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Stochastic earthquake models are often based on a marked point process approach
as for instance presented in Vere-Jones (

�������
). This gives a fine resolution both in

space and time making it possible to represent each earthquake with corresponding
foreshocks and aftershocks separately. However, it is not obvious that this microscopic
approach is advantageous when aiming at earthquake predictions. In the present paper
we take a macroscopic point of view considering grid cells of ��� �
	�� ��� �	 , or about� � km

��� � km, and time periods of � months, which seems suitable for predictions.
Hereby, also the effects of foreshocks and aftershocks are circumvented. More specif-
ically, we will discuss different alternative Bayesian hierarchical space-time models in
the spirit of Wikle et al. (

������
). For each time period the observations are the mag-

nitudes of the largest observed earthquake within each grid cell. In our models these
largest observed earthquakes are represented by hidden system state variables called
potentials. The potentials at each time period and grid point are decomposed into a
time independent term and various alternative time dependent terms with spatial de-
scription. As data we apply parts of an earthquake catalog provided by The Northern
California Earthquake Data Center where we limit ourselves to the area ��� 	�� ��� 	�� ,�����	���� �� 	�� for the years

�������
through

�������
containing the Landers and Hector Mine

earthquakes of magnitudes respectively ����� and ��� � on the Richter scale. Based on the
various space-time models earthquake predictions for the next two time periods for all
grid cells are arrived at. The models are implemented within an MCMC framework in
Matlab. The model that gives the overall best predictions is claimed to give valuable
and new knowledge on the spatial and time related dependencies between earthquakes.

KEY WORDS: Dynamical systems; Geostatistics; Gibbs sampling; MCMC; Model
comparison; Seismology.

Bent Natvig is Professor, Department of Mathematics, University of Oslo,
���

��� �� , Norway (E-mail: bent@math.uio.no). Ingunn Fride Tvete is Research Fel-
low, Department of Mathematics, University of Oslo,

�!� ��� �� , Norway, (E-mail:
ift@math.uio.no). This material was based upon work supported by the National Sci-
ence Foundation under Agreement No. "$#&% � � ��� ��  �� . Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation. This joint

1



work was started in February 2003 while the authors visited the Statistical and Applied
Mathematical Sciences Institute (SAMSI) in North Carolina. We are indebted to its di-
rector James O. Berger and to Richard L. Smith, the program leader for Large-Scale
Computer Models for Environmental Systems, for an excellent research environment.
The work has also benefited from the “Evaluation of Bayesian Hierarchical Models”
project, supported by the Norwegian Research Council, under grant

��� � ��������� ��� , at
the Department of Mathematics, University of Oslo. A series of persons have provided
very useful suggestions during this research. Especially, Jørund Gåsemyr has been
extremely helpful. Otherwise we thank in alphabetical order Hilmar Bungum, Fredrik
Dahl, Alan Gelfand, Ingrid Glad, Geir Storvik, Christopher Wikle and Robert Wolpert.

1 INTRODUCTION

Vere-Jones (1995) argues that because of the complexity of an earthquake occurrence
there is a need to consider probabilistic models. Several papers are based on a marked
point process approach to such modeling, e.g. Ogata (1998), the first part of Holden et
al. (2000) and recently Schoenberg (2003), where each earthquake is represented by
its magnitude and coordinates in space and time. The marked point process approach
has the advantage that it represents each earthquake with corresponding foreshocks
and aftershocks separately. This gives a fine resolution making it feasible also to in-
clude known physical quantities connected to each single earthquake. However, it is
not obvious that this microscopic approach is advantageous when aiming at earthquake
predictions. In the present paper we take a macroscopic point of view considering grid
cells of ��� � 	 � ��� � 	 , or about

� � km
� � � km, and time periods of � months.

The basic theory for Bayesian forecasting and dynamic models is presented in the book
West and Harrison (1997). A part of this theory is known in the engineering commu-
nity as Kalman filtering. In the excellent paper by Wikle et al. (1998) this basic theory
is used to develop a hierarchical Bayesian space-time model, and it is suggested that
this gives more flexible models and methods for the analysis of environmental data
distributed in space and time. Their model is implemented in an MCMC simulation
framework using Gibbs sampling and applied to an atmospheric data set of monthly
maximum temperatures. Another excellent paper in this area is Wikle et al. (2001)
considering tropical surface winds. Inspired by their work we will in the following
present different alternative Bayesian hierarchical space-time earthquake models, fol-
lowing up the second part of Holden et al. (2000). For each time period the observa-
tions are the magnitudes of the largest observed earthquake within each grid cell. In
our models these largest observed earthquakes are represented by hidden system state
variables called potentials. The potentials at each time period and grid point are de-
composed into a time independent term and various alternative time dependent terms
with spatial description.
Although Vere-Jones (1995) is very much concerned with a marked point process ap-
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proach to earthquake prediction he is stating at the end of his paper: “ . . . , and it is
possible that something like a hidden Markov model (for the strain regime) could pro-
vide a more flexible modeling framework within which such precursory features could
be explored”. We feel that the present approach is just a full consequence of this line
of thought. Earthquake prediction has been a challenge for a long time. Geller et al.
(1997) ask: “Is prediction inherently impossible or just fiendishly difficult? In prac-
tice, it doesn’t matter. Scientifically, the question can be addressed using a Bayesian
approach”.
Based on the various space-time models short time earthquake predictions for the next
two time periods for all grid cells are arrived at in the present paper. The models are
implemented within an MCMC framework in Matlab. The model that gives the overall
best predictions is claimed to give valuable and new knowledge on the spatial and time
related dependencies between earthquakes. One additional advantage of our Bayesian
hierarchical modeling is its flexibility. A module can easily be removed and replaced
by another. This makes it easy to include expert knowledge in different ways and to
try out different model varieties.

2 DATA

We consider parts of an earthquake catalog provided by the The Northern Califor-
nia Earthquake Data Center for the years

�������
through

�������
, covering the region

��� 	 � ��� 	 N and
�����	 � � � � 	 W. The reason for starting in 1981 is that previous to this

year there were not many registered earthquakes below � on the Richter scale ( ��# )
in the catalog. The basic question we ask is how large the maximal earthquake for
a given time period and grid cell going to be. We therefore only consider the largest
earthquake for each time period in each grid cell. We could of course also have looked
at the average earthquake magnitude or the aggregated earthquake magnitude, but then
we would really be answering a different kind of question.
There could be several ways to compare models. We have found it most natural and
demanding to use prediction results to decide if a model is good or not. Schoenberg
(2003) instead applies a multidimensional residual analysis approach. Within our cho-
sen area and time span two major earthquakes have taken place. The first is the Landers
earthquake. This ������# earthquake took place on the � � th of June

����� � . The second is
the Hector Mine earthquake on the

�� 
th of October

�������
, being of magnitude �
� � # .

The great challenge for any earthquake model is the ability to predict such large and
rare earthquakes within a reasonable time period and grid cell size. Hence, it is of
interest to see how well our models predict these two extreme events. First we will run
the models for the years

�������
through

�������
, and then make predictions for the next

two periods, the last of these containing the Landers earthquake. According to Price
and Sandwell (

������
) this earthquake caused some regional deformations. Hence, we

will restart the simulations in
����� � and run through April

������
. We then again make
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predictions for the next two periods, the last containing the Hector Mine earthquake.
This way all the data will only be used once.
Taking the average maximal magnitudes over the periods

�������� �������
and

����� � � April�������
respectively, we obtain the two top left plots in Figure

�
. These plots display the

earthquake occurrences as a “diagonal belt” in the NW-SE direction. This feature is
present in all years, but there seems to be more seismic activity in the top right corner
of our area in the years

���� � � April
������

following the Landers earthquake. This
is in accordance with the mentioned belief that this earthquake caused some regional
deformations. We also see this in the bottom two left plots, where the standard de-
viations are plotted. Looking at the top right plot in Figure

�
we see that there were

several other large earthquakes in our area in the period that the Landers earthquake
took place. From the bottom right plot it is seen that this is different to the period
when the Hector Mine earthquake occurred where there was only one additional large
earthquake. It must also be mentioned that in the period prior to the Landers earth-
quake there was more seismic activity compared to the period prior to the Hector Mine
earthquake (this is displayed in Figures � and

 
).
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Figure 1: Top left: average maximal magnitudes in
������� � �������

. Top middle: average
maximal magnitudes in

����� � � April
�������

. Top right: magnitudes during the period
containing the Landers earthquake. Bottom left: the standard deviations in

������ �
�������

. Bottom middle: the standard deviations in
����� � � April

�������
. Bottom right:

magnitudes during the period containing the Hector Mine earthquake. Keep in mind
the scales.
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3 THE MODELS

We will first present one main model, before considering three simpler versions of it.
We will then compare the different model alternatives. In the following let an index� denote space location and

�
denote time period, ��� ��� � � � ��� and

� � ��� � � � �	� . As
already mentioned space locations will be situated on a grid with grid cells of

� � km� � � km, whereas the distance between points in time is � months. If we choose the
grid cells too small, we would end up having many grid cells without observations. In
addition it would take much longer time to do the simulations. We have also tried grid
cells of about �� km

� �� km, and our main conclusions remain the same. We have
also tried a smaller time resolution, and also here the main features remain the same.
We imagine that in every grid cell and time period there is an underlying potential for
a maximal magnitude earthquake. We therefore introduce the following hidden system
state variables:


�� � maximal magnitude earthquake potential at space location � and time period�
.

It is natural to consider this as an unknown, continuously distributed random quantity.
We introduce the observed earthquake magnitudes corresponding to


�� :
# � � observed maximal magnitude earthquake at space location � and time period�

.

We also introduce the following corresponding noise (shock) term:�
# � � noise (shock) at space location � and time period

�
.

In the following, all noise terms, with generic notation
�� � , are independent in space

and time, each having a normal distribution
��� � ����� ���� , where

��� �� is a random quantity.
These noise terms are also assumed to be totally independent of all other noise terms.
The link between the earthquake potential and the observed maximal magnitude earth-
quake at space location � and time period

�
is given by the observation equation:

# � � 
 ��� �
# � � � � ��� � � � � � ����� ��� ��� � � � � � ��� � (1)

The earthquake potential at � and
�

is assumed to be decomposed in the following
way by the system equation:


 � �! � � 
 �"$# %� �
 � � � � ��� � � � � � ����� ��� ��� � � � � � �	� � (2)

Here  � is a time independent contribution and

&�"�#  a time dependent contribution

with a spatial description.
�
'� is a noise term linked to the system state


(� .
We introduce the notation

� � north, ) � east, % � south and
� � west.

Let
��� � � � grid cell north of � (if any) and define correspondingly ) � � � � % � � � and
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� � � � . We model the time independent term as a conditionally specified Gaussian
Markov Random Field (MRF) with first-order spatial dependence, i.e.:

 � � ���  � � ��� � "��  �
	 ��� �  �	 ���� �  " 	 ��� �  " 	 ���� �
������� �  � 	 ��� �  �� 	 ���� �  � 	 ��� �  � 	 ���� � ��� ���� � � � ��� � � � � � �	� � (3)

 � � is the grid point specific MRF mean, � � " and ����� are respectively north-south
and east-west MRF spatial dependence parameters, and

� �� is the homogeneous MRF
variance.  � � is modeled as having a quadratic form, hopefully describing the diag-
onal feature we see summarized in the two top left plots of Figure

�
. Hence, we let� �

and � � denote longitude and latitude corresponding to the grid point � and assume:

 � � �! � � � � �  � � � � � � �  � � � � � � �  � � � � � � � � � �  � ��� � � � � � � �  � �  � � � � � � (4)� � �&� � � � � � ��� �
A space-time dynamic term can be modeled as a “nearest neighbor” vector autore-

gressive (VAR) model:


 �� #  ��� � 
 �� #  �"!�� � � 
 �	 ���� #  �"! � � � 
 � 	 ���� #  �"! � � " 
 " 	 ���� #  �"! � � � 
 � 	 ���� #  �"! � �
 �"�#  �� � ��� � � � � � ����� � � ��� � � � � � ��� � (5)

which is a form of the STARMA models described by Cressie (
����� � ). The autoregres-

sive parameter for the grid cell under consideration, � � , is allowed to vary spatially, but
the nearest neighbor parameters � � , � " , � � and � � are not. We imagine that the latter
parameters have interpretations attached to the underlying earthquake dynamics. In
addition we can add a grid point dependent, but time-independent, incremental growth
term, # � , since different grid cells could have different growth potentials. For instance,
a grid cell covering a region along a fault would be expected to have a higher growth
potential than one in an area far from any fault. Within this space-time dynamic term
we also wish to take into account a build-up during a period of earthquakes below ��# ,
and smaller earthquakes above ��# , and let the term drop when a major earthquake
appears and tension is released. This adjustment is linked to the linear transformation� � 
 �� #  �"!�� # � of the term at the previous time period at the same grid cell. This leads to:


'�� #  � � � ��
'�� #  �"! � # � �%$ �'& 	)(+*,.-0/ �'1 �.243 	5(+*,6-0/47 1 �
� � � 
 �	 ���� #  �"! � � � 
 � 	 ���� #  �"! � � " 
 " 	 ���� #  �"! � � � 
 � 	 ���� #  �"! � �
 �"$#  �� � �&� � � � � � ����� � � �&� � � � � � ��� �

(6)

where we set $ �'& 	)( *8 �'1 � 2 3 	)( *8 7 1 � � �
. This term can then be interpreted as a com-

bined short time term and strain term, where we intend to model the features of both
these contributions. (Originally, we modeled these two features in two separate terms,
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a short time term and a strain term, but we ran into identifiability problems.) The �
parameter regulates the reduction in the strain according to the earthquake at the pre-
vious time period at the same grid cell. We decided on a threshold of ��# in the strain
build up part, i.e. there is only a reduction in the strain if the earthquake at the previ-
ous period was greater than � M. The reason for this is that earthquakes below ��# are
not causing any damage. We have also tried thresholds of ��# and ��# and the main
conclusions remain the same.

� � is modeled completely parallel to  � . Hence,

� � ��� � � � � � � � ""� � �	 ��� � � �	 ���� � � " 	 ��� � � " 	 ���� �
(7)

� � ��� � � � 	 ��� � � � 	 ���� � � � 	 ��� � � � 	 ���� � ��� ���� � � � ��� � � � � � ��� �
where � � � is the grid point specific MRF mean modeled as having a spatial trend:

� � � ��� � � � � � � � � � � � � � � � � � � � � � � � �&� � � � � � ��� � (8)

# � is also modeled completely parallel to  � :
# � � ��� # �� ��� � "�� # �
	 ��� � # �
	 ���� � # " 	 ��� � # " 	 ���� �

(9)

��� ��� � # � 	 ��� � # � 	 ���� � # � 	 ��� � # � 	 ���� � ��� �� � � � � ��� � � � � � ��� �
where # �� is the grid point specific MRF mean modeled completely parallel to � � � .
All prior distributions are assumed to be independent and given as follows. We let
� � ���	� � �
� ���& � , where

� � and
� ���& are fixed parameters that must be specified. Similarly,
'�"�# � � ��� �
��"$# � �
� ���� *�� 8 � . Without constraints we assume � � " � ����� � � " ��������� � � and corre-

spondingly for � ��� , � � " , � ��� , � � " and ����� . However, to ensure positive definiteness
of the marginal covariance matrices, as in Wikle et al. (1998), we must constrain these
parameters. Details are given in the appendix. For the trend coefficients we assume
that:

 � ��� � � ����� � ��� � ���� �� 8 ��� � � � � � ��� � � � �� � � ��� � � � ��� � � ��� � ������� 8 ��� � � � � � ��� � � � � �
# � ��� � � � � �# � ��� � ������� 8 ��� � � � � � �&� � � � � � �

(10)

while � � � ����� � � ��� � ��
� � and similarly for the other nearest neighbor autoregressive
parameters � � , � " and � � . For the noise terms we use inverse gamma conjugate priors,
i.e.

� � �( ����� ������ 2 �� � �! � 2 �� � with corresponding distributions for
� ��� ,

� ��� � ,
� �� ,

� �� and
� �� .

We now specify the different model alternatives:

Model Alternative 1:
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By setting the second term on the right hand side in ( � ) equal to zero we get a
system equation containing only a time independent, conditionally specified Gaussian
MRF,  � , in addition to a noise term.

Model Alternative 2:

Here we extend model alternative
�

to also include the short time term (
�
).

Model Alternative 3:

Here we extend model alternative � by just setting # � equal to 0 in (
 
). We then

get a time dependent term with a spatial description where the magnitude of the earth-
quake at the previous time period at the same grid cell is taken into account.

Hence, model alternative
�

is nested within model alternative � , which is again
nested within model alternative � . Finally, the latter is nested within the main model.

4 RESULTS AND DISCUSSIONS

We start out with vague priors on the parameters when considering the first period������� � �������
. For the second period

����� � � April
�������

we use the estimated poste-
rior values from the first period, since these are then our best prior guesses. We use
the MCMC simulation technique Gibbs sampling, which requires the full conditional
distributions for all parameters involved. Because we use Gaussian distributions with
conjugate priors the derivation of the full conditional distributions are fairly straight-
forward, except for the � � " , � ��� , � � " , � ��� , � � " , ����� and � parameters. For all
these parameters we employ a Metropolis-Hastings step in the Gibbs sampler. See the
appendix for details. In order to hopefully achieve convergence of the Markov Chain
we take 50 000 iterations as the burn in iterations. We then run the chain another 150
000 iterations. Since MCMC samples are correlated we only use every 1000th sample
from the Markov Chain to arrive at posterior estimates and for predictions. This gives
averages of 150 simulated values as our predictions. For most of the parameters the
convergence seems fairly satisfactory. Different starting values on the parameters have
been tried. Most of the parameters do not seem to be very sensitive to these.
We compared the predicted values with the observed ones by computing the root mean
residual sum of squares ( � #&% ):

� # % � � �
%

"�
��� !

�����	��
� * ��������� * � � � /2 �����	��
�� * � �
�

�� �
� !

���	��
�� *  � � (11)

where
� � ��� � and runs through every 1000th simulated prediction.

This measure based on averages does not take into account the uncertainty in the pre-
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dictions. An alternative that reflects this uncertainty is:

� #&%�� � � �
%

"�
��� !

�
�

�� �
� !
� ���	��
�� *  � ��������� * � � � /2 � (12)

1981-1992 1993-1999
model � #&% ! � # % � � #&% �! � #&% �� � #&% ! � #&% � � #&% �! � # % ��
1 1.019 1.477 1.151 1.569 0.838 1.056 0.986 1.177
2 1.017 1.449 1.122 1.522 0.889 1.044 1.028 1.159
3 1.000 1.424 1.110 1.501 0.875 1.033 1.008 1.146� � � � ����� $�� 1.001 1.442 1.119 1.518 0.869 1.051 0.998 1.154

Table 1: Root mean residual sums of squares for the first prediction period, � # % !
and � #&% �! , and � # % � and � #&% �� for the second, both for

������� � ����� � and for����� � � ������
.

The prediction results are presented in Table
�
. We start by commenting on these

based on the years
������ � ����� � . We see for all four model alternatives that the � #&% !

value is close to
�

and the � #&% � value somewhat above
� ��� . This difference is due

to the extra uncertainty associated with predicting an additional period ahead, but also
to the Landers earthquake and some other large earthquakes in nearby grid cells in
the second period. We see that the third model alternative has the lowest � #&% for
both periods, the main model being the second best. From this it seems reasonable
to conclude that the inclusion of the # � term in the main model does not improve the
predictions, but rather increases the uncertainty in the modeling. This estimate is for
almost all grid cells between � and

�
, but due to large standard deviations not signifi-

cantly different from � . For the main model the estimate of � is ��� � � ��� , having ��� � � � �
as standard deviation. This may reflect a small � value not giving much reduction in
the strain when large earthquakes occur. The strain build-up process is not captured too
well by this model, and because it contains more parameters than the other alternatives
there is only increased uncertainty, and one might just as well use a simpler model.
The overall differences in � #&% values between the first model (worst) and the third
one (best) are not very large, implying that most of the earthquake dynamics is ex-
plained through the spatial structure. We also see that it is sensible to include the data
from the previous period in the same grid cell. In the third model � was estimated to
be ��� �  �� � . This gives $ � �

� 	�
� 1 � 	�� �'1 � 2 � ��� �  �� � and $ � �
� 	�
� 1 � 	 � �'1 � 2 � ��� ��  �� . Hence,

approximately we will have a factor � � � ��� � � to be multiplied by

(�"�#  �"! if we had an

earthquake of magnitude � in the previous period, i.e. a significant amount of tension
is then released, and � � � ��� � � if we had an earthquake of magnitude

�
in the previous

period. Considering the � # % � values, the conclusions on the ranking of the models
remain the same.
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We next comment on the prediction results based on the years
����� � � �������

. For these
predictions the � # % ! values are somewhat above ��� � and the � #&% � values just above�
. A reason for this difference is of course the Hector Mine earthquake in the second

period. We see that the � #&% ! value for the first model is the smallest. For the second
prediction period the third model alternative has the smallest � #&% � value. Consid-
ering the � #&% � values, again the conclusions on the ranking of the models remain
the same. For the main model we now also get a small estimate of � , ��� � ��� � , having
��� � �� � as standard deviation, again indicating that this model alternative is not work-
ing the way intended. For the third model alternative we get a � of ��� ����� , giving
$ � �

� �����
 �
	�� �'1 � 2 � ��������� � for an earthquake of magnitude � in the previous period, and

$ � �
� �����
 �

	 � �'1 � 2 � ����� ��� � for an earthquake of magnitude
�

in the previous period.
The � #&% � and � # % �� values presented in Table

�
are based on predictions made two

periods ahead. If one instead made predictions for the periods respectively containing
the Landers and Hector Mine earthquake only one period ahead, one would expect bet-
ter predictions. Doing this for the third model, � #&% =

� ���  � and � #&% � =
� ��� � � for

the period containing the Landers earthquake and � #&% =
� ������ and � #&% � =

� � � �  
for the period containing the Hector Mine earthquake. There is a better prediction im-
provement for the period containing the Landers earthquake. The reason for this is that
in the period prior to the Landers earthquake there are greater signs of increased earth-
quake activity than in the period prior to the Hector Mine earthquake. This change is
captured by our model.
For the third model alternative for the period

������ � �������
, we see by comparing the

top left plots in Figures
�

and � that the  � term basically captures the spatial structure
in the data for this period well. A plot of  � � displays similar results. � � enters the
model through the combined short time and strain term. In the top right plot in Figure
� we see how this is distributed in our area. The estimate is for most grid cells positive,
but due to large standard deviations mostly not significantly different from � . The two
bottom plots in Figure � show the differences between observed and predicted earth-
quakes for the two prediction periods in

����� � . Also taking Figures � and
�

into account
we conclude that for the small earthquakes the model seems to do satisfactorily, but for
larger earthquakes the predictions are poor. It is clear that the model fails to capture
the larger earthquakes, i.e. the model is too conservative.
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The time−indep term (mu).
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Figure 2: Top left:  � . Top right: � � . Bottom left(right): differences between observed
and predicted earthquakes for prediction period

� � ��� for the third model, based on the
years

������� � ����� � . Keep in mind the scales.

When we consider the parameters and predictions based on the years
���� � � April�������

, we see some of the same features. From the top left plot of Figure � we notice
how the  � term now looks different, having positive values in the top right corner of
our area, and by this capturing the change in the spatial structure in the data compared
to the modeling based on the years

�������
-
������

. Again we see from the two bottom
plots in Figure � , also taking Figures

 
and � into account, that the model does well for

the smaller earthquakes, but fails to capture the larger ones. An interesting exception
is the top right corner of the bottom right plot of Figure � covering prediction period
� . Here, from Figure � there are no observed earthquakes, but predictions are as high
as ��� ����� . This is due to larger earthquakes in this area previous to the two prediction
periods.
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The time−indep term (mu).
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Figure 3: Top left:  � . Top right: � � . Bottom left(right): differences between observed
and predicted earthquakes for prediction period

� � ��� for the third model, based on the
years

����� � � �������
. Keep in mind the scales.

As already mentioned the predicted and the observed values are displayed in Fig-
ures � ��� �� and � . For all the largest earthquakes in each of the prediction periods
we see that our model clearly underpredicts the earthquakes. The highest prediction
is ���  �� � . Considering the cells where the Landers earthquake and the Hector Mine
earthquake occurred, we see that the predictions are higher in some of the neighbor
cells. The reason for this is that in periods prior to the two prediction periods there
were larger earthquakes in the neighbor cells.
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Figure 4: Comparison of predicted (above right) and observed (below left) earthquakes
for prediction period 1 for the third model, based on the years 1981-1992.
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Figure 5: Comparison of predicted (above right) and observed (below left) earthquakes
for prediction period 2 for the third model, based on the years 1981-1992.
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Figure 6: Comparison of predicted (above right) and observed (below left) earthquakes
for prediction period 1 for the third model, based on the years 1993-1999.
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Figure 7: Comparison of predicted (above right) and observed (below left) earthquakes
for prediction period 2 for the third model, based on the years 1993-1999.

Table � displays the prior and posterior means and standard deviations for the third
model alternative for both runs. The first column presents the prior values for the
parameters for the first period. The second column displays the posterior means and
standard deviations after the first run covering the years

������
through

�������
. These
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posterior estimates are then used as prior estimates for the second run for the years����� � until April
������

. Finally, in the third column are the posterior estimates from the
second run displayed.
Having little prior knowledge on the mean  � � of the time independent contribution  � ,
we assume prior to the first run that the first coefficient  � � � � has a mean of

�
and the

other coefficients to have a mean of � , all with the same variance � . We see that for
both runs we obtain about the same posterior mean estimates,  � � � � being close to

�
and the others small, but negative. We also notice that several of the parameters are
not significantly different from � . We must keep in mind that the explanatory vari-
ables, longitude and latitude, in ( � ), enter the equation in their original form, i.e. the
longitude has large negative values and the latitude has positive values. Therefore it
is natural that these parameter estimates,  � � � � -  � �  � , are small. We see much of the
same features for the � � � � � - � � � � � parameters, except that the � � � � � parameter has an
estimated mean much lower for the second period than the first, resulting in somewhat
smaller � � values for many of the grid cells in the second run. This can be seen in
Figures � and � .
For � � we see that the spatial dependencies parameters, � � " and � ��� , seem to be
equally important. From the estimates of the spatial dependencies parameters in the
time independent  � term, � � " and ����� , we see that the � � " parameter is estimated
to be larger than � ��� . This implies a stronger north - south influence on the spatial
variability of the  � process, as expected. The posterior estimates of the nearest neigh-
bor autoregressive parameters � � , � � , � " and � � change a bit from the first run to the
second, but are mostly, somewhat surprisingly, not significantly different from � .
The � parameter increases from the first to the second run. As already mentioned,
in the first run � was estimated to have a mean of ��� �  �� � , while in the second run it
has increased to ��� ����� . We also notice that the estimated standard deviations for �
are large. Anyway, we think that the establishing of these estimates, with their cor-
responding tension release interpretations, is the most interesting contribution of the
present paper. Looking at the variances, we see that they all have a lower posterior
mean and standard deviation then assumed prior to

�������
. We also notice that the pos-

terior estimates of the variances do not change much from the first to the second run,
except for

� �� . It is interesting to notice that all the variances have a fairly low posterior
mean and standard deviation. In addition to the contribution from the � parameter, this
might explain why the model fails to capture the larger earthquakes. There seems not
to be enough variation to allow for such big jumps in earthquake predictions.
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Par. pri. mean (sd) MCMC post. mean (sd) for
������� � �������

MCMC post. mean (sd)
for

������� � ������
and pri. mean (sd) for

����� � � April
�������

for
����� � � April

������
 � � � � 1(1.4142) 1.0159 (1.0228) 0.9650 (0.9878) � � � � 0(1.4142) -0.3068 (0.4533) -0.4459 (0.3240) � � � � 0(1.4142) -0.2940 (1.5173) -0.3711 (1.0618) � � � � 0(1.4142) -0.0247 (0.0066) -0.0137 (0.0057) � � � � 0(1.4142) -0.2625 (0.0681) -0.1141 ( 0.0598) � �  � 0(1.4142) -0.1551 (0.0404) -0.0706 ( 0.0355)� � � � � 1(1.4142) 1.0111 (1.0196) 0.1236 (0.4355)� � � � � 0(1.4142) 0.0161 (0.0223) 0.0079 (0.0197)� � � � � 0(1.4142) 0.0278 (0.0713) 0.0265 (0.0677)� � " 0.2(0.5) 0.1097 (0.0716) 0.0774 (0.0608)� ��� 0.2(0.5) 0.0911 (0.0602) 0.0821 (0.06349� � " 0.2(0.5) 0.3899 (0.0468) 0.4221 (0.0421)����� 0.2(0.5) 0.0754 (0.0463) 0.0579 (0.0386)� � 0.2(0.5) -0.0436 (0.0385) 0.0440 (0.0554)� � 0.2(0.5) 0.0269 (0.0381) 0.0507 (0.0564)� " 0.2(0.5) 0.0513 (0.0432) 0.0395 (0.0525)� � 0.2(0.5) 0.0107 (0.0363) 0.0870 (0.0467)
� 0.05(0.3162) 0.7653 (0.2415) 0.9886 (0.5123)���� 1(0.1428) 0.5895 (0.0642) 0.4641 (0.0387)� �� 1(0.1428) 0.6951 (0.0740) 0.6116 (0.0567)����� � 0.5(0.0.0721) 0.2754 (0.0240) 0.2609 (0.0070)����� 0.5(0.5477) 0.1865 (0.0332) 0.1812 (0.0060)��� �( 0.3(0.0490) 0.2548 (0.0320) 0.2437 (0.0056)

Table 2: Prior and posterior estimates for the third model.

5 CONCLUSIONS AND FINAL REMARKS

We have in this study applied Bayesian hierarchical models to study the development
of earthquakes in space and time, and to make short time predictions. We have con-
cluded that most of the earthquake dynamics is explained through the spatial structure.
In periods with little change in earthquake intensity a model containing only a spatial
Gaussian Markov random field in addition to a noise term (the first model alternative)
seems to describe the development of earthquakes almost as well as a more complex
time dynamic model. But when there is a change in earthquake intensity from one pe-
riod to another a more complex model, containing a time dependent term with a spatial
description where the magnitude of the earthquake at the previous time period at the
same grid cell is taken into account (the third model alternative), is preferable. Geo-
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physicists and other scientists doing research on earthquakes should find our approach
interesting, and by including their expert knowledge this path to modeling should give
increased insight in the space-time interaction structure of earthquake occurrences and
hopefully a step in the direction of improved predictions.

APPENDIX: DERIVATION OF THE FULL CONDITIONAL
DISTRIBUTIONS

With generic notation, let
�� �

be an
� � �

vector of the random quantities
� �

, � �
��� � � � � � ��� . We present the full conditional distributions for the main model, the ones
for the three alternatives are just special cases.

1.
� �� 
 ���� � � � ��� � � � �	�
� �� 
 ���� ��� � � �# �� �� 
  ��� � �( � �

�� 
 �� ��  � �� 
 "�#  ��� ��� �
� $ �	� � � !� � !� 2 �� �

� �
#  � �� 
  ��
 �

� �
#  � �� 
  � � �

� $ �	� � � !� � !� 2� �
�� 
  � � ��  �

�� 
 "�#  �	� 
 �
�� 
  � � ��  �

�� 
 "$#  ��� � �

� $ �	� � � !� � � �� 
 
 � !� 2 �� � !� 2� �
�� 
  � � �

�� 
 
 � !� 2 ��
� �
#  � !� � �

��  �
�� 
 "$#  ��� � �

This gives

� �� 
 ���� � � ��� �� 
  ��� �� � , � ,
where

� �� � , � � !� 2 �� � !� 2� �
�"! �

and

�� 
  � � �� � , � !� 2 ��
� �
#  � !� 2� �

��  �
�� 
 "$#  ���

2. Let diag
� �� � � be the

� � �
matrix with

�� � on the main diagonal, " & the
� � �

matrix with $ �'& 	5( *,6-0/ �'1 � 2 3 	)( *,6- / 7 1 �
, � � �&� � � � � on the main diagonal and �

�
the� � �

matrix with zeros on the main diagonal and � � , � " , � � and � � on the
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proper four off-diagonals.

� �� 
 "�# �� � � � � ��� � � � ��� � �

� �� 
 "�# �� � � �� �� 
 �� ��  � �� 
 "$#  ��� � �� � �
�� 
 "�# ���! � �� 
 "�#  � �� � � �� # � � � � � " � � � � � � �

� �
#  � � ��� ��� � �

� � �� 
 "�#  � �� 
 "$#  �"! � �� � � �� # � � � � � " � � � � � � �
� �
#  �"! � � ��� ��� � �

� $ �	� � � !� � !� 2� �
�� 
  � � ��  �

�� 
 "$#  ��� 
 �
�� 
  � � ��  �

�� 
 "�#  �	�
� !� 2� �

� �� 
 "�# ���! � � � � ��� � �� � � " & � �
� �
�� 
 "�#  � " &

��
# � 


� �� 
 "$# ���! � � � � ��� � �� � � " & � �
� �
�� 
 "$#  � " &

��
# �

� !� 2� �
� �� 
 "�#  � � � � ��� � �� � � " & �"!�� �

� �
�� 
 "$#  �"! � " & �"!

��
# � 


� �� 
 "$#  � � � � ��� � �� � � " & �"!�� �
� �
�� 
 "�#  �"! � " & �"!

��
# � � �

� $ �	� � � !� � �� 
 
 "�#  � 3� 2� � ��� � � ��� � �� � � " & � �
� � 
 � � � ��� � �� � � " & � �

� � � � � !� 2� � �
�� 
 "�# 

� �
�� 
 
 "�#  �	�

�� 
  � ��  � !� 2� ���� � � ��� � �� � � " & � � 

� �
�� 
 "�# ���! � � � � ��� � �� � � " & � � 


� � " &
��
# � � � � ��� � �� � � " & �"!��

�
� �
�� 
 "$#  �"! � " & �"!

��
# � !� 2� � � �

�

This gives
� �� 
 "�# �� � � � ��� �� 
 "$#  � � �� � �� , � ,
where

� �� � �  , � 3� 2� � �	� � � ��� � �� � � " & � � 

� � � � � ��� � �� � � " & � �

� � � � � !� 2� �
and

�� 
 "�#  � � �� � �� , �	�
�� 
  � ��  � !� 2� � �	� � � ��� � �� � � " & � � 


� �
�� 
 "$# ���!

� � � � ��� � �� � � " & � � 

� � " &

��
# � � � � ��� � �� � � " & �"! � �

� �
�� 
 "�#  �"! � " & �"!

��
# � !� 2� � � .

� �� 
 "�# � ��� �
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Completely parallel we get

� �� 
 "�# � ��� � � ��� �� 
 "$# � � � �� � �  � � ,
where

� �� � �  �

� � � !� 2� �
!� 2� � �

�"!

and

�� 
 "�# � � � �� � �� �

�	� �� 

�
� ��  � !� 2� � �	� � � ��� � �� � � " &

� �"! � �
� �
�� 
 "�# � �"! � " &

� �"!
��
# � !� 2� � � .

� �� 
 "�# � � � �
� �� 
 "�# � � � � � � �� 
 "�# ! � �� 
 "�# � � �� � � �� # � � � � � " � � � � � � �

� �
# � � � ��� ��� � � �

�� 
 "$# � �
�� �
 "$# � � �� � � � "$# � � �

� $ �	� � � !� � !� 2� �
� �� 
 "�# ! � � � � ��� � �� � � " &� � �

� �
�� 
 "�# � � " &� �� # � 


� �� 
 "$# ! � � � � ��� � �� � � " &� � �
� �
�� 
 "�# � � " &� �� # �

� �
�� 
 "$# � �

�� �
 "�# � � 
 � � ��� �
�� � � � "$# � �"!

� �
�� 
 "�# � �

�� �
 "$# � � �

� $ �	� � � !� � �� 
 
 "�# � ��� � � ��� � �� � � " &� � �
� � 
 � � � ��� � �� � � " &� � �

� � !� 2�� � � � � ��� � �� � � � "$# � �"!
���
�� 
 "�# �

� �
�� 
 
 "�# � �	��� � � ��� � �� � � " &� � � 


� �
�� 
 "�# ! � � � � ��� � �� � � " &� � � 


� � " &� �� # � !� 2� � � � � ��� � �� � � � "$# � �"!
�
�� �
 "$# � � � �

This gives, with " &� � � and � � ��� � �� � � " &� � �
� � � � ,

� �� 
 "�# � � � � � ��� �� 
 "$# � � � �� � �� 8 � ,
where

� �� � �  8 � � � 
� � � !� 2�� � � � � ��� � �� � � � "$# � �"!
�	� �"!

and

�� 
 "�# � � � �� � �� 8 �	� � 
�
�� 
 "�# ! � � 
�

��
# � !� 2� � � � � ��� � �� � � � "�# � �"!

�
�� �
 "�# � � .
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3.
� �� � ��� � , � �� � � ��� � and

� �� # � � � �

Just as in Wikle et al.
� ������� � we get from ( � ):

�� � � � �� � �� � �� �
� �� � ��

� � � �� ��� �  � � � �  � � � �  � � � �  � � � �  � ��� �  � �  � � 
���  ���
, where � is the

� �  
trend design matrix,

and  ��� � �  � � � �  � � � �  � � � �  � � � �  � � � �  � �  � � 
 is the trend parame-
ter vector. We write using (

� � ) �  ��� ��� ��� � �� � 8 � � � � � ��� � �� � 8 � , where � ���
is the

 � �
vector of the � � ��� � ’s and �� � 8 is a

 �  
diagonal matrix with����� 8�� !	� � ����� 8�� � � � � � � � ����� 8�� 
 � on the main diagonal.

Let 
�� be a symmetric
� � �

matrix where � � " and ����� are each on two of the
four off-diagonals (see Cressie (1993), p. 434). The full conditional distribution
of  ���

is, as in Wikle et al. (1998), given by

�  ��� � � � � � � ��  ��� ��� �� � 8� � ,
where

� �� � 8� � � !� 2� � 
 � � � 
�� � � � �� �"!� 8 � �"!

and

��  ��� � � �5� �� 8� � !� 2� � 
 � � � 
�� � ��  � �� �"!� 8 � ��� � .
The full conditional distributions for

�� � �
and

��
# �

are derived in a similar way.

4.
� ��  ��� �

Parallel to Wikle et al. (1998) we get:

� ��  ��� � � � � ��  � � �� � � ,
where

� �� � � ��� � � 
�� � !� 2� � 3 �� 2� �
�"!

and
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��  � � �� � ��� � � 
�� � �� � !� 2� ��� �  � ! �
�� 
  � �� 
 "$#  � !� 2� � .

5.
� �� � ��� �
Let 
 � be defined parallel to 
 � in terms of � � " and � ��� .

� �� � ��� � � � �� � �
�� � � � � � " � � ��� ������ ��� �  � ! �
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 "�#  � �� 
 "�#  �"! � �� � � �� # � � � � � " � � � � � � � � �#  �"! � � ��� ��� � �
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� $ �	� � � !� � !� 2� � �

�  � ! �
�� 
 "�#  � � � � ��� � �� � � " & �"! � �

� �
�� 
 "�#  �"! � " & �"!

��
# � 


� �� 
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��
# � � �

� $ �	� � � !� � �� � 
 �	� � � 
 � � !� 2� � !� 2� � �
�  � ! � " & �"! � � ��� �

�� 
 "�#  �"! � " & �"! � � ��� �
�� 
 "�#  �"! �	��� �� �

� �
�� � 
 ��� � � 
 � � �� � � !� 2� � !� 2� � �

�  � ! " & �"! � � ��� �
�� 
 "�#  �"! � �

�� 
 "�#  � �
� �� 
 "$#  �"! � " & �"!

��
# �	� � �

This gives

� �� � ��� � � � � �� � � � �� � � ,
where

� �� � � ��� � � 
 � � !� 2� � !� 2� � �
�  � ! " & �"! � � ��� �

�� 
 "$#  �"! � " & �"! � � ��� �
�� 
 "�#  �"! �	� �"!

and

�� � � � �� � ��� � � 
 � � �� � � !� 2�
��� �  � ! � " & �"! � � ��� �

�� 
 "�#  �"! � �
�� 
 "$#  � �

� �� 
 "�#  �"! � " & �"!
��
# ��� !� 2� � � .

6.
� �� # ��� �
Let 
 �

be defined parallel to 
 � in terms of � � " and � ��� .� �� # ��� � � � �� # �
��
# � � � � " � � ��� ������ ��� �  � ! �

�� 
 "$# �� �� 
 "$#  �"! � �� � � �� # � � � � � " � � � � � � � � �#  �"! � � ��� ��� � �
� $ �	� � � !� � !� 2� �

��
# � ��

# � � 
 � � � 
 � � � �� # � ��
# � � � �

� $ �	� � � !� � !� 2� � �
�  � ! �

�� 
 "�#  � � � � ��� � �� � � " & �"! � �
� �
�� 
 "�#  �"! � " & �"!
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� �� 
 "$#  � � � � ��� � �� � � " & �"!�� �
� �
�� 
 "�#  �"! � " & �"!

��
# � � �

� $ �	� � � !� � �� # 
 �	� � � 
 � � !� 2� � !� 2� � �
�  � ! " & �"! " & �"! �

��
#

� �
��
# 
 ��� � � 
 � � �� # � !� 2� � !� 2� � �

�  � ! " & �"! �
�� 
 "�#  � � � � ��� � �� � � " & �"!�� �

� �
�� 
 "�#  �"! �	� � � .

This gives

� �� # ��� � � � ��� �� # � � �� � �
where,

� �� � � ��� � � 
 � � !� 2� � !� 2� � �
�  � ! " & �"! " & �"! � �"!

and

��
# � � �� � ��� � � 
 � � �� # � !� 2� � !� 2� � �

�  � ! " & �"! �
�� 
 "$#  � � � � ��� � �� � � " & �"!$� �

� �
�� 
 "$#  �"! ��� .

7.
� � � ��� �
Parallel to Wikle et al. (1998) let �

� � � be the �
�

matrix with the diagonal cor-

responding to the � � coefficient replaced by zeros, and
�� 
 � �"$#  �"! ��� � �

�� 
 "�#  �"! ,
where � � � is the

� � �
matrix with ones along the diagonal corresponding to

the � � coefficient in �
�
, and with zeros elsewhere.

� � � ��� � � � �  � ! �
�� 
 "�# �� �� 
 "�#  �"! � �� � � �� # � � � � � " � � � � � � �

� �
#  �"! � � ������� � � � � � ���� � �
� ������'�

� $ �	� � � !� � !� 2� � �
�  � ! �

�� 
 "�#  � � � � ��� � �� � � " & �"!�� �
� � � �

�� 
 "�#  �"! � � � �� 
 � �"$#  �"! �
" & �"!

��
# � 
 �

�� 
 "�#  � � � � ��� � �� � � " & �"!�� �
� � � �

�� 
 "�#  �"! � � � �� 
 � �"$#  �"! � " & �"!
��
# � � �� $ �	� � � !� !

� � 2� � � � � � � ��� � � �

This gives

� � � ��� � � � � � � ��� �� � �
where
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� ���� � � � �  � !
�� 
 � �"�#  �"! 


�� 
 � �"�#  �"! !� 2� � �
!
�� 2� � � �"!

and

� � � ����
� � � �  � !
�� 
 �
�"$#  �"! 
 �

�� 
 "�#  � � � � ��� � �� � � " & �"! � �
� �
� �

�� 
 "�#  �"! � " & �"!
��
# � !� 2� � �� � �

�� 2� � � �
Distributions for � � � � � and � " are obtained in the same way.

8.
� � � " � � � and

� ����� ��� � ,
As opposed to Wikle et al. (1998) we start out considering the full joint condi-
tional distribution of � � " and ����� .

� � � " � ����� ��� � � � ��  �
��  � � � � " � ����� ��� �� � � � � " � � � � " �
� � �� � � � � ����� � � ����� ��� � �� ��� �

�
!� 	 3 ����� � - / � /
	 2 $ �	� � � !� � 2� � � ��  � ��  � � 
 � � � 
�� � � ��  � ��  � � � �� $ �	� � � !� � � 2� � � � � � " � � � � " � � � � $ �	� � � !� �� 2� ��� � ����� � � ����� � � �

Remember that � � " and ����� are each on two of the four off-diagonals of 
 � . To
ensure positive definiteness of the matrix

� � � 
 � � we have the constraints that
both � � " and ����� are positive and that � � " � ������� ��� � � see Besag and Kooper-
berg (1995). The presence of � � " and ����� in the determinant term makes this a
difficult distribution to sample from. We employ a Metropolis-Hastings step in
the Gibbs sampling with a proposal distribution for � � " given as in Wikle et al.
(1998) by

� � � "����������� ��� � � � � ��� �
���� �� " ��� �� ����������� � � ,
where���� ����������� � � � ������ ! �  �
	 ��� �  �
	 ���� �  " 	 ��� �  " 	 ���� � � !� 2� � !

� � 2� � � � �"!

and

� � � 
���� �� " � ���� ����������� �
� � ���� ! �  �
	 ��� �  �	 ���� �  " 	 ��� �  " 	 ���� �

� �  � �  � � � ����� �  � 	 ��� �  � 	 ���� �  � 	 ��� �  � 	 ���� ��� !� 2� �
� � � �� � 2� � � � .

The proposal distribution for � ��� is analogous. We then sample from
� � � " ���������� � � �

and
� � ��� ���������� � � � . If either of the drawn samples is less than 0 and/or if their sum
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is greater than ��� � both the drawn samples are rejected, since they are not valid
proposals. If not, a Metropolis-Hastings step is performed to decide if the valid
proposals are to be accepted or rejected. We consider the full constrained joint
conditional distribution as target distribution. An advantage of our approach is
that the determinant only has to be computed once in each iteration.

Distributions for
� � � " � � ��� � and

� � � " � � ��� � are obtained in the same way.

9.
� � � � �
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We see that � enters the equation above on the right hand side through " & �"! ,
and we employ a Metropolis-Hastings step in the Gibbs Sampling with proposal
distribution �

� � � � chosen to be a Normal distribution with expectation equal to
the � value at the previous Gibbs step and variance equal to ��� � � . But other dis-
tributions are possible, for instance a beta distribution.

Parallel to Wikle et al. (1998) we get:

10.
� ����� ��� �
� � ��� � � � � � � � � � � � � �� � 2� � � �
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11.
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12.
� ���� ��� �
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Distributions for

� �� and
���� are completely similar.

13.
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