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Abstract

The presented thesis deals with the multi-dimensional reconstruction of the earth’s

conductivity distribution based on DC resistivity data. This task represents a non-

linear and ill-posed minimization problem with many degrees of freedom. In this

work, techniques for regularization and controlling of this problem are depicted and

classified. Particularly, it is concentrated on explicit regularization types, which impose

constraints onto the model. The system of equations as resulting from the application

of the Gauss-Newton minimization can be solved efficiently. Furthermore, it is shown

how the regularization strength can be controlled.

The method of non-linear resolution analysis plays a central role in the thesis. It

represents a powerful tool to estimate the quality of inversion results. Furthermore,

the derived resolution measures provide the basis for the optimization of experimental

design concerning information content and efficiency.

Methods of error estimation, forward modeling and the calculation of the Jacobian

matrix for DC resistivity data are developed. Procedures for appropriate parameteri-

zation and inversion control are pointed out by studies of synthetic models. Different

inversion and regularization methods are examined in detail. A linearized study is

used to compare different data sets considering their efficiency. Moreover, a triple-

grid-technique for the incorporation of topography into three-dimensional inversion is

presented.

Finally the inversion methods are applied to field data. The depicted optimization

strategies are realized in practice, which increases the economic relevance of three-

dimensional data acquisition. The structure of the subsurface is imaged in detail for

several applications in the fields of cavity detection, archaeology and the investigation

of ground falls. The resolution analysis is successfully established to appraise the

obtained results.



Kurzfassung

In der vorliegenden Arbeit wird die mehrdimensionale Rekonstruktion der Leitfähig-

keitsverteilung im Untergrund ausgehend von geoelektrischen Messungen verfolgt. Das

stellt in der Regel ein nichtlineares, schlecht-gestelltes Minimierungsproblem mit vie-

len Freiheitsgraden dar. Es werden Verfahren vorgestellt und klassifiziert, die dieses

Problem regularisieren und steuern können. Im besonderen konzentriert sich die Ar-

beit auf explizite Regularisierungsverfahren, in denen man zusätzliche Forderungen an

das Modell stellt. Es wird gezeigt, wie das bei der Anwendung des Gauss-Newton-

Verfahrens entstehende Gleichungssystem effizient gelöst und die Stärke der Regular-

isierung optimiert werden kann.

Ausgehend von der Minimierungsstrategie wird die Methode der nichtlinearen Auflö-

sungsanalyse herausgearbeitet. Mit Hilfe dieser kann zum einen die Qualität erhaltener

Ergebnisse eingeschätzt werden. Zum anderen liefern die abgeleiteten Auflösungsmaße

die Basis zur Optimierung des Experimentaldesign hinsichtlich des Informationsge-

haltes.

Für den Fall der Geoelektrik werden Verfahren zur Fehlerschätzung, zur Simulation

von Messungen mit Finiten Differenzen und zur Berechnung der benötigten Jacobi-

Matrix weiterentwickelt. Anhand von synthetischen Studien werden Verfahrensweisen

zur Parametrisierung und Steuerung des inversen Problems herausgearbeitet. Ver-

schiedene Regularisierungs- und Parametrisierungsverfahren werden auf den Prüfstand

gestellt. Eine linearisierte Studie vergleicht dabei verschiedene Datensätze hinsichtlich

ihrer Effizienz. Weiterhin wird an einem Drei-Gitter-Verfahren gezeigt, wie die dreidi-

mensionale Inversion eine vorhandene Topographie einbinden kann.

Schließlich werden die Inversionsverfahren auf Felddaten angewandt. Dabei können

die herausgearbeiteten Optimierungsstrategien unter praktischen Bedingungen umge-

setzt werden, wodurch dreidimensionale Messungen ökonomische Relevanz erhalten.

Für verschiedene Anwendungen in der Hohlraumsuche, Archäologie und bei der Un-

tersuchung von Erdfällen können detaillierte Rückschlüsse auf die Struktur des Unter-

grundes geschlossen werden. Die Auflösungsanalyse wird dabei zur kritischen Bewer-

tung der Ergebnisse erfolgreich eingesetzt.
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1 Introduction

1.1 DC Resistivity Methods

Geophysical methods make use of different physical fields interacting with the existing

materials. The task is to find a concept (or model) of the earth’s structures on the basis

of their physical properties. Since a direct investigation of the physical parameters is

rarely possible, in most cases the interpretation of geophysical measurements represents

an inverse problem.

Amongst geophysical methods direct current (DC) resistivity measurements have been

used for many years to investigate the ground. In analogy with the impedance tomog-

raphy in medical imaging, the measured voltages caused by injected currents reveal

information about the earth’s resistivity structure. Typical applications arise in the

hydrogeological and environmental fields. DC resistivity measurements are used for

engineering or archaeological problems as well.

For many years DC sounding and profiling techniques have been applied, which al-

low for the reconstruction of one- or two-dimensional resistivity models, respectively.

Whereas conventional measurements were obtained by much effort for every single

data, in the early 1990s multi-electrode systems were developed. They allow for em-

ploying arbitrary electrode combinations of a pre-installed electrode array. Nowadays,

many single data can be obtained shortly making the DC resistivity profiling method

one of the standard investigation techniques for near-surface tasks.

The earth often shows three-dimensional characteristics, which can limit a 2D interpre-

tation. As multi-electrode systems were developing rapidly, e.g., by the use of multi-

channel recorders, it became more and more interesting to carry out measurements

allowing for a three-dimensional reconstruction. Such ”3D data” can be acquired ei-

ther by several 2D profiles or by the use of an electrode grid, whose perpendicular lines

and diagonals can be used (Loke and Barker, 1996b). Moreover, the rapid advance-

ments of personal computers allow for the application of multi-dimensional inversion

algorithms.

Many environmental tasks involve polarizable materials, which can be investigated by

measuring the induced polarization (IP). With the development of spectral IP devices

many questions, particularly in hydro-geological fields, could be answered (Kemna
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et al., 2002).

In the recent years, more and more borehole-to-surface and cross-borehole measure-

ments have been carried out (LaBreque and Ward, 1990; Daily and Owen, 1991; Kemna

et al., 2004). Since boreholes exist in many areas, subsurface electrodes were included

in the data acquisition. They help to improve the quality of resolved structures at

depth (Zhou and Greenhalgh, 2002; Sugimoto, 1999).

1.2 Modeling, Inversion and Resolution

An essential part of every inversion scheme is the numerical simulation of measurements

for a given parameter distribution. This forward procedure is generally represented by

the solution of partial differential equations.

Besides the calculation for closed bodies by means of boundary integral methods the

first numerical solutions for arbitrary two-dimensional resistivities were presented by

Mufti (1976) and Dey and Morrison (1979b) using finite difference techniques. The

main difficulty to overcome is the inclusion of the three-dimensionality of the source

into the 2D model solved by a Fourier transform of the partial differential equation

with respect to y and a calculation in the wavenumber domain.

It was not until the early 1980s, that approaches for the two-dimensional inversion

were developed, e.g. the works of Inman (1975) and Tripp et al. (1984) have to be

mentioned. The paper of Loke and Barker (1996b) was the basis of the commercially

available resistivity inversion program RES2DINV, which has been proved in practice.

The foundations for the forward calculation based on finite differences were given by

Dey and Morrison (1979a), Spitzer (1995) and other authors. The introduction of

improved boundary conditions by Zhang et al. (1995) and the singularity removal

technique by Lowry et al. (1989) improved the quality of the modeling results signif-

icantly. Speed and accuracy of different discretization schemes and equation solvers

have been investigated by Spitzer and Wurmstich (1995). As a result of the rapid

advancement of computers, it is now possible to carry out accurate computations for

large models with high resistivity contrasts.

The first 3D inversion of pole-pole data by Park and Van (1991) was followed by other

Newton type schemes, e.g. Li and Oldenburg (1999). Alternatively, algorithms based

on non-linear conjugate gradients methods were successfully used (Ellis and Oldenburg,

1994; Zhang et al., 1995). The inversion schemes for induced polarization reach from

single-step inversions based on a DC resistivity inversion (Beard et al., 1996) to complex

algorithms depicted by Kemna et al. (2000) or Oldenburg and Li (1994).

Most inversion programs assume a flat surface of the earth. The incorporation of
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topography for 2D-models can be accomplished using a Schwarz-Christoffel transforma-

tion (Tong and Yang, 1990). If the topography has to be considered for 3D-problems,

the forward calculation cannot be solved raealistically by finite differences. In this case,

finite element techniques provide suitable solutions (Sasaki, 1994; Sugimoto, 1999).

Parallel to the development of inversion routines questions about the resolution prop-

erties arose. First, they were assessed by modeling Narayan (1992); Sasaki (1992);

Dahlin and Loke (1998, e.g.). The depth of investigation index presented by Olden-

burg and Li (1999) yielded the first numerical resolution measure for DC/IP data.

An intuitive comprehension of resolution has been be obtained by sensitivity studies,

see e.g. Friedel (1997), Spitzer (1998) and Dietrich (1999). Following the uncertainty

analysis for linear problems (Menke, 1989) resolution matrices were defined for non-

linear problems (Meju, 1994a). They have been investigated in detail for DC resistivity

(Friedel, 2000) as well as electromagnetic data (Alumbaugh and Newman, 2000).

The quality of the inversion results can be appraised directly from the resolution ma-

trices (Friedel, 2003). Moreover, the resolution analysis provides the basis for the

optimization of experimental design (Maurer et al., 2000), being particularly interest-

ing for multi-electrode DC measurements as recently stated by Stummer et al. (2004).

However, the linearized scheme of Friedel (2003) is restricted to the special case of the

truncated SVD inversion and shall be generalized in this thesis.

The central objectives of the thesis are methods for modeling, inversion and resolu-

tion analysis of DC resistivity data. The challenges for three-dimensional resistivity

inversion are

• arbitrary electrode positions and configurations.

• incorporation of data errors (measured or estimated).

• implementation of problem-dependent inversion and regularization schemes.

• active control of regularization method and strength.

• efficient and fast inverse problem solution.

• fast and accurate forward calculation.

• estimation of quality and uncertainty of model.

1.3 Guideline of the Thesis

The thesis is composed of four main chapters as outlined in the following.
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Non-linear Inversion and Resolution

The second chapter works as a basis providing insight into the inversion process in

an abstract way without touching the special problems of DC data. It starts with an

overview about non-linear inversion techniques, which iteratively minimize the discrep-

ancy between observed data and model response.

Since multi-dimensional inverse problems prove to be ill-posed, a stabilizing mecha-

nism, denoted by regularization, has often to be introduced. A classification of regula-

rization methods is presented and the determination of the regularization strength is

depicted.

The application of the Gauss-Newton method results in a linear least squares system. It

is shown, how these normal equations can be solved efficiently using conjugate gradient

techniques. In particular, equation solvers for multiple regularization parameters are

presented that allow for optimized regularization.

By the singular value decomposition (SVD) a comprehension of the mathematical

processes in solving linear least squares problems can be obtained. It provides model

and data eigenvectors of the problems, which can be used for distinct regularization

methods. The generalized SVD (GSVD) helps to solve problems of arbitrary model

constraints.

Following linear resolution, the resolution analysis is formulated for non-linear inversion

with explicit regularization. It is shown, how the SVD and GSVD can be used to

calculate resolution matrices. Starting from that, resolution measures are derived that

appraise the quality of inversion results and the information content of data sets.

Inversion of DC Resistivity Data

This chapter provides the prerequisites for a successful application of the minimization

techniques to DC resistivity data. To control the inversion process, it is important to

estimate the errors of the observed data. The investigation of different noise sources

under practical considerations allows for the construction of data weighting matrices

used in the inversion. Methods for appropriate parameterization of the subsurface are

given.

A central part of every inversion is the forward calculation predicting the response of

the model. A finite difference operator in connection with the singularity removal tech-

nique is presented. To appraise the accuracy of the forward response, the reciprocity

principle is used.

The Jacobian or sensitivity matrix contains the partial derivatives of the model re-

sponses with respect to the model parameters, which is necessary in every iteration

step to solve the linearized subproblem. It is demonstrated, how DC sensitivities can

be obtained for homogeneous and inhomogeneous models. For this purpose, the re-
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sults of the singularity removal procedure are used to calculate the Jacobian without

additional effort.

Inversion and Resolution Studies

The depicted inversion and regularization methods are compared considering profile

data produced by a synthetic model. This involves the determination of appropriate

regularization and line search parameters. Furthermore, the resolution of different

model cells are investigated.

A linearized study is presented to derive comparable resolution measures. It is shown

how different inversion methods affect resolution. Moreover, different data sets are

investigated concerning information content and efficiency. Thus, strategies for the

optimization of data sets are set up.

The experience for profiles data is used to design three-dimensional data acquisition.

Two typical electrode layouts are considered to optimize 3D experimental design. Dif-

ferent parameterization techniques are compared.

Moreover, an approach is presented that involves Finite Element calculations on tetra-

hedral grids to incorporate topography into 3D DC inversion.

Application to Field Data

In the last chapter the inversion routines are applied to field data. Problems of cavity

detection, ground falls on salt-waste dump and archaeology are successfully investi-

gated. The results of the experimental optimization are proved in practice. Further-

more, the resolution analysis is used to appraise the inversion results.

Finally, the main results are summarized and discussed to point out future objectives.
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2 Non-linear Inversion and Resolution

In applied geophysics a concept of the earth has to be found based on a limited number

of measurements. In most cases this represents a non-linear inverse problem. Solu-

tions are found by the iterative minimization of the misfit between the data and the

model’s response. In section 2.1 the reader is introduced to the methodology of non-

linear minimization. In particular, gradient techniques and Newton type methods are

described.

Many multi-dimensional inverse parameter problems are known to be non-unique to

solve and numerically instable, depicted by the term ill-posed. Hence, the inverse prob-

lem has to be regularized by appropriate techniques. Section 2.2 describes, how inver-

sion can be controlled by various methods. A classification of regularization techniques

is given. One successful way is to introduce a penalty functional, which is weighted by

regularization parameter. It is shown, how the strength of the regularization can be

determined appropriately.

In every iteration step, a linear sub-problem representing a large-scale system of equa-

tions has to be solved. In Section 2.3 it is presented, how equation solvers on the

basis of conjugate gradient methods can be adapted to the specific formulation. The

resulting algorithms prove to be very efficient. Furthermore, they can be extended for

the creation of a set of models used to search for optimum regularization.

The singular value decomposition (SVD) is a well-known numerical tool helping to

understand inverse problems. By generalization it can be applied to the construction

of generalized inverse matrices for all explicit regularization schemes as depicted in

section 2.4.

Once a result is found by non-linear inversion, methods have to be applied to provide

information on the reliability of the model. Resolution analysis as known from linear

inverse problems is formulated for non-linear inversion in section 2.5. The resolution

matrices are used to derive measures for the information content of the data set. They

can be obtained by the SVD/GSVD or by solving a linear inverse problem.
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2.1 Inversion Methods

2.1.1 Inversion Methodology

Assume a set of N measurements affected by the physical property p of the subsurface.

The set of all data is represented by the data vector d = (d1, d2, . . . , dN)T . We are

then interested in finding a spatial parameter distribution p(~r) that explains our data

to a certain degree. As we know, data are contaminated with noise. Thus, we try to fit

that part of the data, which is generated by parameter variations. The function p(~r)

is discretized into a limited number M of model parameters mi serving as weighting

coefficients for basis functions φi(~r) such that

p(~r) =
M∑
i=1

miφi(~r) . (2.1)

Arranging the model parameters yields the model vector1

m = (m1,m2, . . . ,mM)T .

The basis functions φi have to be selected such that the reality can be described with

satisfying accuracy. For that reason it seems necessary to introduce many basis func-

tions. In contrast, it is important to limit the degree of freedom. The φi can be spectral

functions, Chebychev polynomials as well as problem inherent functions (Oldenburg

et al., 1993). Another way is to subdivide the region of interest into sub-domains Ωi

and to define the basis functions being

φi(~r) = 1 for ~r ∈ Ωi and 0 elsewhere.

The sub-domains Ωi are convex bodies such as hexahedrons, either defining a grid

or not, or tetrahedrons. Central objective of inversion is to find a model m, whose

response2 f(m) fits the data vector d. For linear problems there exists a linear relation

between m and f , which can be expressed by a matrix-vector multiplication

f(m) = Fm .

Examples for linear relations in geophysics are gravimetry, magnetics, or vertical seis-

mic profiling. For non-linear problems the forward operation depends on the model m

itself, which holds for all methods that are based on Maxwell’s equations. Beginning

from a starting model m0, an iterative process is applied to update the model until

1The model vector is often identified with the term ”the model”.
2The (forward) response are the data, which would have be measured assuming a model.
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data fit or convergence is achieved. In each iteration step k a new model is calculated

by adding a model update ∆mk

mk+1 = mk + ∆mk . (2.2)

A Taylor approximation of first order yields

f(mk + ∆mk) = f(mk) +
∂f(mk)

∂m
∆mk + . . . ≈ f(mk) + S∆mk ,

where the partial derivative of the model response with respect to the model parameters

is called Jacobian or sensitivity matrix S ∈ RN×M with the elements

Sij(m
k) =

∂fi(m
k)

∂mj

. (2.3)

Setting the response of the new model f(m + ∆m) equal to the data d we obtain the

non-quadratic equation

S∆m = d− f(m) , (2.4)

which has to be solved in some sense to minimize the residual vector d− f(m). Often,

for each data point di an error εi is known or can be estimated, which is used for

weighting the residual. Using an Lp-norm of the weighted residual, a data functional

Φd to be minimized is defined by

Φd(m) =
N∑
i=1

∣∣∣∣di − fi(m)

εi

∣∣∣∣p = ‖D (d− f(m)) ‖pp (2.5)

with D = diag

(
1

εi

)
.

Generally, different values for p can be used (Farquharson and Oldenburg, 1998) cor-

responding to the expected noise characteristics. The L1-norm is particularly advanta-

geous, if the noise has a long-tailed distribution. Since it is less sensitive to outliers in

the data, an L1 minimization procedure is often called ”robust inversion” (Claerbout

and Muir, 1973).

In the following, we assume the noise to be Gaussian corresponding to the use of

the L2-norm measure. The mean value of the data functional χ2 = Φd/N is often

considered for linking to the statistical nature. A value of χ2 = 1 implies the data

being fitted within their errors. Thus, the functional norm can be written as

Φd = [D(d− f(m))]T [D(d− f(m))] = (d− f(m))TDTD(d− f(m)) . (2.6)
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The product DTD is the inverse of the data covariance matrix Cd as used by Tarantola

(1978) for the case of uncorrelated errors with standard deviations εi and variances ε2i .

If correlations between the individual errors are present, the covariance matrix Cd

does not remain diagonal. A profound insight into the nature of the error sources

is necessary to find out, whether systematical data correlations exist. Examples of

correlated errors in geophysics are:

• The individual responses as function of frequency in magnetotelluric measure-

ments are disturbed by local conductivities producing static shift, which acts as

systematic source of error, if not considered in inversion.

• If the electrode positions of a multi-electrode system are considered to show un-

certainties, all measurements using an individual electrode will show systematic

variations.

As we will see later, the functional to be minimized can be expanded by other terms

yielding a combined Φ. At first, we set Φ = Φd.

2.1.2 The Steepest Descent Method

It is obvious, that one must seek the minimum of Φ in the direction of the steepest

descent of Φ. The model update is a proportion of the negative gradient of Φ, γk =

−∇mΦ, the partial derivative vector ∇m reads

∇m =

(
∂

∂m1

,
∂

∂m2

, . . . ,
∂

∂mM

)T
.

A step length τ of the descent step has to be estimated such that Φ(mk + τγk) is

minimized. A procedure, which tries to search for an optimum solution along the line

defined by varying τ is referred to as line search.

Algorithm 1 Steepest descent method

k = 0

while Φ(mk) > Φ∗ do

γk = −∇mΦ(mk) {find negative gradient}
find τ k that minimizes Φ(mk + τ kγk) {line search}
mk+1 = mk + τ kγk {model update}
k = k + 1

end while

In every iteration the forward response and the functional’s gradient have to be cal-

culated. The latter can be achieved by the explicit use of the Jacobian matrix or by
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additional forward calculations. The convergence rate for this method is very slow

for ill-posed problems. This results in many forward calculations, which are generally

very time-consuming. Hence, this method is very simple to implement, but rarely of

practical use.

2.1.3 The Nonlinear Conjugate Gradients Method

The technique of the conjugate gradients was developed by Hestenes and Stiefel (1952)

to solve a linear system of equations Ax = b for sparse matrices A. The underlying

principle is to find a set of orthogonal directions and to compute accompanying weights

in a manner that every search direction is used only once. As a result, convergence

is generally fast compared to steepest descent equation solvers. Since the method is

based on an iterative minimization of the functional 1/2xTAx − xTb, this technique

can also be exploited for non-linear minimization (Shewchuk, 1994; Vogel, 2002), as

successfully used for the inversion of magnetotelluric (Mackie and Madden, 1993; Rodi

and Mackie, 2001) and DC resistivity (Zhang et al., 1995; Ellis and Oldenburg, 1994)

data.

Algorithm 2 Nonlinear conjugate gradients (NLCG)

k = 0

g0 = ∇mΦ(m0)

γ0 = −g0

δ0 = ‖g0‖2

while
∥∥γk∥∥ >tol do

find τ that minimizes Φ(mk + τγk)

mk+1 = mk + τγk

gk+1 = ∇mΦ(mk+1)

δk+1 =
∥∥gk+1

∥∥2

βk+1 = δk+1/δk

γk+1 = −gk+1 + βk+1γk

k = k + 1

end while

The gradient gd of the functional Φd can be easily computed from the sensitivity matrix

using the chain rule

gkd = 2∇mΦd(m
k) = STDTD(f(mk)− d) .

In each iteration k the model response f(mk) has to be calculated as well as the gradient

gk. In some cases it is possible to calculate the product of the sensitivity matrix and
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an arbitrary vector without explicitly forming S economizing memory. One example

using this method is the 3D DC inversion of Zhang et al. (1995).

2.1.4 Newton Type Methods

To derive Newton’s method, we start with a second order Taylor series for the functional

Φ of an updated model m + ∆m

Φ(m + ∆m) ≈ Φ̃(m + ∆m) with (2.7)

Φ̃(m + ∆m) = Φ(m) + (∇mΦ(m))T∆m +
1

2
∆mT (∇2

mΦ(m))T∆m + . . .(2.8)

where the second derivative ∇2
m is the Hessian matrix with the elements(

∇2
mΦ
)
ij

=
(
∇m∇m

TΦ
)
ij

=
∂2Φ

∂mi∂mj

.

The second order approximation Φ̃ is minimized by setting its first partial derivative

with respect to ∆m to zero3, which results in

∇mΦ(m) +∇2
mΦ(m)∆m = 0 .

Hence, the model update ∆mk is sought by solving the equation(
∇m

2Φ
)
∆mk = −∇mΦ . (2.9)

Equation (2.9) represents a linear subproblem to be solved in every iteration step.

Applying an additional line search to Newton’s method results in algorithm 3. For the

functional Φd as defined by (2.6) holds

Hk
d = ∇m∇m

TΦd = ∇m

(
2STDTD(f(mk)− d)

)
= 2STDTDS + 2(∇m

TST )DTD(f(mk)− d) . (2.10)

The second term at the right hand side is generally difficult to compute. It can be

neglected, if the problem is not strongly non-linear (∇m
TST is small).

Gauss-Newton and quasi-Newton methods

The method using the Hessian approximation Hk
d = 2STDTDS is called Gauss-Newton

method. Besides the easier computation it has the advantage that the Hessian ap-

proximation is positive semidefinite, which guarantees the Gauss-Newton step to be

3The necessary condition for a minimum is the positivity of the Hessian matrix, which can be shown
easily for all subsequent functionals.
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Algorithm 3 Newton’s method

k = 0

choose appropriate m0

calculate Φ(m0)

while Φ(mk) > Φ∗ do

calculate γk = −∇mΦ(mk) {negative gradient}
calculate or update Hk = ∇2

mΦ(mk) {Hessian}
∆mk = Hk−1

γk {solve linear subproblem}
find τ k minimizing Φ(mk + τ∆mk) {line search}
mk+1 = mk + τ∆mk {model update}
k = k + 1

calculate Φ(mk) {forward calculation}
end while

a descent direction. However, the quadratic convergence of Newton’s method is lost

for strong non-linearity. With ∆dk = d − f(mk) the linear subproblem (2.9) can be

written as(
(DS)T (DS)

)
∆mk = (DS)TD∆dk (2.11)

and interpreted as least squares solution of DS∆mk = D∆dk .

Due to the second order of the Taylor approximation Newton’s method has quadratic

convergence. Thus, the number of iterations will be small, if the starting model is

in the neighborhood of the minimum. If there are several local minima, the solution

is uniquely defined by the starting model. The quest for a global minimum can be

achieved by starting from a set of different starting models m0. Other globalization

schemes are trust region techniques or homotopy methods (Jegen et al., 2001; Vogel,

2002). However, for most problems there is no need for such methods.

The crucial point of Newton’s method is to recalculate the Hessian matrix in every

iteration, which can be very time consuming. For some problems it can be obtained as a

byproduct of the forward calculation routine. An alternative is to update the Hessian

by previous gradients, which results in a secant method, also referred to as quasi-

Newton method. The well-known BFGS method developed by Broyden, Fletcher,

Goldfarb and Shanno uses the approximation

Hk+1 = Hk − Hk∆mk∆mkTHk

∆mkTHk∆m
+

ykyk
T

∆mkTyk
, (2.12)

where y = ∇mΦ(mk+1)−∇mΦ(mk) .
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A variant of this method is used by Loke and Barker (1996b) in the form of (Broyden,

1972)

Hk+1 = Hk +
[f(mk+1)− f(mk)−Hk∆mk]∆mkT

∆mkT∆mk
.

Loke and Dahlin (2002) showed that for most 2D DC resistivity problems this method

is sufficient.

For strongly non-linear problems the line search procedure becomes inevitable. Gener-

ally the optimum τ lies between 0 and 1. The more linear the problem is, the closer the

minimum approaches τ = 1. For implementation of line search methods see section 4.1.

2.2 Regularization

2.2.1 Regularization Types

Multidimensional inversion problems generally have more free model parameters than

data. In many cases the model domain shows both well resolved and poorly resolved

model parameters. Consequently, there exist a lot of models fitting the data well.

The use of the above described minimization scheme would probably lead to highly

oscillating models with huge parameter contrasts. Therefore, it becomes necessary to

eliminate the ambiguity of the problem. Such techniques are denoted with the term

regularization. It denotes the procedure of removing the singularity of the left hand

side matrix in the normal equations (2.11).

Implicit vs. explicit methods

One type of regularization involves approximate solutions to the basis equation

DS∆mk = D∆dk

or the corresponding normal equations without explicitly demanding any specific model

characteristics. Krylov subspace methods have the characteristics, that smooth model

components converge faster than non-smooth model parts (Hansen, 1992). By stopping

the iteration after kmax steps a regularization can be introduced. Small values of

kmax correspond to smooth solutions, whereas large values result in more structured

solutions. We can exploit this property either by the NLCG as mentioned above or in

the form of the TLS (truncated least squares) method, which solves the Gauss-Newton

subproblem incompletely on the basis of conjugate gradients (see section 2.3). Another
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possibility is the use of reconstruction techniques derived from tomography problems

such as SIRT (simultaneous iterative reconstruction technique).

In contrast, regularization can be applied directly to control the model in an explicit

way. An example is the truncated SVD (TSVD) solution that applies a generalized

inverse using a limited number of degrees of freedom, see section 2.4. An alternative

is the (explicit) introduction of an additional model functional Φm to be minimized,

which is a function of the model update or the model itself. Explicit regularization

can be interpreted as numerical stabilization of the problem, the additional term is

often called ”stabilizer”. Actually, the stabilizing term ensures the uniqueness of the

solution, because the unregularized normal matrix is generally singular. For all explicit

methods a generalized inverse A† is found such that ∆mk = A†∆dk.

Local vs. global constraints

Constraining the model update ∆mk in every iteration step is referred to as local

regularization. Each subproblem is treated as independent linear inverse problem to

be regularized. This is the case for the truncated SVD inversion (TSVD, see section 2.4)

as well as for the truncated least squares (TLS) and iterative reconstruction techniques

like SIRT. The model functional is considered to have the form of an L2-norm

Φm = ‖c(∆m)‖2
2 .

The constraint function c(m) represents some expected behavior of the model up-

date. Probably the first and simplest function is c = ∆m used by the ridge regression

method (Marquardt, 1963), also denoted as Marquardt-Levenberg method. The cor-

responding functional denotes the quadratic length of the update vector, which is kept

small to prevent oscillations in the model. From this idea the term ”damping” origi-

nates, which is often used in connection with locally constrained inversion (Loke and

Barker, 1996b).

On the contrary to local regularization the term global regularization is used to con-

strain the model itself. Then, the model functional

Φm = ‖c(m)‖2
2

remains invariant during inversion process. For example, it is used to keep the model

close to a model concept m0 derived from a-priori information. Other approaches are

techniques, that prefer models that are ”simple” in a certain sense based on Occam’s4

principle (or Occam’s razor):

4William of Occam was a monk living in Scotland’s 14th century.
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One should not increase, beyond what is necessary, the number of entities

required to explain anything. (William of Occam)

Thus, of all possible explanations for a set of observations, the simplest has to be

chosen. But what is simple? Simplicity can certainly be interpreted subjectively. For

example, many authors identify Occam’s principle with smooth model inversion (Con-

stable et al., 1987; Beard et al., 1996). Besides the minimization of parameter gradients

in the model, the number of occurring parameter jumps can be treated as function to

be minimized. Such approaches are referred to as total variation (Vogel, 2002) or fo-

cused (Portniaguine and Zhdanov, 1999) inversion and introduce a non-linear model

functional. Other realizations for model simplicity can be defined by probability dis-

tributions or entropy (Press et al., 1992).

Actually, every explicit global regularization is following Occam’s principle5 defining

its own interpretation of ”simplicity”. To the contrary Occam’s principle is restricted to

global regularizing methods, even though the desired model property (e.g. smoothness)

can also be applied to the model update in a local regularization scheme. However,

even if all model updates are relatively smooth, it is not evident that the final model

has to be smooth as well.

The gradient methods Steepest Descent and NLCG have effects onto the model itself

and can thus be denoted as globally regularizing. Table 2.1 provides an overview

of the discussed inversion/regularization approaches in terms of explicit/implicit and

local/global techniques.

implicit/indirect explicit/direct

local TLS, SIRT TSVD, Ridge Regression

global NLCG, Steepest descent Occam-Type, focused inv.

Table 2.1: Classification of regularization schemes regarding the effect on model or

model update and explicit or implicit formulation

From the information point of view, regularization supplements the information pro-

vided by the data. The additional information is either obtained by a-priori knowledge

or generated by expectations to the investigated structures. Amongst all models fitting

the data equivalently, the one with minimum constraint Φm is favored.

5Unfortunately, the term Occam inversion is often used to denote smoothness constrained schemes,
which is just one realization of simplicity.
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2.2.2 Explicit Regularization

To weight data and model functional, a regularization parameter λ is introduced to

construct the total functional to be minimized

Φ = Φd + λΦm → min . (2.13)

If the data variances are known, the data functional should converge to the correspond-

ing Φ∗
d. Thus, the problem can be formulated as constraint minimization of Φm under

the condition Φd = Φ∗
d. The introduction of a Lagrangian parameter µ yields

Φ = Φm + µ|Φd − Φ∗
d| → min ,

whose solution is identical to those of equation (2.13) for µ = 1/λ. For historical

reasons the first formulation is used. The gradient of Φ is the weighted sum of the

gradients of Φd and Φm, which also holds for the Hessian. Hence, Newton’s method

applied to Φ reads(
∇m

2Φd + λ∇m
2Φm

)
∆m = −∇mΦd − λ∇mΦm . (2.14)

In terms of matrix inversion it is reasonable to write Φm as squared norm of a product

of a constraint matrix C and the difference between the model m and a reference

model m0

Φm = ‖C(m−m0)‖2
2 = (m−m0)TCTC(m−m0) , (2.15)

which possesses the gradient

∇mΦm = 2CTC(m−m0)

and the Hessian

∇m
2Φm = 2CTC .

It is possible to introduce the additional gradient into gradient methods like NLCG.

However, as those include intrinsic regularization by stopping the iteration before con-

vergence, the advantages of the NLCG algorithm are destroyed.

Considering the Gauss-Newton method, equation (2.11) is expanded by Φm’s gradient

and Hessian, yielding(
STDTDS + λCTC

)
∆mk = STDTD(d− f(mk))− λCTC(mk −m0) . (2.16)

Equation (2.16) represents the regularized normal equations. It is a special case for

the statistical model estimator of Tarantola (1978)

(STC−1
d S + λC−1

m )∆mk = STC−1
d ∆dk − λC−1

m (mk −m0) . (2.17)
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In analogy to DTD = C−1
d , the matrix CTC can be interpreted as the inverse of

the a-priori model covariance matrix Cm. For reasons of clarity we continue using

the data weighting matrix D and the constraint matrix C, which has advantages in

the implementation of equation solvers and in the calculation of resolution properties.

Nevertheless, one has to keep in mind the role of the matrices CTC and DTD as

a-priori covariances for model and data, respectively.

The application of a local regularization scheme minimizing

Φ =
∥∥D(S∆mk −∆dk)

∥∥2

2
+ λ

∥∥C∆mk
∥∥2

2

with respect to ∆mk in every iteration step leads to(
STDTDS + λCTC

)
∆mk = STDTD∆dk , (2.18)

which differs from equation (2.16) merely by the missing term −λCTC(m − m0) at

the right hand side. Hence, local constraints can be implemented as global constraints

by setting m0 = mk in every iteration.

The first iteration model m1 is identical for both schemes. It points out, that the main

model structures appear in the first inversion step. In the further course of inversion

the results differ. Assuming, λ is large enough to dominate the inverse subproblem,

the solution for ∆m tends to approximate m0 −mk. Hence, mk+1 is biased towards

the reference model m0 (Meju, 1994a). In the course of iterations trade-off between

distance to m0 and data fit is established. This can be advantageous for convergence

reasons as well as disadvantageous, e.g. if m0 is far from reality and the data cannot

be fitted appropriately. See resolution analysis in section 2.5 for details.

2.2.3 Implementation

There is a variety of regularization schemes in inverse theory differing in the use of

the constraint matrix C and the reference model m0. For an overview the reader is

referred to Zhang et al. (1996) and Vogel (2002).

Zeroth-order regularization

The simplest method to be implemented is the application of the identity matrix

I used by the ridge regression method of Marquardt (1963) as local stabilizer. The

global constraints Φm = ‖m−m0‖2
2 are successfully used in cases, where some a-priori

model m0 is known from other investigations or geological concepts. However, using a

more or less regular model parameterization, it turns out that well resolved model cells

in the neighborhood of the sensors are over-accentuated while badly resolved regions,

e.g. in deep layers, show much too less structure.
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One way to circumvent this naturally occurring effect is to create a parameterization

that takes into account the physical resolution properties. However, resolution is not

known before inversion, so the realization becomes a trial-and-error procedure. In

practice, an idea of geometrical resolution can often be derived by experience.

Another disadvantage of using the identity matrix as stabilizer is the fact, that the

model update vector is implicitly expected to possess a Gaussian distribution with zero

mean. For many cases, for example large bodies of constant resistivity, this assumption

leads to unreasonable artifacts. However, the method is suitable for small parameter

inversions or in the absence of geometrical relations, e.g. for the subspace methods of

Oldenburg et al. (1993) or Siripunvaraporn and Egbert (2000).

Another possibility is the introduction of a weighting function for the individual model

parameter. The matrix C is then a diagonal matrix with the weighting function on

the main diagonal and zeros elsewhere. The product of
√
λC can also be interpreted

as diagonal Lagrangian parameter matrix.

Generally, the weighting function obtains large values for well resolved and small values

for badly resolved parameters. This function can be an approximation to the diagonal

of the resolution matrix. However, changing the constraints produces a changed res-

olution matrix resulting in an iterative constraint balancing. An interesting approach

of changing the weights during inversion is the active constraint balancing method of

Yi et al. (2003). In several cases it proves reasonable to make use of the coverage or

cumulative sensitivity. In analogy to linear tomography problems, it is the sum of all

(absolute values of the) sensitivities for a given model parameter

covj =
N∑
i=1

|Sij| .

Since the coverage changes during the iterations as the sensitivity does, it seems rea-

sonable to use the one of the starting model. This can be interpreted as an inverse

a-priori model covariance matrix.

Smoothness constraints

Simplicity is often associated with smooth models motivated by the limited physical

resolution. For geometrically arranged model parameters it is easily possible to calcu-

late model gradients. The constraint matrix C then represents a discrete derivation

operator δn of order n, m0 can be neglected for a homogeneous starting model. Dis-

crete first order derivation for a one-dimensional model is achieved by finite differences

δmi+1/2 = mi+1−mi, which may either be divided by the distance δxi+1/2 between mi
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and mi+1 or not. For the latter case the matrix C reads

C1st =



−1 1 0 . . . 0 0

0 −1 1
. . . 0 0

...
...

...
. . .

...
...

0 0 0
. . . 1 0

0 0 0 . . . −1 1


. (2.19)

Note that for the actual differential operator every row i has to be multiplied with the

factor 1/(xmi+1 − xmi ), if the xm denote representative cell locations, e.g. the midpoint.

Following equation (2.19), the gradient matrices for all directions can be assembled,

denoted with Cx, Cy, Cz. By introduction of weights αx, αx, αz for the various orien-

tations the total regularization matrix can be calculated (Li and Oldenburg, 1999)

CTC = αxC
T
xCx + αyC

T
yCy + αzC

T
z Cz . (2.20)

The weights αν can be used to enforce lateral or vertical model changes, which is useful

in layered media or for discriminating vertical boundaries of geological units. Note that

the matrix C can also be assembled as

C =


√
αxCx√
αyCy√
αzCz

 .

The latter formulation is advantageous for computing resolution matrices using the

GSVD (see section 2.4).

A discrete second order derivative with respect to x in one dimension is given by(
δ2m

δx2

)
i

=
2

xmi+1 − xmi−1

(
mi+1 −mik

xmi+1 − xmi
− mi −mi−1

xmi − xmi−1

)
.

It can be applied to all present directions, leading to an equation system that links

neighboring model cells. All coefficients for the cells are assembled in a matrix C.

The element Cmn represents the contribution of the nth cell to the smoothness at

the mth cell. At the boundaries of the model assumptions have to be made for the

outward neighbors6. This corresponds to the boundary conditions for the discretization

of partial differential equations. The use of homogeneous Neumann conditions, e.g.,

works if the model parameter were continued outside the model boundaries. As the

roughness is required to be kept small, this can sometimes lead to artificial structures

6If the smoothness is only assembled for the inner cells, the cells at the model edges are unconstrained,
which leads to artifacts in the result.
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near the boundaries. One can avoid this by formulating derivatives at one boundary

only with respect to the other directions. However, it turns out that models tend to

show over-accentuated structures at the boundary cell line.

It has to be noted that the use of Neumann conditions at all boundaries leads to

singular matrices, as known from the solution of elliptic boundary value problems.

Although the regularity of the subproblem’s left hand side matrix is still ensured, the

necessary iteration numbers in the Krylov methods increase significantly. Since the

smoothness is applied to the model changes, it shows reasonable to use homogeneous

Dirichlet boundary conditions for the second order smoothness, which proves to yield

acceptable results in most cases.

It can easily be seen, that for equidistant grid models (∆x=∆y=∆z) the second order

smoothness matrix equals the quadratic first order smoothness

C2nd = CT
1stC1st .

Assuming ∆x = ∆y = ∆z = 1, the matrix C constitutes of the constant value of

-6 at the main diagonals and +1 at the off-diagonals representing the 6 respective

neighboring cells.

Mixed constraints

Different constraints can be mixed using matrix algebra

• Addition C = C1 + C2, e.g. smoothness constraints and step-length damping to

make C regular.

• Multiplication C = C1C2, e.g. to weight the smoothness for different model

regions.

2.2.4 Choosing the Regularization Parameter

The regularization or Lagrangian parameter λ arises for explicit regularization schemes

in equation (2.13). It weights the model constraints against the data misfit. Small

values of λ will produce a highly structured model with huge parameter contrasts,

explaining the data well. To the contrary, large λ values result in ”simple”models with

poor data fit. For implicit regularization schemes the number of iteration steps kmax
(for TLS and NLCG) or the number of used model vectors rTSV D (for TSVD) work as

regularization parameter. Small kmax/rTSV D correspond to a large λ and vice versa.7

7In the following, the explicit regularization parameter λ is adopted. However, the considerations
can easily be transferred to implicit methods.
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Generally, a trade-off between data fit and model constraints has to be sought for both

local and global regularization. In many cases, reasonable values for λ can be derived

regarding the physical units of data and model or from experience (Loke and Barker,

1996b). However, it is worth thinking about how λ can be optimized so as not to loose

valuable information, because the regularization parameter significantly influences the

quality of the model.

In the following, methods for choosing the Lagrangian parameter are presented. For

an overview the reader is referred to Vogel (2002) and Kilmer and O’Leary (2001).

Farquharson and Oldenburg (2004) compared selection methods for the 1D-inversion

of electromagnetic loop-loop data.

Discrepancy principle For known data covariances the inverse problem can be formu-

lated as minimization of Φm with the equality constraint

Φd =
N∑
i=1

∣∣∣∣di − fi(m)

εi

∣∣∣∣2 = Φ∗
d . (2.21)

The value of λ then has to be chosen to obtain the target value Φ∗
d = N . This can

be done by searching the null point of an n-point approximation of the function

Φd(λ)−N , e.g. by a bisection scheme.

In non-linear inversion the target data misfit cannot be reached until a few iter-

ations are applied. One solution to this problem is to define local target values

for every iteration, e.g. a logarithmically spaced series down-going from Φd(m
0)

to N , which requires the knowledge of the final iteration number.

L–curve methods The plot of the data functional Φd and the model functional Φm

for a varying λ is called L–curve due to its typical L–shaped form (Hansen and

O’Leary, 1993). Figure 2.1 shows the L–curve of a typical linear ill-posed problem

in log-log scale. As pointed out above, a low data functional Φd corresponds to

high model functional Φm and vice versa. At each point a better data fit is

penalized by decreasing model simplicity, whereas a ”simpler” model results in

poor data fit. In the center of the plot one can often observe a characteristic

”corner” predicting an appropriate λ.

One very simple suggestion for the optimum is the point, where the curva-

ture of the L–curve is maximized. The curvature c of the parametric function

(ψd(λ), ψm(λ)) can be calculated by

c(ψd, ψm) =
ψ̈mψ̇d − ψ̇mψ̈d

(ψ̇d
2
+ ψ̇m

2
)3/2

, (2.22)
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Figure 2.1: Typical L–curve as arising in ill-posed problems for the damped least

squares solution of Ax = b

where the single and double dots represent the first and second order derivatives

with respect to λ, respectively.

In case of local regularization ψm is the norm of the model update constraint

‖C∆mk‖, whereas ψd represents the residual norm of the linear subproblem

‖DS∆mk −D∆dk‖. For a global regularizing scheme we use

ψm = ‖C(mk + ∆mk −m0)‖ and ψd = ‖D(f(mk + ∆mk)− d)‖ .

Figure 2.2 shows the L–curve and its curvature for a reasonably limited range of λ.

The maximum curvature and thus the optimum λ is clearly defined. In order to

economize the time-consuming forward calculations for all models mk +∆mk(λ)

the linearization

f(mk + ∆mk) ≈ f(mk) + S∆mk

is used for the approximation of the L–curve. There are other ideas of detecting

the ”corner” as pointed out by Oraintara et al. (1999) obtaining similar results.

Generalized cross validation (GCV) The idea of the generalized cross validation is

based on the philosophy, that if any row of the unregularized normal equations is
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Figure 2.2: L–curve and its curvature for a reasonable interval of λ, the optimum re-

gularization parameter is denoted by a circle

left out, the regularized solution will fit the data as well, independent of λ. For

the least squares solution of Ax = b the GCV function reads (Hansen, 1992)

g(λ) =
‖Axλ − b‖2

2

trace(I−AA†
λ)

2
. (2.23)

The minimum point of the GCV function determines the optimized regulariza-

tion. For the computation of the main diagonal of AA†
λ an SVD or bidiagonal-

ization scheme is required. However, for the estimation of λ only a few iterations

have to be carried out. For details of the GCV method see Vogel (2002) or

Farquharson and Oldenburg (2004).

It was pointed out by Vogel (1996), that the L–curve method is not guaranteed to

achieve plausible results and the GCV should be the method of choice. Nevertheless,

by limiting λ to a reasonable range for most geophysical examples plausible models

can be obtained by the maximum curvature method (Li and Oldenburg, 1999).

Changing λ during inversion

A well-discussed question in non-linear problems is that of changing the regularization

parameter during inversion. Generally, the underlying minimization procedure (with
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the use of globally operating constraints) treats λ as parameter, which merely depends

on the number of data and their errors, the model discretization and the used con-

straints. All of these aspects are determined before the inversion, which pleads for

constant regularization.

Different from global schemes, the use of local constraints leads to an independent linear

sub-problem in every iteration. For each of them an appropriate λ can be determined,

e.g., by the L–curve criterion. Many authors using local regularization schemes as

Marquardt (1963), Loke and Barker (1996b) and Kemna (2000) discuss the use of

decreasing λ beginning from a large starting value down to a minimum value. Also,

Farquharson and Oldenburg (2004) applying a global smoothness constrained inversion

use a cooling type schedule of decreasing λ. However, there are practical reasons such

as the limited accuracy of the forward routines, which can entail interpretation failures.

To prevent overshooting in the early iterations, a line search parameter can be applied

to ensure convergence. Generally, the use of larger λ yields similar, but smoothed,

structures with less magnitude, which represents an easy-to-control alternative to the

line search procedure. However, the resolution analysis shows that the model is pre-

dicted by the final λ, which has to be chosen appropriately. The ultimate criterion is,

whether the target value Φ=
dN corresponding to χ2 = 1 is reached.

2.3 Equation Solvers for Inverse Problems

In every iteration step k, the linearized subproblem (2.16) to be solved reads(
STDTDS + λCTC

)
∆mk = STDTD(d− f(mk))

{
−λCTC(mk −m0)

}
.

Note that for local regularization schemes the term within {. . .} vanishes. The Jacobian

matrix S ∈ RM×N is a full matrix, whereas the matrices D ∈ RN×N and C ∈ RM×M

are generally sparse. The vectors have the dimensions m∗ ∈ RM and d, f ∈ RN . The

solution ∆mk depends on the matrices S, D, C and the vectors ∆dk = d − f(mk)

and δmk=mk−m0. The equation can be interpreted as solution of Ax = DS∆mk =

D∆dk = b in a C-weighted least squares sense. In the following equation solvers are

presented solving Ax = b for x in least squares senses.

For small-scale systems the normal equations can be solved by matrix inversion of the

left hand side matrix, which is always possible for λ > 0, by appropriate methods like

Gaussian elimination or QR decomposition. In multidimensional inversion, the number

of model parameter and data are quite large, which prohibits the use of direct inversion

from both computer time and memory usage point of view. Hence, an approximate

solution is sought using iterative methods. To save computer memory, it is required

that



26 2 Non-linear Inversion and Resolution

• matrices of the form ATA are never formed explicitly and

• the transposed matrices are used without allocating additional memory.

2.3.1 Fixed Regularization Strength Solvers

The conjugate gradient method derived by Hestenes and Stiefel (1952) is widely used

for iteratively solving large-scale systems of equations Ax = b. Since in every iteration

only one matrix vector product has to be calculated, it is primarily used for sparse

A as arising in the discretization of partial differential equations. However, conjugate

gradients are not restricted to sparse systems and can also be applied to the normal

equations (Shewchuk, 1994). Although the numerical effort is increased for full matrices

as the Jacobian represents, conjugate gradients techniques prove to be very efficient8.

Unregularized normal equations

Applying the conjugate gradient method to the normal equations

ATAx = ATb

yields Algorithm 4, called CGLS9 (Press et al., 1992). Two matrix vector products are

Algorithm 4 Conjugate Gradients, applied to least squares (CGLS)

k = 0

p0 = r0 = AT (b−Ax0)

while ‖rk‖ > acc ‖r0‖ do

αk+1 = ‖rk‖2

‖AT Apk‖2
{A-conjugation}

xk+1 = xk + αk+1pk {updating solution}
rk+1 = rk − αk+1A

TApk {updating the residual}
βk+1 = ‖rk+1‖2

‖rk‖2

pk+1 = rk+1 + βk+1pk
k = k + 1

end while

required in every iteration. At first, a vector qk = Apk is calculated. Then, qk has

to be multiplied with the transpose of A. In order to avoid the storage of AT , the

product is transformed such that ATqk = (qTkA)T .

8It has to be noted, that CG-based equation solvers are to be distinguished from the NLCG mini-
mization method (see section 2.1), even though based on the same principles.

9The abbreviation stands for conjugate gradients least squares solver.
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Note that all existent vectors and scalars can be overwritten it every iteration and

thus no additional memory allocation is necessary. The only exception is to save the

scalar ‖rk‖2, which is needed for the computation of βk+1, before the residual vector r

is updated. The accuracy acc defines the stopping criterion with regard to the initial

residual ‖r0‖.
As noted before, low-frequency components of the solution tend to converge faster than

high-frequency parts in Krylov subspace methods. This can be used for an implicit

regularization algorithm called truncated least squares (TLS). Doing so, the stopping

criterion is replaced by (k ≤ kmax), where kmax is treated as regularization parameter.

Regularized normal equations

Assume a Marquardt type of regularization resulting in the damped normal equations

(ATA + λI)x = ATb .

The additional term affects both the gradient directions pk and the coefficients αk. Let

z be the residual of the basis equation z = b−Ax. As in Algorithm 4, r denotes the

residual of the equation to be solved

r = AT (b−Ax)− λIx = ATz− λx .

Result of the changes yields Algorithm 5, called CGLSI.

Algorithm 5 Conjugate Gradients, applied to damped least squares (CGLSI)

k = 0

z0 = b−Ax0

p0 = r0 = ATz− λx0

while ‖rk‖ > acc ‖r0‖ do

qk+1 = Apk
αk+1 = ‖rk‖2

‖qk‖2+λ‖pk‖2

xk+1 = xk + αk+1pk
zk+1 = zk − αk+1qk+1

rk+1 = Azk+1 − λxk+1

βk+1 = ‖rk+1‖2

‖rk‖2

pk+1 = rk+1 + βk+1pk
k = k + 1

end while

If the constraint matrix C differs from the identity matrix, a different computation of

the residual r and the coefficient α is needed. Furthermore, the data weighting matrix
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can easily be introduced by additional matrix-vector multiplications, which are very

fast for sparse D. The solution to

(ATDTDA + λCTC)x = ATDTDb
{
−λCTCδmk

}
is described in Algorithm 6, called CGLSCD.

Algorithm 6 Conjugate Gradients, weighted least squares (CGLSCD)

k = 0

z0 = D(b−Ax0)

p0 = r0 = ATDTz{−λCTCx0 }
while ‖rk‖ > acc ‖r0‖ do

qk+1 = DApk
αk+1 = ‖rk‖2

qT
k qk+λpT

k CT Cpk

xk+1 = xk + αk+1pk
zk+1 = zk − αk+1qk+1

rk+1 = DAzk+1{−λCTCxk+1 }
βk+1 = ‖rk+1‖2

‖rk‖2

pk+1 = rk+1 + βk+1pk
k = k + 1

end while

It has practical benefits to apply the solution to the model update via a transformation

matrix P such that ∆mk = Px. For the simplest case P equals the identity matrix

(x = ∆mk). P can be used to change the model parameter to be inverted without

rearranging the sensitivity matrix in the following ways:

• By deleting rows of P certain model parameters can be excluded from being

changed. This can be the case for fixing parameter values or for cells with low

sensitivities.

• If the model geometry is described by a finite difference grid, usually badly

resolved small cells are produced far from the sensors. Then, by adding rows of

P, cells can be combined to obtain model parameters with better resolution.

• The matrix P can also be used as weighting function. An example may be a-

priori knowledge from well logging data, the weights decrease with the distance

to the borehole.

Consequently, the calculation of the residual vector rk+1 and the coefficient αk+1

changes to



2.3 Equation Solvers for Inverse Problems 29

rk+1 = PDAzk+1{−λP†CTCxk+1} and

αk+1 =
‖rk‖2

qTk qk + λP†pTkP
TCTCPpk

.

The matrix P† is the pseudo-inverse of P, which can be easily obtained for the above

described variants of row deletions and combination. The algorithm is then denoted by

the term CGLSCDP, which stands for conjugate gradients least squares solver using

constraints, data weighting and parametric mapping.

When solving a system of equations using conjugate gradients the question arises,

can the use of preconditioners minimize the computational effort? Since incomplete

decompositions of LU or Cholesky style are computationally prohibitive due to memory

limitations, preconditioners without additional storage, e.g. of Jacobi type, remain.

They can be easily installed computing the individual main diagonal elements of STS.

2.3.2 Multiple Regularization Strength Solvers

If the optimum value of the regularization parameter λ is not known - which is the case

for most problems at least in the first iteration - it has to be estimated by appropriate

methods, e.g. the L–curve criterion. For the construction of the L–curve, solutions

for many λi have to be obtained. Since reasonable values extend over a range of

several decades, a lot of computational work has to be done if the results are obtained

independently.

All the solutions are expected to show similar model structures as indicated by the

data. Models corresponding to large regularization parameters are usually of lower

magnitude and smoother than results obtained with small λ’s. Considering the regu-

larizing properties of the conjugate gradients leads directly to the idea of subsequently

using the results of large λ as starting vector for the next smaller one. Beginning

with the largest regularization parameter the numerical effort can be significantly re-

duced. An important advantage of this procedure lies in the fact, that the L–curve

criterion can be applied after each run and once the maximum curvature is found, the

computation for smaller λ can be omitted.

The left hand side matrices differ for various λi merely by multiples of the quadratic

constraint matrix CTC, which is the identity matrix for the ridge regression method.

The main computational effort resides in the multiplication with the full matrix A,

which is the same for all ”shifted” systems corresponding to different λi. This idea of

a parallel computation of all systems was pointed out by Frommer and Maass (1999).

As each left hand side matrix consists of a common and a separate part, the different

gradients consist of common and separated parts. The solution, Algorithm 7 is based

on an algorithm presented by Saad (1996), which is a combination of conjugate gra-



30 2 Non-linear Inversion and Resolution

dients and Lanczos bidiagonalization methods yielding identical results compared to

Algorithm 5.

Algorithm 7 CG/Lanczos least squares solver (CGLAN)

k = 0

r0 = b−Ax

β0 = ‖r0‖, v0 = r0/β0, p0 = r0

v−1 = 0, σ0 = β0, ω−1 = 0, γ−1 = 1

while ‖σk‖ > acc ‖r0‖ do

q = Av

δk = ‖Axk‖2 {start of Lanczos part}
ṽk+1 = ATAv − δkvk − βkvk−1

βk+1 = ‖ṽk+1‖
vk+1 = ṽk+1

βk+1

αk+1 = αk

(δk+λ)αk−ωk−1
{end of Lanczos part}

ωk+1 = (βk+1αk+1)
2 {start of CG part}

σk+1 = −βk+1αk+1σk
xk+1 = xk + αk+1pk
rk+1 = σk+1vk+1

pk+1 = rk+1 + ωk+1pk {end of CG part}
end while

Note that the Lanczos part represents the solution of the unregularized normal equa-

tion, which is independent of λ. It provides that part of the solution, which is common

to all systems and which includes the main computational effort, two matrix-vector

multiplications per iteration.

The CG part of the algorithm depends on the concrete value for λ and has to be

calculated separately for each system. Also, convergence has to be investigated sepa-

rately and the CG part is applied to the systems that did not converge yet. Since that

part consists of vector-vector and scalar-vector operations the main computation time

is determined by the Lanczos part. Since the condition number generally decreases

while increasing the stabilization effect, the number of iterations used for convergence

is defined by the smallest λ. Thus, the minimum λ has to be chosen carefully to

save computer time. As a result, a set of solutions corresponding to various λ is ob-

tained with the effort of one single CGLS algorithm. However, the method cannot be

generalized to arbitrary constraints up to now.
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2.4 SVD and GSVD

2.4.1 The Singular Value Decomposition

The singular value decomposition is widely used as a powerful tool for obtaining insight

into least squares problems of the form Ax = b for non-quadratic matrices A. It can

be easily derived by eigenvalue analysis of the matrices ATA and AAT . For detailed

information see, e.g., Menke (1989) or Golub and van Loan (1996).

At first, let us rewrite equations (2.16) and (2.18) symbolically

∆m = Ŝ†D∆d{−C†C(mk −m0)} with (2.24)

Ŝ† = (ŜT Ŝ + λCTC)−1ŜT and C† = λ(ŜT Ŝ + λCTC)−1CT

The introduction of the generalized inverse matrices Ŝ† and C† appears reasonable due

to the symmetry between the error-weighted sensitivity Ŝ = DS and the constraint

matrix C. Note that Ŝ†Ŝ + C†C = I.

For every matrix A ∈ RN×M two orthonormal matrices U ∈ RN×N and V ∈ RM×M

can be found transforming A into a diagonal matrix Λ

UTAV = Λ . (2.25)

The matrix V = (v1 v2 . . . vM) contains the model eigenvectors vi, whereas the data

eigenvectors ui are assembled in the matrix U = (u1 u2 . . . uN). The vectors vi are

mutually orthogonal and of length 1. The same holds for the ui such that

UTU = UUT = IN and VTV = VVT = IM .

The matrix Λ ∈ RN×M has the same size as A and contains the singular values si as

the main diagonal entries

Λ =

(
Λr 0

0 0

)
with Λr =

 s1 . . . 0
...

. . .
...

0 . . . sr

 .

The si are usually ordered decreasingly and serve as weights for the corresponding data

and model vectors. By the number r of nonzero singular values (the rank of A) the

null spaces for the model V0 and the data U0 can be separated

V = (Vr V0) and U = (Ur Uo) ,

where Vr and Ur are the first r columns of the model and data matrices, respectively.

Since U and V are invertible, it can be found that

A = UΛVT = UrΛrV
T
r . (2.26)
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Note that the null spaces have no contribution to A. Since all matrices are easily

invertible, a natural inverse10 of A can be found

A† = VrΛ
−1
r UT

r , (2.27)

which is known as Moore-Penrose inverse or pseudo-inverse. The multiplication by A†

as solution of Ax = b is then defined by

x = A†b =
r∑
i=1

uT
i b

si
vi (2.28)

and turns out to be the least squares solution. The weighting coefficients for the

individual model vectors are determined dividing the dot product of b and the corre-

sponding data vector ui by the singular value si.
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Figure 2.3: Singular values and filter factors for a typical ill-posed problem, note that

the filter factors decrease faster

Figure 2.3 shows the singular value spectrum as typically arising for ill-posed problems.

The spread of several decades between the largest and smallest singular value is an

indication for the ill-posedness. Taking a closer look at the model vectors it can be ob-

served that vi for small i show relatively simple characteristics, whereas model vectors

connected to small singular values tend to show high-frequency oscillations (Friedel,

2000). If the vector b in equation (2.28) is contaminated with noise, the projections

onto the data vectors do not vanish. Due to the division by si the model vectors for

small singular values are amplified resulting in a strongly structured model. Usually

10It is sometimes called ”the” generalized inverse, even though many generalized inverses can be
defined, as we will see.
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this model fits the data (including noise) well, but lacks plausibility. Hence, a regula-

rization procedure has to be introduced. The TSVD inverse as implicit regularization

limits the summation up to an arbitrary pseudo-rank rTSV D, from that on the singular

values are treated as zero. A small rTSV D value corresponds to large regularization and

vice versa. In practice, a first choice of rTSV D is obtained by assuming a noise level

ε and choosing the si closest to εs1. In small parameter inversion the singular value

spectrum is investigated for a gap or corner to detect rTSV D.

Another way to reduce the effect of near-zero singular values from exploding is to

introduce damping using filter factors fi

A† = Vrdiag

(
fi
si

)
UT
r . (2.29)

Using an explicit regularization scheme as depicted in section 2.2 the filter factors for

the solution of

x = A†b = (ATA + λI)−1ATb

can be calculated by (Hansen, 1992)

fi =
s2
i

s2
i + λ

. (2.30)

Thus, the damped least squares solution reads

x = A†b =
r∑
i=1

siu
T
i b

s2
i + λ

vi .

The ratio fi/si = si/(s
2
i + λ) works as transform function for the individual model

vectors. Note that the TSVD inversion can also be formulated by equation (2.29)

using the filter factors

fi = 1 ∀ i ≤ rTSV D and fi = 0 ∀ i > rTSV D .

Hence, the transform function for TSVD is 1/si∀i and 0 elsewhere. Figure 2.4 presents

the filter factors and transform functions for TSVD and Tikhonov regularization. The

two λ and rTSV D are chosen such that the results are comparable. For the Tikhonov

regularization the transform function is maximized at i ≈ 90 . . . 100. Larger or smaller

values for λ shift the maximum towards lower or higher singular value numbers, re-

spectively. In contrast, the largest contributions of the TSVD inverse are provided by

the model vectors directly below rTSV D, resulting in a more structured model.

The SVD can be used to calculate the model update for TSVD as well as Marquardt-

type regularization using A = DS = Ŝ. Once the decomposition has been carried out,
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Figure 2.4: Transform function of Tikhonov (λ = 10, λ = 5) and TSVD (rTSV D = 90)

regularization for the sample problem of Figure 2.3

solutions for arbitrary λ can be obtained with less computational effort. This proves

to be particularly efficient if the regularization parameter is completely unknown and

the SVD provides data and model functional to choose λ by appropriate methods.

When the model constraints are formulated using C 6= I the generalized inverse can

not be represented by SVD filter factors. If C is easily invertible, the problem can be

transferred to standard form using A = ŜC−1.

2.4.2 The Generalized SVD

Another possibility for solving constrained least squares problems is the application

of the generalized singular value decomposition introduced by van Loan (1976). For

A ∈ RN×M and B ∈ RP×M , there exist orthogonal matrices U ∈ RN×N , W ∈ RM×M

and an invertible matrix V ∈ RM×M diagonalizing A and B such that

UTAV =

(
Σ 0

0 0

)
with Σ = diag(σi) and

WTBV = M = diag(µi) .

The paired singular values for A and B are denoted by σi and µi, respectively, and equal

µ2
i +σ2

i = 1∀ i. The GSVD is computed by QR decomposition of the composite matrix

of A and B and a subsequent CS decomposition, which involves a large numerical

effort compared to the SVD.
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The solution to the problem

(ATA + λBTB)x = ATb

can be described by means of the GSVD (Golub and van Loan, 1996)

x =
P∑
i=1

σiui
Tb

σ2
i + λµ2

i

vi +
M∑

i=P+1

ui
Tb

σi
vi . (2.31)

For a quadratic stabilizer B holds P = M and the latter term disappears. Hence,

equation (2.31) can be written

x =
M∑
i=1

σiui
Tb

σ2
i + λµ2

i

vi =
M∑
i=1

1

σi

γ2
i ui

Tb

γ2
i + λ

vi = A†b , (2.32)

where γi = σi/µi are the generalized singular values. Using A = Ŝ and B = C, the

generalized inverse of Ŝ can be formed as follows

Ŝ† = Vrdiag

(
fi
σi

)
UT
r , (2.33)

which is identical to (2.29) except that σi instead of si is used. The ratio fi/σi serves

as transfer function for the model vectors. Note that the filter factors are defined

the same way as for Tikhonov regularization replacing the singular values si by the

generalized singular values γi

fi =
σ2
i

σ2
i + µ2

iλ
=

γ2
i

γ2
i + λ

.

Using A = C and B = Ŝ and interchanging the corresponding matrices and singular

vectors, it can be found that

C† = λVrdiag

(
gi
µi

)
WT

r , where

gi =
1/γ2

i

1/γ2
i + 1/λ

=
λ

λ+ γ2
= 1− fi , resulting in

C† = λVrdiag

(
1− fi
γi

)
WT

r .
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2.5 Resolution Analysis

Product of the inversion of data is a model, a simplified concept of the reality, which

is rarely true. We have clearly in mind, that it is one of many possible models fitting

the data within errors 11. With this in mind, two important questions arise:

1. How well can we trust the model parameter values and geometry of the detected

structures?

2. Which part of the model is determined by the data, and what model character-

istics are a product of the constraints?

The first question is discussed widely, but mostly in terms of linear inversion. Olden-

burg and Li (1999) try to find answers to the second question by a practical approach

defining the depth of interest index. Recently a few approaches describing non-linear

resolution in geophysics were published (Alumbaugh and Newman, 2000; Friedel, 2003;

Stummer et al., 2004).

2.5.1 Resolution of Linear Problems

For linear inversion theory, resolution has been described in detail. The reader may

be referred to the books of Menke (1989) and Meju (1994b). Assume the data d are

equated by a product of the kernel matrix F with the true model mtrue and noise

vector n

d = Fmtrue + n . (2.34)

The application of an explicit inversion scheme including regularization defines a gen-

eralized inverse F†, which is used to find a model estimate

mest = F†d . (2.35)

Replacing d from equation (2.34) we obtain

mest = F†Fmtrue + F†n = RMmtrue + F†n (2.36)

The matrix RM = F†F combining forward and inverse mapping is referred to as

resolution matrix. It serves as a kernel function transferring the reality into our model

estimate, which is connected to the concept of Backus and Gilbert (1968). Ideally,

RM would be the identity matrix, which corresponds to perfect resolution. However,

11Actually, it is the one that minimizes our model constraints.
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if we try to find a generalized inverse F† resulting in a resolution matrix close to the

identity, the solution is generally dominated by noise effects. Hence, regularization

can be understood as a trade-off between the two terms on the right hand side of

equation (2.36): Representation of the true model by RMmtrue vs. effects of noise

F†n.

2.5.2 Resolution of Non-linear Problems

In non-linear inversion the data vector is considered as the forward response f of the

true model mtrue, which is contaminated by a noise vector n

d = f(mtrue) + n . (2.37)

Assuming that in the kth iteration the model mk is already close to the true model, a

linearized Taylor expansion of f at the point mk yields (Friedel, 2003)

d = f(mtrue) + n = f(mk) + S(mtrue −mk) + n . (2.38)

If explicit local regularization is considered, the iteration scheme reads

mk+1 = mk + Ŝ†D(d− f(mk)) . (2.39)

Replacing d − f(mk) from equation (2.38) and setting mest = mk+1 we obtain in

coincidence with Friedel (2003)

mest = mk + Ŝ†DS(mtrue −mk)+ Ŝ†Dn

= Ŝ†Ŝmtrue + (I− Ŝ†Ŝ)mk+ Ŝ†Dn

= RMmtrue + (I−RM)mk+ Ŝ†Dn . (2.40)

In analogy to linear inversion the resolution matrix RM serves as transformation from

reality. Again, a term representing the influence of noise occurs. The term I − RM

can be interpreted as a complement to RM . It points out, that in regions of missing

resolution (where RM
ii � 1) the model stays unchanged from mk. In fact, the resolution

is linear regarding the model update ∆m. However, the effect of the starting model is

not clear.

On the contrary, an explicit global regularization scheme including the minimization

of ‖C(m−m0)‖ throughout the inversion process has the iteration scheme

mk+1 = mk + Ŝ†D(d− f(mk))−C†C(mk −m0) . (2.41)



38 2 Non-linear Inversion and Resolution

Replacing d− f(mk) from equation (2.38) and setting mest = mk+1 yields

mest = mk + Ŝ†SD(mtrue −mk)−C†C(mk −m0) +Ŝ†Dn

= mk + Ŝ†Ŝmtrue − (Ŝ†Ŝ + C†C)mk + C†Cm0 +Ŝ†Dn

= RMmtrue + (I−RM)m0 +Ŝ†Dn . (2.42)

Equation (2.42) is identical to the resolution for local regularization except that mk is

replaced by m0. The difference is quite remarkable: It shows, that the model estimate

is filled up with the starting model (and not the model of the preceding iteration) at

regions of missing resolution. The matrix I − RM can be interpreted as constraint

resolution matrix and describes, how m0 is mapped into reality.

The resolution equation (2.42) is directly linked to the idea of Oldenburg and Li

(1999) defining the depth-of-ivestigation index. The DOI index reveals, to what degree

the model parameters are determined by the starting model. The identical inversion

scheme is applied twice using two different starting models m0
A and m0

B, e.g. two differ-

ing half-spaces. The first and the last term of equation (2.42) are expected to be invari-

ant with respect to m0. Hence, the difference reads mA−mB = (I−RM)(m0
A−m0

B),

which is small for good resolution (RM ≈ I) and large for poor resolution, as the DOI

index depicts.

The result of a global regularization scheme is considerably independent of the way

the iteration took, whereas all iteration stages strongly affect the final model in local

regularization. From the resolution point of inversion the author favors the global

minimization to keep control on how the model is determined. Particularly if a-priori

information is available, the model is restricted to lie in the neighborhood of m0.

In opposition to equation (2.42), combining forward and inverse matrix yields the data

importance matrix RD

f(mk+1) = f(mk) + S
(
S†D(f(mtrue + n− f(mk))−C†C(mk −m0)

)
f(mest) = RDf(mtrue) + RDn + (I−RD)f(m0) with RD = SS† . (2.43)

Besides the resolution matrix many authors (Meju, 1994a; Alumbaugh and Newman,

2000) investigate the (a-posteriori) model covariance matrix MCM12. Using the rule of

variance propagation Cov(Ax + b) = ACov(x)AT the MCM can be derived directly

from equation (2.42). Since the true model has no variance and the noise has the

variance of the data

Cov(n) = Cov(d) = D−2 ,

12To distinguish the MCM from Cm, the terms ”a-priori” and ”a-posteriori” depict the use as con-
straint matrix and resolution measure, respectively.
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the model covariance matrix reads

MCM = (I−RM)Cov(m0)(I−RM)T+ Ŝ†DCov(d)(Ŝ†D)T

= (I−RM)Cov(m0)(I−RM)T+ Ŝ†(Ŝ†)T . (2.44)

It consists of two parts: The first one results from the variance of the starting model,

which is not known and therefore often omitted. The second part originates from the

error propagation throughout the inversion process.

Regarding Table 2.1, resolution matrices can be obtained for all regularization types

except implicit global schemes, e.g. the NLCG method. The assumption for the

validity of resolution matrices is that the model is ”close to the true model”. However,

in best case we know the estimated model’s forward response to be close to the one

of the true model. Thus, the resolution is linked to the estimated model and only

plausible models have interpretable resolution properties.

2.5.3 Interpretation of Resolution Measures

The individual columns of RM can be plotted as model vector displaying how anomalies

in the corresponding model cells are imaged by the combined process of measurement

and inversion. The element RM
ij reveals, how much of the anomaly in the jth model cell

is transferred into the ith model cell. Consequently, the diagonal element RM
ii states,

how much of the information is saved in the model estimate and can be interpreted as

resolvability of mi. Adding up all the diagonal elements we obtain a total information

of the inverse process, referred to as information content

IC =
M∑
i=1

RM
ii . (2.45)

In contrast, the matrix RC = I−RM describes the transformation of the starting model

and can be interpreted like RM . The sum of its main diagonal elements contains the

missing information M − IC. By relating the IC to the number of model parameters

M the resolution degree RD = IC/M shows to what degree the model is resolved by

the data.

The individual columns of RD can be viewed as data and show whether the corre-

sponding data point can be interpreted independent of each other within data errors.

Off-diagonal elements of RD show data correlations, while the main diagonal elements

RD
ii depict the independence, or importance, of the data point. The sum of the RD

ii is

then the total data importance, which is identical to the information content

N∑
i=1

RD
ii =

M∑
i=1

RM
ii = IC .
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Dividing the information content by the number of data N we obtain the mean im-

portance or information efficiency

IE =
IC

N
= mean(RD

ii ) . (2.46)

Following the ideas of Friedel (2000, 2003), a resolution radius for each model cell can

be determined. Assuming a piecewise constant cell resolution, ri is the radius of a

sphere at the midpoint of the ith cell having a resolution of 1. For a three-dimensional

hexahedron of dimensions ∆xi, ∆yi and ∆zi the resolution radius is

ri = 3

√
3∆xi∆yi∆zi

4πRM
ii

.

The model covariance matrix has the same dimensions as RM . Its columns can be

displayed as co-variations of the model with the corresponding cell. It reveals the

statistical nature of the inversion process. The essential information of the MCM is

contained in the main diagonal elementsMCMii, whose square-roots can be interpreted

as uncertainties of the corresponding model parameters. This is valuable if the model

parameter values are to be used for petrophysical purposes such as the calculation of

porosity or water saturation. Then, the uncertainty of those parameters is known by

error propagation as well.

In summary, both resolution matrices give information about the geometrical reliability

of the model. The MCM is used for parameter uncertainties, whereas RM and RD

provide information about the universe of the inverse process with respect to model

parameters and data.

2.5.4 Resolution in Terms of SVD/GSVD

Applying equations (2.26) and (2.29) yields for ordinary SVD

RM = Vrdiag(
fi
si

)UT
r Urdiag(si)V

T
r

= Vrdiag(fi)V
T
r (2.47)

and for the generalized GSVD holds with (2.33)

RM = Vdiag((fi 0))V−1 . (2.48)

For both SVD and GSVD holds

RD = Urdiag(fi)U
T
r . (2.49)
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It can easily be shown that the information content can be calculated by

IC =
∑
i=1

RM
ii =

∑
i=1

fi

without forming the resolution matrix explicitly. Note that, following the last equation,

for TSVD inversion the information content equals the number of used singular vectors

rTSV D.

2.5.5 Resolution Approximation

The SVD is a procedure that consumes time and memory. The speed decreases with

second order of the matrix size. If the effort is prohibitive or impractical, it becomes

reasonable to approximate RM as used by Alumbaugh and Newman (2000). The

equation RM = Ŝ†Ŝ can be rearranged using Ŝ† = (ŜT Ŝ + λCTC)−1ŜT resulting in

(STDTDS + λCTC)RM = STDTDS . (2.50)

Equation (2.50) represents an inverse subproblem for every column of the resolution

matrix. It can be solved approximately, e.g. by the CGLS family routines depicted

in section 2.3. As starting vectors the individual columns of the identity matrix can

be used. Possibly, it is worth the numerical effort to obtain an efficient preconditioner

matrix, which can reduce the number of iterations and thus the computation time.

Alternatively, an LSQR algorithm based on bidiagonalization techniques can be used

for the solution of equation (2.50) as pointed out by Berryman (2000).

To sum it up, the decomposition is quite fast for small-scale problems with up to

1000 model parameter and data, which is the case for most two-dimensional inverse

problems. For large-scale problems (with more than 1000 data and unknown) such as

three-dimensional inversion generates, it becomes more and more reasonable to apply

an approximate calculation of resolution.

2.6 Conclusions

In this chapter, methods for non-linear, multidimensional inversion in form of func-

tional minimization were presented. The non-linear conjugate gradients (NLCG)

method represents a memory saving routine, if the gradients can be calculated by

forward modeling. To the contrary, the Gauss-Newton method makes use of the full

Jacobian matrix and is expected to show quadratic convergence.

To obtain acceptable solutions, regularization methods have to be applied. Besides

implicitly working equation solvers, techniques were presented introducing additional
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constraints onto the model update (local scheme) or the model itself (global scheme).

The model constraints are weighted by a regularization parameter, which has to be

determined appropriately, e.g., by the investigation of the L–curve. Note that the

distinction into global and local schemes is essential for resolution properties and the

treatment of λ, even though the underlying equations differ only slightly.

In the following, algorithms were presented solving the inverse sub-problem efficiently

from computing time and memory point of view. Conjugate gradient techniques could

be adapted to the weighted least squares problem. Special variants were developed for

the parallel solution of systems with multiple regularization strengths.

The singular value decomposition (SVD) is a valuable tool for gaining insight into

inversion problems as well as for the construction of resolution matrices of TSVD

and Tikhonov inversion. It has been shown, how this method can be generalized for

arbitrary model constraints using the GSVD (generalized SVD).

The quality of inversion results can be appraised by the adaption of non-linear resolu-

tion matrices as known from linear inversion. It can be seen, how the inversion model

is constructed of the real model structures, the introduced model constraints and noise

artifacts. Thus, regularization as a trade-off between data fit and model simplicity can

also be interpreted as compromising good reality mapping at limited noise artifacts.

It has to be proved if the defined information content is an appropriate measure for

the quality of inversion results.
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3 Inversion of DC Resistivity Data

This chapter deals with the peculiarities of the inversion of DC resistivity data. At

first, a brief introduction into DC resistivity measurements is given in section 3.1.

An essential task of inversion is the investigation of the measurement errors used for

weighting the data. Section 3.2 points out how the individual error sources can affect

the inversion scheme. The noise character of typical multi-electrode measurements is

estimated.

The first procedure in every inversion scheme is an appropriate parameterization of

the ground into independent model cells. Section 3.3 shows some specific aspects of

the parameterization in DC resistivity inversion.

In every iteration the model response has to be calculated by appropriate ways, gen-

erally using finite different (FD) and finite element (FE) techniques. In section 3.4 it

is shown, how FD methods can be used for efficient and accurate forward calculation

in flat earth problems.

The Jacobian matrix assembling the sensitivities plays a central role in inversion. Sen-

sitivities represent the partial derivatives of the forward responses with respect to the

model parameters. They have to be determined in every iteration step. In section 3.5

methods for the sensitivity approximation are presented.

3.1 Fundamentals of DC Resistivity

The current density ~j is related to the electric field ~E by the conductivity σ denoted

by Ohm’s law

~j = σ ~E . (3.1)

In general, the material parameter σ connecting the two vectors is a tensor. Deriva-

tions from multiples of the identity matrix can be physically interpreted as anisotropy.

Anisotropy often occurs in nature, because many rocks have preferential directions

defined by the original pressure conditions for metamorphic rocks or sedimentary for-

mations. Although there exist anisotropic forward calculations, anisotropy is rarely

incroporated into inversion algorithms (Pain et al., 2003). One reason is the increased

number of degrees of freedom, which has to be compensated by more measurements
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or regularizing conditions in the inversion process. In the following, the conductivity

is considered to be a scalar. Its reciprocal value, the resistivity ρ = 1/σ, is often

used for the petrophysical description of rocks, while conductivity is often related to

hydrological parameters as porosity or salinity.

From Maxwell’s equations for the stationary case follows the electric field being the

negative gradient of the electrical potential ϕ

~E = −∇ϕ ⇒ ~j = −σ∇ϕ . (3.2)

The continuity equation demands the divergence of ~j to vanish for all source free

regions

∇ ·~j = 0 .

For a point-like current source of current I at the position ~rs its divergence Iδ(~r− ~rs)
has to be considered, which leads to the governing equation

Lσϕ = ∇ · (σ∇ϕ) = −Iδ(~r − ~rs) . (3.3)

Lσ represents an elliptic partial differential operator of Poisson type1. Numerical so-

lutions of elliptic PDE’s have been studied widely. Generally, their treatment is easy

compared to parabolic or hyperbolic differential operators. The main problem for

the solution of equation (3.3) is created by the infinite source term, which has to be

included into the discrete problem.

Due to the linearity of Lσ the potential of an electrode combination can be obtained

by superposition of the individual potentials. Hence, the forward task is considered to

involve single current electrodes in the following. Since multi-electrode measurements

generally use each electrodes more than two times, the computation of mono-poles

saves time compared to the modeling of dipoles.

For a homogeneous half-space of conductivity σ0 the potential caused by a point source

at ~rs=(x; y; 0) is

ϕ(~r) =
I

2πσ0|~r − ~rs|
. (3.4)

For a subsurface source the effect of the earth’s surface has to be considered. The

solution can then be superposed by the source ~rs = (xs; ys; zs) and a mirror source

~r
′
s =(xs; ys;−zs), yielding

ϕ =
I

4πσ0

(
1

|~r − ~rs|
+

1

|~r − ~r ′
s |

)
. (3.5)
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I
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Figure 3.1: Sketch of a four-point DC measurement using surface electrodes

Note that equation (3.5) is identical to (3.4) for zs = 0.

A single measurement is carried out by injecting a current I using two current elec-

trodes A and B. Since generally transfer resistances of unknown magnitude occur at

the electrodes, the voltage U is measured between two separate electrodes M and N.

Figure 3.1 shows such a four-point configuration. The ratio of the voltage U and the

current I is multiplied by a configuration factor k yielding the apparent resistivity

ρa = k
U

I
. (3.6)

The geometry factor k is determined such that ρa=ρ for a homogeneous half-space of

resistivity ρ using Neumann’s equation, which for surface electrodes is

k =
2π

1
AM

− 1
AN

− 1
BM

+ 1
BN

. (3.7)

For the general case of subsurface electrodes, the positions of the mirror current elec-

trodes A′ and B′ have to be considered, yielding

k =
4π

1
AM

+ 1
A′M

− 1
AN

− 1
A′N

− 1
BM

− 1
B′M

+ 1
BN

+ 1
B′N

. (3.8)

The apparent resistivity ρa represents the resistivity of the equivalent homogeneous

half-space. This normalization is advantageous, e.g., ρa is ensured to be positive. Fur-

thermore, data and model having identical physical units allows for easier estimation

of regularization parameters, which would otherwise possess a physical unit. Note that

equations (3.7) and (3.8) are valid for a flat surface. If an undulated topography is

present, the configuration factor is unknown and can only be assessed by numerical

modeling using homogeneous resistivity.

1If σ is not constant, the equation is actually not a Poisson equation of the form ∆u = f . However,
theory and solution methods are comparable.
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Actually, in most cases no direct current is injected. DC devices use low-frequency

alternating current or rectangular pulses. For some cases, e.g. electronic conductors

and electrolytic fluids in porous rocks, it is observed that the measured voltage does not

follow the time function of the injected current. Due to polarization effects a phase

shift between I and U occurs, denoted by the term induced polarization (IP). The

theory of IP effects was described by Seigel (1959) using complex resistivities; for most

rocks the behavior follows the model of Cole and Cole (1941). The reconstruction of the

chargeabilities in the ground can be achieved by the application of complex algorithms.

However, low contrast solutions are often sufficient, because the imaginary parts of the

resistivity are generally small.

A single apparent resistivity represents a weighted mean of the earth’s resistivities.

Several independent data have to be acquired to obtain information about structures

within the earth. This is done in two ways:

Mapping The entire electrode arrangement is moved along a profile to map out hori-

zontal, mostly near-surface, variations.

Sounding In many areas the geological units are more or less layered structures. They

can be investigated by increasing the electrode spread, which results in a deeper

current penetration. Thus, information about deeper layers are obtained by

resistivity sounding. For many decades resistivity sounding were carried out ex-

clusively. This method is still practical for the investigation of - mostly hydroge-

ological - large-scale problems in sedimentary basins, where the layer thicknesses

show small lateral variations.

There exist a variety of inversion programs, which produce layered resistivity models

fitting the measured sounding curve. Many of them are based on TSVD and Marquardt

type inversion schemes (Inman, 1975). Generally, the inversion parameters are the re-

sistivities and thicknesses of a limited number of model layers. However, there are also

approaches with fixed geometry and varying resistivities, which allow for smoothness

constraints (Constable et al., 1987). Due to the small number of parameters those

inversions can be carried out without large numerical effort. Therefore, resolution and

equivalence of the inverse problem are well studied.

If the earth’s structure shows both horizontal and vertical variations, mapping and

sounding have to be combined to obtain a resistivity structure as a function of x and

z. Thus, the basic configuration is moved along the profile and expanded successively.
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Classification of 2D DC data

Most measurements on multi-electrode instruments are carried out using common con-

figurations. Table 3.1 provides a classification of configurations. Three space symbols

between current (c) and potential (p) electrodes are introduced: While ”.” denotes a

single electrode distance a, ”–” show enlarging distances of n · a with the separation

factor n.

Wenner-α c–p–p–c Pole-pole c–p

Wenner-β c–c–p–p Pole-dipole c–p.p

Wenner-γ c–p–c–p Pole-dipole (inc) c–p:p

Schlumberger c–p.p–c Dipole-dipole c.c–p.p

Schlumberger (inc) c–p:p–c Dipole-dipole (inc) c:c–p:p

Table 3.1: Classification of 2D multi-electrode data sets using current (c) and poten-

tial (p) electrodes. ”.” denotes electrode distance a, ”–” stands for separated

distance n · a and ”:” denotes increased dipole lengths

Note that big separation numbers n produce large configuration factors which can lead

to erroneous measurements. As a consequence, an enlargement of the dipole lengths for

Schlumberger, pole-dipole and dipole-dipole configurations seems reasonable, denoted

with ”:”. Furthermore, it is recommended to shift the electrodes by the dipole length

”:” instead of the electrode distance ”.” along the profile. Thus, a reduced number

of data is gained. However, this can be compensated by applying a larger maximum

separation factor. The data points are assigned to a representative x-location, e.g. the

midpoint, and the separation factor n. Since large n are associated with increased

investigation depths, is seems reasonable to plot the data in a pseudo-section with n

going down. Remember, that a pseudo-section is just a graphical representation of the

measured data. However, experienced geophysicists are able to retrieve a concept of

the earth’s structure without inverting the data.

For a numerical interpretation a model has to be found, which is able to explain the

data. A simple method for data interpretation is an alternation of model change and

forward calculation. To invert the data obtained by a profile measurement the model

is considered to be composed of hexahedrons of infinite extension perpendicular to the

profile line. Applying the concepts of non-linear inversion, an automated model finding

process is created. To run the inversion, we need (a) a concept of the data errors, (b)

an accurate forward modeling routine and (c) the sensitivities of the model response.
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3.2 Errors of DC Measurements

The maximum relative error of ρa defined by equation (3.6) can be predicted as the

sum of the relative errors of the configuration factor k, the voltage U and the current

I (δa means variation of a)∣∣∣∣δρaρa
∣∣∣∣ ≤ ∣∣∣∣δkk

∣∣∣∣+ ∣∣∣∣δUU
∣∣∣∣+ ∣∣∣∣δII

∣∣∣∣ . (3.9)

Since the current is kept constant and the stacking is usually applied to the impedance

Z = U/I, the current is considered to have no variation. Then, the error consists

of two parts, a geometrical error due to the variation of k and a device part due to

uncertainties in U , which are investigated in the following.

3.2.1 Geometrical Errors

Single measurement

Geometrical errors can be represented by changes in the configuration factor k causing

changes in the apparent resistivities∣∣∣∣δρaρa
∣∣∣∣
k

=

∣∣∣∣δkk
∣∣∣∣ .

Such changes occur for an undulated topography or for varying electrode positions.

Topographical errors are systematic and can only be assessed by forward calculation.

The configuration factor for surface measurements is defined as

k =
2π

k
with k =

1

AM
− 1

AN
− 1

BM
+

1

BN
. (3.10)

The partial derivative of k with respect to the electrode position xe can be written as

∂k

∂xe
=
∂k

∂k
· ∂k
∂xe

= −2π

k
2 ·

∂k

∂xe
= − k

2

2π

∂k

∂xe
. (3.11)

k is of the form 1
x1−x2

+. . ., so ∂k
∂x1/2

= − 1
(x1−x2)2

·±1 so the minus sign in equation (3.11)

vanishes. Note that the inner derivative of ±1 has to be considered.

At first, consider a β-configuration with the electrode arrangement A-B-M-N. Its con-

figuration factor reads

k =
2π

1
xM−xA

− 1
xN−xA

− 1
xM−xB

+ 1
xN−xB

.
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Then for the partial derivatives with respect to the xe holds

∂k

∂xA
=

k

2π

(
− 1

AM
2 +

1

AN
2

)
,

∂k

∂xB
=

k

2π

(
1

BM
2 −

1

BN
2

)
∂k

∂xM
=

k

2π

(
1

AM
2 −

1

BM
2

)
and

∂k

∂xN
=

k

2π

(
− 1

AN
2 +

1

BN
2

)
. (3.12)

All other configurations can be expressed using factors αi

k =
2π

αAM

xM−xA
− αAN

xN−xA
− αBM

xM−xB
+ αBN

xN−xB

,

where, e.g., αBM is 1 for xM > xB, -1 for xM < xB and 0 if one of the electrode is not

used. This results in the partial derivatives

∂k

∂xA
=

k

2π

(
− αAM

AM
2 +

αAN

AN
2

)
,

∂k

∂xB
=

k

2π

(
αBM

BM
2 −

αBN

BN
2

)
∂k

∂xM
=

k

2π

(
αAM

AM
2 −

αBM

BM
2

)
and

∂k

∂xN
=

k

2π

(
− αAN

AN
2 +

αBN

BN
2

)
. (3.13)

A maximum relative error can be obtained by multiplying the sum of the absolute

values with the electrode variance δx and dividing it by the configuration factor∣∣∣∣δkk
∣∣∣∣
max

=

∣∣∣∣δxk
∣∣∣∣ (∣∣∣∣ ∂k∂xA

∣∣∣∣+ ∣∣∣∣ ∂k∂xB
∣∣∣∣+ ∣∣∣∣ ∂k∂xM

∣∣∣∣+ ∣∣∣∣ ∂k∂xN
∣∣∣∣) . (3.14)

Figure 3.2 shows the maximum geometrical error for several widely used configurations.

The equally spaced electrodes of spacing a = 1 m are assumed to have a positioning

variance of δx=0.01 m.

For all configurations the errors decrease with the separation factor. Note that the

errors are weighted with the ratio δx/a. Thus, a spacing of a=10 m with δx=10 cm

yields identical errors. However, in practice the relative positioning error decreases

with spacing.

For all configuration types the largest errors occur for small separations. Pole-pole

and Wenner configurations show the smallest errors. The relatively large error level

of dipole-dipole and pole-dipole data (which has identical errors compared to Schlum-

berger configuration) can be significantly reduced by increasing the dipole length for

large separations.

Geometrical errors for multi-electrode data

When the measurements are carried out using a multi-electrode system of E fixed

electrodes, the errors of theN data do not remain independent of each other if electrode
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Figure 3.2: Relative geometric errors of several configurations with electrode distance

1 m, δx=1 cm, dipole lengths for dd-inc and pd-inc are increased every 4th

separation

variations are considered. Covariances occur, in the way that a misplacement of a single

electrode has systematical effects onto all measurements using it. Therefore we expect

a correlation amongst the data, represented by the covariance matrix Cd. It replaces

the uncorrelated data variance matrix (DTD)−1 used in the minimization of the data

functional Φd such that

Φd = [d− f(m)]T C−1
d [d− f(m)] .

For the covariance of the elements of the vector y = Ax + v with respect to the

variation of the vector x holds Cov(y) = ACov(x)AT . The vector y contains the

apparent resistivities, x are the electrode positions. A linearized Taylor series yields

y(x) = y(x̂) +
∂yi
∂xj

(x̂) · (x− x̂) + . . . ,

where x̂ are the expected electrode positions. Higher order terms can be neglected

for small deviations. The matrix A ∈ RN×E containing the partial derivatives is

constructed as described above for every combination of data number and electrode

number. Assuming the electrode positions to have identical standard deviations δx

corresponding to the covariance Cov(x) = δx2I, the data covariance matrix due to

geometrical errors reads

Cd = ATA · δx2 . (3.15)
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Figure 3.3: Data covariance structure for one configuration out of a dipole-dipole data

set

Figure 3.3 exemplifies the covariance of all data with respect to an individual one,

which is the corresponding column of Cd. It can be seen, how all data using one of

the four electrodes show co-variations. They are positive or negative according to the

sensitivity structure.

3.2.2 Voltage Errors

Voltage errors are the relative deviations due to uncertainty of the measured voltage∣∣∣∣δρaρa
∣∣∣∣
U

=

∣∣∣∣δUU
∣∣∣∣ =

δU |k|
ρaI

.

δU is a small voltage, which cannot be distinguished from zero. Generally, it represents

either the minimum accuracy of the measuring device, which is defined by the limited

precision of the analog digital converter or voltages occurring in the device while mea-

suring. Also, irrigation currents in the earth can produce a varying voltage level and

disturb the measuring accuracy. Statistically varying voltages can be significantly re-

duced using stacking procedures. Thus, if irrigation currents are involved in the noise

estimation, the effective stacking number has to be considered.

Figure 3.4 shows, using the same data sets as in Figure 3.2, the maximum error resulting

from a limited voltage accuracy of 500µV, which is a reasonable value. The driving

current is assumed to be 100 mA. The errors increase with the separation factor for

all configurations. Dipole-dipole and pole-dipole configurations are sensible to voltage

errors due to their larger configuration factors. However, the errors can be significantly

reduced by dipole enlargement.

3.2.3 Numerical Implementation

The total error is considered to be a superposition of a device error and a geometrical

error. The device error is supposed to have Gaussian statistics and can be measured by

stacking impulses and computing the standard deviation of the measured impedance.

If errors cannot be measured they have to be estimated by assuming the minimum volt-
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Figure 3.4: Relative errors due to voltage accuracy of several configurations with elec-

trode distance 1 m, δU = 500µV, I = 100 mA, ρa = 100 Ω m, dipoles for

dd-inc and pd-inc are increased every 4th separation

age, usual values are several 100µV. Also, the geometrical error needs to be estimated,

which can be done in two ways:

1. The geometrical error is treated as uncorrelated maximum error or as correlated

errors due to a Gaussian variation of the electrode positions. Hence we can work

with the diagonal data weighting matrix D as introduced in section 2.1. The

relative variance reads

δρa
ρa

= p+
δU |k|
ρaI

+
δk

|k|
(δx) . (3.16)

The fixed relative error p can be used as an alternative to the geometrical error.

2. The data covariance matrix is the superposition of the squared statistical errors

and the geometrical error matrix A

Cd = ATA ·∆x2 + diag(e2i ) . (3.17)

In the algorithms described in section 2.3 the matrix DTD has to be replaced by

Cd
−1. Since Cd has the dimension of N × N , a matrix inversion is prohibitive

regarding memory usage. Hence, in every iteration of the equation solver, the

solution to the equation

Cdx = (ATA∆x2 + E)x = b
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has to be sought. The matrix A ∈ RN×E is sparse having at most 4N nonzero

entries, E = diag(ei) is a sparse diagonal matrix. Since the subproblem is well-

conditioned, the latter equation can easily be solved approximately using conju-

gate gradient techniques with minimum time and memory usage.

3.3 Parameterization and Regularization

3.3.1 The Parameter Function

The model parameter mi may represent the resistivity ρi or the conductivity σi. By

the inversion of resistivity or conductivity, resistive or conductive bodies are enhanced,

respectively. This can be of advantage, but also leads to artifacts. To get rid of the

choice, often mi is chosen to represent the logarithm of the resistivity or conductivity.

For details on logarithmic parameters see Tarantola (2001). It ensures the resistivities

remaining always positive. Positivity has not to be claimed by regularization methods,

because it represents a hard constraint.

Accordingly, the data are considered as logarithms of the apparent resistivity values.

Consequently, the model update is also a logarithmic update. For the update of the

resistivity values ρi in each iteration step by mnew
i = mi + ∆mi follows that

ρnewi = ρi · exp(∆mi) .

The idea of logarithmic non-negativity constraints can be expanded to claim the re-

sistivity to be larger than a lower resistivity limit ρl using mi = log(ρi − ρl), which

results in the update formula

ρnewi = ρl + (ρi − ρl) · exp(∆mi) .

This method is referred to as logarithmic barrier constraint technique (Li and Olden-

burg, 2003). It can also be used to limit ρi to an upper resistivity bound ρu by setting

mi = log(ρu − ρi). Both limits can be combined using the model parameter

mi = log

(
ρi − ρl
ρu − ρi

)
,

the accompanying update step is formulated as

ρnewi =
ρu(ρi − ρl) exp ∆mi + ρl(ρu − ρi)

(ρi − ρl) exp ∆mi + ρu − ρi
.

Note that for small contrasts the inversion of conductivity, resistivity or the logarithm

yields similar results. For large contrasts an improved convergence is observed for
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logarithms. Therefore, in all subsequent examples the parameters are the logarithms

of resistivity. In some cases, e.g. if the resistivity of a conductive basement is known,

the lower bound technique can be successfully applied.

3.3.2 Geometrical Parameter Arrangement

The decomposition of the earth into sub-domains creates the discrete inverse problem.

It has to satisfy the following conditions:

1. The sub-domains have to be small enough and the discretized region has to be

large enough to ensure the existence of models fitting the data within error.

2. The number of model parameters (sub-domains) must not be too large due to

the ill-posedness and the limitation of computer resources.

3. It must be possible to define appropriate regularizing functions.

4. The discrete model has to be transformed into a finite difference or finite element

grid for an accurate forward calculation.

If there is no topography present, an FD-like grid is the matter of choice, because

the FD forward calculation is quite fast and regularization methods like smoothness

constraints can make use of the regular arrangement of the model cells. At first, the

model domain has to be bounded. Typically, its boundaries are placed several (1 up

to 5) electrode distances outside the bounding electrodes.

The layer discretization has to be chosen according to the depth penetration of the

electrode configurations. An estimation of representative depth is an important ques-

tion for all geophysical methods. Investigations for direct current methods were made

early by Roy and Apparao (1971) and Barker (1989), who investigated penetrations of

single configurations. However, for the general case of mixed or uncommon electrode

arrangements an alternative method has to be found.

The one-dimensional sensitivity distribution helps to find a reasonable parameteri-

zation as follows. It can easily be shown, that for a pole-pole measurement with the

distance AM = a the layer sensitivities in a homogeneous half-space is

z2∫
z1

z
√
a2 + z2

3dz =
a√

a2 + z2

∣∣∣∣z2
z1

, (3.18)

where z1 and z2 are the upper and lower layer boundaries, respectively. For four-

electrode configurations the sensitivities can be obtained by superposition.
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Figure 3.5: One-dimensional sensitivity distribution of a dipole-dipole measurement

using a=2 m and n=4

Figure 3.5 shows the 1D-sensitivity of a dipole-dipole configuration. The layer sensi-

tivity function has a clear maximum at z = 0.8 m. The cumulative sensitivity, which

equals (3.18) for z1 = 0, begins to saturate at about 5−8 m. Since the integral reaches

1 only for infinite depth, the value of 0.9 is used for a representative penetration depth.

Figure 3.6 displays the penetration depth per electrode spacing as a function of the

separation factor for the above mentioned data sets. The pole-pole configuration has

the largest penetration depth, whereas a dipole-dipole configuration penetrates only

shallow. For a set of configurations the layer sensitivities can be added up to obtain

a total investigation depth. The in-between layers are determined the way that either

the sensitivities of the individual layers are equal or that the layer thicknesses increase

with a constant factor.

The calculation of layer sensitivities leads to the idea of generating a layered starting

model using a linearized inversion scheme. It has the advantage of calculating the

forward responses semi-analytically (Li and Spitzer, 2002).

Besides the layers, horizontal grid spacings have to be defined. Note that the model

has not necessarily to equal a finite difference grid itself. However, it must match the

lines of a fine grid. From that two model parameter types arise denoted with the terms

Grid and Para.

The Grid model is a regular finite difference grid. Grid spacings are the typical elec-

trode distances ∆xe, ∆ye or their minimum for both values. In small-scale and

shallow cases of well-covered ground a grid of ∆xe/2 can be used successfully.
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Figure 3.6: Maximum z (90% sensitivity) per electrode spacing a for several configu-

rations as a function of separation factor n, dipoles for dd-inc and pd-inc

are increased every 4th n

The Para model has element sizes varying from layer to layer. Generally, the elements

increase with depth to consider the decreasing resolution. The edge lengths are

multiples of a unit length, recommended is the minimum of ∆xe/2 and ∆ye/2.

Figure 3.7 shows how the model types may look like for a 2D discretization.

0 5 10 x/m 20
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(a) Grid model
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(b) Para model

Figure 3.7: Sample two-dimensional Grid and Para type models. The Grid model

contains 24×6=144 regular cells, the para model 48+24+16+12+8+6=

114 cells, whose lateral extent increases with depth
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3.4 DC Forward Calculation

The term forward calculation denotes the simulation of synthetic data for a given model

parameterization. For a point source of current I at the position ~rs the governing

Poisson equation (3.3) reads

∇ · (σ∇ϕ) = ∇σ · ∇ϕ+ σ∇2ϕ = −Iδ(~r − ~rs) , (3.19)

which has to be solved for the potential ϕ(~r) by appropriate methods. Note that a

non-unique solution for the domain Ω requires the specification of boundary conditions

at its boundary Γ.

The continuity equation (3.19) is defined if the potential is twice differentiable (ϕ ∈ C2)

and the conductivity once (σ ∈ C1) which holds within the sub-domains Ω of constant

σi. At the inner boundaries of two sub-domains Ωm and Ωn the continuity equation

yields σm∇ϕm = σn∇ϕn, which has to be satisfied. A common way is the solution of

(3.19) in an integrated sense.

For bodies of closed geometry boundary integral methods can be used, which are

seldom of interest in inverse problems. With the rapid development of computers in

the last decades finite difference (FD) and finite element (FE) techniques were applied

for the solution of differential equations in many branches. In the following is shown

how FD calculations can be efficiently used. As a fundamental principle of numerical

simulation holds, that the accuracy of the results increases with increasing numerical

effort in form of a finer discretization. Main attention is payed to find a trade-off

between reasonable accuracy within limited computing time.

3.4.1 Finite Difference Discretization

The basis of the finite difference technique is the construction of a discrete model

in form of a hexahedral grid2 with nodes at the cell corners. The existing partial

derivatives are replaced by finite differences. An overview of finite difference modeling

techniques and discretization schemes for DC problems was given by Spitzer (1999).

The three dimensions of the modeling domain are subdivided into a grid by the node

positions xi (i ∈ 1 . . . imax), yj (j ∈ 1 . . . jmax) and zk (k ∈ 1 . . . kmax). There exist a lot

of discretization schemes differing in the location of conductivities and partial deriva-

tives (Dey and Morrison, 1979a; Zhang et al., 1995; Spitzer, 1995). For a comparison

see Spitzer and Wurmstich (1995). In the following, the discretization technique of

Dey and Morrison (1979a) is applied. It is identical to the scheme of Brewitt-Taylor

2The finite difference grid does not necessarily correspond to the inversion parameter structure.
However, a transformation, usually by refinement and prolongation, has to be found.
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and Weaver (1976) used for 2D induction problems, which was applied to the 3D DC

problem by Spitzer (1995).

(i,j,k)

j+1
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i-1 i

Z
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i+1

Figure 3.8: Section of the FD grid for the grid node ijk, the dashed line denotes the

definition of the average conductivity at the grid nodes

Figure 3.8 shows a section of a finite difference grid. The elementary domain Ωijk

with the conductivity σijk is bounded by the grid nodes (i,j,k), (i+1,j,k), (i,j+1,k),

(i+1,j+1,k), (i,j,k+1), (i+1,j,k+1), (i,j+1,k+1) and (i+1,j+1,k+1).

By integration of equation (3.19) on the model cell Ωijk we obtain∫∫∫
Ωijk

∇ · (σ∇ϕ)d3~r = −
∫∫∫
Ωijk

I · δ3(~r − ~rs)d
3~r = −I(~r) .

By the application of Gauss’ theorem the volume integral is transformed into a surface

integral∫∫∫
Ωijk

∇ · (σ∇ϕ)d3~r =

∫∫
Γijk

σ
∂ϕ

∂η
dΓ = −I(~r) , (3.20)

where Γijk denotes the enclosing surface of Ωijk and η is its normal vector.

The potential gradient ∂ϕ
∂η

is approximated using central differences on every edge. Thus

the integral is replaced by a sum over the 6 faces. Figure 3.9 shows the conductivities

at the edge in +k-direction.

The conductivity σ is the weighted mean of the four adjacent conductivity cells, thus

the integral at the bottom face is∫∫
∆Γk

i,j,k+1/2

σ
∂ϕ

∂z
dxdy =

ϕi,j,k+1 − ϕi,j,k
∆zk

(
σi−1,j−1,k

∆xi−1∆yj−1

4
+
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Figure 3.9: Plan view of the line between the grid nodes (i,j,k) and (i,j,k+1), the dashed

line represents the equivalent area with the weighted conductivity

+σi,j−1,k
∆xi∆yj−1

4
+ σi−1,j,k

∆xi−1∆yj
4

+ σi,j,k
∆xi∆yj

4

)
. (3.21)

Replacing the partial derivatives with respect to all directions yields

Ctop · ϕi,j,k−1 + Cbottom · ϕi,j,k+1 + Cleft · ϕi−1,j,k + Cright · ϕi+1,j,k+

Cfront · ϕi,j−1,k + Cback · ϕi,j+1,k + Cself · ϕi,j,k = −I(xs, ys, zs) , (3.22)

which represents the discrete partial differential equation at the node (i,j,k). Cleft,

Cright, Cback, Cfront, Ctop and Cbottom are the coupling coefficients in -x, +x, -y, +y, -z

and +z, respectively. They depend on the surrounding conductivities and grid spacings

and can be interpreted as conductances between the adjacent nodes. For example the

coupling coefficient into bottom direction is

Cbottom = − 1

∆zk

(
σi−1,j,k

∆xi−1∆yj
4

+ σi,j,k
∆xi∆yj

4
+

σi−1,j−1,k
∆xi−1∆yj−1

4
+ σi,j,k

∆xi∆yj
4

)
.

The self coupling coefficient Cself is the negative sum of the six coefficients

Cself = −(Ctop + Cbottom + Cleft + Cright + Cfront + Cback) . (3.23)

Boundary conditions

At the boundary of the modeling domain the neighbors in the outward directions are

missing. Therefore the behavior of the potential field has to be defined by boundary

conditions. Generally, there exist three different types:

Neumann boundary conditions fix the potential derivative with respect to the out-

ward direction. This is essential for the earth’s surface, where the current flow
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perpendicular to the surface is zero. They can be applied by introducing an ad-

ditional conductivity-free layer above the surface, which sets Ctop to zero, before

the summation for Cself is done.

Dirichlet boundary conditions are used to fix the potential values. They can be cal-

culated analytically for a homogeneous or layered half-space. Since the potentials

are not known, usually the outward potentials are set to zero. To obtain an im-

proved accuracy in the modeling domain, layers with prolonged grid spacings are

added to the parameter model boundaries.

Mixed boundary conditions relate the potential and its derivative by assuming the

potential characteristics. Dey and Morrison (1979a) presented boundary condi-

tions for a single current electrode at the origin

∂ϕ

∂η
+

ϕ

|~r|
cos θ = 0 , (3.24)

where θ is the angle between the position vector ~r and the outward vector ~η.

Using the dot product we obtain, e.g. for the boundary at x,

∂ϕ

∂η
+
x

r2
ϕ = 0 ,

which can be discretized and introduced into the system of equations easily.

Zhang et al. (1995) presented improved mixed boundary conditions for multi-

pole sources. Since for all subsequent simulations mono-poles are used, they

are not of interest. Note that the coupling matrix has to be re-assembled for

every individual electrode respecting their position. However, it is sufficient to

formulate the boundary conditions using a representative source location in the

middle of the electrode array, because the modeling boundaries are generally far

from the electrodes.

Using equation (3.22) for all nodes yields the discrete differential equation represented

by a system of equations

K ·ϕ = b , (3.25)

which has to be solved for the vector ϕ containing the potentials for all existing nodes.

The coupling matrix K works as discretized differential operator Lσ. It is a sparse

matrix of band-structure. The coupling coefficients fill the individual main and off-side

diagonals. K is guaranteed to be positive semi-definite, regular3 and thus has a unique

3The matrix becomes singular, if Neumann conditions are applied to all boundaries. Hence, at least
at one point Dirichlet or mixed conditions have to be installed.
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solution for all b. The source vector b represents a discrete Dirac function. All elements

are zero except for the node where the current electrode is placed. All electrodes have

to match the finite difference grid, which can lead to huge node numbers for irregular

electrode positions. Since the potential follows a behavior proportional to 1/r, it can

hardly be discretized by a piecewise linear function. Hence, large discretization errors

occur near the electrodes, which can only be diminished by a very fine grid.

3.4.2 Singularity Removal Technique

Lowry et al. (1989) introduced the singularity removal technique for DC modeling.

However, secondary field simulations can be applied to other numerical modeling prob-

lems with complicated source fields (Günther, 2000). The approach is to consider the

potential as sum of two parts

ϕ = ϕp + ϕs . (3.26)

The primary4 potential ϕp represents the known potential for a well-defined parameter

structure. It satisfies the continuity equation for the conductivity distribution σ0

Lσ0ϕp = ∇ · (σ0ϕp) = −Iδ(~r − ~rs) . (3.27)

The potential for the conductivity structure σ0 must be known. Generally the homo-

geneous half-space is used. An alternative is a layered medium or a vertical contact,

whose potentials can be derived following Li and Spitzer (2002). It is further possible

to use the conductivities of the last model iterate.

The total potential satisfies the continuity equation (3.3) for σ

∇ · (σ∇(ϕp + ϕs)) = ∇ · (σ∇ϕp) +∇ · (σ∇ϕs) = −Iδ(~r − ~rs) . (3.28)

By subtracting equation (3.27) from (3.28) follows that

∇ · (σ∇ϕs) = ∇ · ((σ0 − σ)∇ϕp) (3.29)

Lσϕs = Lσ0−σϕp .

Sources of the secondary potential appear at regions of conductivity deviation and are

strong near the electrodes, where ∇ϕp is large. For an anomalous, extensive body

its boundaries bear positive and negative secondary sources working as a capacitance.

The secondary potential shows no singularity. It is generally smoother and easier to

approximate.

4The primary field is also referred to as ”normal” or ”singular”, whereas the corresponding terms of
the secondary field are ”anomalous” and ”regular”.
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Since the right side is defined by the potential instead of the discrete Dirac function,

the singularity removal technique allows for grid independent electrode positioning.

However, if the electrodes are placed off the grid nodes, the corresponding potentials

have to be obtained by interpolation, which can introduce additional errors. Generally,

a tri-linear interpolation of the secondary potential yields reasonable results.

Equation (3.29) is discretized replacing the operators by the coupling matrices

Kσ ·ϕs = Kσ0−σ ·ϕp . (3.30)

Thus we have additionally to assemble the coupling matrices for the conductivity

deviation σ0 − σ. It it obvious that the singularity is only removed if σ0 equals the

source conductivity as suggested by Zhao and Yedlin (1996). Unfortunately, secondary

sources may arise at the boundaries leading to errors. The apparent resistivities can

directly be calculated using

ρa = ρ0 + ρsa = ρ0 + k
∆ϕs

I
,

where ρ0 = 1/σ0. Generally, the various sources are located at different conductivities

σi. Then it proves useful to assemble a matrix K1 for σ = 1 and use the linearity,

which yields for (3.30)

Kσϕs = (σiK1 −Kσ)ϕp = σiK1ϕp −Kσϕp . (3.31)

Let ρA and ρB be the conductivities at the source electrodes A and B. The apparent

resistivity for a four-point measurement can be calculated by

ρa =
k

2π

(
ρA

AM
− ρA

AN
− ρB

BM
+

ρB

BN

)
+ ρsa . (3.32)

3.4.3 Accuracy and Speed

Regular grids have to be refined highly to solve the total potential accurately. Since

this results in large grids and huge computing time, the following computations are

carried out using the singularity removal technique. The system of equations to be

solved is represented by the quadratic, positively defined matrix A and a left hand

side matrix B containing the secondary source vectors bi for all electrode positions. A

broad overview of accuracy and speed for DC schemes has been given by Spitzer and

Wurmstich (1995). However, the investigations merely apply single injection points

and the effect of grid refinement was not considered.

There exists a variety of equation solvers. At first, direct methods as Gaussian elimina-

tion and QR-decomposition are to be mentioned. Although they may be interesting in
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case of many right-side vectors, their use is limited to small-scale problems. Since the

coupling matrix is sparse, iterative equation solvers are well-suited. Amongst them,

Krylov subspace methods prove to converge fast. The conjugate gradient technique

presented by Hestenes and Stiefel (1952) shows superior results (Spitzer and Wurm-

stich, 1995). Generally the satisfaction of appropriate boundary conditions demands

boundaries far from the model region. This is usually accomplished by adding pro-

longing cells. The prolonging factor reaches from 1.3 to 5, the corresponding number

of cells might equal 3 up to 20.

Irregular grids result in slow convergence indicated by large condition numbers. To

accelerate the convergence, preconditioning is often successfully applied. The idea is

to find an easy-to-invert matrix M to solve the equivalent system of equations

M−1Ax = M−1b ,

with a reduced condition number cond(M−1A) � cond(A). The easiest symmetric

preconditioner is called Jacobi because it uses the main diagonal elements for scaling

the system of equations. Asymmetric preconditioners use two matrices R1 and R2

instead of M

R−1
1 AR−1

2 x = R−1
1 R−1

2 b . (3.33)

Since triangular matrices can be inverted easily, they are typical. Due to the symmetry

of A, often only one R = R1 = RT
2 is used. For example, the symmetric successive

over-relaxation (SSOR) preconditioner can be written as

R =
1√

2− ω
D−1(D + U) , (3.34)

where D is the diagonal matrix of A, U its upper right triangle matrix and ω is referred

to as relaxation factor.

Another preconditioner is obtained by incomplete Cholesky factorization of A ≈
RTR (Wu et al., 2003). In an iterative process R is changed until the norms of

A and RTR differ by a tolerance tol (Saad, 1996). An alternative variant uses the

same sparsity structure as the triangular matrix of A, but its tolerance is limited.

Forward calculation errors

The errors arising in the forward calculation may be divided into two types:

Discretization errors Even if the model cells possess equal conductivities, errors are

made using the finite difference approximations of the partial derivatives. Such

errors occur at points, where the potential behavior departs from linear form,
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particularly near the electrodes. Other discretization errors are introduced at

point of changing finite distances, where the midpoint of the central differences

departs from the grid node.

Conductivity contrast errors At the inner model boundaries arise sharp conductivity

contrasts of infinite gradients, which are discretized by finite differences.

Generally, the error types can hardly be separated. Both types can be diminished using

a finer discretization. However, a local refinement affects the entire modeling domain

and increases the numerical work significantly. A comparison to analytical solutions

is available only for few cases: a layered earth, a vertical contact and a sphere in

homogeneous background. For models arising in inversion a measure of accuracy has

to be found.

The principle of reciprocity states, that the measured impedance is invariant to inter-

changing current and potential electrodes (Friedel, 2000). Since for both realizations

errors occur, a quality control can be derived comparing the real and reciprocal simu-

lation yielding the reciprocity

rec = 2
fforward − freverse
fforward + freverse

. (3.35)

fforward is the simulation result as the configuration predicts and for freverse current

and potential electrodes are changed.

A first accuracy test applies pole-pole measurements over a conductive dike of infinite

strike length. Within a homogeneous half-space of 100 Ω m the dike with a resistivity

of 10 Ω m is situated between x=20 m and 25 m. The source is located at the origin,

potentials are measured at the line defined by y=0 m and z=0 m. The model itself is

spaced equidistantly with ∆x=∆y=∆z=5 m from x=−40..110 m, y=−50..50 m and

z=0..60 m. Four cells with thickness enlarged by factor 4 are added to the sub-surface

boundaries to satisfy the boundary conditions.

Figure 3.10 shows the numerical result compared to the analytical solution and the

solution error in comparison with the reciprocity. Note that the plotted result is the

geometrical mean of forward and reciprocal simulation. For most regions, the analytical

solution can be approximated well within one percent deviation. Larger deviations

occur near the conductivity contrast, whereas in regions of constant conductivity both

accuracy and reciprocity error are low. Hence, the reciprocity suites well for estimating

the accuracy of numerical simulations. However, near the right boundary errors appear

to both solutions that do not affect the reciprocity.

The reciprocity as a measure of accuracy can be displayed in form of pseudo-sections

to delineate areas, which have to be refined. In the following, the maximum absolute
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Figure 3.10: Comparison of results for the conductive dike, (a) apparent resistivity, (b)

accuracy and reciprocity

value and the standard deviation of all reciprocity values are used for the estimation

of simulation errors. For the above depicted example values of 6.74 % and 1.83 % were

found, respectively.

Several investigations are carried out to determine the effect of refinement techniques

and the resistivity contrasts on the reciprocity. Figure 3.11 displays the used model

geometry. On a grid of 11× 11 electrodes dipole-dipole measurements were simulated

for both x- and y-direction. The model is discretized using horizontal grid spacings

of ∆x = ∆y = 1 m. Six layers with thicknesses from 0.4 to 1.0 m define the vertical

boundaries, the maximum depth of 4 m considers the total depth of investigation.

In a homogeneous half-space of 100 Ω m several bodies of varying form and depth are

located. The anomalous resistivities are defined by the contrast factor fak.

Accuracy considerations

The system of equations Ax = b is solved via the method of conjugate gradients. The

iteration process is stopped once the relative residual norm

‖Ax− b‖
‖b‖

falls below an accuracy acc. To save computing time, it is necessary to find reasonable

values for acc.

Discretization errors can be diminished by a node refinement. The refinement has to

be applied globally and results in much larger systems of equation. For this example,
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Figure 3.11: Synthetic model used for the accuracy investigations

one (refinement factor 2) or two (refinement factor 3) additional nodes are placed at

the horizontal grid lines of the individual cells.

Accuracy Unrefined Refined by 2 Refined by 3

acc max(rec) std(rec) max(rec) std(rec) max(rec) std(rec)

1e-1 77.6 14.7 380 29.8 108 22.3

1e-2 55.2 8.14 58.0 8.82 63.3 12.1

1e-3 36.8 5.49 28.9 4.10 20.1 3.17

1e-4 36.8 5.46 28.7 4.07 19.8 3.02

1e-5 36.8 5.45 28.7 4.07 19.8 3.02

1e-6 36.8 5.45 28.7 4.07 19.8 3.02

Table 3.2: Reciprocity (in %) as a function of refinement and solving accuracy, contrast

factor fak=5

Table 3.2 shows both maximum and standard deviation of the reciprocity values for

varying solver accuracy and refinement factors, a contrast factor of fak=5 is used.

The largest errors of 20-40% arise at the near-surface variations, whereas the standard

deviations range at several percent. The reciprocity values are significantly reduced by

grid refinement. Regarding the solving accuracy it is clearly visible that values below

1e-3 to 1e-4 do not lead to more accurate results and thus 1e-4 works as a reliable

value used in subsequent simulations.
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It is obvious, that the accuracy of the forward calculations strongly depends on the

existing resistivity contrasts. In the following, the contrast is varied from 1:10 to 10:1

as denoted in Table 3.3. Note that only small errors arise for a contrast near 1 and that

resistivity contrast 1:10 1:5 1:2 4:5 5:4 2:1 5:1 10:1

maximum error 52.4 17.79 5.0 1.5 1.5 5.3 19.8 39.9

standard devation 5.11 2.23 0.87 0.29 0.31 1.04 3.02 5.54

Table 3.3: Reciprocity (in %) as a function of the resistivity contrast between the half-

space and the anomalous bodies, computations use triple refinement and

acc=1e-4

they increase with extremal contrast factors. Consequently, the refinement has to be

carried out depending on the resistivity contrasts. However, for FD grids a refinement

is always global and strongly increases memory and computer time usage.

Speed of forward calculation

In the following is investigated, how the use of different preconditioning matrices affects

computing time.

PC ω or tol nonzeros pc time (s) iter. time (s) sum/mean iter.

Jacobi 8125 0.04 1384 20932/173

SSOR 1.4 31225 0.1 575 5434/44.9

ω = 1.6 31225 0.1 562 5260/43.5

1.8 31225 0.1 545 5115/42.3

CholInc ’0’ 31225 2.23 83.3 2307/19.1

tol= 0.1 22459 0.15 93.6 2808/23.2

0.01 48770 0.44 50.8 1274/10.5

1e-3 145434 1.58 36.8 524/4.3

1e-4 430993 6.51 40.7 279/2.3

1e-5 1126411 20.0 56.0 159/1.3

Table 3.4: Comparison of different preconditioners, ’0’ denotes the use of the same

sparsity structure

Table 3.4 shows the number of nonzero elements, the needed iteration numbers and

the time consumed for different preconditioners. Although the Jacobi preconditioner

allocates less memory it needs the largest number of iterations and computer time.

Both are significantly reduced by the SSOR preconditioner. The optimal value of the

relaxation factor is close to ω = 1.8.
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The incomplete Cholesky type preconditioners are superior to SSOR and Jacobi type

from both iteration number and computer time point of view. With decreasing Cholesky

tolerance tol the iteration numbers are significantly reduced. Although the iteration

numbers are still decreasing, the computing time begins to increase for tolerances lower

than 1e-3. The reason is the larger number of non-zero elements, which increases the

time for each matrix-vector multiplication. Moreover, the time used for calculating

the preconditioning matrix rises significantly. Therefore a value of tol=1e-3 is used for

subsequent simulations.

It has to be noted, that the incomplete Cholesky with same sparsity structure needs

more memory and computer time than the one with tolerance 0.1. Thus, small tol-

erance values are to be applied instead if the computer memory is strongly limited.

However, the memory needed by the forward calculation is much smaller than for

storing the sensitivity matrix. For inversion with NLCG without explicit sensitivity

calculation Cholesky preconditioners with small tolerances can be the method of choice

for large-scale problems.

3.4.4 Finite Element Modeling

Finite Element (FE) methods have been used early to calculate electromagnetic and

electric fields (Coggon, 1971; Pridmore et al., 1980). Many authors like Li and Spitzer

(2002) and Pain et al. (2003) use hexahedral elements. However, the main advantage

of finite elements is the incorporation of topography (Fox et al., 1980), which cannot be

accomplished using hexahedrons. Tetrahedrons allow for the simulation of arbitrary

geometry. Bing and Greenhalgh (2001) presented finite element simulations based

on regularly arranged tetrahedral elements. Until now, only few approaches using

unstructured tetrahedral grids have been published (Sugimoto, 1999).

The above denoted problems at inner boundaries are circumvented by the weak for-

mulation. The differential equation Lσϕ = f is solved in an inner product sense∫∫∫
Ω

vLσϕdΩ =

∫∫∫
Ω

vfdΩ (3.36)

for certain test functions v.

Equation (3.36) can be solved for discrete functions vh using a variational integral

(Galerkin method) or by the method of weighted residuals. The potential is then

constructed by form functions and the solution is obtained at the node positions of the

finite elements.

As for finite differences, the singularity removal technique can be applied, for details

see Rücker (2003). The primary potentials can be calculated analytically for flat-earth
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problems. If topography is present, they can be obtained by forward calculation using

a homogeneous conductivity. However, the total potential requires a much finer grid

to ensure accurate results.

3.4.5 Forward Approximations

The sensitivity matrix as relative and absolute weighting function can be used to

accomplish forward calculation. Thus, the model response vector can be approximated

using the formula

f(m) ≈ f(m0) + S(m−m0) .

However, it turns out that small errors in the sensitivity values lead to large errors in

the forward approximation. The main problem is, that the sensitivity of an updated

model is generally not known. Without update the mechanism represents a pure

linear problem, which can be solved in one inversion step. Even if sensitivity updates

like Broyden’s method are used, they are under-linear and result in the known slow

convergence of back-projection forward calculation algorithms.

3.4.6 2D Finite Difference Modeling

The conductivity is considered to be of infinite extent in one (let’s say y-) direction.

Hence, the partial derivatives with respect to y vanish as well as the coupling coeffi-

cients to the back and the front direction. The potentials are sought at the discretized

x-z plane resulting in smaller computational effort. However, using the source terms as

depicted would implicate current sources of infinite extent. The three-dimensionality

of the point source is transformed into wavenumber domain using the Fourier-Cosine-

transform of the potential

ϕ̃(x, ky, z) = 2

∞∫
0

ϕ(x, y, z) cos (kyy)dy , (3.37)

where ϕ̃ denotes the transformed potential and ky is the wavenumber with respect to

y. The corresponding transformation of equation (3.3) yields

∂

∂x

(
σ
∂ϕ̃

∂x

)
+

∂

∂z

(
σ
∂ϕ̃

∂z

)
− k2

yσϕ̃ = −Iδ(x− xs)δ(z − zs) . (3.38)

The boundary conditions have to be transformed adequately. Equation (3.38) can then

be solved using finite differences (Dey and Morrison, 1979b) or finite elements (Kemna,
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2000). The solutions ϕ̃ for a series of ky are then transformed back to spatial domain

ϕ(x, 0, z) =
1

π

∞∫
0

ϕ̃(x, ky, z)dky .

Kemna (2000) and Rücker (1999) suggest a numerical integration using the Gauss-

Legendre method for small and Gauss-Laguerre for large wavenumbers.

3.5 Calculation of Sensitivities

The sensitivity term arises inevitable in every non-linear inversion process. Even a

trial-and-error inversion using subsequent modeling and forward calculations has to

consider the sensitivity distribution. A single sensitivity value denotes the change of

forward response fi as a function of the model m with respect to a change of the model

parameter mj

Sij(m) =
∂fi(m)

∂mj

. (3.39)

The term sensitivity is associated with an assumption of a model m, which is never the

truth5. Since it is a function of the model, we can never speak about ”the sensitivity”,

even though the term is often used for the one of the homogeneous half-space or an

a-priori model.

Arranging the sensitivities of all forward responses with respect to all model parameter

in a matrix yields the Jacobian (or sensitivity) matrix

S =


∂f1
∂m1

· · · ∂f1
∂mM

...
. . .

...
∂fN

∂m1
· · · ∂fN

∂mM

 , (3.40)

used in non-linear inversion for updating the model vector.

The sensitivities of all existing model parameters plotted in model space is referred

to as sensitivity distribution. It provides a clear view into the physical processes

and thus represents a powerful tool for the comprehension and the interpretation of

measurements. In the last decade, numerous papers on sensitivities of electromag-

netic measurements were published (Gomez-Trevino, 1987; Spies and Habashy, 1995;

Dorn et al., 2002). Also, for DC resistivity data the sensitivity have been investigated

(Friedel, 1997; Dietrich, 1999; Spitzer, 1998).

5As we do not know the actual model producing our data, we can not speak of the ”sensitivity of
the data”.
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The sensitivity distribution of one single data primarily denotes regions, which are

sensitive to the measurement. Following travel-time tomography, the sum of the sen-

sitivities of all measurements yields a cumulative sensitivity or coverage

covj =
N∑
i=1

Sij .

The comparison of sensitivity distributions for the individual data provides a concept

of how the model parameters can be distinguished from each other. When designing

data sets, a trade-off between the abilities of detecting and distinguishing has to be

sought.

3.5.1 Derivation of DC Sensitivities

Using the reciprocity principle of electrical impedance tomography it has been shown

by Geselowitz (1971), how the impedance Z changes due to a change of the conductivity

δσ in the region Ωi

δZ = −δσ
∫∫∫

Ωi

∇ϕ
Iϕ

· ∇ψ
Iψ

~d3r . (3.41)

ϕ is the potential caused by injecting the current Iϕ at the current electrodes. ψ and Iψ
denote the potential and the current taking the potential electrodes for current injec-

tion. Using the forward response ρa = kZ and the parameter ρ, for the dimensionless

sensitivity holds the relationship

S =
δρa
δρ

=
k

ρ2

∫∫∫
Ωi

∇ϕ
Iϕ

· ∇ψ
Iψ

~d3r . (3.42)

Homogeneous half-space sensitivities

For the case of a homogeneous half-space the potentials are known analytically. Hence

for a four point measurement array holds

Shom =
δρa
δρ

=
k

4π2

∫∫∫
Ωi

(
~ra
r3
a

− ~rb
r3
b

)
·
(
~rm
r3
m

− ~rn
r3
n

)
~d3r , (3.43)

where ~ra = ~r − ~rA etc. are the relative vectors of the position vector ~r with regard

to the electrode positions. Note that the sensitivity is independent of the half-space

resistivity ρ. The integral has to be solved by numerical integration. The Gauss-

Legendre integration proves to obtain accurate and robust results. A variable number
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x= y= z= 1 point 23 = 8 points 33 = 27 53 = 125 exact value

2-3 0-1 2-3 -0.8615 -0.8690 -0.8689 -0.8689 -0.8689

3-4 0-1 0.5-1 -0.8934 -0.7693 -0.7773 -0.7771 -0.7771

4-5 0-1 0-0.5 -9.7123 -12.7080 -12.7323 -12.6556 -12.5665

Table 3.5: Results (10−3) of the Gauss-Legendre integration of the sensitivity for

a hexahedral region with respect to a pole-pole measurement (RA =

(−5, 0, 0)T , RM = (5, 0, 0)T )

of sampling points representing polynomial nulls is distributed for three directions. At

every point the integrand is calculated, multiplied with the three weighting factors of

the sampling point and summed up.

As example, Table 3.5 shows approximated sensitivity values for a variable number

of sampling points. It can be seen, how for deeper cells an approximation of 23 or 33

points provides reasonable results. For most purposes a 53 approximation is sufficiently

accurate, for cells adjacent to electrodes up to 103 points per cell are recommended.

Two-dimensional sensitivity integration

In two-dimensional inversion the model cells are of infinite length in y-direction. The

unbounded integration with respect to y can be transformed to a bounded integration

using elliptic integrals of first and second order K and E. Friedel (2000) showed, that

the sensitivity function of a pole-pole array can be written as

S(x, z) =
1

4π2
{T1[(x− xA)(x− xM) + z2] + T2} , (3.44)

where xA and xM are the positions of the current and potential electrode. T1 and T2

read

T1 =
2

ab2(a2 − b2)2
[(a2 + b2)E(η)− 2b2K(η)] and

T2 =
2

a(a2 − b2)2
[(a2 + b2)K(η)− 2a2E(η)] .

a2 and b2 are maximum and minimum of the values (x−xA)2 + z2 and (x−xM)2 + z2,

respectively and η = 1− b2/a2.

3.5.2 Sensitivities for Inhomogeneous Conductivities

The presence of conductivity contrasts in the model space changes the electric fields

and thus also the sensitivities. In general, there exist three ways for the sensitivity

calculation of the general case (Spitzer, 1998):
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The perturbation method

This is a very obvious procedure often used for problems with few parameters. The

partial derivative in equation (2.3) is approximated by the finite difference equation

Sij ≈
fi(m + ∆mδj)− fi(m)

∆m
.

δj is the discrete Dirac function with 1 at the position j and 0 elsewhere. Subsequently,

all the model cells are perturbed with a small variation ∆m and the difference in the

forward response, related to the variation, yields one column of the sensitivity matrix.

If the model response f(m) is already known, M additional forward calculations in-

cluding all potential electrodes have to be carried out. Since the forward calculation

is a time consuming procedure, this method seems quite impractical.

Sensitivity forward calculation

The forward problem is usually solved by finite differences or finite elements resulting

in a system equations, which has to be solved for the potential vector ϕ.

K ·ϕ = b (3.45)

The matrix K denotes the coupling (FD) or stiffness (FE) matrix representing dis-

cretization and conductivity distribution, the vector b is defined by the (primary or

secondary) sources. Following Spitzer (1998), equation (3.45) can be differentiated

with respect to the cell conductivity σi. While the source term b is independent of σi,

both K and ϕ are not, yielding

K · ∂ϕ
∂σi

= −∂K
∂σi

ϕ . (3.46)

Equation (3.46) reads as additional forward calculations with the same matrix and

different source function. Since each element of the matrix K contains the neighbor-

ing conductivities of the according node, sensitivity sources occur only at the nodes

surrounding the element i. However, for each model cell all sources have to be consid-

ered, resulting in solving M × N single forward equations. The numerical effort can

be significantly reduced using fast preconditioners. In multi-dimensional inversion the

number of model parameters is usually higher than the number of data. Thus this

method is seldom useful in practice.

Potential approximation

Assume that the potentials at the cell corner points are known from the DC forward

calculation. Then equation (3.42) can be used replacing the partial derivatives by finite
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differences, e.g. for

∂ϕi+1/2,j,k

∂x
≈ 1

4∆x
( ϕi+1,j,k + ϕi+1,j+1,k + ϕi+1,j,k+1 + ϕi+1,j+1,k+1−

ϕi,j,k − ϕi,j+1,k − ϕi,j,k+1 − ϕi,j+1,k+1 ) . (3.47)

This method yields satisfactory results for deep cells. Since the potential decreases

under-linearly proportionally to 1/r, both the gradients and the sensitivity are over-

estimated for small distances to the electrode. Refining the grid can overcome this

problem slightly resulting in a huge effort for the forward calculation. Another impor-

tant issue is the fact, that the potential at the source points is singular. Generating

a model grid excluding the electrodes handles this problem, but introduces modeling

errors due to interpolation and therefore also affects the sensitivity calculation.

3.5.3 Secondary Potential Sensitivity Calculation

If the singularity removal technique is applied, one can use the decomposition of the

potentials ϕ (and, by analogy, ψ)

ϕ = ϕp + ϕs and ψ = ψp + ψs . (3.48)

Inserting equations (3.48) into (3.42) yields

S =
δρa
δρ

=
k

I2ρ2

∫∫∫
Ωi

(∇ϕp +∇ϕs) · (∇ψp +∇ψs) ~d3r . (3.49)

By multiplying the sums and changing integration and summation we obtain a sum of

four integrals

S =
k

I2ρ2

[ ∫∫∫
Ωi

∇ϕp · ∇ψp ~d3r +

∫∫∫
Ωi

∇ϕp · ∇ψs ~d3r +

∫∫∫
Ωi

∇ϕs · ∇ψp ~d3r +

∫∫∫
Ωi

∇ϕs · ∇ψs ~d3r

]
(3.50)

= S1 + S2 + S3 + S4 . (3.51)

Integral S1 is constructed by the known primary potentials and represents the half-

space sensitivity of equation (3.43). It contains the main sensitivity distribution and

is generally of higher magnitude than the integrals S2 to S4. Those are produced by

conductivity deviations and can be calculated in addition to the integrated S1, which

has already been obtained at the starting point of inversion.
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Using Green’s identity ∇ · (a∇b) = ∇a · ∇b+ a∇2b yields for S2

S2 =

∫∫∫
Ωi

∇ϕp · ∇ψs ~d3r =

∫∫∫
Ωi

∇ · (ϕp · ∇ψs) ~d3r −
∫∫∫

Ωi

ϕ∇2ψs ~d3r .

If ∇ψs is considered to be constant6 in Ωi, the second term at the right hand side

vanishes. The first term can be transformed from a volume integral into a surface

integral using Gauss’ theorem resulting in

S2 =

∫∫
Γi

ϕp∇ψs · ~n dΓi , (3.52)

where Γi is the surface of the model cell Ωi and ~n denotes its normal vector. For each

face of the cell, independent of geometry, the gradient of ψ into the normal direction

has to be multiplied with an integral value of ϕp. S3 is calculated as S2 interchanging

ϕ and ψ. The integral S4 caused by the secondary potentials ϕs and ψs is of the

same type, but expected to have lower magnitude, because the secondary potentials

are usually smaller than the primary ones.

In summary, the sensitivity is calculated by adding three terms of type (3.52) to the

half-space sensitivity. The additional terms are much more accurate than with equa-

tion (3.42), because the potential is smoother than its gradient. Moreover, the surface

integration can be performed with a smaller number of sampling points than the vol-

ume integral. Prerequisite are the secondary potentials ϕs and ψs, which are known

from the forward calculation, if the potential of every electrode is calculated and kept

in memory for the node positions.

3.5.4 Sensitivities for Logarithms

When using logarithms of the resistivities as model parameter, the sensitivity has

to take this into account. Consider the model parameter mj = log ρj and forward

responses fi = log ρai . Thus by applying the chain rule for the sensitivity we yield

Slogij =
∂ log ρai
∂ log ρj

=
∂ρai
∂ρj

· ∂ log ρai
∂ρai

/
∂ log ρj

∂ρj
=
ρj
ρai
· Slinij . (3.53)

Thus the sensitivities for linear parameters Slin have to be multiplied with the cell

resistivity and divided by the forward response. For the homogeneous half-space holds

Slog = Slin, because a constant resistivity ρ0 causes a constant apparent resistivity of

6This can be physically motivated by the concept of positive and negative charge accumulations
forming a capacitance with a constant electric field inside.
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ρa = ρ0. Therefore logarithms are generally applied to both data and forward responses

to avoid a one-sided scaling.

Note that with the use of a lower logarithmic barrier resistivity ρl the sensitivity Slow

of fi=log (ρai−ρl) with respect to mj=log (ρj−ρl) equation (3.53) changes to

Slowij =
ρai − ρl
ρj − ρl

· Slinij .

3.5.5 Example

Figure 3.12 shows the section of a sample model. The model is discretized using x=

−10,−9, . . . , 10 m, y=−5,−4, . . . , 5 m and increasing layer thicknesses of 0.3−1.6 m.

Within a half-space of 100 Ω m a rectangular body of 500 Ω m is located between y=−1

and 1 m.

−10 −8 A B −2 0 2 N N x/m 10
0

1.8

z/m

7

500Ωm

100Ωm

Figure 3.12: Model section at y=0 m

At first, the sensitivities are determined for homogeneous conductivity using Gauss-

Legendre integration with an adaptive number of 23−103 sampling points per direction

(Figure 3.13). It shows the typical behavior with high sensitivities beneath the dipoles.

Note that the sensitivity holds for both linear and logarithmic parameters and data.

−10 −8 A B −2 0 2 M N x/m 10
0

2

z/m

6

y=0.0−1.0m

−0.015 −0.01 −0.005 0 0.005 0.01 0.015

Figure 3.13: Section of the sensitivity distribution at y=0−1 m for the homogeneous

half-space
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Based on the forward calculation for the above depicted model the secondary potential

technique is used to calculate sensitivities for the inhomogeneous case. Figure 3.14

shows the sensitivity distribution for the logarithmic parameters. It can clearly be

seen, how the sensitivity in the body is increased. However, the main effect originates

from the scaling operation and not from the secondary potentials.

−10 −8 A B −2 0 2 M N x/m 10
0

2

z/m

6

y=0.0−1.0m

−0.015 −0.01 −0.005 0 0.005 0.01 0.015

Figure 3.14: Sensitivity for the above described model, logarithmic data and parameter

3.6 Conclusions

Basis for a successful inversion of measured data are:

1. A comprehension of errors arising from DC measurements.

2. Procedures for an appropriate parameterization of the modeling domain.

3. A fast and accurate forward calculation for arbitrary resistivity distributions.

4. Methods for calculating the Jacobian matrix.

All of these aspects have been investigated in this chapter. Errors of DC data are

caused by uncertainties of the measured voltages and the geometry of the measure-

ment. Consequently, an error estimation was presented, which takes into account both

configuration factors and electrode variations. If the electrode positions show vari-

ations, the data will correlate, which has to be considered in the inversion. It has

been shown that both geometrical and voltage errors of profile data can be reduced by

enlarging the dipole lengths for increased separations.

For flat-earth problems a grid-based parameterization is suggested. It enables the

construction of model constraints as well as an easy forward calculation. Practical

considerations and sensitivity studies are used to construct appropriate grids. For this

purpose, two model types were presented.
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The forward calculation for flat-earth problems can be carried out using finite differ-

ence methods. The resulting system of equations is efficiently solved by conjugate

gradients using incomplete Cholesky preconditioners. The accuracy of the forward

procedure affects the quality of the inversion result and can be assessed by considering

the reciprocity of the forward response. The application of the singularity removal

technique provides sufficient accuracy at moderate computing time. Nevertheless, the

forward calculation is the most time-consuming procedure of inversion.

Finally, methods for the calculation of sensitivity were presented. For homogeneous

models a Gauss-Legendre integration with variable number of sampling points is used.

Furthermore it was shown, how the secondary potentials obtained by the singularity

removal technique can be used for sensitivity approximation.
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4 Inversion and Resolution Studies

In the following chapter systematic inversion and resolution studies are carried out.

The inversion techniques of chapter 2 are combined with the DC resistivity methods of

chapter 3. At this point the quest for optimal inversion strategy and setting parameters

arises. The answers to the following questions are sought:

1. Is the Gauss-Newton method superior to the NLCG scheme concerning conver-

gence speed, quality of inversion results and expressiveness?

2. Which regularization methods are suitable for the inverse resistivity problem?

3. How can the regularization parameter be estimated appropriately and in which

way it has to be changed during inversion?

4. Is there a need for line search procedures and how can they be implemented?

5. How do local and global regularization differ in the course of iterations?

6. How do different noise conditions affect the inversion results and is it necessary

to consider data covariances?

Model studies of well-defined parameter structures assuming realistic noise can yield

valuable information. For reasons of clarity most of the systematic studies are based

on the inversion of 2D profile data, whose results can be easily visualized. Since

two-dimensional inverse problems are generally of small scale compared to the three-

dimensional case, the resolution computation via the generalized singular value decom-

position as denoted in section 2.4 can easily be applied. Considering resolution the

following questions arise:

1. Does the defined information content represent an appropriate measure for the

quality of the inversion result?

2. How do different regularization schemes affect resolution properties?

3. Which data sets are superior concerning information content and efficiency?

4. In which way does the model parameterization affect the resolution properties?
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We know the resolution matrix to be a function of the model. In this point resides

the general problems with resolution. To obtain a model independent resolution1 we

consider the resolution based on the half-space sensitivity, which is representative for

small contrast problems. However, the crucial point is the choice of the regulariza-

tion parameter, which strongly affects resolution. Therefore, the inverse procedure is

linearized for reasons of comparability. As a result, the discrepancy principle can be

applied to determine λ exactly. It allows an incorruptible estimation of information

content and efficiency.

In section (4.2), three-dimensional problems are considered. Practical considerations

for the three-dimensional inversion are figured out. The results of the 2D experimental

design are applied to the 3D case. Two typical 3D electrode layouts, an electrode grid

and a set of parallel profiles, are investigated regarding inversion results and resolution

properties. Different parameterization techniques are compared concerning inversion

results and information content.

Finally, in section 4.3 an inversion scheme is presented, which is able to incorporate

topography. A triple-grid technique is used to combine a resolution-dependent model

parameterization with accurate forward calculations using finite elements. The inver-

sion scheme is proved by a synthetic study of a flood protection dike problem.

4.1 Two-dimensional Inversion Studies

4.1.1 Numerical Setup

Model Parameterization

Figure 4.1 shows the synthetic model investigated in this section. It is equally dis-

cretized in x from -1 to 42 m and in z from 0 to 6 m using block sizes of 1m×1m and

contains six bodies within a homogeneous background of 100 Ω m with a contrast factor

fak. The anomalies possess resistivities of 100/fak and 100 · fakΩ m, respectively.

Model parameters and data are the logarithms of the cell resistivities and the apparent

resistivities, respectively.

Data and noise

The following numerical investigations employ 42 equally spaced surface electrodes at

the positions x=0, 1, . . . , 41 m. Note that the results of the simulations can easily be

1The term ”resolution” is often used, in analogy with ”sensitivity”, in connection with the homoge-
neous half-space.
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transferred to larger problems by a scale factor, which changes the configuration factor

k and therefore the error level δρa.

4.1.2 Inversion Methods and Resolution Analysis

Inversion methods

At first, the non-linear conjugate gradient method is compared to the regularized

Gauss-Newton scheme. A Wenner-β data set (c–c–p–p) with n = 1 − 13 is simulated

resulting in 273 single data. The used contrast factor fak = 5 provides data anomalies

that can clearly be distinguished from noise. The sensitivity matrix is updated using

the BFGS method. Regularization is achieved by smoothness constraints of first order.

The Gauss-Newton minimization is applied in two ways using global and local regula-

rization. The regularization parameters are chosen such that the data are fitted well

(λ = 30 for the local and λ = 5 for the global scheme). For all three methods exact line

search is carried out. It is based on χ2 for NLCG and the local regularization scheme,

whereas the line search of the global regularization uses the total functional Φ to be

minimized.

Figure 4.2 shows the development of χ2 in the course of iterations for all methods.

Clearly the NLCG method shows slow convergence, whereas for both local and global

scheme a reasonable data fit is reached by iteration 5. This is evidenced by the first

iteration models as displayed in Figure 4.3. Whereas the Gauss-Newton inversion

shows the essential model characteristics, the NLCG model can only provide a crude

image of the subsurface.

The NLCG method needs a lot of inversion steps with one forward calculation per

iteration. Therefore it is disadvantageous if the forward process is time-consumptive as

in three-dimensional DC inversion. Moreover, the model cannot be controlled actively

and resolution properties cannot be easily derived. Therefore, in the following the

Gauss-Newton method is used.

Figure 4.4 displays the final inversion results of local and global regularization. Both

indicate the anomalous structures well. Note that the global scheme shows few artifacts

near the boundary and a more compact image of the deep conducting body, whereas

the anomalies are stronger for the local scheme. This seems reasonable, because the

global scheme really tries to keep the model smooth and thus the solutions show less

variation.
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Figure 4.1: Model parameterization and synthetic model consisting of six bodies of

100/fakΩ m or 100∗fakΩ m in a homogeneous half-space of 100 Ω m
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Figure 4.2: Convergence of NLCG and the Gauss-Newton method, local and global

regularization
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Figure 4.3: First iteration models for NLCG and Gauss-Newton
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Figure 4.4: Inversion results for regularization Gauss-Newton scheme
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Line search

The more non-linear the problem is, the more a line search procedure is needed to

ensure convergence. Ongoing from the model step ∆mk the value 0 < τ < 1 minimizing

χ2(mk + τ∆mk) is sought. Three approaches are presented:

Exact line search For a series of τn the model responses are calculated exactly. This

results in many forward calculations, which is prohibitive for large-scale problems.

2-point parabola The model responses are calculated for τ = 0.5 and τ = 1 and

are used to determine χ2(τ = 0.5) and χ2(τ = 1). Since χ2(τ = 0) is already

known, a parabola is uniquely defined by the three points2. Its minimum can be

determined easily. At most 2 additional forward responses are needed.

linear interpolation The individual model responses for a series of τn are determined

by linear interpolation between f(τ = 0) and f(τ = 1). By the interpolated

f(τ) ≈ f(0) + τ(f(1) − f(0)) the χ2 values are defined, whose minimum has to

be found. Also, a bisection scheme can be used. At most one additional forward

routine is applied.
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Figure 4.5: Comparison of line search procedures, the exact line search (crosses) is

approximated by a two-point parabola (straight line) and by linear inter-

polation (circles)

Figure 4.5 shows the chi-squared misfit as a function of τ for the three methods. All

curves show a broad minimum close to τ ≈ 0.65 indicating an essential non-linearity

2The parabola is defined if the three points do not lie on a straight line.
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of the problem. Although the two-point parabola approximates the exact values much

better, the linear interpolation provides sufficient results for the estimation of the line

search parameter as well. Therefore, the latter method is used subsequently. Note that

the model response has to be re-calculated if τ < 1.

The L–Curve

Assuming solutions of the inverse subproblem for a set of different λi are known. To

find a trade-off between data fit and model roughness, the model responses have to

be calculated. Since the local regularization treats the sub-problem as independent

inverse problem, we can investigate the two norms

‖D(S∆m−∆d)‖ and ‖C∆m‖ .

Figure 4.6 shows the L–curve as arising in the first iteration. The curvature of the

curve clearly indicates a maximum for λ = 43.98, which is not far from the above used

value of 30. However, it seems practical only for well linearizable problems, because
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Figure 4.6: The L–curve of the linear sub-problem

the line search procedure is not included into the L–curve. The more non-linearity

there is in the problem, the more the determined λ is over-estimated due to better

data fits of the damped solutions.

For global regularization the L–curve has to consider the exact model responses, which

are also affected by the line search parameter. In Figure 4.7 the data misfit (local

regularization) and the functional Φ (global regularization) of the first inversion step

are displayed for varying λ and τ . Note that the main structure of Φ is determined by
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the data misfit χ2. However, the minimum of the the global scheme is shifted towards

smaller λ. Dependent on a fixed λ the minimum of each column denotes the optimum

regularization parameter λ
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Figure 4.7: Data misfit χ2 and total functional Φ as a function of λ and τ

line search. For strong regularization (large λ) the problem is nearly linear (τ ≈ 1),

whereas for small regularization parameters the line search is essential to accelerate

convergence. Note that the overall minima of both functions indicate too large values

for λ, which do not lead to appropriate data fit. However, a bivariate search for

optimum values of λ and τ is prohibitive. Consequently, the author recommends the

use of the discrepancy principle as follows: A global minimization including line search

using a fixed λ is carried out until convergence is reached. The final χ2 reveals if the

regularization parameter has been chosen appropriately. If χ2 exceeds 1, λ has to be

decreased, otherwise it has to be increased. Thus, a global L–curve is constructed and

the process is stopped if χ2 ≈ 1.

Resolution analysis

Resolution properties are investigated in the following. Basis are the sensitivity and

the regularization parameter of the global minimization. The model resolution ma-

trix RM is calculated using the generalized singular value decomposition as described

in section 2.4. Figure 4.8 shows the model resolution, which constitutes of the main

diagonal elements RM
ii . Those can be interpreted as individual reconstructabilities.

Whereas near-surface cells are resolved almost perfectly, the resolution decreases dras-

tically with depth and outside the electrodes.

The individual columns of RM reveal, how anomalies in the individual model cells
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Figure 4.8: Model resolution of the individual model cells (in %)

are mapped into our model estimate. Figure 4.9 displays the cell resolutions for four

selected model cells. The top cell is reproduced very well, whereas the shallow cell

shows slight variations at left, right and bottom. Generally, resolution decreases with

depth. For the deep cell the vertical resolution is better than the horizontal one. The

artifacts arising for the resolution of the boundary cell point out, how careful the model

boundaries have to be treated.
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Figure 4.9: Model cell resolutions (in %) for 4 selected parameters, the cells are marked

by black rectangles

From the resolution equation (2.42) we know the model being filled up with constraint

information. Thus, badly resolved cells show a smooth resolution kernel. The sharp-

ness of the model resolution is affected by the regularization strength. Figure 4.10

displays the resolution degree, which is the information content divided by the number

of model parameters, as a function of the regularization parameter λ. For logarithmi-

cally increasing λ it decreases nearly linearly.

To make quantitative statements regarding information content and resolution prop-

erties, the regularization parameter has to be determined appropriately. The essential
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Figure 4.10: Resolution degree as a function of the regularization parameter

argument using synthetic data with known noise is to apply the discrepancy principle

such that the data are fitted within noise (χ2 = 1). However, in non-linear inversion

the data cannot be fitted in one inversion step. Therefore, the inversion scheme is

linearized to avoid the dependence on regularization and line search parameters.

4.1.3 Comparative Linearized Resolution Study

Linearization procedure

Following the scheme of Friedel (2003), the Jacobian is assumed to be invariant of the

model and determined by the homogeneous half-space. It is calculated by numerical

integration and used to produce the synthetic data by forward approximation. Hence

the non-linear problem is transferred into a linear one and can be solved in one iteration

step without using line search. The global and the local regularization scheme are

identical. Moreover, the resolution measures become independent from the model.

Note that a linearization is valid only for small contrasts. Therefore, a relative small

parameter contrast of fak = 2 is applied. Nevertheless, the linearized inversion reveals

the main resolution properties.

Investigated data sets

Several widely used electrode configurations are investigated: pole-pole, pole-dipole,

dipole-dipole, Schlumberger and Wenner (in form of α, β and γ arrays). Also, data sets

with increased dipole lengths of MN = mod(n + 3, 4) · a are considered. This holds
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for pole-dipole, dipole-dipole and Schlumberger types and is connected with a data

reduction, because the dipole length equals the moving distance between subsequent

measurements. While information is lost by reducing the data set in such a way,

additional data can be obtained by measuring so-called circulated data as presented

by Friedel (2000).

Table 4.1 shows the electrode arrangements investigated. For reasons of comparability,

the maximum separation is chosen such that the number of data are approximately

equal (269-300). The synthetic data are displayed in Figure 4.11. Note that the pole-

dipole and dipole-dipole types generally show the largest anomalies.

Dataset tag n data max(k) min/max ρa

Pole-pole c–p 1-8 300 50.3 79.3/143.4

Pole-dipole c–p.p 1-8 292 452.4 50.0/211.2

(increased dipoles) c–p:p 1-15 280 447.7 50.0/210.8

(+circulated data) c–p:p+c 1-10 289 449.2 50.0/210.8

Dipole-dipole c.c–p.p 1-8 284 2261.9 41.6/238.9

(increased dipoles) c:c–p:p 1-15 265 1287.1 41.6/238.9

(+circulated data) c:c–p:p+c 1-10 271 1319.5 41.6/238.9

Schlumberger c–p.p–c 1-10 300 345.6 61.1/181.8

(increased dipoles) c–p:p–c 1-15 285 1287.1 73.1/167.6

Wenner-α c–p–p–c 1-13 273 81.7 63.1/165.1

Wenner-β c–c–p–p 1-13 273 122.5 41.9/281.2

Wenner-γ c–p–c–p 1-13 273 245.0 41.6/238.9

Table 4.1: Definition of data sets according to the above depicted classification

Simulation

The data are contaminated with Gaussian noise of standard deviation σ, which is made

up of a relative error ε and a voltage error δU for a given current I.

The error-weighted sensitivity DS is decomposed using the SVD or the GSVD. Once

the eigenvector matrices are obtained, solutions of the inverse subproblem can be

calculated easily. By a bisection scheme the parameter λ is determined in such a way

that χ2 = 1. The procedure of adding noise and determining λ is repeated 10 times to

get independent of the noise realization. The mean λ is used to compute model and

resolution matrix.
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Figure 4.11: Synthetic data sets for the investigated data

Comparison of inversion schemes

For a fixed data set (c:c–p:p) different inversion or regularization schemes are compared

with respect to information content. Besides the truncated SVD scheme and the

classical Tikhonov regularization (C = I) a second order smoothness constraint matrix

is investigated, which represents a discrete differential operator with Dirichlet boundary

conditions. Additionally, a diagonal weighting matrix is applied using the square root

of the coverage (or cumulative sensitivity), whose elements are the sums of the absolute

sensitivity values over all data points with respect to the individual model cell:

C = diag(
√

cov) with covj =
N∑
i=1

‖Sij‖ .

Table 4.2 shows the results of the numerical simulation for low data noise. All schemes

possess comparable information contents of around 70. To obtain a measure of the

inversion quality, the RMS error between the result and the synthetic model is calcu-

lated, denoted with ”deviation”. Big IC values correspond to small deviations between

synthetic and estimated model and vice versa.
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Inversion scheme regularization IC deviation

TSVD p = 69 69.0 17.9%

Tikhonov λ = 39.3 71.5 16.5%

weighting by coverage λ = 27.7 70.0 16.0%

smoothness constraints λ = 58.1 67.3 18.5%

Table 4.2: Comparison of different inversion methods, data set c:c–p:p, ε=1%, δU =

100µV, I = 100 mA, a= 1 m, deviation is RMS of estimated and synthetic

model

The inversion results are displayed in Figure 4.12. TSVD and Tikhonov regularization

produce noise artifacts resulting from the third term at the right hand side of the reso-

lution equation (2.42). In contrast, smoothness constraints and weighting by coverage

produce constraint artifacts near the boundaries.
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Figure 4.12: Inversion results for different inversion schemes using data set c:c–p:p

Comparison of data sets

In the following, the data denoted above are compared regarding information content

and efficiency. For all simulations the second order smoothness constraints are applied.

Figure 4.13 shows the individual inversion results. All data sets are able to locate the

anomalous bodies, but with different quality.

In Table 4.3 it is to be seen, that the resolution properties correspond to the model

quality. The largest IC values are achieved using pole-dipole and dipole-dipole type

sets, whereas pole-pole and Wenner obtain the lowest values. In all three cases the

dipole enlargement significantly increases the information content. Also, the added

circulated data increase the IC for dipole-dipole type.



4.1 Two-dimensional Inversion Studies 91

0 10 20 x/m 400  

z/m

6  

(a) c–p

0 10 20 x/m 400  

z/m

6  

(b) c–p.p

0 10 20 x/m 400  

z/m

6  

(c) c–p:p
0 10 20 x/m 400  

z/m

6  

(d) c–p:p+c

0 10 20 x/m 400  

z/m

6  

(e) c.c–p.p

0 10 20 x/m 400  

z/m

6  

(f) c:c–p:p
0 10 20 x/m 400  

z/m

6  

(g) c:c–p:p+c

0 10 20 x/m 400  

z/m

6  

(h) c–p.p–c

0 10 20 x/m 400  

z/m

6  

(i) c–p:p–c
0 10 20 x/m 400  

z/m

6  

(j) c–p–p–c

0 10 20 x/m 400  

z/m

6  

(k) c–c–p–p

0 10 20 x/m 400  

z/m

6  

(l) c–p–c–p

Figure 4.13: Inversion results for different data sets using ε=1%, δU = 100µV and

I=100 mA

data set IC IE deviation λ maxerr

c–p 61.7 20.6 21.9 33.64 1.1

c–p.p 70.8 24.2 18.9 39.63 1.7

c–p:p 73.4 26.2 16.4 27.35 1.6

c–p:p+c 72.4 25.1 18.7 37.23 1.6

c.c–p.p 71.7 25.2 18.8 47.81 5.0

c:c–p:p 75.3 28.4 15.2 35.11 2.6

c:c–p:p+c 78.8 29.1 16.0 36.23 2.6

c–p.p–c 65.6 21.9 20.0 34.70 1.6

c–p:p–c 81.5 28.6 15.4 29.92 1.5

c–p–p–c 63.6 23.3 18.7 25.39 1.1

c–c–p–p 69.2 25.3 15.5 31.97 1.2

c–p–c–p 64.7 23.7 20.7 52.51 1.1

Table 4.3: Comparison of different data sets corresponding to Figure 4.13
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Most information is obtained using the c–p:p–c set, whereas the c:c–p:p+c set yields

the largest efficiency. The efficiency values, ranging between 20 and 30%, show a

large variability. It can clearly be seen, that good model estimates denoted by small

deviations correspond to large information contents and vice versa. Thus, the defined

information content proves to be a reliable measure of inversion quality.

Resolution radii

The individual model resolutions for each cell i can be used to estimate a model

resolution radius ri. Assuming the model resolution to be locally constant, it is defined

by the equivalent circle of model resolution 1, yielding for the cell dimensions ∆xi and

∆zi

ri =

√
∆xi∆zi
πRM

ii

.
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Figure 4.14: Resolution radii for data sets c–p–p–c, c–p.p, c.c–p.p and c:c-p:p-c

Figure 4.14 shows that for all selected configurations the resolution radius is about

equal near the surface (0.5 m) and increases rapidly with depth up to 3−4 m. However,

the decrease of resolution is different for the individual data sets. The Wenner array (a)

has moderate resolution at depth while the dipole-dipole (c) array resolves best at

medium depth. This is strongly improved by increasing dipole lengths and adding

circulated data.

Effect of increased noise

Table 4.4 shows the resolution properties for an assumed noise of ε=2% and a voltage

resolution of δU = 1 mV at I = 100 mA current, or, equivalently δU = 100µV at
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I=10 mA driving current.

data set IC IE deviation λ maxerr

c–p 49.3 16.4 23.0 39.63 2.5

c–p.p 56.9 19.5 22.7 43.70 8.6

c–p:p 58.6 20.9 20.9 35.25 7.7

c–p:p+c 60.1 20.8 22.2 34.03 8.0

c.c–p.p 59.0 20.8 22.8 35.09 42.0

c:c–p:p 62.8 23.7 20.4 20.56 17.9

c:c–p:p+c 61.3 22.6 21.8 39.79 18.4

c–p.p–c 54.0 18.0 22.8 32.35 7.7

c–p:p–c 64.9 22.8 18.3 22.32 7.1

c–p–p–c 50.2 18.4 23.7 41.37 2.9

c–c–p–p 60.7 22.3 18.2 21.89 4.5

c–p–c–p 56.5 20.7 22.3 41.86 3.4

Table 4.4: Comparison of different data sets for ε=2%, δU=1 mV at I=100 mA

As expected, higher noise leads to worse inversion results and lower information content

for all data sets. Again, the increased dipole-dipole and Schlumberger configurations

yield the best results. As the noise level rises more, pole-dipole arrays and the Wenner-

β configuration perform better.

Effect of the parameterization

The question arises regarding how a variable model parameterization can affect the

model resolution. Due to the increasing resolution radii, the horizontal grid lines are

now defined by the values

zi = [ 0 0.5 1.2 2.1 3.2 4.5 6 ] .

There exist boundary cells showing bad resolution properties. If these cells bear no

important structures, they can be excluded from the inversion process resulting in a

better-posed inverse problem. Another possibility of lowering the degrees of freedom

is a combination of badly resolved cells to form larger cells. Generally, the increasing

of layer thicknesses results in cells with ∆x>∆z at the surface and ∆x<∆z at depth,

which does not conform to the shape of the model cell resolution. In the following, deep

cells are combined in such a way that the arising cells show approximately equally-

spaced cells (∆x≈∆z).
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Both methods can be applied independently using a parameter mapping matrix P as

depicted in section 2.3. This has the advantage of using different mapping matrices

without changing the sensitivity matrix. Table 4.5 shows the inversion parameters of

the three possible parameter reduction methods compared to the unchanged problem.

Parameterization parameter λ IC deviation

Unchanged 258 44.0 92.0 13.4%

Combine 236 48.9 90.0 12.8%

Delete 224 43.5 90.3 13.4%

Combine&Delete 211 44.7 89.5 12.4%

Table 4.5: Comparison of different parameterization techniques for data set c:c–p:p

All methods obtain similar regularization parameters. The information content values

are slightly, but significantly reduced by lowering the degrees of freedom. However, the

quality of the inversion result can be improved, particularly for cell combinations. This

can also be observed in Figure 4.15 showing the inversion results for the unchanged

problem and the Combine&Delete method. The artifacts near the boundaries are

reduced and the anomalous bodies seem to be more compact.
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z/m

6

(a) Unchanged

0 5 10 15 20 25 30 x/m 400

z/m

6

(b) Delete&Combine

Figure 4.15: Iteration results of unchanged and reduced parameters

4.1.4 Consequences of Electrode Errors

In section 3.2 two methods of error-weighting have been presented: An uncorrelated

weighting using the diagonal matrix D = diag (1/εi) and a data covariance matrix Cd

resulting from varying electrode positions. Note that the inverse of Cd replaces the

term DTD in the preceding equations.

To find out whether the use of the more complicated covariance matrix is necessary,

a synthetic study is carried out. The same synthetic model and electrode layout is

used, the contrast factor is set to 5. As it is most sensitive to electrode variations,

the classical dipole-dipole configuration was selected. The electrodes are considered to
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show variations of 2 cm. Additionally, a relative deviation of 3% and a voltage error

of 100µV are superposed. This results in errors up to 8% for the first separation.

The chi-squared data misfit is generally computed by

χ2 = [d− f(m)]TCd
−1[d− f(m)]/N .

In the correlated case Cd represents the full covariance matrix, while in the uncor-

related case off-diagonal elements are neglected. A global minimization scheme with

smoothness constraints of 1st order and a regularization strength of λ = 3 is applied

to both variants. The results are shown in Figure 4.16.
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(b) Correlated Errors

Figure 4.16: Inversion results for uncorrelated and correlated errors

The models show only slight differences. Hence, the off-diagonal elements are not

necessary under practical circumstances. However, the knowledge of error values is

essential to avoid over- or under-fitting. Particularly for small-scale tasks as many

environmental problems represent, the error due to varying electrode positions must

not be disregarded. Often small-scale variations are observed in the first separations

of the pseudo-section, which are affected by electrode variations. An underestimation

of these errors can therefore lead to over-interpreted structures in the first layers.

4.2 Three-dimensional Inversion Studies

Until now, three-dimensional measurements are carried out rarely. With developing

multi-electrode devices and computer power a three-dimensional data acquisition be-

comes more and more interesting. Whereas some papers have been presented inves-

tigating optimizing profile data (Friedel, 2003; Stummer et al., 2004), only few works

deal with techniques for three-dimensional data acquisition (Loke and Barker, 1996a).

In the following, two typical layouts of 3D measurements are discussed:

1. A grid of Ex × Ey electrodes is used allowing for arbitrary combinations. Gen-

erally, profile measurements on x- and y-profiles can be applied as well as on

diagonal lines. A special case of grid measurements is the E-SCAN type mea-

suring the pole-pole potentials for all electrode combinations (Li and Oldenburg,

1992).
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2. In most cases data are obtained using several (not necessarily parallel) profiles.

Each profile applies a two-dimensional investigation yielding a pseudo-section of

the apparent resistivities.

Many multi-electrode systems available are engineered to carry out two-dimensional

profile measurements quickly, e.g. by the use of multi-channel recorders. Furthermore,

the experiences from the inversion of profile data have to be transferred to 3D inversion.

Therefore, it is concentrated on a combination of profile data both on separated profiles

and electrode grids.

4.2.1 The 11x11 Electrodes Grid

Most multi-electrode systems available have a limited number of electrodes, usually

from 64 to 256. In the following, a typical grid of 11×11 = 121 electrodes is considered.

The electrode distance in both directions is a = 1 m spanning an area of 10 × 10 m.

The lower left electrode is placed at (0;0), the parameter domain is considered to reach

from −1 to 11 m for x and y. Due to the limited electrode distances, the maximum

penetration depth is estimated by sensitivity to zmax=4 m. The layer thicknesses ∆z

increase from 0.4 to 1 m forming six layers.

Figure 4.17 presents the parameterization and the synthetic model used for the two

denoted model types. Bodies of 20 and 500 Ω m are placed within a homogeneous half-

space of 100 Ω m. The Grid model (a) consists of (in x- and y-direction) equidistant

model cells of 1×1 m grid size. In summary, the number of cells equals 12×12×6 = 864.

To the contrary, the Para model (b) constitutes of cells with varying size. Based on

the calculated resolution radii for 2D sets, the grid sizes ∆x = ∆y are increased from

0.5 m near the surface up to 3 m at the bottom. Thus, the total number of cells is

24× 24 + 12× 12 + 2 · 8× 8 + 6× 6 + 4× 4 = 900.

Pole-pole, pole-dipole and dipole-dipole data are simulated on the profile lines in x-

and y-direction. The errors are considered to contain variations of 3% and a voltage

error of δU = 500µV resulting in errors of 3.0-5.7%. A linearized inversion scheme

as depicted in section 4.1 is applied to determine resolution measures and inversion

results. Smoothness constraints were implemented for both model types. Since the first

order smoothness matrix C cannot be calculated explicitly for the para model type,

second order smoothness constraints with Dirichlet boundaries were used. The vertical

derivatives were neglected for reasons of comparability. An overview on inversion and

resolution parameters is given in Table 4.6

The used regularization parameters range from 5 to 7 for the Grid model and from

20 to 30 for the Para model. Despite the smaller λ’s the information content and

efficiency values of the Grid model are about 20-30% smaller than the ones of the Para
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Grid Model Para Model

Data set dir data λ IC IE λ IC IE

c–p x 605 5.04 145.7 24.1% 21.4 172.1 28.4%

c–p xy 1210 5.53 199.7 16.5% 29.3 267.2 22.1%

c–p.p x 495 6.00 164.5 33.2% 23.5 193.0 39.0%

c–p.p xy 990 6.83 231.4 23.4% 29.4 308.3 31.1%

c.c–p.p x 396 6.26 153.0 38.6% 24.4 180.5 45.6%

c.c–p.p xy 792 6.73 225.6 28.5% 25.5 299.1 37.8%

c:c–p:p+c x 396 7.08 177.0 44.7% 25.4 213.4 53.9%

c:c–p:p+c xy 792 7.22 246.0 31.1% 29.1 334.1 42.2%

Table 4.6: Comparison of 3D data sets concerning information content (IC) and effi-

ciency (IE)

model. Hence, the parameterization has effects on the resolution properties. The use of

perpendicular profiles (xy) yields significantly improved IC values for all configurations

and model types. However, due to the doubled data number the efficiency is reduced

drastically.

A comparison of the individual configuration types yields the worst results for pole-

pole. Differing from the 2D comparison the pole-dipole data are slightly superior to

classical dipole-dipole data due to the relatively large voltage error. However, the

improved dipole-dipole set with enlarged dipoles and circulated dipoles provides the

best results of all.

The inversion results for the latter data set are displayed in Figure 4.18. Both model

types are able to locate the synthetic bodies. However, in the deeper layers the resis-

tivities are forced towards the starting model due to the boundary conditions in the

constraints. This hold particularly for the Grid model. To the contrary, the Para model

shows more artifacts in the shallow layers. The differing resolution properties are not

to be seen comparing both model types. One reason for this is the relatively smooth

synthetic model showing only small variations in the surface layer. The individual

model resolutions are visualized in Figure 4.19.

In the first layer the model resolution of the Para model is slightly smaller than for

the Grid model. On the contrary, the deep Para model cells are resolved much better

due to their increased size. This results in larger resistivity magnitudes. However,

the blocky cells hardens the delineation of structures. In summary, the Para model

type represents a more flexible and memory saving alternative respecting the resolution

properties. This is particularly advantageous if the top layer shows fine variations.
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Figure 4.17: Model parameterization and synthetic model for Grid (a) and Para (b)
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Figure 4.18: Inversion models of the c:c–p:p+c data set
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Figure 4.19: Model resolution for Grid (a) and Para (b) type of model
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4.2.2 The Parallel Profiles

If large areas are investigated, an electrode grid cannot be applied due to limitations

of the electrode number. In most cases profile arrays are measured allowing for in-

dependent 2D inversion. However, in the case of 3D structures the data have to be

interpreted three-dimensionally. Often the lines are parallel, even though it is not

necessary, because the singularity removal allows for grid independent electrode posi-

tioning.

The following study employs five parallel profiles. Each profile consists of 21 electrodes

of electrode distance 1 m. The profile distance can be increased up to 4 m for the

investigation of resolution properties. Figure 4.20 displays the synthetic model used.

From the 2D studies we know the data will be interpreted well if only one profile

direction is chosen. Furthermore, it shows that the optimized 2D data sets obtain

the best results in three dimensions, too. For that reason, an improved dipole-dipole

configuration was chosen.

The data are considered to have variations of 1% plus a voltage error of 500µV.

Smoothness constraints of first order were applied. At first, the linearized scheme

is applied again to estimate resolution properties. Since the number of data and

model parameter is too big for a GSVD decomposition, a single parameter resolution

is determined using resolution approximation. It is displayed for profile distances of

1 m, 2 m and 4 m in Figure 4.21.

The relevant main diagonal elements are all below 10%, which is quite low. An anom-

aly in the model cell is distributed over the neighboring cells due to the smoothness

constraints. Note that the shape of the cell resolution is nearly identical for 1 m and

2 m electrode distance, even though the anomaly is slightly reduced for the latter. An

electrode distance of 4 m leads to a distorted resolution structure of diminished mag-

nitude. The maximum values are obtained at cells underneath the nearest electrode

lines due to their increased coverage.

It is therefore recommended not to exceed the factor 2 between profile distance and

electrode distance for a detailed three-dimensional mapping of the ground. Otherwise

the cells have to be defined non-equidistant. However, larger profile distances can be

accepted, if the subsurface shows a nearly two-dimensional structure with a known

strike direction as many geological problems represent.
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Figure 4.20: Synthetic model used, the green dots denote the electrodes of the five

profiles
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profile distance, the according cell is indicated by black lines
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4.3 3D–Inversion Including Topography

4.3.1 Motivation

In many cases an existing topography of the earth’s surface has a strong effect on the

current distribution in the earth and therefore onto the measured apparent resistiv-

ities. The above depicted methods of parameterization, regularization and forward

calculation are not directly applicable and have to be adapted.

Only few approaches have been presented that incorporate a three-dimensional topog-

raphy into the inversion process Sasaki (1994); Sugimoto (1999, e.g.). Some of them

are based on undulated FD-like grids, which are not very flexible and impractical for

large-scale problems. In the following, we3 present a triple-grid inversion approach on

the basis of unstructured tetrahedral grids motivated by two considerations.

First, a model parameterization has to be found that considers topography. This holds

also for the construction of smoothness constraints based on neighboring relations

between the individual model cells. The second problem is the application of the

forward routine. Although there exist approaches to incorporate conductivity free

cells into FD grids, they are generally not flexible and are time-consuming.

The finite element technique is independent of the geometrical form of the elements.

The tetrahedron is the most flexible body for the description of arbitrary three-

dimensional geometry. For the construction of tetrahedral grids respecting a given

geometry a grid generator has to be used. There exist commercially available grid

generators. In contrast, TetGen (Si, 2003) represents a free and flexible program for

the generation of unstructured tetrahedral grids.

Even in the case of constant conductivity the potentials are not known analytically4.

Therefore the technique of singularity removal cannot be applied as depicted above.

Since the total potential shows a large curvature near the electrodes, the model has to

be highly refined to obtain accurate potentials.

However, a fine discretization results in a huge increase of computer time and memory

for every iteration step. This leads to the idea of a double-grid forward calculation: The

primary potential is determined once using a homogeneous conductivity distribution

on a very fine grid. On a coarse grid the secondary potential can be calculated for

arbitrary conductivities as arising in the individual iteration steps.

To ensure accurate modeling results, appropriate boundaries have to be added. Fur-

thermore, the grid lengths have to be smaller than a reasonable model parameterization

suggests. Generally, the forward grid is created by global refinement of the elongated

3This section is based on a collaboration with Carsten Rücker from the University of Leipzig.
4Also, configuration factors transferring the impedances into apparent resistivities are not known.
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parameter grid completing the triple-grid technique.

4.3.2 The Synthetic Model

A popular example for topography is the investigation of flood protection dikes, which

came into the focus of public interest since the flood disaster in Eastern Germany in

2002. In critical areas it is important to obtain information about the internal structure

of the dike. This can be accomplished using DC resistivity measurements.

Figure 4.22 displays the synthetic model used in the following. The topography origi-

nates from a real dike at the river Elbe near Torgau.

The model consists of four units: The dike body of resistivity 100 Ω m is placed over

a basement of 300 Ω m representing unconsolidated sediments. Inside the dike an old

dike of high resistivity (500 Ω m) exists. Finally, a conductive ( 50 Ω m) covering layer

of 0.5 m thickness is assumed on top of the dike body.

Several 2D profiles are assumed, two at the edges of the dike’s top (x=50.6-52.6m),

three at the water side (x=56.3-63.3m) and two at the land side (x=45-47.8m). Each

profile has 31 electrodes with an electrode distance of 1 m, and the dipole-dipole config-

uration is simulated. To deal with the large errors arising for big dipole separations, the

dipole lengths were successively enlarged. Such an optimization increases the efficiency

of the data and makes the three-dimensional investigation of the ground interesting

from economical point of view.

In summary, 1526 data points were simulated using a grid, which is completely inde-

pendent of the inversion grids. The data are displayed in Figure 4.23 in the form of

pseudo-sections.

4.3.3 The Three Grids of Inversion

In the following, the three inversion grids (Figs. 4.24, 4.25 and 4.26) are described in

detail. The figures were created using the mesh viewer MEDIT (INRIA-Rocquencourt,

2003).

The Parameter Grid defines the model parameters (Figure 4.24). It respects the

topography of the modeling domain. While near the surface the edge lengths

are smaller than the electrode distance, the size of the tetrahedrons increases

successively with increasing depth. The largest cells are found at the lower model

boundary. For this purpose, the resolution analysis helps to estimate reasonable

resolution radii, which are used as input for the grid generation. In doing so, the

number of degrees of freedom is kept small while resolution is ensured.
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Figure 4.22: Synthetic model of a flood protection dike
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Figure 4.23: Pseudo-sections of the synthetic data used for inversion representing

dipole-dipole data with increased dipole lengths. The profile location is

indicated in the bottom right-hand corner of each section.
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The Secondary Field Grid is used for the forward calculation with the singularity

removal technique. It is created by a global refinement of the Parameter Grid

(Figure 4.25) such that the edges of every element are halved resulting in 8 small

tetrahedrons. This procedure may be repeated for large resistivity contrasts

resulting in better accuracy. The prerequisite for the singularity removal are the

primary potentials at the grid nodes.

The Primary Field Grid is a fine grid, which is used to calculate the primary fields.

For this purpose, a homogeneous conductivity of σ0 = 1 S/m is applied. The

advantage is to avoid modeling errors due to conductivity contrasts. For the

singularity removal calculation the potential can be scaled down by the local

electrode conductivity. The primary potentials are also used to calculate config-

uration factors in such a way that ρa = 1/σ0 =1 Ω m. To yield accurate results,

the primary grid is highly refined near the electrodes (Figure 4.26).

Table 4.7 shows the number of elements and nodes for the three grids. 17727 model

parameters are surrounded by 3794 nodes. The node and element numbers of the sec-

ondary field grid are much bigger due to the prolongation of the boundaries. Although

the primary field grid is refined only locally, it contains much more nodes to ensure

accurate primary potentials, which are essential for a successful inversion.

Parameter grid Secondary field grid Primary field grid

Nodes 3794 64881 497243

Elements 17727 351616 2748100

Table 4.7: Node and element numbers of the three grids

4.3.4 Inversion Method

A global regularization scheme is applied as described in chapter 2. Since the problem

is highly under-determined, smoothness constraints seem to be the method of choice.

Due to the unstructured grid, classical discrete Laplacian operators cannot be applied.

Therefore, a special roughness operator has to be implemented. For every tetrahedron

i the individual neighboring cells j are determined and, independent of the relative

direction, values of 1 and −1 are added to the constraint matrix elements Ci,i and Ci,j,

respectively. Note that for an equidistant FD grid this method yields the identical

matrix C as the first order smoothness measure described in section 2.2.

Since the potentials are not known analytically, the sensitivities for the homogeneous

half-space cannot be determined via Gauss-Legendre integration. The use of finite
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Figure 4.24: Section of the parameter grid, red is the earth’s surface, the green tetra-

hedrons are the model parameter and the boundary elements are blue.

Figure 4.25: The secondary field grid, derived by global refinement.

Figure 4.26: Section of the primary field grid. The local refinement at the electrodes

makes their position clearly visible.
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elements suggests a sensitivity calculation based on the reciprocity principle, which

makes use of the FE stiffness matrix (Kemna et al., 2000). This method can be used

in every iteration step. However, the sensitivity values are expected to be only as

accurate as the (total) potential approximation on the secondary field grid.

In the first iteration an L–curve scheme is applied to determine the λ that provides

optimum regularization. Then, the regularization parameter stays constant. The entire

inversion scheme reads as follows:

1. Reading of data files and topography

2. Grid generation with TetGen and by global refinement

3. Calculation of primary potentials and interpolation to secondary field grid

4. Determination of configuration factors and estimation of data errors

5. Assembling of data and model constraint matrices

6. Choice of an appropriate starting model

7. Sensitivity calculation

8. Parallel solution of the inverse subproblem for many λ

9. Choice of one solution using L–curve criterion

10. Finite Element forward calculation using singularity removal

11. Solution of single-λ inverse subproblems and forward calculation until conver-

gence is reached

The starting model is a homogeneous resistivity distribution. Since the resolution

at depth is supposed to be bad, the basement value of 300 Ω m is used. Smoothness

constraints of second order were applied in form of a discrete differential operator. The

boundary conditions used were of Dirichlet type at the subsurface boundaries and of

Neumann type at the earth’s surface.

4.3.5 Inversion Results

Table 4.8 shows the inversion parameters in the course of iterations. Both the chi-

squared misfit and the RMS error decrease rapidly within 4 iteration steps down to the

target value of χ2 = 1. Whereas the maximum resistivity increases during the iteration,

the minimum value is forced back by the global smoothness constraints after the first
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Iter. line search τ χ2 misfit RMS (%) reciprocity (%) min/max(ρ/Ω m)

0 - 129.9 62.3 - 300/300

1 0.93 28.9 10.8 3.7 19/418

2 0.69 2.7 3.6 1.2 41/468

3 1 1.18 2.4 1.1 42/462

4 1 0.89 2.1 1.0 42/470

Table 4.8: Inversion parameters in the course of inversion

inversion step. This affects also the reciprocal accuracy of the forward calculation,

whose standard deviation is significantly reduced in the second iteration. Note that

the line search parameter τ indicates the inverse problem being nearly linear at the

first and last iteration, whereas the second iteration requires a significant damping of

the model update.

In Figure 4.27 the final inversion result is displayed. Besides two slices all tetrahedrons

with resistivities of more than 260 or less than 60 Ω m are patched into the image.

It can be seen, that the boundary between the dike and the basement is determined

well. Also, the position of the resistive old dike can be clearly indicated by increased

resistivities.
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Figure 4.27: Inversion result of the synthetic data. All tetrahedrons with resistivities

above 260 and below 60 Ω m are displayed.
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The conductive covering layer below the surface is clearly indicated by low resistivities.

However, the regions of increased conductivity are concentrated around the profile

lines. Obviously the model is equivalent with respect to the measurements. Probably

the electrode coverage perpendicular to the profiles is not fine enough, which can be

improved by smaller profile distances or perpendicular profiles.

To summarize, a three-dimensional DC inversion for arbitrary topography is possible.

The above described approaches were applied successfully using a triple-grid inversion

technique. However, the generation of appropriate grids represents a task that cannot

be run automatically at the current stage. Furthermore, compared to flat-earth 3D-

inversion a lot of computing time and memory is needed to get accurate results.

4.4 Conclusions

It had been shown, that the Gauss-Newton method can be applied to the inversion of

synthetic data. Its convergence is fast compared to the non-linear conjugate gradient

technique. It is necessary to control the strength of the model regularization. This

can be achieved by means of the L–curve. However, the essential method for the

determination of the regularization parameter is the discrepancy principle.

Furthermore, a line search improves the convergence of the minimization procedure

significantly. It can be shown, that one additional forward calculation is sufficient

for determining appropriate line search steps. In summary, an effective combination

of line search and constraint balancing yields accurate results within a small number

of iterations. The use of a constant, global regularization respecting the discrepancy

principle is recommended. For this scheme the regularization properties can easily be

obtained, which are useful for the estimation of uncertainties.

The introduced resolution measures strongly depend on the regularization strength and

the line search parameter. To circumvent these problems, a linearized scheme using

the discrepancy principle was applied. On this basis several regularization techniques

were compared. All provide a similar quality but emphasize variations at the surface

or at the outer boundaries. Additionally, different data sets were investigated con-

cerning information content and efficiency. Compared to classical configurations, data

sets with increased dipole lengths yield superior results. Amongst the investigated

data sets, dipole-dipole and Schlumberger configurations with increased dipole lengths

obtained the largest resolution qualities for both 2D and 3D data acquisition. Noise

and resistivity contrasts are important factors for the quality of inversion.

It can be seen, that the presented quantity known as information content is an appropri-

ate measure of the reliability of a model, which can be applied to further experimental
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design. However, it has to be proved if this applies to the full non-linear case as well.

The crucial point in non-linear inversion is the choice of the regularization parameter,

which strongly influences resolution properties and has to be chosen carefully. The

presented inversion and experimental optimization techniques have to be validated in

practice.
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5 Application to field data

5.1 The Rothschönberg Gallery

In the following section data from the Rothschönberg test field close to Freiberg are

investigated. Since the subsurface has a simple and well-known structure, it suits well

for testing purposes. The investigation area represents fairly conductive background

with lowest resistivities (100 Ω m) near the surface and resistivities of 300 Ω m below.

At a depth of 5−8 m the resistive (> 1000 Ω m) Gneiss basement is found.

The Rothschönberg Gallery crosses the test field at a depth of 2−4 m. It has a lateral

extent of about 2.5−3 m. In the past it has been used for the drainage of the Freiberg

mining district. Figure 5.1 shows a section of the investigated gallery.

Figure 5.1: Section of the investigated Rothschönberg gallery

Next to the gallery another anomaly of undefined origin is known. It may be a side

cave as well as a basement bulge.

5.1.1 2D–Inversion and the Global L–curve

First, a profile array of 21 electrodes with an electrode distance of 2 m was applied.

Since the course of the gallery is known, the profile was arranged perpendicular to

its strike direction. Thus the data can be interpreted two-dimensionally. Figure 5.2

displays the measured data set. It constitutes of classical dipole-dipole configurations

using separation factors of n=1-8.

The 116 data show variations from 80 to 370 Ω m. The data noise is estimated at a rate

of 1% plus a voltage resolution of 100µV at I=100 mA, which results in errors up to
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Figure 5.2: Field data of the original Rothschönberg profile representing a dipole-dipole

pseudo-section of 21 electrodes

8% for the largest separations. The model is parameterized by grid lines in x-direction

from -4 to 44 m with 2 m spacing. The thicknesses of the 8 layers increase from 0.5 to

1.7 m considering the decreasing resolution with depth. The maximum depth of 6.2 m

was determined by sensitivity analysis. In summary, the model consists of 192 cells

with varying size.

In the following, a global regularization scheme is applied using first order smoothness

constraints. Starting model is the homogeneous half-space of 200 Ω m, which is the

median of the data. Logarithmic resistivities without lower bound are used for data

and model parameters. The regularization parameter is considered to be constant in

the course of iterations. Independent solutions are obtained for a series of λi starting

from 1000 with a factor of 0.8 down to 0.4.

Whereas for large λ the inversion converged, the data misfit increased again for λ < 10.

Therefore, an inexact line search procedure was implemented to ensure convergence.

Note that the line search is not based on χ2, but the total misfit functional Φ to be

minimized. The inversion was stopped, when the relative change of Φ reached 1%.

As a result, the models show reducing data misfits and increasing model roughnesses

for decreasing regularization parameters. Figure 5.3 displays data misfit and model

roughness for all solutions, yielding a global1 L–curve.

Respecting the discrepancy principle the point has to be sought, where the L–curve

crosses the line of χ2 = 1. This procedure yields a value of λ19 = 18.0. To the contrary,

the L–curve criterion using the curvature of the parametric curve obtains λ9 = 54.9

for optimum regularization.

The inversion results are displayed for six selected, nearly logarithmically equidistant,

regularization strengths (1000, 167.8, 54.9, 18.0, 3.02 and 0.51) in Figure 5.4. All

models show the main structures of two resistive bodies in a conductive background.

1As the (local) L–curve was introduced for linearized inverse problems, the presented curve is de-
picted as ”global L–curve”
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Figure 5.4: Inversion results for six selected values of λ
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From (a) to (f) more and more complexity appears in the model due to the decreasing

influence of the smoothness constraints. The models (a) and (b) are too smooth to

delineate the boundaries of the anomalous structures well. Since the data are not

explained accurately, they are under-fitted. In contrast, in the models (e) and (f)

artifacts resulting from errors are visible, which can be interpreted as over-fitting.

The sub-figures (c) and (d) show reasonable structures without artifacts. Model (c)

corresponds to the optimum regularization determined by the curvature of the global

L–curve, whereas model (d) represents the solution associated with the discrepancy

principle. As the global L–curve is generally not known, the local L–curve of the

linearized subproblem in the first iteration can be used for estimating an optimized

λ. In doing so, we yield λ18 = 22.5 for the optimum value, which is close to that

of the discrepancy principle. Although the discrepancy principle is finally the less

sophisticated choice, the local L–curve method produces reasonable estimates as well.

Figure 5.5 displays the misfit function and its histogram for λ19. It represents the differ-

ence between the logarithmized data and forward response, weighted by the estimated

errors. It can be seen, that neither single data outliers nor systematic structures are

present. The reasons for a systematic misfit function may be a misappropriate model

discretization as well as present 3D effects, which cannot be interpreted by 2D models.

The histogram shows almost a Gaussian distribution, which is essential for successful

least squares inversion.

Note that the form of the L–curve and hence the resulting optimum λ strongly depends

on the error estimates or measures. Knowledge of the errors or a reasonable estimate

is an essential prerequisite for the interpretation of geophysical data.

5.1.2 Optimization of Profile Data

The optimization techniques described in the last chapter are to be proved in practice.

Therefore, different conventional and non-conventional data sets were measured on an

electrode array in less than 1 m distance, parallel to the original profile. To increase

the accuracy, the electrode spacing was reduced to 1 m. 36 electrodes were placed

equidistantly and the measurements were applied subsequently without changing the

electrode positions.

A total of 2488 single measurements includes all conventional configuration types with

small and increased dipoles. From that, four data sets were selected and depicted in

Table 5.1. In addition to the classical Wenner and dipole-dipole arrays, improved sets

of Schlumberger and (circulated) dipole-dipole type with increasing dipole lengths were

chosen to verify the good results of the latter in the linearized study (section 4.1). To

keep the number of data relatively small, the maximum separation was limited.
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Data set tag data n min/max ρa min/max err

Wenner c–p–p–c 196 1-11 112.4/450.6 1.2/3.0

Schlumberger(inc) c–p:p–c 186 1-15 112.6/464.4 1.5/3.0

Dipole-dipole c.c–p.p 285 1-10 81.1/530.3 3.3/6.7

Dipole-dipole(inc)+circ c:c–p:p+c 259 1-15 81.1/585.9 2.0/4.3

Table 5.1: The four data sets used for comparison

The error constitutes a rate of 1%, a voltage error of 0.1 mV and a positioning error of

0.01 m without covariances. Note that both dipole-dipole configurations show relatively

large error values compared to the Wenner/Schlumberger arrays. However, increasing

the dipole lengths reduces both voltage and positioning error by 30%. The largest

anomalies are obtained by the dipole-dipole type arrays.

Due to the large number of electrodes and separations the model was discretized by

9 layers of increasing thickness up to a maximum depth of 7 m. The horizontal grid

spacing was set to ∆x= 1 m. Again, the inversion scheme applied global smoothness

constraints of first order. Unlike in the last example, the derivatives with respect

to z were weighted by the factor of αz = 0.3 to enhance the results slightly. The

regularization parameters were chosen to satisfy convergence at χ2≈ 1. The concrete

values were comparable and ranged from 10 to 30.

In Figure 5.6 the inversion results are plotted using filled contour lines. All four

data sets are able to locate the two known resistive anomalies at x = 16 and 26 m,

but at different quality. Whereas the Wenner/Schlumberger arrays are not able to

delineate the boundaries of the gallery, the dipole-dipole measurements are able to do

so. However, the inversion result of the classical dipole-dipole shows bad resolution at

depth, which is also the case of the Schlumberger model. In contrast, the other two

models are able to map out the course of the resistive basement. The result of the

improved dipole-dipole set shows the most detailed image with the largest parameter

contrasts.

To compare the resolution properties, in Figure 5.7 the model cell resolutions of the

cell 174 are plotted, which is the center of the gallery’s position. For all data sets

the cell resolutions display an approximate Gaussian distribution, which is related to

the concept of averaging resolution kernels (Backus and Gilbert, 1968). Clearly the

resolution kernels for the individual data sets correspond to the particular inversion

results. The very good result of the improved dipole-dipole set is indicated by a

relatively sharp resolution. Also, the classical dipole-dipole and the Wenner data

set show reasonable resolution kernels. To the contrary, the cell resolution of the

Schlumberger data set indicates uncertainties in the vertical direction.

To sum it up, the improved dipole-dipole data set shows the most detailed inversion
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Figure 5.6: Inversion results of the depicted data sets
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result in all model regions. The improvement represents a significant enhancement of

information content compared to classical dipole-dipole sets. In contrast, the improved

Schlumberger array does not yield a reasonable model and lacks vertical resolution.

5.1.3 3D–Inversion

The test field was also used for the application of the three-dimensional resistivity

inversion. Figure 5.8 shows the measuring field. The data were acquired by Dr. Folker

Donner (Institute of Geophysics, Freiberg).

The multi-electrode line was placed to form a grid of 14×9 electrodes using distances

of 2.5 m in both directions. On all profiles in x- and y-direction dipole-dipole measure-

ments were applied using the separation factors n=1-6. This resulted in a number of

753 single data that are visualized as pseudo-sections in Figure 5.9. The data show

variations from 120 to 490 Ω m. A relative error of 3% and a minimum voltage of

500µV were used to estimate errors of 6% maximum.

The model was parameterized using cells of ∆x= ∆y = 2.5 m. According to the six

separations, six layers with increasing thickness up to maximum depth of 6 m were

defined. The total number of 15×10×6=900 cells is thus a small-scale 3D problem.

Since the data show increasing resistivities with depth, a one-dimensional inversion

was carried out to estimate a layered starting model. It represents the main resistivity

distribution of a conductive overburden, sediments of moderate resistivity and the

resistive basement at depth (see Table 5.2). In doing so, the data misfit could be

reduced significantly.

z/m 0 1.1 2.3 3.4 5 7.3 9.6

ρ/ 109 | 109 | 255 | 386 | 229 | 229 | 666

Ω m Overburden | Sediments | base

Table 5.2: Layered starting model for the 3D Rothschönberg data

In the further course of inversion, smoothness constraints of first order using a regula-

rization parameter of λ = 10 were applied globally. Convergence was reached within 5

iterations reducing the chi-squared misfit from 89.1 (RMS=33%) to 1.8 (RMS=4.3%).

The final inversion model is displayed in Figure 5.10. The gallery is clearly to be

seen in the second and third layers. In the same depth another resistive anomaly is

visible, which can be followed down to model boundary. This supports the theory of

a basement bulge.

In Figure 5.11 the model is visualized three-dimensionally. In addition to some slices in

x- and y-direction an iso-body with a value of 450 Ω m is drawn. It provides a detailed
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image of the Rothschönberg gallery and the neighboring anomaly.

Whereas the (two-dimensional) gallery is reproduced well in both 2D and 3D inversion,

the neighboring anomaly leads to contradictory interpretations. Since the electrode

distance of the 2D profile is much smaller, its resolution properties are better than

for the 3D-inversion. However, the 2D inversion results has to be treated carefully,

because the side anomaly is actually three-dimensional.
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Figure 5.7: Cell resolutions of the cell 174 (anomaly center) in %. The model cell is

marked by a black rectangle.
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Figure 5.8: Electrode arrangement of the 3D measurement. The green line denotes the

meander-like positioned multi-electrode, the yellow line denotes the course

of the gallery
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Figure 5.9: Measured data in form of pseudo-sections
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Figure 5.10: Plan view slices of the 3D inversion result

Figure 5.11: 3D-visualization of the inversion result, the iso-surface defined by the value

of 450 Ω m is drawn
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5.2 Ground Fall Problems on Salt-waste Dumps

5.2.1 Motivation

In northern Thuringia salt layers are found at shallow depths. They have been com-

mercially mined since the late 19th century. The wet residue of the salt production

process was put on salt dumps from the middle of the 1960s on. It mainly contains

chlorides (NaCl and MgCl2) and sulphates (CaSO4 and MgSO4), which can dissolve

in the presence of water leading to severe environmental problems.

To deal with the dissolution processes, the waste dumps have been covered since the

early 1990s. Generally, three layers were established: Crude construction waste was

disposed on top of the salt preventing fluids from capillary rise. Then, a layer of

fine materials like soil and sewage sludge was added to compensate topographical

undulations. The thickness of each layer may not have exceeded 5 m. Finally, a

humus layer of at most 0.5 m was used to cover the waste dump allowing for planting

vegetation.

The coverage diminishes the emergence of salt dissolutions. However, dissolution mech-

anisms are still in process. In recent years subsidences occurred that are obviously

caused by dissolution processes in the salt waste. Figure 5.12 shows one of the ground

falls, which can have radii of 10 m and depths of 5 m.

Figure 5.12: A recent ground fall at the salt-waste dump Menteroda

Ground falls represent a serious danger for both people and devices of the waste dump

management. Using DC resistivity measurements the structure of known ground falls

and the existence of possibly critical areas had to be investigated. The data were

acquired at the salt-waste dump Menteroda by Marcus Walther within the scope of

his diploma thesis in collaboration with the K-UTec GmbH Sondershausen.
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5.2.2 Two-dimensional Investigation

At first, a profile array was applied crossing the filled ground fall. It employed 64

electrodes with an electrode distance of 1 m using a Schlumberger array type and

systematically increasing dipole lengths. Figure 5.13 displays the pseudo-section of

the measured data showing variations from 8 to 65 Ω m.

The model uses a regular horizontal grid spacing of 1 m. 12 layers with increasing thick-

ness are defined reaching a maximum depth of 12 m as derived by the one-dimensional

sensitivity distribution. The inversion routine applied global smoothness constraints

of second order with Dirichlet boundaries. The regularization parameter of λ = 3.0

was chosen manually. A cell combination technique was used to prevent asymmetrical

cell dimensions.
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Figure 5.13: Pseudo-section of the measured data in Ω m

Figure 5.14: Inversion result (in Ω m) using global smoothness constraints (second or-

der, Dirichlet boundaries) with λ = 3

The resulting model is displayed in Figure 5.14. It shows detailed structures of high

and low resistivities in the range of 1−100 Ω m. The model resolution was used for

alpha-mapping such that badly resolved model cells will not be interpreted. Generally,

the upper layers are resistive, except f two conductive structures at x = 17 m and

x= 44 m, which can be assigned to penetrating surface fluids. At a depth of 6 m the

salt surface is visibly indicated by low resistivities. The location of the ground fall at

x=27 m is clearly visible due to a deflection of the layered structures near the surface.
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At this position, increased resistivities are present down to the model boundary of

z=12 m. The resistive material at depth is interpreted as loose covering material in a

formerly rinsed cavity.

Hence, the objects of further investigations are either cavities at the salt surface or

fluid paths towards depth, which can be followed by dissolution processes. However,

the results of the 2D-inversion have to be handled with care, because the subsurface

actually shows three-dimensional characteristics. From sensitivity analysis we know

structures beside the electrode array being mapped into depth. Thus, for a reliable

investigation, the subsurface has to be mapped by a surface electrode spread that

allows for a 3D-inversion of resistivity.

5.2.3 Three-dimensional Investigation

The following data were acquired in the central part of the above discussed profile to

investigate the three-dimensional structure of the ground fall and the surrounding area.

The measurements were carried out on 11 parallel profiles of 1 m distance, shown in

Figure 5.15. Each profile applied 64 electrodes of 0.5 m spacing. Note that two of the

profiles were shifted by 0.25 m, which did not affect the inversion due to the possibility

of independent electrode positioning.
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Figure 5.15: Layout of the 3D measurement. The ”x” denote the electrodes of the 11

profiles, the ”+” denote the electrodes of the 2D profile array

To ensure a high resolution, the dipole-dipole configurations were chosen. The above

depicted improvement by a systematic enlargement of the dipole lengths was applied,

each profile representing a combination of two shifted improved sets with 790 single

data. Using a multi-channel receiver the total number of 8690 data was obtained in

one day and could be used without pre-processing. Errors were estimated to be 3%

plus a voltage accuracy of 100µV at 50 mA, which obtained 11% at maximum. The

measured pseudo-sections are displayed in Figure 5.16. They show variations from

3 Ω m (large penetrations) to 70 Ω m (shallow data).

The model consists of model cells with 0.5 m horizontal grid spacing and 8 layers

of increasing thickness with a maximum depth of 8.7 m. This results in a total of

65× 22× 8 = 11440 cells. The inversion routine applied smoothness constraints of
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Figure 5.16: Pseudo-sections of the 11 measured profiles

second order with Dirichlet boundaries globally using the regularization parameter

λ=10.0. As a result, the chi-squared data misfit has been decreased using 5 iterations

from 406.6 (RMS=131%) down to 5.6 (RMS=7.8%).

Figure 5.17 displays horizontal sections of the inversion model. While the top layers

show a complicated image of resistive material, the highly conductive salt surface is

indicated in the deepest layers. Another conductive anomaly on the left side can be

interpreted as mineral sewage sludge as known from borehole material. In layers 4-7

(z = 1.3−6.6 m) two resistive anomalies can be identified: The known ground fall is

situated at the position defined by x=11 m and y=10 m. This anomaly can be followed

down to 6 m. Close to the right model boundary (x= 30 m, y= 8 m) a huge resistive

body can be seen with depth extending from 2 m down to 8.7 m. It can possibly be

interpreted as existing cavity. This idea is supported by the low resistivities above,

which may indicate fluid paths as the origins of salt dissolution. However, this has

to be proved by further investigations, because the resolution at the boundary of the

model is generally low. Nevertheless, Figure 5.18 provides a three-dimensional concept

of the subsurface as being determined from DC resistivity measurements.
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Figure 5.17: Plan view sections of the inversion result

Figure 5.18: 3D–Visualization of the inversion result. The iso-surfaces created by the

resistivities of 10 Ω m and 100 Ω m are displayed
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5.3 Archaeological Investigation at the Walbeck Castle

Geophysical methods have been successfully used for the investigation of archaeological

sites. They help to delineate traces of history without destruction and save time

that may be used for a more careful excavation. Generally, the methods of choice

are geo-magnetics, ground penetrating radar (GPR) and resistivity tomography used

for both broad studies and detailed two/three-dimensional investigations.To delineate

archaeological objects, they must show petrophysical parameters contrasting to the

background. This is often the case for walls and foundations, which generally show

large resistivities if still in good state. However, there are also cases of conductive

anomalies due to water accumulation on top of the foundations.

The following example involves data collected by Dr. Donner at the Walbeck castle

near Magdeburg. Next to the existing collegiate church ancient side buildings were

supposed to be present. To detect wall foundations the area had been investigated

using GPR and DC measurements. Figure 5.19 displays a plan view of the area and

the electrode layout.

Dipole-dipole measurements were carried out on 29 profiles trending East-West and 17

profiles striking from North to South. Both electrode and profile distance have been set

to 1 m. Thus, an area of 30×25 m was covered allowing for three-dimensional resistivity

reconstruction. Figure 5.20 shows the collected data in the form of pseudo-sections.

The separation factor between the two dipoles was varied from 1 to 6. Therefore a

dipole enlargement was not necessary.

In summary, a total number of 5196 data points was acquired, all of them showing

excellent quality. The errors were estimated to be 2 % plus 100µV at a driving current

of 100 mA. It is noteworthy that archaeological data often show only small variances

(100 − 300 Ω m) compared to other problems. However, due to the shallow depths of

the investigated objects a good data quality allows for accurate results anyway.

The model domain constitutes of six layers, the layer thicknesses vary from 0.5 to

1.0 m yielding a maximum depth of 4 m. Due to the excellent data coverage, a grid

with horizontal cell dimensions of ∆x= ∆y = 0.5 m could be applied. A cell grid of

60× 50× 6 = 18000 model parameters was used for inversion. Smoothness constraints

of first order were used in a global regularization scheme of constant regularization

parameter. The value of λ = 10 was adjusted manually considering the discrepancy

principle.

The inversion parameters are displayed in Table 5.3. Note that the first two inversion

steps show fast convergence, whereas the following iterations can improve data misfit

only slightly. A possible reason for the slow convergence may be forward calculation

errors, which rise up to the order of the RMS error.
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Figure 5.19: Area of measurement and electrode arrays. Black dots denote the position

of known or guessed walls based on the historical site plan

0 x/m 20

dd2
dd4
dd6 x=1

0 x/m 20

dd2
dd4
dd6 x=2

0 x/m 20

dd2
dd4
dd6 x=3

0 x/m 20

dd2
dd4
dd6 x=4

0 x/m 20

dd2
dd4
dd6 x=5

0 x/m 20

dd2
dd4
dd6 x=6

0 x/m 20

dd2
dd4
dd6 x=7

0 x/m 20

dd2
dd4
dd6 x=8

0 x/m 20

dd2
dd4
dd6 x=9

0 x/m 20

dd2
dd4
dd6 x=10

0 x/m 20

dd2
dd4
dd6 x=11

0 x/m 20

dd2
dd4
dd6 x=12

0 x/m 20

dd2
dd4
dd6 x=13

0 x/m 20

dd2
dd4
dd6 x=14

0 x/m 20

dd2
dd4
dd6 x=15

5 10 x/m 20

dd2
dd4
dd6 x=16

5 10 x/m 20

dd2
dd4
dd6 x=17

5 10 x/m 20

dd2
dd4
dd6 x=18

5 10 x/m 20

dd2
dd4
dd6 x=19

5 10 x/m 20

dd2
dd4
dd6 x=20

5 10 x/m 20

dd2
dd4
dd6 x=21

5 10 x/m 20

dd2
dd4
dd6 x=22

5 10 x/m 20

dd2
dd4
dd6 x=23

5 10 x/m 20

dd2
dd4
dd6 x=24

5 10 x/m 20

dd2
dd4
dd6 x=25

5 10 x/m 20

dd2
dd4
dd6 x=26

5 10 x/m 20

dd2
dd4
dd6 x=27

5 10 x/m 20

dd2
dd4
dd6 x=28

5 10 x/m 20

dd2
dd4
dd6 x=29

0 x/m 20

dd2
dd4
dd6 y=4

0 x/m 20

dd2
dd4
dd6 y=5

0 x/m 20

dd2
dd4
dd6 y=6

0 x/m 20

dd2
dd4
dd6 y=7

0 x/m 20

dd2
dd4
dd6 y=8

0 x/m 20

dd2
dd4
dd6 y=9

0 x/m 20

dd2
dd4
dd6 y=10

0 x/m 20

dd2
dd4
dd6 y=11

0 x/m 20

dd2
dd4
dd6 y=12

0 x/m 20

dd2
dd4
dd6 y=13

0 x/m 20

dd2
dd4
dd6 y=14

0 x/m 20

dd2
dd4
dd6 y=15

0 x/m 20

dd2
dd4
dd6 y=16

0 x/m 20

dd2
dd4
dd6 y=17

0 x/m 20

dd2
dd4
dd6 y=18

0 x/m 20

dd2
dd4
dd6 y=19

0 x/m 20

dd2
dd4
dd6 y=20

ρ
a
 in Ω⋅m

118 156 205 270 356

Figure 5.20: Pseudo-sections of the measured data
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Iteration 0 1 2 3 4 5 6

χ2 70.2 4.1 1.9 1.6 1.5 1.4 1.3

RMS error in % 25.6 5.3 4.1 3.7 3.6 3.5 3.4

Reciprocity in % 1.44 1.97 2.33 2.58 2.77 2.94

Table 5.3: Data fit and reciprocity in the course of iterations

The final inversion result is displayed in Figure 5.21. Whereas in the first layer only

small anomalies are present, the layers 2-4 show more detailed variations. The resistive

linear structures can be associated with wall foundations with the utmost probability.

Note that the resolution is decreased in deeper layers as well as in the regions of missing

electrodes.
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Figure 5.21: Inversion result sections of the upper four layers

To verify the results, Figure 5.22 shows an overlap of the second layer (z=0.5− 1.1 m)

section and the original sketch. Most of the expected structures are mapped well by

the resistivity, whereas others are not. Moreover, systematically situated resistivity

structures indicate additional foundations. To sum it up, the use of the resistivity

inversion provides a very detailed image of the subsurface, which helps to obtain a

concept of the interior structures without destruction.
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Figure 5.22: Second layer (z=0.5− 1.1 m) plan view of the inversion result compared

to the originial sketch of the site plan
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6 Discussion and Conclusions

The proposed minimization techniques can be applied to the inversion of DC resistiv-

ity data. In doing so, the knowledge of errors is important for weighting the data and

controlling the inversion. Uncertainties in the measured voltages and the electrode

positions have to be considered to obtain appropriate estimates. Note that a misjudg-

ment of the errors can lead to erroneous structures. It was shown that covariances in

the data due to varying electrode positions can be neglected.

The Gauss-Newton technique proves to be the method of choice for multidimensional

problems. Different regularization techniques were successfully applied to circumvent

the non-uniqueness. The author recommends the use of explicit global regularization

schemes by the introduction of model restrictions such as smoothness constraints or

a-priori information. This is supported by the resolution equation (2.42) for global

regularization schemes. It predicts the model to be constructed of the true model and

the starting model independent of the path the iterations took.

Consequently, the regularization parameter used for weighting the constraints has to be

constant. The value can be estimated using the L–curve criterion in the first iteration.

Finally, it is determined by the discrepancy principle which ensures to fit the data

within their errors. As presented, a global L–curve is constructed along which the

optimum regularization is to be sought. The use of an inexact line search procedure

helps to accelerate convergence.

The non-linear resolution analysis played a central role in this thesis. The concept of

Friedel (2003) based on an truncated SVD scheme could be broadened to arbitrary

regularization schemes using the generalized singular value decomposition (GSVD).

However, both SVD and GSVD cannot be applied to large-scale problems due to limi-

tations of computer time and memory. Alternatively, each row of the model resolution

matrix can be approximated solving a linear sub-problem as done by Alumbaugh and

Newman (2000). To obtain the complete resolution matrix, a large computational ef-

fort is necessary. Preconditioners can help to overcome this problem slightly. Other

methods have to be used to approximate the model resolution matrix.

The derived measure of information content represents an appropriate measure for

the quality of inversion results. It is nearly independent of the used regularization

scheme. To circumvent the dependence on the regularization parameter, a linearization

provides the basis for a comparison of data sets. As a result, improved dipole-dipole,
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pole-dipole and Schlumberger type data sets show superior quality. The optimization

strategies have already been applied in practice. Whereas the improved dipole-dipole

data set show excellent results, the Schlumberger data lack vertical resolution. Further

resolution studies with large electrode spacings and increased noise levels have to be

carried out. Moreover, the efficiency considerations shall be broadened to involve

multi-channel recorders.

The resolution analysis is extended to three-dimensional inversion by transferring the

2D optimization techniques to the experimental design of 3D data. As a result of the

synthetic studies and the field data examples, a successful 3D interpretation requires

profiles of small distances or perpendicular directions.

The presented forward calculation with finite differences and the singularity removal

technique has been enhanced using incomplete Cholesky preconditioners. The reci-

procity proves to be an appropriate measure of modeling accuracy. Since inaccurate

forward calculation limit the convergence of the inversion, the reciprocity has to be ob-

served for adaptive refinement of the grid. However, the forward procedure represents

the most time-consuming part of the inversion.

A consequent use of finite element techniques is proposed. Advantages are the incor-

poration of topography and the construction of a parameterization that considers the

resolution abilities. Also, the presented regularization techniques have to be developed.

For this purpose, adaptive constraint weights as presented by Yi et al. (2003) or Haber

and Tenorio (2003) may be introduced.

Equation solvers have been presented to solve the linear sub-problem on the basis of

conjugate gradients techniques. A further improvement of efficiency can probably be

achieved by preconditioning. The multi-lambda solvers needed for choosing the re-

gularization parameter are to be accelerated. Particularly, the fast equation solvers

as presented by Frommer and Maass (1999) have to be generalized for arbitrary con-

straints.

The future requirements of DC resistivity inversion involve the following tasks:

1. Implementation of robust inversion schemes for model and data weighting.

2. Application to cross-hole and hole-to-surface data, including the estimation of

errors and the optimization of data sets.

3. Inversion of complex resistivity (IP); frequency constraints are needed for the use

of spectral IP.

4. 4D inversion for time dependent processes using appropriate constraints in time.
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Vorwärtsproblems. Diploma thesis, Universität Leipzig.
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