
1.  Introduction
The observed increase in the frequency of droughts and heatwaves over the Northern Hemisphere in the 21st 
century poses immediate socio-economic threats affecting the well-being of the people by triggering negative 
health effects. These adverse hydro-meteorological conditions can lead to agricultural and ecological impacts 
such as crop losses, poor water quality conditions in water bodies, and wildfires. The reduction of the streamflow 
resulting from a drought event combined with high air temperatures also creates a threat to existing infrastruc-
ture. Several authors have reported cases of reduction of the cooling capacity in power plants, the reduction of 
tonnage in fluvial transportation, and the drop in reservoir storage leading to drinking water shortages (Naumann 
et al., 2021; Peichl et al., 2018; Stanke et al., 2013; Vogel et al., 2019). Europe, in particular, has experienced a 
series of dry summers with substantial socioeconomic and environmental impacts in 2003 (Fischer et al., 2007), 
2010 (Flach et al., 2018), 2015 (Van Lanen et al., 2016) and 2018–2020 (Hari et al., 2020; Peters et al., 2020). 
The latest report of the European Commission estimates that the current annual monetary losses across Europe 
due to droughts were 9 billion EUR every year. Depending on the region, between 39% and 60% of the losses are 
related to agriculture, 22%–48% to the energy sector, while 9%–20% of the total damages correspond to public 
water supply systems (Naumann et al., 2021). Besides direct financial losses, the natural net ecosystem carbon 
uptake can get further significantly reduced by drought conditions (Ciais et al., 2005).

Abstract  During the period 2018–2020, Europe experienced a series of hot and dry weather conditions 
with significant socioeconomic and environmental consequences. Yet, the extremity of these multi-year dry 
conditions is not recognized. Here, we provide a comprehensive spatio-temporal assessment of the drought 
hazard over Europe by benchmarking past exceptional events during the period from 1766 to 2020. We 
identified the 2018–2020 drought event as a new benchmark having an unprecedented intensity that persisted 
for more than 2 years, exhibiting a mean areal coverage of 35.6% and an average duration of 12.2 months. 
What makes this event truly exceptional compared with past events is its near-surface air temperature anomaly 
reaching +2.8 K, which constitutes a further evidence that the ongoing global warming is exacerbating 
present drought events. Furthermore, future events based on climate model simulations Coupled Model 
Intercomparison Project v5 suggest that Europe should be prepared for events of comparable intensity as the 
2018–2020 event but with durations longer than any of those experienced in the last 250 years. Our study thus 
emphasizes the urgent need for adaption and mitigation strategies to cope with such multi-year drought events 
across Europe.

Plain Language Summary  This manuscript demonstrates that the 2018–2020 multi-year drought 
event constitutes a new benchmark in Europe, with an unprecedented level of intensity over the past 250 years. 
What makes this event truly exceptional compared with past events is its temperature anomaly reaching 
+2.8 K. This finding provides new evidence that the ongoing global warming exacerbates current drought 
events. The key message of this study is that the projected future events across the European continent will 
have a comparable intensity as the 2018–2020 drought but exhibit considerably longer durations than any of 
those observed during the last 250 years. Our analysis also shows that these exceptional temperature-enhanced 
droughts significantly negatively impact commodity crops across Europe.
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The reconstructions of hydro-climatic data suggest that the recent sequence of European summer droughts 
is unprecedented during the past centuries (Büntgen et  al., 2021)—with reported several multi-year droughts 
(2018–2019 [Hari et al., 2020] and 2014–2018 [Moravec et al., 2021]). While the characteristics and impacts 
of individual drought years are well described in the literature (Moravec et al., 2019; Peters et al., 2020; Van 
Lanen et al., 2016), the simultaneous evolution of droughts in space and time is rarely explored (Herrera-Estrada 
et al., 2017). Furthermore, the severity of the recent droughts highlights the concern that global warming may 
be significantly contributing to their evolution (Williams et al., 2020) and that its effects will continue to exac-
erbate them in the future (Hari et al., 2020; Samaniego et al., 2018). A comprehensive long-span benchmarking 
of droughts, considering their space-time evolution, is therefore urgently needed to be able to place the recent 
multi-year drought within the variability in the observational period and the near and long-term projections. By 
doing so, we substantiate how exceptional this recent drought event is in the historical record and the likelihood 
of such events under different future climate scenarios.

In this study, we benchmark the recent droughts from a long-term perspective taking into account the spatio-tem-
poral evolution of drought propagation across Europe. Our drought analysis is based on characterizing anom-
alous conditions of root-zone soil moisture that reflect the antecedent and contemporary hydro-meteorologic 
conditions and constitutes the primary source of water for plant growth (Andreadis et  al.,  2005; Seneviratne 
et  al.,  2010). The soil moisture is estimated with the well-established mesoscale Hydrologic Model (mHM) 
(Kumar et al., 2013; Samaniego et al., 2010) (Section 2.3). The monthly soil moisture estimates are transformed 
into a percentile-based monthly soil moisture index (SMI (Samaniego et al., 2013))—which is then taken as a 
basis for clustering the space-time evolution of soil moisture droughts (Samaniego et al., 2013, 2018). Finally, 
we quantify the drought characteristics (i.e., areal extent, duration, total drought magnitude, and intensity, see 
Section 2.4) from 1766 to 2100; the period 1766–2020 corresponds to observation-based simulation (reference), 
and further, we quantify these characteristics in the climate models and also analyze the changes of these under 
moderate and high emission scenarios (1950–2100; see Section 2.1).

2.  Data and Methods
2.1.  Meteorological Model Forcing Data

2.1.1.  Observation-Based Historical Forcing Data

This study is mainly based on the precipitation and near-surface air temperature observation-based data sets for 
the period 1766–2015 (Casty et al., 2007) and E-OBS v21 (Hofstra et al., 2009) (daily gridded observational data 
set for precipitation, and temperature in Europe) available for the period 1950–2020. The overlapping period 
allowed for correction of biases (Gudmundsson et  al.,  2012) in the data set of Casty with respect to E-OBS 
(Hanel et al., 2018; Moravec et al., 2021), and the merged meteorologic product is used as an input into the mHM 
(Kumar et al., 2013; Samaniego et al., 2010) to obtain the soil moisture simulations. The estimates of potential 
evapotranspiration required by mHM are based on mean near-surface air temperature and approximations for 
extraterrestrial solar radiation (Oudin et al., 2005) during the historical period.

2.1.2.  Climate Model Forcing Data

Besides the observation-based model forcings, we utilized the bias corrected daily precipitation, average, maxi-
mum and minimum temperature fields at 0.5° resolution were made available by the ISI-MIP project (Warszawski 
et al., 2014). This suite is based on five Coupled Model Intercomparison Project v5 (CMIP5) Global Climate 
Models (HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2M and NorESM1-M) in 
the historical mode and under two future representative concentration pathways (RCP4.5 and RCP8.5). The 
trend-preserving bias correction method (Hempel et  al., 2013) was used in the ISI-MIP project to match the 
climatology of the CMIP5 GCMs with observations. We refer to Frieler et al. (2017) and Warszawski et al. (2014) 
for a full description of the ISIMIP experiment, as detailed descriptions of the climate model projection used in 
this study are beyond the scope of the present study. The five models selected for the ISI-MIP project follow the 
strategy to represent warm and wet and cold and dry climates, which are most relevant for impact studies (Frieler 
et al., 2017). Each of the GCMs is available at a single realization. Thus internal climate variability and uncer-
tainty due to initial conditions are not considered in the ISIMIP-2b experiment. The Penman-Monteith potential 
evapotranspiration method (Allen et al., 1998) also needed as forcing for mHM is based on the surface energy 
budget (i.e., Rn-G = SH + LH), where Rn, G, SH, and LH are the net radiation, ground heat flux, and sensible 
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and latent heat flux (Scheff & Frierson, 2014), respectively. This approach implicitly considers the ambient CO2 
effects on plant transpiration, vegetation growth (Trnka et al., 2019).

2.2.  Crop Yield Data

We utilized the data of agriculture yields 1961–2019 from Food and Agriculture Organization of the United 
Nations (FAO Global Statistical Yearbook, 2021) and harvested production and areas under cultivation 2010–
2020 from EUROSTAT (2021). The overlapping period 2010–2019 was used for data quality checks between 
both data sets and supplementing missing data. We considered three dominant kinds of cereals: wheat, grain 
maize and barley as representative set of agricultural production. To account for technological advances (e.g., 
improvements in plant genetics, fertilizer, pesticides) (Lu et al., 2017) the systematic linear trend was removed 
from data of agriculture yields of given crops. Three-year rolling mean was then applied on these detrended data 
to smooth out the year-to-year variability. Finally, the percentage difference of 3 year rolling mean from the base 
linear trend was calculated to express crop yield deviation of a given 3 year period for each country.

2.3.  Mesoscale Hydrologic Model

The mHM (Kumar et  al.,  2013; Samaniego et  al.,  2010) is a spatially explicit, grid-based hydrologic model 
developed at the UFZ-Helmholtz Centre for Environmental Research (Samaniego, Kaluza, et al., 2019) aiming 
at providing seamless prediction of hydrological fluxes and storages at multiple spatial resolutions and locations 
across the globe and it has reached Technology readiness levels of 9. The model uses the grid cell as a primary 
hydrologic unit, and accounts for the following hydrological processes: canopy interception, snow accumula-
tion and melt, soil moisture and evapotranspiration, surface and subsurface runoff generations, deep percolation 
and baseflow, and flood routing along with a river network. mHM uses a novel Multiscale Parameterization 
Regionalization technique which includes the regionalization and spatial scaling approaches to generate a set of 
regionalized model parameter fields at required modeling resolutions, while explicitly accounting for the sub-grid 
variability of the fine-scale information on terrain, soil, vegetation, and other landscape properties (Samaniego 
et al., 2017).

The calibration of the mHM parameters was conducted and demonstrated earlier (Samaniego, Thober, et al., 2019), 
and was based on the multi-basin optimizations performed on a wide range of hydrologic regimes. The 48 transfer 
function parameters used in mHM were estimated simultaneously at nine (N = 9) geographically and hydro-cli-
matically diverse basins across the European domain. This procedure was repeated 30 times. Thus, 30 different 
parameter sets were obtained tailor-made to different groups of nine “donor” basins. Each optimization run was 
carried out with the Dynamically Dimensioned Search algorithm (Tolson & Shoemaker, 2007) using 1,500 iter-
ations. The Kling-Gupta Efficiency (KGE) (Gupta et al., 2009) obtained between simulated and observed daily 
streamflow for each selected basin was used as an objective function. Each of the 30 optimized parameter sets was 
then cross-validated in 1,266 European river basins having at least 5 years of streamflow records. The parameter 
set that exhibited the best performance using the median daily KGE in the cross-validation test was used for the 
final runs (KGE = 0.55) for obtaining seamless soil moisture predictions across Europe and is depicted by a black 
line in Figure S1 in Supporting Information S1.

2.4.  Drought Analysis

Understanding of continental-wide drought propagation and its changes over time require methods which quan-
tify drought areal extent and duration together with drought severity in a combined manner. The spatio-temporal 
drought cluster analysis (Andreadis et al., 2005; Diaz et al., 2020; Lloyd-Hughes, 2012; Samaniego et al., 2013; 
Zhou et al., 2019; Zink et al., 2016) allow to track events in space and time and thus to quantify their character-
istics across domain and over the entire period. To quantify agricultural droughts we use the deficit of the mHM 
simulated soil moisture with respect to its seasonal climatology at a given grid cell. The index is called (SMI) 
(Sheffield et al., 2004) and its implementation has been described in the past (Samaniego et al., 2013) as follows. 
The SMI varies between two limits 0 and 1. The lower bound indicates the driest condition with respect to the 
reference period, whereas the upper bound indicates the wettest. The SMIi,m is estimated such that it represents 
the conditional cumulative distribution function of the soil water content in the root zone at a given grid cell i 
at the calendar month m. Given a time series x1, x2, …, xn that corresponds to the soil moisture fractions of a 
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given cell at calendar month m (e.g., January), the kernel density estimate at a given value x can be obtained 
by 𝐴𝐴 𝑓𝑓 (𝑥𝑥) =

1

𝑛𝑛𝑛

∑𝑛𝑛

𝑘𝑘=1
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(

𝑥𝑥−𝑥𝑥𝑘𝑘

ℎ

)

 , with K(x) denoting a Gaussian smoothing kernel, n the sampling size, and h the 
bandwidth. The SMI for a soil moisture fraction value x is estimated with the quantile function by numerically 
integrating the following expression 𝐴𝐴 SMI = ∫

𝑥𝑥

0
𝑓𝑓 (𝑢𝑢)𝑑𝑑𝑑𝑑 .

To estimate spatio-temporal drought clusters we follow this procedure (Samaniego et al., 2013). First, we select 
regions under drought by masking the SMI fields: SMIt < τ, with τ = 0.2, according to Andreadis et al. (2005) 
and Vidal et al. (2010). Second, consolidate spatial drought clusters at every time step. Clusters with an area of 
less than η × Ac are neglected, with Ac the area of a grid cell. In this study η ≈ 10 and η × Ac > 25,000 km 2 was 
selected. This subjective choice is necessary to eliminate small isolated areas that are suffering a drought but 
are too small to be considered as a regional event, and it does not have an impact on large-scale cluster charac-
teristics. On the final step, independent spatial drought clusters over successive time steps are consolidated into 
regional, multi-temporal clusters. The only condition to join spatial clusters over consecutive time steps is that 
their overlapping area is larger than ι × Ac, with ι ≈ 60. It represents the connectivity between the clusters of two 
consecutive time periods. Events having an intersection area at any sequential time step of less than this threshold 
are considered independent events. The SMI code that executes this algorithm is available at https://git.ufz.de/
chs/progs/SMI (Samaniego et al., 2022). The drought severity (Sd) for a grid cell over a duration d (in months) is  
estimated by integrating the masked SMI fields over time: �� = 1− 1

�

∑

�∈� SMI� . This indicator aims to measure 
the duration and intensity of drought event. It ranges from zero to one, with one denoting locations with the 
strongest impact during interval d. The total magnitude of a drought event is defined as the spatio-temporal inte-
gral of the SMI under the deficit threshold τ, explicitly: 𝐴𝐴 𝐴𝐴 =

∑𝑡𝑡1
𝑡𝑡=𝑡𝑡0

∫
𝐴𝐴𝑡𝑡
(𝜏𝜏 − SMI𝑖𝑖(𝑡𝑡))+ 𝑑𝑑𝑑𝑑 . Here, t0 and t1 denote 

the onset and the ending months of a drought event. At is the area under drought at time point t expressed as the 
percentage of total drain area (in this case Europe); and (⋅)+ is the positive part function. Hence, M is expressed 
in [months × %Total Area]. The intensity of a drought event (Id) is obtained by normalizing M by the arbitrary 
drought duration d [months] from the onset: 𝐴𝐴 𝐴𝐴𝑑𝑑 =

1

𝑑𝑑

∑𝑡𝑡0+𝑑𝑑

𝑡𝑡=𝑡𝑡0
∫
𝐴𝐴𝑡𝑡
(𝜏𝜏 − SMI𝑖𝑖(𝑡𝑡))+ 𝑑𝑑𝑑𝑑 expressed in [%Total Area]. Note 

that drought intensity changes over time from the drought onset, while the drought magnitude is here estimated 
for the entire cluster.

The values of M and Id are accompanied by “mean drought characteristics” of an identified drought cluster/event 
in terms of “mean drought area over time” as a fraction of European domain [in %] and “mean duration over 
space” of identified drought cluster [in months]. Here, consider that a drought cluster dynamically evolves over 
space and time. First, it gets initiated, then it evolves/increases, and finally, it gets terminated. For example, the 
drought cluster/event of 2018–2020 was initiated in April 2018 and lasted until December 2020. Although it took 
33 months from t0 to t1, its “mean duration,” averaged over entire cluster domain, yields 12.2 months.

Historical and future extreme soil moisture drought events are estimated by forcing mHM with the respective 
meteorological outputs of the GCMs (Section 2.1.2). To maintain the consistency with the historical drought 
analysis, the GCM specific soil moisture distribution functions estimated during the period from 1950 to 2020 
were taken as a reference for estimating the soil moisture droughts in future. The drought characteristics are 
calculated for each model realization separately, to avoid a smoothing effect of averaging, in other words, to be 
able to generate extremes (rare events) realistically.

3.  Results and Discussion
The spatio-temporal analysis of the largest European soil moisture droughts since 1766, summarized in Figure 1a, 
reveals three outstanding and well-comparable soil moisture drought events in terms of areal coverage, duration 
from the onset, and drought intensity: 1857–1860, 1920–1922, and 2018–2020. The 2018–2020 event exhibits 
the largest mean drought area over time, covering approximately on average 36% of Europe with a mean dura-
tion over space of 12.2 months. Note that these characteristics reflect the average behavior accounting for the 
spatio-temporal development of the drought events (see Section 2.4). Concerning duration, the 2018–2020 event 
ranks second after the event of 1857–1860. Additionally, we highlight other four well-documented and signif-
icant European drought events (Masante et  al.,  2019): 1947–1948, 1975–1977, 2003–2004, and 2015–2016. 
Figure S2 in Supporting Information S1 shows the negligible effect of the varying cluster parameter ι on the soil 
moisture cluster identification. The 2018–2020 drought event is identified as the largest across a range of ι = 40, 

https://git.ufz.de/chs/progs/SMI
https://git.ufz.de/chs/progs/SMI
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50, 60, 70, 80 values, which yield areal coverage range between 35.1% and 36.5% and average duration range of 
12.0–12.5 months.

In this context, what makes the 2018–2020 event outstanding with respect to the other events is the strong tempo-
ral development of its mean intensity since the onset of the drought event (Figure 1b). We refer to intensity as the 
total drought magnitude normalized by its duration (see Section 2.4). The 2018–2020 event has the steepest and 
continuous rise in intensity reaching a historical maximum after only 10 months from the onset, while reaching 
80% of their maximum intensity within 4 months only. Furthermore, we notice that the four exceptional summer 
droughts with the steepest rise in intensity (1947–1948, 2015–2016, 2003–2004, 2015–2016, and 2018–2020) 
have been always initiated in spring (April–May) primarily as a result of compound effects of low precipitation 
and high air temperatures leading to severe soil water deficits (Ionita et al., 2020). After the highest intensity 
is reached, it usually takes between 6 and 12 months until a drought event terminates (Figure 1b). This point is 
reached in most cases during the following winter and spring seasons due to the significant contribution of the 
snowmelt. For example, the 2003 and 2015 warm-season events, which quickly built their peak intensity during 
late spring and summer, and slowly vanished in the following year leading to a recovery of the vegetation health 
status (Hari et al., 2020). There has been generally a continuous rise in the intensity and its peak since the begin-
ning of the 21st century (Figure 1b, progression in peak intensity from 2003 to 2004, 2015–2016, 2018–2020).

Figure 1.  Main characteristics of the three largest soil moisture drought clusters identified in Europe since 1766. (a) Scatter plot of the mean area and duration of 
European droughts from 1766 to 2020 based on the mesoscale Hydrologic Model simulations forced with reconstructed and observation-based historical forcing data. 
The cluster labels define period (start year–end year) of the well-known drought events. The bubble size corresponds to the total drought magnitude [-] (b) Temporal 
evolution of the drought intensity from the onset of the drought. The 2018–2020 event exhibits the largest drought intensity in comparison to all other events overall 
time (c–e) Spatial map depicting the mean drought duration [months] of the 1857–1860, 1920–1922, and 2018–2020 events. The inset plot shows the temporal 
evolution of the areal coverage from the onset of the corresponding event.
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The spatial distribution of the mean drought duration for the three largest events (Figures 1c–1e) suggest that the 
2018–2020 event “extended” across entire Europe, which has so-far never happened for any other major events 
in the past. Our simulations reveal that 20% (40%) of the European domain was under drought for more than 18 
(12) months during 2018–2020. The inset of Figure 1e depicts the temporal evolution of the area under drought, 
which exhibits a lot of variability reaching a maximum of 50% of Europe's area was affected by a drought. The 
2018–2020 event, exhibited several peaks in the evolution of drought coverage (snapshots of four states are 
provided in Figure S3 in Supporting Information S1: The centroid of this drought event is located in the central 
and eastern Europe, although during 2018 the event covered parts of Scandinavia). In 2019, it expanded to the 
Mediterranean region, which corresponds well with the entry of the European Drought Observatory database 
(Masante et al., 2019).

Büntgen et al. (2021) showed that the recent sequences of European seasonal droughts are unprecedented at a 
millennial time scale, suggesting that amplification in anthropogenic warming may have played a significant role 
in exacerbating its evolution. To analyze the role of near-surface air temperature and precipitation conditions on 
the soil moisture droughts, we quantify the mean precipitation and temperature anomalies over the area affected 
by corresponding drought events, as depicted in Figure  2. It reveals that the precipitation deficit during the 
2018–2020 event is around 20% with respect to the long term mean and therefore comparable to previous major 
drought events. This event, however, is exceptional considering the record-breaking high-temperature anomaly 
that reached up to +2.8 K with respect to the long term mean. This finding indicates the amplifying effect of 
temperature on drought evolution as depicted by Chiang et al. (2018). We also noticed a rather localized event 
over the Mediterranean region, where precipitation deficit is one of the largest in relative terms (up to 35%), but 
that did not induce considerable changes in the soil moisture deficit with a large areal coverage and/or multi-year 

Figure 2.  Meteorological conditions during the soil moisture droughts from 1766 to the present. Average relative 
precipitation anomaly and average absolute near-surface air temperature anomaly based on the monthly climatology during 
the period 1766–2020. The bubble size corresponds to the total drought magnitude. The colored bubbles correspond to the 
three major events depicted in Figure 1a.
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duration. Additionally, the corresponding temperature anomaly was close to zero. These investigations were 
focused on providing a glimpse on the anomalous meteorological conditions associated with large-scale soil 
moisture drought events occurred across Europe. However, a proper attribution of disentangling the explicit 
control of different drivers including meteorological and other (land-surface feedback) conditions (Seneviratne 
et al., 2010) require careful considerations, which is beyond the scope of current work.

The aforementioned analysis establishes the 2018–2020 drought as a record breaking event over the past 250 years. 
Considering the high impacts of events like 2018–2020, the dominant role of the rain-fed agriculture in Europe 
(Trnka et al., 2019), and the negligible mitigation effect of irrigation systems on drought stress at continental 
scales (especially in Central Europe), next we scrutinize how soil moisture droughts have affected cropland in 
Europe during the last seven decades, during which consistent crop yield data are available (EUROSTAT, 2021; 
FAO Global Statistical Yearbook, 2021). We analyze the possible impact of soil moisture drought on the loss 
in agriculture productivity across Europe. Figure 3 shows a substantial drop in major crop yields (wheat, grain 
maize, and barley) during the 2018–2020 drought event across most of the European countries. The 3-year average 
crop yield anomaly for three dominant cereals is considered after removing the systematic linear trend accounting 
for technological advances (e.g., improvements in plant genetics, fertilizer, pesticides). All three cereal products 
exhibit sharp decline from the expected (linear trend) yields across western, central and northern Europe: losses 
of up to 17.5% for wheat in Germany, 20%–40% for grain maize in western Europe (including Benelux, Germany, 
and France) and around 10% losses for barley in most countries in Europe except for the Iberian Peninsula and 
several south-eastern European countries. The extremity of the expected crop yield losses is further depicted in 
Figure S4 in Supporting Information S1, which shows the 3 year exceedance probability of the averaged ranks 
(Benard & Bos-Levenbach, 1953).

Considering the extremity of the 2018–2020 event, it is imperative to understand how the characteristics of this 
event compare with those of future alike events. To this end, we compare the areal extent, the duration, and the 
total drought magnitude of this 2018–2020 event against those of potential events resulting from climate projec-
tions. Figures 4a and 4b shows that the 2018–2020 event ranks as one of the most extreme when compared against 
GCM simulated events during the 1950–2020 period, in terms of both areal coverage and duration. It is worth 
noting that Figures 4a and 4b integrates all three drought aspects: severity, duration and area from all five GCMs 
at once. Ensemble averaging in this case due to the fact that under different climate forcing's data, droughts evolve 
during different times; they do not happen at the exact location.

Figure 3.  Crop yield anomaly. Average percent crop yield anomaly during 2018–2020 with respect to 1961–2021 period (after removal of linear trend representing 
technological advances) for three major cereals: (a) wheat, (b) grain maize, and (c) barley during period 1961–2021 (EUROSTAT, 2021; FAO Global Statistical 
Yearbook, 2021).
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The spatio-temporal evolution of future soil moisture droughts during the period from 2021 to 2099 suggests 
that the most extreme droughts are projected to be significantly longer (RCP4.5: up to 100 months; RCP8.5: 
up to 300  months) than that of the 2018–2020 drought event. This result is in line with the previous study 
(Samaniego et al., 2018), and the longer duration of RCP8.5 is projected independently by all five GCMs (see 
Figure S5 in Supporting Information S1). While the moderate RCP4.5 emission scenario projects the most signif-
icant drought clusters to cover up to 50% of the entire domain, this areal extent reaches up to 65% based on the 
high-emission scenarios. Additionally, the 2018–2020 event dominates all GCM-based events in terms of drought 
intensity during the historical period, similar to what was seen with the observation-based events (see Figure 
S6 in Supporting Information S1). Only a few future RCP's realizations show greater intensity than that of the 
2018–2020 event. Here, the climatological conditions defining the soil anomalies are based on the contemporary 
conditions (1950–2020), assuming there is no adaption to persistent drying patterns considered. This allows the 
drought to develop for a longer duration to develop into a multiple-year drought. Our analysis cannot confirm 
higher occurrence frequencies for a 2018–2020-like event in the future. The reason for that is that our GCM 

Figure 4.  Main characteristics of large soil moisture drought events based on five Global Climate Models (GCMs). Bubble 
plot depicting areal extent, duration and normalized magnitude (intensity) of the drought events in Europe during the 
1950–2020 and 2021–2099 periods, based on the (a) representative concentration pathways (RCP 4.5) and (b) RCP 8.5, 
respectively. The drought intensity is proportional to the circle size. The benchmarking 2018–2020 drought event, derived 
from observation-based simulations from Figure 1, is included for comparison. The boundary drawn by the dashed gray lines 
denotes events whose areal extent or duration are greater than the 2018–2020 event. The sampling distributions of the mean 
duration and mean areal drought extent across five GCMs corresponding to the RCPs 4.5 and 8.5 during 2021–2099, for 
events larger than the benchmark historical 2018–2020 event, are depicted in panels (c) and (d), respectively.
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simulations are limited until 2100. However, a future event can evolve for a long time given the drought threshold 
set in our analysis.

Figures 4c and 4d depicts two individual drought characteristics in terms of the sampling distribution of the mean 
duration and the mean areal extent of the GCM-derived drought events under both RCPs to illustrate their differ-
ences in projected future drought characteristics of all events greater than historical 2018–2020 benchmark. On 
average, future drought events whose duration is greater than the 2018–2020 event are projected to last approx-
imately 40 months (range: 25–60 months) under the moderate emission scenario, while they will nearly double 
their duration (range: 25–180 months) under a high-emission scenario (Figure 4c). This implies that future events 
could last, on average, three to six times longer than the 2018–2020 event, respectively. With respect to the areal 
extent, we observe a slight increase from 41% to 43% (Figure 4d), between RCP 4.5 and 8.5, which corresponds 
to an increase of 14%–20% with respect to the 2018–2020 event, respectively.

4.  Summary and Conclusions
We synthesized long-term simulations showing the spatio-temporal evolution of soil moisture droughts in Europe 
during the period from 1766 to 2020. Our analysis helped to better understand the development of multi-year 
droughts by taking into account long-term historical changes in hydroclimatic variability. We concluded that the 
recent 2018–2020 drought event is exceptional because of its significantly higher intensity and fast development 
from its onset compared to past events. Our study highlights that the 2018–2020 drought event, compared to all 
historical events, emerges as a new benchmark that can be used to gauge the potential impact of future drought 
events in terms of socioeconomic and ecological damages in Europe. From our recent analysis, and in accordance 
with previous study (Samaniego et al., 2018), we conclude that Europe should prepare adaptation and mitiga-
tion plans for future events whose intensity may be comparable to the previous event, but whose duration (and 
partly their spatial extent) will be much greater than any event observed in the last 250 years. Our analysis shows 
that exceptional agricultural droughts enhanced by record-breaking near-surface air temperature anomalies have 
significant impact (decline) on crop yields across the European countries. Soil moisture drought projections 
synthesized in this study, even under a moderate emission scenario, indicate that decision-makers in Europe 
should be prepared for drought events of comparable intensity in future. Thus, the 2018–2020 drought event 
could be considered as a wake-up call on agricultural policies. In this study, we compared and contrasted this 
event with earlier events of similar magnitudes and showed the role of increasing temperature rises. This study 
has focused on detecting the soil moisture droughts and their driving meteorological conditions. Future studies 
should aim at disentangling the roles of precipitation and temperature drivers, including climate model runs. 
Finally, we emphasize the need for new technological developments to mitigate the effects of extreme droughts 
and heatwaves and further research to understand how this new kind of fast intensified droughts will impact 
human health, ecosystems, and, ultimately, our living conditions.

Data Availability Statement
Data analysis was conducted at the High-Performance Computing (HPC) Cluster EVE, a joint effort of both the 
Helmholtz Centre for Environmental Research-UFZ and the German Centre for Integrative Biodiversity Research 
(iDiv) Halle-Jena-Leipzig. Model simulations used in this study can be obtained from https://dx.doi.org/10.5281/
zenodo.5082089. The mHM (v5.10) code can be found at Samaniego, Kaluza, et al. (2019) and the SMI code can 
be found under Samaniego et al. (2022). OR and RK conceptualized and designed the study with inputs from LS. 
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