio	chtgre	nze (n	ר)			
		SP	Spa	altenbildung	1								d	Н	Horizo	ntaldista	nz Fuß	punkt	- Тор	der Ab	orißwar	nd (m)						
		W	Wa	llscholle									d	R	Horizo	ntaldista	ınz Röt	-/ Wel	lenkal	k-Schio	chtgren	ze - T	op de	r Abriß	wand	(m)		
		R	Rüc	ckenscholle	•								d	F	Vertika	aldistanz	Fußpu	ınkt - F	Röt- / \	Wellen	kalk- S	chicht	grenze	e				
		FU	Ful	Sscholle											(= Mä	chtigkeit	Socke	lgeste	in) (m)								
		1	ent	sprechende	Form k	commt in	n jeweilig	en Ge	biet vo	r			d	V	Vertika	aldistanz	Fußpu	inkt - T	rop de	er Abriß	Swand							
															(= rela	tive Stuf	enhöhe	e bis z	um To	pp der A	Abrißwa	and) (r	n)					
		Stufe (St	ufenhang	typ)		- <i>,</i> .							d	A	Vertika	aldistanz	Röt- /	Welle	hkalk-	Schich	tgrenze	e - Top	der A	Abrißw	and			
		IVV	Stu	Itennangab	schiuis:	I raut mi	t vvaim b	ezoge	en				-	-	(= Mac	chtigkeit	Stuten		r) (m) Stailai	المال	. T							
		т	aur	die Masser	iveriage	Trouf bo	Dietsbrei	te (m)					a	1		aldistanz	Fuispu	INKT - 3	Stellar	orali dei	r Traur							
		1	Siu	dio Massor	schiuls:		zogen	to (m)					0		(= real	live Slui		DIS Z	urina Döt /	wollon	kalk S	chicht	aronzo	\ (9)				
			aui		ivenage	siungsge	Dietabliei						ß		Anstia	aswinke	l Fußni	inkt - '		or Abril	wand	(°)	grenze	-()				
		Abriß (La	age vom T	op der Abi	rißwand	d)							۲ ۲		Anstie	aswinke	l Röt- /	Welle	nkalk-	Schich	tarenze	() e - Tor	der /	Abrißw	and (')		
		T=A	Höl	henlage Tra	uf = Hö	henlage	Abrißwa	nd					'			<u>.</u>										,		
		T#A	Höl	henlage Ab	rißwand	tiefer al	s Höhenl	age T	rauf																			
		Grundriß	5																									
		Fla.	Gru	undrißpositi	on: Vors	sprung F	lanke (m)																				
		Sti.	Gru	undrißpositi	on: Vor	sprung S	Stirn (m)																					
		Ger.	Gru	undrißpositi	on: gest	treckter	Abschnitt	(m)																				