
TSK 11 Göttingen 2006 Glotzbach et al.

Perturbation of isotherms
below topography: con-
straints from tunnel transects
through the Alps, Gotthard
road tunnel Poster

Christoph Glotzbach1 Cornelia
Spiegel1 Meinert Rahn2 John
Reinecker1

Introduction
For many years it has been known that
near surface isotherms are influenced
by the topography (Lees 1910). Re-
cently, a number of studies were pur-
sued to quantify the effect of topogra-
phy on low temperature isotherms (e.g.
Stüwe et al. 1994, Mancktelow & Grase-
mann 1997). The magnitude of pertur-
bation depends on several parameters:
exhumation rate, geothermal gradient,
wavelength and amplitude of topogra-
phy, and finally by the age of surface
relief change (Braun 2002).

Modelled perturbation
To obtain a rough impression of pertur-
bation of near surface isotherms, a 2-
D modelling approach following Stüwe
& Hintermüller (2000) was applied to
a profile intersecting the Aar and Got-
thard massifs along the Gotthard road
tunnel. Assuming steady state topog-
raphy, wavelength of 20 km, a tempo-
rally and spatially constant exhumation
rate of 1 mmy−1, a geothermal gradient
of 20°C km−1, and height, slope and as-
pect dependent ground surface temper-
atures, the modelling results reveals sig-
nificant perturbation of the near-surface
isotherms (Fig. 1).
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Figure 1: Results of 2-D modelling along
the Gotthard road tunnel, showing the to-
pography of the tunnel-transect, and the
modelled 60°C and 110°C isotherms.

The modelled 60°C and 110°C isotherms
are perturbed by 870 and 400 m re-
spectively, suggesting that the isotherm-
perturbation effect significantly influ-
ences the apatite fission track (AFT),
and particularly the (U-Th)/He-system.
To verify these modelled prediction,
our study aims to directly measure
perturbation of isotherms below to-
pography by applying low-temperature
thermochronology (zircon fission track,
AFT and (U-Th)/He analysis). We
therefore sampled three tunnel transects
through the Alps (Gotthard and Mont
Blanc road tunnels and Lötschberg rail-
way tunnel), as well as their correspond-
ing surface lines. The investigated re-
gions are characterised by pronounced
topography and rapid present-day sur-
face uplift rates in the range of 1mm y−1

(Kahle et al. 1997).

Measure perturbation

AFT data from the literature (Schaer
et al. 1975; Wagner et al. 1977) and
own data were projected from within a
corridor of 1 km along the tunnel-axis
(Fig. 2). By linear interpolation of the
AFT-ages, isochrones (here the 9, 8,
7 and 6.5 My isochrones) can be esti-
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mated. The modelled isotherms (Fig. 1)
and estimated isochrones (Fig. 2) show
comparable perturbations correlating
with topography. For palaeotopo-
graphic investigations the sample den-
sity has been increased along the tunnel
transect. Currently, the AFT-age den-
sity is too low for palaeotopographic in-
terpretations.

Implications for age-elevation rela-
tionships (AER)
Exhumation rates are routinely de-
duced from age-elevation relationships
(i.e. from AFT-ages plotted vs. sam-
ple elevation). This approach, however,
is based on the assumption of flat-lying
isotherms. For perturbed isotherms,
exhumation rates deviated from AERs
are overestimated (Stüwe et al. 1994).
Fig. 3a shows conventional AERs from
the Gotthard and Aar massifs, yielding
exhumation rates of 0.45 mm y−1 and

0.54 mm y−1, respectively. Simplified
3-D modelling of the 110°C-isotherm,
based on equations and input param-
eters mentioned above, yields modified
AERs, plotted against the distance from
present elevation to the modelled 110°C-
isotherm (Fig. 3b).
In contrast to other correction ap-
proaches (e.g. Reiners et al. 2003), this
procedure allows to correct every AFT-
sample separately, accounting for their
specific spatial topographic location.
The resulting ‘real’ exhumation rates
are about 10% lower than the apparent
exhumation rates revealed from conven-
tional AER, yielding 0.42mm y−1 for
the Gotthard massif and 0.46mm y−1

for the Aar massif.

Future investigations
Samples collected from three tunnel
systems and their corresponding sur-
face traces will be analysed by AFT,

Figure 2: Sample pattern, available AFT-ages and interpolated isochrones along the
Gotthard road tunnel transect.
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Figure 3: AFT-ages for the Gotthard and Aar massifs, plotted against their sampling
altitude, yielding a clear age elevation relationship (a) and the same AFT-ages plotted
against the distance from present elevation to the modelled 110°C-isotherm (b).

zircon fission track, and apatite (U-
Th)/He thermochronology. This will al-
low to estimate the effect of isotherm-
perturbation on these thermochrono-
logic systems. The existing thermo-
erosive model will be refined, and dif-
ferent kind of models shall be tested
for their consistency with the grow-
ing amount of low thermochronological
data.
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