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... Die Quellen zu der Geschichte der Erde bewahrt sie selber  

wie in einem Schriftengewölbe in ihrem Innern auf, 

Quellen, die vielleicht in Millionen Urkunden niedergelegt sind 

und bei denen es nur darauf ankömmt, daß wir sie lesen lernen 

und durch Eifer und Rechthaberei nicht verfälschen. ... 

–  Adalbert Stifter, Der Nachsommer 



  



Abstract 
 

Western and Central Europe is affected by widespread rifting and associated volcanism in the foreland 

of the Alpine orogene. There is still an ongoing discussion on the causes of that rifting: passive rifting 

due to stresses induced by the Alpine collision and the North-Atlantic opening or active rifting due to 

active mantle up-welling. Teleseismic tomography studies imaged anomalous low seismic velocities 

beneath the French Massif Central and the Eifel area/Rhenish Massif, Germany, which can be 

interpreted as small-scale mantle plumes beneath the Tertiary to Quaternary volcanic fields. The 

existence of similar “mantle fingers” beneath the other volcanic fields in Central Europe was 

suggested, including the Eger Rift. 

The Eger Graben is the approximately 50 km wide and 300 km long ENE-WSW striking central 

graben structure of the Eger Rift, which experienced several phases of magmatic activity since the 

Upper Cretaceous-Tertiary boundary. CO2 emanations, sparse alkaline volcanic activity, neotectonic 

movements, and an unusual intraplate swarm-earthquake activity in the Vogtland/NW-Bohemia region 

accompany the recently active rifting process in the western part of the rift. 

 

The present study focuses on the seismic structure and petrological composition of the lower crust and 

uppermost mantle beneath the presently active swarm-earthquake region and CO2 degassing field 

Vogtland/NW-Bohemia. 

 

Seismic data of several temporary and permanent seismic stations in the region provided the base of a 

receiver function study. Using this method, local depth variations of the Moho discontinuity could be 

detected. Moho depths range from 27 km beneath the Cheb Basin to 38 km beneath the central 

Bohemian Massif. A local Moho updoming from about 31 to 27 km was detected beneath the area 

with the CO2 emanation centres and the Quaternary volcanoes at the surface, and the main swarm-

earthquake activity in the upper crust. The lateral dimension of the effected area is approximately 40 

km wide. Locally weak conversions at the Moho and increased reflectivity in the lower crust may 

indicate a magmatic overprinting of the crust-mantle boundary. 

 

The results of this study also include the first average crustal vp/vs ratios on a local scale in the area 

under investigation. The vp/vs ratios range from 1.63 to 1.89 with a mean value of 1.73.  

 

Furthermore, using teleseismic receiver functions, a local positive ”6 s phase” was detected 

underneath the area of CO2 emanations and Quaternary volcanism. This phase might stem from a 

converter at about 50 to 60 km depth. Possibly, this converter coincides with an upper mantle reflector 

observed previously by reflection seismic studies. 
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The receiver function study also shows an apparent deepening of the 410 km discontinuity beneath the 

area under study. Probably, this apparent deepening is the result of lower seismic velocities in the 

upper mantle in comparison to the IASP91 reference model. However, a real deepening of the ‘410’ 

cannot be ruled out completely at the present stage of investigation. 

 

Additionally, (ultra-) mafic nodules (xenoliths, megacrysts), sampled from a tephra deposit near the 

Quaternary scoria cone Železna Hůrka, were investigated as rocks of the lower crust/uppermost mantle 

composition in this area. Most of the analysed xenoliths are wehrlitic samples, clinopyroxenites, or 

hornblendites and show cumulus textures. They probably represent cumulates of the host melt or 

fragments of small dikes/sills of crystallized alkaline melts, which intruded into the uppermost mantle 

and lower crust before the host melt rose to the surface. Spinel lherzolite xenoliths, the typical upper 

mantle rocks beneath Central Europe, could not be found in the Quaternary volcanics. Megacrysts of 

olivine, clinopyroxene, amphibole and phlogopite were also sampled and analysed in this study. The 

pressure (depth) of origin was estimated for several xenoliths using different available 

geothermobarometers; most estimates are in the range 8 to 12 kbar (29 to 41 km). Depth estimates 

from clinopyroxene and amphibole megacrysts are more or less in the same range (7 to 11 kbar; 25 to 

38 km). Assuming, that at least some of the megacrysts might be deep-seated phenocrysts, these 

estimates provide constraints on the depth level of magmatic reservoirs in the study area. Since CO2-

dominated degassing is presently going on and previously isotope (He, C) geochemical investigations 

on these gases showed upper mantle signatures, there might still exist active melts at this depth level. 

 

Up to now, only two Quaternary volcanic vents are known in the study area. Maybe the alkaline 

magmatic activity is mostly concentrated in the uppermost mantle and lower crust and causes there 

metasomatism, resulting in an upper mantle composition dominated by olivine and clinopyroxene (± 

amphibole, ± phlogopite). A comparison of calculated seismic velocities shows that rocks similar to 

the analysed xenoliths have lower seismic velocities than normal upper mantle rocks (spinel 

lherzolites). Therefore, the seismic discontinuity in about 50 to 60 km depth could represent the base 

of a local metasomatic mantle containing a few percent of partial melts.  

 

The seismic and petrological results are discussed together with the results of previous regional 

seismic, seismological, and geochemical and isotope investigations on CO2-dominated gas 

emanations. All available information is finally compiled into a conceptional model of the lithosphere 

in the swarm-earthquake and CO2 degassing region Vogtland/NW-Bohemia. An interconnection 

between the different geodynamic processes (neotectonic movements, swarm-earthquakes, CO2 

degassing) observed in the area under study by presently active deep-seated magmatic activity 

(“magmatic underplating”) is proposed. 



Zusammenfassung 
 

West- und Mitteleuropa sind gekennzeichnet durch weitverbreitete Rift-Prozesse und damit 

verbundenen Vulkanismus im Vorland des Alpen-Orogens. Als Ursachen werden lokale passive 

Extension im Spannungsfeld der Alpinen Kompressionstektonik und der Nordatlantiköffnung sowie 

aktive Weitungsprozesse in Beziehung zu Mantelaufwölbungsprozessen diskutiert. Anomal niedrige 

seismische Geschwindigkeiten wurden durch teleseismische Tomographie-Studien unter dem 

Französischen Zentralmassiv und unter der Eifel (Rheinisches Massiv, Deutschland) abgebildet. Diese 

negativen Geschwindigkeitsanomalien können als kleinskalige Aufstrombereiche von Mantelmaterial 

(Mantel Plumes) unter den tertiären und quartären Vulkanfeldern interpretiert werden. Die Existenz 

ähnlicher „Mantel-Finger“ wurde auch für die anderen Vulkanfelder in Mitteleuropa, einschließlich 

des Eger-Rifts, postuliert. 

Der Eger-Graben ist die etwa 50 km breite und 300 km lange ENE-WSW streichende zentrale 

Grabenstruktur des Eger-Rifts. Das Gebiet ist gekennzeichnet durch eine mehrphasige magmatische 

Aktivität seit der Grenze Oberkreide/Tertiär. Der quartäre bis rezente Rift-Prozess ist verbunden mit 

CO2-Entgasungen, spärlicher vulkanischer Aktivität, neotektonischen Bewegungen sowie einer 

ungewöhnlichen Intraplatten-Schwarmbebenaktivität in der Region Vogtland/NW-Böhmen. 

 

Die vorliegende Arbeit beschäftigt sich mit der Analyse der seismischen Struktur und der 

petrologischen Zusammensetzung der unteren Erdkruste und des obersten Mantels unter der derzeit 

aktiven Schwarmbebenregion und dem CO2-Entgasungsfeld Vogtland/NW-Böhmen. 

 

Seismische Daten von verschiedenen temporären und permanent installierten Erdbebenstationen im 

weiteren Untersuchungsgebiet sind die Grundlage für eine Studie mittels P-zu-S konvertierter 

seismischer Wellen (receiver functions). Mit dieser Methode konnten lokale Tiefenvariationen der 

Moho-Diskontinuität beobachtet werden. Die Tiefenlage der Moho reicht von 27 km unter dem Cheb 

Becken bis zu 38 km unter dem zentralen Böhmischen Massiv. Eine lokale Aufwölbung der Moho von 

einigen Kilometern (von 31 auf 27 km) deckt sich mit der Lage der  CO2-Entgasungszentren sowie der 

Position der quartären Vulkane an der Erdoberfläche und überlappt mit der Epizentralverteilung der 

Haupt-Schwarmbebenaktivität in der oberen Kruste. Der Durchmesser der Moho-Aufwölbung beträgt 

ungefähr 40 km. Lokal beobachtete schwache Moho-Konversionen und eine erhöhte Reflektivität der 

Unterkruste deuten möglicherweise auf eine magmatische Überprägung der Kruste-Mantelgrenze hin. 

 

Die Ergebnisse dieser Arbeit schließen außerdem die ersten mittleren krustalen vp/vs Verhältnisse im 

lokalen Maßstab für das Untersuchungsgebiet ein. Die beobachteten Werte liegen zwischen 1,63 und 

1,89, der Mittelwert beträgt 1,73. 
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Unter dem Gebiet mit CO2-Entgasungen und quartärem Vulkanismus wurden weiterhin lokal positive 

konvertierte Phasen mit einer Verzögerungszeit von 6 Sekunden („6 s phase“) detektiert. Sie können 

wahrscheinlich einem seismischen Konverter in 50 bis 60 km Tiefe zugeordnet werden. 

Möglicherweise entspricht dieser Konverter einem Reflektor im oberen Erdmantel, der bereits in 

reflexionsseismischen Messungen beobachtet wurde. 

 

Die receiver function-Studie zeigt außerdem ein scheinbares Abtauchen der 410-km-Diskontinuität 

unter dem Untersuchsuchungsgebiet. Wahrscheinlich wird dieses scheinbare Abtauchen durch 

verringerte seismischer Geschwindigkeiten im oberen Erdmantel im Vergleich zum IASP91 

Referenzmodell verursacht. Zum derzeitigen Untersuchungsstand kann jedoch auch ein reales 

Abtauchen der „410“ nicht gänzlich ausgeschlossen werden.  

 

Als zweiter Schwerpunkt dieser Arbeit wurden (ultra-) mafische Knollen (Xenolithe, Megakristalle) 

als Gesteine der unteren Erdkruste und des oberen Erdmantels in der Region untersucht, die einem 

Tephra-Vorkommen in der Nähe des quartären Schlackenkegels Železna Hůrka (Eisenbühl) 

entstammen. Die meisten der analysierten Xenolithe sind Wehrlite, Klinopyroxenite oder Hornblendite 

und zeigen Kumulus-Texturen. Sie repräsentieren wahrscheinlich Kumulate der Wirtsschmelze oder 

Bruchstücke von kleinen Gängen kristallisierter alkaliner Schmelzen, die in den obersten Mantel und 

die Unterkruste intrudierten, bevor die Wirtsschmelze zur Erdoberfläche aufstieg. Spinell-Lherzolith-

Xenolithe, die typischen Gesteine des oberen Erdmantels unter Mitteleuropa, konnten in den quartären 

Vulkaniten bisher nicht gefunden werden. Megakristalle (Olivin, Klinopyroxen, Amphibol, Phlogopit) 

wurden für die Studie ebenfalls beprobt und untersucht. Die Herkunftstiefen (Drucke) wurden für 

einige Xenolithe anhand unterschiedlicher verfügbarer Geothermobarometer abgeschätzt. Die 

erhaltenen Druckwerte liegen in der Mehrzahl zwischen 8 und 12 kbar,  was einer Herkunftstiefe von 

etwa 29 bis 41 km entspricht. Die Schätzungen für die Klinopyroxen- und Amphibol-Megakristalle 

liegen im selben Bereich (7 bis 11 kbar, 25 bis 38 km). Unter der Annahme, dass zumindest einige der 

Megakristalle Hochdruck-Phänokristalle sind, bieten diese Abschätzungen Hinweise auf den 

Tiefenbereich magmatischer Reservoire im Untersuchungsgebiet. Isotopen-geochemische 

Untersuchungen (He, C) an den rezent austretenden CO2-reichen Gasen ergeben deutliche Signaturen 

des oberen Erdmantels. Wahrscheinlich existieren derzeit entgasende Schmelzen in dem durch die p-T 

Abschätzungen abgegrenzten Tiefenbereich. 

 

Bis jetzt sind nur zwei quartäre Eruptionszentren im Untersuchungsgebiet bekannt. Eventuell ist die 

derzeitige alkaline magmatische Aktivität im obersten Mantel und in der Unterkruste konzentriert. 

Diese führt dort möglicherweise zu metasomatischen Prozessen, die in einer Zusammensetzung des 

oberen Erdmantels resultieren, die durch Olivin und Klinopyroxen dominiert ist (± Amphibol, ± 

Phlogopit). Ein Vergleich von berechneten seismischen Geschwindigkeiten zeigt, dass Gesteine, die 
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ähnlich zu den analysierten Xenolithen sind, geringere seismische Geschwindigkeiten besitzen als die 

typischen Gesteine des oberen Mantels (Spinell-Lherzolithe). Die beobachtete seismische 

Diskontinuität in 50 bis 60 km Tiefe könnte somit die Basis eines lokal metasomatisch überprägten 

Mantels sein, der außerdem wenige Prozent partieller Schmelzen enthält. 

 

Die seismischen und petrologischen Ergebnisse werden zusammen mit den Ergebnissen 

vorhergehender regionaler seismischer, seismologischer sowie gas-geochemischer und Isotopen-

Studien an den CO2-Entgasungen diskutiert. Die verfügbaren Informationen werden schließlich in ein 

Konzeptionsmodell der Lithosphäre unter dem Schwarmbeben- und CO2-Entgasungsgebiet  Vogtland/ 

NW-Böhmen integriert. Eine Verbindung zwischen den verschiedenen im Untersuchungsgebiet 

beobachteten geodynamischen Prozessen (neotektonische Bewegungen, Schwarmbeben, CO2-

Entgasungen) durch rezente verdeckte tiefe magmatische Aktivitäten („magmatic underplating”)  wird 

vorgeschlagen. 
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o ore (undifferentiated) I intergrowth 
sulph sulphide 
 
 
ac acmite (aegirine) kfs K feldspar 
ab albite mag magnetite 
an anorthite ms muscovite 
ap apatite ol olivine 
bt biotite or orthoclase 
cpx Ca clinopyroxene opx orthopyroxene 
chl chlorite prg pargasite 
chr chromite phl phlogopite 
crd cordierite pl plagioclase 
en enstatite (ortho) qtz quartz 
fa fayalite rt rutile 
fs ferrosilite (ortho) sp, spl spinel 
fo forsterite st staurolite 
grt garnet ttn titanite 
hbl hornblende wo wollastonite 
ilm ilmenite zrn zircon 
jd jadeite  
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A Introduction and scope of this study 
 

In this chapter, the general geological and geophysical settings of the area under study are introduced, 

including results from previous studies on the swarm-earthquake activity, volcano-tectonic evolution, 

and gasgeochemical and -isotope studies on CO2-rich emanations. Furthermore, results from previous 

seismic and xenoliths studies in the region are presented. 

 

 

A.1 The European Cainozoic Rift System and associated intraplate volcanic fields 

 

The study area – the western part of the Eger Rift (Figure A.1) – belongs to the European Cainozoic 

Rift System (ECRS) [Ziegler, 1992; Prodehl et al., 1995]. This system of graben structures and 

intraplate volcanic fields spreads over a distance of some 1000 km, including the French Massif 

Central, the Upper Rhine Graben, the Eifel, the North Hessian Depression, the Vogelsberg, the Eger 

Rift, the Elbe Zone, and the Pannonian Basin. Graben structures evolved on top of uplifted basement 

blocks (Variscan massifs); Tertiary and Quaternary volcanism is mainly concentrated on the flanks of 

these graben structures along boundary faults or on the adjacent uplifted blocks. Dominantly (ultra-) 

alkaline, but also more evolved, magmas were erupted. A detailed overview about the Cainozoic 

volcanism can be found in Wimmenauer [1974] and Wilson and Downes [1992]. The most recent 

expressions of magmatic activities within the European Cainozoic Rift System are the CO2 degassing 

fields. The isotope (He, C, and N) composition of CO2-rich gas emanations of mineral springs and 

mofettes from the French Massif Central [Matthews et al., 1987], the East and West Eifel volcanic 

fields/Germany [Griesshaber et al., 1992; May, 2002] and the western Eger Rift/Czech-German 

border region [O´Nions et al., 1989; Weinlich et al., 1999, 2003] gives evidence for the ascent of gases 

from fluid reservoirs in the European subcontinental mantle. 

 

There are different models to explain the widespread rifting and associated volcanism in the foreland 

of the Alpine orogene. Most of them are related to the effects of Alpine collision [Illies, 1975; 

Lippoldt, 1982; Ziegler, 1992; Stackebrandt and Franzke, 1989; Regenauer-Lieb, 1999]. However, 

there also exist ideas of a mantle plume or several small mantle plumes (mantle fingers) as the source 

of the magmatic activity [Granet et al., 1995; Goes et al., 1999]. Such models mainly base on 

tomographic evidence. Teleseismic tomography studies have imaged anomalous low seismic 

velocities under the French Massif Central [Granet et al., 1995] and the Eifel area/Rhenish Massif, 

Germany [Ritter et al., 2001]. A combination of both end-member models was proposed by Merle and 

Michon [2001], who suggested mantle convection on a regional scale and therefore up-welling beneath 

the volcanic fields due to a descending lithospheric bulge beneath the Alps. The most recent overview 

on the evolution of the European Cainozoic Rift System is given by Dezes et al. [2004]. 
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Figure A.1 
Topographic map (GTOPO30 from USGS EROS DATA Center) of the northwestern part of the Bohemian 
Massif with earthquake epicentres 1985-1997 (black dots, according to Neunhöfer [2000] and SZGRF Vogtland 
Bulletin). Main earthquake swarm activity is concentrated in the Nový Kostel focal zone. Inset map: Position of 
the study area within the western and central European volcanic provinces modified after Wilson and Downes 
[1991] (read square – study area, green – Cainozoic volcanics, brown – basement massifs). 
KTB – location of the German Continental Deep Drilling Boreholes (KTB), CB – Cheb Basin, MC – Massif 
Central, AM – Armorican Massif, RM – Rhenish Massif, BM – Bohemian Massif, MN – Moldanubian zone, RH 
– Rhenohercynian zone, ST – Saxothuringian zone. 
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A.2 Geological and geophysical settings of the western Bohemian Massif 

 

The study area – the Vogtland/NW-Bohemia/NE-Bavaria region belongs to the western part of the 

Bohemian Massif and is situated in the transition zone between two Variscan structural units, the 

Saxothuringian zone (ST) in the north and the Teplá-Barrandian/Moldanubian zone (MN) in the south 

(see Figures A.1, A.2). These structural units are composed of magmatic and metamorphic rocks, 

which are covered by undeformed sediments of Permo-Carboniferous, Jurassic, Cretaceous and 

Cainozoic age in part. The whole region in the western and northern parts of the Bohemian Massif has 

been affected by alkaline magmatism/volcanism at least since the Upper Cretaceous. 

 

 

A.2.1 Pre-Tertiary geology of the study area 

 

The crust and uppermost mantle of the Bohemian Massif were profoundly affected by several 

geotectonic cycles (rifting, subduction, collision) during the last 2 Ga. Early stages of the evolution of 

continental crust and mantle in Central Europe from 2.0 Ga to 0.7 Ga are still unconfirmed. Nd crustal 

residence ages combined with xenocrystal and detrital zircon ages of crustal rocks from the NE margin 

of the Bohemian Massif suggest mixing of predominantly Paleoproterozoic material with subordinate 

amounts of juvenile material of Grenvillian age and Neoproterozoic to early Palaeozoic material 

[Hegner and Kröner, 2000]. The Avalonian-Cadominan/Panafrican evolution of terranes accreted in 

the Variscan belt of Central Europe shows several subduction events and island arc settings (660-540 

Ma), obduction, intensive magmatism and crustal extension (540-530 Ma), and rifting/ocean basin 

formation (490-440 Ma) [Linnemann et al., 2000]. During the Variscan orogeny the crust/lithosphere 

was affected by subduction, collision, thickening and post-collisional extension (360-280 Ma). Until 

now no structural evidence for these tectonic processes in Variscan and pre-Variscan times could be 

observed definitely within the upper mantle beneath Central Europe. There are only indications for 

divergent dipping paleosubduction zones from seismic anisotropy studies in the western Bohemian 

Massif [Babuška and Plomerová, 2001]. The influence and imprint of Mesozoic (especially 

Cretaceous) tectono-magmatic events on the present lithospheric structure is still poorly known. Such 

events are ultramafic magmatism in central Germany (UML-carbonatite complex of Delitzsch) [Röllig 

et al., 1990; Seifert et al., 2000] and Upper Lusatia [Renno et al., 2003] and crustal stacking along the 

Franconian Lineament, as it is evident from the KTB area [e.g., Zulauf and Duyster, 1997a, b; Wagner 

et al., 1997; Tanner et al., 1998]. 
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Figure A.2 
Distribution of Tertiary-Quaternary volcanic fields and sedimentary basins in the western part of the Bohemian 
Massif [modified after Bayerisches Geologisches Landesamt, 1998]. The WSW-ENE striking line of the 
sedimentary basins: Mitterteich (Mi), Cheb (C), Sokolov (S), and Most (Mo) basins as well as the volcanic fields 
Doupovske Hory (DH) and Česke Štředohoři (CS) belong to the Eger (Ohře) Rift. KTB = location of the 
German Continental Deep Drilling Boreholes; ZH – Železná Hůrka volcano, Quaternary (sample location for 
mantle xenoliths), SL – Slavkovský Les. The main working area (the western Eger Rift) is marked by the box. 
 

 

A.2.2 Tectono-magmatic evolution of the Eger (Ohře) Rift 

 

As already mentioned above, the Atlantic opening and Alpine orogeny affected Central and Western 

Europe during Cretaceous to Cainozoic times. Rifting and alkaline volcanism in the foreland of the 

Alpine orogene in this period were associated with either passive or active mantle up-welling. At the 

Upper Cretaceous-Tertiary boundary, an approximately 50 km wide and 300 km long ENE-WSW 

striking continental rift evolved in the area of the Palaeozoic suture originating from the collision of 

Laurasia (Laurentia-Baltica) and Africa (Gondwana). The Cretaceous to Quaternary tectono-magmatic 
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evolution of the Eger Rift area comprises several phases [Malkovský, 1976; Ulrych and Pivec, 1997; 

Ulrych et al., 1999; Kämpf et al., 1999a; Špičáková et al., 2000; Renno et al., 2003]. Presumably, the 

magmatic activity began with plume activated dome uplift during the Early Cretaceous. The pre-rift 

phase was accompanied by mafic to ultramafic dike intrusions from the early Cretaceous to the 

Palaeocene (126 - 51 Ma). However, it is still uncertain if the Cretaceous magmatic activity is really 

related to the Eger Graben evolution. The main rifting phase with incipient graben formation and 

voluminous intraplate alkaline volcanism lasted from about 42 Ma to 9 Ma. A detailed overview of the 

Cainozoic volcanic activity in the western part of the Bohemian Massif is given by Ulrych et al. 

[2003]. 

The recent active rifting process during Quaternary with the further formation of the Cheb Basin is 

accompanied by CO2 emanations at the surface in NW-Bohemia, southern Vogtland and eastern 

Fichtelgebirge area, sparse alkaline volcanic activity, neotectonic uplift in the Slavkovský Les area 

and earthquake swarm activity in the Vogtland/NW-Bohemia region. 

 

 

A.2.3 Seismicity of the region 

 

The Vogtland/NW-Bohemia region is known as one of the most interesting European earthquake 

swarm regions with thousands of small and intermediate magnitude swarm-earthquakes (ML < 5). The 

term "earthquake swarm" (“Erdbebenschwarm”) was first introduced in this region more than hundred 

years ago by Knett [1899] and Credner [1900] for sequences of earthquakes that cluster in time and 

space. Primarily, earthquake swarms are a peculiarity of volcanic regions and mid-ocean rifts. Swarms 

in intraplate regions without active volcanism are unusual. Vogtland/NW-Bohemia represents such a 

region with an anomalous high swarm activity. The youngest known volcanic activity in the area 

occurred about 0.3 - 0.5 Ma [Wagner et al., 2002; Geissler et al., 2004b]. 

Within the last one hundred years stronger swarms (ML > 3 to 4) were recorded at the turn of 19th to 

the beginning of the 20th century in 1897, 1901, 1903 and 1908 and at the end of the 20th century in 

1985/86 and 2000 [Bormann, 1989; Klinge et al., 2003; Fischer and Horálek, 2003; Neunhöfer and 

Meier, 2004]. Swarms with macro-seismically perceptible shocks also occurred in 1929, 1936 and 

1962. After the 1962 swarm, the first local seismic network was installed. Duration of the main swarm 

activity of one or a few months including several phases of enhanced swarm activity (lasting only a 

few days) seems to be typical for large swarms. Smaller swarms (ML < 3) with durations of a few days 

occur more or less regularly every 2 to 4 years. All stronger swarms in the last hundred years occurred 

at intersections between local faults of the N-S trending Regensburg-Leipzig-Rostock Lineament with 

ENE-WSW, NW-SE and NNW-SSE trending faults [Hemmann and Kämpf, 2002]. Since 1985/86 

most swarms are located near Nový Kostel (50.24°N, 12.44°E) following a 14 km long N-S trending 

line in a depth of about 8 km at the intersection of the N-S trending Nový Kostel-Počátky-Zwota zone 
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with the NNW-SSE trending Mariánské Láznĕ fault zone (Figure A.3) [Švancara et al., 2000; 

Bankwitz et al., 2003a, b; Fischer and Horálek, 2003]. The earthquakes of individual swarms are 

clustered in extremely small volumes of only a few cubic kilometres [Fischer and Horálek, 2003; 

Neunhöfer and Meier, 2004]. The N-S trending Regensburg-Leipzig-Rostock Lineament seems to 

continue further to the south into the Molasse Basin and the Alps [Lehrberger et al., 2003]. 

 

 
Figure A.3 
Spatial distribution of earthquake hypocentres 1991-1999 [from Horálek et al., 2000] based on locations with 
WEBNET and KRASLICE network stations. Seven focal zones were distinguished by colours. Recently, the 
main earthquake swarm activity is concentrated in the Nový Kostel focal zone (red). 
 

 

Focal mechanisms of most of the events with ML > 2 since 1985 show similar patterns of seismic 

dislocation [Wirth et al., 2000]. Sources with significant non-double-couple components up to 60 % 

dominated in the second and third phases of the January 1997 swarm in the main focal zone Nový 

Kostel [Horálek et al., 2000a, 2002]. Similarly, non-double-couple (20 to 40 %) sources were revealed 

for some events of the 2000 earthquake swarm (focal zone Nový Kostel) by Plenefisch and Klinge 
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[2003]. Source mechanisms with significant non-double-couple components indicate tensile 

earthquakes, which seem to be caused by a high-fluid pressure in the region [Vavryčuk, 2001]. 

Parotidis et al. [2003] hypothesized ascending magmatic fluids trigger the earthquakes by causing 

pore-pressure perturbations, which change the effective stresses resulting in seismic activity. Recent 

studies show, that also seismic anisotropy in the source region should be considered when discussing 

non-double-couple components [Rössler et al., 2003]. 

 

The most recent earthquake swarm with about 70 events (MLmax=1.4) was registered on February 22, 

2004 near Nový Kostel [Boušková et al., 2004]. It did not occur in the main focal zone. The depth was 

estimated to about 14 km, i.e. deeper than the presumed 12 km of the brittle-ductile boundary in this 

area [Boušková et al., 2004]. 

 

 

A.2.4 CO2 emanations at the Earth’s surface  

 

In principle, insights from seismological and geochemical results point to a general connection 

between fluid flow (predominantly CO2) and seismic activity in the crust of the studied area [Kämpf et 

al., 1992; Kämpf, 1994; Weise et al., 2001; Vavryčuk, 2001; Bräuer et al., 2003; Parotidis et al., 

2003]. Recently, a subcontinental mantle related gas flow to the Earth's surface was observed 

indicating a correlation between the gas flow rate and the earthquake swarm activity for the year 2000 

[Koch and Heinicke, 2003].  

Previously, the composition and flux of gas emanations, and the isotopic ratios of CO2 and He of 101 

mineral springs and dry gas vents (mofettes) in the western Eger Rift were analysed [Weinlich et al., 

1999, 2003; Geissler et al., 2004a] The CO2-dominated portion in the free gas phase (> 99 vol.% CO2) 

cluster in an area of approximately 1500 km2 (Figure A.4). Four geochemically similar, but 

tectonically separate gas escape centres could be distinguished: Františkovy Láznĕ / Cheb Basin (I), 

Mariánské Láznĕ (II), Konstantinovy Láznĕ (III), and Karlovy Vary (IV). The gas escape centres I, II, 

and IV show always a free gas flux of more than 85000 dm3 h-1 [Weinlich et al., 1999]. All gases are 

CO2-rich (> 99 vol.% CO2) and have δ13C values ranging from -1.8 to -4.0‰. The 3He/4He ratios reach 

up to 5.9±0.17 Ra in the Cheb Basin (mofette Bublák) as a mean value of 14 samples [Bräuer et al., 

2004]. Olivine phenocrysts and xenoliths from the subcontinental lithospheric mantle (SCLM) show a 

homogeneous helium isotopic ratio (R/Ra) of approximately 6.1 [Gautheron and Moreira, 2002]. The 

helium isotope ratios of the Cheb Basin [Weinlich et al., 1999, 2003; Bräuer et al., 2004] are in the 

same range as found for xenoliths from the sub-continental mantle worldwide [Gautheron and 

Moreira, 2002]. That makes it plausible, that the CO2-dominated gas of the gas escape centres at the 

surface carries a very high portion of pure lithospheric mantle (SCLM) fluid. Helium, CO2, and other 

volatiles may be released during melting/crystallization in the lithospheric continental mantle. 
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Figure A.4  
Results from gasgeochemical and –isotope (C, He) studies of CO2-dominated emanations in the Vogtland/NW-
Bohemia area [data from Weinlich et al., 1999, 2003; Geissler et al., 2004a]. (a) CO2 content of the free gas 
phase of mineral springs and mofettes: light grey – CO2 escape centre; dark grey – surrounding of the main 
escape centres, the CO2 content of the dark grey coloured area is >99 vol.% [after Weinlich et al., 1999]; (b) δ13C 
values: the δ13C values of the CO2 escape centre and surrounding of the degassing centres ranging from –1.8 to –
4.0‰; (c) gas flux (free gas): flux within the main escape centres FL and ML is significantly higher than it could 
be indicated by the colour-scale; (d) 3He/4He (R/Ra) ratios: the helium isotopic ratios of the CO2 escape centre 
and the periphery, ranging from R/Ra 5.9 to 0.2. 
FL – Františkovy Láznĕ, ML – Mariánské Láznĕ, KL – Konstantinovy Láznĕ, KV – Karlovy Vary, KH – 
Komorní Hůrka, ZH – Železná Hůrka. 
 
 
The two most prominent high gas flux CO2 degassing centres (Františkovy Láznĕ / Cheb Basin and 

Mariánské Láznĕ) cluster in areas of approximately 150 km2. The gas flux, CO2 content, δ13C values, 

and 3He/4He ratios decrease with distance from the CO2 emission centres, whereas the fractions of N2 

and trace gases increase (Figure A.4b-d). Bräuer et al. [2003] estimated that the fluid transport 

velocity in the upper crust ranges between 400m/day near a centre of CO2 emanation and 50m/day in 

the periphery. 3He/4He ratios, δ13C values, gas composition, gas flux rate and fluid transport velocity 

give evidence for a deep-seated, presently active magmatic source. 

The location of the degassing centres at the surface points to the location of the covered magmatic 

source. This magmatic degassing at the surface in the Vogtland/NW-Bohemia area was the main 

motivation to start this local-scale mapping of the Moho discontinuity and the subcrustal mantle. 
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A.3 The Moho and the upper mantle in previous studies 

 

A.3.1 The Moho structure 

 

In the past the region was studied by several reflection and refraction seismic experiments [e.g., Giese, 

1976; DEKORP Research Group, 1988, 1994; Bormann et al., 1989; Schmoll et al., 1989; Schulze and 

Lück, 1992; Behr et al., 1994; Tomek et al., 1997; Enderle et al., 1998]. Some of these measurements 

were related to the German Deep Drilling Project "Kontinentale Tiefbohrung" (KTB) [Emmermann 

and Lauterjung, 1997]. The mean P-wave velocity of the crust in the area under investigation ranges 

between 6.0 and 6.3 km/s with higher values towards the south within the Bohemian Massif [e.g., 

Bormann et al., 1989]. 

The Moho discontinuity in the KTB area is not uniformly imaged by reflection seismic studies. It 

exists only locally as a pronounced reflector [Tillmanns et al., 1996]. An updoming of the Moho 

discontinuity beneath the boundary region of the Moldanubian and Saxothuringian zones was 

reported, but the reflection character is diffuse [DEKORP Research Group, 1988]. 

 

 
 
Figure A.5  
Results from deep-seismic reflection profile 9HR, running from the Czech-German border near Klingenthal 
south-eastwards [Tomek et al., 1997]. See Figure B.2 for location of the profile. The profile crosses the study 
area between the border and the Tepla-Barrandian Unit. M1-4 are interpreted as Moho reflections; B possibly 
stem from basaltic intrusions; MR1-3 denote upper mantle reflections. A Moho antiform beneath the 
Saxothuringian zone is clearly visible, exactly where the Eger Graben is located at the surface (Sokolov Basin). 
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The crustal thickness along the profile DSS-VI is about 30 km where it crosses the Eger Rift east of 

Karlovy Vary [Mayerová et al., 1994]. A crustal thickness of 28 km in the western Erzgebirge region 

was published by Bormann et al. [1989]. The crust thickens southwards to about 37 km in the Central 

Moldanubian [Mayerová et al., 1994]. No clear Moho reflections were recorded beneath the western 

Eger Rift by the reflection seismic profile 9HR, which runs from near station KLIN to BOH2 (see 

Figure B.2) and further to the southeast [Tomek et al., 1997; Figure A.5]. The interpolation of the 

inclined Moho reflection bands in the north and south results in an approximate Moho depth of 29 km 

(9.2-9.5 seconds two-way travel-time (TWT), vp = 6.3 km/s). The Moho depth north of the Eger Rift 

ranges from 30 to 32 km [Enderle et al., 1998]. 

 

Based on the existing seismic data many regional contour maps of Moho depth were compiled [e.g.; 

Bormann et al., 1989; Mayerová et al., 1994; Prodehl et al., 1992, 1995; Giese, 1995; Dezes and 

Ziegler, 2002; see Figure A.6]. The problem of almost all seismic profiles in the past is, that they end 

at the border between countries, and therefore, maps of Moho depth do not show the complete Moho 

topography of the area under investigation. 

 

 
 
Figure A.6 
Depth of the Moho discontinuity (km) in Central Europe from Dezes et al. [2004] with the position of the study 
area (red square). Also shown are the positions of Cainozoic volcanic centres (black filled areas), major graben 
structures and fault zones (red lines), as well as the position of the Variscan Deformation Front (solid black line) 
and Alpine thrusts (dotted black lines). The Moho depth beneath the study area ranges from about 28 to more 
than 36 km, according to Dezes et al. [2004]. 
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A.3.2 Seismic constraints on the upper mantle structure 

 

Global seismic tomography imaged a low velocity structure between 660 and 2000 kilometres depth 

beneath Central and Western Europe [Goes et al., 1999]. Mantle fingers with low seismic velocities 

were found in the uppermost 300 km beneath the French Massif Central and the Eifel/Rhenish Massif 

by Granet et al. [1995] and Ritter et al. [2001], respectively. There are also indications for reduced 

seismic velocities in the upper mantle beneath the western Eger Rift region, mainly from studies of P 

wave residuals [Rajkes and Bonjer, 1976; Faber et al., 1986; Plomerová and Babuška, 1988; 

Plomerová et al., 1998]. Passier and Snieder [1996] obtained a three-dimensional shear wave velocity 

distribution beneath central and southern Germany. Prominent features of the model are low velocities 

in the uppermost mantle between 80 and 120 km along the Eger Rift, and between 80 and 200 km 

beneath the western Eger Rift and the Eifel. Passier and Snieder [1996] suggest the creation of magma 

in the asthenosphere or at the base of the lithosphere beneath these regions. However, a coupling 

between the lower and upper mantle beneath central and Western Europe has remained widely 

speculative. Coupling between the upper mantle fingers and the crust is also not well understood. 

Resolution differences between the different seismic methods used so far cause a structural gap in this 

subcrustal depth range. 

 

 

A.3.3 Results of thermobarometric studies on xenoliths from adjacent volcanic fields 

 

As already mentioned above, the probable source region of the (ultra-) mafic magmas (nephelinitic-

melilititic) is the boundary between the asthenosphere and the basal lithosphere (the uppermost 

mantle). If the magmas erupt directly from those depths, they often contain inclusions (cognate and 

xenolithic), which give important information on the composition of the uppermost mantle and lower 

crust, as well as on geodynamic processes in the lithosphere (metasomatic-magmatic overprinting, 

deformation, partial melting). The Tertiary volcanic fields adjacent to the area under study were 

already investigated in terms of the origin of their spinel peridotite inclusions (Table A.I). First 

geothermobarometric results from NE-Bavaria (western prolongation of the Eger Rift) were published 

by Huckenholz and Noussinanos [1977] and later by Huckenholz and Kunzmann [1993]. Spinel 

peridotites and crustal xenoliths within the volcanic rocks of the Rhön were studied by Franz et al. 

[1997], Franz and Seifert [1998], and Witt-Eickschen and Kramm [1997]. Mantle and lower crustal 

xenoliths from the Elbe fault zone and Upper Lusatia (eastern Eger Rift area) were investigated, e.g., 

by Kramer [1988], Seifert and Kramer [2000], Vokurka and Povondra [1983], Medaris et al. [1997, 

1999], and Ulrych et al. [2000]. Mean temperatures of equilibration of spinel lherzolites, harzburgites, 

and wehrlites range from 840°C to 1270°C; equilibration pressures between 10 and 27 kbar (30-90 km 

depth) were obtained by the different authors. 
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Table A.I  Results of geothermobarometric studies on upper mantle xenoliths from volcanic fields adjacent to 
the western Eger Graben area (Rhön, NE Bavaria, Elbe Zone – eastern Eger Rift area). 
 

Locality  xenolith type T [°C]  p [kbar]  reference 
 

NE-Bavaria sp-lherzolites 1139±15 26±2  Huckenholz and Noussinanos [1977] 
  groundmass ~1000 
  sp-lherzolites 920-1075   Huckenholz and Kunzmann [1993] 
 

Rhön  sp-lherzolites/     Franz et al. [1997] 
  wehrlites 840-1050 11-24   
  sp-lherzolites/ 
  harzburgites 1190-1270 19-26 
 

  sp-lherzolites 920-950  10-13   Witt-Eickschen and Kramm [1997] 
840-850  26-27   

 

Kozákov sp-lherzolites 1243±33 17.7±2.4 Vokurka and Povondra [1983] 
  sp-lherzolites 975-1090 12.0-18.6 Medaris et al. [1997, 1999] 
 

Elbe Zone sp-lherzolites 1110     Kramer and Seifert [2000] 
harzburgites 1040     

 

Eastern  sp-lherzolites 1020     Kramer and Seifert [2000] 
Erzgebirge harzburgites 955     
 

Lusatia  sp-lherzolites 1000     Kramer and Seifert [2000] 
   harzburgites 860     
 

 
The former presence of garnet within some spinel lherzolite samples was inferred from LREE/HREE 

ratios, occurring pyroxene-spinel clusters, and isotopic ratios (143Nd/144Nd) of clinopyroxenes [Witt-

Eickschen and Kramm, 1997]. According to Witt-Eickschen and Kramm [1997], garnet-bearing 

peridotite entered the spinel stability field as a consequence of mantle diapirism. The age of 

metasomatism and enrichment of former depleted upper mantle is discussed as pre-Cainozoic, 

probably Hercynian in age. K-Ar model ages of xenoliths from Saxony, ranging between 89 and 254 

Ma, are possible indications for an upper mantle where Variscan and older mantle melts were derived 

from [Kramer, 1988]. 

 
 

A.4  Scope of this study 

 

The results of teleseismic tomography and fluid mapping at the surface (gas composition, gas flow, 

isotopes) in continental rift environments (e.g., European Cainozoic Rift System) are not completely 

compatible. Teleseismic tomography studies are commonly focused to >100 km depths, whereas the 

data of magma/gas researches are mainly directed to subcrustal and crustal depths (<100 km). The 

results of the fluid mapping from the western Eger Rift/Czech-German border region [O´Nions et al., 

1989; Weinlich et al., 1999, 2003] have to be combined with geophysical and petrological indications 

for the lithospheric structure in the same area to locate the source region of the gases and to understand 

the deep covered processes, which lead to the observed fluid activity. This was the motivation to start 

a local-scale mapping of the Moho discontinuity and the subcrustal mantle in the Czech/German 

border area of the western Bohemian Massif using seismic and petrological methods. 
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This work consists of two main parts including results from two different geoscientific methods. At 

first, I present results from a passive seismic study (Ps receiver functions). At second, I present 

petrological data and their interpretation from a xenolith study. Finally, I try to integrate the results 

from both methods into a conceptional model that is able to explain the new seismic and petrological 

data together with results from previous seismic, seismological, and gasgeochemical investigations. 

The combination of xenolith investigations and geophysics is a useful tool to study the crust-mantle 

transition, as it is already mentioned by O’Reilly and Griffin [1985]: “The integration of petrological 

and geophysical data allows interpretation of stratigraphy of the lower crust – upper mantle, of the 

nature of the Moho and of the thermal evolution of the upper lithosphere for the time range 

represented by the host volcanic rocks”. 

 

I discuss the seismic structure and possible petrological composition of the crust-mantle boundary and 

the uppermost mantle beneath the western Eger (Ohře) Rift in relation to the composition, isotope (C, 

He) geochemistry and gas flow of active mantle fluids (CO2-dominated emanations at the surface), 

magmatic underplating of the continental crust and intraplate seismicity (earthquake swarms in the 

upper crust). Direct compilation of seismic evidence (e.g., Moho depth map) with composition, gas 

flow and isotope (He, C) values of fluids are rare in the literature [Marty et al., 1992]. 
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B Seismic investigations (receiver functions) 
 

The Moho depth and morphology is one of the most important features to characterize the overall 

structure of the lithosphere, i.e. it is a key for the reconstruction of the tectonic evolution of the region. 

The depth variations of the discontinuities bounding the mantle transition zone at about 410 km and 

660 km depths (‘410’ and ‘660’) are also important to characterize the (physical/chemical) properties 

of the upper mantle and the mantle transition zone. 

 

The receiver function method is an excellent tool for detecting seismic discontinuities (e.g., Moho) 

within the lithosphere and the deeper upper mantle analysing Ps conversions [Vinnik, 1977; Langston, 

1979; Zandt et al., 1995]. The fundamentals of the method are described, e.g., by Kind and Vinnik 

[1988] and Kind et al. [1995]. The method allows the evaluation of crustal and mantle structures at 

regional scales (plumes, subduction zones, and continental plate boundaries). Case studies demonstrate 

the high scientific potential of the receiver function method: Hawaiian and other oceanic mantle 

plumes [Li et al., 2000a, 2003a], Japan and Hellenic subduction zones [Li et al., 2000b, 2003b], 

Central Andes [Yuan et al., 2000, 2002], detached Indian lithospheric mantle beneath Tibet [Kosarev 

et al., 1999; Kind et al., 2002], and the structure of the continental plate boundary between the Baltic 

Shield and the German-Polish Basin in Europe [Gossler et al., 1999; Alinaghi et al., 2003]. P-SV 

conversions also provide evidence for a magma chamber beneath the Campi Flegrei Caldera near 

Naples, Italy [Ferrucci et al., 1992]. 

 

 

B.1 Observational technique (receiver function method) 

 

The basis of the receiver function analysis is three-component recording of teleseismic events. P-to-S 

conversions at seismic discontinuities are caused by incident P-waves being partly converted to S-

waves. These phases travel their last leg with shear wave velocity and arrive in the coda of the P-wave 

on the radial component, consequently. Amplitudes, arrival times, and polarity of the Ps-phases are 

mainly sensitive to the shear wave velocity distribution beneath the recording site. These converted 

phases can be extracted from the P-coda applying several processing steps, including rotation into the 

ray co-ordinate system of the P-, SV- and SH components, restitution of broadband ground 

displacement, deconvolution in time domain to remove the source time function and travel path effects 

[e.g., Kind et al., 1995], distance move-out (time) corrections for a reference epicentral distance of 67° 

[Yuan et al., 1997], and stacking. The processed receiver functions provide images of the crust and 

upper mantle similar to steep angle reflection images of the crust. The seismic wave periods used (one 

to several seconds; strongly depending on the instruments used and noise conditions) are longer than 

in controlled source seismic measurements, because teleseismic earthquakes are utilized as sources. 
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Also, multiple reflections and conversions between the base of the crust and the surface of the Earth 

occur and must be considered (Figure B.1). For the calculations of move-out corrections and the Moho 

piercing point locations, the IASP91 seismic velocity model [Kennett, 1991; Kennett and Engdahl, 

1991] was used. 

 

The depth of the Moho and the average crustal vp/vs ratio were computed using the method of Zhu and 

Kanamori [2000], which considers besides the direct conversion from the Moho, also its multiples. 

Zandt et al. [1995] and Zandt and Ammon [1995] used a similar approach. A grid search for the 

maximum-stacked amplitude in the Moho depth (H) versus vp/vs domain was carried out in the interval 

of 20 to 60 km depth and 1.5 to 2.0 for the vp/vs ratio. Because the multiple phases have nearly 

identical curves in the H-vp/vs domain and sample a broader area, primary phases and the two multiple 

conversions were weighted before stacking with the values 0.5, 0.25 and 0.25, respectively, according 

to the suggestions of Zhu and Kanamori [2000]. 

 

To get an idea of the response of crustal structure in the investigated area, synthetic receiver functions 

were calculated for published seismic velocity models from the western and northern Bohemian 

Massif (see Figure B.10, below) using the approach of Kind et al. [1995]. They assumed that the 

Earth’s crust could be modelled as a stack of horizontal homogenous layers over a homogeneous half-

space. The incoming P-wave is considered to be a plane wave with a specific apparent velocity. Kind 

et al. [1995] showed that there are only small differences in the results using plane waves or 

reflectivity theoretical seismograms. 

 

 

B.2 Data 

 

In this study, teleseismic data from broadband and short-period seismological stations of several 

temporary networks, operated by the Seismologisches Zentralobservatorium Gräfenberg (SZGRF), the 

GeoForschungsZentrum Potsdam (GFZ), the Dublin Institute for Advanced Studies (DIAS), and the 

Universities of Munich, Potsdam and Stuttgart, and permanent networks of SZGRF, GRSN (German 

Regional Seismic Network), and the Institute of Geophysics, Praha of the Czech Academy of Sciences 

(IG CAS), were analysed (Figure B.2). Furthermore, the data from two permanent short-period 

seismic networks in NW-Bohemia (Figure B.2b), the WEBNET of IG CAS and the KRASNET of the 

Institute of Physics of the Earth, Brno (IPE Brno), were studied. More details are given in Tables B.I 

and B.II. The stations equipped with MARK (1s) seismometers (Table B.I) were restituted up to 12 

seconds and are further referred as broadband stations. Almost all stations in the central study area 

(northeast of the Franconian Lineament) are grounded on crystalline rocks. 
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Figure B.1 
Synthetic receiver functions from reflectivity theoretical seismograms [reflectivity method of Kind, 1985] 
calculated for (a) the IASP91 velocity model [Kennett and Engdahl, 1991] and (b) a hypothetic regional velocity 
model incorporating an asthenospheric low-velocity zone (LVZ; 71 to 210 km depth), which is missing in the 
IASP91 reference model. The source was presumed near the surface. The seismic velocity structure is the same 
at the source and receiver sides. Synthetic seismograms were processed like the natural data. Move-out corrected 
receiver functions are shown for different epicentral distances. 
Converted (primary and multiple) phases are clearly visible within the first 20 seconds delay time, which stem 
from the Moho (2, 4) and crustal discontinuities (1, 3 for IASP91). Phases (5) around 30 seconds delay time for 
the IASP91 model (a) might represent further multiple phases from the crust, whereas the phase (5) visible in (b) 
stem from the sharp base of the hypothetical upper mantle low-velocity layer. The conversion from the upper 
boundary of the low-velocity layer is visible as a minimum at 8 seconds delay time (3). But in natural data it 
might be difficult to detect it due to interferences with the Moho conversion and crustal multiples. 
Vertical solid lines at about 44.1 and 68.1 seconds delay time mark the delay times of converted phases from the 
discontinuities of the mantle transition zone (‘410’ and ‘660’), according to the IASP91 velocity model. As 
expected, the modelled conversions (6, 7) in (a) fit the theoretical delay time, whereas converted phases in model 
(b) arrive later than predicted by the IASP91 reference model (45.4 and 68.9 seconds delay time). 
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Figure B.2 
(a) Distribution of the seismological stations in the western Bohemian Massif, from which data are used in this 
study. Also shown are the xenolith sample sites Gottleuba (Go) and Zinst. (b) Enlarged map of the 
Vogtland/NW-Bohemia region with the locations of all short period and broadband stations, the 9HR reflection 
seismic profile [Tomek et al., 1997], main faults (hatched lines), and the Quaternary scoria cones. 
KTB – location of the German Continental Deep Drilling Boreholes (KTB), FL – Františkovy Láznĕ, ML – 
Mariánské Láznĕ, KL – Konstantinovy Láznĕ, KV – Karlovy Vary, KH – Komorní Hůrka, ZH – Železná Hůrka. 
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Seismic events within an epicentral distance range from 30° to 97° and magnitudes > 5.5 were 

analysed. Only events with a good signal-to-noise-ratio of the P-onset and without disturbances within 

100 seconds after the P-onset were selected. The theoretical back-azimuth angle was used for rotation, 

whereas the incidence angle was generally computed from the waveforms of the radial and vertical 

components. 

 

 

B.3 Results 

 

B.3.1 Observed receiver functions (single and sum traces) 

 

Good observations of the Moho conversions and the crustal multiples were made at about 50 stations 

in the region under study (Figures B.3, B.4). Most stations of the KRASNET and WEBNET networks 

(Figure B.5) yielded also good Moho conversions, in spite of their short period seismometers and the 

short recording windows (triggered operation mode). Finally, also the short-period stations of the 

temporary deployment during the earthquake swarm 2000 yielded acceptable receiver functions, but 

the number of analysed events is strongly limited (Figure B.5). 

 

At some stations, positive Ps-phases originating in the upper crust within 2 seconds after the P-onset 

were observed. Most of the crustal arrivals are related to strong velocity gradients, which exist in the 

uppermost crystalline crust [Malek et al., 2001; Hemmann et al., 2003] or a sedimentary cover (e.g., 

stations GRA1, GRB1, GRC1, FUR). Receiver function modelling of published velocity models 

confirms these effects of the uppermost kilometres (see Figure B.10). Later Ps conversions within 3 

seconds delay time might be caused by deeper structures like the “Erbendorf body” (DEKORP 

Research Group, 1988; Schmoll et al., 1989) beneath the station NOTT. Deeper crustal arrivals were 

also observed at the short-period stations SKC, CAC and LAC (Figure B.5).  

 

At almost all stations strong conversions with positive polarity (indicating velocity increase 

downwards) with delay times of about 3.6 seconds after the P-wave can be seen in single traces 

(Figure B.3) as well as in the stacked traces (Figures B.4 and B.5). These conversions can be attributed 

to the Moho discontinuity. Moho multiples are visible in Figures B.3 and B.4 near 13 seconds 

(positive, PpPs) and 16 seconds (negative, PpSs+PsPs). These multiples are weaker or do not exist in 

Figure B.5 because only short-period stations are displayed there. Multiples loose higher frequencies 

when travelling two times more through the attenuating and scattering crust. At station NKC, a 

distortion of the Moho multiples is visible in traces from southeastern to western azimuths, whereas 

only a slight anomaly exists in the direct Moho conversions. This might be an indication for an 

anomaly at the crust-mantle boundary 10 to 20 km away from the station. 
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Figure B.3 
Individual receiver functions for some stations within the region shown in Figure B.2b. Traces were high-pass 
filtered with 12 seconds corner period and move-out corrected. A delay time of 0 second is equivalent to the P-
wave arrival time. Traces were clock-wise sorted after back-azimuth for each station (from left to right). 
The average delay time for P-to-S converted waves from the Moho discontinuity is about 3.6 seconds. Multiple 
phases from the Moho arrive with about 13 and 16 seconds delay time. At station NKC, a distortion of the Moho 
multiples is visible in traces from southeastern to western azimuths (to the right of the dark grey arrow), whereas 
there are only slight variations in the direct Moho conversions. Additional phases with 6 seconds delay time are 
visible at the stations SELB, NALB and NKC (light arrows). The conversions from the upper mantle 
discontinuities at 410 km and 660 km depth can be seen in the stack trace. The amplitudes are four times 
enlarged in the delay time window from 30 to 90 seconds (arrow: change in scale). Both Ps phases arrive later as 
predicted by the IASP91 velocity model [straight lines; Kennett and Engdahl, 1991], possibly indicating lower 
seismic velocities above the 410 km discontinuity than in the IASP91 velocity model.  
 

 

Additionally, conversions are observed at about 6 to 9 seconds delay time at some stations. Especially 

interesting is a phase near 6 seconds delay time beneath the region of earthquake swarms, which is 

detectable beneath several stations in this area (stations SELB, NALB, and NKC in Figure B.3). 

Stacking the single traces with move-out corrections for primary and multiple phases implies that the 

observed “6 s phase” might be a primary one, however the move-out differences are very small and 

are within the resolution limits. 

 

Signals from 410 and 660 km discontinuities are delayed by up to 2 seconds compared to theoretical 

delay times calculated from the IASP91 reference model (sum trace in Figure B.3). This could be an 

indication for reduced seismic velocities in the upper mantle (above 410 km) relative to the reference 

earth model. Further results and discussion dealing with the mantle transition zone discontinuities 

follow below in section B.3.4. 
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Figure B.4 
Stacked receiver functions from broadband stations, aligned from the north (top) to the south (bottom). Traces 
were high-pass filtered with 12 seconds corner period and move-out corrected for primary Ps (-10 to 10 seconds 
delay time) and multiple PpPs (10 to 30 seconds delay time) conversions before stacking. The average delay 
time for P-to-S converted waves from the Moho discontinuity is about 3.6 seconds. Multiple phases (PpPs and 
PpSs+PsPs) from the Moho arrive with about 13 and 16 seconds delay time. Re-calculated delay times of the 
direct Ps-converted phase and its multiples from the Moho are marked, using the Moho depths and vp/vs ratios 
from Table B.1 and an average crustal P-wave velocity of 6.3 km/s. 
Stations CLL, FUR, and A22 are situated outside the area shown in Figure B.2a. The deepening of the Moho 
towards the Alps can be seen at station A22 (near Innsbruck, Austria). 
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Figure B.5 
Stacked receiver functions from short-period stations. Integration was applied instead of the usual restitution of 
ground displacement before the traces were high-pass filtered with 5 seconds corner period. Conversions at the 
Moho are observed, whereas short period instruments did not allow the identification of multiple phases. 
 
 
There are also positive phases visible in the sum traces at individual stations at about 20 seconds delay 

time, but they are not very coherent from station to station. These phases might be a hint for a 

discontinuity near 220 km depth as proposed in the PREM-model [Dziewonski and Anderson, 1981]. 

Generally, Ps conversions from the 220 km discontinuity interfere with crustal multiples, and they are 

therefore difficult to detect using Ps receiver functions [see Kind and Vinnik, 1988]. 
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B.3.2 Moho depth 

 

To compute the Moho depth (crustal thickness) and vp/vs ratios, the data were stacked using a method 

introduced by Zhu and Kanamori [2000] (Table B.I and Figure B.6). In Figure B.7a-c the observed 

Moho Ps delay times, Moho depths, and vp/vs ratios from all broadband stations and stations with 

MARK-L-4-3D seismometers in the region were mapped. The corresponding values are given in 

Table B.I. To a first approximation, the map of Ps delay times (Figure B.7a) can be regarded as an 

initial Moho map assuming a constant vp/vs ratio of 1.73 for all stations and multiplying the recorded 

delay times by an empirical value of 8.4 km/s. Obviously most of the region has delay times of about 

3.7 seconds (green dots, about 31 km depth). In the Vogtland/NW-Bohemia region and the area near 

the station GRC1, the converted phases from the Moho arrive 3.0 to 3.3 seconds after the P-wave 

(reddish dots, 25 to 28 km depth). Later arrivals (4.3 to 4.5 seconds delay time, blue dots, 36 to 38 km 

depth) are observed at the stations WET and KHC in the southeast of the area under study. 

 

 

 
 

Figure B.6 
Inversion results of Moho depth versus vp/vs ratio for the stations BOH2 and NALB. The maximum stacked 
amplitudes were found by grid search within the intervals of 20 to 60 km for the Moho depth and 1.50 to 2.00 for 
the vp/vs ratio. An average crustal P-wave velocity of 6.3 km/s was assumed. The surrounding white area marks 
the region of 95 % of the maximum stacked amplitude. The half-width of the 95 %-region gives an estimate of 
the uncertainty of the method. 
 

 

Figure B.7 (next page) 
(a) Map of Moho conversion times (Ps delay times, Table B.I) for the broadband stations. The mean value for all 
stacked traces at a specific station is projected onto the piercing points of rays at Moho level (30 km depth). This 
shows the back-azimuth coverage at each station. As can be expected, the permanent observatories have better 
back-azimuth coverage than temporary stations with only a few months of registration time. (b) Map of Moho 
depths and (c) map of vp/vs ratios compiled on the basis of the results of the inversion method proposed by Zhu 
and Kanamori [2000] (see Table B.I; assuming an average crustal P-wave velocity of 6.3 km/s). 
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The results from the receiver function analysis after Zhu and Kanamori [2000] were compiled into a 

map of Moho depths (crustal thicknesses) for the region NW-Bohemia/NE-Bavaria/Vogtland (Figure 

B.7b). This map is not corrected for the station elevation. In general, the Moho depth increases from 

NW (31 km) to SE (38 km). Beneath the Cheb Basin the Moho seems to dome up to at least 27 to 28 

km. However, this anomaly does not reach as far south as the Ps delay time anomaly in Figure B.7a. 

Moho depths of about 27 to 28 km were also obtained further north (station A01). The area around 

GRC1 shows no Moho depth anomaly as in the Ps delay times. This is due to a decreased vp/vs ratio 

(see Figure B.7c). Stations WET and KHC in the SE show the deepest Moho (34 and 38 km). 

Generally, the observed Moho depths are in good agreement with values obtained by several regional 

refraction and reflection seismic studies. 
 

 

B.3.3 Crustal vp/vs ratios 

 

A map of the vp/vs ratios (Figure B.7c) was compiled from the inversion results listed in Table B.I. 

The average value in the region is 1.73. Higher vp/vs ratios (1.76-1.81) are measured beneath the 

western Erzgebirge Mountains (stations A03, A04, WER). Decreased values (1.63-1.69) are obtained 

beneath the German-Czech border region east of the KTB (stations NALB, BOH3, BOH4), the 

southern KTB-area (stations NOTT, ROTZ), and north and west of Regensburg (stations A15, GRC1). 

Very high values of 1.89 were measured beneath the Molasse Basin and the northern Alps (stations 

FUR and A22, not on the map). The discrepancy between different Moho depths and nearly identical 

Moho Ps delay times at the two CO2 emanation centres, FL (Františkovy Láznĕ / Cheb Basin; stations 

SELB, SBG) and ML (Mariánské Láznĕ; stations BOH3, BOH4), is associated with the observation of 

lower vp/vs ratios in the more southern area. Similar observations were also made in other areas 

worldwide [e.g., Yuan et al., 2002]. 

 

There exist several possibilities to explain such relatively low values, which seem to be very low 

compared to laboratory measurements of typical crystalline crustal rocks. Christensen [1996] 

estimated an average vp/vs ratio for the continental crust of about 1.76 from laboratory measurements 

of typical crustal rocks. Values < 1.65 were only measured for rocks with high quartz content. Another 

possibility to explain low values is the presence of fluids under normal pore pressure within pores of 

low aspect ratio [Lüschen et al., 1993]. Recently published seismic velocity models for the upper crust 

of NW-Bohemia [e.g., Janský et al., 2000; Málek et al., 2000] also show relatively low vp/vs ratios. 

Possibly, the low vp/vs ratios observed for the upper crust are valid for the whole crust in distinct parts 

of the regions. Maybe quartz-rich rocks or the presence of fluids dominate these parts. 

 

Generally, a sedimentary cover containing layers with very low shear wave velocities could influence 

the distribution of vp/vs ratios, but almost all stations in this study are grounded on crystalline rocks. 
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Some stations in the southwestern study area (GRA1, GRB1, GRC1, A13, and A17) are installed on 

sedimentary rocks, up to approximately 1200 m thick [see Krüger and Weber, 1992]. However, this 

thin sedimentary cover should not have a huge influence on the average crustal vp/vs ratio. High vp/vs 

ratios at the southernmost stations FUR and A22 might be influenced by thick sedimentary 

successions [see Bachmann et al., 1987]. 

 

The observed anomaly in vp/vs ratios could also be caused by structural effects like topography at the 

Moho, which is observed beneath the western Eger Rift. Zandt et al. [1995] obtained vp/vs ratios of 

1.62 to 1.64 for the westernmost Basin and Range Province, North America. They discussed the very 

low values in that region as being possibly caused by the breakdown of the assumption that the crust is 

laterally homogeneous. A lateral change in crustal thickness of 5 km together with an unchanged 

Moho conversion time would lead to a vp/vs change of 3.5 % (1.67 instead of 1.73) according to Zandt 

et al. [1995]. Direct conversions and multiples sample different paths within the crust. Therefore, 

lateral variations also might influence the results. The direct Moho conversions sample the Moho 

about 5 to 10 km away from the station, whereas the crustal multiples sample the Moho over a 

distance of 5 to 30 km from the station. 

 

 

B.3.4 Discontinuities of the mantle transition zone 

 

The seismic discontinuities bounding the mantle transition zone in depths of approximately 410 km 

and 660 km are interpreted as dominantly caused by the isochemical phase transformation of olivine 

into spinel structure and its final breakdown to perovskite and magnesiowüstite [e.g., Helffrich and 

Wood, 2000; Lebedev et al., 2002] at pressures of approximately 14 GPa and 24 GPa, respectively. 

Both transformations are temperature dependent, but have opposing Clapeyron slopes [e.g., Katsura et 

al., 2004; Fei et al., 2004]. This means, if the temperature is higher than normal (e.g., in a plume 

environment), the '410' should be deeper (higher pressures) and the '660' shallower (lower pressures). 

Topography of the upper mantle seismic discontinuities seems to be largely uncorrelated at a global 

scale, and ‘660’ topography is significantly larger in peak-to-peak amplitude according to Shearer 

[2000]. Studies of triplications, of reflected and converted phases are widely used methods to 

investigate the seismic discontinuities of the mantle transition zone; very common are Ps receiver 

function studies [e.g., Kind and Vinnik, 1988; Stammler et al., 1992; Petersen et al., 1993; Chevrot et 

al., 1999; Li et al., 2000a, 2003a; Shearer, 1991, 2000]. 

 

One common approach to study the depth of the upper mantle discontinuities with receiver functions 

is stacking of the move-out corrected single traces for each station separately, especially for widely 

spaced stations and short registration periods. As already discussed above, strong converted phases 
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within 20 seconds delay time are caused by a sedimentary cover (especially beneath the Gräfenberg 

Array) or velocity gradients in the uppermost crystalline crust, the Moho discontinuity and its multiple 

phases. About four times weaker (in amplitude) converted phases are visible at 44 to 46 seconds and 

67 to 69 seconds delay times (Figure B.8). These phases should be related to the upper mantle 

discontinuities, as it could be shown in Figure B.1 calculating synthetic receiver functions for 

relatively simple velocity models. The observed delay times of converted phases from the 

discontinuities of the mantle transition zone at single stations are listed in Table B.I. 

 

 
 
Figure B.8 
Stacked move-out corrected (for 67° epicentral distance) traces of the single station analysis of permanent and 
temporary stations in the western Bohemian Massif. Different band-pass filters were applied (a) with corner 
periods of 3 and 20 seconds, (b) with corner periods of 5 and 20 seconds. Theoretical delay times of the '410' and 
'660' conversions predicted by the IASP91 velocity model [Kennett, 1991] are marked by vertical solid lines. An 
apparent deepening (late arrivals) of the ‘410’ is evident for several stations (see also Table B.I). 
 
 

Delayed arrival times of the '410' and '660' of up to 2 seconds were observed at many stations in the 

western Bohemian Massif. The differential travel times for converted phases from the transition zone 

(dt660-410) are generally about 24±0.5 seconds (see Table B.I; Figure B.8). At some stations, a lower 

dt660-410 might indicate a real thinning of the transition zone [see Li et al., 2003a], assuming no seismic 

velocity variations within the transition zone. No indications (coherent phases) for a seismic 

discontinuity at 520 km depth are observed in this study. 
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Figure B.9 
Migrated sections along 12°E and 12°30'E with data from permanent (a) and temporary (b) stations in the study 
area, respectively. For the migrated profile along 12°E teleseismic data from permanent stations FUR, KHC, 
WET, GRA1, GRB1, GRC1, PRU, NKC, MOX, BRG, CLL, CLZ, BRNL, RUE, and RGN were used and 
processed in the same way as the data from the temporary stations. Data were provided by the data centres in 
Erlangen (GRF, GRSN), Potsdam (GEOFON) and Praha (IG CAS). IASP91 seismic velocity model [Kennett, 
1991] was used for migration. 
The apparent deepening of the ‘410’ between 50.5 and 51°N (b) is most probably caused by velocity variations 
in the upper mantle. Delayed ‘410’ conversions are observed at stations further to the south, as it is obvious from 
Figure B.8. Since most events come from northeastern back-azimuths, the delay is projected towards the north 
along a N-S profile. However, also a real deepening ‘of the 410’ cannot be excluded at the present stage of 
investigation. 
A strong phase at about 210 km might be an indication for a seismic discontinuity (like the ‘220’ in PREM; 
Dziewonski and Anderson [1981]) or can be a further multiple phase from the Moho. The later interpretation 
would imply a generally very strong velocity contrast at the Moho and only small damping of teleseismic waves 
within the crust. 
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Figure B.9 shows a north-south migrated section projected along a profile at 12°30'E using data from 

the temporary networks in the western Bohemian Massif (b) in comparison to a migrated section along 

12°E using data from permanent stations in Germany and the Czech Republic (a). For the migration, 

again the IASP91 velocity model was used. The overall structure is similar for both data sets, 

including a strong phase in about 200-250 km depth beneath the temporary stations in the western 

Bohemian Massif, and the discontinuities of the transition zone. North (-east) of the Vogtland/NW-

Bohemia area a small-scale deepening of the ‘410’ by about 20 km is indicated. 

In my opinion, this apparent deepening is an effect of the upper mantle velocity structure [see also 

Kind and Vinnik, 1988], which is consistent with receiver function modelling (Figure B.1). This is also 

indicated by the variations in delay times of the '410' recorded at different single stations close to each 

other (Figure B.8, Table B.I). However, a further detailed analysis (including mapping) of the ‘410’ 

and ‘660’ discontinuity conversions in the area is necessary. As in the single station analysis, no 

(coherent) conversions from a seismic discontinuity at 520 km depth could be observed. 

 

 

B.3.5 Synthetic receiver functions for published crustal seismic velocity models 

 

Synthetic receiver functions calculated for published regional seismic velocity models, using the plane 

wave approximation, are shown in Figure B.10. The different models resulted from refraction (Figure 

B.10a-c, e-f) and reflection seismic studies (Figure B.10g-i) as well as from analysis of surface waves 

(Figure 10d). There are simple models without strong velocity contrast/gradients in the crust, models 

with a high-velocity lower crustal layer, and with high- or low-velocity layers in the upper to middle 

crust. For comparison of the synthetic with the observed receiver functions sum traces with (trace V2, 

bottom) and without the “6 s phase” (trace V1, middle), and receiver functions from a nearby station 

(top) are shown. It is evident from Figures B.10 and B.4 that relative smooth crustal velocity models 

can explain most of the observed data whereas complex P-wave models (mainly from reflection 

seismic studies) with more than one high- or low- velocity layer in the crust do not explain the 

observed data. 

 

 

 

 

 
Figure B.10 (next page) 
Synthetic receiver functions (solid line) from published regional seismic velocity models. For comparison, 
observed receiver functions (dashed lines) are shown: the sum traces with (trace V2, bottom) and without the “6 
s phase” (trace V1, middle) and sum traces from nearby stations (top). The plane wave approximation [Kind et 
al., 1995] was used for the calculation. The sum traces of the corresponding L components were used as input P-
signal. Scale shown corresponds to 10 % of the amplitude of the primary P-signal. Most of the models can 
explain at least the primary and multiple Moho phases in the observed receiver functions. 
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B.3.6 Uncertainties and resolution of the method 

 

Variations depending on recording time and back-azimuth coverage 

 

The vast amount of seismic data from the permanent stations GRA1 (1980-1997) and MOX (1993-

1997) was studied in more detail to estimate the uncertainties of the results due to short recording 

periods at temporary stations. The Moho depth, vp/vs ratio, and Moho Ps delay time were analysed for 

different time spans (from 2 months up to 18 years) and for different back-azimuths, respectively 

(Figure B.11; Table B.III). From Figure B.11 it is obvious that several tens of traces are needed to 

obtain a stable result. Typically, this requires at least one year of recording time. The inverted Moho 

depths and vp/vs ratios can vary for short time spans (only few events) by up to 2 km and 0.05, 

respectively. The crustal thickness and vp/vs ratio may depend on the back-azimuth of teleseismic 

events, and therefore, also on the back-azimuth distribution of seismic events at the stations. The 

values obtained vary by up to 2 km for crustal thickness and 0.07 for vp/vs ratio at the two stations 

GRA1 and MOX for different back-azimuths. These variations might be caused by real Moho 

topography around the stations, and therefore they are not considered as an error of the method. 

Because there is no perfect back-azimuth coverage for most of the temporary stations, the data were 

stacked over all back-azimuths. This way, an average crustal thickness beneath each station was 

obtained. 

 

 

Uncertainty of the grid search method and Ps delay time measurements 

 

One can estimate an error of the grid search if one assumes that all stacks in the crustal thickness-vp/vs 

ratio domain within the 95 % contour of the maximal stacked amplitude are possible solutions (white 

areas in Figure B.6). This procedure results in estimated errors for the average values of vp/vs ratios 

and crustal thicknesses of ±0.08 and ±1.5 km, respectively (Table B.I). A systematic error also could 

exist due to the assumed average crustal P-wave velocity of 6.3 km/s. Lateral variations of the average 

P-wave velocity within rifts and at terrane boundaries might exist. If one assumes a higher P-wave 

velocity of about 6.5 km/s, as it might be the case for the central Bohemian Massif, then the Moho 

depth increases by about 2 km. If one assumes 6.0 km/s, the values decrease by about 2 km. In this 

analysis, vp/vs ratios vary by about 0.03, but show no direct dependence on P-wave velocity. Up to 

now, there is no information available on small-scale average seismic velocity variations in the region. 

That’s why a constant value was used. Also, I do not think that the average crustal P-wave velocity 

varies over short distances by more than 0.2 km/s. Therefore, the observed variations in Moho depth 

do probably not depend significantly on crustal P-wave velocity in the region under study. However, a 

linear trend to underestimated Moho depths might exist towards the central Bohemian Massif. 
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Figure B.11 
Stacked receiver functions from stations GRA1 and MOX from different time spans (a, b) and back-azimuths (c, 
d). The numbers to the right of the time spans or back-azimuth windows indicate the number of stacked traces. 
Traces were high-pass filtered with 20 seconds corner period and move-out corrected before stacking. The 
numbers at the converted phase from the Moho represent the observed delay times and the relative amplitude 
ratios SV/P (amplitude of the converted phase on the SV/Q component after deconvolution with the P wave 
signal on the L component). Only small variations of the waveform were observed for the different time spans 
except for that of only 2 months, both at GRA1 and MOX (a, b). Note that there are only small variations of the 
Moho conversion at station GRA1 with back-azimuth (c), whereas there are strong variations at station MOX 
(d). It seems that a complex Moho structure (branching) exists northeast of MOX. 
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The delay times of the direct Ps-converted phase and its multiples from the Moho were re-calculated 

using the Moho depths and vp/vs ratios from Table B.I, and an average crustal P-wave velocity of 6.3 

km/s. The obtained values show a good agreement with the observed data (Figure B.4). This indicates 

that the method works well, at least at stations with a more or less simple velocity structure and clear 

primary and multiple Moho conversions. 

 

Analysing 18 years of data from station GRA1 (1980-1997) for each year separately, variations in the 

Moho Ps delay times of 0.1 to 0.2 seconds could be observed (see Figure B.12, Table B.III). 

Therefore, the uncertainty of Moho Ps delay time measurements for temporary stations, which were 

operated for one year, might also be in the range 0.1 to 0.2 seconds. Delay times tp410s and tp660s 

observed in station stacks of GRA1 for different years of observation vary by about 0.5 to 1.0 seconds, 

showing no dependency on the filter used. Therefore, it can be assumed that the uncertainty for delay 

time measurements of conversions from the mantle transition zone (‘410’ and ‘660’) are in the range 

of 0.5 to 1.0 seconds also for the temporary stations. 

 

 

 
 

Figure B.12 
Stacked receiver functions from stations GRA1 for every year between 1980 and 1997. The numbers to the right 
of the year indicate the number of stacked traces. Data were high-pass filtered with 50 seconds corner period in 
the time range -20 to 30 seconds delay time and band-pass filtered (corner periods 5 to 50 seconds) from 30 to 90 
seconds delay time, respectively (see also Table B.III). 



B   Seismic investigations (receiver functions) 

36  

Summarizing, the maximum uncertainty for the observation of variations in the average crustal 

thickness ∆H is ±1.5 to ±2 km, and for vp/vs ratio ±0.08. The uncertainty of Moho Ps delay time 

measurements is in the range 0.1 to 0.2 seconds, which results also in about ±1.5 km for crustal 

thickness variations. The uncertainty of Ps delay time measurements for the ‘410’ and ‘660’ in single 

station stacks is about 0.5 to 1.0 seconds. 
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Another problem is the use of short period data without clear crustal multiples, especially at the 

WEBNET and KRASNET stations (Figure B.5). For the stations from these networks, crustal 

thicknesses were calculated from the observed Moho Ps delay times using vp/vs ratios from adjacent 

broadband stations. Unfortunately, the stations from the short-period networks were operated in a 

triggered mode, and the length of the time windows used for deconvolution is sometimes very small 

(only about 20 seconds). At station NKC, data from a broadband and a short-period seismometer were 

analysed, but from different time intervals (Tables B.I and B.II; Figures B.4 and B.5). At another site 

(nearby stations A03 and WER; Figure B.4, Table B.I) two different seismometers were operated at 

different times. For both locations, similar results could be obtained using different instruments.  
 

 

B.4 Geophysical indications for Moho updoming and the origin of the “6 s phase” 

 

B.4.1 Local Moho updoming beneath the western Eger Rift 

 

In this section, the discussion of Moho depth variations is focused on the area of swarm-earthquakes, 

active mantle degassing, and Quaternary volcanism in the Vogtland/NW-Bohemia region. The local 

Moho depth distribution is plotted in Figure B.13, including the results from the short period stations 

that are not plotted in Figure B.7. Moho depths at short period stations are computed using vp/vs ratios 

of neighbouring broadband stations. Crustal thickness beneath the western Eger Rift is only about 27 

km, whereas it is about 31 km in the surroundings. It is clear from the discussion of uncertainties 

above, that the observed updoming beneath the western Eger Rift is near the observation limit at a 

single station. Because different independent stations show an updoming in this area, in the Ps delay 

times (up to 0.8-1.0 seconds) as well as in the inverted Moho depths (about 4 km), I think that the 

observation is real. It is unlikely that errors in one region point always in the same direction, they 

should scatter. 

 

Moho updoming seems to be restricted to the crossing of the Eger Rift and the Regensburg-Leipzig-

Rostock Lineament (Cheb Basin; Figures A.1, B.13), however, there is no control (data) on the 

situation further to the northeast. To the southwest, no decreased Moho depths can be observed 

beneath the continuation of the Eger Rift. The area, where an updoming of the Moho is observed, has 

an NNW-SSE extension of approximately 40 km. The top of this Moho antiform is located beneath the 

gas escape centre Františkovy Láznĕ/Cheb Basin (section A.2.4; Figures A.4, B.13). 

 

Moho updoming beneath continental rifts is nothing unusual, and it is observed beneath the southern 

Upper Rhine Graben [Prodehl et al., 1995], the French Massif Central [Zeyen et al., 1997], the Rio 

Grande Rift [Baldridge et al., 1995], and the Kenya Rift [Braile et al., 1994]. It seems to be a common 

structural feature of graben systems. However, there seems to exist also strong variations in Moho 
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depths along the axial grabens, as in the case of the Kenya Rift [Mechie et al., 1994a]. One important 

feature in the western part of the Eger Rift is the local scale overlapping of Moho updoming with 

upper mantle derived gas exhalations and Quaternary volcanism (Figure B.13).  

 
 

 
 
Figure B.13 
Comparison of the Moho depths and the results of gas geochemical investigations (see Figure A.4). This map 
also contains the calculated Moho depths for the short period stations (see Table B.II). 
Grey: CO2 emanation area; KH – Komorní Hůrka, ZH – Železná Hůrka. 
 

 

At the broadband station BOH1 within the Eger Rift, no clear Moho Ps conversions (Figure B.3) could 

be observed, mainly in the NE-back-azimuths (0-45°, Figure B.13). This points to a broad gradient 

zone, strong lateral heterogeneity at Moho level, or an inclination of the crust-mantle boundary in this 

area. Similar observations were also made at other stations (BOH2, SELB, NALB, KLIN, and GUN) 

associated with the find of a converted phase at about 6 seconds delay time, possibly stemming from 

beneath the Moho. In the case of BOH1 the area with the "diffuse" Moho character correlates well 

with the reflection free part in the 9HR seismic profile [Tomek et al., 1997]. The reflection free parts 

might be caused by „bad“ shots and industrial noise in the Sokolov Basin, a lignite mining area 

[Tomek, personal communication]. Behr et al. [1994] also found indications for a disturbed Moho with 

variations of 2 to 3 km beneath the Western Eger Rift. Offline observations of shots along the 

MVE’90 seismic profile indicate that the Moho is shallower beneath the Cheb Basin than further to the 

northeast beneath the Sokolov Basin [Figure 2.16 in Behr et al., 1994].  
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Wilson et al. [2003] observed similar diffuse Moho conversions at stations above the Coso geothermal 

area, California. In their case, the converted phases seem to be strongly influenced by a magmatic 

system within the upper crust. No strong geothermal anomaly or magmatic system seems to exist in 

the upper crust beneath the Vogtland/NW-Bohemia area, with the exception of the Karlovy Vary Spa 

area. Hot springs in this area are attributed to a highly radiogenic Variscan granite complex (Karlovy 

Vary pluton) [see Förster and Förster, 2000]. Therefore, I conclude that the diffuse and weak Moho 

conversions really show effects at the crust-mantle boundary beneath the region. 
 

 

B.4.2  The origin of the “6 s phase” – conversions from subcrustal depths or  

multiples from an intracrustal layer?  

 

Clear converted phases with delay times of about 6 seconds are observed at stations SELB, NALB and 

NKC (Figure B.3, light arrows). Indications for such a phase were also found near stations BAC, 

BOH2, LAC, KLIN and GUN. The study area was divided into several boxes, and a common 

conversion point method was applied to search for the spatial distribution of the “6 s phase” (Figure 

B.14). The size and distribution of the boxes was chosen after several tests, including stacking within 

back-azimuth windows at single stations. 
 

 

Receiver function modelling  

 

To check the origin of the “6 s phase”, synthetic receiver functions were calculated (Figure B.15) 

using the plane wave approximation [Kind et al., 1995]. At first, a model with a more or less simple 

crustal structure is modelled, which can explain the data without the “6 s phase” (Figure B.15a). 

Subsequently, single low- or high seismic velocity layers were added into the crust and uppermost 

mantle. The response of each model is compared to the observed receiver functions, the sum of all 

traces without a “6 s phase” (trace V1, top) and with a “6 s phase” (trace V2, bottom).  

 

Indications for low velocity channels in the middle crust as modelled in Figure B.15b were observed 

by several active seismic measurements [e.g., Knothe, 1972; Strößenreuther, 1982; Holbrook et al., 

1988; Behr et al., 1994]. This relative simple model shows the best fit with the observed data up to 25 

seconds delay time. Further tests showed that a low velocity channel (about 2 km thick, depth 11-13 

km) within the crust cause multiples at about 6 seconds delay time. The velocity reduction could be 

due to lithological contrasts (e.g., quartzite) or due to the presence of fluids. Assuming a constant vp/vs 

ratio for the whole crust, velocities are reduced both by 8 % (5.7 instead of 6.2 km/s for vp). In a fluid-

rich layer the vp/vs ratio might be increased. Faul et al. [1994] published values for the velocity 

reduction per 1 % melt or fluid distributed in thin, elongated inclusions or within triple junction 



B   Seismic investigations (receiver functions) 

40  

tubules (1 to 1.8 % for vp, 2.3 to 3.3 % for vs). If I assume that these values obtained for basic to 

ultrabasic melt inclusions at upper mantle conditions are also more or less valid for a mid-crustal 

regime, the observed data could be modelled as an intracrustal layer filled with 3 to 5 % fluids. In this 

case, the vp/vs ratio is about 1.87 (velocity reduction: 5 % for P-waves, 11.5 % for S-waves). The 

lateral extension of such low-velocity zones should be at least 5 km, because only in this case multiple 

phases would be observed. 

High velocity layers within the crust (Figure B.15c) might represent geologic bodies comparable to the 

“Erbendorf body”, which is postulated beneath the KTB [DEKORP, 1988; Emmermann and 

Lauterjung, 1997]. The fit between synthetic and observed receiver functions in the first 6 seconds is 

not as good as for the other models, indicating that it might not be the most realistic model. 

Model d (Figure B.15d) shows a hypothetic single thick magma reservoir in a “normal” upper mantle, 

assuming about 5 to 7 % magma dispersed in a more than 5 km thick layer within the lithosphere. 

Velocities are reduced by about 9 % (P-waves) and 16.5 % (S-waves; vp/vs equals 1.95), respectively, 

according to the maximum values published by Faul et al. [1994]. Model d does not fit the observed 

data at delay times greater than 14 seconds. If this low velocity anomaly would be a widespread 

phenomenon (channel) and no anelastic damping or scattering exist (as it is assumed by the modelling) 

one would expect to observe the strong multiple phases from this layer in the real data. However, if the 

anomaly is only a local phenomenon with a lateral extension of less than 25 to 30 km, or there exist 

strong damping and scattering, no multiple phases would be observed. 

Model e (Figure B.15e) shows a (relative) high-velocity layer between upper mantle with reduced P- 

(S-) wave velocities compared to the IASP91 reference model (7.6 km/s above and 7.8 km/s below 

instead of 8.2 km/s). The discontinuities in the upper mantle can also be modelled as sharp boundaries. 

A sharp discontinuity in about 50 km depth produces a strong multiple phase at 20 seconds delay time 

in the synthetic traces, whereas a gradient zone at that depth range produces only a weak multiple, 

which might be not observable in the real data due to damping and scattering. These models might 

represent some eclogitic bodies within a “normal” uppermost mantle or a layer of “normal” mantle in-

between “fluidised” mantle. Reduced seismic velocities in the upper mantle and an uplift of the 

asthenosphere were reported from surface wave studies [Plešinger et al., 1994; Passier and Snieder, 

1996] and studies of P-residuals [Plomerová et al., 1988; Plomerová and Babuška, 1998]. 

 

In all models discussed above (Figure B.15), it is necessary to introduce a broad gradient zone in the 

lower crust and at the Moho instead of a sharp velocity contrast to fit the amplitudes of the observed 

Moho conversions. Because the modelled sum trace is the result of stacking data from stations with 

different Moho depths, the contrast and therefore the amplitudes of conversions are damped. However, 

observations of very weak (in amplitude) conversion at several single stations (e.g., BOH1, SELB; 

Figure B.3) in the CO2 degassing area might indicate the local presence of a gradient zone rather than a 

sharp (1st order) seismic discontinuity. 
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Figure B.14 
(a) Distribution of piercing points at 50 km depth. Receiver functions with common conversion points were 
stacked in each box A-Q (b). Blue dots mark boxes without a “6 s phase”. Red dots mark boxes with the “6 s 
phase”. Latter ones correlate with the distribution of mantle-dominated CO2 emanation vents at the surface (grey 
shading, see also Figure A.4). Green triangles: locations of the two Quaternary scoria cones. 
For the mapping of the “6 s phase” data from short period stations, which are mostly located in the main 
epicentral area, are included. Therefore, the signals from the Moho and the “6 s phase” contain higher 
frequencies than the traces in the surrounding area. The radius of the first Fresnel zone at 50 km depth, which 
can be used as an approximation for lateral resolution, is about 20 km. Note that the Quaternary volcanoes are 
located at the western edge of the red “6 s region”. The Moho updoming beneath the central study area is 
obvious from the stack traces in (b), especially looking at the first Moho multiples. 
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Figure B.15 
Forward modelling of observed receiver function waveforms for a number of relative simple models (model 
response shown by solid lines). V1 – stack of all traces without the “6 s phase” in Figure 8, V2 – stack of all 
traces with the “6 s phase” (data shown by dashed lines). Plane wave approximation [Kind et al., 1995] was 
used. The input P-signal is the sum of the corresponding L traces. The scale gives the portion of primary 
deconvolved P signal, that means Moho Ps conversions are about 10 % in amplitude of the incoming P-wave. 
Model a shows a simple crustal structure with a gradient zone at Moho depths. This simple model cannot explain 
the observed phase at 6 seconds delay time. Model b shows the effect of a low velocity layer in the upper-middle 
crust between 11 and 13 km. This depth range corresponds to the base of the seismogenic zone in the area. The 
model is similar to that of Strößenreuther [1982] from the Bavarian forest. Model c simulates a high-velocity 
layer in the upper crust (7.5 to 10.5 km depth). High velocities might be indicative for equivalents of the 
postulated “Erbendorf body” further to the west [DEKORP, 1988; Emmermann and Lauterjung, 1997]. Model d 
represents a hypothetic thick magmatic layer in the upper mantle with about 5 to 7 % melt content and a velocity 
reduction of up to 9 % for vp and 16.5 % for vs, according to Faul et al. [1994]. Model e simulates a high 
velocity layer in the upper mantle. “High velocity” is relative: the layer could represent a real high velocity layer 
in a “normal” upper mantle or a layer of “normal” mantle in-between mantle with reduced seismic velocities. 
Results from surface wave studies [Plešinger et al., 1994; Passier and Snieder, 1996] argue for the latter case. 
Model f represents a combination of models b and e with reduced amplitudes (50 %) of each velocity anomaly. 
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C Petrological studies on xenoliths 
 

In addition to the seismological investigations, xenoliths from a Quaternary tephra deposit were 

sampled to study the presumed source region of the CO2-dominated gas petrologically. After the 

description of the sample site, an introduction into the used chemical analytical methods and into the 

geothermobarometry follows. Then the samples are described. Finally, the obtained petrological and 

mineral-chemical results are presented and discussed. Pressure-temperature (p-T) conditions of 

equilibration or crystallization are estimated from mineral-chemistry. 

 

 

C.1 Sample site 

 

Several (ultra-) mafic xenoliths/nodules as well as crustal xenoliths were sampled from a temporary 

outcrop in a tephra deposit in Mýtina (50.005°N, 12.444°E), approximately 1.5 km north of the 

Quaternary scoria cone Železná Hůrka (49.992°N, 12.444°E; Figures C.1, C.2) [Kämpf et al., 1998; 

Geissler et al., 2004b]. First detailed works on the tephra deposit as well as the ultramafic nodules and 

megacrysts were done by Reuss [1852] and Proft [1894]. 

 

The temporary outcrop was documented lithostratigraphically (Figure C.3), and samples were 

geochemically analysed using XRF and ICP-MS. Samples of wall rock (large blocks within the lower 

unit UF) and nephelinitic bombs were analysed for comparison. The excavated profile (approximately 

4 m thick) consists of clayey material (weathered bedrock) at the base, tuff (lower unit with three 

sequences: UFa, UFb, UFc) and overlying tephra (upper unit, three sequences: OFa, OFb, OFc). The 

tuff is well stratified showing an average layer thickness of 1 to 3 cm. The middle part of the lower 

unit (UFb) contains a lot of wall rock fragments with a maximum dimension of 60 x 40 x 40 cm.  

 

The petrochemical data (see Appendix C.i) were used to estimate the juvenile (magmatic) or wall rock 

content of the different tephra layers. 
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For this estimation contents of TiO2, MgO, CaO, P2O5, Sr, Cr, Nb, and V were used (Figure C.3). 

Similar results can be obtained using other trace elements and REEs. Obviously, the magmatic 

components in UF rise from about 15% to 30 % topwards, whereas it is about 60% in OF. The 

reciprocal content of wall rock in UF ranges from about 85% to 70%, similar to values known from 

the West Eifel maar deposits (about 80%, according to Zimanowski [1986]). 
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Figure C.1 
Location of the temporary exploratory excavation “Mýtina”, the approximate positions of previous temporary 
outcrops are marked (1 – sampling by Kämpf 1996; 2 – sampling by Schwarzkopf 1997), supposed tephra 
deposits (T) in the surrounding of the Železná Hůrka (3 – outcrops of tephra in a former quarry). The assumed 
boundaries of the tephra deposits are supported by the interpretation of field studies and aerial photographs 
(Bayerisches Landesvermessungsamt 1993 and 2001, nr. 93101/0 014 and 101007/0 316). From Geissler et al. 
[2004b]. 
 

The age of the tephra deposit was determined by Wagner et al. [2002] to about 300 ky using fission 

track and alpha-recoil track measurements on apatites and phlogopite [Geissler et al., 2004b]. The 

Železná Hůrka scoria cone (lower unit) is approximately 500 ky old according to Wagner et al. [2002], 

however the uncertainties of the dating methods used are very high. 
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Figure C.2 
The tephra-tuff deposit north of Mýtina, (temporary exploratory excavation); location in Figure C.1 (photographs 
by W.H. Geissler). (a) Total view (October 2002, fresh), (b) Total view (June 2003, weathered); note the high 
number of thin layers within the Lower Unit (arrows). From Geissler et al. [2004b]. 
 

 

C.2 Analytical methods and basics of geothermobarometry 
 

Samples from nephelinitic host rock, ultramafic nodules/xenoliths, and crustal xenoliths were analysed 

for their chemical and mineralogical composition by microscopy and several chemical procedures, 

including X-ray fluorescence (XRF), inductively coupled plasma mass-spectrometry (ICP-MS), and 

mineral-chemical analyses by electron-microprobe analysis (EMPA). Whole-rock chemistry, both 

major and trace elements including rare earth elements (REE), were analysed in the laboratories of the 

GeoForschungsZentrum Potsdam. Results from mineral-chemical investigations can be used for 

geothermobarometric calculations, which are mainly based on empirically and experimentally 

calibrated formulas. 
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Figure C.3 
Lithostratigraphy of the tephra-tuff-deposit within the excavation Mýtina (central part; from Geissler et al. 
[2004b]) together with photographs of thin-sections (right; made by E. Gantz, B. Stöcker, and W.H. Geissler). 
Thin-sections are about 4 cm long. Also shown is a “geochemistry” log (left) to demonstrate the content of 
juvenile magmatic material within the tephra-tuff layers (for data see Appendix C.i). UF - lower unit (tuff), OF - 
upper unit (tephra). The juvenile clasts of UF are vesicle free/poor. The country rock clasts of UF range in size 
from fine ash to 60 x 40 x 40 cm. 
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Sample preparation for whole-rock chemical analyses (ICP-MS, XRF) includes crushing to a grain 

size <62 µm and homogenisation. Thin-sections for microscopy and electron-microprobe analyses 

were made by the preparation laboratory of the GFZ Potsdam. The sections have commonly a 

thickness of 25 µm. 

 

 

C.2.1 Geochemical (XRF, ICP-MS) and mineral-chemical (EMPA) investigations 

 

In this chapter the basics of the analytical methods for rock and mineral chemistry will be introduced. 

A more detailed description of the theories, instruments, and analytical procedures can be found, e.g., 

in Zussmann [1977], Gray [1988], Klein and Hurlbut [1993], and Dulski [2001]. 

 

 

C.2.1.1 X-ray fluorescence spectrometry (XRF) 

 

The sample, grounded to a fine powder, is compressed into a circular pellet or fused into a glass disc. 

This pellet/disc is shortly irradiated with primary X-rays. X-rays are absorbed by the sample according 

to Beer’s law. The absorbed X-ray energy cause generation of a secondary X-ray emission spectrum, 

which is characteristic for each element in the sample. During absorption of the primary X-rays 

electrons in the inner shell are displaced. Vacancies will most probably be filled by electrons from the 

next outer shell creating a new vacancy. “Electron jumps” cause emission of energy in the form of the 

characteristic secondary X-radiation. The emission phenomenon is called X-ray fluorescence. Each 

element has characteristic spectral lines. The secondary X-ray spectrum (consisting of a low-intensity 

continuous background and element peaks) is resolved into spectral lines by an X-ray spectrometer, 

consisting of a diffracting crystal and an X-ray detector (X-ray counting device: scintillation counter 

or flow proportional counter). 

 

 

C.2.1.2 Inductively coupled plasma mass-spectrometry (ICP-MS) 

 

ICP-MS is a multi-element analytical method, which allows the quantification of concentrations of 

many trace elements, including the rare earth elements (REE) within rocks, minerals and natural 

waters [Dulski, 2001]. The method is described by Gray [1988] in more detail. 

 

Inductively coupled plasma is produced, if energy is transmitted via an induction coil to a gas. The 

soluted sample is transformed into a gas-supported aerosol using a pneumatolytic nebulizer and is 

subsequently introduced into the plasma. The reproducible extraction of ions from the plasma to the 
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mass-spectrometer is complicated, because both have totally different temperature and pressure 

conditions (1 atm, 7000K and ≤10-5 mbar, 300K, respectively). The ions are collected by a conic 

collector and separated by mass using a quadrupol mass filter. The counting of ions is done in an 

electron multiplicator in the impulse counting mode. 

 

 

C.2.1.3 Electron microprobe analysis (EMPA) 

 

The methodology of electron microprobe analysis is similar to the XRF method. Only the primary X-

radiation is replaced by a sharply focused electron beam, which allows the qualitative and quantitative 

analysis of a minute volume of material (10-20 µm3 or 10-11g minimum for silicate materials). The 

heart of the electron microprobe is an X-ray spectrometer. X-rays within the sample volume are 

excitated by an electron beam, which is sharply focused by electromagnetic lenses down to a diameter 

of 2 to 10 (20) µm. A heated tungsten filament serves as the source of the free electrons (energy 

source). The electron beam has enough energy to displace inner-shell electrons of the constituent 

atoms of the sample. Outer shell electrons fill inner-shell vacancies and loose their energy, which is 

emitted as characteristic X-rays. The characteristic X-ray spectrum of the elements within a crystal or 

glass is recorded wavelength dispersive by a crystal spectrometer or energy dispersive by a 

semiconductor spectrometer. The duration of point measurements range between 2 and 7 min 

depending on the number of analysed elements and required accuracy (counting times). 

 

Using the electron microprobe two-dimensional element scans or line scans are possible to study the 

zoning of elements within minerals (e.g., Al or Ti in clinopyroxene). The focused electron beam 

causes heating of the sample analysis area. Therefore, the beam diameter should be greater analysing 

samples with a higher content of H2O, F, and alkalis (e.g., feldspars, mica and glass analyses). 

 

 

C.2.2 Geothermobarometry of xenoliths 

 

To combine petrologic and seismic data, it is necessary to estimate the depth of origin of the xenoliths. 

In the past, strong efforts were made to calibrate geothermobarometer, empirically and experimentally, 

for mineral assemblages equilibrated under pressures typical for the lower crust (garnet-bearing 

metamorphic rocks) and upper mantle (spinel and garnet lherzolites [see Pearson et al., 2004]). 

Unfortunately, the Mýtina (ultra-) mafic xenolith suite provides no possibility to use these standard 

upper mantle geothermobarometers, which are calibrated for orthopyroxene- and garnet-bearing upper 

mantle rocks. Calibrations for other assemblages are rare, however, Ernst and Liu [1998] and 

Huckenholz et al. [1992] proposed geothermobarometers for amphibole-bearing xenoliths. Nimis and 



C   Petrological studies on xenoliths 

 49

Ulmer [1998] and Nimis [1999] published barometric formulations for clinopyroxenes. Temperature of 

equilibration can be estimated using the Mg2+ - Fe2+ partitioning between coexisting olivine and spinel. 

Geothermobarometers used in this study are outlined below. 

 

 

C.2.2.1 Amphibole thermobarometry 

 

Ti-rich amphiboles, found as phenocrysts and xenocrysts in many alkali basaltic rocks, are a near-

liquidus phases, stable up to ca. 31 kbar and 1100°C [Schulze, 1987]. Several studies showed that the 

chemistry of amphiboles is sensitive to pressure, temperature, oxygen and water fugacities [e.g., Helz, 

1982; Spear, 1981; Wones and Gilbert, 1981]. There exist a lot of empirical and experimentally 

calibrated thermo/barometers for mostly amphibole-bearing quartz-rich intrusions [e.g., Otten, 1984; 

Hammarstrom and Zen, 1986; Hollister et al., 1987; Johnson and Rutherford, 1989; Schmidt, 1992]. 

They are calibrated for a mineral assemblage of hornblende, melt, fluid, biotite, quartz, sanidine, 

plagioclase, sphene, magnetite or ilmenite. 

 

Ernst and Liu [1998] compiled a p-T scheme based on the Al2O3 and TiO2 contents in amphiboles. 

This scheme can be used for metabasaltic assemblages containing coexisting Al-rich (e.g., plagioclase, 

epidote, garnet) and Ti-rich phases (e.g., ilmenite, titanite, rutile), and closely approached chemical 

equilibrium under crustal or uppermost mantle conditions. It should be also applicable, with caution, 

to inhomogeneous specimens. Al increases with both p and T, but also compositional variations (high 

proportions of melt) seem to influence partitioning of Al2O3 in Ca-amphibole. TiO2 content correlates 

positively with temperature and can be used as a geothermometer above 500°C, where solubility of Ti 

in calcic amphiboles becomes substantial. According to Ernst and Liu [1998], the Al- and Ti-contents 

of amphibole can give an estimate for the solidification depth of an intrusion, or the equilibrium 

pressure of a magma chamber before eruption. This thermobarometer should be especially applicable 

at crustal/lithospheric pressures (up to ~1.2 GPa). 

 

Huckenholz et al. [1992] studied the exchange reactions of Ca, Ti and Na between coexisting calcic 

amphiboles (potassian and titanian pargasites) and clinopyroxenes (diopside), which crystallized from 

a melt with magnesio-hastingsite composition. Their results provide pressure constraints for calcic 

amphiboles (potassian and titanian pargasites) coexisting with clinopyroxenes. Huckenholz et al. 

[1992] proposed that the Na/Ca exchange between both minerals could be used for pressure estimates 

in alkali basalt systems (4-45 kbar). 
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Pressure estimates of natural amphibole-clinopyroxene pairs can be made, when alkali basalts close to 

nepheline basanite, olivine nephelinite, or pargasite composition is available with Na/Ca ratios of 0.25 

to 0.60, and they bear both amphibole and clinopyroxene. The barometer is not applicable for 

peridotite systems and alkali basalts + H2O-excess systems (then KD > 6). 
 

 

C.2.2.2 Olivine-spinel thermometry (spinel barometry) 

 

Mg2+ - Fe2+ partitioning between coexisting spinel and olivine (formula C.3) was first suggested as 

potential geothermometer by Irvine [1965]:  

 

(C.3) 42
3

4242
3

42 )(21)(21 OFeAlCrFeSiOMgOFeAlCrMgSiOFe ++ +=+ γβαγβα  

 

where α, β, and γ are the atomic fractions of the respective trivalent cations. This exchange is 

temperature-sensitive, especially for Cr-rich spinels. The first calibration was made by Jackson [1969] 

from available thermo-chemical data. Roeder et al. [1979] re-evaluated this formulation of the Irvine 

olivine-spinel geothermometer using a different free energy value of FeCr2O4. Their equation to 

estimate the temperature of equilibration is: 
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is the equilibrium constant for the Mg2+/Fe2+ exchange between coexisting olivine and spinel. Fabries 

[1979] pointed out that there are problems with end-member spinels, especially spinels with low 

Cr/(Cr+Al) ratios as common in lherzolitic rocks. In this case the calculated temperatures could be too 

high. His formulation of the olivine-spinel thermometer is given below: 
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FeDD YKK +−= 30.2lnln 0   (T = 1200°C, Roeder et al. [1979]) 
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According to Fabries [1979], the uncertainty due to analytical errors in the determination of Mg and 

Fe2+ in spinel and olivine, and Cr, Al, and Fe3+ in spinel is about ±50 K [see also Jackson, 1969]. 

These first versions of olivine-spinel thermometer did not take into account the influence of oxygen 

fugacity fO2 [O’Neill, 1981]. Ballhaus et al. [1991] calibrated a oxygen geobarometer and provided a 

corrected and simplified version of the olivine-spinel thermometer from O’Neill and Wall [1987]: 
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8.3143 J·mol-1K-1. p is in GPa. 

 

The formulation of O’Neill and Wall [1987] is: 
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The pressure dependence of the olivine-spinel thermometer resulted from the work of O’Neill [1981]. 

O’Neill [1981] found that the Cr-content of spinels influences the depth (pressure) of the transition 

between spinel and garnet lherzolite and can be used as a maximum pressure (depth) indicator: 

 

(C.9) )(9.27 3
0 sp

Fe
sp
Cr XXpp +++=  

 

whereas p0 is approximately 17.6-19.8 kbar at 1100°C, and sp
CrX  and sp

Fe
X +3  are the mole fractions of 

chromium and ferric iron in spinel. 

 

Medaris et al. [1999] used the olivine-spinel thermometer as a barometer. They fitted temperature data 

derived with the formulation of Ballhaus et al. [1991] to a model geotherm (underplating scenario 

with subsequent cooling) to get depth estimates for spinel peridotite nodules from the Kozákov 

volcano (Elbe Zone, CZ). 
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There are several limitations of the olivine-spinel geothermometry, which have to be kept in mind. 

The equilibrium exchange of Mg2+ and Fe2+ between spinel and olivine is one of the fastest exchange 

reactions. It is still effectively during cooling down to relatively low temperature (subsolidus), while 

other exchange reactions in peridotites (e.g., pyroxene exchange reactions) are blocked at higher 

temperatures (Fabries, 1979). The decision if olivine and spinel are coexistent equilibrium phases and 

the estimation of Fe3+ contents from electron microprobe data via stoichiometric derivation are further 

problems. 

 

 

C.2.2.3 Pyroxene thermometry 

 

Furthermore, the chemical composition of coexisting clinopyroxene and orthopyroxene can be used as 

a geothermometer. On the basis of experiments and ability tests Brey and Koehler [1990] formulated 

new versions of the two-pyroxene thermometer: 
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The Ca content of orthopyroxene alone can be used as a geothermometer: 
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The partitioning of Na between orthopyroxene and clinopyroxene is also temperature sensitive 

(thermometer calibrated from natural rock data): 
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p is in kbar, cpx

opx

Na Na
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An older version of the pyroxene thermometer was suggested by Wells [1977], however Lindsley 

[1983] pointed out, that it should not be used any longer. Brey and Koehler [1990] pointed out that 

Well’s formulation reproduces the experimental results at 900°C, but increasingly underestimates them 

at higher temperatures. 
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C.2.2.4 Phlogopite-liquid (glass) thermobarometry 

 

Righter and Carmichael [1996] published results from experiments on olivine and augite minette 

powders at 1 bar to 2 kbar (water-saturated) and 900 to 1300°C. The oxygen fugacity was controlled 

between the nickel-nickel oxide (NNO) and hematite-magnetite (HM) oxygen buffers. Righter and 

Carmichael [1996] showed that the partitioning of TiO2 between biotite and liquid is temperature 

dependent (uncertainty of ±50 K), whereas the BaO partitioning is pressure and temperature dependent 

(uncertainty of ±4 kbar). 

 

(C.13) b
T
aD liqphl

TiO +=/
2

ln  

 

with the TiO2 partition coefficient 
%][
%][

2

2/
2 wtTiO

wtTiO
D glass

phl
liqphl

TiO =  

and a, b as regression coefficients (a = 17600, b = -12.1). T is in Kelvin. 
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and the regression coefficients a = -2.167, b = 4553, c = -130.7, and d = -0.388. T is in Kelvin; p is in 

kbar. Where phlogopite is close to liquidus aH2O can be set to 1 (phlogopite/biotite as phenocrysts 

together with either olivine or augite). Reducing aH2O to 0.8 the calculated pressure increases by 10% 

[Righter and Carmichael, 1996]. 

 

 

C.2.2.5 Olivine-clinopyroxene barometry 

 

Köhler and Brey [1990] established a geobarometer, which is based on the calcium exchange between 

olivine 9.0)( ≈
+

ol

FeMg
Mg  coexisting with clinopyroxene in natural lherzolitic compositions: 
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where cpx

ol

Ca Ca
CaD = , and Caol, Cacpx are the atomic proportions of Ca in the structural formulae of 

olivine and clinopyroxene based on 4 and 6 oxygens, respectively. According to Köhler and Brey 

[1990] the uncertainties are in the range of ±1.7 kbar (1σ). 

O’Reilly et al. [1997] described the limitations of the above geobarometer. The Ca and Ti contents in 

olivines in spinel peridotites are well correlated with one another and with temperature, whereas the 

Ca content is poorly correlated with pressure. A strong temperature dependence of the Ca-in-olivine 

barometer exists. A temperature uncertainty of ±50 K results in a pressure uncertainty of ±8 kbar. 

Therefore, pressure estimates span the entire width of the spinel-lherzolite field at 900-1200°C. 

 

 

C.2.2.6 Clinopyroxene barometry 

 

Nimis and Ulmer [1998] performed crystal structure modelling of Ca-rich clinopyroxene coexisting 

with basic and ultrabasic melts and calibrated a geobarometer that is based on the structural 

parameters unit-cell volume (Vcell) and M1-site volume (VM1). It should be applicable to anhydrous 

and hydrous melt compositions (quartz-normative basalts to nephelinite, excluding melts coexisting 

with garnet or melilite), pressure conditions pertinent to the crust and upper mantle (0 to 24 kbar), as 

well as a variety of fO2 conditions. At a given melt composition, Vcell and VM1 decrease linearly as 

pressure increases. The expanded version of the geobarometer (valid for an/hydrous compositions) is 

very temperature sensitive (underestimating T by 20 K cause 1 kbar increase of calculated p). 

 

The best way is using of X-ray diffraction data as input for the calculations, however another approach 

is the calculation from mineral chemical analyses (atomic fractions from microprobe data, via 

chemistry-structure coefficients; for details see Nimis [1995] and Nimis and Ulmer [1998]). For 

pressure calculations the Excel-Worksheet provided by Nimis [1999] was used. 

 

According to Nimis and Ulmer [1998], most useful results can be obtained for cumulitic products 

(pyroxenitic xenoliths, megacrysts), but the geobarometer should also be applicable to mantle 

equilibrium partial-melting residua. Clinopyroxenes that re-equilibrated after magmatic crystallization 

or melting during subsolidus processes are unsuitable for geobarometric purposes, unless their primary 

composition can be recovered. Nimis [1999] discussed the uncertainties of the clinopyroxene 

barometry. The errors for the expanded version of the barometer are about 3.1 kbar; low-pressure data 

(≤15 kbar) are better reproduced (standard deviation σ = 2.6 kbar) than high-pressure data (>18 kbar; σ 

= 6.1 kbar). The standard deviation is about 1.75 kbar for anhydrous basic or ultrabasic systems. In 

comparison to the uncertainties of the barometric formulation, the uncertainties in chemical analyses 

(e.g., by electron microprobe) cause negligible errors. 
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C.3 Sample description 

 

C.3.1 Mantle xenoliths (ultramafic nodules) 

 

Mantle xenoliths can generally be divided into two groups according to Lloyd and Bailey [1975], Frey 

and Prinz [1978], and Lloyd [1981, 1987]: 

 

Group I:  spinel lherzolites, spinel harzburgites, wehrlites, dunites (composed of olivine, ortho- and 

clinopyroxene and minor amounts of amphibole and dark mica). 

Group II:  pyroxenites (mainly clinopyroxene, minor amounts of orthopyroxene and olivine) 

containing significant amounts of hydrous minerals (titaniferous phlogopite, amphibole) 

and titanite, (perovskite), titanomagnetite (ilmenite?), apatite, rarely calcite and feldspar. 

 

The (ultra-) mafic xenolith-suite (nodules; further mostly referred as mantle xenoliths) sampled from 

the Mýtina tephra deposit includes wehrlites, clinopyroxenites, hornblendites (Table C.I; for 

nomenclature see Figure C.4), chromite-bearing olivine-clinopyroxene aggregates, and megacrysts of 

olivine, clinopyroxene, amphibole and phlogopite (Plate 1). The xenoliths and megacrysts are 

commonly coated by the host rock and form cored bombs. 

 

The volcanic host rock (dark grey, vesicular scoria and bombs) can be classified as olivine mela-

nephelinite [Le Bas, 1987; Le Bas et al., 1992; Le Maitre, 1989]. The only partly re-crystallized glassy 

groundmass contains olivine and strongly zoned titanian diopside phenocrysts, euhedral in form and 

commonly up to 1 mm maximal size. No feldspathic minerals (plagioclase, alkali-feldspar, nepheline) 

can be observed by optical microscopy. Additionally to the phenocrysts olivine and clinopyroxene 

xenocrysts with fragmented or irregular edges in contact to the host rock also occur. 

 

Most of the xenoliths show cumulus textures (Plates 2, 3). No (shear) deformation textures could be 

observed in the Mýtina samples, but some samples exhibit high porosity (only partly filled with glass). 

 

Wehrlites (MXZH1, -2, -3, -4, -67; Plates 1, 2) 

Several wehrlitic samples were identified. The main components are green clinopyroxene and olivine; 

minor constituents are brown mica (phlogopite) and glass. All samples show a cumulus texture and 

contain some percent open pore space (in some thin-sections filled with coloured glue) [see Kämpf et 

al., 1999b]. Euhedral to anhedral crystals occur together in one sample. Grain size is variable in 

different samples (from less then 1 mm up to more than 1 cm). Boundaries of some nodules imply that 

the samples have a xenolithic origin rather than being cumulates from the host magma. Spongy zones 

(sieve texture) can be observed in some clinopyroxenes, especially near the rim. 
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Figure C.4 
IUGS classification of ultramafic plutonic rocks [after Le Maitre, 1989]. 
No modal composition was determined, however most of the analysed xenoliths are olivine-clinopyroxene- 
bearing samples and would plot in the wehrlite and olivine-clinopyroxenite fields (no orthopyroxene) (a). 
Amphibole and clinopyroxene rich samples (no or minor amounts of olivine) plot in the hornblende- (hbl-) 
pyroxenite and pyroxene- (cpx-) hornblendite fields (b). Sample MXZH66 can be classified as (pyroxene-) 
hornblende- (hbl-) peridotite; sample MXZH68 is a hornblendite (almost 100% amphibole). The olivine-
orthopyroxene-clinopyroxene-bearing samples from Gottleuba (Go01-1) and Zinst (Zinst-1) would plot in the 
harzburgite and lherzolite fields, respectively. 
 

 

Hornblende-peridotite (MXZH66; Plates 1, 3) 

Sample MXZH66 contains olivine, clinopyroxene, amphibole and spinel as main phases and shows an 

equigranular, cumulus texture. This sample is classified as hornblende-peridotite to distinguish it from 

the typical wehrlites containing olivine, clinopyroxene and phlogopite (± glass). Amphibole and spinel 

are partly euhedral, whereas olivine and clinopyroxene are anhedral. The average grain size is up to 5 

mm. Only one sample was found up to now. 

 

Olivine-clinopyroxene-spinel cumulates (MXZH8, -18, -61, -64; Plate 2) 

Additionally to the wehrlitic samples, olivine-clinopyroxene-spinel aggregates were investigated. 

Commonly there are smaller than the wehrlitic samples and show no regular boundaries, indicating 

crystallization from the melt (at least for some of the constituents). They also contain dark-brown Cr-

rich spinel. Clinopyroxenes have a less spongy appearance than that in the wehrlites. They show 

titanian diopsidic rims towards the melt (nephelinite). 

 

Clinopyroxenites (MXZH5, -11, -33; Plate 3) 

There are several samples containing clinopyroxene as the main constituent. Further minerals are 

amphibole (up to 50%), ilmenite (± titano-magnetite), apatite (MXZH5), and titanite (MXZH11). They 

are equigranular and show cumulus textures; the average grain size is several mm, but may reach up to 

1 cm. There seem to exist two generations of amphibole in sample MXZH33. 
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Hornblendites (MXZH12, -13, -68; Plate 3) 

Hornblendites are mainly composed of pitch-black amphibole (brown in thin-sections; euhedral to 

anhedral crystals). Minor phases are clinopyroxene, ilmenite (± titano-magnetite), phlogopite, and 

sulphide inclusions. Normal grain size is some mm. In samples MXZH12 and MXZH13 up to cm-size 

amphibole crystals overgrow small clinopyroxene crystals. Glass, phlogopite, skeletal olivine, titano-

magnetite, and clinopyroxene phenocrysts occur in vugs in both samples. 

 

Spinel lherzolites/harzburgites (Zinst-1, Go01-1; Plate 2) 

Spinel lherzolites are the typical upper mantle xenoliths in the mafic Cainozoic volcanics of Central 

Europe [e.g., Menzies and Bodinier, 1993]. Up to now, such rock fragments could not be found within 

the Quaternary volcanics in the area under study. For comparison, two spinel peridotite xenoliths from 

the Mariengründel, about 1km south-southeast of Bad Gottleuba, Saxony (50.842°N, 13.952°E; Elbe 

Zone; late Miocene?), and from the Wunschenberg quarry near Zinst, NE-Bavaria (49.90°N, 11.94°E; 

Franconian Lineament; K-Ar whole rock age 28.8±1.8 Ma, according to Todt and Lippolt [1975]), are 

investigated. The average grain size in both samples is up to 5 mm. Most crystals have anhedral grain 

boundaries. Sample Zinst-1 contains several volume percent clinopyroxene, whereas Go01-1 has only 

a small amount of clinopyroxene. 
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C.3.2 Megacrysts 

 

The Železná Hůrka and the tephra deposit in Mýtina have been known at least since the 19th century 

for the occurrence of megacrysts (large single crystals), several cm in size [Reuss, 1852; Proft, 1894]. 

A number of samples from both localities, including olivine, clinopyroxene, amphibole and phlogopite 

crystals, were investigated (Plates 1, 3). 

 

Olivine (MXZH7, -19, -24, -69; EB1) 

Some olivine megacrysts occur as euhedral crystals, partly showing skeletal growth. Other samples 

have irregular grain boundaries. Rounded samples are a third group, indicating disequilibrium with the 

host melt (e.g., MXZH19). Composite megacryst samples consist of three ore more large olivine 

crystals (e.g., MXZH69). Most of the olivine megacrysts are porous. Pore boundaries are crystal faces 

only in a few samples. The vugs are partly filled with glass and groundmass crystals (mostly 

clinopyroxene); bigger exemplars are empty showing only a thin coating of the pore walls by glass and 

micro-phenocrysts. One olivine megacryst from Železná Hůrka (EB-1) contains an amphibole 

inclusion [see Kämpf et al., 1993]. 

 

Clinopyroxene (MXZH9, -14, -17, -62; EB2, -6, -7) 

Two types of clinopyroxene megacrysts occur, black and green in colour, the latter ones mostly in 

olivine-clinopyroxene-spinel aggregates. Almost all samples are zoned/rimmed. One sample from the 

Železná Hůrka shows sector zoning (EB2). Some samples have a spongy appearance, which stems 

from small melt pockets. Also composite samples (spongy + not spongy crystals) occur (MXZH62). 

Clinopyroxene megacrysts show all kinds of grain boundaries (subhedral to anhedral, broken, 

rounded). 

 

Amphibole (MXZH10, -15, -32, -35, -39, -42, -1a, -9) 

Amphibole megacrysts look pitch-black in hand specimen and dark-brown in thin-sections. Almost all 

samples are rounded, indicating disequilibrium with the host melt, at least under conditions during the 

ascent within the magma column. Only a few samples show well developed crystal faces in hand 

specimen. But most samples show perfect cleavage under the microscope. Some of the amphibole 

megacrysts are also porous, containing vugs, partly filled with glass. 

 

Phlogopite (MXZH21, -22, -74) 

Thin black mica flakes are very common in the tephra and as inclusions in volcanic bombs. Their 

length is up to 7 cm. Flake boundaries are rounded. One sample with dimensions of 35x35x35 mm 

was found (MXZH74). 
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Plate 1 
Photographs of typical hand specimen of (ultra-) mafic nodules from the Mýtina tephra. (a) Amphibole 
megacrysts are commonly rounded and have vugs filled with nephelinitic glass; (b) phlogopite megacrysts can 
normally be found as flakes; (c) and (d) olivine megacryst MXZH19 showing atypically large vugs, which are 
only partly filled with nephelinitic glass; (e) porous wehrlitic xenolith MXZH3, consisting mainly of olivine and 
clinopyroxene and minor phlogopite; (f) black coloured clinopyroxene megacryst showing typical conchoidal 
fracture; (g) amphibole-bearing peridotite (olivine, clinopyroxene, amphibole, spinel); (h) porous wehrlitic 
xenoliths MXZH67 consisting only of olivine and clinopyroxene. (Photographs by E. Gantz, GFZ Potsdam) 
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Plate 2 
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Plate 3 
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Plate 2 
Photographs of thin-sections (left: single, and right: crossed nicols) of typical wehrlitic xenoliths or olivine-
clinopyroxene cumulates from the Mýtina tephra (a) to (f); and a spinel lherzolite xenolith from the 
Wunschenberg (Zinst, NE-Bavaria). 
Samples MXZH67 (a+b) and MXZH1 (c+d) consist of olivine and clinopyroxene up to several millimetre in 
grain size. Both samples are porous. MXZH1 further contains phlogopite; and some clinopyroxene grains show 
zoning (mainly in Ti and Cr, from microprobe measurements). This is probably an indication for an overprinting 
of sample MXZH1 by heating or metasomatic reactions. MXZH18 (e+f) consists of olivine, clinopyroxene (both 
up to cm-size) and dark-brown chromium-rich spinel. The space in-between the mineral grains is partly filled 
with nephelinitic groundmass containing phenocrysts; some “pores” contain scoriaceous glass. Spinel lherzolite 
sample Zinst-1 (g+h) consists of olivine, clinopyroxene, orthopyroxene, and dark-brown spinel. 
 

Plate 3 
Photographs of thin-sections of amphibole-bearing xenoliths and an amphibole megacryst. 
(a) MXZH5: apatite- and amphibole-bearing clinopyroxenite; (b) MXZH11: amphibole- and Ti-magnetite- 
bearing clinopyroxenite, containing also minor titanite (sphene); (c) and (d) MXZH12, MXZH13: hornblendite 
samples, consisting mainly of amphibole, which partly overgrows small clinopyroxene grains (poikilitic), as well 
as of phlogopite and magnetite; (e) MXZH33: ilmenite-bearing hornblende-clinopyroxenite; (f) MXZH66: 
amphibole-bearing peridotite consisting of olivine, clinopyroxene and dark-brown spinel; (g) MXZH68: 
hornblendite, consisting only of amphibole and minor magnetite and sulphide inclusion; (h) MXZH15: 
amphibole megacrysts showing inclusion (magnetite and sulphide) trails. 
 

 

C.3.3 Crustal xenoliths 

 

Crustal xenoliths in the lower unit of the tephra deposit range in size from ash particles up to several 

decimetre big samples [see Geissler et al., 2004b]. Within the upper unit, their size is up to 10 cm; 

most samples are coated with the host rock, forming cored bombs. Many samples show primary 

sedimentary layering (bedding), overprinted by foliation. Main components are quartz and mica 

(muscovite and biotite); minor constituents are feldspar, garnet, and zircon and others (see Appendix 

C.ii). Commonly the samples show small grain sizes of the minerals. Samples can be classified by 

their textures and mineral composition into the following groups: quartzitic (quartz-rich) rocks, 

phyllitic rocks and mica schists, and feldspar-rich rocks (Plates 4, 5). A transition exists from phyllitic 

quartzites to quartzitic phyllites/mica schists. 

 

Quartzitic xenoliths show generally an alternated stratification of quartz-rich and mica-rich (mostly 

muscovite) layers. These rocks have light-grey colours; some samples are whitish. Minor components 

beside quartz and muscovite are feldspar, biotite, and rounded zircon (sometimes enriched in specific 

layers/samples; e.g., XKZH58, XKZH61). The phyllitic and mica schist xenoliths are more mica-rich 

(muscovite, biotite) than the quartzitic samples. They mostly have dark-grey (greenish) colours. Minor 

components are feldspar, garnet, staurolite, and (?) cordierite. 
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Plate 4 
Photographs of typical hand specimen of crustal xenoliths from the Mýtina tephra. (a) XKZH1: noritic sample 
(mainly plagioclase + orthopyroxene ± clinopyroxene) showing weak layering of the main components; (b) and 
(c) XKZH2, XKZH3: feldspar rich samples; (d) XKZH4: quartz-rich xenolith, probably a fragment of a quartz 
vein; (e) XKZH12: quartzitic mica-schist; (f) XKZH50: mica-schist; (g) XKZH53: quartzite; (h) XKZH65: 
quartz-feldspar-bearing xenolith, which may belong to meta-tuff layers (within the “Neualbenreuth layers”). 
(Photographs by E. Gantz, GFZ Potsdam). 
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Plate 5 
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Plate 6 
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Plate 5 
Photographs of thin-sections (left: single, and right: crossed nicols) of typical crustal xenoliths. 
Sample XKZH4 (a+b) shows a sharp contact between quartzite and garnet-bearing mica schist. XKZH4 might 
be a fragment of a quartz vein or dike (“Pfahl”), which are common in the area; (c+d) XKZH12: garnet- and 
staurolite-bearing quartzitic mica schist; (e+f) XKZH50: garnet-bearing mica schist; (g+h) XKZH65: 
porphyroclastic quartz-feldspar-bearing rock (meta-tuff?). 
 
Plate 6 
Photographs of thin-sections (single and crossed nicols) of feldspar-dominated crustal xenoliths. 
Noritic sample XKZH1 (a-d) consists mainly of plagioclase and orthopyroxene, minor components are 
amphibole, rutile, brown mica, and fine grained intergrowth of orthopyroxene and clinopyroxene; (e+f) XKZH2: 
glass- (brown) bearing sample mainly composed of albite; contains also minor amounts of zircon and a Nb-Ta-
bearing ore [Kämpf, personal communication]; (g+h) XKZH3: feldspar rich sample, which additionally contains 
pyroxene (green), zircon (?), apatite, and titanite. 
The porous texture of sample XKZH2 and XKZH3 as well as the glass formation in XKZH2 is most probable 
related to the heating in the host magma, whereas the origin of fine grained orthopyroxene-clinopyroxene 
intergrowth might be related to previous metamorphic/metasomatic overprinting. 
 
 
Besides the majority of quartz- and mica-rich crustal xenoliths also light grey more feldspar-rich 

samples could be found (XKZH1, -2, -3, -6, -65, -66; Plates 4, 6). Three analysed feldspar-rich 

xenoliths are strongly influenced by heating in the host magma. One of them (XKZH1) shows layering 

of the major components feldspar and orthopyroxene indicating some metamorphic overprinting of a 

probable primary magmatic texture. Minor components in sample XKZH1 (Plate 6) are clinopyroxene, 

dark mica, rutile and amphibole. In the two other analysed feldspar-rich samples (XKZH2, XKZH3) 

the heating in the host magma resulted into glass formation. This might be an indication for a deeper 

than uppermost crust origin of these xenoliths (due to a longer residence time in the magma).  

Light grey samples XKZH65, XKZH66 (Plates 4, 5) and XKZH6 show coarse feldspar and quartz 

remnants resting in a (partly re-crystallized) matrix of quartz, feldspar, and mica. 

 

 

C.4 Data 
 

C.4.1 Whole-rock major and trace element chemistry 

 

Samples were grounded in an agate mill to less than 62 µm and homogenised. Major element oxides 

and most trace elements were analysed by X-ray fluorescence spectrometry on fused glass pellets on a 

Siemens SRS 303 spectrometer at the GFZ Potsdam by Dipl.-Krist. Rudolf Naumann. H2O and CO2 

were determined by IR-spectrometry (LECO CH elemental analyser) or thermal conductivity 

measurements (vario EL) after decomposition of the rock powder in a 1000°C oxygen stream. FeO 

was analysed by potentiometric titration using a modification of the Wilson procedure [Wilson, 1955]. 

Trace and Rare Earth (REE) elements were analysed by inductively-coupled plasma mass-

spectrometry (ICP-MS) on a Perkin-Elmer/SCIEX Elan 5000 ICP mass-spectrometer at the GFZ 

Potsdam by Dr. Peter Dulski. For details on ICP-MS sample preparation (mixed acid digestion 

procedure), calibration, conditions of measurement, and error discussion see Dulski [2001]. 
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The analytical precision for all methods is better than 10% and was checked against international rock 

and in-house laboratory standards. The accuracy of ICP-MS measurements is in the range of ±5% 

[Dulski, 2001]. The analyses of Nb and Ta are less accurate due to the unstable behaviour of these 

elements in solution. The results are listed in Table C.II and Appendix C.ii for mantle and crustal 

xenoliths, respectively. Figure C.5 and Appendix C.iii show the chondrite (C1)-normalized REE 

patterns of the investigated samples.  

 

 
 
Figure C.5 
Chondrite (C1)-normalized REE patterns of host mela-nephelinites and (ultra-) mafic nodules from the tephra 
deposit in Mýtina (see Table C.II). REE values of C1-chondrites are taken from Anders and Grevesse [1989]. 
 

 

C.4.2 Mineral-chemical analyses (EMPA) 

 

Minerals of several mantle xenoliths, megacrysts, and three crustal xenoliths were analysed for their 

chemical composition. Major and minor elements of minerals (olivine, clinopyroxene, amphibole, 

phlogopite, spinel, titanite, ilmenite, apatite) were determined with the CAMECA SX50 and 

CAMECA SX100 microprobes of the GFZ Potsdam, which are equipped with four wave-length 

dispersive spectrometers, using an acceleration voltage of 15 kV, a beam current of 20 nA, and a beam 

diameter of 2 µm (for mica, feldspar, and glass analyses 10 µm, because of the higher concentration of 

diffusion endangered elements like Na, F, K). Counting time for the peak was 20 seconds, and for the 

background 10 seconds on each side of the peak. Ca in olivine was measured as a trace element (50.2 

nA, 15 kV, 300s counting time for peak and background) in selected samples to perform pressure 

estimations with the olivine-clinopyroxene barometer. 
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The amount of Fe3+ in spinel was calculated from stoichiometry by the algorithm in the CAMECA 

software. Natural and synthetic standards (Smithsonian Standards; Astimex Scientific Limited) were 

used for calibration. To test the degree of equilibration between and within mineral grains (intra-grain 

heterogeneity), a large number of point analyses and profiles were performed. The consistency of the 

data set was checked by repeated measurements for some samples. The accuracy of microprobe 

analyses is in the range of 0.05 to 0.2 wt.%. The matrix correction was done by the algorithm that is 

implemented in the software of the CAMECA microprobes (PAP algorithm; Pouchou and Pichoir, 

1984). The results of the microprobe measurements are listed in Tables C.III to C.XIII. 

 

Olivine analyses 

The investigated olivines have forsterite contents between 0.82 and 0.88 (Tables C.III, C.IV, C.VII, 

C.X, C.XII) and differ from olivines in spinel lherzolites (0.90 to 0.91) from nearby localities in NE-

Bavaria [Huckenholz and Kunzmann, 1993; own data], the Rhön [Franz et al., 1997], and the Elbe 

Zone [Medaris et al., 1997; Kramer and Seifert, 2000; own data]. Normal and reversed zoning of Mg 

and Fe could be observed in many of the investigated grains. CaO contents are relatively high in the 

analysed olivines from Mýtina (wehrlitic samples: 0.17 wt.%; megacrysts cores and MXZH66: 0.15 

wt.%; phenocryst cores: 0.18 wt.%) comparable to olivines from Železná Hůrka (0.14 to 0.17 wt.%), 

whereas olivines in spinel lherzolites have lower CaO contents (Zinst-1: 0.09 wt.%; Go01-1: 0.04 

wt.%). Rims of phenocrysts and megacrysts have CaO contents > 0.25 wt.%, but analyses may be 

influenced by the so-called phase boundary fluorescence effect. 

 

Clinopyroxene analyses 

Analysed clinopyroxenes can be classified as chromian or aluminian diopsides and augites, according 

to Morimoto [1988] (Tables C.III-C.VI, C.VIII, C.X, C.XII; Figure C.6). Cr-rich clinopyroxenes 

commonly belong to the spinel lherzolites, wehrlites or olivine-clinopyroxene-spinel cumulates. The 

composition of groundmass clinopyroxenes and rims is titanian aluminian diopsidic (up to > 6 wt.% 

TiO2; up to 12 wt.% Al2O3). The Cr-content of clinopyroxenes within wehrlites (e.g., MXZH1) is 

highly variable, indicating magmatic/metasomatic overprinting of the samples. 

 

Amphibole analyses 

The investigated amphiboles (polycrystalline and megacrysts) are Fe-, Ti-rich calcic amphiboles 

(potassian titanian pargasites, according to Leake et al. [1978, 1997]; Tables C.III-C.V, C.IX, C.XIII). 

They show widespread K2O/Na2O ratios (composite samples 0.5 to 1.0; megacrysts 0.8 to 1.0). 

Mg/(Mg+Fe) values are 0.67 for clinopyroxene-hornblendites, 0.73 for hornblendite, 0.57 to 0.6 for 

hornblende-clinopyroxenites, and 0.79 for hbl-peridotite. Mg/(Mg+Fe) values of analysed amphibole 

megacrysts are close to 0.8. The TiO2 content is about 2.5 wt.% in clinopyroxenites, > 3 wt.% in 

hornblendites as well as in sample MXZH66. TiO2 content of megacrysts is 3.3 to 3.4 wt.%. Al2O3 
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varies between 12.7 wt.% (MXZH33) and 14.6 wt.% (MXZH66) for xenoliths, and between 13.8 and 

14.7 wt.% for megacrysts. Only amphibole in sample MXZH66 (0.8 wt.%) and amphibole megacrysts 

(0 to 0.3 wt.%) contain significant amounts of Cr2O3. 

A Fe3+/Fe2+ ratio of 0.5 was determined for amphibole megacryst MXZH15 from the whole-rock 

chemistry (Table C.II). This sample and hornblendite sample MXZH68 also contain rounded Ni, Co, 

Pt and Cu bearing magnetite-sulphide inclusions (average sulphide analyses: 57.7 wt.% Fe, 38.7 wt.% 

S, 3.3 wt.% Ni, 0.2 wt.% Co, up to 4 wt.% Cu, up to 0.7 wt.% Pt; pyrrhotite). Such sulphide inclusions 

are common in metasomatized mantle xenoliths [e.g., Shaw, 1997] and may result from the 

immiscibility of sulphide liquids with the magma [Deer et al., 1963]. 

Amphibole in the crustal xenolith XKZH1 has lower TiO2 (1.65 wt.%), Al2O3 (11.5 wt.%) and K2O 

(0.55 wt.%) than amphiboles in the other analysed (ultra-) mafic samples. 

 

Phlogopite analyses 

Micas, occurring as megacrysts and within xenoliths, are Ti-rich phlogopites (3.8 to 4.8 wt.% TiO2, 18 

to > 20 wt.% MgO; Tables C.V-C.VII, C.IX) [see also Seifert and Kämpf, 1994].  

 

 

 
 
Figure C.6 
Ternary classification diagram for clinopyroxenes [after Morimoto, 1988]. Cr-rich clinopyroxenes of spinel 
lherzolites, peridotite, wehrlites, olivine-clinopyroxene-spinel cumulates, and clinopyroxene in XKZH1 plot 
close to the augite-diopside boundary. Clinopyroxenes within clinopyroxenites and hornblendites can be 
classified as diopsides. Clinopyroxene rims and groundmass crystals plot above the 50% Wollastonite line due to 
very high Al and Ti contents. Sample XKZH3 contains Na-rich augitic clinopyroxene (aegirine-augite). 
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C.5 Interpretation of the petrological data 
 

C.5.1 Composition and origin of xenoliths and megacrysts 

 

Already in the 19th century, there was a controversy on the origin of the ultramafic nodules (mantle 

xenoliths) and megacrysts from Mýtina, whether they are true xenoliths or cumulates that crystallized 

in the host magma. Whereas Reuss [1852] argued that the olivine, amphibole, and augite nodules are 

evidence for a previous basaltic activity and that they were partly re-melted or became scoria-like, 

Proft [1894] favoured the early crystallization in the basaltic host magma. 

 

 

C.5.1.1 Mantle xenoliths and cumulates 

 
The magmatic textures of most ultramafic nodules indicate the crystallization from a melt not long 

before the entrainment into the host magma; otherwise textural equilibration and development of 

metamorphic fabric would be expected [Best, 2003]. The mineral chemistry (relatively low Mg 

content of olivine, low Cr2O3 contents of clinopyroxenes, high TiO2 contents of diopsidic 

clinopyroxenes and amphiboles, widespread K2O/Na2O ratios of amphiboles) as well as the occurrence 

of titaniferous micas let me argue that the majority of the investigated samples are directly related to 

alkaline magmatism, associated with incompatible element enrichment of peridotite wall-rocks in the 

immediate vicinity of frozen conduits [see Wilkinson and Le’Maitre, 1987; Witt and Seck, 1989]. 

According to Huckenholz et al. [1992], amphiboles crystallized from basaltic magmas have a “convex-

up shaped” Eu and Sm anomaly in the C1-normalized REE pattern; and amphiboles in veins, small 

dikes or selvages have lower mg-values and overlap for Na, K, Ti with megacrysts. The REE C1-

normalized patterns of the analysed amphibole-bearing xenoliths (LREE enriched convex-upward; 

Figure C.5) resample that of vein amphiboles from ultramafic Alpine massifs and xenoliths, as 

compiled by Downes [2001], supporting the interpretation of a magmatic origin. 

 

Pargasites within sample MXZH66 (mg 0.8, 0.5-0.8 wt.% Cr2O3) show some similarities to 

amphiboles of secondary origin, which commonly occur interstitially in the olivine-orthopyroxene-

clinopyroxene-spinel matrix of peridotites (mg 0.82-0.94, >1 wt% Cr2O3; see Huckenholz et al., 

[1993]). MXZH66 might represent a sample from near a hornblendite vein; such veins are widely 

observed in ultramafic Alpine massifs [e.g., Lherz massif, French Pyrenees; McPherson et al., 1996; 

Woodland et al., 1996; Zanetti et al., 1996; Fabries et al., 2001]. 

 

Some wehrlitic samples containing Cr-bearing diopside and olivine (Fo 88) and showing cumulus 

textures are possibly related to alkaline metasomatism (by alkaline-carbonatitic melts) of the 

uppermost mantle (see below). Generally, samples similar to the analysed (meta-) cumulates, 
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pyroxenites and hornblendites are also reported from the North Hessian Depression, the Eifel, the 

Urach and the Hegau volcanic fields [e.g., Becker, 1977; Vinx and Jung, 1977; Mengel et al., 1991]. 

 

 

C.5.1.2 Megacrysts – high pressure precipitates or fragments of pegmatites or dikes ? 

 

According to Irving [1984] and Schulze [1987], basaltic megacrysts can be divided into two groups: 

Group A, including aluminian augite, olivine, kaersutitic amphibole, may have been crystallized from 

the host basalts or similar magmas; and Group B, including Ti-rich mica, apatite, ilmenite, is 

considered to represent (pegmatitic) xenocrysts, belonging originally to more evolved magmas 

(possibly related to the host) intruded to shallower depths prior to the host magma [Schulze, 1987]. 

Righter and Carmichael [1993] argued that large, unzoned, inclusion-free megacrysts cannot have 

grown from the basalt host during ascent, because that would require unreasonable large growth and 

diffusion rates. According to Righter and Carmichael [1993], the unzoned nature of many megacrysts 

indicate a slow crystallization in magma chambers or as pegmatites. The growth of 1-cm crystals may 

last thousands of years, which requires long-lived magma chambers. In such reservoirs with stable 

temperature-pressure conditions close to mineral liquidus, small crystals of a specified mineral may 

dissolve and large crystals grow by the process of textural coarsening [e.g., Higgins and Roberge, 

2003]. Arguments for a xenocryst origin of megacrysts are the fragmented or irregular edges in contact 

with the host basalt; some coarse xenocrysts show also fracturing [Righter and Carmichael, 1993]. 

Shape, composition and size indicate derivation from disaggregated gabbroic, pyroxenitic, wehrlitic 

dikes and pegmatites. Some coarse subhedral crystals could be real phenocrysts [Righter and 

Carmichael, 1993]. Furthermore, isotopic studies can be useful to clarify the relationship between 

megacrysts and the host rock [see Schulze, 1987]. 

 

Most of the olivine megacrysts from Mýtina show a narrow range in chemical composition of mineral 

cores (Fo 82 to 83; see Table C.VII). The core composition of megacrysts differs strongly from core 

analyses of the magnesium rich phenocrysts in the host rock (Fo 88 to 89; Table C.X). Towards the 

rim many megacrysts are more magnesian (Fo 85 to 86) indicating changing chemical conditions [see 

Kämpf et al., 1993], magmatic overprinting (diffusion), or further crystallization in the host magma. 

This rim composition of olivine megacrysts is similar to that of olivine crystals (both pheno- and 

xenocrysts) from the Železná Hůrka scoria (see Table C.XII). Generally, the existence of large melt 

inclusion can be interpreted as an effect of fast crystallization (skeletal growth) in a magma reservoir, 

but it cannot be excluded that this porosity is also an effect of magmatic resorption due to melt 

infiltration. The different core compositions of most phenocrysts and megacrysts from the Mýtina 

tephra let me argue, that they at least did not crystallize in one single magma chamber. Maybe the less 

magnesian megacrysts are related to shallower reservoirs. 
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Most single clinopyroxene megacrysts, sampled from the Mýtina tephra and the Železná Hůrka scoria, 

can be classified as aluminian augites (see Table C.VIII; Figure C.6). However, also large chromian 

diopside crystals occur in olivine-clinopyroxene-spinel aggregates (MXZH61, MXZH64). Narrow 

rims are always titanian diopsidic in composition, similar to Ti-rich diopside phenocrysts in the host 

rock. Aluminian augites are the most likely candidates for high-pressure phenocrysts [Schulze, 1987]. 

The equilibrium composition (with host melt) depends strongly on p-T conditions. For a primary 

origin of some clinopyroxene-megacrysts as phenocrysts argue the fact that they grew on smaller 

crystals (e.g., MXZH62: chromian augite xenocryst; EB2: olivine xenocryst). In the ternary Wo-En-Fs 

diagram (Figure C.6) aluminian augite megacrysts plot close the clinopyroxenes (chromian augites to 

diopsides) from wehrlitic samples and olivine-clinopyroxene cumulates. 

 

The chemical composition of amphibole megacrysts from the Mýtina tephra is similar to that of 

amphiboles in clinopyroxenites and hornblendites (Tables C.IX and C.III-C.V). All samples can be 

classified as titanian pargasites [Leake, 1978, 1997], however Al and Cr contents vary between 

samples. Ti-rich amphibole is a near liquidus phase in alkali basaltic systems [e.g., Allen et al., 1975] 

and could represent deep-seated phenocrysts. 

 

The coarse grain size of Ti-rich ferromagnesian micas (phlogopite), which are relatively uncommon as 

megacrysts in alkali basalts [according to Schulze; 1987], may indicate their origin as phenocrysts. 

 

 

C.5.1.3 Crustal rocks 

 

Sample XKZH1 could be a rare fragment of feldspar-rich meta-intrusive rocks noritic in composition. 

Similar rock types (charnockitic, noritic, gabbroic), which might be related to magmatic intrusions into 

the lower crust, were described as xenoliths from the Elbe Zone and the Česke středohoři Mts. by 

Opletal [1967], Kramer [1988], Opletal and Vrána [1989], and Kramer and Seifert, [2000]. However, 

the ages of these rocks and therefore the times of intrusion are unknown. Sample XKZH1 shows weak 

metamorphic layering, which constrains an older age and implies that the samples are not directly 

related to the Tertiary-Quaternary volcanic/magmatic episode. 

 

Upper crustal xenoliths (quartzites, phyllites, and mica schists) are most probably fragments of the 

uppermost kilometre(s) of the crust in the area around Mýtina. According to Richter and Stettner 

[1993] and Fiala and Vejnar [2004], the uppermost crust in the vicinity of Mýtina consists of an 

Upper Cambrian to Ordovician alternated stratification of quartzites and phyllites or mica schists 

(Figure C.7). Lapp and Weber [1992] described a similar metagreywacke-phyllite-unit (about 250 m 

thick) from a core drilled near Neualbenreuth (south of Mýtina). Assuming no thin-skinned tectonic 
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stacking and the eruption of the tephra from the Železná Hůrka vent, which is located within the 

Cambrian mica schist units [cb; see Bayerisches Geologisches Landesamt, 1998], the samples should 

not originate from the stratigraphical higher Frauenbach and Phycoden units. The REE pattern of 

XKZH60 (pronounced negative Eu anomaly; see Appendix C.iii) shows similarities to the “muscovite 

gneisses” of the Erzgebirge. The magmatic protoliths of these gneisses were probably derived from 

high-silica per-aluminous rhyolites [see Mingram et al., 2004]. 
 
 

 
 
Figure C.7 
Lithostratigraphical section of the uppermost crust in the vicinity of Neualbenreuth (southern Waldsassener 
Schiefergebirge) in comparison to the western Fichtelgebirge [from Richter and Stettner, 1993]. 
1 – shales and phyllites with silty layers; 2 – quartzites, quartzitic schists; 3 – alternated stratification 
quartzites/phyllites or mica schists; 4 – phyllite and mica schist; 5 – carbonate and calc-silicate intercalations; 6 – 
acid volcanics (tuffs, ignimbrites). 
MXZH6, MXZH65, and MXZH66 (Plates 4, 5) might be samples from acid meta-tuffs, which belong to the 
“Neualbenreuth layers” in cb1 [Richter and Stettner, 1993]. Zircon enriched samples (e.g., XKZH51, 58, 59, 61 
with Zr values >1000 ppm, see Appendix C.ii) might belong to zircon rich layers (placer like) in cb3. Richter 
and Stettner [1993] described zircon rich quartzite layers in the Frauenbach and the cb3 (cb5?) units. 
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C.5.2 Depth origin of xenoliths (geothermobarometry) 

 

Geobarometric estimations for lower crust and upper mantle samples were performed because they 

may report more or less the conditions close to their formation or metamorphic overprinting at the 

present depth level. The results of the geothermobarometric calculations for the different types of 

(ultra-) mafic nodules (cumulates, hornblendites and megacrysts) are shown in Figure C.8 

(amphiboles) and listed in Table C.XIV. No geothermobarometric calculations were carried out for 

upper crustal xenoliths in this study. 

Different mineral pairs within one sample record sometimes different pressure-temperature conditions, 

which may be related to the formation, cooling history, or to later overprinting of the mineral 

assemblage. Now, I try to interpret the p-T estimates calculated for different samples and mineral pairs 

from the Mýtina ultramafic xenolith suite (Table C.XIV). However, this give only some constraints on 

the true pressure-temperature conditions, because the geothermobarometers based on inter-crystalline 

exchange of elements also show complex dependences on element concentrations. 

 

Magma temperature (olivine-spinel and phlogopite-glass thermometry) 

The olivine-spinel thermometers are strongly sensitive to sub-solidus reactions, however from spinel 

inclusion in olivine phenocrysts it should be possible to estimate the temperature during crystallization 

of the mineral pair. Values of about 1100°C and 1170°C can be calculated for spinel inclusions within 

olivine phenocrysts (samples EB5-9, MXZH17) using the geothermometric formulation of Ballhaus et 

all. [1991] and O’Neill and Wall [1987], respectively. Because of the fast undercooling during ascent 

and eruption, I think that sub-solidus reactions did not take place and these values can be assumed to 

be the temperature of the magma (liquidus). A similar temperature range (1130 to 1150°C) was 

estimated using the phlogopite-glass geothermometer of Righter and Carmichael [1996] for samples 

MXZH24 and MXZH69. A temperature of 1140°C can be estimated for the combination MXZH21 

(phlogopite megacryst) and My1 (nephelinite). 

 

Hbl-peridotite (p-T; MXZH66) 

For the amphibole-bearing peridotite xenolith MXZH66 two pressure (depth) estimates were obtained. 

Using the Al/Ti diagram proposed by Ernst and Liu [1998] a pressure of 8 to 9 kbar (30 km depth) and 

a temperature of 960°C is indicated (Figure C.8a). Using the formulation of Huckenholz et al. [1993], 

the pressure estimate is about 15 kbar (50 km). The discrepancy in pressure estimates might be related 

to disequilibrium between the mineral phases (post-entrainment modification) or the fact that some 

assumptions of one of the geobarometers are not fulfilled. Maybe the elevated Cr (and Fe3+?) content 

of the amphibole makes the sample not suitable to plot it in the Al-Ti diagram, or at least enforce some 

corrections before plotting. Because the clinopyroxene barometer of Nimis and Ulmer [1998] also 

gives values around 15 kbar (for a olivine-spinel temperature of 1060°C), I prefer this pressure 
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estimate. Temperatures calculated with the olivine-spinel thermometers of Ballhaus et all. [1991] and 

O’Neill and Wall [1987] are 950°C and 1060°C, respectively. 

 

Hbl-clinopyroxenites and cpx-hornblendites, amphibole megacrysts (p-T) 

The pressure-temperature conditions of formation of the amphibole-bearing samples 

(clinopyroxenites, hornblendites), including the amphibole megacrysts were estimated using the Al/Ti 

plot of Ernst and Liu [1998]. The polycrystalline samples plot almost all in a narrow p-T range (see 

Figure C.8a) of 6 to 8 kbar (22 to 29 km) and 900 to 970°C, only the apatite-bearing sample MXZH5 

as well as sample MXZH66 show higher pressures of up to 10 kbar (about 35 km). The amphibole 

megacrysts plot between 7 and 10 kbar (25 to 35 km) at a very narrow temperature range around 

970°C (Figure C.8b). 

 
 

 
 
Figure C.8 
Results from the Al-Ti amphibole thermobarometry [Ernst and Liu, 1998] (a) for amphibole-bearing xenoliths 
and (b) megacrysts. 
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Pressures calculated with the formulation of Huckenholz et al. [1993] give slightly higher pressure 

estimates between 5/8 and 12 kbar (22/29 to 40 km) for the clinopyroxene-amphibole-bearing 

samples. The differences between pressure estimates from both methods are within the given 

uncertainties. A comparison with experimental partitioning data for Ti, Ho, Lu, Sr between amphibole 

and basanitic melt from Adam and Green [1994] indicates the crystallization of amphibole megacryst 

MXZH15 at pressures above 1 GPa, assuming that the nephelinite sample My1 represents also the 

melt composition in the magma reservoir. 

 

The relatively high temperatures obtained for the amphibole-bearing samples, possibly originating 

from near the crust-mantle boundary, are most probably crystallization (magmatic) temperatures. 

These values are valid for small dikes or intrusion at the time of their formation and do not necessarily 

represent temperatures valid for the crust-mantle transition and lower crust on the regional scale. If the 

amphibole megacrysts would be high-pressure precipitates of the host melt, then the p-T estimates 

provide constraints for the depth and temperatures of the palaeo-magma reservoirs near the crust-

mantle boundary. The rounding of most amphibole megacrysts might be an effect of the upward 

transport (decompression) in a hotter and reactive melt. 

 

Wehrlites, olivine-clinopyroxene aggregates and clinopyroxene-megacrysts (p-T) 

For most wehrlitic samples (MXZH1, -2, -4), olivine-clinopyroxene aggregates (MXZH18, -64), and 

clinopyroxene megacrysts and phenocrysts (groundmass crystal in MXZH24), depths of origin of 29 

to 38 km (8 to 11 kbar) could be estimated using the olivine-clinopyroxene barometer of Köhler and 

Brey [1990] and the clinopyroxene barometer of Nimis and Ulmer [1998]. However, both barometers 

are strongly temperature sensitive. Assuming a temperature of 1150°C, the estimates from both 

calibrations are more or less the same. This high temperature value (near liquidus) indicates that most 

samples are somehow related to the host magma or at least to the same Late Cainozoic magmatic 

activity. A comparison with experimental partitioning data for Ti and Ho between clinopyroxene and 

basanitic melt from Adam and Green [1994] indicates the crystallization of amphibole megacryst 

MXZH16 at pressures above 1 GPa, assuming that the nephelinite sample My1 represents also the 

melt composition in the magma reservoir. 

 

Spinel lherzolites 

The commonly applied geothermobarometers for spinel lherzolitic samples were tested on samples 

Go01-1 and Zinst-1, which are included in this study for comparison reasons.  

The harzburgitic sample Go01-1 from the Elbe Zone was equilibrated at a pressure of about 19 kbar 

(more than 60 km depth), according to the formulation of Köhler and Brey [1990]. Temperature values 

(olivine-spinel, two-pyroxene) range from 920 to 980°C, depending on the formulation used. For the 

pressure calculation the temperature estimate from the two-pyroxene thermometer of Brey and Köhler 
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[1990] was used. The temperature estimate is closer to values reported from the eastern Erzgebirge 

than to values from the Elbe Zone [Kramer and Seifert, 2000]; the sample locality is close to the 

boundary of both areas. 

A pressure of 21 kbar (approximately 70 km depth) was estimated for the sample from Zinst, NE-

Bavaria. Calculated temperatures are in the range of 1000 to 1100°C, close to estimates from nearby 

localities (see references in section A.3.3, Table A.1). 

 

Noritic xenolith (XKZH1) 

For the noritic xenolith, depth and temperature estimation was possible using the Al/Ti-in-amphibole 

plot of Ernst and Liu [1998]. The sample plots at about 6 kbar (about 22 km) and 800°C (see Figure 

C.8a). An identical temperature (800°C) could be obtained using the Ca-in-orthopyroxene 

thermometer of Brey and Köhler [1990] and rim composition of the orthopyroxene close to the 

analysed amphibole. The core composition gives values of 860°C. This difference between rim and 

core might be related to cooling (after intrusion or during tectonic uplift) or a post-intrusion 

overprinting at lower temperatures. Temperatures between 700-900°C were also reported by Mengel 

[1990] for mafic and noritic granulites from the North Hessian Depression, which are interpreted as 

high-grade equivalents of subduction-related volcanics and cumulates. 

Higher temperature values (970°C/1125°C) were obtained using analyses from areas of 

orthopyroxene-clinopyroxene intergrowth using two different formulations of Brey and Köhler [1990]. 

Because both temperature values differ strongly, the analysed minerals might not be in equilibrium. 

This may be an effect of magmatic overprinting (heating) of the sample in the host magma, or may be 

related to an earlier metasomatic event. 

 

 

C.5.3 p-T data and regional geotherms 

 

The p-T estimates for xenoliths can generally provide constraints on the recent thermal structure of the 

deep crust and uppermost mantle. As shown in Figure C.9, most analysed samples plot close to the 

alkaline province geotherm [Jones et al., 1983], that means above proposed regional geotherms 

[Čermák, 1994] derived from surface heat-flow studies. 

Moho temperatures, calculated from regional surface heat flow data differs from 450°C up to 750°C 

[see Förster et al., 2003]. The problem in extrapolating the regional surface heat-flow data to depth is 

the strong influence of high-radioactive, heat-producing granitic rocks in the upper crust. Therefore, it 

is difficult to estimate the regional Moho heat-flow and temperatures [Förster and Förster, 2000]. 

However, from the p-T xenolith data, which is so far available for the area under investigation, it is 

impossible to construct a regional xenolith geotherm to get better constraints on the recent or at least 

Late Cainozoic thermal structure of the lower crust and upper mantle. 
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Figure C.9 
Results of p-T calculations plotted into a diagram of Green and Falloon [1998]. The alkaline province geotherm 
[Jones et al., 1983], regional geotherms (BM1 -Bohemian Massif minimum, KHM - Krušne Hory Mts., CT - 
Cretaceous Basin; Čermák, 1994), and one KTB-value [Clauser et al., 1997] are included. The p-T field for 
granulite-facies metabasite ejecta from Engeln (Eifel, Germany) is shown for comparison with sample XKZH1 
[adopted from Jones et al., 1983; data from Okrusch et al., 1979]. p-T estimates from the Rhön and the Kozákov 
are adopted from Franz et al. [1997] and Medaris et al. [1997], respectively. 
Wilson and Downes [1992] described the frequently occurring/widespread melilite nephelinites as most likely 
candidates for primary melts from the asthenosphere/basal lithosphere. According to Wilson et al. [1995], melt 
coexisting with lherzolitic rocks at T >1025°C and pressures in the garnet stability field is in composition similar 
to ol-melilitite, whereas at lower pressures in the spinel stability field, silicate melt resamples ol-nephelinites. 
 
 

C.6 Petrological indications for processes at the crust-mantle boundary 
 

The p-T estimates indicate a depth origin of ultramafic nodules within the lower crust and uppermost 

mantle (approximately 20 to 50 km, with a maximum at 30 to 35 km). No orthopyroxene-bearing 

spinel-lherzolitic xenoliths could be found in the Quaternary volcanics; such xenoliths are thought to 

represent normal lithospheric upper mantle beneath Central Europe. The results indicate that possibly 
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large parts of the uppermost mantle beneath NW-Bohemia might be affected by mantle metasomatism 

around 0.3 Ma (due to infiltration of alkaline melts), which resulted in a mantle composition 

dominated by olivine and clinopyroxene (±amphibole, ±phlogopite). 

The amphibole-rich nodules from about 20 to 35/40 km depth could represent fragments of magmatic 

dikes within the uppermost mantle and lower crust, which may be a more widespread phenomenon in 

the study area. According to Barclay and Carmichael [2004], isobaric crystallization of amphibole 

(hornblende) in a subduction related hornblende-basaltic melt near the base of the crust can influence 

the magma’s capacity to flow (viscosity). And once amphibole crystallizes, the magma’s ascent might 

be retarded by its high crystallinity. As Barclay and Carmichael [2004] pointed out, great proportions 

of basaltic bulk composition can crystallize as amphibole (as can be also seen in the similar chemical 

compositions of the pargasites and the nephelinitic host rock from Mýtina), and therefore most magma 

intrusions may stop in the lowermost crust due to cooling (freezing) by the surrounding “cold” crust. 

Maybe the uppermost mantle and lowermost crust beneath the western Eger Rift experienced many 

intrusions of small amounts of alkaline melt during the late Tertiary and Quaternary; only very few of 

these melts reached the surface.  
 

The content and distribution of REEs in the nephelinitic host rock of the Mýtina tephra and from the 

Železná Hůrka scoria cone (Figure C.5) can be interpreted in terms of low percentage (approximately 

1 %) of partial melting in a garnet-bearing source [according to Rollinson, 1993]. However, 1 % 

partial melt may be the amount of melt in the source region (90 to 100km depth?); more than 1 % 

could be present in the ponding region in the uppermost mantle (25 to 50 km depth), where it may 

form magma reservoirs. High “porosity”, which can be observed in some ultramafic nodules, may 

indicate that this samples originate as “wall rock” of magma chambers, as discussed by Tait [1988] or 

may represent itself parts of a sponge-like magma reservoir. 

 
 
Origin of CO2 – related to alkaline-carbonatitic mantle metasomatism ? 

 
According to Green and Falloon [1998], olivine-nephelinitic to olivine-melilitic melts originate at 

depths of about 90 to 100 km in a garnet-bearing source region (asthenosphere). Garnet remains in the 

residuum (might be inferred from the REE pattern). The ascending melts crystallize amphibole and 

phlogopite. This modal metasomatism of garnet/spinel lherzolite might leave carbonatitic residual 

melts, which react with enstatite and spinel to form olivine + (diopside + jadeite) + chromite + CO2. 

The metasomatic lithosphere becomes enriched in clinopyroxene, illustrated by the formation of 

wehrlites (olivine + clinopyroxene + apatite + chromite) [see also Yaxley et al., 1991, Rudnick et al., 

1993]. The CO2 is released and migrates to the surface. This might be a possible scenario for the study 

area as well. However, up to now there are no further indications for the involvement of carbonatitic 

melts, as for instance carbonate inclusions in olivine and clinopyroxene or carbonate globules in 

silicate glass as observed by Seifert and Thomas [1995] in samples from the Elbe Zone, Germany. 
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D Synthesis 
 

In this chapter, I aim at a joint interpretation of the results obtained in this study by seismic and 

petrological investigations, and to discuss these results together with results from different previous 

geoscientific studies in the area (including seismicity, gas-geochemistry, and seismic studies). Finally, 

a process-orientated model of the system crust-uppermost mantle beneath the earthquake swarm 

region and intraplate CO2 degassing field is presented. 

 

 

D.1 A seismic and petrologic model of the crust-mantle transition and 

the origin of the “6 s phase” 

 

To relate results from seismic studies to petrology, it is necessary to compare seismic velocity-depth 

profiles with velocity values of regionally occurring rocks, which can be measured on hand specimen 

in the laboratory or calculated from the modal (mineral) composition of rocks [e.g., O’Reilly et al., 

1990; James et al., 2004]. Unfortunately, the xenoliths from Mýtina are too small to measure seismic 

velocities directly. So, the elastic properties can only be estimated comparing the xenoliths to 

published data of rock samples of similar mineralogy or by calculation from the modal composition. 

Pressure estimates on xenoliths and temperatures from geotherms can be used to correct the elastic 

parameters (seismic velocities) for conditions in their primary depth in the lower crust or uppermost 

mantle (at the crust-mantle boundary). In Figure D.1 the results from the receiver function study and 

the petrologic and geobarometric studies on xenoliths from the Mýtina tephra are combined. 

 

 

D.1.1 Relating seismic velocities to petrology 

 

D.1.1.1 Upper and middle crust 

 
Regional P-wave seismic velocity models published in literature (see Figure B.9) let me argue that 

most of the upper and middle crust is composed of meta-sedimentary, granitic, and granulitic rocks 

comparable to rocks at the surface in the western and northern Bohemian Massif. This concurs with 

the petrophysical interpretation of the MVE90 and GRANU95 seismic profiles by Mueller [1995], 

DEKORP and Orogenic Processes Working Groups [1999], and Krawczyk et al. [2000]. Further 

arguments come from the KTB deep drill hole where similar rocks were cored down to nine 

kilometres [Emmermann and Lauterjung, 1997], which is one third of the crustal thickness in the 

region. Seismic velocities of typical crustal rocks are compiled by Christensen and Money [1995] and 

Rudnick and Fountain [1995].  
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D.1.1.2 Lower crust and uppermost mantle 

 
Laboratory elastic parameter (seismic velocity) studies for lower crust and upper mantle rocks are rare, 

especially for hydrous mantle minerals. Previous compilations of elastic parameters and their 

dependence on pressure and temperature conditions valid for the crust-mantle boundary were 

published, e.g., by Christensen [1989] and Mechie et al. [1994b]. More recently, compilations were 

published by Shaocheng Ji et al. [2002] and Hacker and Abers [2004]. However, some of the 

necessary mineral elastic parameters were still calculated from similar minerals instead of directly 

measured [see Hacker and Abers, 2004]. To get an idea of probable seismic velocities in the upper 

mantle of the study area, seismic velocities of hypothetic rocks similar to the analysed ultramafic 

nodules (Table D.I) were calculated using the Excel-workbook provided by Hacker and Abers [2004]. 

The results using this workbook are similar to the velocity calculations using the elastic parameter 

values given by Mechie et al. [1994b] (see Appendix D.i). 

 

At pressure-temperature conditions at the crust-mantle boundary (1.0 GPa, 650°C; extrapolation of the 

CT-geotherm published by Čermák [1994]) clinopyroxenites (vs 4.2 km/s, vp 7.5 km/s) and 

hornblendites (vs 4 km/s, vp 7.1 km/s) have 5 to 12 % lower seismic velocities than spinel lherzolites 

(vs 4.6 km/s, vp 8.1 km/s). Wehrlites have 2 to 3 % lower seismic velocities (vs 4.5 km/s, vp 7.9 km/s). 

Assuming lower temperatures (550°C), seismic velocities would increase by 0.05 km/s. At 2.0 GPa 

and 1000°C (extrapolation of the CT-geotherm published by Čermák [1994]) seismic velocities are 

reduced by about 0.1 km/s in comparison to the values at 1.0 GPa and 650°C. For the noritic sample 

seismic velocities were calculated at 0.6 GPa and 600°C (vs 3.8 km/s, vp 6.8 km/s). 

 

 

D.1.2 The origin of the “6 s phase” 

 

Considering all available information, it is possible to discuss the origin of the observed “6 s phase” in 

the receiver function study. As it is evident from receiver function modelling (Figures B.15, D.1) the 

origin of the “6 s phase” could be in the crust or mantle or both. As it is already mentioned above, no 

further move-out with epicentral distance can be observed; indicating that this converted phase might 

be of upper mantle origin. The independent observation of the converter at the same location at 

different stations (coherent stacking at upper mantle depths) may also be an argument for this 

interpretation. However, from the receiver functions alone I cannot favour model b or model e (Figure 

B.15b, e) at the moment. Both might be geological reasonable and fit the observed data very well. 
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D.1.2.1 Arguments for an upper mantle origin of the “6 s phase” 

 

Further indications for local seismic discontinuities in the uppermost mantle beneath the 

Vogtland/NW-Bohemia region came from reflection seismic profiling. Tomek et al. [1997] detected 

three mantle reflectors (MR) at depths of 35 (MR1), 42 (MR2, box P in Figure B.14a), and 56 km 

(MR3, box L in Figure B.14a) along the 9HR seismic profile (see Figure A.5). Reflector M1 at about 

32 km depth could also be interpreted to be of subcrustal origin. Unfortunately, it is not possible to 

interpret polarities of these reflections [Tomek, personal communication]. Reflection MR3 argues for a 

local sharp discontinuity in the uppermost mantle instead of the gradient zone modelled in Figure 

B.15e. In case of a very local discontinuity no multiple converted phases could be observed. 

 

Subcrustal lithospheric seismic discontinuities were previously found worldwide in a wide variety of 

tectonic settings [cf., Hales, 1969; Ginzburg et al., 1979; Keller et al., 1994; Bostock, 1999; Ascencio 

et al., 2003; Rost and Williams, 2003]. Discussed causes of such discontinuities include spinel-to-

garnet transition, compositional differences due to differentiation processes or the presence of partial 

melt, anisotropic layers with preferred orientation of olivine crystals, and relic subduction zone 

eclogitized oceanic crust. 

 

Assuming that model e explains the ”6 s phase”, the piercing points of the analysed rays at 50 km 

depth were plotted (Figures B.14a, 15e) together with the results of the gas mapping of Weinlich et al. 

[1999] (see Figure A.4a). Interpreting the “6 s phase” as being of uppermost mantle origin, the 

distribution of red points in Figure B.14a marks more or less the areas with relatively reduced seismic 

velocities in the uppermost mantle above a converter. If the “6 s phase” is associated with upper 

mantle structure the average velocity reduction in the uppermost mantle above the converter might be 

up to 8 % (vp/vs = 1.79) or 5 % for vp and 11.5 % for vs (vp/vs = 1.92), respectively, relative to a 

“normal” upper mantle P-wave velocity of 8.0 km/s (vp/vs = 1.79). This could indicate the presence of 

3 to 5 % melt or fluids in the uppermost mantle [according to Faul et al., 1994]. Even less melt might 

be present using the values for velocity reduction obtained by Hammond and Humphreys [2000]. 

As discussed by Glahn et al. [1992], water-bearing minerals like phlogopite and amphibole can lower 

the seismic velocities in the uppermost mantle significantly. Up to now, orthopyroxene-bearing 

xenoliths could not be found in the Quaternary volcanics of the investigated area. The most common 

mantle xenoliths are wehrlites and clinopyroxenites characterizing the uppermost mantle beneath the 

study area as metasomatic. Some of them contain also significant amounts of amphibole. These rock 

types can have more than 5 % lower seismic velocities than normal upper mantle rocks lherzolitic-

harzburgitic in composition (see Table D.I). This could explain at least some of the assumed velocity 

reduction. The higher seismic velocities beneath the discontinuity might represent “normal” upper 

mantle rocks or slightly depleted rocks (harzburgites/dunites) in the source region of alkaline magmas. 
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Figure D.1 
Model of the Pleistocene lithosphere beneath the Železná Hůrka area. Left: Proposed present-day shear wave 
velocity model beneath NW-Bohemia for the area of the “6 s phase” (see Figure B.14). Also shown are the 
ranges of shear wave velocities for different (ultra-) mafic rock types at different temperature-pressure 
conditions. Temperatures of about 650°C near the Moho (1 GPa) and 1000°C at 2 GPa were assumed, according 
to the extrapolation of the CT-geotherm published by Čermák [1994]. For the calculation of the seismic 
velocities of rocks the Excel-workbook of Hacker and Abers [2004] was used (see Table D.I). 
It should be pointed out, that it is not possible to derive true velocity-depth profiles using receiver functions 
alone, however the velocity difference across seismic discontinuities is more or less well resolved. Therefore, the 
comparison of the velocity-depth profile and the shear wave velocities calculated for different rock types should 
not be over-interpreted. 
Right: Petrological crustal section derived from the xenolith study and local surface geology. 
 

 

The assumption on the presence of partial melts in the uppermost mantle above the converter concur 

with the observed isotope signatures of the CO2-dominated gas exhalations in the western Eger Rift 

[Weinlich et al., 1999]. The gas escape centres with helium isotope signatures of the subcontinental 

lithospheric mantle (3He/4He ratios up to 5.9 Ra in the Cheb Basin) [Bräuer et al., 2004] as well as the 

position of the Quaternary scoria cones of Komorní Hůrka and Železná Hůrka overlap with the 

position of the local converter/reflector in the depth of approximately 50 to 60 km (Figures A.5, B.14) 

[see also Tomek et al., 1997]. 

 

The observed seismic converter/reflector at about 50 to 60 km depth might also be explained as related 

to the spinel lherzolite-garnet lherzolite transition as discussed by O’Reilly and Griffin [1985] for the 

uppermost mantle of southeastern Australia. Further constraints for a sharp seismic discontinuity in 

that depth range came from a study of Webb and Wood [1986], who showed that the transition might 

occur over a pressure interval of only about 2 kbar (6 km). However, up to now no garnet-bearing 

upper mantle xenoliths are reported from the Eger Rift area and the spinel stability field might be 
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expanded down to about 90 km [Franz et al., 1997; Medaris et al., 1999]. Therefore, I favour the 

interpretation that the seismic discontinuity is related to the base of a metasomatic uppermost mantle 

containing a few percent of melts. 

 

As mentioned above, seismic discontinuities in the uppermost mantle could be related to the boundary 

between two layers with differently orientated seismic anisotropy. Seismic anisotropy in the upper 

mantle is indicated by SKS and P residua studies [e.g., Bormann et al., 1996; Plenefisch et al., 2001; 

Babuška and Plomerová, 2001]. But the observation of the „6 s phase“ does not show clear 

dependence on the back-azimuth of analysed events. Also no coherent signals in the T-components 

could be identified in the present dataset. Such signals would indicate anisotropic seismic properties in 

the studied depth interval. Possibly, the existence of anisotropic layers could be proved or disproved 

with a more extended database [see also Christensen et al., 2001]. 

 

Finally, the observed conversions might be caused by eclogites, representing material possibly 

subducted during the Variscan convergence. But up to now no eclogite xenoliths could be identified, 

but the possibility of their existence cannot be ruled out definitively. Further detailed studies on the 

lateral extension and possible depth variations of the converter/reflector might help to solve this 

question. 

 

 

D.1.2.2 Arguments for a crustal origin of the “6 s phase” 

 

There are also arguments for a possible discontinuity at the base of the upper crust (model in Figure 

B.15b). The nature of the seismicity in the investigated area indicates a fluid-rich seismogenic crust. 

The earthquake swarms are commonly interpreted as fluid-triggered seismicity [Špičak et al., 1999; 

Dahm et al., 2000; Špičak and Horálek, 2001; Horálek et al., 2002; Plenefisch et al., 2003; Vavryčuk, 

2002; Fischer and Horálek, 2003]. Weise et al. [2001] calculated the CO2 volume of crustal origin, 

released by seismically induced micro-fracturing in December 1994 to be between 9.3 x 1010 and 0.1 x 

1010 l. Fluid traps in the seismogenic upper crust are of local dimension and possibly spot-like 

distributed [Behr et al., 1994; Boušková et al., 2003; Parotidis et al., 2003]. Furthermore, the rareness 

of CO2 exhalations directly in the epicentral area of Nový Kostel could be explained with permeability 

barriers, capping the hydraulic system. Mantle-derived fluids may be trapped in the crustal segment 

below such a barrier [Bräuer et al., 2003]. 

 

Because of geochemical evidences and indications from reflection seismic profiling, a combination of 

both velocity models b and e with half the amplitudes of each anomalous layer might also be plausible 

(Figures B.15f, D.1). 
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D.2  The structure of the crust and the subcrustal mantle beneath  

the western Eger (Ohře) Rift – towards a process orientated model 

 

The observed anomaly at the Moho level and the local indications for a seismic converter/reflector at 

about 50 to 60 km depth concur with the distribution of the CO2 emanation centres and the Quaternary 

volcanoes at the surface, as well as with the main swarm-earthquake activity in the upper crust of the 

Vogtland/NW-Bohemia area. Therefore, I believe that all these observations are somehow interrelated 

by an active zone of mantle melting and magmatic underplating, associated with recent extensional 

tectonics, which may be illustrated by Figure D.2. 

 

The helium isotopic signature of several CO2 vents at the surface reaches up to 5.9 Ra. This is an 

evidence for the origin of the CO2-dominated gas phase from subcontinental lithospheric mantle 

(SCLM) according to Gautheron and Moreira [2002] and Bräuer et al. [2004]. CO2 and other volatile 

components (e.g. Ar, H2O, N2, Ne) are included in the partial melting process of the upper mantle (at 

approximately 90 to 100 km depth). There need to be no difference between transport of the CO2 (and 

other volatiles) and the magma transport in the upper mantle. Weinlich et al. [1999] evaluated the 

composition of the magmas in the uppermost mantle of the working area and calculated the 

magmatically dissolved CO2 portion. Results of thermobarometric studies on melt and carbon dioxide 

inclusions in Saxon Tertiary alkalibasaltic volcanics and peridotite xenoliths [Thomas, 1992] argues, 

that the formation of a CO2-dominated gas phase (the separation of CO2 from the melt) starts in the 

depth range of 30 to 21 km. Further studies on fluid inclusions in upper mantle derived rocks indicate 

that a free gas phase can exist at least up to 1.2 to 1.4 kbar and maybe down to 70 km [cf., Pasteris, 

1987; Andersen and Neumann, 2001]. So I conclude, CO2 with SCLM-signature at surface is directly 

linked to magmatic processes and the melt reservoir(s) in the uppermost mantle, or as discussed above 

to metasomatic processes in the uppermost mantle (also related to alkaline magmatism). 

 

The structural (seismic) and petrological (xenoliths) results of this study in combination with the 

geochemical and isotope evidence from previous investigations enable to find a link for mantle-crust 

interaction processes at different depths (Figure D.2). From bottom to top I try to relate a number of 

features to presently active magmatic underplating processes overprinting the Cainozoic Eger Rift 

environment. 

 

Asthenospheric up-welling beneath the western Eger Rift area is indicated by different studies 

[Rajkes and Bonjer, 1983; Faber et al., 1986; Plomerová and Babuška, 1988; Plešinger et al., 1994; 

Passier and Snieder; 1996; Plomerová et al., 1998; Babuška and Plomerová, 2001]. An isolated 

subcrustal seismic converter/reflector exists at a depth of approximately 50 to 60 km [“6 s phase”, 

this study; Tomek et al., 1997], which can be interpreted as the base of a zone of a highly metasomatic 
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mantle (containing wehrlites, clinopyroxenites, amphibole-peridotites) infiltrated by melts 

(magma/fluid reservoirs). Besides that, the position of a local scale Moho updoming from about 31 in 

the surroundings to 27 km in the centre (NNW-SSE extension of 40 km) overlaps with a presently 

active CO2 mantle-degassing field showing clear upper mantle derived helium portions [Weinlich et 

al., 1999, 2003; Geissler et al., 2004a]. Decreased sub-Moho P-wave velocities of 7.6 to 7.7 km/s 

[Giese, 1976; Hemmann, 2002; Hemmann et al., 2003] together with local observations of weak or 

absent Moho conversions [this study] point to a complex transition zone rather than a sharp velocity 

contrast at the crust-mantle boundary. Thermal and magmatic overprinting of the crust-mantle 

boundary in this region with small intrusions into the lower crust might cause a locally complex and 

broad Moho transition zone. As it is assumed by different authors [e.g., McKenzie, 1984; Furlong and 

Fountain, 1986; Mengel and Kern, 1991], the crust-mantle boundary acts as a barrier for ascending 

mafic magmas (ponding region). I suppose, the observed seismic Moho beneath the region is a 

relatively young feature. Increased reflectivity in the lower crust northeast of the KTB and beneath 

the Vogtland area [Trappe and Wever, 1990; Behr et al., 1994; Bleibinhaus et al., 2003] may be 

interpreted as low angle shear zones partly filled with fluids and/or small magmatic intrusions 

(hornblendite and clinopyroxenite sills/dikes) or partial melting [cf., Matthews, 1986; Wever and 

Meissner, 1987; Vanderhaege and Teyssier, 1997]. A decreased thickness of seismogenic (brittle) 

upper crust and repeated occurrence of earthquake swarms are observed above the Moho updoming 

and the local converters in the subcrustal mantle [Horálek et al., 2000b, this study], which can be 

interpreted as rheological effects related to CO2-dominated fluids. “Secondary phases” are observed in 

some local NW-Bohemia seismograms [Boušková et al., 2003], which may originate at short distances 

from the hypocentres and are possibly caused by spot-like low velocity zones at the base of the upper 

crust filled with fluids. 

 

The compilation of all results of previous and this studies indicates a systematic mantle/crust coupling 

maybe by the emplacement of mafic magmas near the base of the continental crust beneath the 

western Eger Rift. From bottom to top the following sub-processes can be distinguished (Figure D.2): 

 

(1) release of CO2-dominated fluid/magma from isolated crystallizing melt-reservoirs and/or 

metasomatic reactions in the depth range of 60 to 30 km; (2) active Moho updoming from about 31 to 

27 km caused by thinning of the ductile lower crust at low angle shear zones as a consequence of 

magma/fluid/heat transport; (3) intrusion of alkaline melts into the lower crust forming dikes and sills 

(hornblendites, clinopyroxenites); (4) separation of CO2 from such melts at 29 to 21 km depths and 

channel-like CO2 transport through the crust; (5) occurrence of fluid triggered seismicity (earthquake 

swarms) in the depth range of 15 to 6 km which is caused by high pore fluid pressure in local captured 

upper crustal environment; (6) permeability of the upper crust beneath the area under investigation 

enable high permanent CO2 transport through the upper crust. 
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This process is known under the term “magmatic underplating” in literature [Furlong and Fountain, 

1986; Griffin and O’Reilly, 1987; Cox, 1993]. Geological, geophysical, and geochemical evidence 

suggest that magmatic underplating in extensional tectonic regimes is a first order process in the 

formation, growth, and modification of the oceanic and continental crust [cf., Griffin and O’Reilly, 

1987; O´Nions and Oxburgh, 1988; Jarchow et al., 1993; Hansteen et al., 1998; Grevemeyer and 

Flueh, 2000; Sachs and Hansteen, 2000]. Seismic detecting of active magmatic underplating is clearly 

illustrated by the mid-ocean ridge magma additions [e.g., Detrick et al., 1987; Garmany, 1989; Caress 

et al., 1995]. Examples from the continental crust are rare in the literature [Jarchow et al., 1993]. 

 

 

 
Figure D.2 
Cartoon illustrating the asthenosphere-lithosphere interaction in the Vogtland/NW-Bohemia region. 
The results of former studies [Trappe and Wever, 1990; Tomek et al., 1997; Vrána et al., 1997;Babuška and 
Plomerová, 2001; Weinlich et al., 1999, 2003; Horálek et al., 2000; Bräuer et al., 2003, 2004] and the seismic 
and petrological results of this study were compiled. Black channels mark uprising CO2 dissolved in melts; grey 
channels mark the CO2/fluid transport through crust. 
Observed converted phases at 6 seconds delay time might be caused by a thin low-velocity layer at the base of 
the seismogenic zone or at the base of a zone in the upper mantle with reduced seismic velocities. Reduced delay 
times of weak or lacking Moho conversions beneath the western Eger Rift points to overprinting of the crust-
mantle boundary by magmatic and tectonic processes. Increased reflectivity within the lower crust and reduced 
thickness of the brittle upper crust possibly indicate that the discussed processes also affect the lower crust. Most 
of the seismic swarm activity is concentrated under the Vogtland area, whereas very little activity was detected 
in the other high CO2 discharge zone in the Slavkovský Les area. This could be caused by the local crustal 
geology (Vogtland: interbedding of metasediments and metabasites / permeability barriers in seismogenic zones 
[Bräuer et al., 2003]; Slavkovský Les: block of metabasites + granites) or differences in the local stress field. 
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E Conclusions and open questions 
 

The detailed mapping of the crust-mantle boundary in the western Eger Rift was done using Ps 

receiver functions with a higher lateral resolution than it is possible by refraction seismic studies. The 

lithospheric structural features observed in this study are of local dimension. Only due to a dense 

spacing of seismic stations and sufficiently long recording times of medium- to broadband stations it 

was possible to resolve them. Crustal and Moho arrivals could also be observed studying the data from 

the permanent triggered short-period networks in NW-Bohemia, but it was not possible to invert these 

data for Moho depth and vp/vs ratios due to missing crustal multiples. 

The cause of some low average crustal vp/vs ratios (1.63 to 1.67) in the study area remains unsolved. 

The interpretation of vp/vs ratios needs further effort, the application of laboratory measurements to in-

situ conditions, especially. 

 

Using teleseismic receiver functions a local ”6 s phases” was detected underneath the area of CO2 

emanations and Quaternary volcanism, which could be interpreted as caused by a converter at about 

50 to 60 km depth and/or a low velocity zone in the middle crust. Previously, a reflector was detected 

by reflection seismic studies at 55 km depth [Tomek et al., 1997]. New wide-angle seismic data also 

show a local reflector at this depth range [Hrubcova, personal communication]. More seismic data, 

detailed analysis, as well as more petro- and mineral-physical data are needed to clarify the extend and 

the nature of this probable local seismic upper mantle discontinuity. 

New, more detailed results can be obtained from running active and passive seismic investigations in 

the area. The huge data set of the BOHEMA project 2000-2003 (including receiver function, 

tomography and anisotropy studies) is already under investigation [Babuška et al., 2003]. Further 

detailed velocity information at least for the crust can be expected from wide-angle seismic 

experiments, which were carried out recently, namely CELEBRATION-2000 and SUDETES-2003 

[Guterch et al., 2003]. A synopsis of the results from passive seismic investigations, wide-angle 

seismic experiments, and the re-processing of the deep-seismic profile 9HR would be very useful to 

improve the location and identification of velocity contrasts of the seismic discontinuities. 

The existence of a mantle finger like proposed under the French Massif Central and the Eifel, 

Germany, could not be proved or denied in this study. However, the apparent deepening of the ‘410’ 

beneath the study area might indicate for the presence of lower seismic velocities in the upper mantle 

than in the IASP91 reference model. 

 

The xenolith study showed that most of the analysed samples are cumulates of alkaline melts or 

fragments of a metasomatic upper mantle; no orthopyroxene-bearing spinel-lherzolitic xenoliths were 

found in the Quaternary volcanics up to now. Geothermobarometric estimates for most samples 

indicate a depth of origin of about 25 to 40 km. This depth range might be the intrusion level for the 
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alkaline melts in the past and also presently, since there are still exhalations of gases with upper 

mantle isotope signatures (C, He, N) at the surface in the area under study [Bräuer et al., 2004]. 

 

Calculated equilibrium or crystallization temperatures are higher than indicated by the extrapolation of 

regional geotherms derived from surface heat flow studies. Hornblendite and clinopyroxenite samples 

could be fragments of small magmatic intrusions into the uppermost mantle and lower crust (dikes and 

sills), which could cause local scale thermal and magmatic overprinting of the Moho as, indicated by 

the receiver function study. However, the studied xenolith suite and available p-T data from the 

broader region do not allow making better constraints (xenolith geotherm) on the overall thermal 

structure in the lower crust and uppermost mantle so far. Further studies on xenoliths from Tertiary 

and Quaternary volcanics (including p-T, isotope, and fluid/melt inclusion studies) are necessary for 

the construction of a regional xenolith geotherm and the understanding of the Tertiary to Quaternary 

evolution of the upper mantle and lower crust. 

 

There are a lot of further questions related to the possible existence of and processes related to a 

covered deep-seated magmatic activity beneath the swarm-earthquake region and CO2 degassing field. 

There is a massive need for the identification of seismic reflections/conversion related to fluids in the 

lower crust and uppermost mantle in the existing and new seismic data. Further fluid inclusion studies 

could help to identify the depth level of separation of CO2 from melts. The question if the alkaline 

melts play a direct role in the hypocentres of swarm-earthquakes as supposed by Špičák et al. [1999] 

can possibly be solved by improved seismological and noble gas isotope observations or as a final 

stage deep drilling. Very interesting would be the study of seismicity related to possible fluid 

movements in the middle and lower crust. Maybe a new sensitive seismic network with still better 

signal-to-noise ratio than the existing ones (seismometers in boreholes?) can shed some light on deep 

low-magnitude seismicity. Assuming that magmatic activity has been going on since the Tertiary but 

at least since 0.3 to 0.5 Ma, there should be a thermal signal somewhere in the crust. To find signals of 

this probable thermal perturbation heat flow studies in one or more deep boreholes are necessary. 

 

In this work, a first compilation of seismic, petrological [this study], seismological, and gas-

geochemical results [from literature] was done, which might point to a local scale active magmatic 

addition to the base of the continental crust in a rift environment. CO2-rich gases (fluids) rising from 

melts at the crust-mantle boundary to the Earth’s surface influence the seismicity of the upper crust. 

The combination of these different geoscientific methods has a high potential for the detection and 

evaluation of deep covered magmatic/fluid activity within continental rift areas. The observations 

should be confirmed by additional measurements in Vogtland/NW-Bohemia as well as in other 

volcanic fields of Western and Central Europe (e.g., the French Massif Central, the Eifel, and the 

Jeseniky volcanic fields). 
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Appendix B.i. (a) Input seismic velocity model for reflectivity method. 
IASP91 reference model [Kennett and Engdahl, 1991].
depth [km] vp [km/s] vs [km/s] rho [g/cm3] Qp Qs n (layers)

0 5.8 3.36 2.8 1350 600 0
10 5.8 3.36 2.8 1350 600 1
20 5.8 3.36 2.8 1350 600 1
20 6.5 3.75 3 1350 600 0
35 6.5 3.75 3 1350 600 1
35 8.04 4.47 3.38 1350 600 0
71 8.044 4.483 3.37688 1447 600 4

120 8.05 4.5 3.37091 195 80 8
171 8.192 4.51 3.3671 195 80 5
210 8.3 4.518 3.4 195 80 5
210 8.3 4.522 3.4 362 143 0
271 8.523 4.628 3.46264 365 143 6
371 8.888 4.802 3.51639 370 143 10
410 9.03 4.87 3.54325 372 143 5
410 9.36 5.07 3.72378 366 143 0
450 9.494 5.1548 3.78678 365 143 8
500 9.662 5.2608 3.8498 364 143 8
550 9.83 5.3668 3.91282 363 143 8
600 9.9984 5.4728 3.97584 362 143 8
635 10.116 5.547 3.98399 362 143 6
660 10.2 5.6 3.99214 362 143 6
660 10.79 5.95 4.38071 759 312 0
721 10.9521 6.1083 4.41241 744 312 10
771 11.0756 6.218 4.44316 730 312 8
871 11.2506 6.2929 4.50372 737 312 15
971 11.4172 6.3635 4.56307 743 312 15

1071 11.5761 6.4302 4.62129 750 312 15
1271 11.8732 6.5532 4.7346 761 312 30
1471 12.1469 6.6643 4.84422 770 312 30
1671 12.402 6.7663 4.95073 779 312 30
1871 12.6435 6.8617 5.05469 788 312 30
2071 12.8764 6.9532 5.15669 795 312 30
2271 13.1055 7.0434 5.25729 803 312 30
2471 13.3359 7.1348 5.35706 811 312 30
2571 13.4531 7.1819 5.40681 815 312 15
2671 13.5725 7.2302 5.45657 819 312 15
2771 13.6636 7.2722 5.50642 823 312 15
2871 13.6866 7.297 5.55641 826 312 15
2889 13.6908 7.3015 5.56645 826 312 6
2889 8.009 0.2 9.915 57822 100 0
2971 8.15 0.2 10.043 57822 100 15
3071 8.317 0.2 10.195 57822 100 15
3171 8.477 0.2 10.34 57822 100 15
3271 8.63 0.2 10.478 57822 100 15
3371 8.777 0.2 10.611 57822 100 15
3471 8.917 0.2 10.738 57822 100 15
3571 9.05 0.2 10.859 57822 100 15
3671 9.176 0.2 10.974 57822 100 15
3771 9.295 0.2 11.084 57822 100 15
3871 9.408 0.2 11.189 57822 100 15
3971 9.514 0.2 11.288 57822 100 15
4071 9.614 0.2 11.383 57822 100 15
4171 9.706 0.2 11.473 57822 100 15
4271 9.792 0.2 11.558 57822 100 15
4371 9.871 0.2 11.639 57822 100 15
4471 9.944 0.2 11.716 57822 100 15
4571 10.009 0.2 11.789 57822 100 15
4671 10.068 0.2 11.857 57822 100 15
4771 10.12 0.2 11.922 57822 100 15
4871 10.166 0.2 11.984 57822 100 15
4971 10.204 0.2 12.042 57822 100 15
5071 10.236 0.2 12.096 57822 100 15

5153.9 10.258 0.2 12.703 57822 100 15
5153.9 10.971 3.439 12.703 633 100 0

5171 10.976 3.442 12.703 633 100 15
5271 10.999 3.462 12.753 626 100 15
5371 11.02 3.479 12.798 621 100 15
5471 11.039 3.496 12.834 617 100 15
5571 11.056 3.51 12.875 614 100 15
5671 11.071 3.523 12.907 611 100 15
5771 11.085 3.534 12.935 608 100 15
5871 11.096 3.543 12.959 606 100 15
5971 11.105 3.551 12.978 604 100 15



Appendix B.i. (b) Input seismic velocity model (BM3A) for reflectivity method. 
depth [km] vp [km/s] vs [km/s] rho [g/cm3] Qp Qs n (layers)

0 5.4 3.12 2.6 1350 600 5
4 6 3.47 2.7 1350 600 5

11 6.2 3.58 2.8 1350 600 5
13 6.3 3.64 2.8 1350 600 5
25 6.3 3.64 2.8 1350 600 5
34 8 4.47 3 1350 600 5
71 8.044 4.483 3.37688 1447 600 4
71 7.785 4.21 3.37091 195 80 0

100 7.785 4.21 3.37091 195 80 8
120 7.785 4.21 3.37091 195 80 8
171 7.785 4.21 3.3671 195 80 5
210 7.785 4.21 3.3671 195 80 5
210 8.3 4.522 3.4 362 143 0
271 8.523 4.628 3.46264 365 143 6
371 8.888 4.802 3.51639 370 143 10
410 9.03 4.87 3.54325 372 143 5
410 9.36 5.07 3.72378 366 143 0
450 9.494 5.1548 3.78678 365 143 8
500 9.662 5.2608 3.8498 364 143 8
550 9.83 5.3668 3.91282 363 143 8
600 9.9984 5.4728 3.97584 362 143 8
635 10.116 5.547 3.98399 362 143 6
660 10.2 5.6 3.99214 362 143 6
660 10.79 5.95 4.38071 759 312 0
721 10.9521 6.1083 4.41241 744 312 10
771 11.0756 6.218 4.44316 730 312 8
871 11.2506 6.2929 4.50372 737 312 15
971 11.4172 6.3635 4.56307 743 312 15

1071 11.5761 6.4302 4.62129 750 312 15
1271 11.8732 6.5532 4.7346 761 312 30
1471 12.1469 6.6643 4.84422 770 312 30
1671 12.402 6.7663 4.95073 779 312 30
1871 12.6435 6.8617 5.05469 788 312 30
2071 12.8764 6.9532 5.15669 795 312 30
2271 13.1055 7.0434 5.25729 803 312 30
2471 13.3359 7.1348 5.35706 811 312 30
2571 13.4531 7.1819 5.40681 815 312 15
2671 13.5725 7.2302 5.45657 819 312 15
2771 13.6636 7.2722 5.50642 823 312 15
2871 13.6866 7.297 5.55641 826 312 15
2889 13.6908 7.3015 5.56645 826 312 6
2889 8.009 0.2 9.915 57822 100 0
2971 8.15 0.2 10.043 57822 100 15
3071 8.317 0.2 10.195 57822 100 15
3171 8.477 0.2 10.34 57822 100 15
3271 8.63 0.2 10.478 57822 100 15
3371 8.777 0.2 10.611 57822 100 15
3471 8.917 0.2 10.738 57822 100 15
3571 9.05 0.2 10.859 57822 100 15
3671 9.176 0.2 10.974 57822 100 15
3771 9.295 0.2 11.084 57822 100 15
3871 9.408 0.2 11.189 57822 100 15
3971 9.514 0.2 11.288 57822 100 15
4071 9.614 0.2 11.383 57822 100 15
4171 9.706 0.2 11.473 57822 100 15
4271 9.792 0.2 11.558 57822 100 15
4371 9.871 0.2 11.639 57822 100 15
4471 9.944 0.2 11.716 57822 100 15
4571 10.009 0.2 11.789 57822 100 15
4671 10.068 0.2 11.857 57822 100 15
4771 10.12 0.2 11.922 57822 100 15
4871 10.166 0.2 11.984 57822 100 15
4971 10.204 0.2 12.042 57822 100 15
5071 10.236 0.2 12.096 57822 100 15

5153.9 10.258 0.2 12.703 57822 100 15
5153.9 10.971 3.439 12.703 633 100 0

5171 10.976 3.442 12.703 633 100 15
5271 10.999 3.462 12.753 626 100 15
5371 11.02 3.479 12.798 621 100 15
5471 11.039 3.496 12.834 617 100 15
5571 11.056 3.51 12.875 614 100 15
5671 11.071 3.523 12.907 611 100 15
5771 11.085 3.534 12.935 608 100 15
5871 11.096 3.543 12.959 606 100 15
5971 11.105 3.551 12.978 604 100 15



Appendix B.ii.  Velocity models used for forward modelling (Figure B.10). 

a) Gräfenberg - Aichele  [1976] d) MOKH - Plešinger et al. [1994]
depth [km] vp [km/s] vp/vs ratio n (layers) depth [km] vp [km/s] vp/vs ratio n (layers)

0 4.0 1.73 5 0 5.9 1.73 3
1 5.6 1.73 5 6.5 5.9 1.73 5
3 5.8 1.73 5 6.7 6.5 1.73 5
6 5.9 1.73 5 22.5 6.5 1.73 5
6 5.5 1.73 0 23 6.6 1.73 5

12.5 5.5 1.73 5 32 6.6 1.73 5
12.5 6.3 1.73 0 32 8.1 1.79 0
14.5 6.3 1.73 5 55 8.1 1.79 5

20 6.4 1.73 5 55 7.8 1.79 0
23 6.9 1.73 5 140 7.8 1.79 5
32 7.2 1.73 5 140 8.2 1.79 0
33 7.2 1.73 5
33 8.2 1.76 0
50 8.3 1.76 5

100 8.3 1.76 1

b) GRANU95-shotpoint F - Enderle et al. [1998] e) W-Bohemian Massif - Strößenreuther  [1982]
depth [km] vp [km/s] vp/vs ratio n (layers) depth [km] vp [km/s] vp/vs ratio n (layers)

0 5.3 1.73 3 0 5.5 1.73 3
0.5 5.3 1.73 5 2 5.8 1.73 5
0.5 5.8 1.73 0 4 6.0 1.73 5

2 5.8 1.73 5 11 6.1 1.73 5
2 6.4 1.73 0 11 5.8 1.73 0
5 6.5 1.73 5 13.5 5.8 1.73 5
5 6.4 1.73 0 15.5 6.4 1.73 5

15.5 6.4 1.73 5 15.5 6.1 1.73 0
15.5 6.4 1.73 0 23 6.2 1.73 5
24.5 6.4 1.73 5 27 6.7 1.73 5
24.5 7.0 1.73 0 29 6.8 1.73 5
32.7 7.1 1.73 5 30 7.2 1.73 5
32.7 8.0 1.73 0 33 7.3 1.73 5
100 8.0 1.79 1 33 8.1 1.79 0

40 8.2 1.79 5
100 8.2 1.79 1

c) Vogtland - Köhler et al. [1989] f) Vogtland - Schulze and Lück [1992]
depth [km] vp [km/s] vp/vs ratio n (layers) depth [km] vp [km/s] vp/vs ratio n (layers)

0 5.0 1.73 5 0 4.8 1.73 5
1 5.6 1.73 5 3.5 6.0 1.73 5
3 6.0 1.73 5 8 6.2 1.73 5

17 6.3 1.73 5 8 5.9 1.73 0
32 7.1 1.73 5 17.5 5.9 1.73 5
32 8.0 1.79 0 17.5 6.4 1.73 0
40 8.2 1.79 5 25 6.8 1.73 5

100 8.2 1.79 1 30 8.0 1.79 5
100 8.0 1.79 1



Appendix B.ii.  (continued).

g) MVE90 CMP1 - Behr et al. [1994] i) KTB MN - Schmoll et al. [1989]
depth [km] vp [km/s] vp/vs ratio n (layers) depth [km] vp [km/s] vp/vs ratio n (layers)

0 5.4 1.73 3 0 4.9 1.73 3
1 5.9 1.73 5 1.5 5.7 1.73 5
2 6.0 1.73 5 3.5 5.8 1.73 5
2 5.6 1.73 0 4 6.0 1.73 5
5 6.9 1.73 5 6 6.1 1.73 5
6 7.0 1.73 5 6 5.7 1.73 0
6 6.2 1.73 0 9.5 5.8 1.73 5

13 6.3 1.73 5 9.5 6.0 1.73 0
13 5.5 1.73 0 12 6.2 1.73 5
14 6.7 1.73 3 15.5 6.2 1.73 5

14.5 6.9 1.73 3 19 6.9 1.73 5
14.5 6.5 1.73 0 19 6.3 1.73 0

30 6.6 1.73 5 25 6.3 1.73 5
30 7.0 1.73 0 25 6.7 1.73 0
32 7.4 1.73 5 29.5 7.1 1.73 5
32 7.8 1.79 0 29.5 6.2 1.73 0
35 8.0 1.79 5 32 6.4 1.73 5

100 8.0 1.79 1 32 8.1 1.79 0
36 8.2 1.79 5

100 8.2 1.79 1
h) MVE90 CMP2 - Behr et al. [1994]
depth [km] vp [km/s] vp/vs ratio n (layers)

0 5.4 1.73 5
3 5.9 1.73 5
6 6.1 1.73 5

14 5.8 1.73 5
14 6.5 1.73 0
15 7.1 1.73 5
15 6.0 1.73 0

16.5 7.2 1.73 5
16.5 6.1 1.73 0

25 6.6 1.73 5
32 7.2 1.73 5
32 8.0 1.79 0
35 8.0 1.79 5

100 8.0 1.79 1



Appendix B.iii.  Velocity models used for forward modelling (Figure B.14). 

a) d)
depth [km] vp [km/s] vp/vs ratio n (layers) depth [km] vp [km/s] vp/vs ratio n (layers)

0 5.4 1.73 5 0 5.4 1.73 5
4 6.0 1.73 5 4 6.0 1.73 5

15 6.2 1.73 5 5 6.0 1.73 5
23 6.2 1.73 5 15 6.2 1.73 5
25 6.2 1.73 5 23 6.2 1.73 5
34 8.0 1.79 5 25 6.2 1.73 5
34 8.0 1.79 0 33 8.0 1.79 5

100 8.0 1.79 1 40 8.0 1.79 5
43 7.3 1.95 5
48 7.3 1.95 5
49 8.2 1.79 5

100 8.2 1.79 1

b) e)
depth [km] vp [km/s] vp/vs ratio n (layers) depth [km] vp [km/s] vp/vs ratio n (layers)

0 5.4 1.73 5 0 5.4 1.73 5
4 6.0 1.73 5 4 6.0 1.73 5

11 6.2 1.73 5 5 6.0 1.73 5
11 5.7 1.73 0 15 6.2 1.73 5
13 5.7 1.73 5 23 6.2 1.73 5
13 6.3 1.73 0 25 6.2 1.73 5
25 6.3 1.73 5 32 7.6 1.79 5
34 8.0 1.79 5 48 7.3 1.79 5
34 8.0 1.79 0 55 8.2 1.79 5
35 8.0 1.79 5 68 8.2 1.79 5

100 8.0 1.79 1 78 7.6 1.79 5
100 7.6 1.79 5

c) f)
depth [km] vp [km/s] vp/vs ratio n (layers) depth [km] vp [km/s] vp/vs ratio n (layers)

0 5.4 1.73 5 0 5.4 1.73 5
4 6.0 1.73 5 4 6.0 1.73 5

7.5 6.2 1.73 5 11 6.2 1.73 5
7.5 7.0 1.73 0 11 5.9 1.73 0

10.5 7.0 1.73 5 13 5.9 1.73 5
10.5 6.2 1.73 0 13 6.3 1.73 0

25 6.3 1.73 5 23 6.3 1.73 5
34 8.0 1.79 5 25 6.3 1.73 5
34 8.0 1.79 0 32 7.8 1.79 5
35 8.0 1.79 5 48 7.6 1.79 5

100 8.0 1.79 1 55 8.2 1.79 5
68 8.2 1.79 5
78 7.9 1.79 5

100 7.9 1.79 5



A
pp

en
di

x 
C

.i.
  W

ho
le

-r
oc

k 
ch

em
is

try
 (X

R
F)

 o
f t

he
 te

ph
ra

 p
ro

fil
e 

M
ýt

in
a.

sa
m

pl
e

ne
ph

el
in

ite
co

un
try

 ro
ck

M
ýt

in
a-

lo
w

er
 u

ni
t

M
y1

M
y1

-B
M

y2
M

y2
-B

B
K

-2
B

U
F-

B
1

U
F-

B
2

M
y-

ba
se

U
T3

U
T4

U
T5

U
T7

U
T9

U
T1

0
U

T1
1

U
T1

4
U

T2
0

de
pt

h 
(c

m
)

42
0

39
0

38
0

37
0

35
0

33
0

32
0

31
0

28
0

22
0

S
iO

2 (
w

t.%
)

40
.0

39
.8

41
.3

41
.1

39
.4

65
.6

61
.3

65
.4

60
.1

58
.9

58
.5

58
.5

59
.0

59
.0

59
.0

57
.3

57
.5

Ti
O

2
2.

96
2.

93
2.

90
2.

87
2.

91
0.

96
0.

94
1.

06
1.

30
1.

32
1.

30
1.

39
1.

43
1.

47
1.

47
1.

61
1.

63
A

l 2O
3

11
.5

11
.4

11
.6

11
.6

11
.3

16
.4

19
.8

18
.0

17
.9

18
.2

18
.6

17
.5

17
.1

17
.0

16
.4

15
.9

15
.8

Fe
2O

3(
t)

5.
58

5.
63

5.
68

5.
39

7.
02

3.
32

2.
21

6.
81

4.
37

4.
52

4.
17

4.
50

4.
26

4.
57

4.
05

4.
38

4.
35

Fe
O

5.
26

5.
11

5.
05

5.
27

4.
00

3.
64

4.
21

3.
04

3.
20

3.
53

3.
29

3.
40

3.
20

3.
55

3.
60

3.
67

M
nO

0.
19

0.
19

0.
19

0.
19

0.
20

0.
09

0.
05

0.
02

0.
08

0.
09

0.
09

0.
09

0.
09

0.
10

0.
10

0.
11

0.
11

M
gO

13
.6

4
13

.7
0

12
.6

0
12

.6
8

12
.2

5
1.

59
1.

59
0.

50
2.

64
2.

88
2.

87
3.

29
3.

50
3.

67
4.

04
4.

94
4.

99
C

aO
12

.6
7

12
.5

4
12

.4
1

12
.3

1
13

.1
5

0.
26

0.
28

0.
22

1.
21

1.
55

1.
44

2.
04

2.
31

2.
51

3.
04

4.
06

4.
07

N
a 2

O
2.

53
2.

61
2.

30
2.

40
3.

47
0.

95
1.

07
0.

15
0.

90
0.

93
0.

96
0.

90
0.

87
0.

85
0.

82
0.

82
0.

78
K

2O
1.

55
1.

53
1.

42
1.

42
2.

17
3.

02
4.

16
3.

46
3.

36
3.

38
3.

46
3.

17
3.

10
3.

03
2.

84
2.

60
2.

47
P

2O
5

0.
67

0.
72

0.
65

0.
71

0.
76

0.
14

0.
15

0.
13

0.
22

0.
23

0.
23

0.
25

0.
25

0.
26

0.
28

0.
33

0.
34

H
2O

2.
21

2.
28

2.
51

2.
75

1.
07

3.
96

4.
09

4.
82

4.
91

4.
95

5.
00

4.
81

4.
62

4.
48

4.
31

4.
35

4.
35

C
O

2
0.

11
0.

10
0.

11
0.

10
0.

17
0.

06
0.

13
0.

36
0.

12
0.

09
0.

11
0.

10
0.

09
0.

10
0.

08
0.

11
0.

13

To
ta

l
99

.3
8

98
.4

9
99

.3
3

98
.7

8
97

.8
1

99
.9

5
99

.9
3

10
0.

93
10

0.
11

10
0.

22
10

0.
18

99
.9

2
10

0.
00

10
0.

23
10

0.
02

10
0.

11
10

0.
11

B
a 

(p
pm

)
78

0
77

0
75

2
73

8
73

4
50

8
63

8
55

7
75

1
77

7
83

6
86

0
10

10
10

04
70

3
71

3
59

2
C

r
72

6
73

5
58

6
58

2
49

5
73

87
14

7
15

8
14

9
17

4
18

9
18

4
19

2
23

0
23

5
N

b
93

91
10

5
14

16
32

32
31

37
38

37
36

43
44

R
b

61
59

20
8

20
8

58
15

3
19

3
17

4
15

2
15

6
16

1
14

6
15

1
15

0
13

1
11

9
12

1
S

r
70

7
70

8
68

1
68

7
86

8
79

10
9

78
13

5
15

4
15

6
18

5
20

9
21

9
18

4
22

9
21

7
V

31
5

32
0

31
6

30
6

30
8

10
3

11
9

13
1

14
2

13
6

13
0

13
4

13
5

14
6

16
7

16
5

Y
21

22
22

24
23

41
40

29
39

38
35

38
32

30
33

33
32

Zn
70

72
74

75
76

98
83

10
1

10
5

10
5

10
4

10
4

10
6

10
2

96
94

Zr
22

5
22

0
24

7
24

3
25

9
 

42
2

21
6

17
8

 
31

0
28

6
29

2
28

4
28

2
28

9
27

4
27

3
28

8



A
pp

en
di

x 
C

.i.
  (

co
nt

in
ue

d)
.

sa
m

pl
e

M
ýt

in
a-

lo
w

er
 u

ni
t

M
ýt

in
a-

up
pe

r u
ni

t
U

T2
1a

U
T2

1b
U

T2
2

O
T1

O
T2

O
T3

O
T4

O
T5

O
T6

O
T7

O
T8

O
T9

O
T1

0
O

T2
6

de
pt

h 
(c

m
)

21
2

20
8

20
0

17
5

16
5

15
5

14
5

13
5

12
5

11
5

10
5

95
85

16
0

S
iO

2 (
w

t.%
)

55
.9

55
.4

55
.8

49
.3

50
.5

46
.7

50
.6

51
.2

52
.6

48
.3

50
.9

45
.3

49
.6

49
.4

Ti
O

2
1.

68
1.

53
1.

66
2.

24
2.

22
2.

16
2.

21
2.

09
2.

12
2.

34
2.

22
2.

50
2.

06
2.

21
A

l 2O
3

16
.4

18
.4

16
.5

14
.1

14
.0

13
.5

14
.5

14
.2

13
.0

13
.8

13
.9

13
.4

15
.4

14
.2

Fe
2O

3(
t)

4.
50

5.
09

4.
71

6.
12

5.
95

5.
73

5.
88

5.
86

5.
76

6.
47

6.
23

6.
16

7.
00

6.
33

Fe
O

3.
76

3.
32

3.
60

3.
74

3.
72

4.
65

3.
70

3.
65

3.
56

3.
81

3.
49

4.
17

3.
48

3.
62

M
nO

0.
11

0.
09

0.
11

0.
15

0.
15

0.
16

0.
15

0.
14

0.
15

0.
16

0.
15

0.
16

0.
15

0.
15

M
gO

5.
15

3.
32

4.
98

9.
48

9.
21

12
.3

2
8.

66
9.

20
9.

21
10

.6
0

9.
41

12
.1

4
8.

41
9.

98
C

aO
4.

33
2.

35
4.

02
7.

12
7.

06
7.

34
6.

50
6.

45
6.

91
7.

47
6.

77
8.

70
5.

52
6.

83
N

a 2
O

0.
80

0.
83

0.
76

0.
73

0.
69

1.
00

0.
72

0.
84

0.
74

0.
66

0.
68

0.
80

0.
66

0.
79

K
2O

2.
56

3.
03

2.
55

1.
58

1.
57

1.
69

1.
82

1.
61

1.
42

1.
37

1.
43

1.
26

1.
73

1.
61

P
2O

5
0.

35
0.

30
0.

34
0.

47
0.

45
0.

46
0.

43
0.

42
0.

45
0.

48
0.

45
0.

48
0.

42
0.

46
H

2O
4.

56
5.

79
4.

82
4.

61
4.

42
3.

94
4.

22
4.

17
4.

03
4.

46
4.

39
4.

34
5.

07
4.

31
C

O
2

0.
12

0.
24

0.
16

0.
21

0.
18

0.
16

0.
18

0.
20

0.
20

0.
24

0.
24

0.
44

0.
56

0.
22

To
ta

l
10

0.
17

99
.7

6
10

0.
10

99
.9

0
10

0.
06

99
.8

4
99

.6
3

10
0.

12
10

0.
09

10
0.

18
10

0.
18

99
.8

6
10

0.
13

10
0.

03

B
a 

(p
pm

)
63

5
71

4
66

6
78

4
77

0
83

4
79

3
75

3
74

6
81

7
79

7
76

5
78

9
80

6
C

r
24

7
17

9
23

5
44

4
43

2
43

0
41

0
44

1
43

2
52

2
45

6
67

6
39

0
48

4
N

b
45

50
47

67
63

64
63

59
65

69
70

69
61

66
R

b
12

1
15

5
12

5
88

88
11

3
10

5
90

98
76

77
61

91
10

1
S

r
22

4
17

0
21

2
36

2
36

6
41

9
35

1
34

9
37

7
38

0
35

9
38

9
29

9
37

2
V

17
4

18
1

17
2

23
3

22
6

22
1

22
3

22
3

21
8

24
4

22
3

28
0

21
7

22
3

Y
33

37
34

27
27

26
32

28
25

27
27

26
31

30
Zn

93
98

95
87

88
88

87
87

81
87

85
76

96
88

Zr
28

7
29

3
28

6
 

25
1

26
8

22
4

26
9

23
4

23
6

24
7

25
6

22
5

23
1

24
6



Appendix C.ii.  Whole-rock chemistry of crustal xenoliths (XRF, ICP-MS).

sample quartzitic rocks
XKZH4 XKZH8 XKZH5 XKZH53 XKZH64 XKZH6 XKZH54 XKZH55 XKZH58

SiO2 (wt.%) 100.4 93.1 90.6 89.1 90.4 86.3 85.4 88.7 85.6
TiO2 0.011 0.418 0.273 0.307 0.191 0.085 0.146 0.124 0.713
Al2O3 0.4 3.2 4.5 6.1 3.5 8.4 9.1 5.1 6.2
Fe2O3(t) 0.14 2.15 2.16 0.51 1.01 1.41 0.43 1.21 2.97
MnO 0.002 0.018 0.064 0.003 0.024 0.026 <0.004 0.027 0.016
MgO <0,04 0.09 0.27 0.20 0.18 0.26 0.22 0.14 0.31
CaO 0.07 0.19 0.32 0.10 0.15 0.56 0.11 0.12 0.18
Na2O <0,1 <0,1 0.63 <0.1 0.82 1.07 <0.1 0.79 <0.1
K2O <0,2 0.64 0.86 1.94 0.37 1.31 2.83 2.32 2.42
P2O5 0.017 0.085 0.137 0.054 0.031 0.092 0.053 0.042 0.106
H2O 0.40 1.13 0.77 1.02 0.58 1.05 1.20 0.71 0.91
CO2 0.22 0.14 0.12 0.06 0.04 0.16 0.07 0.09 0.08

Total 101.66 101.16 100.70 99.33 97.29 100.72 99.48 99.34 99.46

Cs (ppm) ICP-MS 0.12 1.19 3.8 2.2 0.74 1.28 2.4 1.69 5.5
Rb XRF 64 17 93 94 85

ICP-MS 1.8 33 66 64 22 37 89 95 87
Sr XRF 10 94 12 116 61

ICP-MS 2.7 90 143 12 92 161 14 111 63
Ba XRF 348 160 497 604 486

ICP-MS 7.8 1342 205 322 141 657 463 555 459
Zr1) XRF 791 337 119 105 1409

ICP-MS 4.7 276 247 202 68 15 29 36 396
Nb ICP-MS 7.6 5.7 2.7 4.9 23
Ta ICP-MS < 1 < 1 < 1 < 1 3
Th ICP-MS 0.39 22 12.3 9.9 4.3 1.47 1.7 2.7 37
U ICP-MS 0.08 2.0 1.6 1.8 0.73 0.35 0.29 0.60 5.5
Pb ICP-MS 0.61 4.7 4.8 2.3 4.5 22 3.9 15 24
V XRF <10 <10 <10 10 33
Cr XRF <10 <10 <10 <10 20
Ni XRF <10 <10 <10 <10 <10
Zn XRF <10 17 <10 27 16
Y XRF 16 10 <10 <10 42

ICP-MS 0.29 23 10.5 9.8 5.5 3.3 3.3 6.4 30

La ICP-MS 0.30 29.6 24.9 18.5 12.7 2.56 7.26 12.7 41.1
Ce ICP-MS 0.97 62.8 52.7 39.8 27.7 8.69 13.0 30.3 126
Pr ICP-MS 0.07 7.19 5.73 4.47 2.75 0.59 1.37 2.75 9.98
Nd ICP-MS 0.32 26.3 19.4 17.4 9.87 2.29 4.74 10.2 35.9
Sm ICP-MS 0.14 5.26 3.51 3.33 1.73 0.54 0.91 1.90 6.95
Eu ICP-MS 0.03 0.89 0.68 0.63 0.37 0.39 0.52 0.36 0.98
Gd ICP-MS 0.11 5.09 2.71 2.86 1.44 0.60 0.73 1.54 5.96
Tb ICP-MS 0.01 0.75 0.38 0.39 0.19 0.10 0.10 0.21 0.92
Dy ICP-MS 0.07 4.17 1.92 2.09 1.17 0.58 0.62 1.22 5.55
Ho ICP-MS 0.01 0.80 0.36 0.34 0.19 0.12 0.11 0.22 1.13
Er ICP-MS 0.03 2.25 1.01 1.01 0.58 0.34 0.34 0.65 3.41
Tm ICP-MS < 0.006 0.34 0.15 0.13 0.08 0.05 0.04 0.08 0.50
Yb ICP-MS 0.04 2.34 1.10 0.90 0.58 0.35 0.34 0.58 3.52
Lu ICP-MS < 0.02 0.34 0.17 0.15 0.08 0.05 0.05 0.08 0.55

Hf ICP-MS 0.14 8.20 6.82 5.59 1.85 0.45 0.77 0.99 11.5

microscopy qtz qtz-m qtz-m qtz-m qtz-m qtz-m qtz qtz-m-o
fsp-zrn
glass? fsp fsp fsp? zrn

1) Discrepancy in Zr (Hf, Th) contents probably due to incomplete decomposition of refractory minerals (ICP-MS).



Appendix C.ii.  (continued).

sample quartzitic rocks
XKZH75 XKZH7 XKZH11 XKZH12 XKZH13 XKZH14 XKZH16 XKZH51 XKZH59

SiO2 (wt.%) 86.4 82.8 83.9 81.4 81.7 79.4 83.6 82.3 84.9
TiO2 0.517 0.092 0.657 0.780 0.783 0.215 0.650 0.679 1.024
Al2O3 5.6 11.0 8.8 8.9 8.4 12.4 8.0 8.2 6.1
Fe2O3(t) 4.14 0.71 3.14 4.63 4.22 3.39 2.54 3.60 3.66
MnO 0.034 0.005 0.029 0.025 0.027 0.037 0.032 0.027 0.033
MgO 0.43 0.16 0.19 0.57 0.62 0.64 0.60 0.54 0.32
CaO 0.22 0.30 0.21 0.26 0.16 0.38 0.30 0.17 0.25
Na2O 0.68 2.26 <0,1 1.10 <0,1 <0,1 <0,1 <0.1 <0.1
K2O 0.55 1.99 1.76 1.50 3.12 2.02 2.78 2.68 2.01
P2O5 0.070 0.156 0.091 0.093 0.091 0.130 0.093 0.091 0.127
H2O 1.28 0.86 2.36 1.24 1.49 2.31 1.53 1.43 1.02
CO2 0.07 0.14 0.25 0.09 0.16 0.15 0.23 0.12 0.09

Total 99.91 100.47 101.39 100.59 100.77 101.07 100.36 99.77 99.57

Cs (ppm) ICP-MS 2.23 1.53 2.02 9.06 6.13 4.54 6.05 2.6
Rb XRF 31 100 56

ICP-MS 35 55 51 95 118 68 102 64
Sr XRF 35 45 70

ICP-MS 38 49 62 43 56 123 47 71
Ba XRF 171 514 512

ICP-MS 161 382 547 350 479 748 476 462
Zr XRF 695 1063 2304

ICP-MS 206 18 536 483 947 41 438 476
Nb ICP-MS 15 22 33
Ta ICP-MS 2 3 4
Th ICP-MS 15 1.8 25 25 43 4.0 29 59
U ICP-MS 2.6 0.53 3.8 4.4 5.6 1.20 4.3 7.4
Pb ICP-MS 6 10.6 20 6.6 22 17 14 33
V XRF 36 34 43
Cr XRF 16 27 29
Ni XRF 12 15 28
Zn XRF 59 31 30
Y XRF 30 37 63

ICP-MS 20 7.5 36 36 40 15 29 43

La ICP-MS 37.7 9.82 46.6 53.7 46.8 12.0 49.4 69.1
Ce ICP-MS 77.0 18.0 99.7 112 133 26.4 108 174
Pr ICP-MS 8.76 2.06 11.4 13.4 11.6 2.90 11.9 16.1
Nd ICP-MS 32.4 7.33 40.7 47.9 40.6 10.9 44.0 60.1
Sm ICP-MS 5.74 1.42 7.95 8.95 7.74 2.59 8.15 11.4
Eu ICP-MS 1.13 0.83 1.32 1.50 1.09 0.66 1.19 1.45
Gd ICP-MS 4.83 1.40 7.29 7.47 6.76 3.22 6.70 9.90
Tb ICP-MS 0.69 0.22 1.07 1.09 1.05 0.49 0.94 1.40
Dy ICP-MS 3.89 1.34 6.32 6.33 6.47 2.88 5.71 8.16
Ho ICP-MS 0.73 0.26 1.25 1.25 1.34 0.54 1.09 1.53
Er ICP-MS 2.15 0.72 3.66 3.66 4.14 1.50 3.24 4.59
Tm ICP-MS 0.30 0.10 0.55 0.55 0.66 0.21 0.45 0.66
Yb ICP-MS 2.07 0.67 3.81 3.84 4.67 1.38 3.22 4.48
Lu ICP-MS 0.30 0.08 0.56 0.57 0.72 0.19 0.48 0.69

Hf ICP-MS 5.91 0.52 14.3 13.3 24.9 1.25 12.4 13.8

microscopy qtz-m qtz-m qtz-m-mag qtz-m-mag qtz-m-mag qtz-m qtz-m-o
zrn? ms-bt? ms-bt? ms-bt?

fsp? melt? grt-st zrn-am? zrn



Appendix C.ii.  (continued).

sample quartzitic rocks norite phyllites, mica shists
XKZH61 XKZH70 XKZH65 XKZH 66 XKZH1 XKZH10 XKZH67 XKZH62 XKZH69

SiO2 (wt.%) 83.6 84.3 82.6 83.3 52.2 55.2 57.4 59.9 61.0
TiO2 0.796 0.524 0.206 0.138 0.281 1.467 1.128 1.093 1.067
Al2O3 7.2 6.0 8.6 9.4 21.6 24.7 21.8 21.8 20.2
Fe2O3(t) 3.15 4.08 1.23 1.25 5.30 7.47 7.71 6.44 6.16
MnO 0.014 0.075 0.014 0.010 0.091 0.083 0.067 0.046 0.049
MgO 0.37 0.52 0.33 0.39 7.19 1.80 1.60 1.21 1.40
CaO 0.18 0.29 0.35 0.39 9.51 0.42 0.32 0.34 0.33
Na2O <0.1 0.64 1.38 1.15 3.00 1.53 1.12 1.52 1.71
K2O 2.68 1.47 1.82 1.15 0.14 4.48 4.34 4.58 4.09
P2O5 0.105 0.121 0.085 0.191 0.027 0.159 0.089 0.117 0.123
H2O 1.16 1.40 0.96 1.50 0.64 2.75 4.58 3.03 3.98
CO2 0.08 0.05 0.06 0.13 0.07 0.48 0.05 0.29 0.12

Total 99.34 99.50 97.65 99.04 100.05 100.54 100.21 100.34 100.28

Cs (ppm) ICP-MS 3.9 12.9 1.1 0.76 0.0 10.2 12.6 12.7 10.2
Rb XRF 81 90 44 28 215 196 188

ICP-MS 85 90 44 29 2 136 204 196 198
Sr XRF 81 87 77 81 144 168 123

ICP-MS 84 85 70 78 446 129 130 163 123
Ba XRF 584 252 1011 474 947 784 965

ICP-MS 573 225 930 434 155 790 853 756 880
Zr XRF 1727 800 54 52 233 285 279

ICP-MS 492 437 27 20 6.6 226 182 189 199
Nb ICP-MS 26 16 7 5 30 30 30
Ta ICP-MS 4 2 < 1 < 1 4 7 5
Th ICP-MS 43 17 2.1 2.1 0.05 20 19 21 20
U ICP-MS 5.7 2.8 0.54 0.64 0.03 3.2 2.7 3.6 3.3
Pb ICP-MS 22 33 12.4 5.3 1.12 36 23 28 20
V XRF 42 32 17 13 126 137 109
Cr XRF 25 23 21 <10 94 90 84
Ni XRF <10 13 12 <10 43 31 32
Zn XRF 23 72 20 14 131 85 87
Y XRF 60 35 <10 <10 40 42 41

ICP-MS 43 28 6.0 7.6 3.20 37 32 31 32

La ICP-MS 65.1 30.5 7.42 11.2 2.41 55.6 54.4 63.3 59.9
Ce ICP-MS 146 78.4 15.7 19.3 3.96 121 107 126 120
Pr ICP-MS 15.4 7.07 1.65 2.17 0.45 13.9 12.6 15.1 14.0
Nd ICP-MS 56.7 26.3 6.22 7.68 1.75 50.0 46.1 55.2 52.3
Sm ICP-MS 11.0 5.21 1.28 1.58 0.39 9.55 8.45 10.29 9.67
Eu ICP-MS 1.59 1.00 0.61 0.78 0.57 1.82 1.72 2.02 1.80
Gd ICP-MS 9.53 5.42 1.30 1.48 0.51 8.20 7.00 8.40 8.01
Tb ICP-MS 1.38 0.85 0.18 0.23 0.09 1.19 1.03 1.14 1.09
Dy ICP-MS 8.16 5.19 1.14 1.45 0.54 6.97 6.27 6.28 6.27
Ho ICP-MS 1.56 1.01 0.21 0.26 0.11 1.36 1.20 1.17 1.17
Er ICP-MS 4.57 3.02 0.66 0.77 0.35 3.87 3.69 3.47 3.50
Tm ICP-MS 0.65 0.42 0.09 0.10 0.05 0.56 0.52 0.48 0.49
Yb ICP-MS 4.48 2.81 0.58 0.64 0.36 3.95 3.43 3.29 3.14
Lu ICP-MS 0.66 0.42 0.07 0.08 0.06 0.56 0.50 0.50 0.50

Hf ICP-MS 15.0 11.5 0.74 0.63 0.23 6.37 5.34 5.65 5.92

microscopy qtz-m-mag qtz-m-o qtz-m-fsp qtz-m-fsp fsp-opx m-qtz-mag m-qtz-mag m-qtz-mag m-qtz-mag
ms-bt ms ms phl-cpx-rt crd? crd?

zrn mag mag mag



Appendix C.ii.  (continued).

sample phyllites, mica shists mica shists ?
XKZH17 XKZH19 XKZH56 XKZH57 XKZH 68 XKZH63 XKZH50 XKZH52 XKZH60

SiO2 (wt.%) 60.6 70.9 68.9 65.6 74.5 76.3 43.2 41.6 71.5
TiO2 1.093 0.704 0.799 1.054 0.923 0.840 1.432 1.477 0.261
Al2O3 21.6 13.8 13.8 19.3 12.9 10.1 32.0 31.2 17.0
Fe2O3(t) 6.54 7.17 7.98 5.52 6.68 6.51 9.23 9.07 1.80
MnO 0.060 0.049 0.044 0.050 0.085 0.066 0.069 0.122 0.011
MgO 0.86 1.48 1.67 0.70 0.74 1.18 1.56 2.02 0.57
CaO 0.35 0.26 0.30 0.31 0.29 0.29 0.39 0.25 0.24
Na2O 1.24 0.63 2.13 1.68 0.63 0.82 1.33 0.54 <0.1
K2O 4.22 2.44 2.37 3.10 1.13 1.42 6.63 7.59 5.81
P2O5 0.096 0.071 0.074 0.084 0.074 0.074 0.073 0.059 0.136
H2O 3.90 3.28 2.11 2.81 2.48 2.54 3.92 6.39 2.10
CO2 0.37 0.17 0.16 0.18 0.06 0.05 0.15 0.07 0.08

Total 100.93 100.95 100.36 100.36 100.52 100.20 99.99 100.33 99.54

Cs (ppm) ICP-MS 7.4 13.3 11.7 5.8 2.6 5.8 14.4 16.9 10.7
Rb XRF 164 117 51 96 256 323 295

ICP-MS 161 158 175 120 50 101 254 269 298
Sr XRF 117 142 92 69 196 189 41

ICP-MS 119 100 114 141 90 70 190 168 42
Ba XRF 428 627 436 571 2079 1371 912

ICP-MS 694 669 378 569 387 492 1866 1176 881
Zr XRF 243 281 537 495 263 291 188

ICP-MS 216 161 107 151 170 210 207 254 104
Nb ICP-MS 24 31 27 23 45 42 17
Ta ICP-MS 5 5 4 3 9 7 4
Th ICP-MS 18 12 15 18 19 18 25 23 15
U ICP-MS 2.7 2.4 2.4 3.2 3.3 3.6 3.7 3.4 6.5
Pb ICP-MS 31 17 18 18 6 7 59 28 10
V XRF 72 108 76 58 204 205 10
Cr XRF 55 74 48 41 128 135 <10
Ni XRF 32 28 27 25 40 57 <10
Zn XRF 121 88 86 113 104 148 40
Y XRF 29 40 43 39 52 46 45

ICP-MS 33 27 20 26 25 30 33 33 30

La ICP-MS 47.0 34.3 39.6 53.9 51.8 49.0 80.4 64.6 12.1
Ce ICP-MS 97.1 68.1 80.6 108 104 98.8 159 130 53.2
Pr ICP-MS 11.5 8.39 9.37 12.7 11.9 11.5 18.4 15.4 3.29
Nd ICP-MS 41.1 30.1 34.2 47.3 44.1 42.2 68.6 58.0 12.6
Sm ICP-MS 7.74 5.94 6.38 8.63 7.71 7.54 12.3 10.1 3.18
Eu ICP-MS 1.57 1.22 1.20 1.69 1.46 1.46 2.30 1.97 0.19
Gd ICP-MS 6.66 5.20 5.01 6.89 6.38 6.31 9.48 7.57 3.52
Tb ICP-MS 0.99 0.75 0.67 0.94 0.88 0.96 1.20 1.13 0.73
Dy ICP-MS 5.90 4.65 3.92 5.38 4.89 5.60 6.74 6.82 4.99
Ho ICP-MS 1.18 0.93 0.71 1.00 0.92 1.06 1.27 1.32 1.08
Er ICP-MS 3.44 2.68 2.12 2.94 2.69 3.09 3.60 3.89 3.52
Tm ICP-MS 0.51 0.42 0.32 0.39 0.37 0.43 0.51 0.56 0.54
Yb ICP-MS 3.53 2.72 2.06 2.72 2.59 3.02 3.46 3.88 3.58
Lu ICP-MS 0.51 0.41 0.32 0.40 0.37 0.43 0.52 0.59 0.50

Hf ICP-MS 6.13 4.55 3.13 4.47 4.94 6.17 5.85 7.08 3.67

microscopy m-qtz-mag qtz-m-mag qtz-m-mag qtz-m-mag qtz-m qtz-m m-grt-qtz-mag m-qtz-mag qtz-m
ms ms-bt? ms-bt? (ms-bt-chl) crd? ms-bt?

crd?-pm fsp? fsp? zrn-crd? hbl? fsp?



Appendix C.iii.  (a) Chondrite (C1)-normalised REE patterns of crustal xenoliths from the tephra deposit in 
Mýtina. REE values of C1-chondrites taken from Anders and Grevesse [1989]. 



Appendix C.iii.  (b) Post-Archean Australian Shale (PAAS)-normalised REE patterns of crustal xenoliths from 
the tephra deposit in Mýtina. REE values of PAAS taken from McLennann [1989]. 



Appendix C.iv.  Pressure estimates from clinopyroxenes, calculated with the Excel-worksheet
of Nimis  [1999]. Due to uncertainties in estimating temperatures, pressure was calculated for two
different temperature values.
Sample P(BA) kbar Temp (°C) P(BH) kbar Temp (°C) P(BH) kbar

peridotites
MXZH66 7 960 20 1058 15

1100 13 1150 12
Zinst-1 9 1000 21 1100 16
Go01-1 6 920 20 980 17

wehrlites, ol-cpx cumulates
MXZH1 7 1000 18 1150 10
MXZH2-cpx1 7 1000 18 1150 10
MXZH2-cpx2 5 1000 15 1150 8
MXZH4 5 1000 15 1150 7
MXZH8 6 1000 17 1150 9
MXZH18-cpx1 6 1050 14 1110 11
MXZH18-cpx2-c 6 1050 14 1110 11
MXZH18-cpx2-r 0 1050 5 1110 2
MXZH61-cpx1-c 6 1100 12 1150 10
MXZH61-cpx1-r -1 1050 3 1100 0
MXZH61-cpx2 8 1100 14 1150 12
MXZH64-c 6 1060 14 1120 11
MXZH64-r 0 1060 5 1150 1

clinopyroxenites, hornblendites
MXZH11 0 900 12 1000 7
MXZH5 0 900 13 1000 8
MXZH33 -1 900 10 1000 5
MXZH12 1 930 11 970 9
MXZH13 -1 930 9 1000 6

megacrysts
MXZH9 7 1000 18 1150 11
MXZH14 7 1000 18 1150 11
MXZH16 8 1000 19 1150 12
MXZH62-cpxold 6 1000 16 1150 8
MXZH62-cpx 8 1000 19 1150 12
MXZH62-cpx-r1 7 1000 18 1150 11
MXZH62-cpx-r2 0 1000 8 1150 1
EB2-cpx-s1 6 1000 17 1150 9
EB2-cpx-s2 7 1000 19 1150 11
EB7 8 1000 19 1150 12
EB6 5 1000 15 1150 8

groundmass
MXZH8-gm-c -2 1000 4 1150 -2
MXZH24-gm-c 7 1100 13 1150 11
MXZH24-gm-r -1 1000 6 1150 -1
MXZH24-glass -1 1000 7 1150 0

crust xenoliths
XKZH1 4 800 23 1150 5
XKZH3 5 1000 17 1150 10



Appendix C.v.  Results of two-pyroxene geothermometry [Brey and Köhler, 1990].
Go01-1 Zinst-1 XKZH1

cpx opx cpx opx opx-r opx-c cpx opx-x

Si 1.917 1.931 1.931 1.917 1.940 1.942 1.846 1.914
Ti 0.001 0.00 0.009 0.004 0.002 0.003 0.039 0.010
Al 0.167 0.109 0.165 0.147 0.103 0.108 0.247 0.162
Cr 0.027 0.010 0.035 0.021 0.001 0.002 0.005 0.003
Fe3+

Fe2+ 0.080 0.174 0.091 0.164 0.538 0.539 0.229 0.414
Mg 0.920 1.762 0.918 1.700 1.395 1.375 0.788 1.426
Mn 0.003 0.004 0.002 0.004 0.012 0.012 0.004 0.004
Ni
Ca 0.84 0.019 0.759 0.036 0.014 0.020 0.812 0.057
Ba
Na 0.060 0.003 0.100 0.010 0.000 0.002 0.045 0.008
K 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000
P
Total 4.014 4.011 4.011 4.001 0.000 4.006 0.000 4.002 4.014 3.998

Mg/(Mg+Fe) 0.92 0.91 0.91 0.91 0.72 0.72 0.77 0.78
KD 0.109 0.162 1.015 1.020 0.159

p (kbar) 19 21 6 6 6
T (K) T (°C) T (K) T (°C) T (K) T (°C) T (K) T (°C) T (K) T (°C)

Ca-in-opx 1195 922 1351 1078 1081 808 1139 866 1398 1125
BKN 1257 984 1378 1105 1239 966
Na-in-cpxopx 1276 1003 1444 1171 1555 1282
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Appendix C.ix.  p-T estimates for phlogopite-glass pairs after Righter and Carmichael  [1996].
sample MXZH24 MXZH69 MXZH21 My1
n phl1 glass1 phl2 glass2 phl glass phl ON

SiO2 38.23 41.43 38.61 40.99 38.54 42.42 37.74 39.87
TiO2 4.70 3.63 4.64 3.65 5.09 3.39 4.25 2.95
Al2O3 17.14 15.29 17.12 15.24 17.13 16.34 16.93 11.43
Cr2O3 0.12 0.00 0.84 0.01 0.56 0.03 0.03
Fe2O3 5.60
FeO 7.21 9.68 5.53 9.93 5.99 9.10 7.54 5.19
MgO 19.99 5.74 20.76 5.81 21.12 4.54 19.12 13.67
MnO 0.05 0.19 0.02 0.19 0.05 0.21 0.19
NiO 0.08 0.02 0.14 0.00 0.02
CaO 0.05 15.30 0.03 16.01 0.01 13.86 0.14 12.61
BaO 0.25 0.20 0.27 0.18 0.30 0.16 0.13 0.08
Na2O 0.72 3.61 0.45 3.79 0.48 4.07 0.67 2.57
K2O 9.09 3.70 9.57 3.68 8.89 4.71 8.59 1.54
P2O5 0.96 1.00 1.01 0.00 0.70
Cl 0.02 0.28 0.03 0.27 0.02 0.30 0.02
F 0.00 0.03 0.00 0.00 0.00 0.02 0.00
H2O 4.26 4.30 4.32 2.25
Total 101.89 99.98 102.28 100.71 102.49 100.13 95.17 98.62

TiO2/TiO2 1.295 1.270 1.501 1.443
BaO/BaO 1.287 1.549 1.931 1.723

T (K) 1424 1426 1407 1412
T (°C) 1151 1153 1134 1139
p (kbar) - a H2O =1 8 6 4 6
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