ESTIMATING THE IMPACT OF CURRENT FARM DAM DEVELOPMENT ON THE SURFACE WATER RESOURCES OF THE ONKAPARINGA RIVER CATCHMENT

> DWLBC Report 2002/22

The Department of Water, Land and Biodiversity Conservation

Estimating the Impact of Current Farm Dams Development on the Surface Water Resources of the Onkaparinga River Catchment

Kim S Teoh

Surface Water Group, Knowledge and Information Division Department of Water, Land and Biodiversity Conservation

October 2003

Report DWLBC 2002/22

In collaboration with The Onkaparinga Catchment Water Management Board and SA Water Corporation

Knowledge and Information Division

Department of Water, Land and Biodiversity Conservation Level 11, 25 Grenfell Street, Adelaide GPO Box 2834, Adelaide SA 5001 Telephone <u>National</u> (08) 8226 0222 International +61 8 8226 0222 Fax <u>National</u> (08) 8463 3146 International +61 8 8463 3146 Website www.dwlbc.sa.gov.au

Disclaimer

Department for Water Land and Biodiversity Conservation and its employees do not warrant or make any representation regarding the use, or results of the use, of the information contained herein as regards to its correctness, accuracy, reliability, currency or otherwise. The Department for Water Land and Biodiversity Conservation and its employees expressly disclaims all liability or responsibility to any person using the information or advice.

© Department for Water Land and Biodiversity Conservation 2002

This work is copyright. Apart from any use as permitted under the *Copyright Act 1968* (Cwlth), no part may be reproduced by any process without prior written permission from the Department for Water Land and Biodiversity Conservation. Requests and inquiries concerning reproduction and rights should be addressed to the Director, Knowledge and Information Division, Department for Water Land and Biodiversity Conservation, GPO Box 2834, Adelaide SA 5001.

ISBN 0 9751462 6 2

Teoh, K.S., 2002. Estimating the Impact of Current Farm Dams Development on the Surface Water Resources of the Onkaparinga River Catchment. *South Australia. Department of Water, Land and Biodiversity Conservation. Report*, DWR 2002/22.

Cover.

FOREWORD

South Australia's natural resources are fundamental to the economic and social wellbeing of the State. One of the State's most precious natural resources, water is a basic requirement of all living organisms and is one of the essential elements ensuring biological diversity of life at all levels. In pristine or undeveloped situations, the condition of water resources reflects the equilibrium between rainfall, vegetation and other physical parameters.

Development of these resources changes the natural balance and may cause degradation. If degradation is small, and the resource retains its utility, the community may assess these changes as being acceptable. However, significant stress will impact on the ability of a resource to continue to meet the needs of users and the environment. Understanding the cause and effect relationship between the various stresses imposed on the natural resources is paramount to developing effective management strategies.

Reports of investigations into the availability and quality of water supplies throughout the State aim to build upon the existing knowledge base enabling the community to make informed decisions concerning the future management of the natural resources thus ensuring conservation of biological diversity.

This assessment of the impact of current farm dams development on the surface water resources of the Onkaparinga Catchment is intended to contribute to the body of knowledge that will assist the effective management of water resources within the study area.

Bryan Harris A/Director, Knowledge and Information Division Department of Water, Land and Biodiversity Conservation

ACKNOWLEDGEMENT

The writer wishes to thank the Department of Water, Land and Biodiversity Conservation, South Australian Water Corporation and Onkaparinga Catchment Water Management Board for their assistance and comments in preparing this report.

Department of Water, Land and Biodiversity Conservation

Jim Barratt Graham Blair David Cresswell Theresa Heneker Robin Leaney Doug McMurray Bruce Murdoch Edward Pikusa Peter Stace Kumar Savadamuthu Martha Augoustinos Craig Walker **South Australian Water Corporation**

Glyn Ashman

Arthur Bailey

Rob Hughes

Peter Murphy

Onkaparinga Catchment Water Management Board

Steve Gatti

Jill Kerby

CONTENTS

FOREWORD	
ACKNOWLEDGEMENT	IV
CONTENTS	V
EXECUTIVE SUMMARY	11
Key Findings	
Conclusions	
Background	
Aims of the study Study Approach	17
CATCHMENT DESCRIPTION	
HYDROLOGICAL DATA	22
Rainfall	22
Evaporation Streamflow	
WATER HARVESTING AND USE	
Public Water Supplies	
Farm Dams	
Groundwater	
SURFACEWATER MODELLING	
Model Construction	
Calibration	
Modelling Runoff Simulations	54
RESULTS AND DISCUSSIONS	60
Rainfall Runoff Relationship	
Impact of Farm Dams on Individual Catchments (1900-1998)	
Impact of Farm Dams on Natural Flows at Houlgrave Weir	
Impact of Farm Dams at Clarendon Weir Impact of Farm Dams at Clarendon Weir	
Impact of the Water Supply from Mt Bold Reservoir and Clarendon weir	
SUMMARY AND CONCLUSIONS	
Rainfall-runoff relationship	
Farm Dam Development	
Farm Dam Impact on Current Scenario	
Farm Dam Impact on Future Scenarios Estimating the Impact of Current Farm Dam Development on the Surface Water Resources of	90

Opportunities to Enhance Modelling Outputs91
SI UNITS COMMONLY USED WITHIN TEXT
ABBREVIATIONS COMMONLY USED WITHIN TEXT
REFERENCES
APPENDIX A - PROCESSING RAINFALL DATA PROCESSES
APPENDIX B - HYDROLOGICAL MODELLING
Introduction
Catchment data100
Data input to model113
APPENDIX C - MODELLED AND ACTUAL FLOW CALIBRATIONS OF THE
SUBCATCHMENTS
APPENDIX D - TANH CURVES OF GUAGED CATCHMENTS, MODELLED
SUBCATCHMENT YIELDS WITH AND WITHOUT FARM DAMS, REDUCTION IN
ADJUSTED FLOWS OF SUBCATCHMENTS MODELLED WITH FUTURE SCENARIOS128

List of Figures

Figure 1.	Location of Onkaparinga Subcatchments, Reservoirs and Pipeline Systems	20
Figure 2.	Schematic Diagram of Onkaparinga River Catchment	23
Figure 3.	Location of Key Gauging Stations	24
Figure 4.	Location of Rainfall Stations Incorporated in the Model	25
Figure 5.	The Average Annual Rainfall of the 23 Stations	27
Figure 6.	Residual Mass Curve for the 23 Rainfall Stations	27
Figure 7.	Rainfall Isohyet Map for the Catchment	29
Figure 8.	Evaporation Isohyet Map by BoMEvaporation Isohyet Map by BoM	31
Figure 9.	Annual Adjusted ("natural") Flow at Houlgrave Weir	33
Figure 10.	Monthly Median Adjusted ("Natural") Flow at Houlgrave Weir	34
Figure 11.	Schematic Diagram of SA Water Pipeline Systems	37
Figure 12.	1987-1999 Farm Dams Storage Volume in the Onkaparinga River Catchment	39
Figure 13.	Volume Classes of Farm Dam in the Onkaparinga River Catchment	39
Figure 14.	Breakdown of Storages and Volume Classes in 1987, 1996 and 1999	40
Figure 15.	Subcatchment Farm Dam Statistics in 1987, 1996 and 1999	42
Figure 16.	Dam Density (1999 data) for subcatchments of the Onkaparinga River catchment	44
Figure 17.	Rainfall Runoff Relationship for Echunga Gauged Catchment (with and without farm dam development: 1975–1998)	62
Figure 18.	Percentage Catchment Yield Captured by Farm Dams in Subcatchments	
Figure 19.	Seasonal variation in modelled runoff captured by dams in the Onka catchment	
Figure 20.	Annual Catchment Yield at Houlgrave Weir With Farm dams (1900-1998)	
•	-	
Figure 21	Percentage Annual Catchment Yield Captured by Farm Dams Upstream of Houldrave Wei	r
Figure 21.	Percentage Annual Catchment Yield Captured by Farm Dams Upstream of Houlgrave Weir (1960-1998)	
Figure 21. Figure 22.	Percentage Annual Catchment Yield Captured by Farm Dams Upstream of Houlgrave Weil (1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir	75
•	(1960-1998)	75 78
Figure 22.	(1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir	75 78 80
Figure 22. Figure 23.	(1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir Modelled Flow Duration Relationships	75 78 80 81
Figure 22. Figure 23. Figure 24.	(1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir Modelled Flow Duration Relationships Percentage flow reduction at Houlgrave Weir for all cases scenarios	75 78 80 81 88
Figure 22. Figure 23. Figure 24. Figure 25.	 (1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir Modelled Flow Duration Relationships Percentage flow reduction at Houlgrave Weir for all cases scenarios Additional water to be pumped from the River Murray for all cases scenario 	75 78 80 81 88 98
Figure 22. Figure 23. Figure 24. Figure 25. Figure 26.	 (1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir Modelled Flow Duration Relationships Percentage flow reduction at Houlgrave Weir for all cases scenarios Additional water to be pumped from the River Murray for all cases scenario WaterCress Model Nodes 	75 78 80 81 88 98 99
Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27.	 (1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir Modelled Flow Duration Relationships Percentage flow reduction at Houlgrave Weir for all cases scenarios Additional water to be pumped from the River Murray for all cases scenario WaterCress Model Nodes	75 78 80 81 98 99 99
Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28.	 (1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir Modelled Flow Duration Relationships Percentage flow reduction at Houlgrave Weir for all cases scenarios Additional water to be pumped from the River Murray for all cases scenario WaterCress Model Nodes	75 78 80 81 98 98 99 99 99
Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29.	 (1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir Modelled Flow Duration Relationships Percentage flow reduction at Houlgrave Weir for all cases scenarios Additional water to be pumped from the River Murray for all cases scenario WaterCress Model Nodes	75 78 80 81 98 98 99 99 99 111 111
Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30.	 (1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir Modelled Flow Duration Relationships Percentage flow reduction at Houlgrave Weir for all cases scenarios Additional water to be pumped from the River Murray for all cases scenario WaterCress Model Nodes	75 78 80 81 98 98 99 99 111 111 113
Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31.	 (1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir Modelled Flow Duration Relationships Percentage flow reduction at Houlgrave Weir for all cases scenarios Additional water to be pumped from the River Murray for all cases scenario WaterCress Model Nodes	75 78 80 81 98 99 99 99 99 111 111 113 118
Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32.	 (1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir Modelled Flow Duration Relationships Percentage flow reduction at Houlgrave Weir for all cases scenarios Additional water to be pumped from the River Murray for all cases scenario WaterCress Model Nodes	75 78 80 81 98 98 99 99 99 111 111 113 118 119
Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33.	 (1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir Modelled Flow Duration Relationships Percentage flow reduction at Houlgrave Weir for all cases scenarios Additional water to be pumped from the River Murray for all cases scenario WaterCress Model Nodes	75 78 80 81 98 99 99 99 99 111 111 113 118 119 120
Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34.	 (1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir Modelled Flow Duration Relationships Percentage flow reduction at Houlgrave Weir for all cases scenarios Additional water to be pumped from the River Murray for all cases scenario WaterCress Model Nodes	75 78 80 81 98 98 99 99 99 111 111 113 118 119 120 121
Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35.	(1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir Modelled Flow Duration Relationships Percentage flow reduction at Houlgrave Weir for all cases scenarios Additional water to be pumped from the River Murray for all cases scenario WaterCress Model Nodes 3 Bucket Rainfall-Runoff Processes WaterCress WC-1 Runoff Model Subcatchments Location for the Hydrological Model A Schematic Diagram of the Hydrological Model Catchment Nodes Townships in the Onkaparinga River Catchment Modelled and actual flow calibrations of Aldgate creek catchment Modelled and actual flow calibrations of Bakers Gully catchment Modelled and actual flow calibrations of Cox creek catchment	75 78 80 81 98 99 99 99 99 111 111 113 118 119 120 121 122
Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36.	 (1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir Modelled Flow Duration Relationships Percentage flow reduction at Houlgrave Weir for all cases scenarios Additional water to be pumped from the River Murray for all cases scenario WaterCress Model Nodes	75 78 80 81 98 99 99 99 99 111 111 113 118 119 120 121 123
Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37.	 (1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir Modelled Flow Duration Relationships	75 78 80 81 98 99 99 99 111 111 113 118 118 120 121 122 123 124
Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38.	 (1960-1998) Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir Modelled Flow Duration Relationships Percentage flow reduction at Houlgrave Weir for all cases scenarios Additional water to be pumped from the River Murray for all cases scenario WaterCress Model Nodes	75 78 80 81 98 99 99 99 99 111 111 113 118 120 121 122 123 124 125

Figure 42.	Tanh curves of rainfall runoff relationship for the gauged catchments12	28
Figure 43.	Reduction in adjusted flows of Aldgate subcatchment modelled with future scenarios and varying dam storage use	40
Figure 44.	Reduction in adjusted flows of Angels Gully subcatchment modelled with future scenarios and varying dam storage use	41
Figure 45.	Reduction in adjusted flows of Bakers Gully subcatchment modelled with future scenarios and varying dam storage use	42
Figure 46.	Reduction in adjusted flows of Balhannah subcatchment modelled with future scenarios and varying dam storage use	43
Figure 47.	Reduction in adjusted flows of Biggs Flat subcatchment modelled with future scenarios and varying dam storage	44
Figure 48.	Reduction in adjusted flows of Charleston subcatchment modelled with future scenarios and varying dam storage	45
Figure 49.	Reduction in adjusted flows of Cox Creek subcatchment modelled with future scenarios and varying dam storage	46
Figure 50.	Reduction in adjusted flows of Echunga subcatchment modelled with future scenarios and varying dam storage	47
Figure 51.	Reduction in adjusted flows of Hahndorf subcatchment modelled with future scenarios and varying dam storage	48
Figure 52.	Reduction in adjusted flows of Inverbrackie subcatchment modelled with future scenarios and varying dam storage	49
Figure 53.	Reduction in adjusted flows of Lenswood subcatchment modelled with future scenarios and varying dam storage	
Figure 54.	Reduction in adjusted flows of Mitchell subcatchment modelled with future scenarios and varying dam storage	51
Figure 55.	Reduction in adjusted flows of Scott Creek subcatchment modelled with future scenarios and varying dam storage	
Figure 56.	Reduction in adjusted flows of Western Branch subcatchment modelled with future scenarios and varying dam storage	

List of Tables

Table 1.	Rainfall Stations for the Onkaparinga River Catchment	26
Table 2.	R ² value of test station Dmass curve	28
Table 3.	The location of evaporation stations	30
Table 4.	The Location of Gauging Stations for Streamflows	32
Table 5.	Gauged Catchment Flow Records	32
Table 6.	Water Pumped from the River Murray into the Mt Bold Reservoir	36
Table 7.	Farm Dam Developments in 1987, 1996 and 1999	38
Table 8.	The Number of Farm Dams and Storages for Various Volume Sizes	38
Table 9.	Landuse Information for the Onkaparinga River Catchment (1999 data)	46
Table 10.	"Global Application" Factors for Irrigation"Global Application" Factors for Irrigation	47
Table 11.	Irrigation Statistics for the Onkaparinga River Catchment (1999 data)	47
Table 12.	The Location of Calibrated Gauged Catchments	50
Table 13.	The Statistics of the Calibrations for the Gauged Catchments	52
Table 14.	Aggregated Dam Storage for Different Scenarios	58
Table 15.	Factors for the Tanh Curve Equations	61
Table 16.	Mean Gauged and Mean Adjusted Gauged Flow	61
Table 17.	The Impact of Farm Dams on Median Catchment Yield (1900-1998)	63
Table 18.	The Impact of Farm Dams on Catchment Yield During the Defined Dry Period (1912-1914)	63
Table 19.	The Impact of Farm Dams on Catchment Yield During the Defined Wet Period (1915-1917).	64
Table 20.	Runoff Coefficients	67
Table 21.	Subcatchments Percentage Flow Reduction in a Median Year	69
Table 22.	Subcatchments Percentage Flow Reduction in a Dry Period Dry Period 1912-1914 All value	es
	are mean flow	70
Table 23.	Subcatchments Percentage Flow Reduction in a Wet Period WET Period 1915-1917 All values as mean flow	71
Table 24.	The Impact of Farm Dams on Houlgrave Catchment Yield	72
Table 25.	Modelled Monthly Flows (ML) with and without Farm Dams at Houlgrave Weir	76
Table 26.	The Number of Days Specified Flow Impacted by Farm Dams of Houlgrave Catchment	79
Table 27.	The Impact of Farm Dams on Clarendon Catchment Yield	82
Table 28.	Modelling Scenarios of Inflows into Mount Bold Reservoir and Clarendon Weir – Irrigation Usage = 0.3 of Dam Storage	84
Table 29.	Modelling Scenarios of Inflows into Mount Bold Reservoir and Clarendon Weir – Irrigation Usage = 0.5 of Dam Storage, 1974–1998	86
Table 30.	Modelling Scenarios of Inflows into Mount Bold Reservoir and Clarendon Weir – Irrigation	
	Usage = 0.7 of Dam Storage	87
Table 31.	The Catchments Area and Numbering Sequence	.101
Table 32.	Town Nodes in the Model	.102
Table 33.	Input Data for the Catchment Hydrological Model	.104
Table 34.	Input Data for the Catchment Hydrological Model (cont)	.108
Table 35.	The Location of Rainfall Stations Incorporated in the Model	.113
Table 36.	The Location of Gauging Stations Incorporated in the Model	
Table 37.	Annual flow at Aldgate Creek with and without farm dams (1900 - 1998)	.131
Table 38.	Annual flow at Angels Gully with and without farm dams (1900 - 1998)	.131
Table 39.	Annual flow at Bakers Gully with and without farm dams (1900 - 1998)	.132
Estimating t	the Impact of Current Farm Dam	

Annual flow at Balhannah catchment with and without farm dams (1900 - 1998)132
Annual flow at Biggs Flat catchment with and without farm dams (1900 - 1998)133
Annual flow at Charleston catchment with and without farm dams (1900 - 1998
Annual flow at Cox Creek with and without farm dams (1900 - 1998
Annual flow at Echunga Creek catchment with and without farm dams (1900 - 1998
Annual flow at Hahndorf catchment with and without farm dams (1900 - 1998)135
Annual flow at Inverbrackie Creek catchment with and without farm dams (1900 - 1998)135
Annual flow at Lenswood catchment with and without farm dams (1900 - 1998
Annual flow at Mitchell Creek catchment with and without farm dams (1900 - 1998)136
Annual flow at Onkaparinga Main Channel catchment with and without farm dams
(1900 - 1998)
Annual flow at Scott Creek catchment with and without farm dams (1900 - 1998)137
Annual flow at Upper Onkaparinga catchment with and without farm dams (1900 - 1998)138
Annual flow at Western Branch catchment with and without farm dams (1900 - 1998)
Annual flow at Clarendon Weir (assuming no Mt Bold Reservoir) with and without farm dams
(1900 - 1998
Annual flow at Houlgrave with and without farm dams (1900 - 1998)

Background

The Mt Lofty Ranges Water Resources Assessment Program is an initiative of the Department of Water, Land and Biodiversity Conservation. The purpose of the Program is to quantify and assess the condition of surface and groundwater resources of the Mt Lofty Ranges Region.

The assessments undertaken within the Program include hydrological modelling, reviews of the surface water monitoring network, the construction of new streamflow gauging stations, and the determination of environmental flows. These assessments are undertaken in partnership with other relevant agencies including catchment water management boards, the Environment Protection Authority, and the South Australian Water Corporation.

This study is one of several comprehensive hydrological assessments of priority catchments in the region. Being the first, it provides an important technical foundation for collated reports assessing the resources across the region. In turn, these collated reports will inform policy decisions that will be made on future management of the natural resources in the region.

Key Findings

The Department of Water, Land and Biodiversity Conservation (DWLBC), in conjunction with the Onkaparinga Catchment Water Management Board (Board) and the South Australian Water Corporation, commissioned this study to examine the impact of farm dam development on the surfacewater resources of the Onkaparinga River catchment.

- A review of the surface water balance of the Onkaparinga catchment was determined,
- The current level of impact on surface water resources by farm dams was determined, and
- Potential future impacts of farm dams were estimated.

The current level of farm dam development is summarised as follows.

- There are 2,700 farm dams in the catchment with an estimated storage capacity of 8.5 GL and a farm dam density of 15 ML/km². Among the 16 major subcatchments, six have farm dam densities greater than 25 ML/km² Mitchell Creek being the highest with 39 ML/km².
- There are only 185 farm dams greater than 10 ML which account for 60% of the aggregated dam storage volume.
- Irrigation water demand of 15-20 GL/yr from surface and groundwater sources serves 5,200ha or 9% of the catchment area.
- Water pumped from the Murray into the Mt Bold reservoir contributes 27 GL/yr on average (1975-1999).

Surface Water Balance and Farm Dam Impacts in the Onkaparinga catchment

Figure 1 (page 20) shows the location of the Onkaparinga catchment, including the location and name of each subcatchment, and the location of SA Water infrastructure, including:

- The Murray Bridge Onkaparinga Pipeline which transfers River Murray water to the Onkaparinga;
- The Mt Bold Reservoir, the inflow of which is measured at Houlgrave Weir; and

• The Clarendon Weir, where the offtake from the Onkaparinga for Adelaide's water supply is located.

A surface water balance was determined for:

- The Onkaparinga catchment upstream of Mt Bold Reservoir;
- The Onkaparinga catchment upstream of Clarendon Weir; and
- Each of the 16 individual subcatchments of the catchment.

A water balance was determined for the long term (99 yr) median¹ condition, as well as the wettest² and driest³ recorded periods, determining the annual 'adjusted'⁴ flow from the catchment. The long term median adjusted flow is the 'surface water resource' of the catchment. The wettest and driest conditions provide insight into the variability of the catchment behaviour.

Effect of Farm Dams on the Mt Bold Reservoir Catchment

For the Mt Bold Reservoir catchment, measured at Houlgrave Weir, the surface water balance is as follows:

Flow Condition	Annual Adjusted Flow at Houlgrave Weir	Flow diverted by farm dams	% flow diverted
Long term median (1900 – 1998)	56.4 GL	4.3 GL	8%
Dry period (1912 – 1914)	26.3 GL	3.0 GL	11%
Wet Period (1915 – 1917)	121.7 GL	3.5 GL	3%

In addition, an average (1975 – 1999) of 27 GL of water is pumped annually into the catchment through the Murray Bridge – Onkaparinga Pipeline, which is released into the Onkaparinga at Hahndorf, flowing down the river to Mt Bold Reservoir.

Effect of Farm Dams on the Clarendon Weir Catchment

For the SA Water offtake at Clarendon Weir, a surface water balance with an 'adjusted' runoff has also been calculated, correcting for farm dams, pipeline transfers and Mt Bold Reservoir. The surface water balance is calculated as follows:

Flow Condition	Annual Adjusted Flow at Clarendon Weir	Flow diverted by farm dams	% flow diverted
Long term median (1900 – 1998)	72.1 GL	3.9 GL	5%
Dry period (1912 – 1914)	30.0 GL	3.6 GL	12%
Wet Period (1915 – 1917)	152.9 GL	4.3 GL	3%

Overall, the total impact of farm dams on the Onkaparinga surface water resource is considered to be low (5% - 8% of median annual flow).

In comparison with the indicative sustainability indicator of the State Water Plan 2000, the total volume of farm dams is much lower than the indicative sustainable volume of farm dams for the catchment. The 8.5 GL of estimated farm dam capacity in the Onkaparinga catchment is 12% of

¹ A median year is defined as the median flow value for the period 1900-1998

² A wet-period is defined as the highest rainfall period of the 3-year moving average, namely occurred in 1915-1917

³ A dry period is defined as the lowest rainfall period of the 3-year moving average, namely occurred in 1912-1914

⁴ 'Adjusted' is defined as the annual catchment discharge, correcting for all diversions by farm dams and reservoirs, and importations from River Murray pipelines.

the median annual adjusted yield of the catchment flow, which is well below the 50% threshold defined in the Plan.

Effect of Farm Dams on the 16 subcatchments

In the 16 upstream subcatchments, the effects of farm dams have been examined more closely. Six of the sixteen subcatchments were found to be highly developed, with a reduction in median annual adjusted runoff due to farm dams of 10% or more. These subcatchments are:

- Mitchell Creek (20%),
- Biggs Flat (17%),
- Echunga Creek (13%),
- Hahndorf (11%),
- Balhannah (10%), and
- Western Branch (10%).

These highly impacted subcatchments are located in the eastern part of the Onkaparinga catchment, as shown in Figure 19 (page 66).

In the dry period, *eleven* subcatchments have greater than 10% of their adjusted natural flow captured by farm dams, affecting those with dam density as low as 10 ML/km². In the wet period, only the Mitchell creek catchment is affected by a 10% reduction in adjusted natural flow.

Effect of SA Water Infrastructure on the Surface Water Balance

On average, 60% of the water used for Adelaide's water supply from the Onkaparinga is derived from the catchment, with the remaining 40% transferred from the River Murray. In dry years, the Onkaparinga catchment contribution can reduce to only 10%.

For more than 80% of the time, there is no flow over Clarendon Weir down to the lower portions of the river. Conversely, the aqueduct portion of the river from Hahndorf to Clarendon experiences significantly higher flows when it would naturally be much drier, particularly in summer and autumn. The Onkaparinga CWMB is examining the ecological impacts of SA Water flow modifications on the catchment.

The combined storage of SA Water infrastructure and farm dams is approximately 95% of upstream catchment yield. SA Water operate the water supply network to maximise capture of catchment water and minimise spill over Clarendon Weir. Therefore, it is reasonable to assume that the combined diversions of farm dams and SA Water are well over the 50% sustainable yield indicator quoted by the State Water Plan (Volume 1 p 50).

Potential Future Impacts of Farm Dams

Four scenarios of future farm dam development were also considered.

The future scenarios were based on current rates of farm dam development, and limits to development defined by current management arrangements.

The six modelling scenarios are described as follows:

Scenario	Case	Available Farm Dam Storage	Description of case
Scenario 1	Present Case – 1999 farm dam data	8.5 GL	The current level of development, used to calibrate the mode
Scenario 2	No farm dam impact. Farm dam storage removed in the model	0.0 GL	Used to estimate the surfacewater resources and subcatchment runoff in the absence of water diversions to derive adjusted catchment yields ⁵
Scenario 3	Future with business as usual to 2010	10.2 GL	An estimate of farm dam development in 2010 with no management intervention, based on an extrapolated rate of development from the previous 10 years of 150 ML/yr
Scenario 4	Limit under present 50% Rule with runoff as 10% of rainfall	18.7 GL	The limit of the current 50% Rule of dam development administered in the MLR Watershed, where annual runoff is calculated to be 10% of annual rainfall. At current rates of development (150 ML/yr), this limit would be reached in 70 years
Scenario 5	Limit under 30% Rule calculated from actual runoff	18.7 GL	The limit to development similar to the River Murray CWMB policy of allowable volume equal to 30% of annual adjusted catchment yield. Coincidentally, the volume of dam development is identical to Scenario 4, but the spatial distribution of dam storage different.
Scenario 6	Worst case situation of 50% Rule application	29.4 GL	The limit of the 50% Rule of dam development where the actual annual subcatchment runoffs calculated in Scenario 2 are applied.

In addition to the increased volume of farm dams in the future scenarios, the water demands from dams was also considered.

Currently, it is assumed that demand of water from farm dams is 30% of dam volume, a reasonable figure that has good security, with allowances for evaporation and seepage. However, under a future management regime where development is restricted, farm dam owners may extract a higher proportion of dam storage to maximise their water capture. Therefore, extraction rates of 50% and 70% of farm dam volume were also simulated.

The results of the scenario testing are shown below, illustrated as water diverted above Mt Bold Reservoir.

Scenarios	Water Diverted f	Water Diverted from Median Annual Adjusted Flow at Houlgraves Weir		
Water Demand as % of farm dam volume	30%	50%	70%	
Scenario 1 (Present Case)	4.5 GL	5.6 GL	6.2 GL	
Scenario 3 (Future with business as usual to 2010)	5.1 GL	6.2 GL	7.3 GL	
Scenario 4 (Limit under present 50% Rule)	6.8 GL	8.5 GL	10.7 GL	
Scenario 5 (Limit under 30% Rule calculated from actual runoff)	7.3 GL	9.0 GL	11.8 GL	
Scenario 6 (Worst case situation of 50% Rule application)	11.8 GL	15.2 GL	18.1 GL	

These figures indicate that changes in water use behaviour, in addition to total farm dam storage, are likely to affect the amount of water taken from the catchment. Some useful conclusions from this analysis are:

• Restricting farm dams at 1999 levels but allowing demand to increase to 70% of storage will reduce flows at Houlgraves Weir by an extra 3%, or 1.7 GL.

⁵ The adjusted runoff is the catchment runoff modelled from a catchment with the impact of farm dams removed but with existing landuse conditions

- Impacts to flows at Houlgraves Weir from a catchment developed to the limit of the current 50% Rule (Scenario 4) would result in extra flow reductions to Mt Bold Reservoir of between 4% (2.3 GL) and 11% (6.2 GL), depending on the water demands from dams.
- There is a difference in impacts between Scenarios 4 and 5, despite both having the same total volume of dams. Each management scenario distributes dams differently among the subcatchments by using different subcatchment limits. Therefore, placement of dams in the landscape can also affect catchment impacts.
- In the worst possible case (Scenario 6, 70% water demand), water taken from the catchment could reduce flows at Houlgraves Weir by up to a further 13.6 GL.

50% Rule policy

The 50% Rule, as defined in the State Water Plan (Volume 1 p 50), allows total capacity of diverting storages (i.e. farm dams and reservoirs) of 50% of the median annual adjusted yield of that catchment. None of the 16 subcatchments have exceeded the 50% rule at current levels of farm dam development.

Across the catchment as a whole, with current SA Water storages and farm dams, the 50% Rule is exceeded in the Onkaparinga catchment.

According to current practice, the 50% Rule is administered in the Mt Lofty Ranges Watershed using an annual runoff estimate equal to 10% of average annual rainfall. This leads to an uneven distribution of development pressure on catchments in the region because:

- In the drier areas (<500mm annual rainfall), runoff is estimated to be *less* than 10% of rainfall, and
- In the wetter areas (>700mm annual rainfall), runoff would be greater than 10% of rainfall.

Consequently, retaining this practice will lead to greater impact on ecosystems and greater competition for water in the developed eastern subcatchments and result in additional losses to SA Water storages if actual runoff values are adopted.

Conclusions

This study has considered the impact of farm dam development, recognising variability of rainfall and runoff across the catchment and over time. It has also considered changing impacts with increases in farm dam development and increased rates of extraction from available storage in farm dams.

50% Rule farm dam policy

- None of the subcatchments, at current levels of farm dam development, has exceeded the 50% sustainability indicator as defined in the State Water Plan 2000. However, the modification of flow regimes by farm dams and SA Water infrastructure may be impacting water-dependent ecosystems.
- Farm dam development approvals based on a runoff estimate of 10% of rainfall will lead to over-estimates of the resource in lower rainfall areas and under estimates of the resource in the higher rainfall catchments.

Farm Dam Impacts on SA Water Reservoirs

• The combined storage capacity of all farm dams, Mt Bold Reservoir, Clarendon Weir and Happy Valley Reservoir is about 95% of the median adjusted annual flow estimated at

Clarendon Weir. Impacts to water-dependant ecosystems based on this impact are highly likely, and need to be examined.

- Currently, farm dams harvest approximately 4.5 GL of water entering Mt Bold Reservoir, or 8% of median annual adjusted flow. Under current management policy, this will probably increase to about 7-10 GL. An extreme upper level of development is estimated to harvest 18 GL.
- It is likely that SA Water would be required to pump a significant proportion of flow reductions from the River Murray to compensate for these losses to reservoir inflows.
- Development controls on farm dam storage alone will not be sufficient to manage risks to surface water resources associated with development. Other factors that need to be taken into account are:
 - Runoff from individual subcatchments
 - Farm dam location on the landscape, and portions of catchment that are free to flow (estimated by farm dam density)
 - Water demands from farm dams
 - Needs of nearby water-dependant ecosystems
- Managing further farm dam impacts into the future is a combination of managing:
 - new farm dam storage,
 - the siting and design of the dam, and
 - the demand of water from the dam.

Existing background data

Hydrological modelling for the Onkaparinga River catchment can be improved further if the background data can be enhanced. Some examples of this are the timing and actual usage of irrigation water, estimation of dam storage volume, proportion of dam storage water currently being used annually and land use information.

INTRODUCTION

Background

The Onkaparinga River is a source of water for private development (farm dams), public water supply and for the natural environment so that the river can remain healthy and support its bio-diversity.

With farm dam developments occurring in the Onkaparinga River catchment, it has impacted on the natural surface flow of the catchment. With the pressure for more water to meet agricultural development (notably viticulture), environmental flows and the metropolitan Adelaide water supply, there is a need to quantify the impact of the farm dam developments. As a result, the Department of Water, Land and Biodiversity Conservation (DWR), in conjunction with the Onkaparinga Catchment Water Management Board (the Board) and SA Water Corporation, set out to study this impact on the natural surface flow of the Onkaparinga river.

Central to this study is the construction of a calibrated catchment-wide hydrological model using the WaterCress modelling program that can simulate runoff scenarios and assist in the evaluation of management options.

Aims of the study

The aims of the study were to:

- Assess the current level of farm dam development in the catchment;
- Construct a calibrated hydrological model;
- Study the impact of farm dams on the adjusted⁶ natural flows of the Onkaparinga River catchment based on the current and future levels of farm dams development;
- Provide the Board with access to a suitable hydrological model for studying environmental water requirements;
- Assess the impact of farm dams development on pumping from the River Murray to Mt Bold Reservoir.

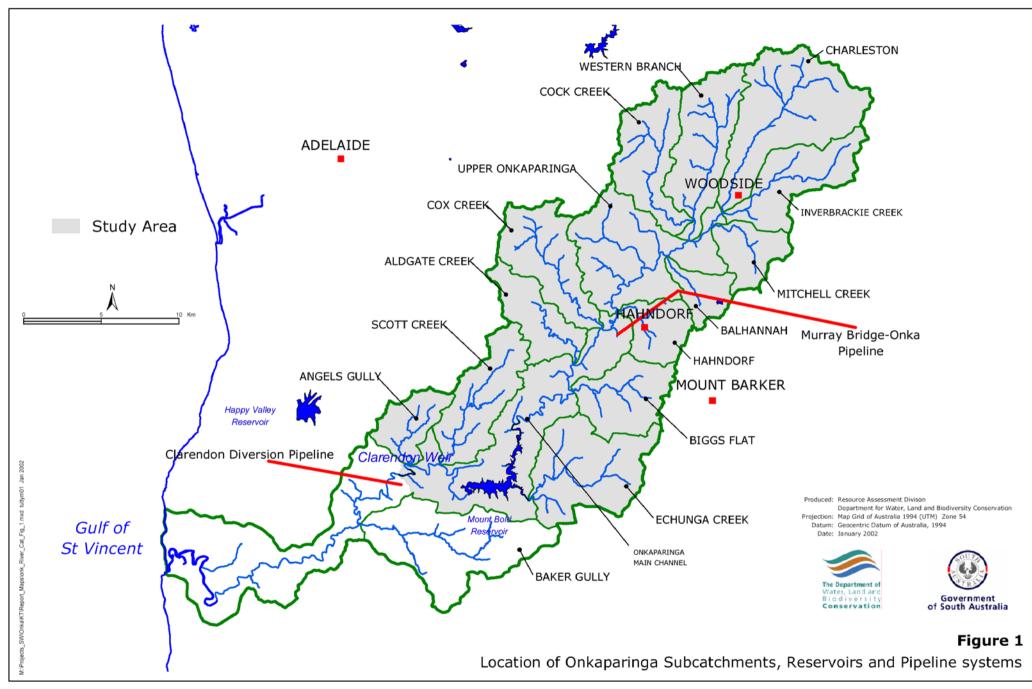
Study Approach

The hydrological and water management model *WaterCress* (Clark et al, 2002) was used to simulate catchment runoff for a range of farm dams development scenarios each with 30%, 50% and 70% dam storage use. A *current* scenario was considered as the one using the 1999 farm dams data (scenario 1) and 30% dam storage use (WFD). A without farm dams (WOFD) scenario is one that has the farm dams removed from the model. Catchment yields simulated under this scenario were considered as the *adjusted* catchment yield/runoff that becomes a reference for comparing with the runoff from other farm dams development scenarios and dam storage use.

The model was calibrated using current scenario against the gauged catchments where recorded streamflows were available. Once the model was calibrated, runoff simulations

⁶ Adjusted is defined in the State Water Plan Vol 1 page 50 as "the annual catchment discharge with the impact of dam storage removed".

were carried out over the short term (where records available) and long-term (1900-1998) duration for the scenarios. Short term simulations enable Tanh curve rainfall runoff relationship to be established for the gauged catchments, which could be used as a quick measure of the hydrologic characteristics of the catchment. The impact of farm dams development on the water supply from the River Murray was also modelled for the recent period only. This is because water use data, pumpage from the River Murray and the gauged streamflows from Houlgrave Weir, Echunga and Scott Creeks were used as input together with the ungauged catchments for the model simulations.


To study the impact of farm dams development on catchment runoff in a wide range of climatic conditions, such as in an average year, a drought and a wet periods, simulations were modelled over long term from 1900-1998.

Results contained in the report were:

- Rainfall runoff relationships
- Impact of farm dams on individual subcatchments
- Impact of farm dams on flows at Houlgrave Weir
- Impact of farm dams on flows at Clarendon Weir
- Impact of farm dams on the water supply from Mt Bold Reservoir and Clarendon Weir reservoirs.

CATCHMENT DESCRIPTION

The Onkaparinga River catchment is located about 25 km to the south-east of Adelaide and has a catchment area of 560 km². The catchment has been divided into 16 distinct subcatchments, each with its own creek or tributary system that discharges streamflows into the main Onkaparinga River (Figure 1). The catchment has a median annual rainfall of 770 mm, ranging from 525 mm at the coast to 1080 mm at Uraidla (near Aldgate Creek catchment in the Mount Lofty Ranges). Evaporation recorded at Mt Bold reservoir is 1560 mm per annum.

Maximum land elevations within the Onkaparinga River catchment vary from 10 m near the coast at Noarlunga to 700 m in upland regions. Topography consists of low lying plains in the lower reaches of the catchment with steep gorge country along the hills face zone of the catchment. The Onkaparinga River flows through this steep gorge country which starts near Mount Bold Reservoir. Upstream of the Reservoir the topography consists mainly of rolling / undulating hills with wide flat valley floors. The catchment is reasonably urbanised where townships such as Woodside, Hahndorf, Stirling, Balhannah, Lobethal, Summertown, Uraidla, Oakbank, Bridgewater and Aldgate can be found inland, and Old Noarlunga at the coast. Where the catchment impinges on urban areas, it contains a mixture of irrigated and temporal agriculture.

Private water abstractions are used mainly for irrigation purposes. Irrigation water is either obtained from the surface runoff stored in the farm dams or from individual groundwater bores. Extensive irrigation is predominantly for horticulture and viticulture while less intensive irrigation is associated with dairy farming and grazing. About 5,200 ha (1999) or 9.3% of the catchment is irrigated.

Water use from irrigation has been estimated from an assumed optimum irrigation rate to irrigated area and therefore assumes no restriction to water availability. It is recognised that this method may over estimate the irrigation volume as water supply may be limited by water availability. The total volume of use is estimated as 21,000 ML annually.

Streamflow systems found within the Onkaparinga River catchment are illustrated schematically in Figure 2, while the key gauging stations located within the catchment are shown in Figure 3. Streamflow is highly variable with most of the flow occurring in the winter months. The mean annual flow measured at the Houlgrave weir, including River Murray input from the Murray-Bridge Onkaparinga pipeline, is 75,000 ML and the median annual flow is 70,000 ML. Flow is severely reduced downstream of Mt Bold reservoir, with mean annual flow of 19,000 ML and a median of 4,000 ML recorded at Clarendon weir. For more than 88% of the time, no flow is recorded over the Clarendon weir.

Rainfall

Recording stations

A large number of rainfall stations monitored by the Bureau of Meteorology (BoM) and other agencies such as DWLBC can be found within and adjacent to the Onkaparinga catchment. At least 44 stations have been identified within the catchment and another 49 adjacent to the catchment. Among the 93 stations identified, the best 23 were selected being evenly spread out around the Onkaparinga catchment: 9 inside and 14 outside the river catchment boundary. They have long term daily rainfall records of more than 80 years. Records from these 23 stations were examined to identify any trends in catchment-wide annual rainfall. The stations are listed in Table 1.

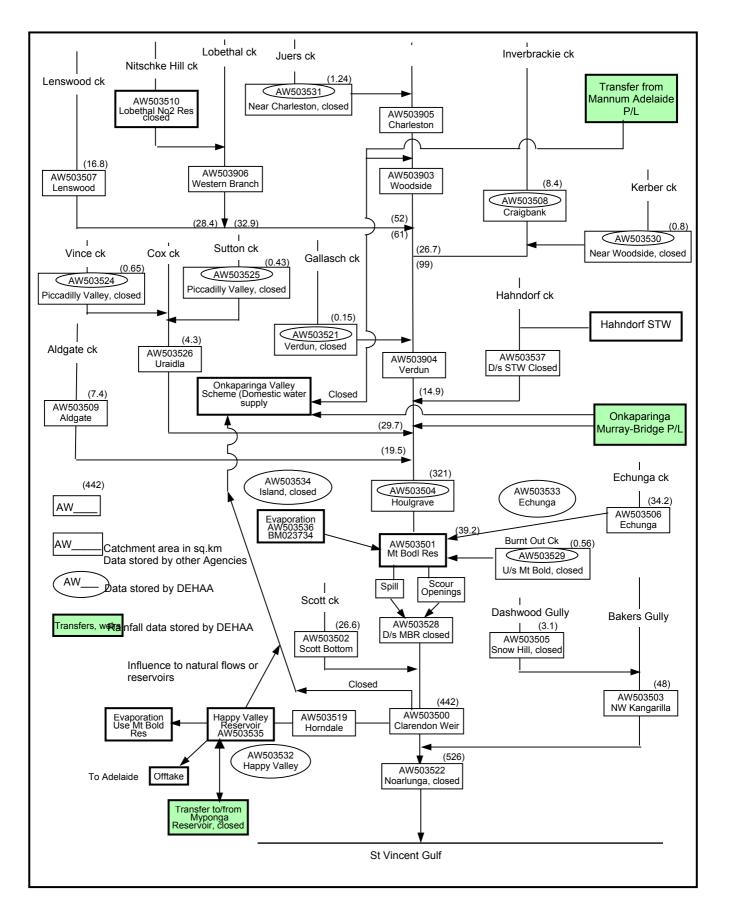
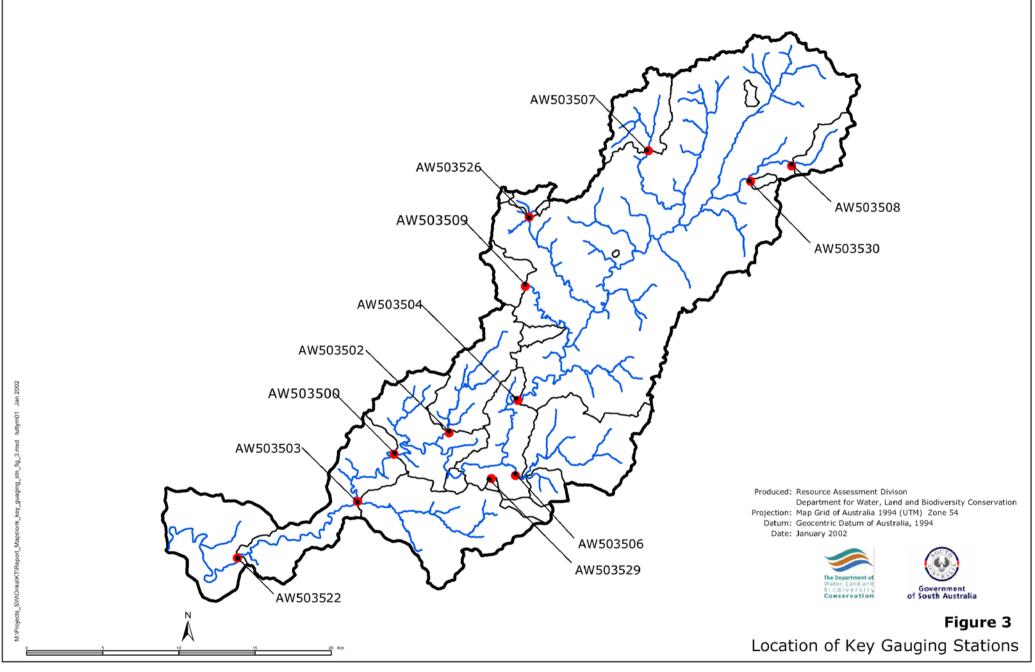
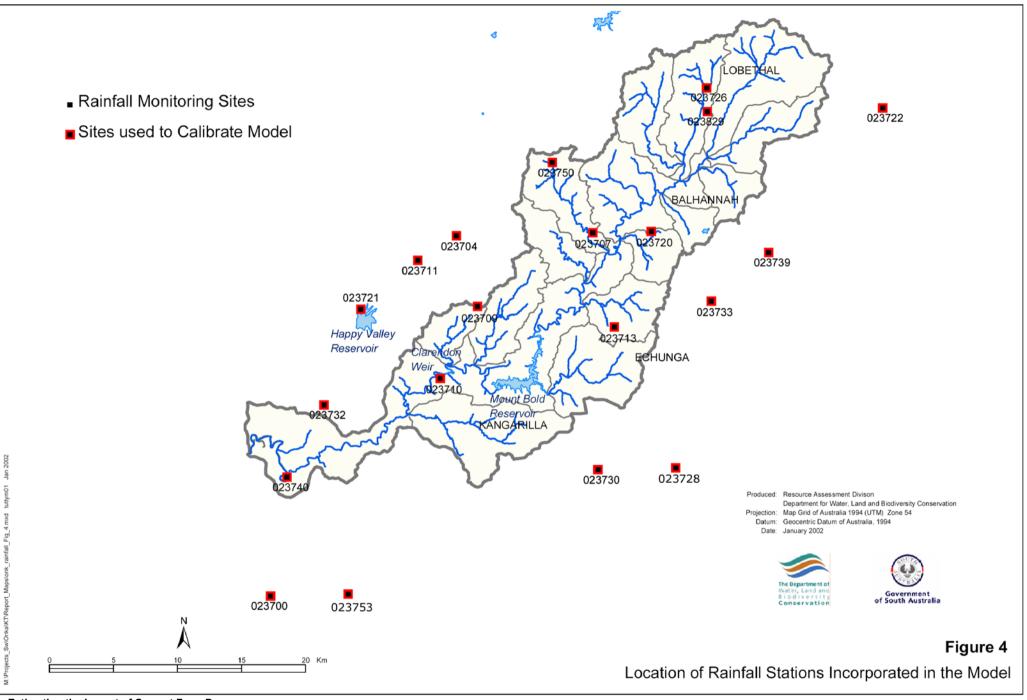
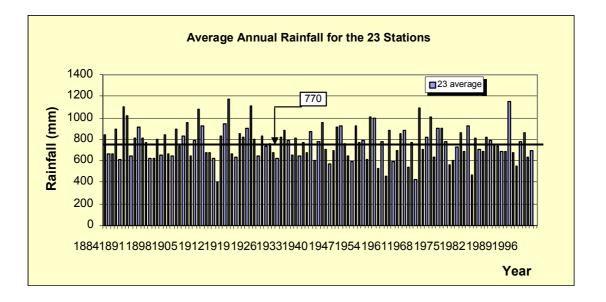




Figure 2. Schematic Diagram of Onkaparinga River Catchment

Nos	Station no.	Mean (mm)	Location	Period of record
1	023700	505	Aldinga Post Office	1893 – current
2	023704	774	Belair	1884 – current
3	023705	728	Birdwood	1887 – current
4	023707	1045	Bridgewater PO	1884 – current
5	023709	925	Cherry Gardens	1899 – current
6	023710	818	Clarendon PO	1884 – current
7	023711	710	Coromandel Valley	1890 – current
8	023713	807	Echunga Golf Course	1884 – current
9	023719	793	Gumeracha DC	1884 – current
10	023720	859	Hahndorf GC	1884 – current
11	023721	631	Happy Valley Res	1885 – current
12	023722	554	Harrogate	1896 – current
13	023726	885	Lobethal	1884 – current
14	023728	736	Macclesfield	1885 – current
15	023730	875	Meadows	1887 – current
16	023731	859	Cudlee Ck	1914 - current
17	023732	562	Morphett Vale	1886 – current
18	023733	769	Mt Barker	1884 – current
19	023739	683	Nairne	1884 – current
20	023740	525	Old Noarlunga PO	1884- closed 1999
21	023750	1083	Uraidla	1891 – current
22	023753	643	Willunga	1884 – current
23	023829	805	Woodside	1884 – current


Rainfall Stations for the Onkaparinga River Catchment

Note: rainfall records before 1884 were not taken into account due to concerns about their reliability.

Ten of these rainfall stations (nine within the catchment) were subsequently selected for rainfall input to the catchment hydrological model. The ten stations were chosen on the basis of their location within the catchment and for their long term daily records. The methodology for processing these raw rainfall data are described in Appendix A. Figure 4 shows the location of the stations.

Annual Rainfall

The annual rainfall for the Onkaparinga River catchment as defined by the average of 23 stations varies from 400 mm to 1170 mm with a median of 770 mm. Figure 5 shows the average annual rainfall of the 23 stations used to estimate Onkaparinga River catchment rainfall.

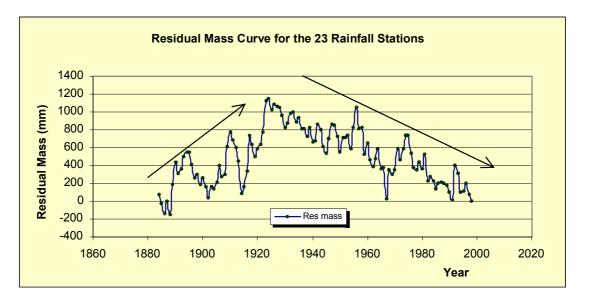


Figure 5. The Average Annual Rainfall of the 23 Stations

Trend Analysis

The residual mass curve method was used to identify any trends in the period between 1884 and 1998 (Figure 6). An upward sloping curve indicates a higher than average rainfall period, while a downward sloping curve indicates a dryer than average period. From 1884 through to 1928, the long-term residual mass curve is trending upwards meaning the period was experiencing a "wet" trend with short cycles of fluctuation in between the period. From 1929 to the present, the long-term trend is towards a drier cycle.

Across the whole catchment, the wettest year occurred in 1917 with 1170 mm of rainfall followed by 1992 with 1154 mm. The driest years occurred in 1914 and 1967 with 400 mm and 421 mm of rainfall respectively.

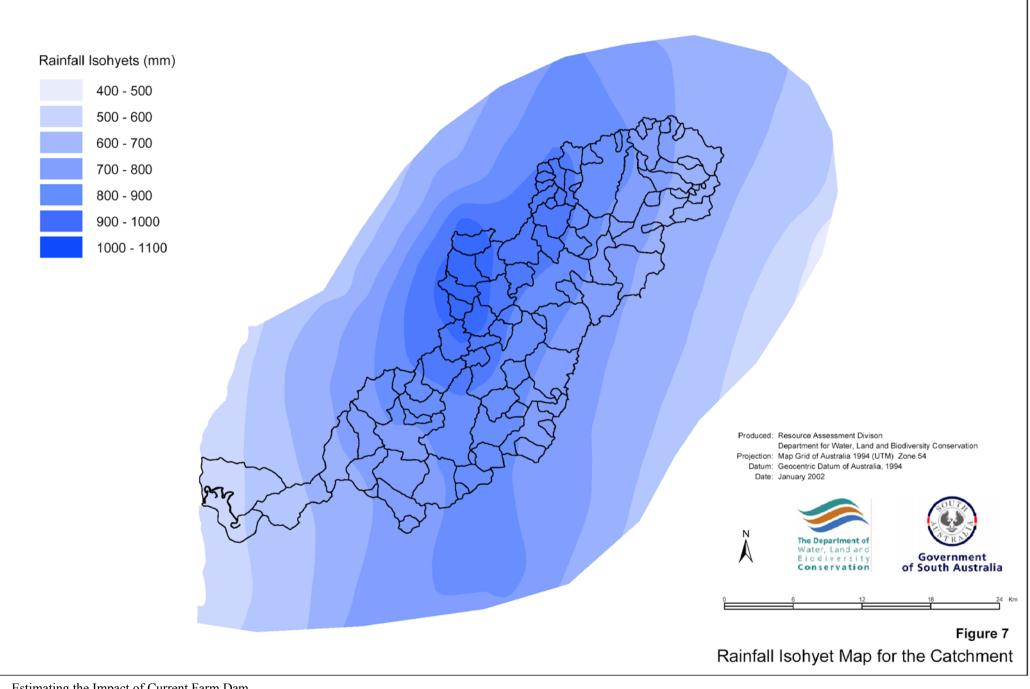
By taking a 3-year moving average, it is found that 1912-1914 recorded the lowest 3 year average rainfall of 570 mm/year and 1915-1917 the highest 3 year average rainfall of 980 mm/year. For hydrological modelling purposes, these two periods will be taken as the "dry" and "wet" years/periods for analysis.

Check for Homogeneity

Random checks were made to test for the homogeneity of the rainfall data (Table 2) provided by Sinclair Knight Merz (SKM,2000). Adjustment for homogeneity of a rainfall station would be required if a straight line is not produced from the plot as reflected by the lower R-square value being less than one. This was done by plotting the double mass of the test station with that of the average rainfall of 23 stations listed in Table 1. From Table 2, Bridgewater station has the lowest R-square value. It is recognised that adjustment may be required for such stations to better input the rainfall data for the model calibration. Overall it was considered that the rainfall data was suitable for use.

No	Rainfall station	Mean rainfall (mm)	R ²	
1	Bridgewater (023707)	1045	09986	
2	Cherry Gardens (023709)	925	0.9993	
3	Clarendon (023710)	818	0.9996	
4	Echunga (023713)	807	0.9995	
5	Hahndorf (023720)	859	0.9999	
6	Old Noarlunga (023740)	525	0.9999	
7	Lobethal (023726)	885	0.9997	
8	Uraidla (023750)	1083	0.9999	
9	Woodside (023829)	805	0.9994	
10	Morphett Vale	562	0.9992	

Table 2. R² value of test station Dmass curve


Spatial Distribution of Rainfall

Rainfall varies markedly across the catchment, ranging from 525mm near Old Noarlunga to around 1080mm near Aldgate. Rainfall isohyets developed from the DWLBC GIS dataset illustrate this wide variation, refer Figure 7. The isohyets run in a north-east south west direction almost following the orientation of the Onkaparinga River catchment.

Average annual rainfall figures for the ten selected stations were compared with the isohyet map and found to match quite well with the exception of the Inverbrackie Creek catchment. The isohyet map indicates an annual average rainfall of 625mm whereas the gauge indicates a figure closer to 685mm per year is more appropriate.

This anomaly is thought to occur because of localised topography and the lower density of rainfall gauges failing to detect these changes in land elevation.

The rainfall isohyet map was used to adjust daily rainfall readings at the reading locations to subcatchment rainfall figures which must be estimated at the of the catchment for input to the WaterCress Model, refer section "Hydrological Modelling".

Evaporation

Recording stations

There are few evaporation stations in the Onkaparinga catchment. Only four have been located within and adjacent to the catchment boundary as listed in Table 3.

Table 3. The location of evaporation stations

Met	AW	Owner	Description	Evaporation (mm)	Period of record	
023734	503536	SA Water	Mt Bold reservoir	1,560	21/5/1968 – current	
023801		PIRSA	Lenswood Research Centre	1,226	24/10/1968 – 29/10/1999	
023876		BoM	McLaren Vale (Pirramimma)	1,606	1/2/1996 - current	
023721	503532	DWR	Happy Valley reservoir	1,750	1/10/1988 – 30/11/1991	

Of the four stations, the Mt Bold reservoir station (023734) is considered the most suitable to be used for the catchment modelling, as the station is well maintained and it has reliable long-term daily records. The annual evaporation measured with a Class A pan bird guard at this site is 1,560 mm.

Due to the proximity of the station to the reservoir water body and the pine forest around the area, which may have some impact on the reading, it is recognised that some adjustments for the records would be necessary. The monthly records were compared with those of the McLaren Vale (023876) station for the same period (1996-2000). Adjustments were then applied to the Mt Bold reservoir records, by adding the differential monthly evaporation between McLaren Vale and Mt Bold reservoir locations to the long-term monthly average records (1968-2000) of the Mt Bold reservoir. The annual evaporation thus obtained from the adjusted results was 1794 mm. This matches up quite well to the evaporation isohyets map (Figure 8) produced by the Bureau of Meteorology in 1986 (*per comm* C Wright of BoM) for the annual evaporation of the southern component of the State of South Australia (1,800 mm per annum).

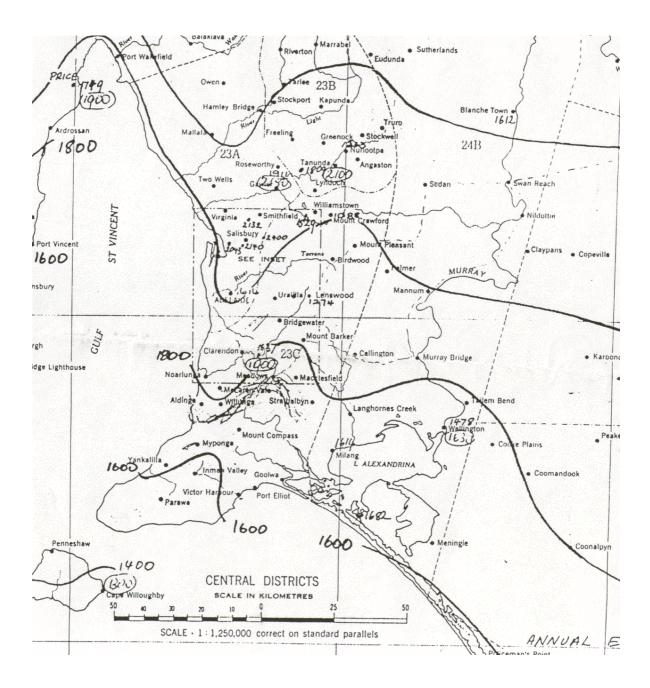


Figure 8. Evaporation Isohyet Map by BoMEvaporation Isohyet Map by BoM

Streamflow

Recording stations

The locations of continuous streamflow gauging stations with two or more years of record in the Onkaparinga River catchment are shown in Table 4. The stations identified generally have records exceeding 25 years. Clarendon weir has the longest streamflow record, dating back to 1937; Kerber Creek station is the exception with only two years of record. While most of the gauged stations are still current, Old Noarlunga, Burnt Out Creek and Kerber Creek stations have been closed for some time. Bakers Gully station was closed in 1989 and re-opened in 2000.

GS Station	Location	Record start	Record end	Flow gaps inclusive
503500	Clarendon weir	20-09-1937	27-08-2000	with flow gaps
503502	Scott Ck	28-03-1969	01-08-2000	No gaps
503503	Bakers Gully	12-04-1969	02-08-2000	Closed in 26-6-1989. Reopened 6-1-2000
503504	Houlgrave	18-04-1973	11-07-2000	No gaps
503506	Echunga	23-03-1973	29-08-2000	With flow gaps
503507	Lenswood	19-03-1972	29-08-2000	With flow gaps
503508	Inverbrackie	18-05-1972	14-09-2000	With flow gaps
503509	Aldgate	14-07-1972	05-09-2000	With flow gaps
503522	Noarlunga	28-06-1973	14-02-1988	With flow gaps
503526	Cox Ck	24-06-1976	01-01-2001	With flow gaps
503529	Burnt Out	13-01-1978	16-11-1988	With flow gaps
503530	Kerber	31-07-1987	07-11-1989	With flow gaps

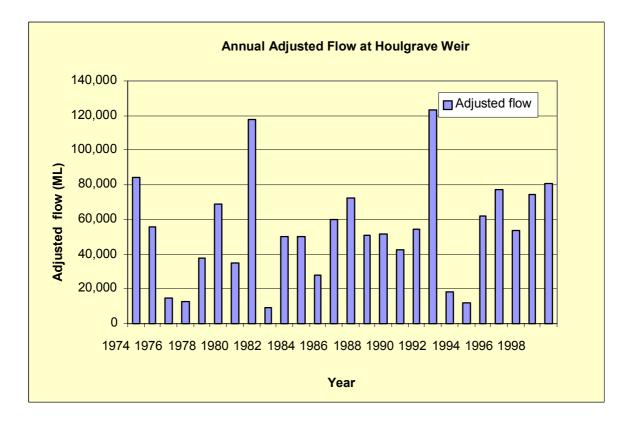
Table 4. The Location of Gauging Stations for Streamflows

Recorded Streamflow

Table 5 shows the annual flow statistics of the gauged catchments. The coefficient of variability (Cv), taken as the ratio of standard deviation over the mean value is a measure of streamflow variability between years over the period. A high value indicates high variability. As a comparison, the mean Cv for Australian arid zone streams found by McMahon (1982) is 1.27.

The Table indicates that streamflows for the Clarendon weir, Old Noarlunga and Inverbrackie catchments are highly variable, with Cv values 1.45, 1.08 and 0.95 respectively. Obviously, the Mt Bold reservoir and farm dam storages have a large impact on the first two of these catchments.

Table 5. Gauged Catchment Flow Records


Gauged Station (AW)	Location	Gauged Catchment Area, km2	Annual flow (ML)				Run-off	Coefficient	
			Median	Mean	Max	Min	Std Dev	Coefficient	Of Variability, Cv
503500	Clarendon	442	4,200	19,000	85,300	0	27,500	0.05	1.45
503502	Scott Creek	26.6	3,500	3,700	8,700	600	2,000	0.16	0.54
503503	Bakers Gully	48.0	3,600	4,500	10,500	700	3,000	0.12	0.68
503504	Houlgrave* (Total)	321.3	70,000	74,900	133,300	37,60 0	21,800		0.29
503504	Houlgrave ⁿ ("Natural")	321.3	52,300	53,700	123,600	9,300	29,700	0.17	0.55
503506	Echunga	34.2	2,700	3,300	8,700	400	2,200	0.11	0.68
503507	Lenswood	16.8	3,400	3,900	9,400	700	2,400	0.23	0.61
503508	Inverbrackie	8.4	900	900	3,400	5	800	0.14	0.95
503509	Aldgate	7.4	2,400	2,500	5,900	700	1,200	0.30	0.48
503522	Noarlunga	526.1	16,600	25,700	91,60	1,700	27,800	0.09	1.08
503526	Cox Ck	5.5	1,400	1,500	3,800	700	700	0.28	0.45
503529	Burnt Out	0.6	20	40	90	14	30	0.09	0.75
503530	Kerber	1.0	100	100	100	100	-	0.14	-

*, the flow includes the Murray water through Murray Bridge-Onkaparinga pipeline

N, estimate of the catchment runoff from upstream of Houlgrave catchment

The time series flow in Houlgrave catchment has been shown in two ways; one is the total flow recorded (shown as *) and the other the estimated "natural" flow component (shown as N). The total flow includes that water pumped from the River Murray while the "natural" component is that flow received from the upstream catchment runoff only. The mean flow component of the "natural flow" from the upstream catchment is 54,000 ML with a flow range varying from the minimum of 9,000 ML to the maximum of 124,000 ML. With additional water intake from the Murray, the mean flow recorded at Houlgrave weir is 75,000 ML. That equates to 21,000 ML of pumped volume. From the Engineering and Water Supply Department *Water Use Annual Returns* reports, the intake through the Murray Bridge-Onkaparinga pipeline is 27,000 ML. This represents 6,000 ML of unaccounted discrepancy, which could be due to the meter-reading errors, seepage and evaporation losses or usage through the 13.5 km length of conveyance, etc.

Streamflow in the catchments occurs mostly during the winter months with little or no flow in the summer. The annual catchment runoff ("natural") and the monthly median flow of Houlgrave weir are shown in Figures 9-10.

Figure 9. Annual Adjusted ("natural") Flow at Houlgrave Weir

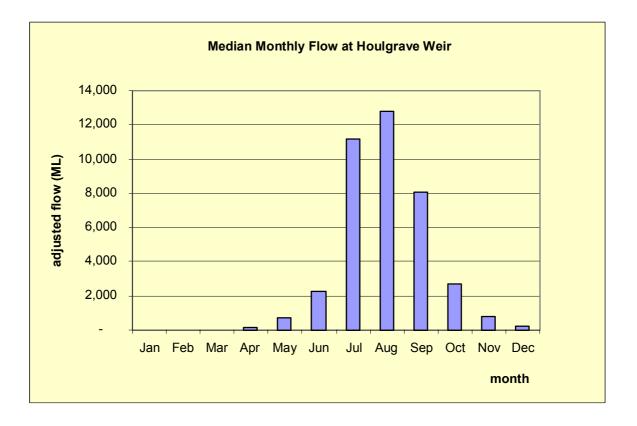


Figure 10. Monthly Median Adjusted ("Natural") Flow at Houlgrave Weir

Public Water Supplies

The main infrastructure elements associated with the Onkaparinga River catchment are related to the public water supply system operated by SA Water. They are the:

- Hahndorf Dissipator
- Murray Bridge-Onkaparinga Pipeline (which imports River Murray water from outside of catchment)
- Summit storage
- Mt Bold Reservoir
- Clarendon Diversion Weir and Pumping Station
- Onkaparinga Valley Scheme
- Horndale Flume (located outside of the catchment in Happy Valley)
- Happy Valley Reservoir (located outside of the catchment which receives water diverted from Clarendon Weir)

A schematic diagram of the water supply system and the relative positioning of this infrastructure is shown in Figure 11.

Mt Bold Reservoir is an essential water storage structure forming part of the metropolitan Adelaide water supply system. The reservoir has a storage capacity of 47,300 ML at its full supply level and derives 60% of its water supply from its local catchment. During the summer season, when the catchment runoff is minimal, water is pumped from the River Murray and conveyed to the reservoir via the Murray Bridge-Onkaparinga Pipeline. The pipeline transfers water to the Summit Storage, where it is gravity fed into the Onkaparinga River via the Hahndorf Dissipator. The intake volume into the catchment is measured at this point. It then travels through approximately 13.5 km of the river length before reaching the reservoir. Following dry winters, over 90% of water may be sourced from the River Murray. Table 6 shows the annual volume of water pumped from River Murray into Mount Bold Reservoir through MB/O P/L. The average annual intake of River Murray water to Mount Bold Reservoir is 27,000 ML.

From Mt Bold Reservoir, water is released to Clarendon Weir, where it is diverted through the Horndale Flume to the Happy Valley Reservoir. Here the water is filtered and treated before being supplied for metropolitan consumption. The Clarendon Weir is located 6 km downstream of Mt Bold Reservoir. It was constructed in 1896 and has storage capacity of 320 ML. In addition to diversion to Happy Valley Reservoir, water can also be pumped from Clarendon Weir Pumping Station to supply the Onkaparinga Valley Scheme and the surrounding suburbs for consumption. However, following the introduction of filtered water, this diversion has not occurred in recent years. Clarendon Weir also receives a significant inflow from the Scott Creek catchment. Another major subcatchment, Baker Gully, enters the Onkaparinga River downstream of the Clarendon weir and cannot be intercepted by the water supply system.

							Month						
Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
1975	-	-	-	-	-	-	-	-	-	-	-	451	451
1976	-	-	-	-	-	150	4,392	11,310	11,708	11,791	7,975	8,040	55,366
1977	4,929	2,322	95	81	-	-	654	8,324	8,744	8,427	7,983	8,241	49,800
1978	7,784	7,305	8,046	4,130	-	-	-	-	-	-	-	4,478	31,743
1979	4,970	4,289	3,428	-	-	-	215	5,558	4	-	-	-	18,464
1980	-	-	-	-	1,236	2,978	-	-	4,632	5,225	3,109	2,804	19,984
1981	3,191	4,138	4,034	1,116	2,742	159	-	-	-	-	-	-	15,380
1982	-	-	-	1,501	2,701	248	-	8,125	11,048	12,617	13,276	12,105	61,621
1983	10,900	4,983	3,730	-	-	-	-	-	-	-	-	-	19,613
1984	2,646	4,450	3,206	-	-	-	-	-	5	-	-	-	10,307
1985	2,741	2,749	2,015	-	-	-	-	-	-	2,834	4,371	5,488	20,199
1986	5,301	4,501	3,024	4,285	191	533	347	-	-	-	-	-	18,181
1987	-	-	-	-	-	-	-	-	-	-	1,025	3,058	4,083
1988	2,611	2,421	-	2,214	1,113	-	-	-	-	-	709	3,074	12,142
1989	2,116	996	1,681	1,697	1,545	-	-	-	-	-	1,665	962	10,662
1990	1,958	3,438	2,161	-	1,796	2,187	-	-	1,076	1,305	4,621	7,402	25,943
1991	6,727	4,405	4,055	-	61	2,009	3,069	3,645	2,081	40	3,249	4,010	33,352
1992	3,682	2,670	-	-	-	-	-	1,657	-	-	-	-	8,009
1993	-	-	-	-	-	-	20	-	2,557	5,606	5,398	6,019	19,599
1994	5,962	5,119	6,784	7,324	5,115	2,036	1,954	4,951	8,850	9,621	7,240	6,637	71,593
1995	7,606	6,886	5,559	2,649	6	4	833	-	2	-	-	-	23,545
1996	228	2,401	3,869	2,310	2,919	2,340	0	-	0	0	984	2,439	17,490
1997	1,877	2,783	2,082	569	1	306	5,109	4,430	5,442	5,447	5,913	4,780	38,739
1998	4,738	6,022	9,096	6,374	647	1,444	389	2,042	4,762	5,497	4,881	3,139	49,031
1999	4,986	8,570	7,886	3,873	1,357	67	47	2,192	6,310	6,292	4,846	4,733	51,159
Total	84,951	80,450	70,749	38,124	21,429	14,461	17,029	52,234	67,220	74,703	77,245	87,861	686,45
Mean	3,398	3,218	2,830	1,525	857	578	681	2,089	2,689	2,988	3,090	3,514	27,458

 Table 6.
 Water Pumped from the River Murray into the Mt Bold Reservoir

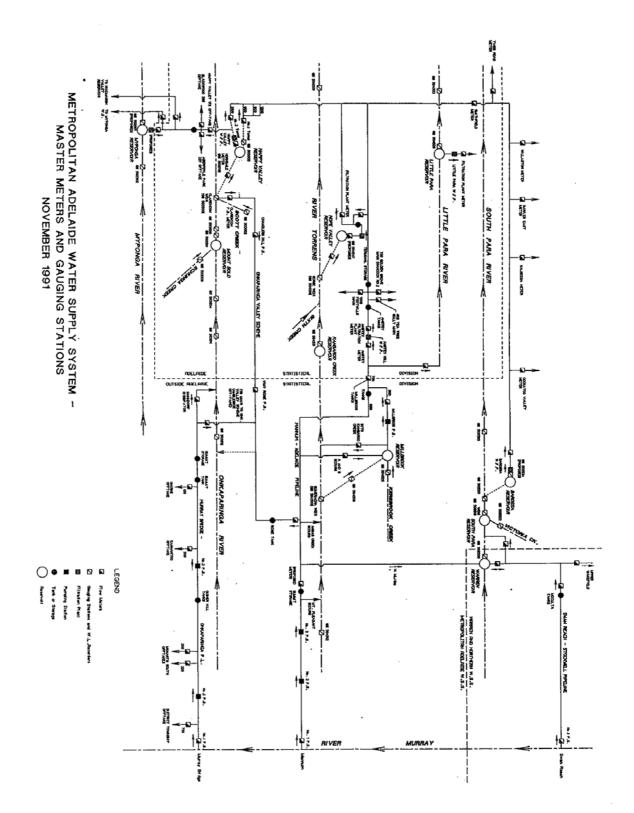


Figure 11. Schematic Diagram of SA Water Pipeline Systems

Farm Dams

Dam Statistics

Three sets of farm dams storage data were available. These data were derived from aerial photographs captured in 1987, 1995/96 and 1999

The 1987 farm dams data was obtained by manually tracing the outline of the dams from the aerial photographs and digitising the tracings into a GIS program (Cresswell and Verhoff 1990). A greater attention was paid to locating the small dams during the process. The GIS program then calculates the surface area. For this study, the volume of the dam was then calculated by employing the formula (McMurray, 1996):

V=0.044*S^{1.4}.

Where V is the estimated volume for farm dam in kilolitres based on the digitised dam "surface area" S, in square metres. This formula was also being used to estimate the farm dams volume in the report by Savadamuthu, 2002 for the Marne catchment.

For 1996 farm dams data, the dam outlines were digitised "on-screen" from scanned and registered aerial photographs captured in Dec1995/Jan1996 The volumes were also estimated using the above formula to facilitate a valid comparison with the other dataset. The 1999 farm dams data was created by digitising "on-screen" from the ortho-photography captured in 1999. The aerial photographs were flown at a scale of 1:20,000. The volumes were estimated as above.

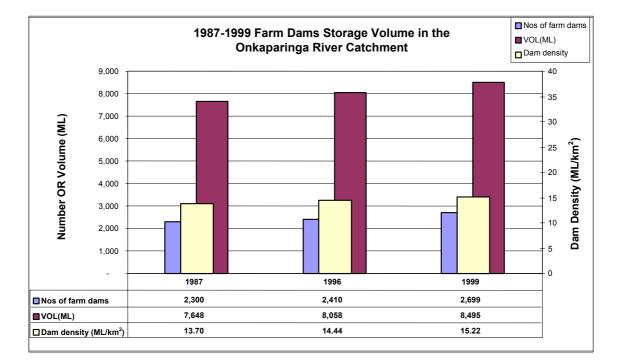
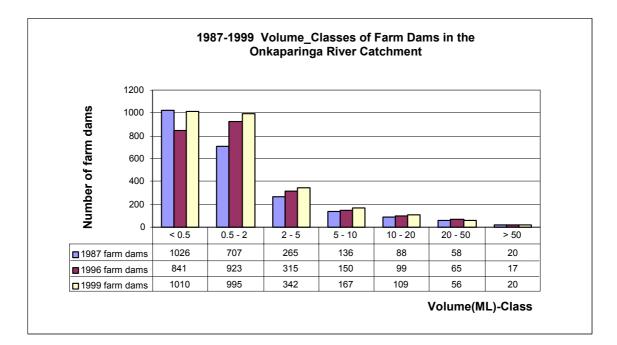
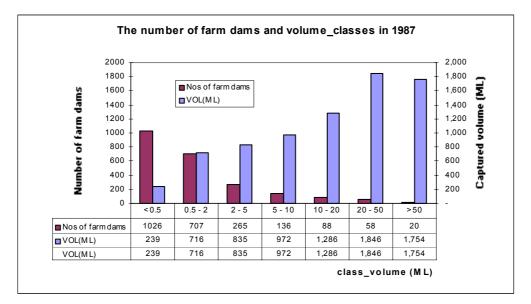
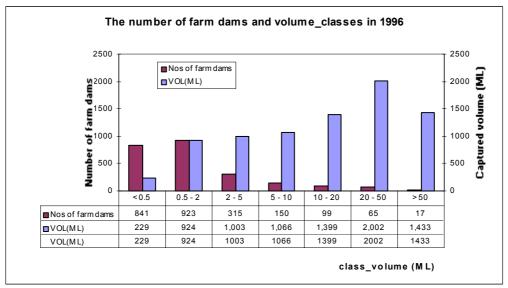

The farm dams information for 1987, 1996 and 1999 thus obtained is briefly summarised in Tables 7 and 8 below:

Table 7. Farm Dam Developments in 1987, 1996 and 1999

Onkaparinga Catchment	Catchment Area, ha	No. of Farm Dams	Storage Volume (ML)	ML/km² (mm) ⁾
1987	55,812	2,300	7,648	13.70
1996	55,812	2,410	8,058	14.44
1999	55,812	2,699	8,495	15.22


Table 8. The Number of Farm Dams and Storages for Various Volume Sizes


Vol. Class ML		Number of farm	n dams		Storage Volu	ume
	1987	1996	1999	1987	1996	1999
< 0.5	1026	841	1010	239	229	265
0.5 – 2	707	923	995	716	924	992
2 – 5	265	315	342	835	1,003	1,062
5 – 10	136	150	167	972	1,066	1,194
10 – 20	88	99	109	1,286	1,399	1,558
20 – 50	58	65	56	1,847	2,002	1,740
> 50	20	17	20	1,754	1,433	1,684
Total	2300	2,410	2699	7,648	8,058	8,495


Figure 12. 1987-1999 Farm Dams Storage Volume in the Onkaparinga River Catchment

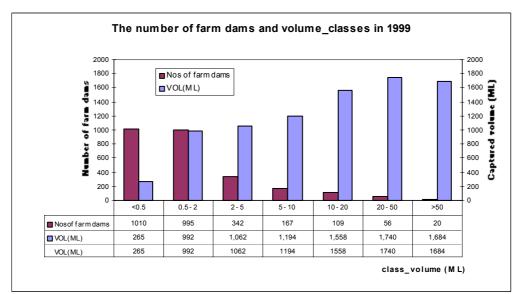

Figure 13. Volume Classes of Farm Dam in the Onkaparinga River Catchment

Figure 14. Breakdown of Storages and Volume Classes in 1987, 1996 and 1999

Between 1987 and 1999, the number of farm dams constructed in the Onkaparinga River catchment has increased from around 2,300 to 2,700 and the storage volume from 7.6 to 8.5 GL. The current farm dam development equates to a farm dam density of 15.22 ML/km^2 across the catchment, or in total volume of 18% of the Mt Bold reservoir storage. It is worth noting that out of the 2,700 farm dams, 60% of the total storage volume comes from only 185 farm dams with storage size greater than 10 ML. Dam construction between 1987-1999 has been mainly in the category of 2 - 20 ML storage sizes due to development restrictions within the watershed.

For farm dam distribution on a subcatchment level, Mitchell catchment has the highest farm dam density of 39 ML/km² (1999 data) followed by Hahndorf (32 ML/km²) and Western Branch (30 ML/km²). Biggs Flat, Echunga, Lenswood (or Cock Creek), Inverbrackie and Upper Onkaparinga catchments lie in the middle range of 20-28 ML/km². This is illustrated in Figure 15 that shows the number of farm dams and the storage volumes found in individual subcatchments for the years 1987, 1996 and 1999.

Trend in Farm Dams Development

It is noted that on average, farm dams development from 1987 to 1999 (Table 8) is increasing at a rate of approximately 75 ML/yr or a total of 900 ML over that period. This was lower than expected but on closer examination of the data it reveals that there was a rapid rise in the farm dams development in the recent years between 1996 to 1999 as half of the 900 ML incremental volume came from this period. The rate of farm dams development in this period was 150 ML/yr (or 0.27 mm/yr across the catchment).

Comparing with the Marne catchment (Savadamuthu, 2002), which is less than half the size in catchment, it has farm dams development at a rate of 160 ML/yr (or 0.55 mm/yr or across the catchment) from 1991 to 1999. Hence it appears that farm dam development is less rapid within the Onkaparinga River catchment. This could be due to greater control on the farm dams development in the catchment by limiting the dam size to land ownerships.

Derivation of Farm Dams Volume

There have been a number of formulations being proposed and used for estimating the farm dams volume based on surface area of the dam's water body at full supply level. Some also have the depth incorporated into the equation. The common approach for macro-catchment analysis is using one formula fit all for estimating farm dams volume to provide a simple and quick estimation of the aggregated dam storage within the catchment. However, in reality, the constructed farm dams come in different forms and depths and such approach of one equation fits all leaves the degree of accuracy of the aggregated dam storage debatable.

For this study, the formula V=0.044*S^{1.4} (McMurray 1996) was adopted as it was considered appropriate at the time "for estimating the stored water in farm dams in each of the Mt Lofty Ranges catchments" as suggested by the author. V is the dam storage in KL and S surface area of the dam in sq.m. At the time. it was also considered to be consistent with other studies such as the Marne catchment (Savadamuthu, 2002).

Further refinements to the formulae for estimating farm dam volumes are being developed as more survey information is collected. This information is to be collated by the DWLBC and a revised formula used when a sufficient body of data is available to substantiate a change.

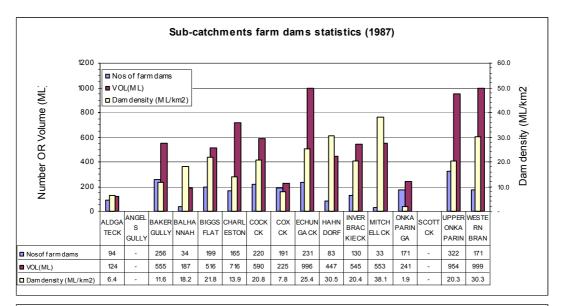
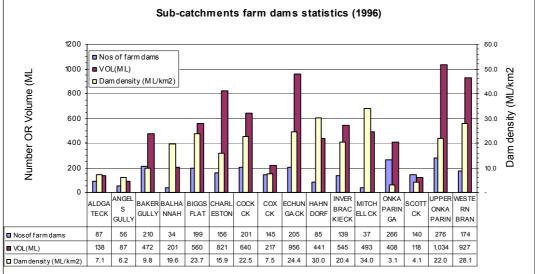



Figure 15. Subcatchment Farm Dam Statistics in 1987, 1996 and 1999

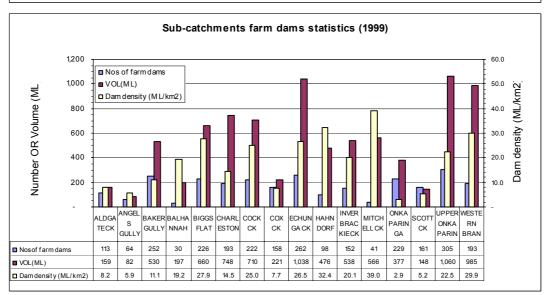
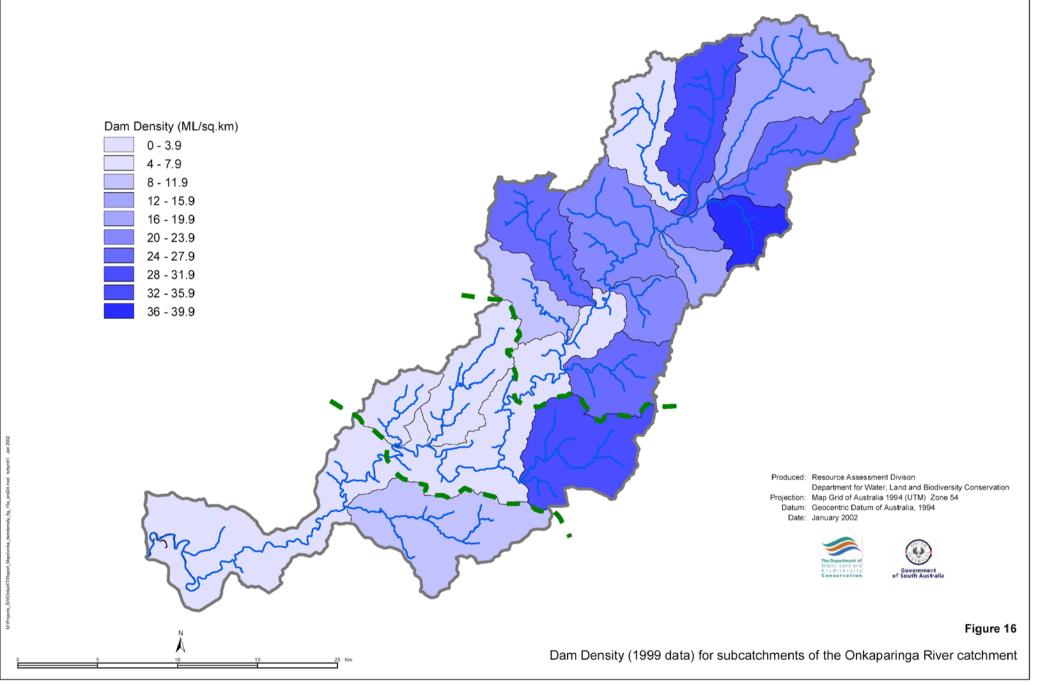



Figure 13 highlights an inconsistency in the number of dams of size <0.5 ML. This is best explained by the detail of information sought and the equation used to convert area to volume. The 1987 and 1996 surveys use different methods of data capture and it is suggested that the 1987 survey placed more emphasis of seeking out the smallest dams.

Groundwater

While the current study focuses on surface runoff, there is also significant groundwater use in the Onkaparinga River catchment. The interaction of groundwater and surfacewater is likely to be significant, but it has not been covered in this study. Groundwater is an important provider of baseflow, but a detailed examination of this is beyond the scope of this investigation. For modelling purposes, with the model, groundwater recharge is assumed to be equal to 30% of the estimated runoff. Surfacewater runoff makes up the remaining 70%. (*pers comm Cresswell*). streamflow losses This proportion is consistent with other studies in the Clare Valley and Mount Lofty Ranges Watershed (*pers comm* Cresswell) but will require further refinement as more data becomes available. Groundwater is an important source of water supply for irrigation as shown in the section titled Water Use below.

Water use

Irrigated Area

The Onkaparinga River catchment is a developed semi-rural setting catchment with a number of urbanised townships scattered within the area. Among them are Woodside, Hahndorf, Stirling, Balhannah, Lobethal, Summertown, Uraidla, Oakbank, Bridgewater and Aldgate all located inland and Old Noarlunga at the coast.

Agriculture is predominantly a mixture of irrigated horticulture and viticulture and the traditional dairy farming and grazing industries. Extensive irrigated areas are found mainly in the high rainfall zones of the upper portion of the catchment. Areas of dairy and grazing are, in order of significance, Onkaparinga Main Channel, Charleston, Baker Gully, Upper Onkaparinga, Echunga Creek, Western Branch and Inverbrackie Creek. The total irrigated area for the Onkaparinga River catchment is 5,200 ha or 9.3% of the catchment (Table 11).

The information quoted above is based on the 1999 land use database obtained from Primary Industry and Resources of South Australia (PIRSA). The details are provided in Table 9. The description of land use information is based on the Standards Australia Australia and New Zealand Land Use Codes (ANZLUC).

Subcatchment (ha)	Dairy Cattle	Horses	Live Stock	Improved Pasture NEC	Field Crops Temporal Agriculture	Forest Plantation	Protected Area	Protected Area NEC	Field Crops Irrigated Agriculture	Horticulture Trees	Vegetables NEC	Vine Fruit	Micellaneous	Total
Aldgate Creek	0	29	420	0	0	16	0	283	17	8	0	0	1,172	1,945
Angels Gully	51	31	777	98	0	0	276	1	0	15	0	8	152	1,408
Baker Gully	73	528	2663	178	22	506	2	375	29	19	0	239	163	4,796
Balhannah	29	182	547	42	22	0	0	3	0	17	19	40	122	1,024
Biggs Flat	285	269	1,041	181	0	8	0	47	42	13	0	12	468	2,365
Charleston	1,007	164	2,366	103	28	17	55	18	302	59	53	466	403	5,151
Cock Creek	244	101	630	0	0	57	25	456	17	1,100	2	167	42	2,840
Cox Creek	0	70	613	12	11	12	118	502	30	67	150	189	1,100	2,875
Echunga Creek	391	286	1,445	78	49	343	43	509	144	0	50	46	533	3,917
Hahndorf	77	38	773	0	2	1	0	59	0	22	19	30	447	1,468
Inverbrackie Creek	595	161	1,057	291	38	14	0	36	103	23	45	164	146	2,674
Mitchell Creek	200	225	621	92	0	4	0	0	51	19	74	0	164	1,451
Onkaparinga Main Channel	170	272	3,995	337	337	331	1,232	2,704	43	109	0	537	2,974	13,043
Scott Creek	140	72	1,016	9	0	8	815	542	0	52	4	13	178	2,850
Upper Onkaparinga	247	588	1,819	89	2	16	198	526	14	260	37	184	726	4,708
Western Branch	759	120	1,148	122	6	2	0	229	0	333	33	257	287	3,297
Grand Total	4,268	3,135	20,931	1,632	518	135	2,766	6,400	792	2,117	485	2,353	9,079	55,812

Table 9. Landuse Information for the Onkaparinga River Catchment (1999 data)

Miscelleneous includes other ANZLUC_DES classifications such as Accommodation, Cultural and Recreation services, etc not related to agricultures

Volumetric Estimates

Irrigation volume in the Onkaparinga River catchment is estimated to be 21,000 ML (based on 1999 land use figures). The volume is estimated using the "global application" method similar to the methodology adopted by previous researchers familiar with the Mt Lofty Ranges conditions (Kneebone, et al 2000). Essentially, an irrigation application rate is applied to a proportion of the classified irrigated agricultural area to obtain the irrigated area and the volume. The application factors are shown in Table 10 below.

ANZLUC DES	Application mm/ha	Proportion of Irrigated Area
Dairy cattle	650	0.15
Field crops ~ irrigated agriculture	650	0.5
Field crops ~ temporal agriculture	0	
Forest plantation	0	
Horses	650	0.1
Horticulture - trees	400	0.8
Improved pasture nec	650	0.15
Livestock	0	
Vegetables nec	400	0.3
Vine fruit	200	0.75

Table 10. "Global Application" Factors for Irrigation"Global Application" Factors for Irrigation

The estimated application volumes are summarised for each subcatchment in Table 11.

Subcatchment	Area Irrigated (ha)	Total Volume (ML)	Proportion of Subcatchment Irrigated (%)
Aldgate Creek	17.6	98	0.9%
Angels Gully	43.5	225	3.1%
Baker Gully	299.3	1,101	6.2%
Balhannah	78.2	325	7.6%
Biggs Flat	137.2	825	5.8%
Charleston	746.5	3,122	14.5%
Cock Creek	1,060.4	4,129	37.3%
Cox Creek	264.4	834	9.2%
Echunga Creek	220.5	1,240	5.6%
Hahndorf	60.9	238	4.1%
Inverbrackie creEk	355.8	1,678	13.3%
Mitchell Creek	129.3	747	8.9%
Onkaparinga Main Channel	615.6	1,969	4.7%
Scott Creek	82.3	383	2.9%
Upper Onkaparinga	473.8	1,909	10.1%
Western Branch	613.4	2,428	18.6%
Grand Total	5,198.8	21,251	9.3%

Table 11. Irrigation Statistics for the Onkaparinga River Catchment (1999 data)

Comparison of the 1999 data with the 1993 irrigation statistics, (which identifies 4,400 ha of irrigated area requiring 17,400 ML of irrigation water (Kneebone, et al 2000)), indicates an increase of 18% in irrigated area and 21% in the irrigation water over the six year period.

Based on a total farm dam storage of 8,500 ML (Table 8), and assuming between 30-70% of farm dam storage can be used for irrigation, it is estimated that 2,600-5,950 ML of surfacewater runoff is used for irrigation. The percentage chosen represents an educated guesstimate of the lower and upper bound water use obtained from farm dams across the catchments (*pers comm Cresswell*). This leaves the balance of irrigation water to be derived from other sources, predominantly groundwater.

The ratio of use between groundwater and surfacewater appears to be very high suggesting that 21,000 ML may be an overestimate of total water use. It should be cautioned that the irrigated area and the irrigation volume estimated by the "global application" method should be applied with care. Further verification in the estimation of water usage will be required.

Model Construction

A hydrological model for the Onkaparinga River catchment was constructed using a PC based computing program called *WaterCress*, which stands for *W*ater-Community *R*esource *E*valuation and Simulation System. The steps and assumptions used for constructing the model are described in Appendix B.

The Onkaparinga River catchment was sub-divided into 95 smaller catchments varying in sizes to represent the rural catchment nodes in the model. Townships within the catchment were represented in the model as urban nodes of impervious nature. Aggregated farm dams storage were represented in the model as on-stream dam nodes or off-stream dam nodes depending on the dam location relative to the stream system. Routing nodes were added in the model to facilitate better calibrations.

Daily rainfall data were used as inputs to the model to generate catchment runoff. Data from ten rainfall stations (refer Table 2) were selected for the model.

The WaterCress Model has a number of different runoff generation routines to choose from. The WC-1 runoff routine was used to simulate runoff in the rural areas and the initial loss and continuing loss routine (ILCL) was used for urban areas.

Calibration

General

Model calibration is performed by comparing the simulated runoff of a modelled catchment with the actual streamflow or reservoir volume records. The catchments that have a gauging station to calibrate against are listed in Table 12. As the length of streamflow records vary from one station to another, so does the duration of the runoff simulation for calibration. Where a data gap or doubtful record exists, an appropriate quality code is added to indicate the quality of the data. The *WaterCress* model allows these doubtful data to be taken out when comparing the simulated catchment runoff with actual streamflow records.

GS Station	Node Number	Location	Catchment Area km ²	Record Start	Record End
503502	196	Scott Ck	26.6	28–03–1969	01-08-2000
503503	195	Baker Gully	48	12-04-1969	02-08-2000
503504	101	Houlgrave	321	18-04-1973	11-07-2000
503506	194	Echunga	34.2	23-03-1973	29-08-2000
503507	192	lenswood	16.8	19-03-1972	29-08-2000
503508	190	Inverbrackie	8.4	18-05-1972	14-09-2000
503509	193	Aldgate	7.4	14-07-1972	05-09-2000
503526	202	Cox Ck	5.5	24-06-1976	01-01-2001
503530	191	Kerber	1.0	31-07-1987	07-11-1989

 Table 12.
 The Location of Calibrated Gauged Catchments

Model calibration within *Watercress* is an iterative process that involves adjustment of input parameters for each simulation run until a good correlation can be obtained between the simulated catchment runoff and the gauged streamflows. This is carried out by comparing the plots of the modelled and the actual streamflows in daily, monthly and annual time series. In addition to the plots, the *WaterCress* program allows the statistical analysis of the modelled and the actual streamflows in these time frames. Calibration performance is indicated by attaining high values for R-squared and Coefficient of Efficiency set.

Catchment characteristic set

In the hydrological model for rural catchment nodes, (WC-1 runoff model) there are 10 input parameters required for the model. They are:

- Median soil moisture
- Interception store
- Catchment distribution
- Groundwater discharge
- Soil moisture discharge
- Pan factor soil
- Fraction groundwater loss
- Store wetness multiplier
- Groundwater recharge fraction
- Creek loss

These 10 parameters form a "catchment characteristic set". To simplify the calibration process, among these parameters, the Pan factor, Store wetness multiplier and Groundwater recharge fraction are fixed at 0.65, 0.85 and 0.3 respectively. Soil moisture discharge is set in the range between 0.00001-0.0001. The parameters widely adjusted for calibration are the Median Soil Moisture, Interception Store and Catchment Distribution. They represent the median soil moisture holding capacity of a soil mass, the maximum initial interception from rainfall before runoff can be generated and the variation of the soil moisture capacities around the median value.

For calibration purposes, with the exception of the Houlgrave catchment, it is assumed that a gauged catchment would exhibit only one "catchment characteristic set". The catchment characteristic sets of the calibrated catchments are shown in Table 13 and relate to a particular landuse and/or geology.

As Hougrave is a large catchment (321 km²), it is logical to consider that it would exhibit a number of catchment characteristic sets to be selected from the existing calibrated gauged catchments. In order to correlate these catchment characteristics, landuse and soil survey information from the respective catchments were examined. For instance, Lenswood catchment is considered to be mainly horticulture, Echunga and Baker Gully catchments are predominantly grazing, Inverbrackie catchment is general grazing with particularly rocky landscape, Aldgate catchment is mainly urban while Cox catchment is a mix of urban and horticulture. For Scott Creek catchment, it is mainly natural landscape with large reserve land. Burnt Out Creek catchment is a very small catchment (0.56 km²) planted with pine trees. (It was modelled and calibrated separately as a stand alone model).

Dam information

Dam water usage input into the model was taken as 30% (i.e. 0.3 fraction of sotrage) and the irrigation was assumed to occur during the summer months (i.e input distribution for the model is type 3). See the section on Modelling Runoff Simulations.

Calibration Results

Calibration for the Onkaparinga model is considered to be reasonably good as reflected in the statistical values of R-squared and Coefficient of Efficiency set shown in Table 13 for the gauged catchments, particularly the Houlgrave Weir catchment. The R-squared value is in the 0.90s range and the Coefficient of Efficiency in the 0.80s range.

Model simulation produced better calibration for monthly and annual runoff than the daily flows. Extreme events such as high and low rainfall intensity are not well handled by a daily rainfall runoff model. The WaterCress model relies on the input of rainfall in daily time steps, which tells little about the rainfall intensity. In reality, rainfall can happen in a short burst of thunderstorm causing a spike in streamflow. As a result, the peak flow and the recession part of streamflow is difficult to calibrate.

The groundwater discharge, conveyance losses and baseflow characteristic of a stream can add an additional dimension of difficulties which are not easily simulated by the model. From experience, calibration in the low flow regime is particularly difficult to handle. The approach adopted was to fine-tune the routing node parameters, groundwater discharge, soil moisture discharge, fractional groundwater loss and creek losses.

Plots of modelled daily, monthly and annual catchment flows against the gauged records of Houlgrave weir catchment (diversion from the River Murray is excluded) can be found in Appendix C. Plots for other gauged catchment calibrations are also provided in the Appendix. It also contains a plot of annual catchment yield at Clarendon weir from 1900-1998, modelled with the impact of Mt Bold reservoir removed from the runoff simulation. The plot compares well with that produced by Tomlinson (1996) who derived the catchment yield from water balance method assuming Mt Bold reservoir did not exist.

It is intended that the model is to be used to determine the effects of farm dams on catchment yields, which would normally be reported in terms of monthly and annual flows. The model calibration results confirm the suitability of the model for this purpose.

Table 13 contains three parts:

- 1) model calibrated parameter
- 2) dam information
- 3) calibration statistics

Table 13. The Statistics of the Calibrations for the Gauged Catchments

(1) Parameter	Cox Ck	Aldgate Ck	Scott Ck	Burnt Out Ck	Lenswood or Cock Ck	Echunga Ck	Kerber Ck	Inverbrackie	Baker Gully	Houlgrave Weir
Available	24/6/76	14/7/72	28/3/63	13/1/78	19/3/73	23/3/73	31/7/87	18/5/72	12/4/69	18/4/73
Records (with gaps)	to 1/1/00	to 5/9/00	to 1/8/00	to 16/11/88	to 29/8/00	to 29/8/00	to 7/11/89	to 14/9/00	to 2/8/00	to 11/7/00
Revision No.	10	16	35(a)	3	8	12	11	31	19	8
Start Year	1976	1972	1982	1978	1972	1975	1987	1974	1970	1974
Over (Year)	24	28	17	12	28	25	3	22	18	26
Daily	1995	1995	1994	1980	1995	1990	1987	1993	1980	1990
Over (Year)	5	5	5	8	5	8	2	5	8	8
Node No.	202	193	196	N/a	192	194	191	190	195	101
Catchment Characteristic Set	1	2	3	4	5	6	7	8	9	Mixed
Model Type	WC-1	WC-1	WC-1	WC-1	WC-1	WC-1	WC-1	WC-1	WC-1	WC-1
Parameters Required	10	10	10	10	10	10	10	10	10	10
Median Soil Moisture MSM	190	220	220	242	115	220	180	110	197	
Interception Store IS	14	15	18	22	14	17	17	14	17	
Catchment Distribution CD	41	60	60	60	41	50	50	45	40	
Groundwater Discharge GWD	0.01	0.3	0.02	0.01	0.03	0.01	0.01	0.03	0.01	
Soil Moisture Discharge SMD	0.00001	0.00001	0.00001	0.00001	0.00005	0.00004	0.00004	0.00003	0.00003	
Pan Factor Soil PF	0.65	0.65	0.5	0.65	0.65	0.5	0.65	0.65	0.65	
Fraction Groundwater Loss FGL	0.2	0.3	0.3	0.3	0.002	0.002	0.002	0.002	0.002	
Store Wetness Multiplier SWM	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	
Groundwater Recharge Fraction GW	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	
Creekloss CL	0.002	0	0	0	0	0	0	0.002	0.002	

(2) Dar	n Information											
Input Ann	ual as Fraction o	f Storage	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Input Dist	ribtion		3	3	3	3	3	3	3	3	3	3
(3) Statis	stics	No. of Samp	les	R Square	Coe	f of iency	Variation	n of CV	Std Erro Estimate		% Diff in	Volume
Cox Ck												
	Daily	1830		0.69	-0.2	3	0.61		225		-4.97	
	Monthly	207		0.92	0.82		0.1		4363		-1.77	
	Annual	12		0.72	0.06		0.41		127000		-1.23	
Aldgate C	k											
	Daily	1830		0.7	0.33		0.07		289		4.03	
	Monthly	258		0.92	0.84		-0.1		7071		-3.26	
	Annual	16		0.79	0.57		0.014		161734		-0.43	
Scott Ck												
	Daily	1810		0.76	0.52		-0.019		500		-0.6	
	Monthly	192		0.92	0.85		-0.04		13080		0.31	
	Annual	11		0.88	0.78		-0.08		241000		0.035	
Burnt Out	Ck											
	Daily	2884		0.66	-1.2		0.83		6		6.4	
	Monthly	140		0.78	0.45		0.19		260		-1.7	
	Annual	9		0.79	0.62		-0.14		5800		-6.14	
Lenswood	l or Cock Ck											
	Daily	1830		0.81	0.52		0.04		526		12.18	
	Monthly	264		0.94	0.87		-0.03		11900		-8.8	
	Annual	19		0.84	0.68		0.01		247787		-4.25	
Echunga (Ck											
	Daily	2470		0.81	0.6		0.01		663		3.26	
	Monthly	259		0.93	0.85		-0.06		15046		-10.3	
	Annual	13		0.96	0.92		-0.04		186435		-4.9	
Kerber Ck												
	Daily	628		0.58	0.26		-0.1		400		-6.04	
	Monthly	27		0.83	0.67		-0.05		1040		-15.1	
	Annual	3		0.94	0.82		0.06		9100		-12.6	
Inverbrack	kie											
	Daily	1830		0.74	0.45		-0.32		150		57.6	
	Monthly	253		0.89	0.78		-0.14		5460		-6.3	
	Annual	17		0.88	0.76		-0.19		91700		-0.71	
Baker Gul	ly											
	Daily	2896		0.69	0.37		0.06		930		-5.4	
	Monthly	216		0.88	0.77		-0.16		24400		-0.17	
	Annual	13		0.9	0.8		-1.34		376400		-0.37	
Houlgrave	Weir											
	Daily	2928		0.92	0.84		-0.06		4300		9.4	
	Monthly	311		0.94	0.88		-0.11		147900		-4.5	
	Annual	25		0.93	0.86		-0.1		2331100		-2.24	

N/a: Burnt out creek was modelled and calibrated separately

Modelling Runoff Simulations

This section contains information on:

- 1 setting the current and future modelling scenarios with conditions applied to the scenarios
- 2 modelling runoff simulations for
 - the short term situations to establish the rainfall-runoff relationships and the impact on water supply, and
 - the long term situations to study the impact catchment yield at 16 major subcatchments, Houlgrave Weir and Clarendon Weir catchments respectively.

Setting the current and future scenarios

Runoff simulation is applied with the following scenarios to study the impact of farm dam development on the Onkaparinga River catchment:

- Scenario 1 (WFD): With farm dams. This is the scenario using 1999 farm dams data. The aggregated dam storage is 8500ML.
- Scenario 2 (WOFD): Scenario 2 provides an assessment of the catchment yield as if **no farm dams** existed in the catchment (ie. with the impact of farm dams removed). This catchment yield is not the pre-European natural catchment runoff as the model uses the current land use conditions for flow calibration and runoff simulations. Hence the flow generated under this scenario is termed the "*adjusted*" flow rather than the natural flow.
- Scenario 3 (S20): This scenario assumes the current storage (8500 ML) is increased by 200% of the incremental increase storage between 1987 and 1999 which gives a total storage of 10.2 GL . It would take 10 years to reach this volume if the farm dams development were to continue in a rate of 150 ML/yr as stated in the earlier "Trend in farm dams development" Section. (Note: other conditions applied in the derivation of dam storage as explained in the later paragraph)
- Scenario 4 (5%RF): This scenario represents the maximum allowable farm dam developments based on the current 50% management rule (i.e. dam size can be constructed up to 50% of 10% annual rainfall or simply 5% of rainfall). To achieve this state of development, the current aggregated storage is raised to 5% of catchment annual rainfall with a total volume of 18.7 GL. Assuming farm dams development is increasing at a rate of 150 ML/yr, this would take approximately 70 years to reach this volume. (other conditions also applied as explained later).
- Scenario 5 (30%RL): This scenario assumes the maximum allowable farm dam developments is 30% of the catchment median adjusted runoff. This is the proposed allowable farm dam development policy for the Eastern Mount Lofty Ranges. Hence for the scenario, the current aggregated storage is raised to 30% of median annual adjusted*⁷ catchment yield with a total volume of 18.7 GL (again, other conditions applied as explained later).

⁷ * the adjusted catchment yield is that yield with the impact of farm dams removed from the catchment Estimating the Impact of Current Farm Dam Development on the Surface Water Resources of

Scenario 6 (50%RL): The current aggregated storage is raised to 50% of median annual adjusted* catchment flow with a total volume of 29.4 GL. This is the 50% rule scenario as stated in the State Water Plan 2000, Vol 1 pp 50. At a rate of 150 ML/yr in farm dams development, this would take 140 years to reach the volume.

(* adjusted yield is that runoff generated with the impact of farm dams removed but using existing land use scenario)

The scenarios represent a range of conditions from present to the ultimate condition which are assumed to be constrained by specific policy rules, which limit the amount of storage on the catchment. These are explained in the following paragraphs. The economic capacity of the catchment to support further dam development has not been considered.

The spatial distribution of the additional storage identified in the scenarios is not considered to be uniformly distributed across the catchment, but considers the likelihood that any given area might be dammed. Areas identified as unsuitable due to presence of conservation reserves or incompatible landuse have been identified by McMurray (2002). A potential dam development factor (Dla_pc) is applied to each subcatchment node to take into account the catchment areas where farm dam development is unlikely. This factor effectively weights the proportion of potential development across each sub area of the catchment.

For scenarios 4, 5 and 6 the storage volume in each sub catchment is simply calculated by raising storage to the rules defined but limited by the potential dam development factor. Where a subcatchment is found to already exceed the scenario limit, the actual farm dam volume is retained in the model.

The derivation of allowable storage for the scenarios 3 –6 is as follows:

Scenario 3 (S20):

The existing farm dam storage were factored up using the formulae:

$$Dam \ storage = Current \ dam \ volume + \frac{Catchment \ node \ area}{Onka \ River \ catchment \ area} * Dla _ pc * 2400$$

The constant 2400 ensures the aggregated dam storage of the total catchment equals the intended volume 10.2 GL for ten years project of dam development.

Scenarios 4 (5%RF):

Dam storage = Catchment node area * Dla _ pc * 5% of the catchment rainf all

Scenarios 5 (30%RL):

 $Dam \ storage = \frac{Catchment \ node \ area}{The \ major \ sub-catchment \ area} * Dla_pc*30\% \ of \ the \ median \ annual \ adjusted \ flow$

Scenarios 6 (50%RL):

$$Dam \ storage = \frac{Catchment \ node \ area}{The \ major \ sub-catchment \ area} * Dla_pc * 50\% \ of \ the \ median \ annual \ adjusted \ flow$$

In addition to total storage, three other considerations, annual usage, distribution of monthly usage, and free to flow distribution will significantly affect the impact of farm dam storage on streamflow.

The annual usage is highly significant, as can be the distribution of monthly usage across the year that this water is taken.

As little is currently known of the usage in the Mt Lofty watershed, three differing annual usage rates, namely 30%, 50% and 70% of storage were considered for each storage scenario. The usage percentages are based on what is believed to be likely range of use within the Mt Lofty Ranges. The lower bound, 30%, represents a usage rate where there will be significant carry over of stored water to the following year. The upper bound, 70%, given summer evaporation and numerous years where there would have been insufficient streamflow to fill the dam, represents the maximum volume of water achievable.

Therefore, each farm dam development scenario would generate three cases of catchment runoff simulations with varying annual water use. A total of 16 cases of runoff simulations were therefore carried out.

For runoff simulation, scenario 1 (**1999 data**) modelled with **30%** of dam storage use is considered as **the current farm dams development scenario** from which the model is calibrated. While little information is currently available regarding the usage of water from farm dams, reference to past aerial photography indicate that significant volumes of water remain in the storages following the irrigation season. For this reason 30% use, as an average throughout the entire catchment, has been considered to be the current level of use and greater percentages represent increasing irrigation development toward the ultimate conditions.

Within the model, the distribution of monthly usage drawn from dam storage was considered to be the same for all cases of runoff simulation. It was modelled with the assumption to best describe the typical usage in the Mt Lofty Ranges, when irrigation occurred mostly in summer months. The monthly usage factor, as a fraction of the annual usage, is shown below:

Month												Dec
Factor	0.21	0.25	0.20	0.11	0	0	0	0	0	0	0.07	0.16

As farm dams are unlikely to be developed with a constant distribution across the catchment there will be regions where dam development is high and conversely areas of the catchment which are free to flow. Within the hydrological model, off-stream dam nodes have been incorporated to simulate this condition with varying degree of diversion. The incorporation of off-stream dams gives the user the ability to control the volume of streamflow being trapped in storage. For scenarios 3 - 6 as additional farm dam development is added, the diversion of streamflow to the off-stream dam nodes is not allowed to exceed two-thirds of the catchment runoff. If the current development scenario has already exceeded this diversion value then the current scenario is retained.

The fraction adopted of two thirds is arbitrarily estimated assuming that the proportion of the catchment that is free to flow will likely be controlled by other policy. The Water allocation plan developed for the Clare Valley limits the reduction in the free to flow area to 50%. It is suggested that the 2/3 as adopted in this study is $\frac{1}{3}$ a maximum level of impact that could be accepted, and therefore in the study represents the upper bound of impacts of the future scenarios.

Table 14 shows the aggregated dam storage of individual major subcatchments under the different scenarios. The aggregated dam storage (upstream of Noarlunga gauging station) for scenario 3 is about 20% higher than the current farm dam volume, for scenarios 4 and 5, it is 2.2 times the current volume, and scenario 6 is 3.5 times. Note that the allowable 50% rule farm dam development equates to a reduction of approximately 37% of the catchment median flow due to conditions attached to the set up of the hypothetical scenario. A farm dam development of 5%

catchment rainfall has aggregated dam storage approximately equal to the 30% of catchment median flow scenario.

Modelling runoff simulations

Modelling runoff simulations were carried out in two ways: one for the short-term runoff simulation for the duration where gauged streamflow information was available; the other for the long-term simulation from 1900 to 1998.

A. The purpose of the *short-term* simulation was two fold:

- To study the rainfall-runoff relationship of gauged catchments where this information would be useful for an assessment of runoff in a similar catchment where only rainfall records were available. Hence runoff simulations were limited to the gauged areas only. In this case, only the current scenario (with 1999 farm dam development or scenario 1 and 30% dam storage use) was modelled.
- To assess the impact of farm dams development on the water supply into the Mt Bold and Clarendon Weir reservoirs.

To quantify the impact, the current scenario was used as the baseline. Any reduction in the inflows into Mt Bold and Clarendon weir reservoirs from the baseline as a result of increasing farm dams development was then assumed to equate to the volume of additional pumping required from the River Murray.

Simulation for the current scenario used a combination of ungauged catchments with current scenario parameters and gauged catchments with streamflows records as input for the model. The gauged catchments applied to all of Houlgrave weir (less pumpage), and most of Echunga and Scott Creek catchments. Hence the model, with the water supply system incorporated in it, virtually used all the real flow data for the simulation of the current scenario.

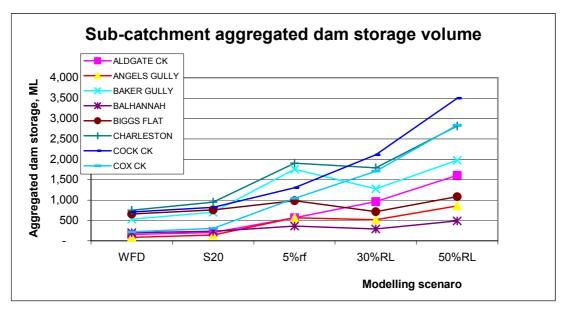
Historical water use data from the Happy Valley Reservoir, Myponga Reservoir, the Onkaparinga Valley Scheme and the pumpage of inter-basin water transfer from the River Murray into Mt Bold reservoir were inputs into the model.

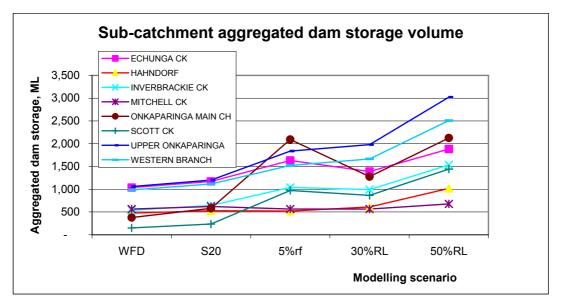
Model simulation was carried for the period from 1975-1998. Flow simulations were performed for the model such that the Mt Bold and Clarendon weir reservoirs would be allowed to fill to its full supply level whenever water was available. This is by no means reflecting the true operations of the Mt Bold Reservoir. Nevertheless, when the model was simulated with current scenario for the period 1986-1998 using the water supply system set up in this manner, it appears to replicate well with the historical Mt Bold reservoir storage level of this period, except 1994 when the reservoir was emptied for maintenance. (Refer Figure 39 in Appendix C). Refinement to the results of model simulations is possible if the operating rules to the water supply system can be established and incorporated into the model.

The other farm dams development scenarios were also modelled, each with farm dams storage use at 30%, 50% and 70% level to study the sensitivity of dam usage impacting on the water supply. The results of simulated inflows into the Mt Bold reservoir and the Clarendon weir reservoirs were compared with that of the current scenario. Any reduction in the runoff was treated as a shortfall to be compensated from additional pumping from the River Murray. (See Tables 28-30).

B. The *long-term* runoff simulations provide a better understanding of the catchment runoff for individual catchments on a wide range of climatic conditions varying from an average year to the extreme situation such as a series of wet or dry years. This provides a reasonable assessment of the risk factor associated with the unpredictable climate for farm dams development over the long term within the studied catchment. Daily rainfall data between the period 1900 to 1998 were used

for modelling each scenario listed earlier. With the exception of scenario 2, each scenario was modelled with dam storage use of 30%, 50% and 70%. Again this was to check the sensitivity of the water usage from dams on the catchment yield. Modelling and interpretation of the output results for the respective catchments were carried out for:


- Each of the 16 major subcatchments
- Houlgrave Weir catchment
- Clarendon Weir catchment. In this case, Mt Bold Reservoir was removed from the model runoff simulations. This was to assess the available quantity of surfacewater within the catchment if not impacted by the reservoir.


Results of each runoff simulation were presented on three climatic conditions, namely in a median year, a dry period and a wet period condition:

- Flow occurring in a median year means that it represents an average year condition. It is taken as the median flow for the period between 1990-1998.
- Flow occurring in a dry-period means that it is the average flow of a defined 3-year dry period. It represents flow in the driest condition for the last 100-year situation. The defined dry-period is derived from the lowest annual rainfall of the 3-year moving average. In this case, the dry-period occurred from 1912-1914.
- Flow occurring in a wet-period means that it is the average flow of a defined 3-year wet period. It represents the flow in the wettest condition in the last 100-year situation. The defined wet-period is derived from the highest annual rainfall of the 3-year moving average. In this case, the wet-period occurred from 1915-1917.

Subcatchment	WFD ML	S20 ML	5%rf ML	30%RL ML	50%RL ML
Aldgate Ck	159	203	570	963	1,605
Angels Gully	82	139	567	514	857
Baker Gully	530	703	1,758	1,275	1,978
Balhannah	197	234	362	292	487
Biggs Flat	660	758	986	717	1,080
Charleston	748	949	1,902	1,793	2,819
Cock Ck	710	824	1,305	2,112	3,500
Cox Ck	221	304	1,043	1,704	2,841
Echunga Ck	1,038	1,173	1,631	1,389	1,881
Hahndorf	476	527	521	611	1,018
Inverbrackie Ck	538	645	1,040	992	1,535
Mitchell Ck	566	621	566	566	679
ONKAPARINGA MAIN CH	377	582	2,091	1,276	2,126
Scott Ck	148	235	974	865	1,441
Upper Onkaparinga	1,060	1,203	1,838	1,981	3,022
Western Branch	985	1,115	1,524	1,666	2,507
Grand Total	8,495	10,215	18,675	18,715	29,377

Table 14. Aggregated Dam Storage for Different Scenarios

Rainfall Runoff Relationship

Modelling using current scenario.

Rainfall-runoff relationship of a gauged catchment can be developed by plotting the annual rainfall versus the catchment runoff. This relationship can be expressed as a Tanh curve equation. With modification to the equation expressed by Grayson R.B. et al (1996), using an addition of two constant values "a" and "b", the general form Tanh curve equation for a gauged Onkaparinga River catchment can be provided as below:

Tanh curve runoff, $Q = a \times [P - L] - b \times F \times Tanh \frac{(P - L)}{F}$

Where

- a, b are constants and equal to 0.72 and 0.75 respectively
- Q, discharge (mm)
- P, precipitation (mm)
- L, notional loss (mm)
- F, notional infiltration (mm)

The values for a, b, L and F were derived by trial and error so that the best smooth curve can be plotted by eye through the points. Prior to the inclusion of parameters a and b, it was found that the derived values for L and F introduced many inconsistencies. This made useful comparison between the catchments difficult. These problems were overcome by the addition of two constants a and b into the equation. The resulting L and F values are shown in Table 15. As South Australian streams are more likely to exhibit arid or semi-arid flow characteristics, it is felt the format of Tanh curve proposed by Grayson et al (1996) may require further examination to its suitability application in this region.

Annual rainfall runoff relationships enable a quick assessment of the hydrological runoff characteristics of individual catchments. They have been commonly used in the past in Water Allocation Planning studies to identify limits to farm dam development. In 1987, Clark produced similar rainfall runoff relationship curves for a number of gauging stations in the Mt Lofty Ranges. This report, using a longer duration of gauged data currently available and with output from the hydrological model simulations, provides an update of his study.

Tanh curve rainfall-runoff relationship of a gauged catchment produced in this report was plotted with rainfall against the gauged and adjusted gauged flows. The gauged flow reflects catchment runoff with farm dams taken into account. The adjusted gauged flow assumes catchment runoff in a "natural" flow condition with the impact of farm dams removed. This is obtained by adding the volume of water trapped in farm dams to the gauged flow and hence is termed the *adjusted gauged flow* of the catchment. The trapped volume is obtained by taking the difference between the adjusted flow and the measured flow at a gauged station. The 'adjusted' or natural flow of a catchments was obtained from the model simulations with farm dams removed from the catchment.

A typical plot that compares the gauged and adjusted gauged streamflow (without the impact of farm dams) with respect to annual rainfall is shown in Figure 17 (Echunga Creek). A series of

rainfall-runoff relationship curves for other gauged catchments is provided in Appendix D. The Tanh curve equations governing these curves are summarised in Table 15. It is noted that the impact of farm dams is seen as an increase in the notional loss factor L.

Gauged Catchment		Gauged Flow	Adj	justed Gauged Flow
	L (mm)	F (mm)	L (mm)	F (mm)
Aldgate	230	380	200	380
Bakers Gully	260	450	235	450
Clarendon weir	230*	435*	210	435
Cox ck	230	450	210	450
Echunga ck	345	480	325	480
Houlgrave weir	260	450	235	450
Inverbrackie ck	230	380	210	380
Lenswood ck	230	460	200	460
Scott ck	280	470	265	470

Table 15. Factors for the Tanh Curve Equations

denotes modelled flow for the period 1900-1998 with current farm dam development condition.

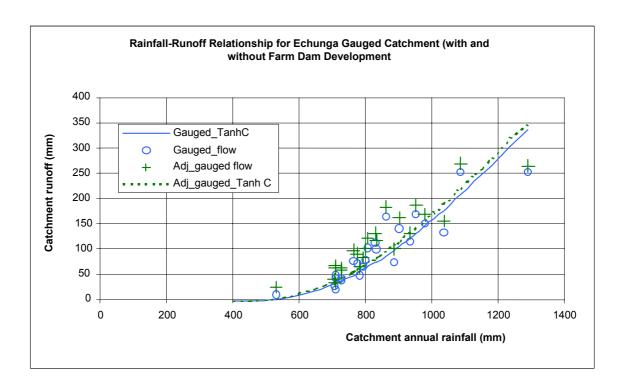

Table 16 quantifies the impact of current farm development on the gauged catchments where the adjusted gauged flow is the flow with farm dams removed from the model. It is noted that of all the available gauged stations, only Inverbrackie and Echunga gauged stations show a significant impact from farm dam development with 16% of runoff trapped in storage. However these percentages could be greater if the current usage exceeds 30% of storage volume.

Table 16. Mean Gauged and Mean Adjusted Gauged Flow

Gauged Catchment	Period	Mean Gauged Flow	* Mean Adjusted Gauged Flow	Percentage Trapped
Aldgate	1973-1998	2505	2547	2
Bakers Gully	1970-1986	4496	4855	7
Cox ck	1976-1998	1486	1500	1
Echunga ck	1975-1998	3324	3971	16
Houlgrave weir	1974-1998	52645	56788	7
Inverbrackie ck	1974-1998	929	1100	16
Lenswood ck	1972-1998	3951	4228	7
Scott ck	1982-1998	3546	3592	1

* assumed usage 30% of storage

Figure 17. Rainfall Runoff Relationship for Echunga Gauged Catchment (with and without farm dam development: 1975–1998)

Impact of Farm Dams on Individual Catchments (1900-1998)

Runoff simulations were performed on individual catchments, each "with dams" scenario, for the three levels of assumed water use (30%, 50% & 70%) from the dams. Catchment yields were then calculated for these cases.

Runoff volumes from Scenario 2 – the "without dams" case were subtracted from each case to estimate the effect of farm dams on yields. The reduction in yield was expressed as a percentage of the adjusted flow (ie scenario 2). The results are presented below and are categorised into wet, dry or average periods.

Current scenario

Modelling was carried out using 1999 farm dam data with 30% dam storage use. The results of the runoff simulations for the 16 subcatchments are summarised in Tables 17-19. Table 17 quantifies the median catchment yield (taken as the flow of a median year) with and without farm dam development in the 99-year period. Table 18 and 19 show the catchment yields during the extreme climate of dry (1912-1914) and wet (1915-1917) period. Figures 18-19 show the plots of the percentage catchment yield captured for these periods.

More details of the individual subcatchment yield impacts from farm dams in terms of the ANNUAL mean, median, 10th and 90th percentiles are provided in Appendix D. The 10th and 90th percentile catchment yields shown in the Appendix represent the 10% and 90% in the ranking of ANNUAL data. The catchment yield based on the 10th and 90th percentiles tends to produce more extreme events than indicated in the Tables 19-20.

Catchment Location	Area	Dam Storage (a)	Farm Dam Density	Median Rainfall	Median Adjusted Catchment Yield over the Period (b)	Yield Captured by Farm Dams		Ratio a/b (50% rule)
	km²	ML	ML/ km ²	mm	ML	ML	%	%
Aldgate Creek	19.5	159	8.16	1,097	6,058	104	2	3
Angels Gully	14.1	83	5.86	810	1,842	76	4	5
Bakers Gully	48.0	530	11.05	725	4,498	408	9	12
Balhannah	10.2	197	19.24	809	1,146	115	10	17
Biggs Flat	23.7	660	27.91	829	2,218	379	17	30
Charleston	51.5	748	14.52	807	6,118	520	8	12
Cox Creek	28.8	221	7.68	975	8,480	139	2	3
Echunga Creek	39.2	1,038	26.51	868	4,237	571	13	25
Hahndorf	14.7	476	32.40	851	2,513	288	11	19
Inverbrackie Creek	26.7	538	20.12	783	3,267	218	7	17
Lenswood Creek	28.4	710	25.00	972	7,527	462	6	9
Mitchell Creek	14.5	566	38.99	783	1,525	300	20	37
Onka Main Channel	130.4	377	2.89	821	11,663	301	3	3
Scott Creek	28.5	148	5.19	891	4,059	47	1	4
Upper Onkaparinga	47.1	1,060	22.52	950	8,623	621	7	12
Western Branch	33.0	985	29.87	876	5,351	556	10	18

 Table 17.
 The Impact of Farm Dams on Median Catchment Yield (1900-1998)

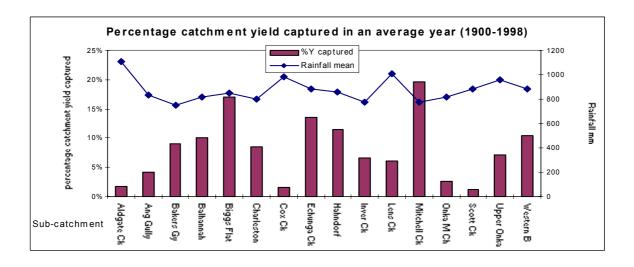
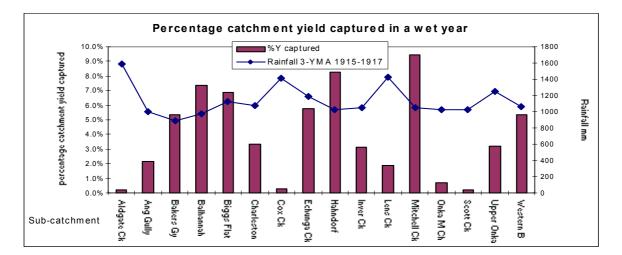
Table 18. The Impact of Farm Dams on Catchment Yield During the Defined DryPeriod (1912-1914)

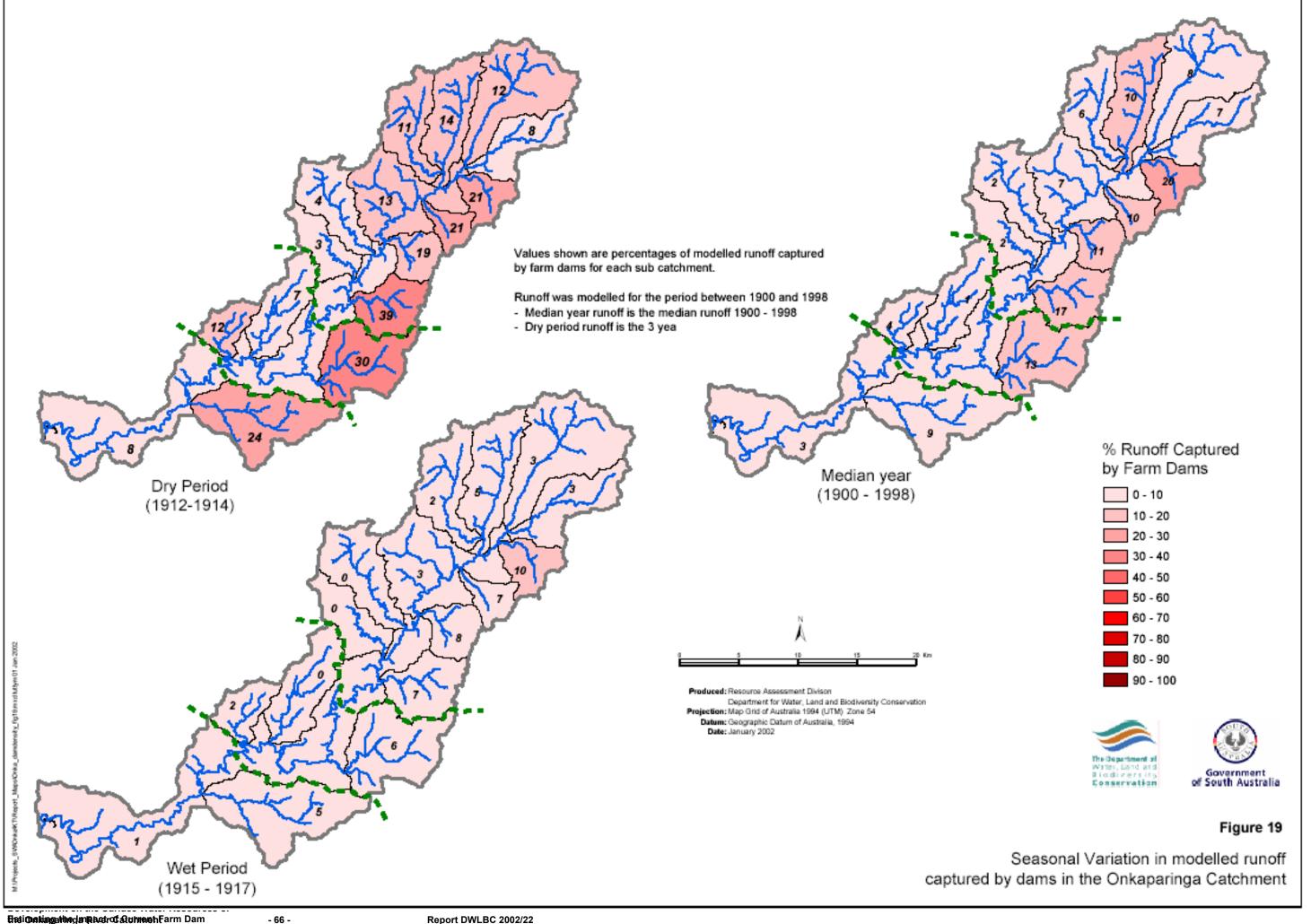
Catchment Location	Area	Dam Storage (a)	Farm Dam Density	Rainfall (mean of 1912– 1914)	Median Adjusted Catchment Yield over the Period (b)	Yield Captur Farm I	•	Ratio a/b (50% rule)
	km²	ML	ML/ km ²	mm	ML	ML	%	%
Aldgate Creek	19.5	159	8.16	853	2,839	95	3	6
Angels Gully	14.1	83	5.86	600	371	45	12	22
Bakers Gully	48.0	530	11.05	536	808	191	24	66
Balhannah	10.2	197	19.24	602	377	78	21	52
Biggs Flat	23.7	660	27.91	683	793	308	39	83
Charleston	51.5	748	14.52	640	2,923	339	12	26
Cox Creek	28.8	221	7.68	758	3,665	154	4	6
Echunga Creek	39.2	1,038	26.51	715	1,549	465	30	67
Hahndorf	14.7	476	32.40	633	925	173	19	51
Inverbrackie Creek	26.7	538	20.12	621	2,069	174	8	26
Lenswood Creek	28.4	710	25.00	720	3,692	414	11	19
Mitchell Creek	14.5	566	38.99	621	929	199	21	61
Onka Main Channel	130.4	377	2.89	589	3,142	239	8	12
Scott Creek	28.5	148	5.19	589	751	49	7	20
Upper Onkaparinga	47.1	1,060	22.52	714	3,197	421	13	33
Western Branch	33.0	985	29.87	651	2,871	411	14	34

Catchment Location	Area	Dam Storage (a)	Farm Dam Density	m Rainfall Median Adjustec (mean of Catchment Yield 1915– the Period (b) 1917)		Yield ver Captured by Farm Dams		Ratio a/b (50% rule)	
	km²	ML	ML/ km ²	mm	ML	ML	%	%	
Aldgate Creek	19.5	159	8.16	1,590	12,415	26	0	1	
Angels Gully	14.1	83	5.86	997	3,077	65	2	3	
Bakers Gully	48.0	530	11.05	892	7,371	395	5	7	
Balhannah	10.2	197	19.24	978	1,903	140	7	10	
Biggs Flat	23.7	660	27.91	1,130	6,073	416	7	11	
Charleston	51.5	748	14.52	1,078	14,707	485	3	5	
Cox Creek	28.8	221	7.68	1,413	17,882	45	0	1	
Echunga Creek	39.2	1,038	26.51	1,183	10,974	631	6	9	
Hahndorf	14.7	476	32.40	1,028	3,841	318	8	12	
Inverbrackie Creek	26.7	538	20.12	1,045	7,390	230	3	7	
Lenswood Creek	28.4	710	25.00	1,423	15,020	281	2	5	
Mitchell Creek	14.5	566	38.99	1,045	3,781	358	10	15	
Onka Main Channel	130.4	377	2.89	1,022	23,737	159	1	2	
Scott Creek	28.5	148	5.19	1,031	7,997	16	0	2	
Upper Onkaparinga	47.1	1,060	22.52	1,251	16,950	546	3	6	
Western Branch	33.0	985	29.87	1,059	10.737	571	5	9	

Table 19. The Impact of Farm Dams on Catchment Yield During the Defined WetPeriod (1915-1917)

From Table 17, in a median year, with current farm dam development, six subcatchments would have their median adjusted catchment yield reduced by 10% or more. Among them, Mitchell Creek is the most severely affected with 20% reduction in its adjusted natural flow. Not surprisingly, this catchment has the highest farm dam density of 39 ML/km² or an aggregated farm dam storage capacity of 570 ML.


Figure 18. Percentage Catchment Yield Captured by Farm Dams in Subcatchments

Estimating the Impact of Current Farm Dam Development on the Surface Water Resources of the Onkaparinga River Catchment

- 65 -

Ensignationships and a submet of a submet the Onkaparinga River Catchment

Report DWLBC 2002/22

None of the catchments are seen to exceed the criteria of the 50% rule, which requires that the maximum allowable dam volume should not exceed 50% of the median annual adjusted runoff from a catchment. The ratio of dam storage to the adjusted catchment yield in Mitchell creek is 37%, as shown in the last column of Table 17. It is the highest found in the subcatchments of the Onkaparinga River.

Generally the runoff trapped in the subcatchment dam storage varies from around 1-2% of the annual rainfall.

The modelled runoff coefficient for the respective subcatchments can be derived easily by dividing the adjusted catchment yield by the catchment area and the median annual rainfall. As shown in Table 20, the runoff coefficient for the major subcatchments varies from 0.1 to 0.3 of the rainfall. On the high ends are Cox creek (0.3), Aldgate creek (0.28) and Lenswood (0.27). The lower ends are Biggs Flat (0.11), Onkaparinga Main Channel (0.11) Echunga (0.12) and Bakers Gully (0.13). The coefficients compare well with the streamflows of gauged catchments as shown in Table 5.

Subcatchment	Area	Median Annual Rainfall * (mm)	Modelled Median Annual Adjusted Runoff (mm)	Modelled Runoff Coefficient
Aldgate Creek	1,945	1,097	311	0.28
Bakers Gully	4,796	725	94	0.13
Balhannah	1,020	809	112	0.14
Biggs Flat	2,365	829	94	0.11
Charleston	5,151	807	119	0.15
Cox Creek	2,875	975	295	0.30
Echunga Creek	3,917	868	108	0.12
Hahndorf	1,468	851	171	0.20
Inverbrakie Creek	2,674	783	122	0.16
Lenswood Creek (Cock Ck)	2,833	972	265	0.27
Mitchell Creek	1,451	783	105	0.13
Onkaparinga-48 (Angels Gully)	1,408	810	131	0.16
Onkaparinga Main Channel	13,043	821	89	0.11
Scott Creek	2,850	891	142	0.16
Upper Onkaparinga	4,708	950	183	0.19
Western Branch	3,297	876	162	0.18
Total	55,801	856	142	

Table 20. Runoff Coefficients

* Obtained from Onka WaterCress model.

Under extreme climatic condition such as the defined dry period (Table 18), the number of subcatchments with greater than 10% catchment yield captured by farm dams has increased from six to eleven. The highest percentage catchment yield captured is 39% in Biggs Flat. From Table 18, Mitchell creek is a few steps down the rank although it has the highest dam density. This may be explained in terms of the differences in the runoff coefficient between the subcatchments for different period of time. Although generally Mitchell Creek has a higher runoff coefficient than Biggs Flat, on a median year situation, the difference between these runoff coefficients is not large. Apparently Biggs Flat has a lower modelled runoff coefficient of 0.11 as compared with that of Mitchell creek 0.13. However, on a dry-period when rainfall is very low, the difference in these runoff coefficients become much more pronounce. Biggs Flat has runoff coefficient of 0.05 while Mitchell Creek 0.10. This indicates Mitchell Creek is generating more runoff and is less impacted by dams in the dry-period.

During the defined wet period, only one catchment, Mitchell Creek, has an impact exceeding 10%.

Future Farm Dam Scenarios

Results of runoff simulation for scenario 1-6 with 50% and 70% dam storage use are presented in Tables 21-23.

Plots of farm dams development scenarios for the major subcatchments with 30%, 50% and 70% usage are presented in Appendix D. They briefly summarise the flow reduction with respect to the adjusted annual flow in the respective catchments for a median year, the defined dry-period and the wet-period situations. These flow reductions are presented in terms of percentage reduction in annual flow.

Naturally, with higher percentage of dam storage use, the dams can capture more runoff, as they are empty more quickly. In this case, for instance, using scenario 1 (WFD, ie. with 1999 farm dam data) the reduction in the adjusted flow for Mitchell Creek would increase from 20% to 35% in a median year (see Table 21) if dam storage use were from 30% to 70%. The same can be said for the defined dry period where the increased is from 21% to 37% (see Table 22). On the other hand, under the worst case scenario of "50%RL" situation, in a dry period the impact of farm dams would reduce the adjusted flow for other subcatchments are likewise shown in these Tables. The reduction in catchment runoff implies that less water will be available for Mt Bold reservoir storage hence impacting on public water supplies.

Note that the aggregated dam storage of a catchment is not the only factor that would affect the runoff simulations. Catchment runoff is also influenced by the allowable diversion of the off-stream dams set up in the model. In setting the future scenarios for this study, a degree of free flow is allowed in the catchment model nodes by limiting the diversion factor of off-stream dams to about two-thirds if they have not already exceeded this factor in the initial construction of the model (current scenario). Without putting a ceiling to the diversion factor, the dams may trap all the adjusted flow. This could be the reason why Angels Gully subcatchment traps 99% of the adjusted flow in the defined dry period (Table 22) as the subcatchment was set up in the model with on-stream dams only.

	Houlgrav	e Weir		Bakers G	ully		Western	Branch		
	101_Drair	nFrom		195_Drai	nFrom		218_Drai	nFrom		
Scenarios	Annual			Annual			Annual			
WOFD, ML	56,424	56,424	56,424	4498	4,498	4,498	5351	5,351	5,351	
Storage use factor	0.3	0.5	0.7	0.3	0.5	0.7	0.3	0.5	0.7	
WFD_%	8%	10%	11%	9%	11%	13%	10%	14%	18%	
S20_%	9%	11%	13%	11%	14%	16%	12%	16%	19%	
5%RF_%	12%	15%	19%	25%	30%	37%	16%	21%	26%	
30%RL_%	13%	16%	21%	17%	21%	26%	17%	22%	28%	
50%RL_%	21%	27%	32%	27%	33%	38%	27%	35%	42%	
	Lenswoo	d.		Biggs_Flat			Cox ck			
	220_DrainFrom			221_Drai	221_DrainFrom			222_DrainFrom		
Scenarios	Annual			Annual			Annual			
WOFD, ML	7527	7,527	7,527	2218	2,218	2,218	8480	8,480	8,480	
Storage use factor	0.3	0.5	0.7	0.3	0.5	0.7	0.3	0.5	0.7	
WFD_%	6%	8%	9%	17%	22%	28%	2%	2%	3%	
S20_%	7%	9%	11%	19%	25%	32%	2%	3%	4%	
5%RF_%	10%	13%	16%	24%	33%	41%	6%	9%	11%	
30%RL_%	17%	20%	25%	18%	24%	30%	9%	14%	18%	
50%RL_%	25%	33%	40%	27%	36%	45%	17%	22%	28%	
_	Aldgate	0070		Charles.			Inverbra		2070	
	223_DrainFrom			231_DrainFrom			232 DrainFrom			
Scenarios	Annual			Annual			Annual			
WOFD, ML	6058	6,058	6,058	6118	6,118	6,118	3267	3,267	3,267	
Storage use factor	0.3	0.5	0.7	0.3	0.5	0.7	0.3	0.5	0.7	
WFD_%	2%	2%	3%	8%	11%	13%	7%	13%	16%	
S20_%	2%	3%	4%	11%	14%	16%	12%	16%	19%	
5%RF_%	5%	7%	9%	22%	28%	31%	19%	23%	28%	
30%RL_%	8%	11%	15%	20%	26%	29%	18%	23%	27%	
50%RL_%	13%	19%	24%	33%	42%	46%	25%	33%	46%	
50 /01 CL_ /0	Mitchell	1370	24 /0	Balhanna		4070	Hahndor		4070	
	233_Drair	Erom		234_Drai				235_DrainFrom		
Scenarios	_			Annual			Annual			
	Annual	1 505	1 5 2 5	1146	1 1/6	1 1 1 6		0 510	0 5 1 2	
WOFD, ML Storago uso factor	1525 0.3	1,525 0.5	1,525 0.7	0.3	1,146 0.5	1,146 0.7	2513 0.3	2,513 0.5	2,513 0.7	
Storage use factor									0.7 17%	
WFD_%	20%	26% 20%	35%	10%	12%	15%	11%	13% 15%		
S20_%	21%	29% 26%	39% 25%	12% 20%	14% 24%	17%	14%	15% 15%	18%	
5%RF_%	20%	26% 26%	35% 25%	20%	24%	28%	13%	15%	18% 21%	
30%RL_%	20%	26% 22%	35%	18%	19% 20%	22%	17%	18% 24%	21%	
50%RL_%	23%	32%	43%	25%	30%	39%	28%	34%	39%	
	Echunga				Scott ck			Gully		
.	238_DrainFrom			239_DrainFrom			240_DrainFrom			
Scenarios	Annual	4.007	4 007	Annual	4.050	4.050	Annual	4.040	1 0 1 0	
WOFD, ML	4237	4,237	4,237	4059	4,059	4,059	1842	1,842	1,842	
Storage use factor	0.3	0.5	0.7	0.3	0.5	0.7	0.3	0.5	0.7	
WFD_%	13%	18%	23%	1%	-1%	0%	4%	5%	6%	
S20_%	15%	20%	25%	0%	1%	2%	6%	8%	10%	
5%RF_%	20%	27%	34%	10%	14%	17%	21%	27%	32%	
30%RL_%	17%	23%	30%	9%	12%	16%	20%	25%	30%	
50%RL_%	23%	31%	39%	14%	19%	27%	30%	38%	46%	

Table 21. Subcatchments Percentage Flow Reduction in a Median Year

Note: Upper Onkaparinga and Onkaparinga Main Channel catchments are not included here as they are not a discrete catchments but comprised of several scattered subcatchments along the Onkaparinga river.

Houlgrave weir **Bakers Gully** Western Branch 101_DrainFrom 195_DrainFrom 218_DrainFrom Scenarios Annual Annual Annual WOFD. ML 26.282 26.282 26.282 808 808 808 2871 2.871 2,871 0.3 0.5 0.7 0.5 0.3 0.5 Storage use factor 0.3 0.7 0.7 WFD_% 11% 11% 17% 24% 24% 31% 14% 14% 22% S20 % 13% 17% 20% 29% 35% 39% 16% 21% 25% 5%RF_% 20% 25% 30% 59% 74% 86% 21% 27% 33% 30%RL_% 22% 27% 33% 46% 57% 67% 22% 30% 35% 50%RL_% 30% 38% 45% 64% 81% 85% 30% 38% 45% Lenswood. Biggs_Flat Cox ck 220_DrainFrom 221_DrainFrom 222_DrainFrom Annual Annual Annual Scenarios 3665 WOFD, ML 3692 3,692 3.692 793 793 793 3,665 3,665 Storage use factor 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 WFD % 11% 11% 16% 39% 39% 53% 4% 4% 6% 13% 50% 58% 7% 8% S20 % 16% 19% 42% 6% 5%RF_% 19% 28% 59% 22% 23% 48% 67% 14% 18% 30%RL_% 26% 34% 41% 40% 48% 56% 20% 26% 32% 50%RL_% 39% 50% 60% 51% 62% 71% 30% 39% 48% Aldgate Charles. Inverbrackie 223_DrainFrom 231_DrainFrom 232_DrainFrom Annual Annual Scenarios Annual WOFD, ML 2839 2,839 2,839 2923 2,923 2,923 2069 2,069 2,069 Storage use factor 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 3% 5% 8% 8% WFD % 3% 12% 12% 16% 18% 4% 6% 17% 20% 14% 18% 22% S20_% 5% 15% 5%RF_% 9% 25% 31% 21% 28% 34% 11% 13% 35% 30%RL_% 12% 16% 21% 24% 29% 33% 21% 26% 32% 50%RL_% 18% 25% 30% 32% 38% 44% 30% 38% 44% Mitchell Balhannah. Hahndorf. 233_DrainFrom 234_DrainFrom 235_DrainFrom Annual Annual Annual Scenarios WOFD, ML 929 929 929 377 377 377 925 925 925 Storage use factor 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 19% WFD % 21% 21% 37% 21% 21% 31% 19% 30% 23% 40% 29% 34% 21% 27% 32% S20_% 32% 24% 5%RF_% 21% 29% 37% 31% 38% 46% 20% 27% 32% 30%RL_% 21% 29% 37% 27% 33% 40% 23% 30% 35% 50%RL_% 25% 35% 43% 37% 47% 55% 33% 41% 49% Scott ck Angels_Gully Echunga 238_DrainFrom 239_DrainFrom 240_DrainFrom Scenarios Annual Annual Annual WOFD, ML 1549 1,549 1,549 751 751 371 371 371 751 Storage use factor 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 WFD % 30% 30% 41% 7% 7% 14% 12% 12% 16% 45% S20_% 33% 40% 15% 18% 21% 18% 22% 26% 61% 5%RF_% 43% 54% 44% 54% 64% 46% 58% 69% 30%RL_% 38% 46% 54% 41% 49% 58% 43% 53% 63% 50%RL_% 49% 59% 68% 57% 73% 87% 64% 82% 99%

Table 22.Subcatchments Percentage Flow Reduction in a Dry PeriodDry Period 1912-1914All values are mean flow

Houlgrave weir **Bakers Gully** West_Branch 101_DrainFrom 195_DrainFrom 218_DrainFrom Scenarios Annual Annual Annual WOFD. ML 121.674 121.674 121.674 7371 7.371 7.371 10737 10,737 10.737 Storage use factor 0.3 0.5 0.7 0.3 0.5 03 0.5 0.7 0.7 WFD_% 3% 3% 5% 5% 5% 7% 5% 5% 8% S20 % 3% 5% 6% 7% 8% 10% 6% 8% 9% 5%RF_% 5% 7% ٩% 17% 20% 23% 8% 11% 13% 30%RL_% 6% 8% 9% 13% 15% 17% 9% 12% 14% 50%RL_% 9% 12% 15% 19% 22% 24% 14% 17% 20% Cox ck Lenswood. Biggs_Flat 220_DrainFrom 221_DrainFrom 222_DrainFrom Scenarios Annual Annual Annual WOFD, ML 15020 17882 15,020 15,020 6073 6,073 6,073 17,882 17,882 Storage use factor 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 WFD % 2% 2% 4% 7% 7% 10% 0% 0% 1% 2% 3% 4% 10% 0% 1% S20 % 8% 12% 1% 5%RF_% 3% 5% 7% 10% 2% 3% 4% 13% 15% 30%RL_% 6% 9% 11% 7% 9% 11% 3% 5% 7% 50%RL_% 10% 15% 18% 11% 14% 17% 6% 9% 12% Aldgate Charles. Inverbrackie 223_DrainFrom 231_DrainFrom 232_DrainFrom Annual Annual Annual Scenarios WOFD, ML 14707 12415 12,415 12,415 14,707 14,707 7390 7,390 7,390 Storage use factor 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 0% 3% 3% WFD % 0% 1% 3% 3% 5% 7% 0% 1% 4% 5% 6% 6% 7% 8% S20_% 1% 5%RF_% 1% 2% 3% 8% 9% 10% 12% 11% 13% 30%RL_% 2% 4% 5% 8% 10% 11% 9% 11% 12% 50%RL_% 5% 7% 9% 12% 15% 17% 13% 16% 19% Mitchell Balhannah. Hahndorf. 233_DrainFrom 234_DrainFrom 235_DrainFrom Scenarios Annual Annual Annual WOFD, ML 3781 3,781 3,781 1903 1,903 1,903 3841 3,841 3,841 Storage use factor 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 8% WFD % 9% 9% 14% 7% 7% 11% 8% 12% 10% 9% S20_% 13% 16% 9% 11% 12% 11% 13% 5%RF_% 9% 12% 14% 13% 16% 19% 9% 11% 13% 30%RL_% 9% 12% 14% 11% 13% 15% 11% 13% 15% 50%RL_% 11% 14% 17% 17% 21% 25% 17% 21% 25% Scott ck Angels_Gully Echunga 238_DrainFrom 239_DrainFrom 240_DrainFrom Scenarios Annual Annual Annual WOFD, ML 10974 10,974 10,974 7997 7.997 7,997 3077 3,077 3,077 Storage use factor 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 WFD_% 6% 6% 9% 0% 0% -2% 2% 2% 3% S20_% 6% 8% 10% -2% -2% -1% 3% 4% 5% 5%RF_% 9% 11% 14% 3% 5% 6% 13% 15% 18% 30%RL_% 8% 10% 12% 2% 4% 5% 12% 14% 17% 50%RL_% 10% 13% 16% 6% 8% 11% 19% 23% 26%

Table 23.Subcatchments Percentage Flow Reduction in a Wet PeriodWET Period 1915-1917All values as mean flow

Impact of Farm Dams on Natural Flows at Houlgrave Weir

Current and Without Farm Dams Scenarios

Annual flow volume

See Tables 21-24, Figures 20-21 and Figure 24. The catchment upstream of Houlgrave Weir has an aggregated 6,600 ML of storage or 21 ML/km² (21 mm) of farm dam density. This is equivalent to 2% of the median annual rainfall (964 mm). During the period 1900-1998, runoff simulations show that:

- Over the 99 years, the median annual adjusted flow is 56,000 ML with a runoff coefficient of 0.18. This compares well with the gauged streamflow which indicates the coefficient is 0.16.
- The mean annual adjusted flow is 61,000 ML. or equivalent to 20% of the annual rainfall.

The **mean** runoff trapped by the dams is 6% of the adjusted catchment yield (1% of 964 mm rainfall) while the **median** runoff trapped is 8%, or 4300 ML.

- In the defined dry period, the adjusted flow over the 3-year period is 26,000 ML/year with 11% of the flow trapped by dams (or 1% of 742 mm rainfall).
- In the defined wet period, the adjusted flow is 122,000 ML/year with 3% of flow trapped by dams.

Table 24 summarises the modelled catchment yield with and without farm dams under the three climatic periods. Figure 20 plots the modelled annual catchment yield with and without farm dams for the period 1900 to1998. This figure shows that during the draught years when catchment yield is low, farm dams significantly impact the flow downstream. This is shown in the graph by the peaks in the percentage yield captured by the dams which all occur in low rainfall / runoff years. For more recent years between 1960-1998, the percentage of flow captured is shown in Figure 21.

The percentage of adjusted catchment yield captured at the 10th and 90th percentiles is 17% and 4% respectively (Table 54 in Appendix D).

Description	Area	Dam Storage (a)	Farm Dam Density	Rainfall	Adjusted Catchment Yield Without Farm Dams (b)	Yield Captured by Farm Dams		Ratio a/b (50% Rule)	
	km²	ML	ML/ km ²	mm	ML	ML	%	%	
Mean of 1990-1998	321	6,600	21	964	61,500	3,600	6	11	
Median of 1900-1998	321	6,600	21	955	56,400	4,300	8	12	
Wet period (1915-1917)	321	6,600	21	1,384	121,700	3,500	3	5	
Dry period (1912-1914)	321	6,600	21	742	26,300	3,000	11	25	

Table 24. The Impact of Farm Dams on Houlgrave Catchment Yield

Monthly Flow Volume

Recorded and modelled flows indicate that there is a baseflow at Houlgrave Weir throughout the year. In a median year, the adjusted monthly flow can vary from as low as 600 ML in March to as high as 10,200 ML in August. The presence of farm dams has a particularly significant impact on the flow in November to May. During these drier months, farm dams trap between 20-53% of the adjusted natural flows.

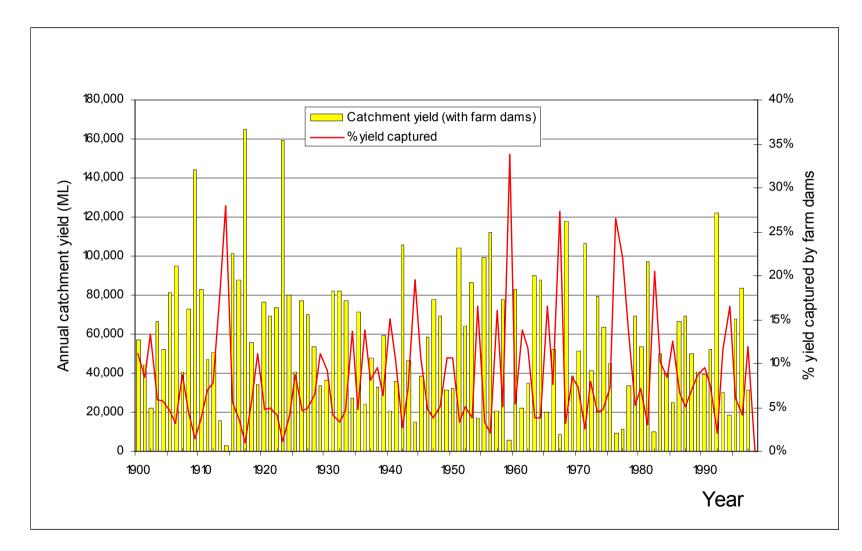
Farm dams also delay the commencement of the winter flow. In the first winter month of June, flow is reduced by 21%. This is due to the replenishing of dam storages depleted during the summer.

In the defined dry period, with farm dams trapping the runoff, monthly flow can be as low as 290 ML which occurs in March. This causes a reduction in 38% of the adjusted catchment flow (470 ML)at Hougrave Weir in March. The commencement of winter flow has also been delayed to July with 23% (520 ML) reduction in the adjusted flow volume. In the defined wet period, the impact is significant only from November to April. Refer Table 25 and Figure 22.

Daily Flow Volume

See Table 26 and Figure 23. Flow duration curve analysis from the modelled catchment runoff with and without farm dams shows that:

- Flow with magnitude less than 1 ML/day is not impacted at Houlgrave Weir by the presence of farm dams in the catchment. Baseflow from groundwater discharge would maintain the low flow regime.
- For flow range between 5 50 ML/day, farm dams reduce the number of days streamflow occurs by between 30 to 60 days a year. Most of the reduction occurs during the drier months of November to April.
- For flow regime above 100 ML/day, the impact due to farm dams is less significant. The reduction in the number of day streamflow occurs in the range is 10 days in a year.


With Increased Use of Dam Storage

See Table 21- 23 under WFD_% scenario. When runoff simulations are modelled using scenario 1 with increased dam storage use from 30% to 70%, the reduction in the annual adjusted flow is increased from 8% (4.5 GL) to 11% (6.2 GL) in a median year. Similarly, in the defined dry period, the impact increases from 11% (6.2 GL) to 17% (9.6 GL); and in the defined wet period, from 3% (1.7 GL) to 5% ((2.8 GL). These results are presented in Tables 21 – 23. (WFD% scenario).

Future farm dam development scenarios

Of all the simulation cases, the worst case is scenario-6 farm dams development with 70% of dam storage use. The model shows that in this case the reduction in the catchment runoff at Houlgrave weir in a median year is 32% (18000ML). It is assumed that this would have significant impact on the water supply and the volume and frequency of spills from Mt Bold Reservoir downstream. In a drought or dry-period situation, the impact is even more pronounced with a reduction of catchment yield by 45% (25000ML). The importance of considering the availability of water resources in a drought situation, for long term management and risk management purposes, obviously can not be overstated.

The reduction in the catchment runoff at Houlgrave Weir for all cases scenarios is presented in Figure 24.

Figure 20. Annual Catchment Yield at Houlgrave Weir With Farm dams (1900-1998)

Estimating the Impact of Current Farm Dam Development on the Surface Water Resources of the Onkaparinga River Catchment

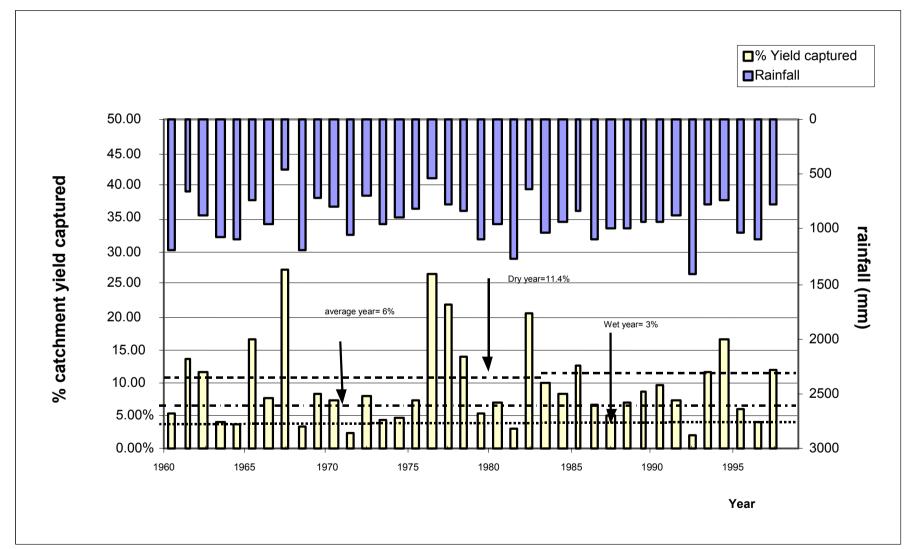


Figure 21. Percentage Annual Catchment Yield Captured by Farm Dams Upstream of Houlgrave Weir (1960-1998)

Estimating the Impact of Current Farm Dam Development on the Surface Water Resources of the Onkaparinga River Catchment

Month	Average	Median	90 Percentile	10 Percentile	3YMA (1915–1917, wet)	3YMA (1912–1914, dry)	Std Deviation	Cooeff of Variability, CV
January								
WOFD	1,558	1,187	2,550	409	1,005	738	1,816	1.17
WFD	991	556	1,651	197	530	314	1,681	1.70
February								
WOFD	1,010	715	1,671	311	801	554	1,436	1.42
WFD	638	333	939	121	463	305	1,345	2.11
March								
WOFD	781	603	1,181	231	824	468	987	1.26
WFD	492	332	698	114	591	290	894	1.82
April								
WOFD	910	640	1,402	281	777	453	1,347	453
WFD	722	454	1,110	185	621	344	1,214	1.68
May								
WOFD	2,706	1,006	5,565	380	7,694	446	4,389	1.62
WFD	2,398	814	5,145	300	7,288	307	4,130	1.72
June								
WOFD	6,908	4,023	17,982	449	22,659	404	8,068	1.17
WFD	6,534	3,197	17,436	401	21,321	315	7,976	1.22
July								
WOFD	10,757	8,585	20,975	1,591	23,601	2,242	8,950	0.83
WFD	10,662	8,655	21,433	1,348	24,040	1,722	9,133	0.86
August								
WOFD	11,957	10,215	26,107	2,032	24,549	2,376	8,681	0.73
WFD	11,988	9,902	26,733	1,898	25,038	2,108	8,894	0.74
September								
WOFD	10,608	8,839	21,781	2,136	23,108	10,690	8,550	0.81
WFD	20,656	8,815	22,095	2,019	23,475	10,637	8,740	0.82
October								
WOFD	7,452	5,656	16487	1,667	8,842	3,348	5,962	0.80
WFD	7,157	5,127	16,398	1,211	8,559	3,064	6,089	0.85
November	,			,				
WOFD	4,306	2,892	10,058	1,074	5,226	2,789	4,003	0.93
WFD	3,710	2,084	9,459	689	4,540	2,467	4,021	1.08
December	,		, -					
WOFD	2,96	1,890	7,325	646	2,589	1,775	3,121	1.04
WFD	2,322	1,078	6,481	300	1,673	1,403	3,032	1.31

Table 25. Modelled Monthly Flows (ML) with and without Farm Dams at Houlgrave Weir

WOFD - without farm dams

WFD – with farm dams Note: Australian arid zone streams found by McMahon (1982) has mean Cv = 1.27

	Average	Median	90 Percentile	10 Percentile	3YMA (1915–1917, wet)	3YMA (1912–1914, dry
January	36%	53%	35%	52%	47%	57%
February	37%	53%	44%	61%	42%	45%
March	37%	45%	41%	51%	28%	38%
April	21%	29%	21%	34%	20%	24%
Мау	11%	19%	8%	21%	5%	31%
June	5%	21%	3%	11%	6%	22%
July	1%	0%	0%	15%	0%	23%
August	0%	3%	0%	7%	0%	11%
September	0%	0%	0%	5%	0%	0%
October	4%	8%	1%	27%	3%	8%
November	14%	28%	6%	36%	13%	12%
December	22%	43%	12%	5%	35%	21%
Annual	6%	8%	4%	17%	3%	11%

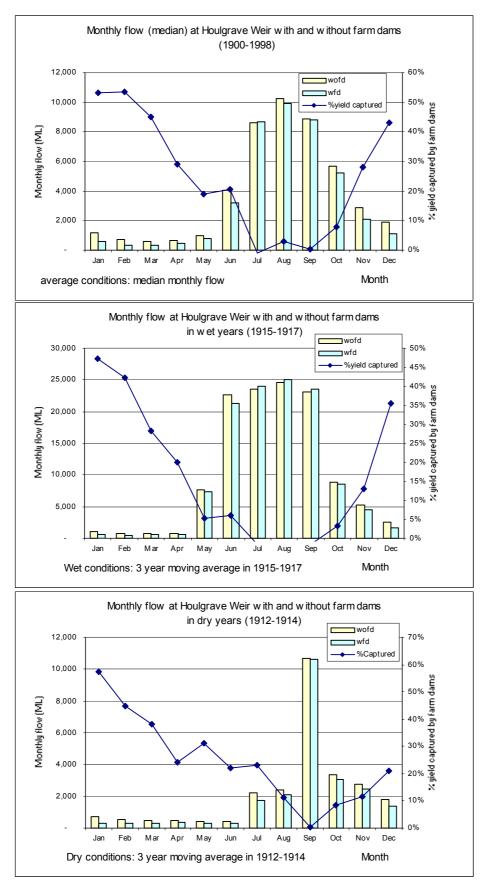


Figure 22. Modelled Monthly Flows With and Without Farm Dams at Houlgrave Weir

Estimating the Impact of Current Farm Dam Development on the Surface Water Resources of the Onkaparinga River Catchment

Month	0.1ML/d	1ML/d	5ML/d	10ML/d	15ML/D	20ML/d	30ML/d	50ML/d	100ML/c
January									
WOFD	31	31	30	28	26	23	18	7	1
WFD	31	30	26	20	15	10	6	2	1
February									
WOFD	29	28	27	24	21	17	10	3	1
WFD	29	28	22	14	8	6	3	1	1
March									
WOFD	31	31	28	23	18	13	6	2	0
WFD	31	30	20	11	6	4	3	1	0
April									
WOFD	30	30	27	22	16	11	6	3	1
WFD	30	29	21	13	9	7	5	3	1
Мау									
WOFD	31	31	29	24	18	14	10	7	4
WFD	31	31	24	18	14	12	9	6	4
June									
WOFD	30	30	29	26	23	20	17	13	9
WFD	30	30	27	23	21	19	16	13	9
July									
WOFD	31	31	31	29	28	27	24	21	14
WFD	31	31	30	28	27	26	23	20	14
August	-	-					-		
WOFD	31	31	31	31	30	29	27	25	17
WFD	31	31	31	30	29	28	27	24	16
September									
WOFD	30	31	30	29	29	28	27	24	17
WFD	30	30	30	29	28	27	26	23	16
October									
WOFD	31	31	31	30	30	29	28	24	14
WFD	31	31	30	29	28	27	25	21	11
November	-	-		-	-		-		
WOFD	30	30	29	29	28	27	25	20	8
WFD	30	30	29	27	25	23	19	13	5
December			-		-	-	-	-	-
WOFD	31	31	30	30	28	26	23	16	4
WFD	31	31	29	25	20	18	12	6	2
Annual					:			-	
WOFD	365	365	352	324	294	265	221	165	90
			002			200			

Table 26. The Number of Days Specified Flow Impacted by Farm Dams of **Houlgrave Catchment**

WOFD – without farm dams WFD – with farm dams

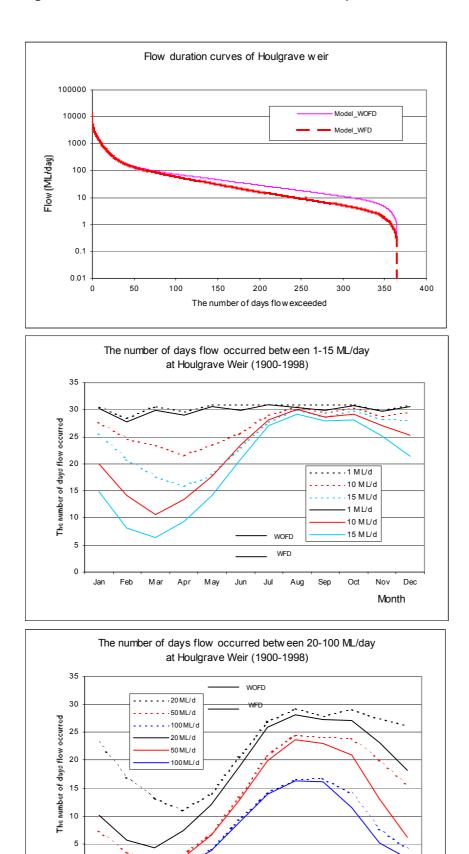


Figure 23. Modelled Flow Duration Relationships

Mar

Apr

May

Jun

Jul

Aug Sep

0

Jan

Feb

Oct

Dec

Nov D Month

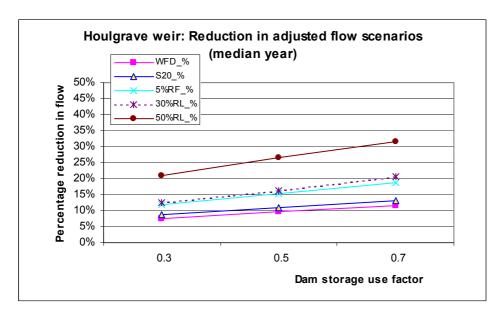
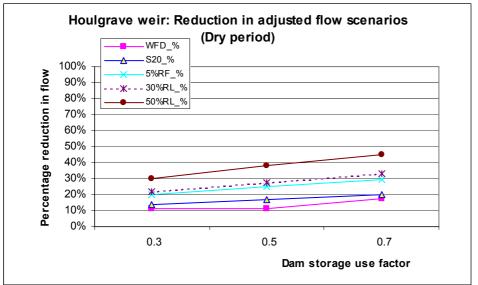
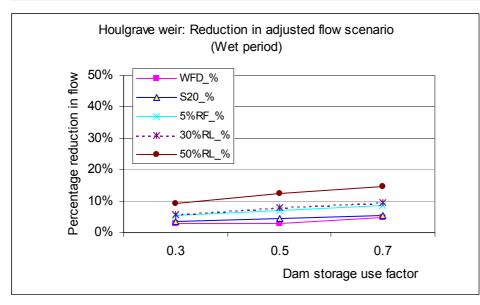




Figure 24. Percentage flow reduction at Houlgrave Weir for all cases scenarios

Estimating the Impact of Current Farm Dam Development on the Surface Water Resources of the Onkaparinga River Catchment

Impact of Farm Dams at Clarendon Weir

Current and without farm dams scenario

Annual Flow volume

Runoff simulations were modelled with the Mt Bold Reservoir removed from the model. Two cases being modelled are with the current scenario and with the farm dams removed from the catchments. The difference in flow volume of the catchment between the two cases is the volume captured as farm dams storage.

The mean annual adjusted flow volume passing the Clarendon weir is 79,000 ML and the median annual adjusted flow volume is 72,000 ML. Based on the latter, it equates to a runoff coefficient of 0.2 for the catchment. From the gauged flow records (Table 5), Clarendon weir catchment is greatly impacted by the presence of Mt Bold reservoir resulting in the runoff coefficient being reduced to 0.05.

Dam storage at upstream of Clarendon Weir, excluding Mt Bold Reservoir, is 8,000 ML or 18 mm across the catchment area (2.2% of 810 mm rainfall). Assuming no Mt Bold reservoir, the presence of farm dams has reduced the mean annual adjusted catchment yield by 6% (4400 ML) and the median annual adjusted yield by 5% (3900 ML). During the three year dry period the adjusted flow is 30,000 ML / yr, or a 12% reduction, and 153,000 ML / yr for a wet period, or a 3 % reduction, from the without dams case.

From the gauged streamflow records (1937-1999), Clarendon weir has a mean annual flow of 19,000 ML and a median flow of 4,000 ML. Based on the mean figures, it implies about 60,000 ML of water has been harvested from the catchment runoff for Adelaide water supply and for the system losses.

Description	Area	Dam Storage (a)	Farm Dam Density	Rainfall	Adjusted Catchment Yield Without Farm Dams (b)	Yield Captured by Farm Dams		Ratio a/b (50% Rule)	
	km²	ML	ML/ km ²	mm	ML	ML	%	%	
Mean of 1900-1998	442	7940	18	835	78,700	4,400	6	10	
Median of 1900-1998	442	7940	18	810	72,100	3,900	5	11	
Wet period (1915-1917)	442	7940	18	997	152,900	4,300	3	5	
Dry period (1912-1914)	442	7940	18	600	30,000	3,600	12	26	

Table 27. The Impact of Farm Dams on Clarendon Catchment Yield

50% Rule for Farm Dam Development

By 50% rule definition, the allowable dam storage at upstream of Clarendon weir is 50% of the median annual adjusted flow or 36,000 ML. The current aggregated dam storage in the subcatchments upstream of Clarendon weir is 8,000 ML. Mt Bold reservoir has the capacity to hold 47,000 ML of water and Clarendon weir 320 ML. In addition, Happy Valley reservoir is connected to the water supply system and it can hold a capacity of 13,000 ML of water. Without taking the Happy Valley reservoir storage into consideration, the total storage capacity at upstream of Clarendon weir is 55,300 ML or 77% of its median annual adjusted catchment yield.

This is well above the 50% rule. With Happy Valley reservoir included, the total storage would be 95% of the median annual adjusted flow of the catchments.

Other Farm Dams Development Scenarios

Other farm dams development scenarios were not modelled for Clarendon catchment for the period 1900-1998 as it was deemed unnecessary. Flow reduction for Clarendon weir catchment can be obtained from the subcatchments (see earlier section) upstream of the weir. The provision of Clarendon weir storage as water supply impacted by the farm dams development scenarios is dealt with in the section "Impact on the water supply from Mt Bold and Clarendon weir reservoirs".

Impact on the Water Supply from Mt Bold Reservoir and Clarendon weir

For the purpose of studying the affect of catchment yield on water supply at Mt Bold reservoir, a much shorter period (1974-1998) of model simulations are performed and where available, the gauged streamflow records are used as input into the model. The analysis of the simulations is carried out using the *mean* values of flow volume rather than the *median* values

 Increasing farm dams development would naturally reduce the catchment runoff as more water is captured in the dams. Likewise for a given development scenario, with increasing dam storage use, less water would be generated from the catchments. This in turn would reduce the surface flow into Mt Bold Reservoir and Clarendon Weir and impact on the water supply to Happy Valley Reservoir. Therefore more water would need to be transferred from the River Murray to maintain the same demand for water supply to Happy Valley Reservoir (assuming the operations of the reservoirs remain the same). Hence the key issue of concern for public water supply is the reduction in catchment runoff flowing into the reservoirs as more farm dams are developed

Inflows into Mt Bold Reservoir and Clarendon Weir under a farm dam development scenario were compared with the baseline reference flows of current scenario (WFD). The reduction of inflow volume was deemed to be the quantified impact, which would be compensated from the River Murray with additional pumping. All the flow volumes thus compared use the *mean* value modelled over the period from 1975 to 1998. They are briefly summarised in Table 28-30.

The Tables show the additional water to be pumped in each month, summer and winter months or in a year under different farm dams development scenarios with 30%, 50% and 70% of aggregated dam storage use. Figure 25 provides the plots to illustrate the additional water to be pumped from the River Murray.

Under the worst case scenario (50%RL, scenario 6 with 70% dam storage use), it is anticipated that about additional 17,000 ML of water would need to be compensated from the River Murray. However this is a very unlikely situation given the fact that with 150ML/yr of farm dams development, it would take 140 years to reach this level of development!

A more likely situation is between the scenario 3 (S20) and scenario 4 (5%RF) situation when farm dams development could realistically reach this aggregated storage volume. That being the case, for 70% dam storage use case, the water to be compensated from the River Murray to meet the demand of water supply would be in the order of 4,000 to 9,000 ML in a year. Given that the current historical mean pumpage into the Mt Bold reservoir is 27,000 ML per annum, this is an increased of 30%.

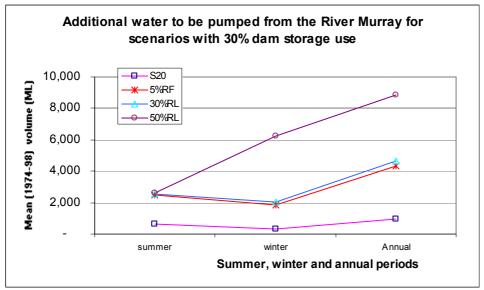
This is likely to be a conservative estimate because the model simulation was carried out without any regard for the flexibility of the operating rules in Mt Bold Reservoir. The model was set up with Mt Bold and Clarendon weir reservoirs to be filled to its full capacity at all times. In reality, during the winter season when a substantial inflow to the reservoirs can be expected, storage level may be lowered to meet the demand of water supply without requiring importation of water from the River Murray. If this being the case, spills from the Mt Bold and Clarendon weir reservoirs would be less in terms of the quantity and the frequency as more water is diverted to meet the demand for water supply. This in turn would impose greater stress on the downstream environmental flow requirements.

In the future, refinements may be made to the estimates on impact of farm dams development to water supply by incorporating the actual operating rules for Mt Bold Reservoir water supply and the environmental flow water requirements to the mode.

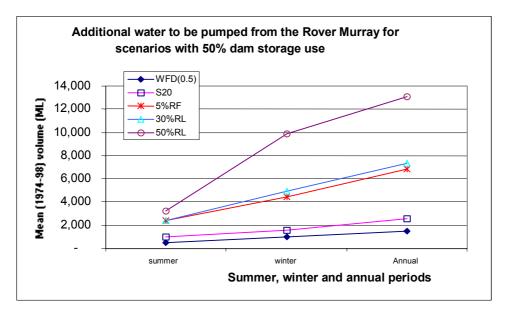
Table 28.Modelling Scenarios of Inflows into Mount Bold Reservoir and ClarendonWeir – Irrigation Usage = 0.3 of Dam Storage

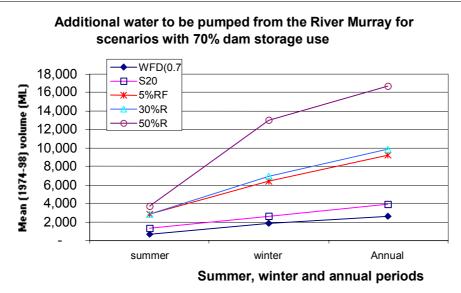
Desc.	1	2	3	4	5	6	7	8	9	10	11	12	Summer	Winter	Annua
Mean (1975– 1999)	3,398	3,218	2,830	1,525	857	578	681	2,089	2,689	2,988	3,090	3,514	17,575	9,883	27,458
Average	e Flow into	o Mount	Bold Res	ervoir											
Scenari	arios WFD (0.3) S20				5%	RF		30%I	RL	5	0%RL				
1		7	789 688			40	5		394		4	97			
2		5	509 445		5		27	3		273		3	27		
3		4	443 391		1		24	4		240		3	34		
4		5	13		47	5		33	7		328		4	10	
5		1	,053		1,(010		80	1		709		7	27	
6		3	,731		3,6	62		3,3	316		3,116	6	2	557	
7		1	11,493 11,4		,405		11	,163		11,08	35	9	734		
8		1	12,196 12,164			12	,086		12,14	17	1	1,096			
9		1	0,818		10	,816		10	,851		10,86	69	1	0,398	
10		7	,846		7,7	780		7,5	58		7,527	7	7	168	
11		3	,552		3,4	135		3,0)33		2,972	2	2	810	
12		2	,983		2,8	361		2,4	65		2,410)	2	324	
Summer		8	,669		8,	182		6,6	59		6,520)	6	609	
Winter		4	7,138		46	,837		45,775		45,45	54	4	1,680		
Annual		5	5,808		55	,018		52	,434		51,97	74	4	8,289	
Addition	al Water to	Pump													
	Sumr	mer –			48	8		2,0)10		2,149)	2	061	
	Wir	nter –	- 302			1,363			1,685		5	459			
	Annual – 790			3,374 3,834		ļ	7	519							
Addition	al Water to	Pump ir	nto Mount	Bold Res	ervoir a	nd Clare	endon W	eir Syster	ns						
	Sumr	mer –			65	0		2,469		2,577		2,595			
	Wir	nter –			31	3		1,8	847		2,053	}	6,237		
	Ann	nual –			96	3		4 3	316		4,631		8	823	

Average Flow into Cla	rendon Weir				
Scenarios	WFD (0.3)	S20	5%RF	30%RL	50%RL
1	139	98	54	57	50
2	80	57	32	34	27
3	54	37	22	22	18
4	37	27	12	12	12
5	69	59	21	25	18
6	424	415	273	303	215
7	1,505	1,510	1,298	1,349	1,165
8	1,498	1,511	1,501	1,518	1,423
9	1,344	1,347	1,358	1,354	1,357
10	1,071	1,057	978	994	954
11	575	542	441	455	411
12	412	371	271	283	245
Summer	1,279	1,117	820	851	754
Winter	5,911	5,900	5,428	5,543	5,133
Annual	7,19	7,017	6,248	6,394	5,887
Additional Water to Pur	np				
Summer	_	162	459	428	525
Winter	_	11	484	369	779
Annual	_	174	942	796	1,303


Table 29.Modelling Scenarios of Inflows into Mount Bold Reservoir and ClarendonWeir – Irrigation Usage = 0.5 of Dam Storage, 1974–1998

Scenarios	WFD (0.3)	WFD (0.5)	S20	5%RF	30%RL	50%RL
1	789	739	667	504	504	461
2	509	478	430	335	335	292
3	443	423	387	318	323	310
4	513	493	467	391	399	384
5	1,053	992	952	764	710	663
6	3,731	3,552	3,452	2,925	2,710	2,170
7	11,493	11,193	11,054	10,386	10,142	8,576
8	12,196	11,919	11,810	11,389	11,336	10,258
9	10,818	10,747	10,728	10,592	10,614	9,940
10	7,846	7,717	7,368	7,361	7,303	6,813
11	3,552	3,409	3,298	2,923	2,879	2,572
12	2,983	2,871	2,766	2,438	2,389	2,115
Summer	8,669	8,299	7,905	6,811	6,732	6,050
Winter	47,138	46,120	45,632	43,417	42,816	38,421
Annual	55,808	54,419	53,537	50,228	49,548	44,471
Additional Water to						
Summer		371	764	1,858	1,937	2,620
Winter	_	1,108	1,506	3,722	4,323	8,717
Annual	_	1,389	2,270	5,580	6,260	11,337
		old Reservoir and Clar			-	
Summer		467	996	2,380	2,426	3,219
Winter		1,028	1,557	4,468	4,911	9,872
Annual		1,495	2,524	6,848	7,337	13,092
Average Flow into		.,	_,	-,	.,	
Scenarios	WFD (0.3)	WFD (0.5)	S20	5%RF	30%RL	50%RL
			90	49	542	46
1	139	114			042	
	139 80	114 67			30	
2	80	67	54	28	30 20	21
2 3	80 54	67 44	54 34	28 19	20	21 13
2 3 4	80 54 37	67 44 31	54 34 25	28 19 10	20 10	21 13 11
2 3 4 5	80 54 37 69	67 44 31 63	54 34 25 54	28 19 10 16	20 10 17	21 13 11 16
2 3 4 5 6	80 54 37 69 424	67 44 31 63 418	54 34 25 54 403	28 19 10 16 219	20 10 17 252	21 13 11 16 174
2 3 4 5 6 7	80 54 37 69 424 1,505	67 44 31 63 418 1,508	54 34 25 54 403 1,497	28 19 10 16 219 1,180	20 10 17 252 1,249	21 13 11 16 174 1,020
2 3 4 5 6 7 8	80 54 37 69 424 1,505 1,498	67 44 31 63 418 1,508 1,504	54 34 25 54 403 1,497 1,509	28 19 10 16 219 1,180 1,437	20 10 17 252 1,249 1,481	21 13 11 16 174 1,020 1,276
2 3 4 5 6 7 8 9	80 54 37 69 424 1,505 1,498 1,344	67 44 31 63 418 1,508 1,504 1,346	54 34 25 54 403 1,497 1,509 1,346	28 19 10 16 219 1,180 1,437 1,357	20 10 17 252 1,249 1,481 1,354	21 13 11 16 174 1,020 1,276 1,345
2 3 4 5 6 7 8 9 10	80 54 37 69 424 1,505 1,498 1,344 1,071	67 44 31 63 418 1,508 1,504 1,346 1,063	54 34 25 54 403 1,497 1,509 1,346 1,052	28 19 10 16 219 1,180 1,437 1,357 955	20 10 17 252 1,249 1,481 1,354 696	21 13 11 16 174 1,020 1,276 1,345 926
2 3 4 5 6 7 7 8 9 10 11	80 54 37 69 424 1,505 1,498 1,344 1,071 575	67 44 31 63 418 1,508 1,504 1,346 1,063 556	54 34 25 54 403 1,497 1,509 1,346 1,052 531	28 19 10 16 219 1,180 1,437 1,357 955 414	20 10 17 252 1,249 1,481 1,354 696 429	21 13 11 16 174 1,020 1,276 1,345 926 381
2 3 4 5 6 7 8 9 10 11 12	80 54 37 69 424 1,505 1,498 1,344 1,071 575 412	67 44 31 63 418 1,508 1,504 1,346 1,063 556 387	54 34 25 54 403 1,497 1,509 1,346 1,052 531 358	28 19 10 16 219 1,180 1,437 1,357 955 414 248	20 10 17 252 1,249 1,481 1,354 696 429 260	21 13 11 16 174 1,020 1,276 1,345 926 381 217
2 3 4 5 6 7 8 9 10 11 12 Summer	80 54 37 69 424 1,505 1,498 1,344 1,071 575 412 1,279	67 44 31 63 418 1,508 1,504 1,304 1,346 1,063 556 387 1,183	54 34 25 54 403 1,497 1,509 1,346 1,052 531 358 1,077	28 19 10 16 219 1,180 1,437 1,357 955 414 248 758	20 10 17 252 1,249 1,481 1,354 696 429 260 790	21 13 11 16 174 1,020 1,276 1,345 926 381 217 680
2 3 4 5 6 7 8 9 10 11 12 Summer Winter	80 54 37 69 424 1,505 1,498 1,344 1,071 575 412 1,279 5,911	67 44 31 63 418 1,508 1,508 1,504 1,346 1,063 556 387 1,183 5,902	54 34 25 54 403 1,497 1,509 1,346 1,052 531 358 1,077 5,860	28 19 10 16 219 1,180 1,437 1,357 955 414 248 758 5,165	20 10 17 252 1,249 1,481 1,354 696 429 260 790 5,323	21 13 11 16 174 1,020 1,276 1,345 926 381 217 680 4,756
2 3 4 5 6 7 8 9 10 11 12 Summer Winter Annual	80 54 37 69 424 1,505 1,498 1,344 1,071 575 412 1,279 5,911 7,190	67 44 31 63 418 1,508 1,504 1,304 1,346 1,063 556 387 1,183	54 34 25 54 403 1,497 1,509 1,346 1,052 531 358 1,077	28 19 10 16 219 1,180 1,437 1,357 955 414 248 758	20 10 17 252 1,249 1,481 1,354 696 429 260 790	21 13 11 16 174 1,020 1,276 1,345 926 381 217 680
1 2 3 4 5 6 7 8 9 10 11 12 Summer Winter Annual Additional Water to	80 54 37 69 424 1,505 1,498 1,344 1,071 575 412 1,279 5,911 7,190 Pump	67 44 31 63 418 1,508 1,504 1,346 1,063 556 387 1,183 5,902 7,085	54 34 25 54 403 1,497 1,509 1,346 1,052 531 358 1,077 5,860 6,937	28 19 10 16 219 1,180 1,437 1,357 955 414 248 758 5,165 5,923	20 10 17 252 1,249 1,481 1,354 696 429 260 790 5,323 6,113	21 13 11 16 174 1,020 1,276 1,345 926 381 217 680 4,756 5,436
2 3 4 5 6 7 8 9 10 11 12 Summer Winter Annual	80 54 37 69 424 1,505 1,498 1,344 1,071 575 412 1,279 5,911 7,190 Pump –	67 44 31 63 418 1,508 1,508 1,504 1,346 1,063 556 387 1,183 5,902	54 34 25 54 403 1,497 1,509 1,346 1,052 531 358 1,077 5,860	28 19 10 16 219 1,180 1,437 1,357 955 414 248 758 5,165	20 10 17 252 1,249 1,481 1,354 696 429 260 790 5,323	21 13 11 16 174 1,020 1,276 1,345 926 381 217 680 4,756


Estimating the Impact of Current Farm Dam Development on the Surface Water Resources of the Onkaparinga River Catchment


Table 30.Modelling Scenarios of Inflows into Mount Bold Reservoir and ClarendonWeir – Irrigation Usage = 0.7 of Dam Storage

Scenarios	WFD (0.3)	WFD (0.7)	S20	5%RF	30%RL	50%RL
1	789	706	631	472	470	432
2	509	456	406	317	307	273
3	443	407	371	304	307	296
4	513	476	448	371	377	365
5	1,053	949	903	694	663	618
6	3,731	3,405	3,275	2,628	2,400	1,896
7	11,493	10,940	10,736	9,845	9,447	7,667
8	12,196	11,701	11,550	10,932	10,866	9,452
9	10,818	10,691	10,63	10,431	10,430	9,516
10	7,846	7,611	7,517	7,170	7,096	6,487
11	3,552	3,301	3,175	2,757	2,716	2,389
12	2,983	2,788	2,668	2,305	2,246	1,975
Summer	8,669	8,023	7,591	6,435	6,333	5,651
Winter	47,138	45,296	44,614	41,700	40,903	35,635
Annual	55,808	43,230 53,319	52,205	48,135	40,903	41,287
Additional Water to F		00,010	52,200	10,100	11,201	71,201
Summer	- _	647	1,079	2,235	2,336	3,018
Winter	_	1,842	2,524	5,438	6,235	11,503
Annual	-	2,489	3,603	7,673	8,571	14,521
	-				0,571	14,521
		old Reservoir and Clar	-		0.050	0.004
Summer	-	768	1,316	2,811	2,858	3,684
Winter	-	1,872	2,618	6,442	6,977	13,031
Annual	-	2,640	3,934	9,252	9,835	16,715
Average Flow into (Clarendon Weir					
Scenarios	WFD (0.3)	WFD (0.7)	S20	5%RF	30%RL	50%RL
1	139	109	84	46	50	42
2	80	64	51	24	27	15
3	54	42	32	15	18	12
4	37	30	22	9	10	10
5	69	60	50	13	17	14
6	424	411	391	183	228	138
7	1,505	1,503	1,481	1,078	1,177	886
8	1,498	1,503	1,507	1,346	1,435	1,111
9	1,344	1,345	1,344	1,352	1,353	1,336
10	1,071	1,060	1,046	9366	959	898
11	575	549	519	390	415	354
12	412	380	346	228	247	188
Summer	1,279	1,157	1,042	703	758	613
Winter	5,911	5,882	5,818	4,908	5,169	4,384
	7,19	7,039	6,859	5,611	5,926	4,997
Annual		,				e **
	ump					
Annual Additional Water to F Summer	Pump	122	238	576	522	666
	Pump 	122 30	238 93	576 1,003	522 742	666 1,528

Figure 25. Additional water to be pumped from the River Murray for all cases scenario

Rainfall-runoff relationship

Rainfall runoff relationship can be established for a catchment using Tanh curve equation. The relationship shows that for the Onkaparinga Catchment significant annual runoff occurs when rainfall in the catchment is greater than 400~450 mm a year. The relationship indicates runoff is little with low rainfall catchment and it increases exponentially with high annual rainfall.

Farm Dam Development

Up to the early 90s, the rate of farm dams development in the Onkaparinga catchment was slow. Then it increased rapidly from 75 ML/yr to 150 ML/yr in the late 90s. The estimate of aggregated dam storage for Onkaparinga catchment in 1999 is 8,500ML.

A number of empirical formulae relating volume to surface area have been proposed for estimating the farm dam volume. Caution should be exercised when applying these formulae for estimating dam volumes.

Farm Dam Impact on Current Scenario

Annual Flow Volume

The median annual adjusted flow trapped by farm dam storage is:

- 8% in the catchment upstream of Houlgrave Weir;
- 5% upstream of Clarendon Weir;
- 10% or more in subcatchments where farm dam density exceeds 25 ML/km². A density of 25 ML/km² appears to be the threshold factor for the 10% impact. Farm dam density and the annual rainfall received in a catchment have counteracting effects on the amount of catchment yield trapped by the dam storage.

In the defined dry period, the annual adjusted flow trapped by farm dams is:

- 11% above Houlgrave catchment
- 12% above Clarendon catchment
- 10% or more in subcatchments where farm dam density exceeds 10 ML/km2.

In the defined wet period, the percentage of annual adjusted flow captured is:

- 3% above Houlgrave Weir;
- 5% above Clarendon Weir; and
- 10% in Mitchell subcatchment where farm dam density exceeds 39 ML/km2.

Monthly Flow Volume

In a median year, the first month of winter flow at Houlgrave Weir is significantly impacted by farm dam storages with 21% of water retained by the dams. In a defined dry period, the impact extends to July with a 23% reduction in flow.

Daily Flow Volume

In a median year, farm dams have reduced the frequency of natural streamflow at Houlgrave Weir in the range 5-50 ML/day by 30-60 days a year.

Increasing dam storage use from 30% to 70%

Modelling shows that increasing the dam storage use from 30% to 70% would reduce the catchment yield further. With 70% of dam storage being used, flows at Houlgrave Weir would be reduced from the previously modelled 8% to 11% in a median year. Similarly, for Mitchell Creek, the reduction in runoff would increase from 20% to 35%. Generally, the same can be said for the other major subcatchments. This observation also occurs in the defined dry and wet periods.

Farm Dam Impact on Future Scenarios

Catchment Runoff

Increasing farm dam development naturally would reduce the catchment runoff as the dams have greater capacity to capture more surface flow. Nevertheless, the reduction in the adjusted flow of a catchment is also conditioned to the degree of free flow (or by pass) allowable within the catchment. With both the preceding factors in place, for the Houlgrave Weir catchment, under the fully developed 50% rule of scenario 6, and assuming 70% of dam storage being used, the model shows that reduction in flow is 32% in a median year and 45% in the defined dry period. For Mitchell Creek with the same scenario, flow reduction is 43% in both in a median year and the defined dry period.

Without limiting the diversion of a catchment runoff, it is possible to capture all the flow in the dams. This is illustrated in the modelling of Angels Gully subcatchment with no off-stream dams, the reduction in catchment runoff is 99% in the defined dry period.

Water Supply System

Inflows into the Mt Bold Reservoir and Clarendon Weir are impacted to a varying degree by the farm dam developments. The greater the aggregated dam development is allowed within the catchment, the greater the impact it is on reduction of inflows into the reservoir system.

Modelling shows that for scenario 3 farm dam development with 30% storage use, assuming the water supply operations and requirement remains as status quo, the additional water to be pumped from the River Murray into the reservoir system each year to compensate for the reduction of inflows is 1000 ML. Increasing the dam storage use to 70% would require 3000 ML of pumping. Under the fully developed scenario 6 situation, with 70% of dam storage being used, the additional water to be pumped from the River Murray, with status quo supply operations and requirement, would be 17,000 ML per annum.

50% Rule Policy

• None of the 16 major subcatchments, at current farm dam development, has exceeded the 50% rule policy where allowable dam volume of a catchment is 50% of the median annual adjusted flow as defined in the State Water Plan Volume 1 pp 50.

In the extreme dry period, six of the 16 subcatchments are seen to have captured greater than 50% of the adjusted flow or catchment yield estimated for the dry period. This has implications for the development of water resource policies for improved management of farm dams development.

• The combined storage capacity of farm dams in the subcatchments, Mt Bold Reservoir, Happy Valley Reservoir and Clarendon Weir is 95% of the modelled adjusted median natural flow at Clarendon weir.

Opportunities to Enhance Modelling Outputs

Hydrological modelling for the Onkaparinga River catchment can be improved if a number of the following background information and data can be enhanced:

- The method of estimating farm dam volumes
- Knowledge of land use information
- The amount of irrigated water derived from surface and groundwater sources
- Recharge and discharge zones of groundwater
- The proportion of water being used annually from the respective dam storage
- Infilled, correlated and disaggregated rainfall data used by the model needs further validation.
- Collating the data associated with the operation and consumption of the water supply system from the Onkaparinga River catchment to the Happy Valley Reservoir
- Inflows and outflows to the Mt Bold Reservoir and Clarendon Weir system
- Streamflow monitoring upstream of Houlgrave Weir where currently only about 12% of the catchment is gauged independently.

- 91 -

Name of unit	Symbol	Definition in terms of oth	er metric units
Millimetre	mm	10 ⁻³ m	length
Metre	m		length
Kilometre	km	10 ³ m	length
Hectare	ha	10 ⁴ m ²	area
Microlitre	μL	10- ⁹ m ³	volume
Millilitre	mL	10-6 m ³	volume
Litre	L	10 ⁻³ m ³	volume
Kilolitre	kL	1 m ³	volume
Megalitre	ML	10 ³ m ³	volume
Gigalitres	GL	10 ⁶ m ³	volume
Microgram	μg	10-6 g	mass
Milligram	mg	10-³ g	mass
Gram	g		mass
Kilogram	kg	10 ³ g	Mass

Abbreviations Commonly Used Within Text

Abbreviation		Name	Units of measure
TDS	=	Total Dissolved Solids (milligrams per litre)	mg/L
EC	=	Electrical Conductivity (micro Siemens per centimetre)	µS/cm
рН	=	Acidity	
δD	=	Hydrogen isotope composition	0/ ₀₀
CFC	=	Chlorofluorocarbon (parts per trillion volume)	pptv
δ ¹⁸ Ο	=	Oxygen isotope composition	°/ ₀₀
¹⁴ C	=	Carbon-14 isotope (percent modern Carbon)	pmC
ppm	=	Parts per million	
ppb	=	Parts per billion	
D	=	Day	
М	=	Month	
Yr	=	Year	
EPA	=	Environmental Protection Agency, Department for Environment and Heritage	
GIS	=	geographic information systems	
HYDSYS		a suite of hydrological and water resources management software packages employed as part of the South Australian State water data archive	
WaterCress	=	water balance computer model for designing and testing trial layouts of water systems using multiple sources of water	
XP-AQUALM		integrated hydrological and water quality management computer package (from XP software company)	

REFERENCES

Clark R.D.S and Mitchell N. (1987), *Annual Rainfall – Runoff Relations in Mt Lofty Ranges Catchments Near Adelaide, SA*, EWS Lib Ref 87/19, Engineering and Water Supply Department, Adelaide.

Clark R.D.S, Pezzaniti D, and Cresswell D (2002), WaterCress - Community Resource Evaluation and Simulation System - A Tool for Innovative Urban Water systems Planning and Design, 27th Hydrology and Water Resources Symposium May 2002.

Department for Water Resources, *State Water Plan 2000 Volume 1*, Government of South Australia, Sep 2000

Engineering and Water Supply Department, *Water Use Annual Returns,* annual reports from 1974 to 1994.

Allen R (1998), et al, *Crop Evaporation: Guidelines for Computing Crop Water Requirements*, Irrigation and Drainage Paper 56, Food and Agriculture Organisation of the United Nations, 1998

Grayson R.B. et al (1996), Hydrological Recipes Estimation Techniques in Australian Hydrology, Cooperative Research Centre for Catchment Hydrology.

Good RK, *The Impact of Development on Streamflow in the Marne River*, Engineering and Water Supply Department, EWS Lib Ref 92/23, Nov 1992

Kneebone J, Billington K & Bradley J (2000), *Towards sustainable Water Resource Management – for the Adelaide Hills & Fleurieu (Draft),* Evaluation Branch, EPA, Department for Environment, Heritage and Aboriginal Affairs.

Ladson AR and Porter JW, *An application of Fixed-area Rainfall Reduction Factors*, Hydrology and Water Resources Symposium Newcastle, June 30-July 2 1993

McMurray D (1996), *Farm Dam Storage Assessment in the Mount Loft Ranges*, Water Resources Group, Department of Environment and natural Resources South Australia.

McMurray D (2002), *Current and Potential Future Dam Development in the Central Mount Lofty Ranges, South Australia*, Department for Water Resources, South Australia.

McMahon T.A. (1982), *World Hydrology: Does Australia Fit?*, Hydrology and Water Resources Symposium, Melbourne I.E.Aust. National Conference Publication No 82/3 pp. 1-7

PPK Environment & Infrastructure Pty Ltd (2000), Onkaparinga Catchment Water Management Plan: Water Resources and Alternative Uses Technical Paper 4 – Draft report, Onkaparinga Catchment Water Management Board.

Sinclair Knight Merz (2000), South Australian Daily Rainfall Data Infilled and Disaggregated Data Sets Version 1, Dec 2000

Savadamuthu K (2002), *Impact of Farm Dams on Streamflow in the Upper Marne Catchment*, Department for Water Resources South Australia.

Stove K (Editor, 2000), *Towards Sustainable Water Resource Management – Technical Report (Draft),* Evaluation Branch, EPA, Department for Environment, Heritage and Aboriginal Affairs

Tomlinson G.W. (1996), *Catchment Yield Analyses for South Australian Reservoirs Volume 1*, Department of Environment and Natural Resrouces South Australia.

APPENDIX A - PROCESSING RAINFALL DATA PROCESSES

Before the records of rainfall stations can be used for modelling purposes, the raw data needs to be checked and processed.

Processing the raw rainfall data from these rainfall stations involved a number of steps. They are to:

- identify those stations with useful records; •
- re-distribute the rainfall data of the identified stations;
- fill in the data gaps by patching the missing rainfall records;
- carry out double mass curve analysis to check for the homogeneity of the records for these • stations;
- identify rainfall trends over the recording period;
- construct an isohyetal map for the catchment;
- identify the stations best representing each subcatchment area for modelling purposes.

Situations requiring the second step listed above often arise because more often than not, the raw rainfall data contain information gaps and accumulated data. Accumulated data refers to rainfall that was accumulated during weekends and public holidays and was then recorded on the next working day at 9:00 am, which is usually Monday. As a result, the accumulated data require redistribution within the period of accumulation and the missing records need patching.

This is an enormous task to perform. The Engineering Consultants Sinclair Knight Merz (SKM) provided the processing of the rainfall data for redistributing and infilling of the missing gaps. The Consultants automated the processing of the data set from Jan 1884 to December 1998. The methodology is outlined below

Methodology for re-distribution of rainfall data

For redistribution of rainfall data, it is based on the method outlined by Porter and Ladson (1993). The method assumes that the influence of nearby stations, where records are complete, is inversely proportional to their distance from the gauged station. That is if a gauged station S has its rainfall accumulated over m days, and complete data is available from n rainfall stations nearby, on day j precipitation at S station is given by:

$$\mathbf{P}_{jS} = \frac{\sum_{i=1}^{m} \mathbf{P}_{iS} \cdot \sum_{k=1}^{n} \{p_{jk} / d_{k}\}}{\sum_{k=1}^{n} \{1 / d_{k}\}}$$

where $\sum_{i=1}^{m} \mathbf{P}_{iS}$ is total rainfall accumulated over **m** days for the gauged station **S**,

is the distance from a rainfall station k to the gauged station S, and

is that proportion of rainfall fell on day \mathbf{j} at \mathbf{k} station over the total rainfall accumulated over \mathbf{m} days p_{ik} at the same k station. That is,

$$p_{jk} = \frac{\mathbf{P}_{jk}}{\sum_{i=1}^{m} \mathbf{P}_{ik}}$$

 d_{k}

Estimating the Impact of Current Farm Dam **Development on the Surface Water Resources of** the Onkaparinga River Catchment

To this effect, an automated procedure was developed to redistribute the data. The procedure limits the search to only 15 rainfall stations closest to the station of interest. If no reference can be made from these 15 stations, then it is recommended that redistribution be carried out manually from other nearby stations closest to the station of interest. If no such reference station can be found, then redistribution may be carried out evenly over the period of accumulation.

For infilling the missing rainfall records, the correlation method was used. The annual rainfall of a station **S** of interest was correlated with that of other nearby stations. The station with the highest correlation factor with S that had data concurrent with the missing period was used for infilling the records. Again, the Consultants developed an automated procedure for infilling the data and it was limited to a search of 15 closest rainfall stations only.

Introduction

The complexity of the influence of widely distributed farm dams and the importation of significant quantities of water from the River Murray within the Onkaparinga catchment require that a hydrological model be produced to serve several functions, namely:

- To check the accuracy of existing measured information by ensuring water balance is maintained throughout the system
- To assess the impact that the current farm dams have on the system
- To run a range of scenarios to assess the impact to current users and the environment given changes in volume of farm dams, landuse change and environmental flow release rules.

In view of this, a hydrological model for Onkaparinga catchment has been constructed using a PC based computing program called *WaterCress*. The program incorporates a number of runoff models for calculating water balance of a water system.

This section outlines the methodology adopted for the construction of the Onkaparinga catchment hydrological model.

WATERCRESS modelling program

WaterCress stands for *W*ater-Community *R*esource *E*valuation and Simulation System. It is a program capable of modelling a range of water systems for computing water balance from multiple sources of water. A water system may consist of a catchment component, water demand requirements, treatment of water, diversion and/or water storages.

To construct a hydrological model, *WaterCress* uses "nodes" as the building blocks for representing each component of the water system within the model. There are five main classes of nodes noted for the program, namely:

- demand nodes for town and industry;
- catchment nodes for rural and urban type;
- storage nodes for reservoir, dam and aquifer storage;
- treatment nodes for water treatment plant and wetland, and
- diversion/transfer nodes for weir, routing and environment flows purposes.

Each node type is represented as an icon as shown in Figure 26.

Rural and urban catchments produce the necessary runoff due to precipitation. The runoff, in turn, generates streamflow in the river system which may be captured by on-stream and off-steam dams within the catchment. Hence these hydrological processes are represented in the model by the elements of rural, urban and reservoir node functions. Additional routing nodes are added to better simulate streamflow calibrations. A Routing node may be incorporated in the model to assist better calibration as it mimics the delayand attenuation characteristics of streamflows.

Figure 26. WaterCress Model Nodes

To calculate the runoff created from rural catchments one of a number of runoff models incorporated in the program may be chosen. These include WC-1, Hydrolog, AWBM, SFB, SDI, Aquam and Initial/Continuous loss models.

For Onkaparinga River catchment, the WC-1 model is chosen as the modelling platform since it is considered to be the most appropriate for the Mt Lofty Ranges conditions by the previous modellers. The model was developed by D. Cresswell who derived the concept from one of WC Boughton's papers that described how the runoff processes could be simulated by a number of storages of differing capacities and areas. The WC-1 model employs a three-bucket concept whereby runoff generated from precipitation would be collected by a bucket, which then passes down the excess water to another bucket when it is full. The first bucket is called an interception store (IS), the second a soil moisture store and the last one a groundwater store. The interception store represents the precipitation being intercepted by foliage of vegetation and the like. The soil moisture store represents the water holding capacity of the soil and groundwater store is that portion of water percolates to the groundwater table. Water moves from the interception store to the soil moisture store through surface runoff and interflows. From the soil moisture store, recharge to local groundwater table occurs, which in turn may discharge as baseflow to a stream at some distance down the catchment. Groundwater losses to pumping and regional aquifer may also occur. A schematic diagram of three-bucket rainfall-runoff processes is presented in Figure 27. The WC-1 model uses a daily time step to calculate the water balance of rainfall runoff processes. Figure 28 shows how the WC-1 model operates in a daily time-step.

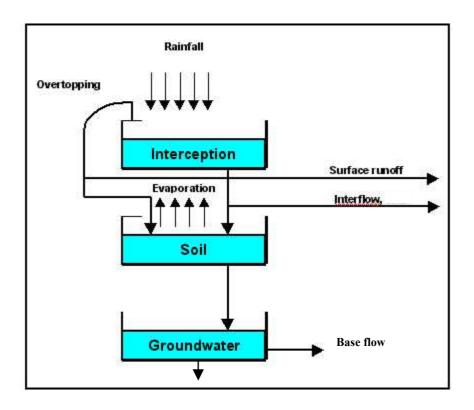
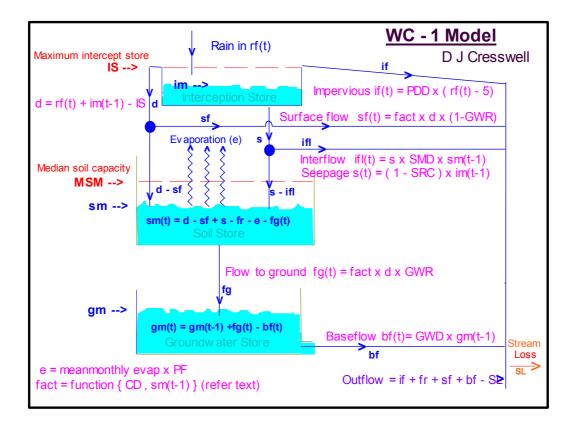



Figure 27. 3 Bucket Rainfall-Runoff Processes

Figure 28. WaterCress WC-1 Runoff Model

Catchment data

Introduction

The layout of Onkaparinga catchments and a schematic diagram of the 240 node catchment hydrological model is provided as shown in Figures 29 30. It is noted that the model consists of the building blocks of nodes representing:

- rural catchments (rural nodes)
- townships (urban nodes)
- on-stream and off-stream farm dams (reservoir nodes) and
- routing components (routing nodes).

In addition to the rural catchments, there are significant urban areas within the catchment. These areas are shown in Figure 31. Table 33 provides the input data required for the construction of the model nodes. The contents of Table 33 are briefly described as:

Column	Heading	Description
2	SUB_CATCH4	Description of a subcatchment
4	Sub-cat Nos	shows the sub-divided catchment in sequential numbering
5	Rural Node	shows the WaterCress model node number for rural catchment
6	Dam Node	shows the WaterCress model node number for associated dams
8	Net_cat4_area,ha	area of a rural catchment in ha
9	Urban_ha	area of an urban catchment in ha
10	DamAREA_M2	area of an aggregated farm dam's water surface, in m2
11	VOL(ML)_Dg	volume of aggregated farm dams within catchment, in ML
12	location	location of a rainfall station used for the node in WaterCress model
14	rainfall ratio	ratio applied to the rainfall data used by the node (refer Section: DATA INPUT TO MODEL: Rainfall)
16	Off-stream Dam	indicates the node is an off-stream type dam, those not specified indicates the node is an on-stream dam
17	Diversion fraction	indicates the percentage of runoff diverted from the catchment irrespective of if the dam is full or not.

Rural and urban catchment nodes

The catchment is initially subdivided into 16 major subcatchments identifying the major tributaries and positions of existing gauging stations. The locations of the major subcatchments are shown in Figure 1 and the corresponding areas in Table 31. Further subdivision from the major subcatchments was carried out based on the following:

• The catchment area located upstream of a controlling dam or in areas with significant aggregated dam storage development. A controlling dam is one that has substantial storage size (say greater than 20 ML) and is found on the flow path of a creek. Runoff captured by the controlling dam can only pass the water downstream when the dam storage is full (refer Section: Reservoir nodes).

- Division of catchments into areas of similar rainfall along the rainfall isohyets where feasible.
- The catchment area immediately upstream of a gauging station where reliable streamflow records are available.

The result is a total division of the Onkaparinga River catchment into 95 smaller subcatchments (Figure 29) varying in area size considerably. These form the rural catchment nodes of the Onkaparinga hydrological model.

Subcatchment	Area (ha)	Subcatchment No.	
Aldgate Creek	1,945	54-58	
Bakers Gully	4,796	83-90	
Balhannah	1,024	45	
Biggs Flat	2,365	59-61	
Charleston	5,151	1-12	
Cox Creek	2,875	49-53	
Echunga Creek	3,917	64-71	
Hahndorf	1,468	47	
Inverbrakie Creek	2,674	13-20	
Lenswood Creek (Cock Ck)	2,840	29-40	
Michell Creek	1,451	22	
Onkaparinga-48 (Angels Gully)	1,408	79-80	
Onkaparinga Main Channel	13,043	63,72,81,82,91-95	
Scott Creek	2,850	74-78	
Upper Onkaparinga	4,708	23,41-44,46	
Western Branch	3,297	24-28	
Grand total	55,812	95	

Table 31. The Catchments Area and Numbering Sequence

Urban nodes are incorporated in the model to represent townships within the Onkaparinga River catchment. An urban node may represent a combined area of several townships spread across several subcatchments. The location of the townships is shown in Figure 31 and the size adopted (refer Section: Data Input to Model: Rural and Township Catchments) in Table 32.

Township	Subcatchment	Urban Node	Area (ha)	Comment
Scott Ck	Scott Ck	204	0	Urban node u/s N203, Scott ck
Aldgate	Aldgate Ck	207	160	Urban node u/s N193, Aldgate
Uraidla, Summertown	Cox Creek	210	14	Urban node u/s N209, Cox ck
Woodside, Lobethal	Charleston	224	56	Urban node for township @ sub-cat nos 11&12 (33 + 23 ha), u/s of N219
Lobethal	Western Branch	225	43	Urban node for township @ sub-cat nos 26 of Western Branch
Balhannah, Bridgewater, Oakbank	Upper Onkaparinga	226	34	Urban node for township @ sub-cat nos 41
Stirling	Cox Creek	227	45	Urban node for township @ sub-cat nos 51
Aldgate, Bridgewater, Stirling	Cox Creek	228	97	Urban node for township @ sub-cat nos 52 & 53 combined (91+6 ha), Cox ck
Aldgate, Stirling	Aldgate ck	229	64	Urban node for township @ sub-cat nos 56 (64 ha), Aldgate, u/s of N223
Balhannah	Balhannah	236	12	in Balhannah catchment
Hahndorf	Hahndorf	237	49	in Hahndorf catchment

Table 32. Town Nodes in the Model

Note: modelled impervious area of the urban component is taken as 1/3 of the digitised plan area of the township

Reservoir nodes

Farm dams are represented as reservoir nodes in the model. Based on the 1999 farm dam surveys, there are 2,700 farm dams found in the Onkaparinga catchment varying in size from less than 0.5 ML to greater than 50 ML each in storage capacity with a total volume of 8,500 ML. It is not practical for every farm dam to be represented as a reservoir node in the hydrological model. So the water surface area and the storage capacity of all the farm dams within a subcatchment are "aggregated" as if only one farm dam existed within that catchment. It is then represented as a reservoir node of the catchment. With the exception of subcatchments Onkaparinga Main Channel 4&6 where no farm dams existed, all of the subcatchments have farm dams constructed in their area with a total of 93 reservoir nodes. The volume corresponding to each catchment sub-area is shown in Table 33 as DamAREA_m² and Vol (ML).

A reservoir node can be represented by either an on-stream or off-stream aggregated farm dam. The choice of which to use depends on the spatial layout of the dams within the catchment in question. An aggregated farm dam is modelled as on-stream dam if large dams are found blocking the flow path of a creek system. In this case, runoff is assumed to spill downstream only when the dam is full. An aggregated off-stream dam would allow a specified proportion of runoff to bypass the dam to downstream irrespective of the level of storage in the dam. This option is adopted where there are many dams spread spatially throughout the catchment and there are sections of stream which are free to flow. The size and type of aggregated storage are defined in Table 33.

Model calibration is carried out for streamflow in a catchment where sufficient records of a gauging station can found. For this model the location of a gauging station is represented in the model as an off-stream reservoir node, which has the storage volume set to zero. The inclusion of these additional off-stream nodes allows incremental increases in dam volumes to be made in each of the subcatchments to simulate further farm dam development as required.

Routing nodes

The routing node is added in the model to improve the calibration of streamflows at a gauged station. It has the effect of delaying the timing of the flow. The node requires a relationship between flow passing and stored volume to be maintained thus simulating flow detention in stream channels. These nodes are necessary to enable the model to more accurately define flows on the daily time-steps.

No.	Subcatchment	Cat Set	Subcat.	Rural	Dam	-	Net_cat4_ar	Urban_ha	_	VOL(ML)_ Dg	R	ainfall (m	m)		Rf	Adjusted	Off/stream Dam	Diversion
			Nos.	Node	Node	A_HA	ea,ha				location	average	isohyet	of catchment	ratio	rainfall		fraction
1	CHARLESTON_4c	1	2	1	2	80.9	79.6		12,474.2	22.7	LB	885.4	868	719	0.83	733.4		
2	CHARLESTON_3	8	3	3	4	152.5	148.5		40,514.9	82.9	LB	885.4	868	700	0.81	714.0		
3	CHARLESTON_4a4	6	4	5	6	1,322.8	1,314.3		85,604.5	84.4	LB	885.4	868	700	0.81	714.0	yes	30%
4	CHARLESTON_4d	1	5	7	8	77.0	73.3		36,719.2	65.8	LB	885.4	868	767	0.88	782.4		
5	CHARLESTON_4b	5	6	9	10	94.5	92.2		23,649.9	32.2	LB	885.4	868	787	0.91	802.8		
6	CHARLESTON_4a2	6	7	11	12	641.7	636.6		51,055.6	57.0	LB	885.4	868	775	0.89	790.5	yes	30%
7	CHARLESTON_1	5	9	13	14	101.3	99.0		23,062.1	46.9	LB	885.4	868	795	0.92	810.9		
8	CHARLESTON_4a3	8	8	15	16	541.7	537.6		40,374.3	56.6	LB	885.4	868	707	0.81	721.2	yes	35%
9	CHARLESTON_4a1	6	10	17	18	516.4	508.6		77,907.6	104.6	WS	805.3	833(706.5)	737(685.4)	0.97	781.1		
10	CHARLESTON_2	5	11	20	21	1,286.1	1,243.6	33.0	94,899.6	124.0	WS	805.3	833	792	1.00	805.3	yes	35%
11	CHARLESTON_5	6	12	22	23	236.4	212.7	23.0	6,722.4	6.0	WS	805.3	833	773	1.00	805.3		
12	INVERBRACKIE CK_4c	8	13	24	25	15.4	14.2		11,501.5	19.4	WS	805.3	833	676	0.97	781.1		
13	INVERBRACKIE CK_4a	8	14	26	27	29.0	27.6		14,467.2	20.1	WS	805.3	833	685	0.97	781.1		
14	INVERBRACKIE CK_4d	8	15	28	29	26.1	24.9		12,008.4	16.7	WS	805.3	833	688	0.97	781.1		
15	INVERBRACKIE CK_4b	8	16	30	31	295.5	286.9		86,557.0	128.9	WS	805.3	833	675	0.97	781.1		
16	INVERBRACKIE CK_1	8	17	32	33	476.7	470.9		58,604.1	70.2	WS	805.3	833	675	0.97	781.1	yes	35%
17	INVERBRACKIE CK_2c	7	21	34	35	1,489.7	1,475.8		139,723.8	171.2	WS	805.3	833	726	0.97	781.1	yes	35%
18	INVERBRACKIE CK_2a	8	18	36	37	97.3	94.1		32,068.6	51.4	WS	805.3	833	702	0.97	781.1		
19	INVERBRACKIE CK_2b	7	19	38	39	147.1	144.4		27,357.7	52.3	WS	805.3	833	745	0.97	781.1		
20	INVERBRACKIE CK_3	7	20	40	41	97.2	96.5		7,075.6	7.6	WS	805.3	833	726	0.97	781.1		
21	MITCHELL CK_1	1	22	42	43	1,450.7	1,426.6		241,084.8	565.7	WS	805.3	833	726	0.97	781.1		
22	UPPER ONKAPARINGA_2	6	23	44	45	634.8	625.0		98,053.0	175.0	WS	805.3	833	847	1.02	818.8		
23	UPPER ONKAPARINGA_1c1	6	41	46	47	1,951.7	1,898.2	34.0	194,550.4	215.8	HD	858.5	796	905	1.14	976.1	yes	40%

Table 33. Input Data for the Catchment Hydrological Model

											Rainfall (mm)							
24	WESTERN BRANCH_1a	5	24	49	50	191.0	184.1		68,674.1	114.7	LB	885.4	868	906	1.04	924.2		
25	WESTERN BRANCH_2	5	25	51	52	87.6	83.6		40,589.0	85.2	LB	885.4	868	858	0.99	875.2		
26	WESTERN BRANCH_1b	1	26	53	54	2,129.2	2,060.2	43.0	260,651.5	344.1	WS	805.3	833	878	1.05	848.8	yes	65%
27	WESTERN BRANCH_4	5	27	55	56	293.3	281.5		117,934.1	245.0	WS	805.3	833	908	1.09	877.8		
28	WESTERN BRANCH_3	6	28	57	58	595.6	583.2		123,496.8	195.9	HD	858.5	796	838	1.05	903.8	yes	60%
29	COCK CK_6	5	29	59	60	95.0	91.5		35,109.5	51.8	UR	1082.8	1037	931	0.90	972.1		
30	COCK CK_8	5	30	61	62	115.2	111.4		38,533.0	46.7	UR	1082.8	1037	938	0.90	979.4		
31	COCK CK_1	5	31	63	64	105.5	102.9		25,999.0	35.8	UR	1082.8	1037	950	0.92	992.0		
32	COCK CK_5c	5	32	65	66	264.2	260.6		35,304.9	32.3	UR	1082.8	1037	963	0.93	1005.5		
33	COCK CK_5a	5	33	67	68	229.1	227.7		13,098.8	14.3	WS	805.3	833	943	1.13	911.6	yes	50%
34	COCK CK_3	5	34	69	70	405.4	394.6		107,318.2	115.7	WS	805.3	833	924	1.11	893.3		
35	COCK CK_2	5	35	71	72	47.3	44.3		30,445.4	46.9	WS	805.3	833	925	1.11	894.2		
36	COCK CK_5b	5	36	73	74	301.4	295.8		55,652.0	75.4	WS	805.3	833	933	1.12	902.0	yes	50%
37	COCK CK_5d	5	37	75	76	120.7	120.0		6,887.9	4.8	UR	1082.8	1037	957	0.92	999.3		
38	COCK CK_4	5	38	77	78	68.7	66.1		26,178.0	38.9	UR	1082.8	1037	975	0.94	1018.1		
39	COCK CK_7a	5	39	79	80	695.5	683.3		121,825.3	160.7	UR	1082.8	1037	995	0.96	1038.9	yes	80%
40	COCK CK_7b	5	40	81	82	391.7	385.8		59,615.2	86.7	WS	805.3	833	900	1.08	870.1	yes	50%
41	UPPER ONKAPARINGA_1a	6	42	83	84	470.8	453.9		168,940.2	312.7	BW	1044.7	962	962	1.00	1044.7		
42	UPPER ONKAPARINGA_1c3	6	43	85	86	894.1	882.3		117,789.8	124.5	UR	1082.8	1037	961	0.93	1003.4	yes	60%
43	UPPER ONKAPARINGA_1c2	6	44	87	88	482.0	478.1		39,008.3	32.0	BW	1044.7	962	950	0.99	1031.7		
44	BALHANNAH_1	6	45	89	90	1,024.3	1,000.7	12.0	116,214.8	197.0	HD	858.5	796	772	0.97	832.6	yes	80%
45	UPPER ONKAPARINGA_1b	6	46	91	92	274.8	265.3		95,084.7	200.5	HD	858.5	796	844	1.06	910.3		
46	HAHNDORF_1	1	47	93	94	1,468.4	1,394.0	49.0	253,520.9	475.7	HD	858.5	796	812	1.02	875.8	yes	75%
47	ONKAPARINGA MAIN CH_1	6	48	95	96	107.0	106.0		9,686.9	7.9	HD	858.5	796	863	1.08	930.8		
48	CHARLESTON_4e	6	1	97	98	99.5	96.5		30,238.5	64.8	LB	885.4	868	738	0.85	752.8		
49	ONKAPARINGA MAIN CH_3b	6	63	99	100	1,952.1	1,925.7		263,545.5	297.1	BW	1044.7	962	900	0.94	977.4		
50	COX CK_1a	1	49	102	103	552.3	536.0	14.0	22,771.1	18.5	UR	1082.8	1037	1041	1.00	1087.0		
51	COX CK_1b	1	50	104	105	595.9	586.2		97,018.8	100.0	UR	1082.8	1037	1030	0.99	1075.5		

											Rainfall (mm)							
52	COX CK_1c	1	51	106	107	713.7	663.1	45.0	56,041.6	69.1	UR	1082.8	1037	1066	1.03	1113.1	yes	50%
53 (COX CK_1e	1	52	108	109	741.9	647.3	91.0	35,588.8	30.6	BW	1044.7	962	1000	1.04	1086.0	yes	40%
54 (COX CK_1d	1	53	110	111	271.2	264.8	6.0	3,983.1	2.8	BW	1044.7	962	925	0.96	1004.5	yes	20%
55	ALDGATE CK_1b	2	54	112	113	455.8	375.0	80.0	7,987.6	9.2	UR	1082.8	1037	1075	1.04	1122.5	yes	15%
56 A	ALDGATE CK_1a	2	55	114	115	286.9	205.1	80.0	18,794.1	28.4	UR	1082.8	1037	1075	1.04	1122.5		
57 A	ALDGATE CK_1d	2	56	116	117	616.0	545.2	64.0	68,093.6	69.7	BW	1044.7	962	1038	1.08	1127.2	yes	60%
58 A	ALDGATE CK_1c	2	57	118	119	271.0	266.2		48,351.4	43.9	BW	1044.7	962	1004	1.04	1090.3		
59 A	ALDGATE CK_1e	2	58	120	121	315.5	314.4		10,951.4	7.6	BW	1044.7	962	950	0.99	1031.7	yes	20%
60 0	ONKAPARINGA MAIN CH_3a	2	95	122	123	275.4	274.1		13,430.6	9.3	BW	1044.7	962	977	1.02	1061.0	yes	60%
61 E	BIGGS FLAT_1a	6	59	124	125	58.9	56.6		23,255.3	42.3	EC	806.8	775	775	1.00	806.8		
62 E	BIGGS FLAT_1b1	6	60	126	127	1,442.1	1,414.5		276,310.8	332.1	EC	806.8	775	800	1.03	832.8	yes	80%
63 E	BIGGS FLAT_1b3	6	62	128	129	425.8	414.8		109,970.1	166.4	EC	806.8	775	875	1.13	910.9		
64 E	BIGGS FLAT_1b2	6	61	130	131	438.1	428.8		93,689.6	119.2	EC	806.8	775	825	1.06	858.9		
65 (ONKAPARINGA MAIN CH_5a		73	132	214	2,325.7	2,324.7		10,298.1	7.6	CG	925.2	905	875	0.97	894.5		
66 E	ECHUNGA CK_4b	6	64	134	135	268.4	259.0		94,065.1	168.8	EC	806.8	775	771	0.99	802.6		
67 E	ECHUNGA CK_4c	6	65	136	137	129.1	126.4		27,373.7	36.0	EC	806.8	775	775	1.00	806.8		
68 E	ECHUNGA CK_4a	6	66	138	139	356.6	348.6		80,123.1	93.5	EC	806.8	775	805	1.04	838.0		
69 E	ECHUNGA CK_4d1	6	67	140	141	929.8	918.0		118,021.3	151.8	EC	806.8	775	800	1.03	832.8	yes	85%
70 E	ECHUNGA CK_4d2	6	70	142	143	955.8	947.0		88,012.8	90.7	EC	806.8	775	864	1.11	899.5		
71 E	ECHUNGA CK_2	6	69	144	145	595.2	578.0		172,469.8	267.7	EC	806.8	775	875	1.13	910.9		
72 E	ECHUNGA CK_3	6	68	146	147	187.9	178.0		98,625.2	204.8	EC	806.8	775	838	1.08	872.4		
73 E	ECHUNGA CK_1	6	71	148	149	494.2	491.8		23,669.7	25.1	EC	806.8	775	848	1.09	882.8	yes	70%
74 (ONKAPARINGA MAIN CH_7		72	150	151	59.1	58.5		5,422.8	6.7	EC	806.8	775	850	1.10	884.9		
75 (ONKAPARINGA MAIN CH_5b		81	152	153	1,512.3	1,509.4		28,819.0	23.2	CL	818.4	785	813	1.04	847.6	yes	15%
76 8	SCOTT CK_2b	3	74	154	155	735.9	728.6		72,765.6	68.0	UR	1082.8	1037	1019	0.98	1064.0	yes	90%
77 8	SCOTT CK_2a	3	75	156	157	923.8	917.9		59,495.1	46.0	CG	925.2	905	945	1.04	966.1	yes	80%
78 8	SCOTT CK_2c	3	76	158	159	433.4	431.1		23,099.6	21.5	CG	925.2	905	900	0.99	920.1	yes	70%
79 8	SCOTT CK_2d	3	77	160	161	570.1	561.8	7.0	13,135.9	10.8	CG	925.2	905	869	0.96	888.4	yes	15%

											Rainfall (mm)							
80	SCOTT CK_1	3	78	162	163	186.5	186.3		2,165.3	1.6	CL	818.4	785	838	1.07	873.7		-
81	ANGELS GULLY_1b		79	164	165	281.1	279.0		20,686.0	20.2	CG	925.2	905	892	0.99	911.9		
82	ANGELS GULLY_1a		80	166	167	1,126.8	1,120.1		66,371.0	62.3	CL	818.4	785	820	1.04	854.9		
83	ONKAPARINGA MAIN CH_2b		82	168	169	783.8	782.0		17,681.6	25.3	CL	818.4	785	780	0.99	813.2	yes	10%
84	ONKAPARINGA MAIN CH_2c		91	170	171	1,325.6	1,325.6		0.0	0.0	CL	818.4	785	713	0.91	743.3	yes	10%
85	BAKER GULLY_1a	9	83	172	173	523.1	519.7		34,099.2	55.9	CL	818.4	785	840	1.07	875.7		
86	BAKER GULLY_1b	9	84	174	175	114.6	110.6		39,987.1	86.1	CL	818.4	785	832	1.06	867.4		
87	BAKER GULLY_1d3	9	85	176	177	1,248.6	1,235.4		131,862.9	136.4	CL	818.4	785	818	1.04	852.8		
88	BAKER GULLY_1c	9	86	178	179	182.6	178.6		39,707.6	65.1	CL	818.4	785	782	1.00	815.3		
89	BAKER GULLY_1e	9	87	180	181	81.8	78.3		34,990.0	80.1	CL	818.4	785	730	0.93	761.1		
90	BAKER GULLY_1d2	9	88	182	183	750.6	745.3		52,455.9	50.8	CL	818.4	785	775	0.99	808.0	yes	70%
91	BAKER GULLY_1d4	9	89	184	185	1,158.6	1,153.3		53,484.8	37.3	CL	818.4	785	782	1.00	815.3	yes	60%
92	BAKER GULLY_1d1	9	90	186	187	736.4	734.4		19,760.7	18.4	CL	818.4	785	730	0.93	761.1	yes	10%
93	ONKAPARINGA MAIN CH_2a		92	188	189	1,504.3	1,504.3		0.0	0.0	MV	562.2	569	595	1.05	587.9	yes	10%
94	ONKAPARINGA MAIN CH_4		93			1,032.7	991.7	41.0	0.0	0.0	ON	524.7	515	515	1.00	524.7		
95	ONKAPARINGA MAIN CH_6		94			2,164.9	1,758.9	406.0	0.0	0.0	ON	524.7	515	520	1.01	529.8		
96	GRAND TOTAL						54,184.6	1,028.0	5,992,262.5	8,495.3								

Note: Mt Bold Reservoir

a) from EWS report Ref 82/30: MBR volume at FSL = 47,300 ML MBR surface area at FSL = 308 ha

Rainfall data (1900 --1998)

BW, BridgeWater, 023707inf.rai

CG, Cherry Garden, 023709inf.rai

CL, Clarendon, 023710omf.rai

EC, Echunga, 023713inf.rai

HD, Hahndorf, 023720inf.rai

- LB, Lobethal, 023726inf.rai
- MV, Morphett Vale, 023732inf.rai
- ON, Old Norlunga, 023740inf.rai
- UR, Uraidla, 023750inf.rai
- WS, Woodside, 023829inf1.rai

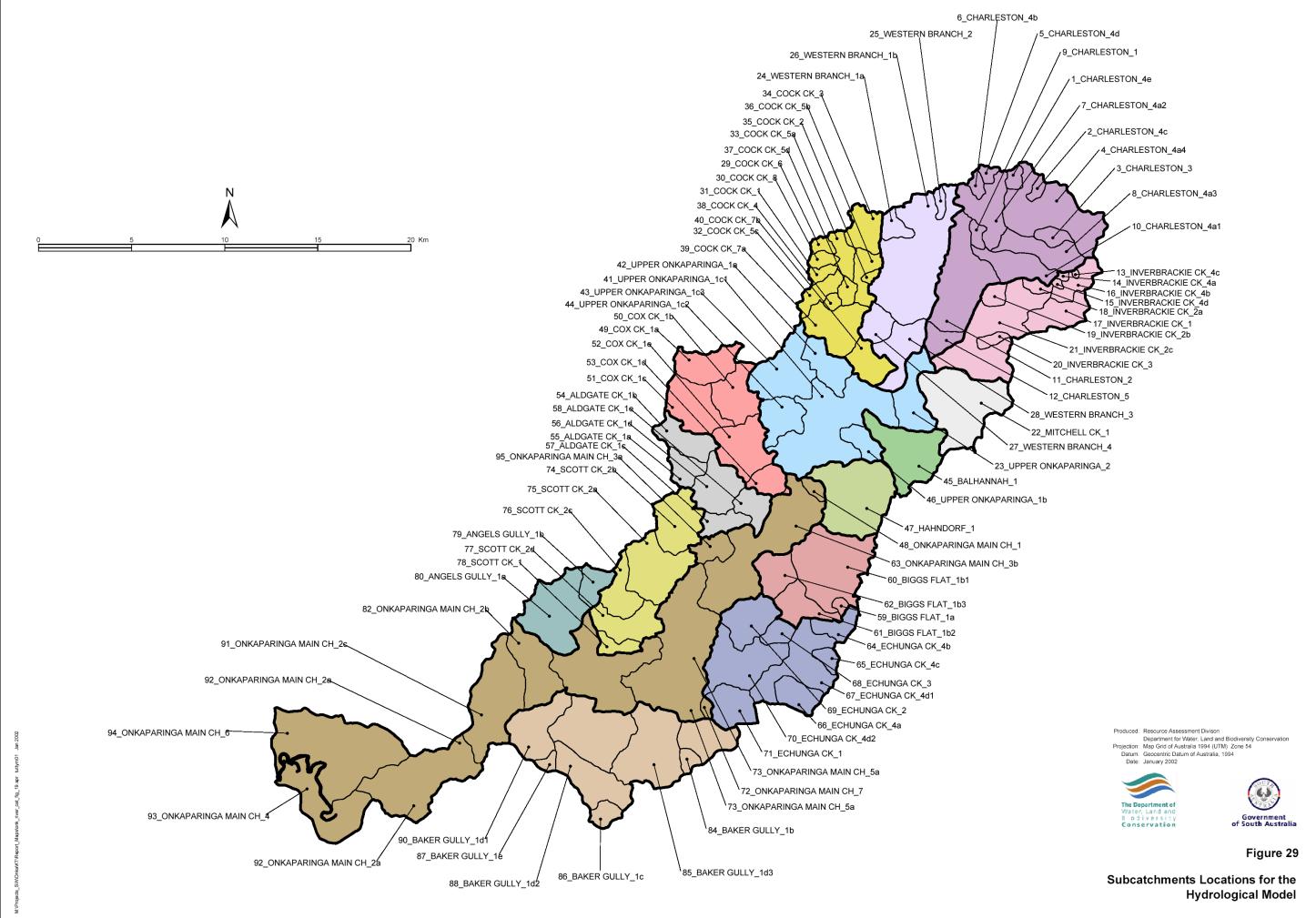
Nos	Gauging station location	Sub- cat No.	Rural Node	Dam Node	Cat4_Ar ea_ha	Net_cat4 _area,ha		Dam AREA M2	VOL(ML)_D g	Comments
1	AW503504, Houlgraves weir	O-3b	101	101	32,133	31,102	574	4,563,617	6,634	OSD @ d/s of N100
2	AW503508, Inverbrackie ck	03	190	190	843	824	0	183,138	255	OSD @ d/s of N33
3	AW503530, Kerber ck of Inverbrackie catchment	O4	191	191	97	96	0	7,076	8	OSD @ d/s of N41
4	AW503507, Lenswood ck	05	192	192	1,684	1,649	0	348,349	424	OSD @ u/s of N79
5	AW503509, Aldgate ck @ railway stn	O6	193	193	743	580	160	26,782	38	OSD @ u/s of N116
6	AW503506, Echunga ck	07	194	194	3,423	3,355	0	678,691	1,013	OSD @ d/s of N143
7	AW503503, Bakers Gully	08	195	195	4,796	4,756	0	406,348	530	OSD @ d/s of N187
8	AW503502, Scott ck	09	196	196	2,663	2,639	7	168,496	146	OSD @ d/s of N161
9	AW503500, Clarendon weir	O10	197	197	44,204	42,796	581	8,272,736	55,240	OSD @ d/s of N153
10	AW503522, Norlunga ck	011	198	198	52,614	51,164	581	8,696,766	55,795	OSD @ d/s of N189
11	AW503528, Onka river d/s of MBR	012	199	199						OSD @ d/s of N133
12	AW503526, Cox Ck	013	202	202	552	536	14	22,771	18	OSD @ d/s of N103
	Subcatchment node									
1	Houlgraves Weir catchment	O-3b	101	101	32,133	31,102	574	4,563,617	6,634	OSD @ d/s of N100
2	MtBold Reservoir catchment	O_5a	133	133	38,434	37,062	574	7,986,198	54,986	inclusive Mt Bold Reservoir volume
3	Bakers Gully	08	195	195	4,796	4,756	0	406,348	530	OSD @ d/s of N187
4	Clarendon Weir catchment	O10	197	197	44,204	42,796	581	8,272,736	55,240	OSD @ d/s of N153
5	Old Norlunga ck catchment	011	198	198	52,614	51,164	581	8,696,766	55,795	OSD @ d/s of N189
6	Western Branch catchment	014	218	218	3,297	3,193	43	611,345	985	OSD @ d/s of N58, forming part of the "main" river
7	Cock catchment	O16	220	220	2,840	2,784	0	555,967	710	OSD @ d/s of Cock catchment, forming part of the "main" river
8	Biggs Flat catchment	017	221	221	2,365	2,315	0	503,226	660	OSD @ d/s Biggs Flat catchment, forming part of the "main" river
9	Cox catchment	O18	222	222	2,875	2,697	156	215,403	221	OSD @ d/s Cox catchment, forming part of the "main" river
10	Aldgate catchment	O19	223	223	1,945	1,706	224	154,178	159	OSD @ d/s of Aldgate catchment, forming part of the "main" river
11	Charleston catchment	Char	231	231	5,151	5,043	56	523,223	748	OSD @ d/s of Charleston catchment
12	Inverbrackie catchment	Inve	232	232	2,674	2,635	0	389,364	538	OSD @ d/s of Inverbrackie catchment
13	Mitchell Ck catchment	Mitc	233	233	1,451	1,427	0	241,085	566	OSD @ d/s of Mitchell catchment
14	Balhannah catchment	Balh	234	234	1,024	1,001	12	116,215	197	OSD @ d/s of Balhannah catchment
				235	1,468	1,394	49	253,521	476	

Table 34. Input Data for the Catchment Hydrological Model (cont)

Nos	Gauging station location	Sub- cat No.	Rural Node	Dam Node	Cat4_Ar ea_ha	Net_cat4 _area,ha		Dam AREA M2	VOL(ML)_D g	Comments
										catchment
16	Echunga catchment	Euch	238	238	3,917	3,847	0	702,361	1,038	OSD @ d/s of Echunga catchment
17	Scott Creek catchment	Scot	239	239	2,850	2,826	7	170,662	148	OSD @ d/s of Scott ck catchment
18	Angels Gully catchment	Ange	240	240	1,408	1,399	0	87,057	82	OSD @ d/s of Angels Gully catchment
10	Line on Onlyn, ontohan ant				4 700	4 000		740 400	1 000	Dam node numbers are:
19	Upper Onka catchment		varies	varies	4,708	4,603		713,426	1,060	45,47,84,86,88 and 92.
20	Onka Main CH catchment		varies	varies	13,043	12,290		348,884	377	Dam node numbers are: 96, 100, 123, 133, 151, 153,169, 171 and 189. Vol for N133=7.6 ML only
	Township									
1	Scott ck	U1	204	204			0			Urban node u/s N203, Scott ck, 0 ha
2	Aldgate	U2	207	207			160			Urban node u/s N193, Aldgate, 160 ha
3	Uraidla+Summertown	U3	210	210			14			Urban node u/s N209, Cox ck, 14 ha
4	Woodside+Lobethal	U4	224	224			56			Urban node for Charleston @ sub-cat nos 11&12 (33 + 23 ha), u/s of N219
5	Lobethal	U5	225	225			43			Urban node for township @ sub- cat nos 26 of Western Branch
6	Balhannah+Bridgewater +Oakbank	U6	226	226			34			Urban node for Upper Onkaparinga @ sub-cat nos 41
7	Stirling	U7	227	227			45			Urban node for Cox ck @ sub- cat nos 51
8	Aldgate+Bridgewater+Sti rling	U8	228	228			97			Urban node for Cox ck @ sub- cat nos 52 & 53 combined (91+6 ha), Cox ck
9	Aldgate+Stirling	U9	229	229			64			Urban node for township @ sub-cat nos 56 (64 ha), Aldgate, u/s of N223
10	Balhannah	Balh	236	236			12			Township (location #45) within Balhannah catchment
11	Hahndorf	Hahn	237	237			49			Township (location #47) within Hahndorf catchment

	Other off-stream of	lam and rou	ting nod	es
1	Onka river Charleston_4a1	@ ₀₁	19	19
2	Onka river @ Onka_1c1	^{Upper} O2	48	48
3	Routing	R1	200	200
4	Routing	R2	201	201
5	Routing	Null	203	203
6	Routing	R4	205	205
7	Routing	R5	206	206
8	Routing	R6	208	208
9	Routing	R7	209	209

OSD @ d/s of N47
routing @ d/s of N33, Cox ck


OSD @ d/s of N18

routing @ u/s of N192, Lenswood (Cock) ck routing @ u/s of N196, Scott ck routing @ u/s of N196, Scott ck routing @ u/s of N158, Scott ck routing @ u/s of N193, Aldgate ck

routing @ u/s of N202, Cox ck

Appendix B

Nos	Gauging station location	Sub- cat No.	Rural Node	Dam Node	Cat4_Ar ea_ha	Net_cat4 _area,ha	Dam AREA M2	VOL(ML)_D g	Comments
10	Routing	R8	211	211					routing @ u/s of N194, Echunga ck
11	Routing	R9	212	212					routing @ u/s of N195, Baker Gully ck
12	Routing	R10	213	213					routing @ d/s of N177, Baker Gully ck
13	Baseflow separation catchment	BFC1	214	214					Baseflow separation catchment #1 in Baker Gully (cat area=4755.6 ha, 023710inf.rai, rf factor = 0.93)
14	Routing	R11	215	215					routing @ u/s of N19 of Onka river
15	Routing	R12	216	216					routing @ u/s of N48 of Onka river
16	Routing	R13	217	217					routing @ u/s of N101 of Onka river
17	Off-stream dam	O15	219	219					OSD @ d/s of N218, forming part of the "main" river
18	Routing	R14	230	230					routing @ u/s of N219

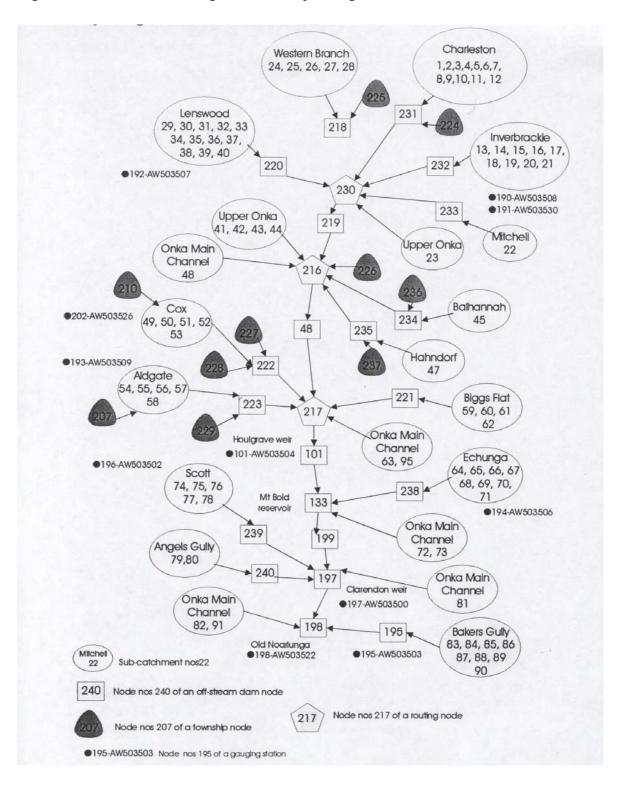
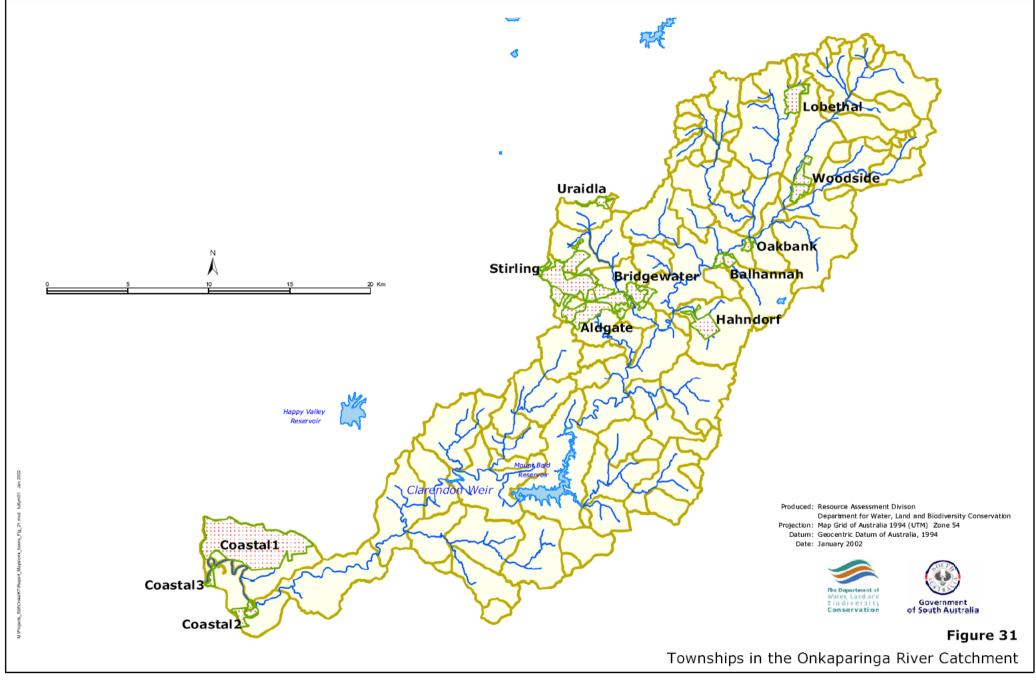



Figure 31. A Schematic Diagram of the Hydrological Model Catchment Nodes

isohyet of the subcatchment, and Y is the isohyet of the chosen rainfall station, then the adjustment for the rainfall factor is calculated as (X|Y) and is applied uniformly to the entire period of record.

The rainfall adjustment factor applied to each model node can be found in Table 33 as "rf ratio".

The above method was used for all the catchments except Inverbrackie and Mitchell catchments. The factor for these two subcatchments was derived using AW503508 station, which is a pluviometer located within the gauged catchment. This exception was made as the isohyet information is thought to be inaccurate in this area (refer to earlier Section: Catchment Rainfall Distribution). This is borne out in the data recorded at AW503508, which indicates significantly higher rainfall than that estimated by the isohyet map.

Evaporation

Input to the model nodes requires only a set of monthly evaporation data, which does not vary from year to year.

Mt Bold reservoir station (023734), with minor modification, has been used for catchment modelling purposes, as the station is well maintained, has reliable long-term daily records and is likely to be reasonably representative of the catchment.

The station commenced recording evaporation in 1968. Some modification was required due to the proximity of the station to the reservoir water body and the existence of pine forest surrounding the area. McLaren Vale (023876) evaporation station was used to adjust the monthly records of Mt Bold reservoir station. (refer Section: Evaporation Recording Stations). The annual evaporation thus obtained from the adjusted results is 1794 mm which is found to be satisfactory.

A pan coefficient factor of 0.75 based on Table 5 pp81 of Allen (1998), FAO Irrigation and Drainage Paper No.56 was used to estimate the reference crop evapotranspiration, ETo. The value is input to the model.

Assumptions:

• Evaporation is constant for each month for all years for the period of model simulation.

Rural and township catchments

Inputs to rural nodes include:

- Rainfall and evaporation data
- Catchment area in hectares
- Specify a runoff model, in this case WC-1 model.
- Specify a set of catchment characteristics

Inputs to township nodes include:

- Rainfall and evaporation data
- Catchment area in sq.m.
- Specify a runoff model, in this case the initial and continuing loss model (ILCL)

Assumptions:

• The impervious area that input into the model node is taken as 30% of the digitised GIS map area. This figure of 30% was found appropriate as it was obtained by calibration from the gauged catchment of Aldgate Creek. The remaining 70% is assumed to have similar runoff characteristics as the local rural nodes and because of this the area is included into the closest rural node.

Farm dams and Reservoirs

Input to storage nodes include:

- Rainfall and evaporation data
- Aggregated farm dam volume-area relationship
- Usage of storage water
- Schedule for water usage

When calibrating a catchment runoff against the actual streamflow records over time, farm dam data based on the 1999 surveys is used. This means that farm dam development is assumed to be "frozen" in time for the period of streamflow calibration which may date back to 1980s.

Using 1999 farm dam data for calibrating the gauged streamflows appears not significant in affecting the calibration. An exception was Scott Creek and it was calibrated using a shorter period of records starting from 1982 rather than the entire period beginning from 1969 (prior to 1987, there were no farm dams in Scott Creek). The insignificant effect may be partially explained by:

- The reduction in catchment runoff due to increasing farm dams development over time (11% increment since 1987) has been offset to a degree by the change in land use and increasing urban development for the same period. These changes tend to increase the catchment runoff and compensate for the losses captured by farm dams.
- The small reduction in runoff due to farm dam development over time has not been picked up
 particularly well by the model simulations which uses daily time step rainfall. DWLBC is in the
 process of incorporating rainfall intensity into the modelling process to improve the model
 accuracy.
- Only 30% of the aggregated farm dam storage water was used for irrigation and consumption purposes. This is consistent with other model studies of the Mt Lofty Ranges (MLR) Watershed (*pers comm* Cresswell).

To study the sensitivity of dam usage impacting on catchment runoff, usage in the range of 50% and 70% are also modelled for various scenarios

• Usage of farm dam water was assumed to only occur in summer months.

For Mt Bold reservoir, instead of streamflow data, the node is calibrated with the storage volumes with the attached text file Mtbold_volume.flo.

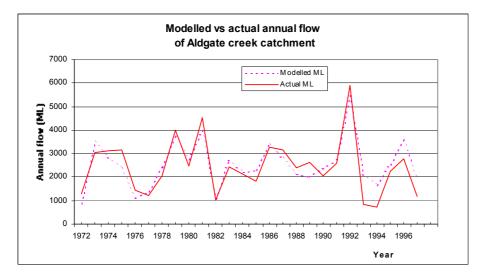
Streamflow

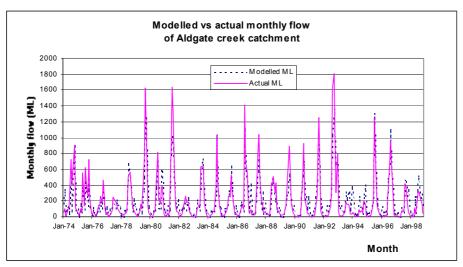
Table 35 shows the nodes incorporated in the model to allow for input of daily streamflow data used for model calibration. They can represent the location of a gauging station where daily streamflow data is available. A quality code can be attached to the daily record to indicate the quality of the data. The data is stored in the format of a text file with filename extension as "flo".

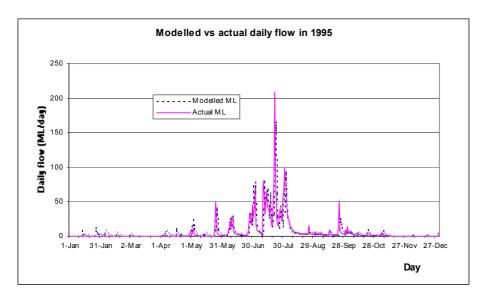
For Houlgrave weir (AW503504), the flow records obtained directly from Hydsys which include the water pumped from the Murray via Murray Bridge-Onkaparinga pipeline is stored in the text file named WC2_Houlgrave.flo. For calibrating the "catchment runoff" condition, the component of water pumped from the Murray is deducted from the records. This data is stored in text file as trueHoulgrave.flo.

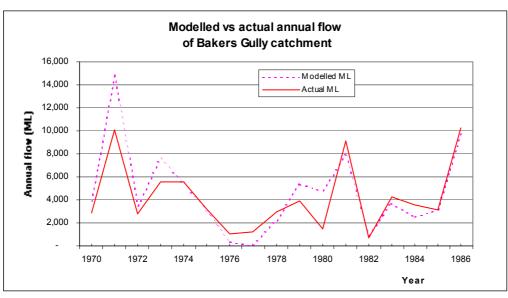
GS Station	Node Number	Location	Record Start	Record End	Filename	
503500	197	Clarendon	20-09-1937	27-08-2000	WC2_Clarendon.flo	
503502	196	Scott Ck	28-03-1969	01-08-2000	WC2_Scott.flo	
503503	195	Bakers Gully	12-04-1969	02-08-2000	WC2_Baker.flo	
503504	101	Houlgrave	18-04-1973	11-07-2000	WC2_Houlgrave.flo trueHoulgrave.flo	&
503506	194	Echunga	23-03-1973	29-08-2000	WC2_Echunga.flo	
503507	192	lenswood	19-03-1972	29-08-2000	WC2_Lenswood.flo	
503508	190	Inverbrackie	18-05-1972	14-09-2000	WC2_Inverbrackie.flo	
503509	193	Aldgate	14-07-1972	05-09-2000	WC2_Aldgate.flo	
503522	198	Noarlunga	28-06-1973	14-02-1988	WC2_Norlunga.flo	
503526	202	Cox Ck	24-06-1976	01-01-2001	WC2_Cox.flo	
503529	nil	Burnt Out	13-01-1978	16-11-1988	WC2_Burntout.flo	
503530	191	Kerber	31-07-1987	07-11-1989	WC2_Kerber	

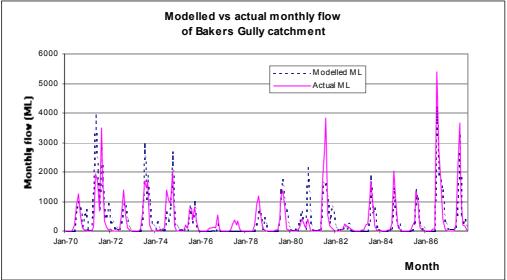
 Table 36.
 The Location of Gauging Stations Incorporated in the Model


Except for Noarlunga and Clarendon weir, streamflows at all the locations have been calibrated. Burnt Out creek catchment is not separately incorporated in the hydrological model due to its small catchment size. Nevertheless, it was calibrated as a stand-alone model for estimating runoff coefficients in forest areas. Figure 3 shows the locations of the gauging stations within the Onkaparinga catchment.


Groundwater


Groundwater recharge rate is assumed to be 30% of surface runoff for the entire Onkaparinga catchment which is consistent with assumptions for similar models of the MLR Watershed (*pers comm* Cresswell). The sensitivity of this assumption has not been assessed. Further refinement in the assumption may be made when more information is available.


APPENDIX C - MODELLED AND ACTUAL FLOW CALIBRATIONS OF THE SUBCATCHMENTS



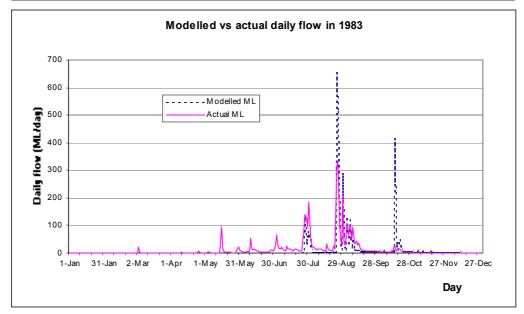
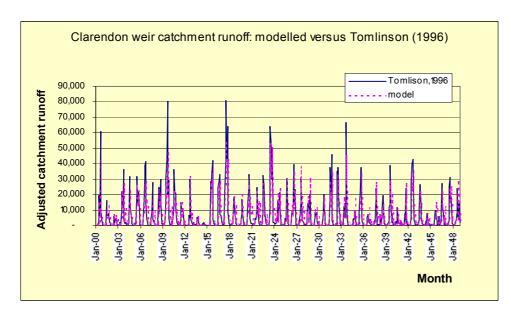
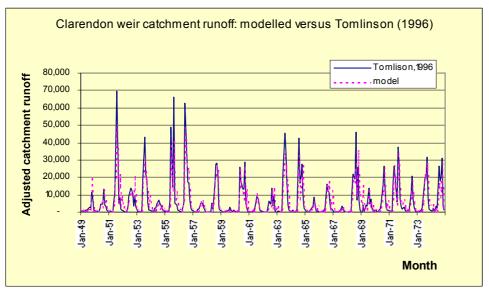
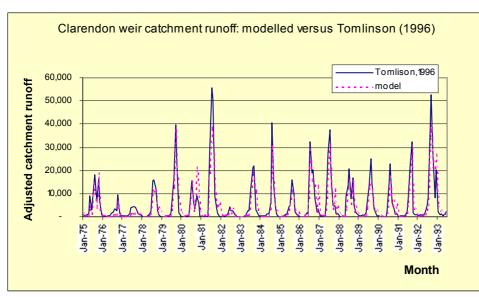
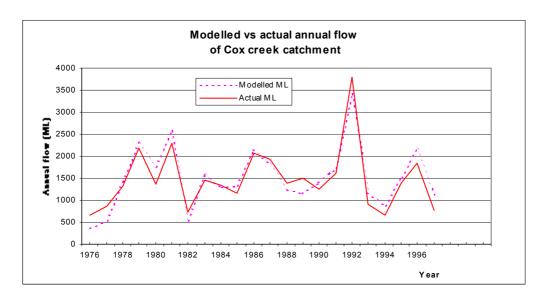
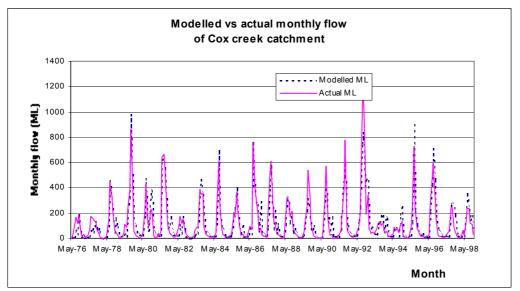


Figure 34. Modelled and actual flow calibrations of Bakers Gully catchment


Figure 35. Modelled and Tomlinson's flow estimates at Clarendon Weir Catchment

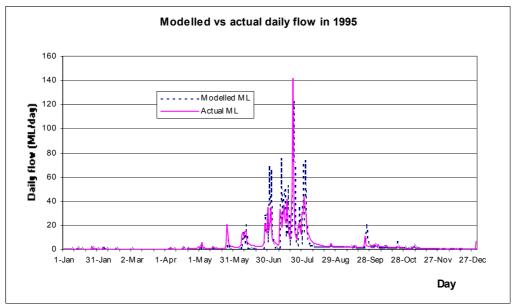
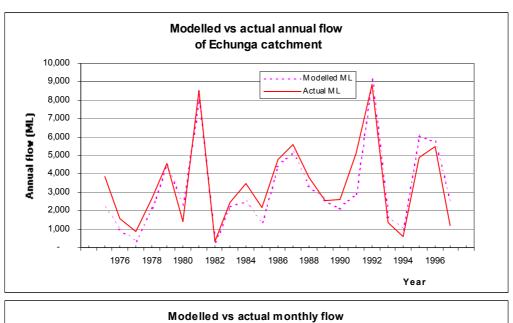
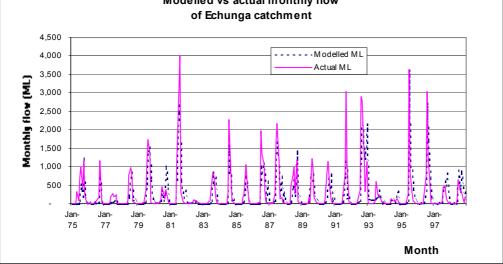
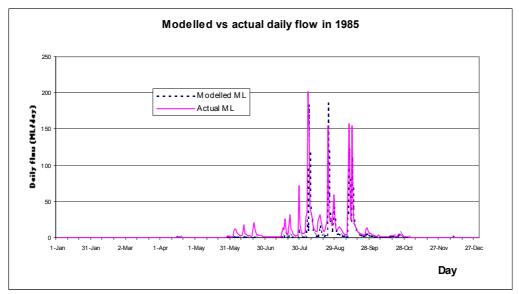
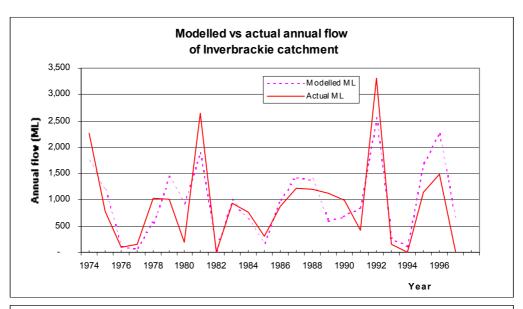
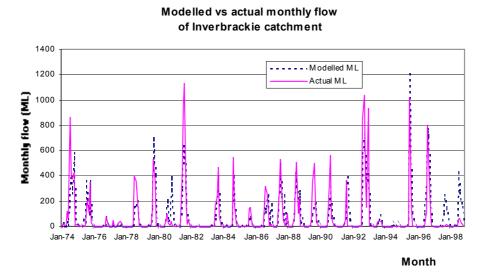
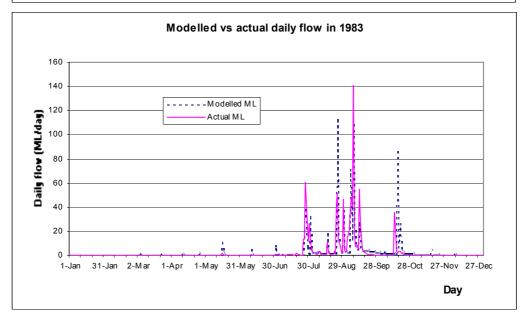
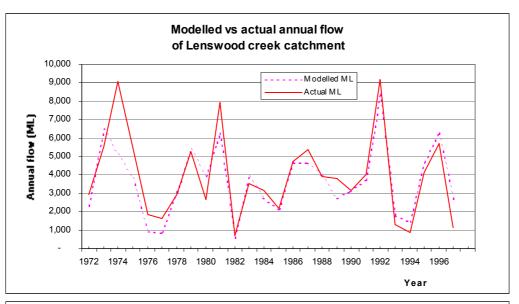


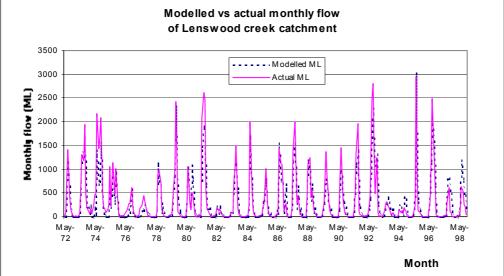
Figure 36. Modelled and actual flow calibrations of Cox creek catchment

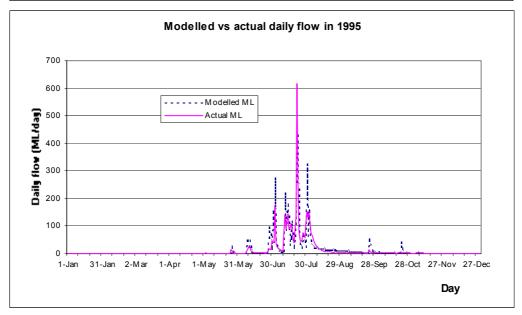






Figure 37. Modelled and actual calibrations of Echunga catchment






Figure 38. Modelled and actual calibrations of Inverbrackie catchment



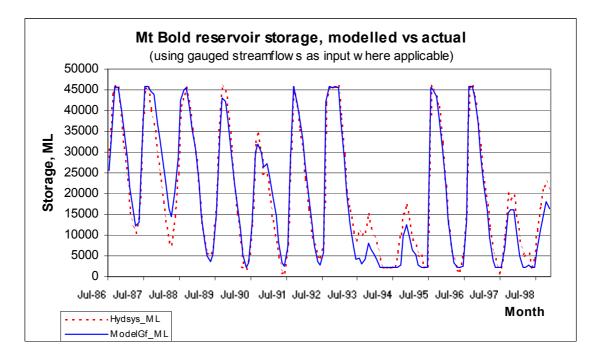
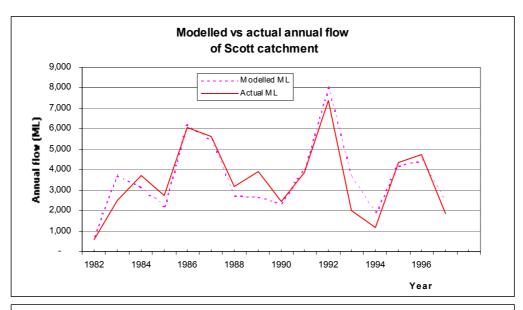
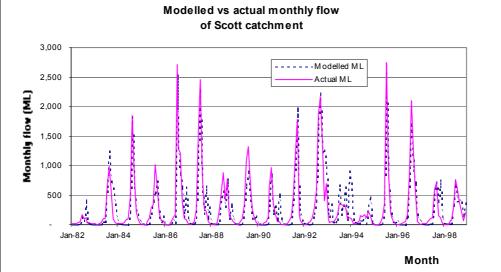
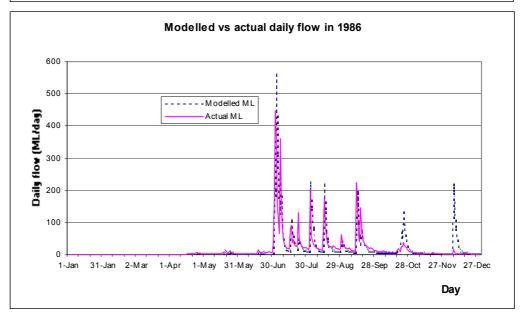
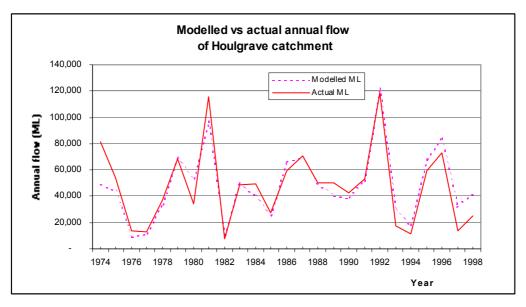
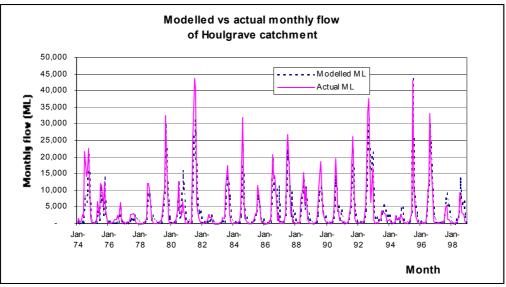
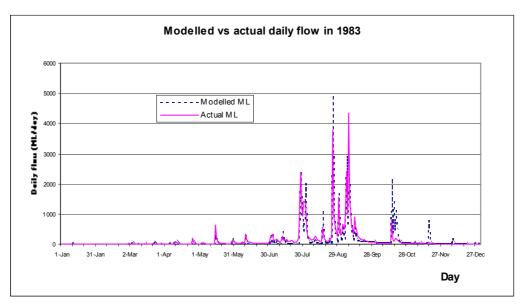
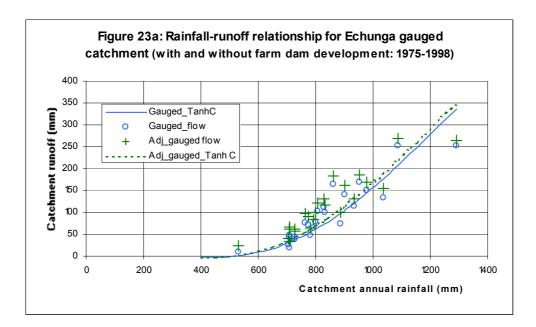


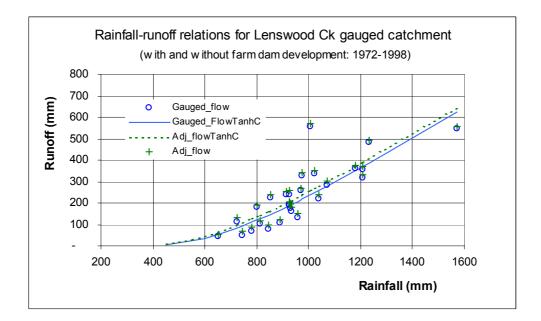
Figure 40. Modelled and actual flow calibrations of Mt Bold Reservoir catchment (1986-1998)

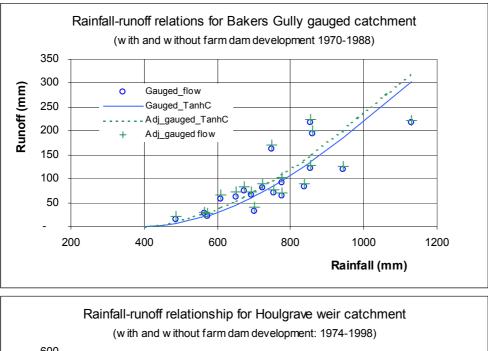





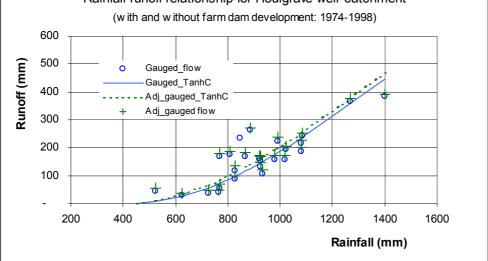

Figure 41. Modelled and actual flow calibrations of Scott creek catchment

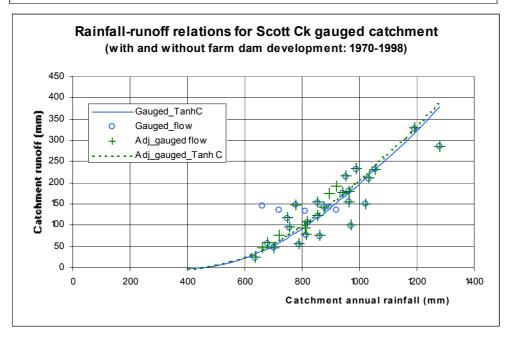


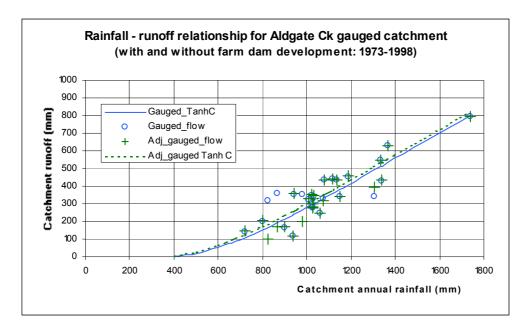

Figure 42. Modelled and actual flow calibrations of Houlgrave catchment

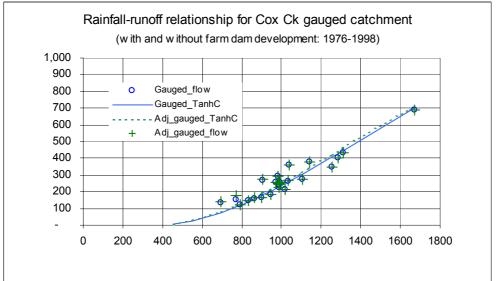


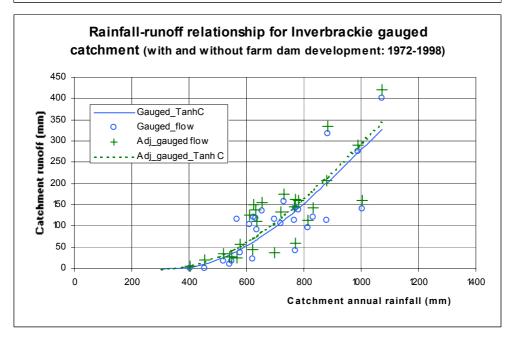



APPENDIX D - TANH CURVES OF GUAGED CATCHMENTS, MODELLED SUBCATCHMENT YIELDS WITH AND WITHOUT FARM DAMS, REDUCTION IN ADJUSTED FLOWS OF SUBCATCHMENTS MODELLED WITH FUTURE SCENARIOS


Figure 43. Tanh curves of rainfall runoff relationship for the gauged catchments







Catchment area	19.450 km2											
Farm dam density	8.165 ML/kn	n2	Dam storages	158.8 ML, a								
Aldgate Creek	Rainfall	Without farm dam	With farm dam	Yiel	d captured by FD	Natural runoff (mm)	Runoff captured (mm)	50% RL a/b	c/a			
	mm	ML, b	ML	ML, c	% captured							
mean	1,107	6,224	6,146	78	1.25%	320.00	4.01	3%	49%			
median	1,097	6,058	5,953	104	1.72%	311.44	5.37	3%	66%			
90%tile	1,429	9,897	9,863	34	0.34%	508.85	1.74	2%	21%			
10%tile	809	2,686	2,526	159	5.93%	138.08	8.18	6%	100%			
3YMA(1915-1917,wet)	1,590	12,415	12,389	26	0.21%	638.30	1.34	1%	16%			
3YMA(1912-1914,dry)	853	2,839	2,744	95	3.36%	145.96	4.90	6%	60%			
Std deviation		2,967	2,990									
Coeff of variability, Cv		0.48	0.49									

Table 37. Annual flow at Aldgate Creek with and without farm dams (1900 - 1998)

Table 38. Annual flow at Angels Gully with and without farm dams (1900 - 1998)

Catchment area	14.080 km2										
Farm dam density	5.86 ML/km2		Dam storages	82.5 ML, a							
Angels Gully	Rainfall	Without farm dam	With farm dam	Yiel	d captured by FD	Natural	Runoff	50% RL	c/a		
	mm	ML, b	ML	ML, c	% captured	runoff (mm)	captured (mm)	a/b			
mean	835	2,060	1,995	64	3.13%	146.30	4.58	4%	78%		
median	810	1,842	1,766	76	4.15%	130.82	5.43	4%	93%		
90%tile	1,107	3,853	3,815	38	0.98%	273.68	2.69	2%	46%		
10%tile	640	627	554	73	11.67%	44.52	5.20	13%	89%		
3YMA(1915-1917,wet)	997	3,077	3,011	65	2.12%	218.50	4.64	3%	79%		
3YMA(1912-1914,dry)	600	371	326	45	12.11%	26.36	3.19	22%	54%		
Std deviation		1,257	1,264								
Coeff of variability, Cv		0.61	0.63								

Catchment area	47.960 km2									
Farm dam density	11.1 ML/km2		Dam storages	530 ML, a						
Bakers Gully	Rainfall	Without farm dam	With farm dam	Yield captured by FD		Natural	Runoff	50% RL	c/a	
	mm	ML, b	ML	ML, c	% captured	runoff (mm)	captured (mm)	a/b		
mean	747	5,042	4,699	343	6.81%	105.14	7.16	11%	65%	
median	725	4,498	4,090	408	9.07%	93.79	8.51	12%	77%	
90%tile	989	10,166	9,813	352	3.47%	211.96	7.35	5%	66%	
10%tile	572	1,252	948	304	24.25%	26.10	6.33	42%	57%	
3YMA(1915-1917,wet)	892	7,371	6,977	395	5.35%	153.70	8.23	7%	74%	
3YMA(1912-1914,dry)	536	808	617	191	23.69%	16.85	3.99	66%	36%	
Std deviation		3,541	3,538							
Coeff of variability, Cv		0.70	0.75							

Table 39. Annual flow at Bakers Gully with and without farm dams (1900 - 1998)

Table 40. Annual flow at Balhannah catchment with and without farm dams (1900 - 1998)

Catchment area	10.2 km2										
Farm dam density	19.24 ML/km2		Dam storages	197 ML, a							
Balhannah	Rainfall	Without farm dam	With farm dam	Yiel	d captured by FD	Natural	Runoff	50% RL	c/a		
	mm	ML, b	ML	ML, c	% captured	runoff (mm)	captured (mm)	a/b			
mean	818	1,195	1,081	114	9.54%	116.69	11.13	16%	58%		
median	809	1,146	1,031	115	10.04%	111.96	11.24	17%	58%		
90%tile	1,041	2,147	2,043	104	4.83%	209.66	10.12	9%	53%		
10%tile	633	307	202	104	34.05%	29.95	10.20	64%	53%		
3YMA(1915-1917,wet)	978	1,903	1,763	140	7.37%	185.86	13.70	10%	71%		
3YMA(1912-1914,dry)	602	377	299	78	20.60%	36.79	7.58	52%	39%		
Std deviation		767	768								
Coeff of variability, Cv		0.64	0.71								

Catchment area	23.650 km2										
Farm dam density	27.91 ML/km2		Dam storages	660 ML, a							
Biggs Flat	Rainfall	Without farm dam	With farm dam	Yield captured by FD Na	Natural	Runoff	50% RL	c/a			
	mm	ML, b	ML	ML, c	% captured	runoff (mm)	captured (mm)	a/b			
mean	846	2,668	2,257	411	15.39%	112.81	17.36	25%	62%		
median	829	2,218	1,839	379	17.09%	93.77	16.02	30%	57%		
90%tile	1,078	4,706	4,172	533	11.34%	198.97	22.56	14%	81%		
10%tile	667	571	171	399	69.96%	24.14	16.89	116%	61%		
3YMA(1915-1917,wet)	1,130	6,073	5,657	416	6.86%	256.80	17.61	11%	63%		
3YMA(1912-1914,dry)	683	793	485	308	38.85%	33.55	13.03	83%	47%		
Std deviation		1,836	1,843								
Coeff of variability, Cv		0.69	0.82								

Annual flow at Biggs Flat catchment with and without farm dams (1900 - 1998)

Table 41. Annual flow at Charleston catchment with and without farm dams (1900 - 1998)

Catchment area	51.510 km2										
Farm dam density	14.52 ML/km2		Dam storages:	748 ML, a							
Charleston	Rainfall	Without farm dam	With farm dam	Yiel	d captured by FD	Natural	Runoff	50% RL	c/a		
	mm	ML, b	ML	ML, c	% captured	runoff (mm)	captured (mm)	a/b			
mean	802	6,652	6,189	464	6.97%	129.15	9.00	11%	62%		
median	807	6,118	5,598	520	8.50%	118.78	10.09	12%	70%		
90%tile	1,071	11,886	11,374	512	4.31%	230.75	9.94	6%	68%		
10%tile	567	1,698	1,298	400	23.55%	32.96	7.76	44%	53%		
3YMA(1915-1917,wet)	1,078	14,707	14,222	485	3.30%	285.52	9.42	5%	65%		
3YMA(1912-1914,dry)	640	2,923	2,584	339	11.61%	56.75	6.59	26%	45%		
Std deviation		4,332	4,304								
Coeff of variability, Cv		0.65	0.70								

Catchment area	28.750 km2								
Farm dam density	7.68 ML/km	2	Dam storages	221 ML, a					
Cox Creek	Rainfall	Without farm dam	With farm dam	Yiel	d captured by FD	Natural	Runoff	50% RL	c/a
	mm	ML, b	ML	ML, c	% captured	runoff (mm)	captured (mm)	a/b	
mean	984	9,024	8,904	121	1.34%	313.89	4.20	2%	55%
median	975	8,480	8,341	139	1.64%	294.95	4.82	3%	63%
90%tile	1,270	14,496	14,441	55	0.38%	504.20	1.90	2%	25%
10%tile	719	4,055	3,870	185	4.57%	141.06	6.44	5%	84%
3YMA(1915-1917,wet)	1,413	17,882	17,836	45	0.25%	621.98	1.58	1%	21%
3YMA(1912-1914,dry)	758	3,665	3,512	154	4.19%	127.49	5.35	6%	70%
Std deviation		4,313	4,353						
Coeff of variability, Cv		0.48	0.49						

Annual flow at Cox Creek with and without farm dams (1900 - 1998

Table 42. Annual flow at Echunga Creek catchment with and without farm dams (1900 - 1998)

Catchment area	39.170 km2								
Farm dam density	26.510 ML/	(m2	Dam storages	1,038 ML, a	I				
Echunga Creek	Rainfall	Without farm dam	With farm dam	Yiel	d captured by FD	Natural	Runoff	50% RL	c/a
	mm	ML, b	ML	ML, c	% captured	runoff (mm)	captured (mm)	a/b	
mean	886	4,970	4,363	608	12.23%	126.89	15.52	21%	59%
median	868	4,237	3,666	571	13.47%	108.16	14.57	25%	55%
90%tile	1,129	8,601	7,739	863	10.03%	219.59	22.02	12%	83%
10%tile	699	1,160	612	548	47.25%	29.62	14.00	90%	53%
3YMA(1915-1917,wet)	1,183	10,974	10,343	631	5.75%	280.16	16.10	9%	61%
3YMA(1912-1914,dry)	715	1,549	1,084	465	30.03%	39.55	11.88	67%	45%
Std deviation		3,272	3,273						
Coeff of variability, Cv		0.66	0.75						

Catchment area	14.680 km2								
Farm dam density	32.40 ML/kn	n2	Dam storages	476 ML, a					
Hahndorf	Rainfall	Without farm dam	With farm dam	Yiel	d captured by FD	Natural	Runoff	50% RL	c/a
	mm	ML, b	ML	ML, c	% captured	runoff (mm)	captured (mm)	a/b	
mean	860	2,521	2,270	251	9.97%	171.73	17.12	19%	53%
median	851	2,513	2,225	288	11.48%	171.20	19.65	19%	61%
90%tile	1,094	4,308	4,056	253	5.87%	293.48	17.22	11%	53%
10%tile	665	929	673	256	27.58%	63.29	17.45	51%	54%
3YMA(1915-1917,wet)	1,028	3,841	3,523	318	8.29%	261.67	21.69	12%	67%
3YMA(1912-1914,dry)	633	925	752	173	18.69%	63.00	11.78	51%	36%
Std deviation		1,402	1,397						
Coeff of variability, Cv		0.56	0.62						

Annual flow at Hahndorf catchment with and without farm dams (1900 - 1998)

Table 43. Annual flow at Inverbrackie Creek catchment with and without farm dams (1900 - 1998)

Catchment area	26.740 km2								
Farm dam density	20.120 ML/	(m2	Dam storages:	538 ML, a					
Inverbrackie Creek	Rainfall	Without farm dam	With farm dam	Yiel	d captured by FD	Natural	Runoff	50% RL	c/a
	mm	ML, b	ML	ML, c	% captured	runoff (mm)	captured (mm)	a/b	
mean	778	3,721	3,496	225	6.06%	139.17	8.43	14%	42%
median	783	3,267	3,049	218	6.67%	122.17	8.15	16%	41%
90%tile	1,039	7,619	7,384	235	3.08%	284.93	8.78	7%	44%
10%tile	550	751	531	220	29.30%	28.08	8.23	72%	41%
3YMA(1915-1917,wet)	1,045	7,390	7,160	230	3.11%	276.36	8.60	7%	43%
3YMA(1912-1914,dry)	621	2,069	1,895	174	8.42%	77.37	6.51	26%	32%
Std deviation		2,458	2,461						
Coeff of variability, Cv		0.66	0.70						

Catchment area	28.40 km2								
Farm dam density	25.000 ML/k	(m2	Dam storages:	710 ML, a					
Lenswood Creek	Rainfall	Without farm dam	With farm dam	Yiel	d captured by FD	Natural	Runoff	50% RL	c/a
	mm	ML, b	ML	ML, c	% captured	runoff (mm)	captured (mm)	a/b	
mean	1,009	8,056	7,664	391	4.86%	283.65	13.78	9%	55%
median	972	7,527	7,066	462	6.13%	265.05	16.25	9%	65%
90%tile	1,325	13,572	13,320	252	1.86%	477.88	8.87	5%	35%
10%tile	758	3,588	3,035	553	15.42%	126.36	19.49	20%	78%
3YMA(1915-1917,wet)	1,423	15,020	14,738	281	1.87%	528.87	9.91	5%	40%
3YMA(1912-1914,dry)	720	3,692	3,278	414	11.21%	129.98	14.57	19%	58%
Std deviation		4,068	4,132						
Coeff of variability, Cv		0.51	0.54						

Annual flow at Lenswood catchment with and without farm dams (1900 - 1998

Table 44. Annual flow at Mitchell Creek catchment with and without farm dams (1900 - 1998)

Catchment area	14.510 km2								
Farm dams density	39.0 ML/km	2	Dam storages	565.7 ML, a					
Mitchell Creek	Rainfall	Without farm dam	With farm dam	Yiel	d captured by FD	Natural	Runoff	50% RL	c/a
	mm	ML, b	ML	ML, c	% captured	runoff (mm)	captured (mm)	a/b	
mean	778	1,782	1,491	291	16.32%	122.79	20.05	32%	51%
median	783	1,525	1,225	300	19.69%	105.09	20.69	37%	53%
90%tile	1,039	3,848	3,485	363	9.43%	265.22	25.01	15%	64%
10%tile	550	228	1	227	99.41%	15.72	15.63	248%	40%
3YMA(1915-1917,wet)	1,045	3,781	3,423	358	9.46%	260.57	24.66	15%	63%
3YMA(1912-1914,dry)	621	929	730	199	21.40%	64.00	13.70	61%	35%
Std deviation		1,324	1,304						
Coeff of variability, Cv		0.74	0.87						

Catchment area	130.428 km	2							
Farm dam density	2.89 ML/km	2	Dam storages	377 ML, a					
Onka Main Channel	Rainfall	Without farm dam	With farm dam	Yiel	d captured by FD	Natural	Runoff	50% RL	c/a
	mm	ML, b	ML	ML, c	% captured	runoff (mm)	captured (mm)	a/b	
mean	819	12,897	12,657	240	1.86%	98.88	1.84	3%	64%
median	821	11,663	11,362	301	2.58%	89.42	2.31	3%	80%
90%tile	1,032	22,412	22,171	241	1.08%	171.83	1.85	2%	64%
10%tile	629	3,687	3,370	317	8.59%	28.27	2.43	10%	84%
3YMA(1915-1917,wet)	1,022	23,737	23,578	159	0.67%	181.99	1.22	2%	42%
3YMA(1912-1914,dry)	589	3,142	2,903	239	7.61%	24.09	1.83	12%	63%
Std deviation		7,744	7,784						
Coeff of variability, Cv		0.60	0.61						

 Table 45. Annual flow at Onkaparinga Main Channel catchment with and without farm dams (1900 - 1998)

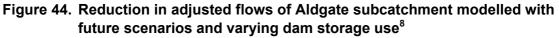
Table 46. Annual flow at Scott Creek catchment with and without farm dams (1900 - 1998)

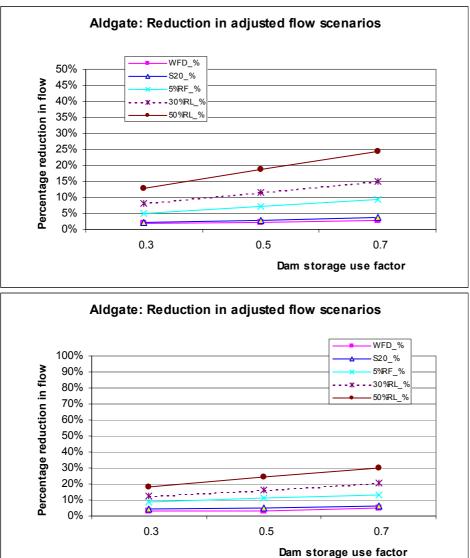
Catchment area	28.500 km2								
Farm dam density	5.19 ML/km	2	Dam storages	147.9 ML, a					
Scott Creek	Rainfall	Without farm dam	With farm dam	Yiel	d captured by FD	Natural	Runoff	50% RL	c/a
	mm	ML, b	ML	ML, c	% captured	runoff (mm)	captured (mm)	a/b	
mean	882	4,217	4,177	39	0.94%	147.96	1.38	4%	27%
median	891	4,059	4,012	47	1.16%	142.43	1.65	4%	32%
90%tile	1,120	7,277	7,245	32	0.44%	255.33	1.13	2%	22%
10%tile	638	1,024	967	57	5.59%	35.93	2.01	14%	39%
3YMA(1915-1917,wet)	1,031	7,997	7,981	16	0.20%	280.59	0.56	2%	11%
3YMA(1912-1914,dry)	589	751	702	49	6.53%	26.35	1.72	20%	33%
Std deviation		2,539	2,551						
Coeff of variability, Cv		0.60	0.61						

Catchment area	47.080 km2								
Farm dam density	22.52 ML/kr	n2	Dam storages	1,060 ML, a					
Upper Onkaparinga	Rainfall	Without farm dam	With farm dam	Yiel	d captured by FD	Natural	Runoff	50% RL	c/a
	mm	ML, b	ML	ML, c	% captured	runoff (mm)	captured (mm)	a/b	
mean	957	9,005	8,466	539	5.99%	191.27	11.46	12%	51%
median	950	8,623	8,002	621	7.20%	183.15	13.19	12%	59%
90%tile	1,207	14,743	14,312	431	2.93%	313.15	9.16	7%	41%
10%tile	716	3,238	2,697	541	16.71%	68.77	11.49	33%	51%
3YMA(1915-1917,wet)	1,251	16,950	16,404	546	3.22%	360.02	11.60	6%	52%
3YMA(1912-1914,dry)	714	3,197	2,776	421	13.16%	67.91	8.94	33%	40%
Std deviation		4,958	4,996						
Coeff of variability, Cv		0.55	0.59						

Annual flow at Upper Onkaparinga catchment with and without farm dams (1900 - 1998)

Table 47. Annual flow at Western Branch catchment with and without farm dams (1900 - 1998)


Catchment area	32.970 km2								
Farm dam density	29.873 ML/k	m2	Dam storages	985 ML, a					
Western Branch	Rainfall	Without farm dam	With farm dam	Yiel	d captured by FD	Natural	Runoff	50% RL	c/a
	mm	ML, b	ML	ML, c	% captured	runoff (mm)	captured (mm)	a/b	
mean	885	5,760	5,216	544	9.44%	174.71	16.50	17%	55%
median	876	5,351	4,796	556	10.38%	162.31	16.85	18%	56%
90%tile	1,127	10,923	10,443	480	4.39%	331.31	14.56	9%	49%
10%tile	685	1,513	941	572	37.81%	45.90	17.36	65%	58%
3YMA(1915-1917,wet)	1,059	10,737	10,165	571	5.32%	325.65	17.33	9%	58%
3YMA(1912-1914,dry)	651	2,871	2,460	411	14.32%	87.09	12.47	34%	42%
Std deviation		3,471	3,490						
Coeff of variability, Cv		0.60	0.67						


Catchment area	442.040 km	2							
Farm dam density	17.962 ML/k	(m2	Dam storages	7,940 ML, a					
Clarendon Weir	Rainfall	Without farm dam	With farm dam	Yiel	d captured by FD	Natural	Runoff	50% RL	c/a
	mm	ML, b	ML	ML, c	% captured	runoff (mm)	captured (mm)	a/b	
mean	835	78,664	74,279	4,385	5.57%	177.96	9.92	10%	55%
median	810	72,138	68,197	3,942	5.46%	163.19	8.92	11%	50%
90%tile	1,107	133,201	129,503	3,697	2.78%	301.33	8.36	6%	47%
10%tile	640	27,642	23,319	4,323	15.64%	62.53	9.78	29%	54%
3YMA(1915-1917,wet)	997	152,872	148,599	4,273	2.80%	345.83	9.67	5%	54%
3YMA(1912-1914,dry)	600	29,960	26,372	3,588	11.98%	67.78	8.12	27%	45%
Std deviation		43,184	43,328						
Coeff of variability, Cv		0.55	0.58						

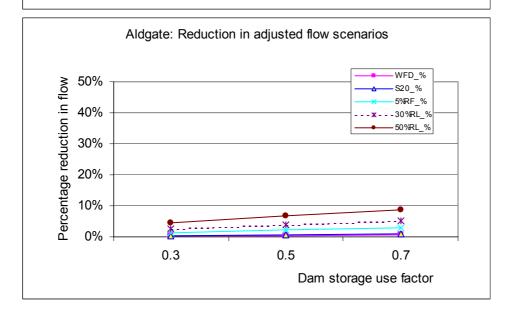
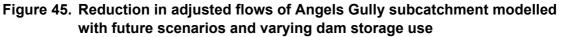
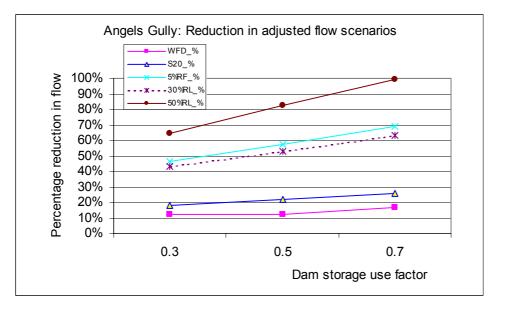
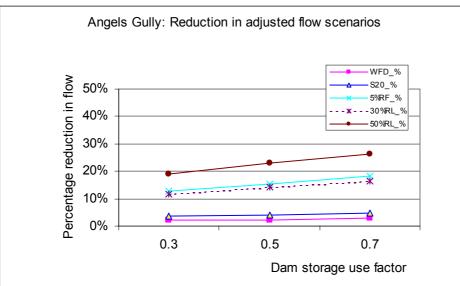

Annual flow at Clarendon Weir (assuming no Mt Bold Reservoir) with and without farm dams (1900 - 1998

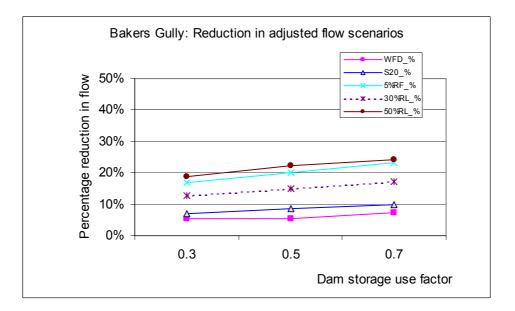
Table 48. Annual flow at Houlgrave with and without farm dams (1900 - 1998)

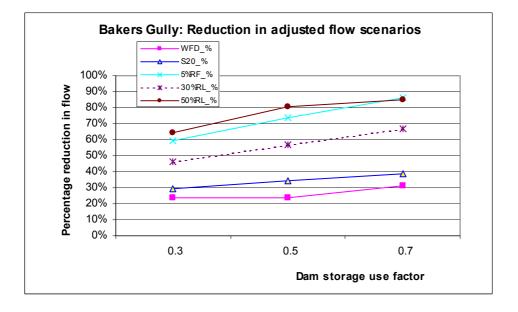

Catchment area	321.327 km	2							
Farm dam density	20.644 ML/k	m2	Dam storages	6,634 ML, a					
Houlgrave Weir	Rainfall	Without farm dam	With farm dam	Yiel	d captured by FD	Natural	Runoff	50% RL	c/a
	mm	ML, b	ML	ML, c	% captured	runoff (mm)	captured (mm)	a/b	
mean	964	61,494	57,849	3,645	5.93%	191.38	11.34	11%	55%
median	955	56,424	52,126	4,298	7.62%	175.60	13.38	12%	65%
90%tile	1,243	103,736	99,804	3,932	3.79%	322.84	12.24	6%	59%
10%tile	704	21,763	18,160	3,603	16.56%	67.73	11.21	30%	54%
3YMA(1915-1917,wet)	1,384	121,674	118,140	3,534	2.90%	378.66	11.00	5%	53%
3YMA(1912-1914,dry)	742	26,282	23,275	3,007	11.44%	81.79	9.36	25%	45%
Std deviation		33,410	33,551						
Coeff of variability, Cv		0.54	0.58						

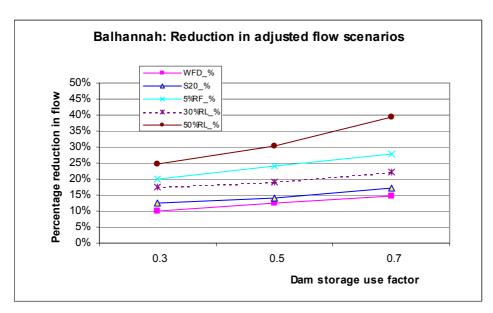


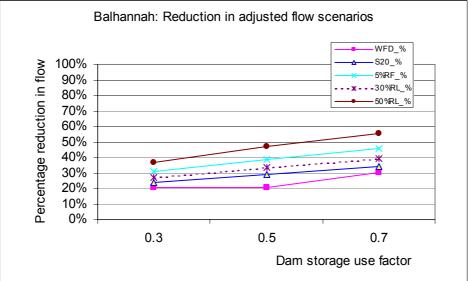


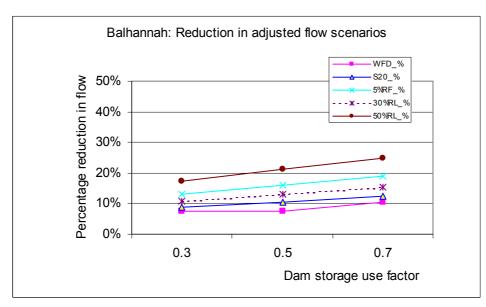
⁸ Note: All the figures are arranged in order of median, dry and wet years. Estimating the Impact of Current Farm Dam

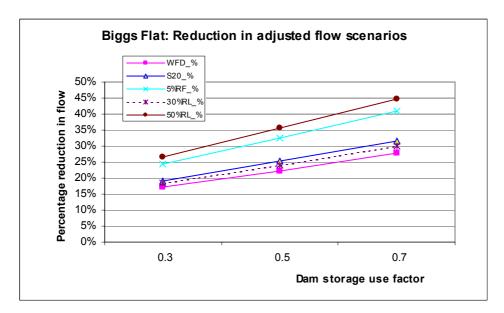


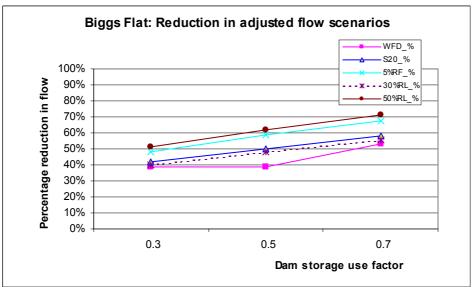


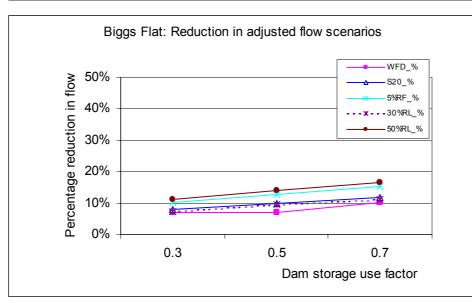


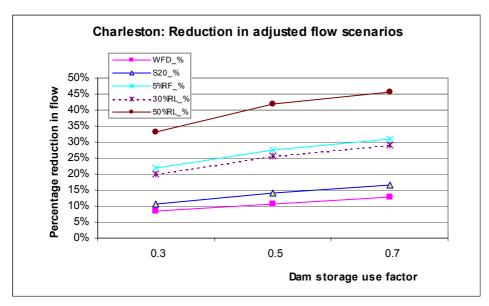

Figure 46. Reduction in adjusted flows of Bakers Gully subcatchment modelled with future scenarios and varying dam storage use

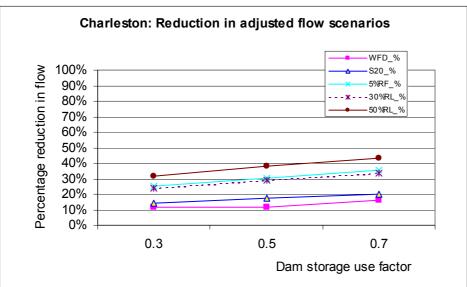


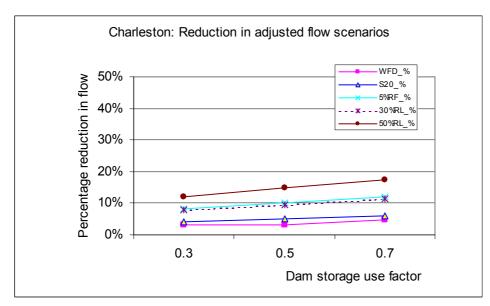

Figure 47. Reduction in adjusted flows of Balhannah subcatchment modelled with future scenarios and varying dam storage use

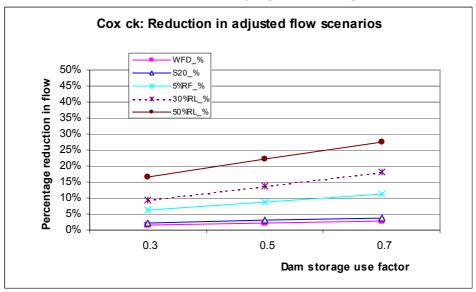


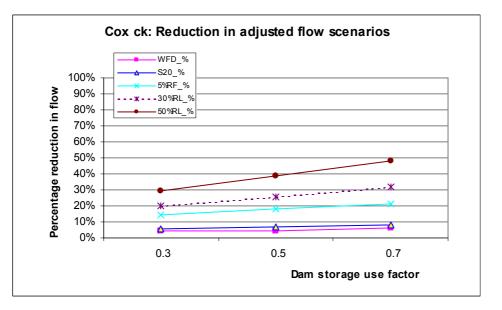


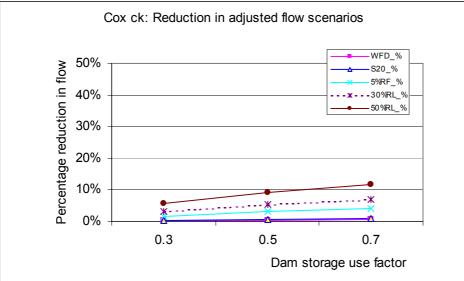

Figure 48. Reduction in adjusted flows of Biggs Flat subcatchment modelled with future scenarios and varying dam storage

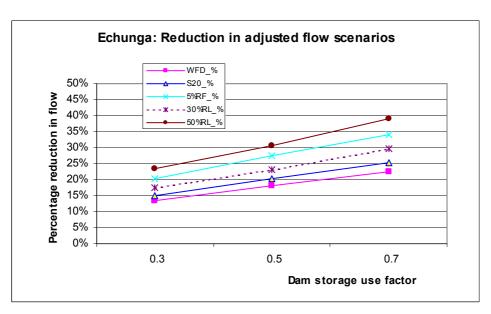


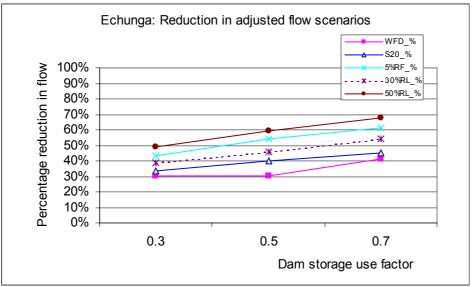


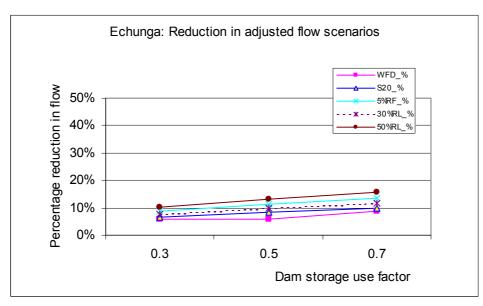

Figure 49. Reduction in adjusted flows of Charleston subcatchment modelled with future scenarios and varying dam storage

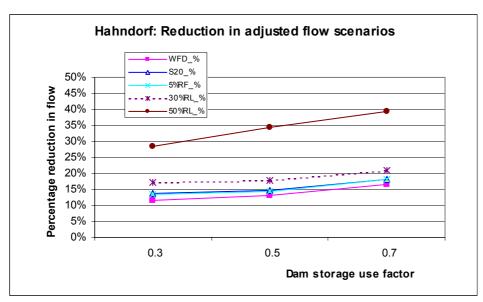


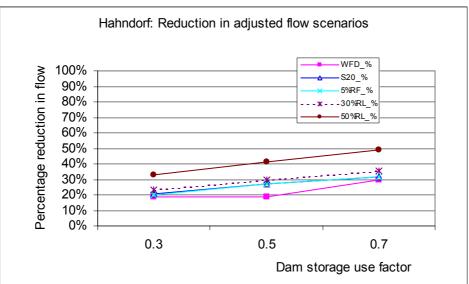


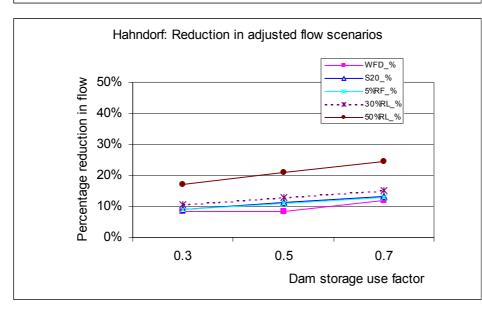

Figure 50. Reduction in adjusted flows of Cox Creek subcatchment modelled with future scenarios and varying dam storage

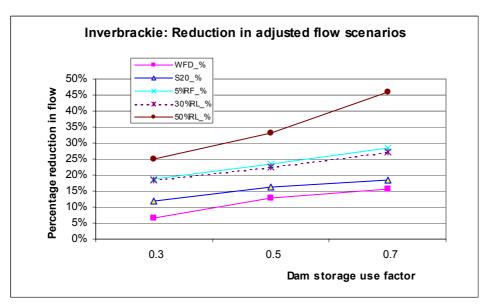


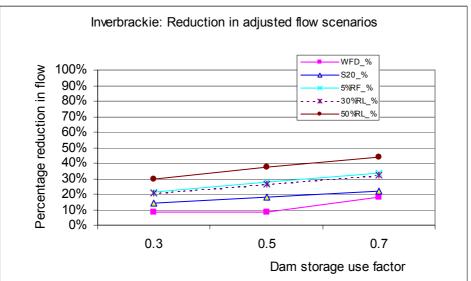


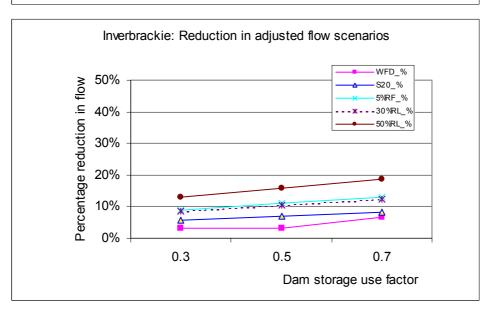

Figure 51. Reduction in adjusted flows of Echunga subcatchment modelled with future scenarios and varying dam storage

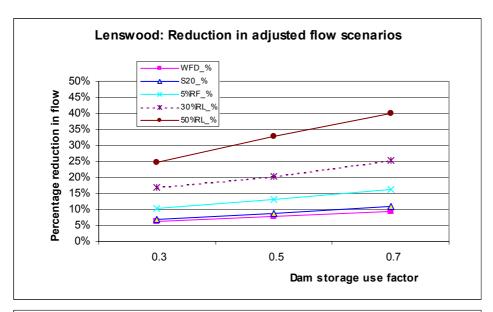


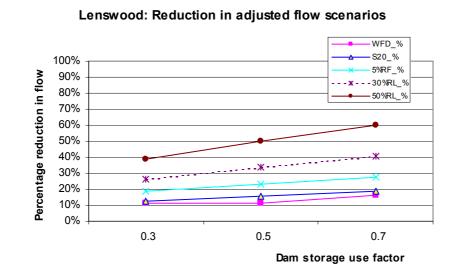


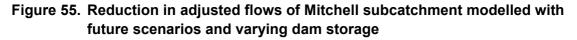

Figure 52. Reduction in adjusted flows of Hahndorf subcatchment modelled with future scenarios and varying dam storage

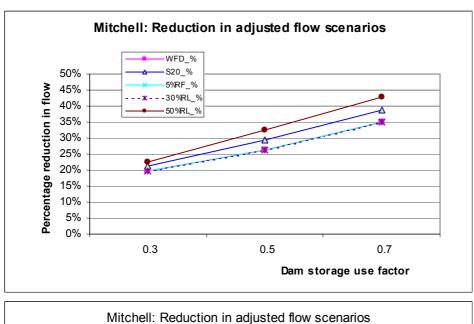


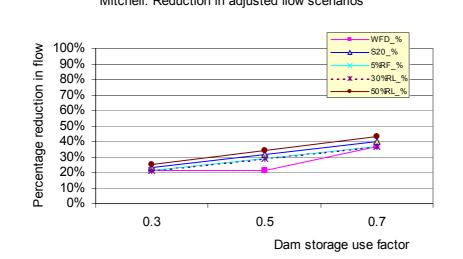


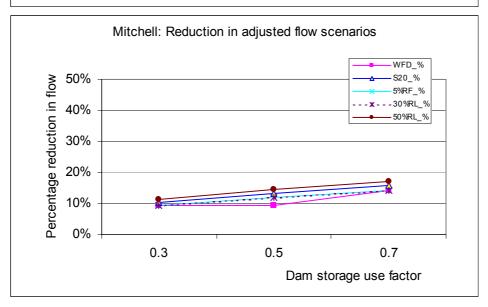

Figure 53. Reduction in adjusted flows of Inverbrackie subcatchment modelled with future scenarios and varying dam storage

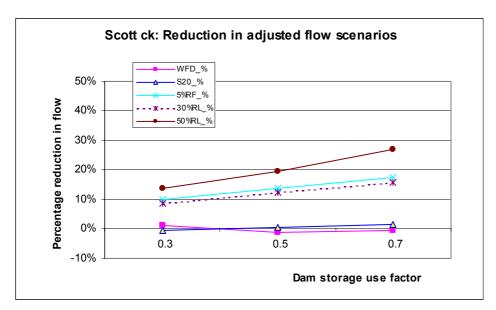


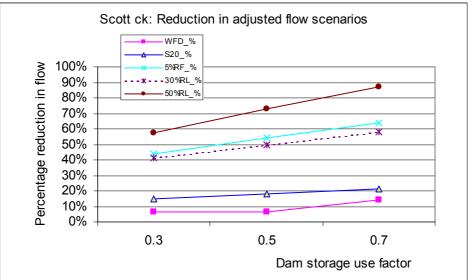


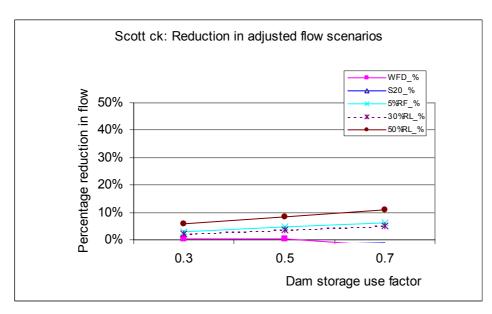

Figure 54. Reduction in adjusted flows of Lenswood subcatchment modelled with future scenarios and varying dam storage

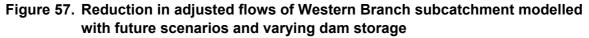


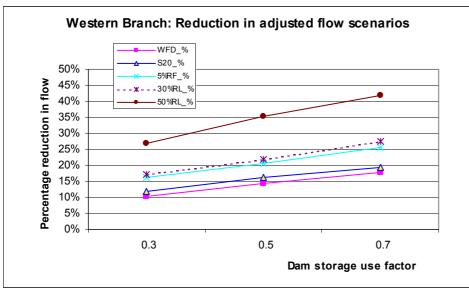











Figure 56. Reduction in adjusted flows of Scott Creek subcatchment modelled with future scenarios and varying dam storage

