
1.  Introduction
In many plasmas, for example, the space plasma around the Earth and the sun and plasmas in fusion devices, 
collisions are rare. Therefore kinetic methods are necessary to accurately model these plasmas. Kinetic contin-
uum Vlasov simulations provide an accurate and noise-free representation of velocity space, but solve the Vlasov 
equation on a phase space grid which is numerically challenging. In order to avoid unphysical negative values for 
the particle distribution function, positivity preserving limiters can be introduced. These, however, lead to numer-
ical heating of the plasma so that conservation of total energy is violated. Vlasov solvers that conserve energy, on 
the other hand, do not prevent the distribution function from taking negative values. While numerical oscillations 
can in general occur at steep gradients, negative values of the distribution function are the primary cause of 
numerical oscillations in continuum Vlasov methods. In consequence, the usability of solvers that do not preserve 
positivity can be limited over longer time-spans in simulations with prominent non-linear effects. Both numer-
ical heating and non-positivity become more problematic at low resolutions/large cell sizes in velocity space. 
Published full Vlasov simulations of magnetic reconnection (e.g., H. Liu et al., 2021; Pezzi et al., 2019, 2021; 
Schmitz & Grauer, 2006b) did not go beyond the GEM reconnection setup (Birn et al., 2001) which is computa-
tionally manageable due to the small system size.

To give an overview, we want to mention just a few of the many available schemes for solving the Vlasov equa-
tion on a phase-space grid, together with related implementations in high-performance computing codes. The 
pioneer work of Cheng and Knorr (1976) used a semi-Lagrangian approach with spline or Fourier interpolation. 
A high-performance implementation that uses Lagrange interpolation can be found in Kormann et al. (2019). 
Such semi-Lagrangian solvers are still most popular due to their computational efficiency. Here, we use the 
third-order semi-Lagrangian positive and flux-conservative (PFC) scheme in Filbet et al. (2001) which ensures 
positivity of the distribution function and conserves mass and fluxes. A similar approach with higher-order accu-
racy can be found in Tanaka et al. (2017). The PFC scheme was first applied to magnetic reconnection in Schmitz 
and Grauer (2006b). More recently, discontinuous Galerkin methods were adopted for Vlasov simulations for 
example, a semi-Lagrangian approach in Rossmanith and Seal (2011). A discontinuous Galerkin scheme with 
Runge-Kutta time integration, implemented for the full Vlasov-Maxwell system, is given in Juno et al. (2018) 
and Hakim and Juno (2020). This scheme conserves total energy, and although it does not preserve positivity of 
the distribution function, the plasma turbulence simulation in Juno et al. (2018) was not impaired by numerical 
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oscillations. A mass, momentum and energy conserving 1D2V Vlasov-Ampère solver was introduced in Taitano 
and Chacón (2015), Anderson et al. (2020).

Magnetic reconnection is a fundamental energy conversion process in plasmas throughout the universe and can 
excite instabilities in fusion devices. In 2015, the Magnetospheric Multiscale Mission (MMS) spacecraft was 
launched to directly measure reconnection in the Earth's magnetosphere (Burch et al., 2016). There have been 
successful comparisons between simulations of reconnection using fully kinetic particle-in-cell (PIC) models 
and MMS measurements (Nakamura et al., 2018; T. Z. Liu et al., 2020; Lu et al., 2020). In the PIC method 
the velocity space is represented by super-particles, which represent a large amount of actual particles, using a 
Monte-Carlo approach. This is very efficient because the method is stable and produces reasonable results even at 
low velocity space resolution (i.e., low numbers of particles) and in many cases the number of particles is higher 
in regions of interest so that the simulation accuracy adapts nicely to the physical configuration. However, when 
too few particles are used (and in regions of low density), discrete particle noise can limit simulation accuracy 
(Juno et al., 2020; Nevins et al., 2005). Both the continuum Vlasov method and the PIC method have their respec-
tive strengths, but the primary reason that continuum solvers could so far not compete with PIC is the numerical 
difficulty of treating low velocity space resolutions.

In this article, we present a method to make a Vlasov solver both positivity preserving and energy conserving by 
means of moment fitting. This relaxes the numerical necessity of high velocity space resolutions and thus enables 
us to address large-scale problems with a fully kinetic continuum solver. The moment fitting does not imply any 
approximations or assumptions and can make use of arbitrary positivity preserving Vlasov schemes. We show in 
comparisons between reconnection simulations and MMS measurements that the continuum Vlasov method can 
provide an accurate representation of the electric field at moderate computational cost.

2.  Physical and Numerical Models
2.1.  The Vlasov-Maxwell System and Its Numerical Representation

A collisionless plasma evolves according to the Vlasov equation

𝜕𝜕𝜕𝜕𝑠𝑠

𝜕𝜕𝜕𝜕
+ 𝐯𝐯 ⋅ ∇𝑓𝑓𝑠𝑠 +

𝑞𝑞𝑠𝑠

𝑚𝑚𝑠𝑠

(𝐄𝐄 + 𝐯𝐯 × 𝐁𝐁) ⋅ ∇𝑣𝑣𝑓𝑓𝑠𝑠 = 0,� (1)

where fs(x, v, t) is the particle distribution function for each species s. A collision operator can be added to the right 
hand side of the equation in the case of collisional plasmas. From the distribution function physical quantities can 
be obtained by taking moments. The particle density is given by ns(x, t) = ∫fs(x, v, t)dv and the mean velocity is 

𝐴𝐴 𝐮𝐮𝑠𝑠(𝐱𝐱, 𝑡𝑡) =
1

𝑛𝑛𝑠𝑠(𝐱𝐱,𝑡𝑡)
∫ 𝐯𝐯𝑓𝑓𝑠𝑠(𝐱𝐱, 𝐯𝐯, 𝑡𝑡)d𝐯𝐯 . The second and third moment (multiplied by mass) are momentum flux density 

𝐴𝐴 𝑠𝑠 = 𝑚𝑚𝑠𝑠 ∫ 𝐯𝐯⊗ 𝐯𝐯𝑓𝑓𝑠𝑠d𝐯𝐯 and energy flux density 𝐴𝐴 𝑠𝑠 = 𝑚𝑚𝑠𝑠 ∫ 𝐯𝐯⊗ 𝐯𝐯⊗ 𝐯𝐯𝑓𝑓𝑠𝑠d𝐯𝐯 , respectively, where ⊗ denotes the tensor 
(outer) product. Heat flux Q is related to the raw third moment 𝐴𝐴  like 𝐴𝐴 Q =  − sym(𝐮𝐮⊗ ) + 2𝑚𝑚𝑚𝑚 𝐮𝐮⊗ 𝐮𝐮⊗ 𝐮𝐮 
and temperature T to the raw second moment 𝐴𝐴  like 𝐴𝐴 T = ( − 𝑚𝑚𝑚𝑚𝐮𝐮⊗ 𝐮𝐮)∕ (𝑛𝑛𝑛𝑛𝐵𝐵) . The symmetrization 
denoted by sym is defined as the sum over all index permutations to make a tensor symmetric, for example, 

𝐴𝐴 (sym (𝐮𝐮⊗ ))𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑖𝑖𝑗𝑗𝑗𝑗 + 𝑢𝑢𝑘𝑘𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑗𝑗𝑘𝑘𝑘𝑘 . From the heat flux tensor the heat flux vector can be obtained as 
𝐴𝐴 𝐪𝐪𝑖𝑖 =

𝑚𝑚𝑠𝑠

2
∫ (𝐯𝐯 − 𝐮𝐮)(𝐯𝐯 − 𝐮𝐮)

2
𝑓𝑓𝑠𝑠d𝐯𝐯 =

1

2

∑

𝑗𝑗
Q𝑖𝑖𝑖𝑖𝑖𝑖 (the factor 𝐴𝐴

1

2
 is added for consistency with the literature).

Taking moments of the complete Vlasov equation, a set of fluid equations follows:

𝜕𝜕𝜕𝜕𝑠𝑠

𝜕𝜕𝜕𝜕
+ ∇ ⋅ (𝑛𝑛𝑠𝑠𝐮𝐮𝑠𝑠) = 0,� (2)

𝑚𝑚𝑠𝑠

𝜕𝜕 (𝑛𝑛𝑠𝑠𝐮𝐮𝑠𝑠)

𝜕𝜕𝜕𝜕
= 𝑛𝑛𝑠𝑠𝑞𝑞𝑠𝑠 (𝐄𝐄 + 𝐮𝐮𝑠𝑠 × 𝐁𝐁) − ∇ ⋅ 𝑠𝑠,� (3)

𝜕𝜕𝑠𝑠

𝜕𝜕𝜕𝜕
− 𝑞𝑞𝑠𝑠

(

𝑛𝑛𝑠𝑠sym (𝐮𝐮𝑠𝑠 ⊗ 𝐄𝐄) +
1

𝑚𝑚𝑠𝑠

sym (𝑠𝑠 × 𝐁𝐁)

)

= −∇ ⋅𝑠𝑠.� (4)

Here, × denotes the vector product generalized to tensors.

The fluid equations are exact but contain more unknowns than equations, in particular there is no equation for 
𝐴𝐴 𝑠𝑠 . In the moment fitting Vlasov method we obtain 𝐴𝐴 𝑠𝑠 directly from the distribution function so that the fluid 
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equations and the Vlasov equation yield equivalent solutions for the moments. Multi-fluid methods instead make 
an approximation with a physically motivated closure expression as described in Section 2.3.

The evolution of electric and magnetic fields is determined by Maxwell's equations

∇ ⋅ 𝐄𝐄 =
𝜌𝜌

𝜖𝜖0
, ∇ ⋅ 𝐁𝐁 = 0, ∇ × 𝐄𝐄 = −

𝜕𝜕𝐁𝐁

𝜕𝜕𝜕𝜕
and ∇ × 𝐁𝐁 = 𝜇𝜇0𝐣𝐣 + 𝜇𝜇0𝜖𝜖0

𝜕𝜕𝐄𝐄

𝜕𝜕𝜕𝜕
.�

Together with the Vlasov equation they form the Vlasov–Maxwell system of equations which fully describes the 
plasma dynamics.

In the electromagnetic simulations we normalize length over ion inertial length di,0 based on density n0, velocity 
over ion Alfvén velocity vA,0 based on the magnetic field B0, time over the inverse of the ion cyclotron frequency 

𝐴𝐴 Ω−1

𝑖𝑖𝑖0
 , mass over ion mass mi, electric charge over ion charge qi, and vacuum permeability μ0 = 1 as well as Boltz-

mann constant kB = 1.

The Vlasov equation is solved by means of the PFC method in Filbet et al. (2001) and the velocity splitting is 
realized via the backsubstitution method (Schmitz & Grauer, 2006a). We use zero-flux boundary conditions in 
velocity space to ensure conservation of particle density. The fluid solver utilizes a centrally weighted essentially 
non-oscillating (CWENO) method (Kurganov & Levy, 2000) and the third-order Runge-Kutta scheme in Shu 
and Osher (1988). The finite-difference time-domain (FDTD) method is employed for the Maxwell equations.

The schemes were implemented in the muphy2 multiphysics plasma simulation code developed at the Institute 
for Theoretical Physics I, Ruhr University Bochum. The framework part of the code is written in C++ whereas 
the pure computational parts are written in Fortran to benefit from its excellent performance when dealing with 
multi-dimensional arrays. Parallelization is done via domain decomposition and MPI. All solvers are fully ported 
to GPUs with highly optimized OpenACC. That way the same code base can be used for both GPU and CPU 
computations.

2.2.  Moment Fitting for a Positive and Energy Conserving Vlasov Solver

As discussed, numerical solutions to the Vlasov Equation 1 do not preserve positivity and conserve total energy 
(particle plus electromagnetic energy) at the same time, whereas the fluid Equations 2–4 are unproblematic in 
this regard. The idea for getting a both positive and energy conservative Vlasov solver is therefore to obtain the 
heat flux moment from the distribution function and use it in the fluid equations to get an exact kinetic solution 
to the Vlasov equation for the momentum and energy moments from the fluid solver. These moments are then 
used to update the maximum entropy part (in the Boltzmann sense) of the distribution function so that energy is 
conserved. We call this method moment fitting. The update of the distribution function is realized by calculating 
the ten-moment Maxwellian part of the distribution function and replacing it with the ten-moment Maxwellian 
calculated from the exact fluid solver moments. As density is conserved in both methods, this operation conserves 
the distribution function. After the exchange, the mean velocity and temperature obtained from the corrected 
distribution function match the physically and numerically more accurate and still fully kinetic values computed 
with the fluid solver.

The original idea of moment fitting for improving Vlasov solvers is from Trost et al. (2017) and a simple form 
had been used before in Rieke et al. (2015) for spatial coupling of Vlasov and five-moment fluid models. There 
is also work by Taitano and Chacón (2015), Anderson et al. (2020) on a mass, momentum and energy conserving 
1D2V Vlasov-Ampère solver that has common elements with the moment fitting method. They plug a kinetic 
moment (in their case the pressure) into a fluid solver and use the results to accelerate convergence of an implicit 
Vlasov solver. In contrast to the moment fitting here, the conservation properties are not directly transferred from 
the fluid solver but are instead enforced by a Lagrange-multiplier-like technique. Their scheme can so far not be 
used for applications like magnetic reconnection as it solves only the electrostatic system with one position space 
and two velocity space dimensions. The idea in Trost et al. (2017) was to adapt moments by shifting, stretching 
and rotating the distribution function. While that is certainly a good and successful approach, we want to address 
two subtleties that are involved. First, in that method the equation for determining the adaption of the distribution 
function is underdetermined and needs to be solved with a optimization algorithm under the additional constraint 
that the adaption is as close to unity as possible. Second, the whole distribution function is adapted and not only 
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the part directly related to the maximum entropy ten-moment solution. That means also higher moments, which 
the fluid solver gives no kinetic solution for, are changed on basis of the new momentum and temperature. While 
this may often be desired, it is not clear that the result is in any case still a valid solution to the Vlasov equation. 
The new method of exchanging the ten-moment Maxwellians is a very effective way of correcting numerical 
heating and is guaranteed to yield a solution to the Vlasov equation at the very least within the order of numerical 
error that is inherent to the Vlasov scheme.

A time step of the moment fitting Vlasov solver as we have implemented it is shown in Algorithm 1. Since we use 
a semi-Lagrangian solver for the Vlasov equation and a Runge-Kutta solver for the fluid equations, the Vlasov 
step is done first so that the third moment that the fluid solver needs is available at all Runge-Kutta times. Since 
the divergence of the third moment is needed in Equation 4 it is incorporated into the CWENO reconstruction 
process. Concerning the moment fitting itself, we want to elaborate on some details. The maximum entropy 
distribution function based on density n, mean velocity u and temperature tensor 𝐴𝐴 T =

𝑚𝑚

𝑘𝑘𝐵𝐵𝑛𝑛
∫ (𝐯𝐯 − 𝐮𝐮)⊗ (𝐯𝐯 − 𝐮𝐮)𝑓𝑓d𝐯𝐯 , 

which we here call the ten-moment Maxwellian, is given by

𝑓𝑓𝑀𝑀 (𝐱𝐱, 𝐯𝐯) = 𝑛𝑛(𝐱𝐱)

(

𝑚𝑚

2𝜋𝜋𝜋𝜋𝐵𝐵

)𝑁𝑁∕2

exp

(

−
𝑚𝑚

2𝑘𝑘𝐵𝐵

(𝐯𝐯 − 𝐮𝐮(𝐱𝐱))
t
T−1 (𝐯𝐯 − 𝐮𝐮(𝐱𝐱))

)

∕
√

detT(𝐱𝐱),�

where (v − u) t is the transpose of v − u and N is the dimensionality of velocity space. Mathematically it is a 
multivariate normal distribution. To have the distribution function conserved when exchanging the ten-moment 
Maxwellians, the respective densities must be identical. Both solvers conserve mass and solve equations that yield 
equivalent solutions for the density so in principle the densities should be the same. There are, however, small 
numerical errors which we compensate by rescaling the fluid moments by the density obtained from the distribu-
tion function (Algorithm 1, line 11). That way we make sure that only unconserved quantities are changed during 
this step. Especially where the distribution function is close to zero, the exchange of the ten-moment Maxwellians 
can sometimes turn the value of the distribution function negative. In the simulations in this article, we limit f by 
setting the respective values to zero in these cases (line 14) followed by a rescaling of the distribution function to 
the density before the exchange of the ten-moment Maxwellians (i.e., multiplication by nbefore/nafter). This may not 
be very elegant, but the good energy conservation properties discussed in the benchmark example sections justify 
the approach. Overall, the presented moment fitting method makes as few changes as possible to the distribution 
function when the full maximum entropy information on momentum and energy from the fluid solver is kept.

As mentioned, the correction via exchange of the ten-moment Maxwellians is designed to precisely tackle the errors 
caused by numerical dissipation while at the same time leaving the kinetic solution intact. Let us first assert that the 
fluid equations with heat flux obtained from the distribution function yield solutions for the moments n, u, and P that 
are equivalent to the moments of f obtained from a solution of the Vlasov equation. The distribution function can alter-
natively be represented by the infinite set of moments of the distribution function. Thus, if all moments are kinetically 
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correct, the whole distribution function will also be. An exchange of Maxwellians as done during the moment fitting 
leads to kinetically correct n, u, and P. The third moment, heat flux Q, is not affected by the exchange of ten-moment 
Maxwellians because odd central moments of a multivariate normal distribution are zero. This can be seen from

1
√

(2𝜋𝜋)
𝑁𝑁
det𝑇𝑇

∫
d𝐯𝐯′ ℎ

(

𝐯𝐯
′
)

exp

(

−
1

2

(

∑

𝑖𝑖𝑖𝑖

𝑣𝑣′𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖𝑣𝑣
′
𝑗𝑗

))

= exp

(

1

2

∑

𝑖𝑖𝑖𝑖

𝜕𝜕

𝜕𝜕𝜕𝜕′
𝑖𝑖

𝑇𝑇𝑖𝑖𝑖𝑖
𝜕𝜕

𝜕𝜕𝜕𝜕′
𝑗𝑗

)

ℎ
(

𝐯𝐯
′
)

|

|

|

|

|

|𝐯𝐯=0

� (5)

where h(v′) is a (Kronecker) power of v′ with v′ = v − u and the exponential operator on the right-hand side is 
expanded into a series. It is convenient that the heat flux (skewness of the distribution function) remains unchanged 
during the moment fitting because numerical dissipation will not have much impact on the asymmetries of the 
distribution function but rather on its broadness. From Equation 5 it follows that the fourth moment is adapted 
due to the exchange of ten-moment Maxwellians by the addition of a term 𝐴𝐴 ∝ Tnew2 − T

old
2 = Told𝛿𝛿T + (𝛿𝛿T)

2 with 
Tnew = Told + δT. This is a term that is on the order of the numerical error of the Vlasov solver in T. It makes 
sense that the fourth moment is lowered to cancel numerical heating. The fourth moment (also called kurtosis) 
describes how pronounced the tails of a distribution function are. The numerical dissipation that leads to the 
broadening of the distribution function (and thus heating) shifts particles from the mean of f to its tails. Therefore 
it is sensible that the fourth moment is adapted. In the special case that f corresponds to a ten-moment Maxwellian 
distribution function, the correction by the exchange of the PDE solver's Maxwellian with the Vlasov solver's 
Maxwellian leads to a correction of the fourth moment that exactly cancels the error in this moment that was 
caused by numerical heating. In the more general case it can be said that the adaption of the fourth moment 
goes into the correct direction and that it is always on the order of the error produced by the Vlasov solver in the 
moment. The same principle holds for the higher even moments.

The fluid solver has very good energy conservation properties, but does not conserve energy up to machine 
precision due to the way the source terms are treated. However, the precision of energy conservation is by far 
sufficient for the applications shown in this article, as is demonstrated in the benchmarks sections. It is possible 
to achieve exact energy and momentum conservation with a fluid solver which was shown for example, in Amano 
and Kirk (2013); Balsara et al. (2016). If the used fluid scheme did also conserve total momentum as in these 
articles, the moment fitting would make the Vlasov solver conserve total momentum as well. So far it does at least 
improve the momentum conservation. The published momentum-conservative fluid solvers use five-moment 
models which make the physical simplification that 𝐴𝐴 P −

1

3
tr(P) id = 0 . Thus, they are not exact and cannot be used 

in the moment fitting method. The next step will be to transfer the ideas of available momentum-conservative 
fluid solvers to the ten-moment model which can then be utilized for a positivity preserving and mass, momentum 
and energy conserving Vlasov solver.

2.3.  Fluid Solver With Gradient Heat Flux Closure

Ten-moment multi-fluid simulations close the hierarchy of equations with a heat flux approximation. Here, we 
use a modified version of the temperature gradient closure in Allmann-Rahn et al. (2018) and Allmann-Rahn 
et al. (2021). The closure is based on the one-dimensional Landau fluid closure in Hammett and Perkins (1990) 
(also Hammett et al., 1992) and takes inspiration from Wang et al. (2015). Originally the gradient closure used 
the gradient of the pressure's deviation from isotropy. Instead, we now simply take the gradient of the temperature 
so that the heat flux approximation is given by

∇ ⋅ Q𝑠𝑠 = −
𝜒𝜒

𝑘𝑘𝑠𝑠𝑠0

𝑛𝑛𝑠𝑠 𝑣𝑣𝑡𝑡𝑡𝑡𝑡 ∇
2 T𝑠𝑠.� (6)

We choose ks,0 = 1/ds as the typical spatial frequency. The dimensionless parameter is 𝐴𝐴 𝐴𝐴 = 2
√

2∕𝜋𝜋 as in Hammett 

and Perkins (1990) and 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡𝑡 =

√

𝑘𝑘𝐵𝐵 tr(T𝑠𝑠)∕3

𝑚𝑚𝑠𝑠

 is the thermal velocity. A closure that is similar to the one we use 

here can be found in Ng et al. (2020). The only difference is that they employed a symmetrization in the process 
of generalizing the Landau fluid closure to three dimensions. We chose the expression given by Equation 6 over 
the original formulation in Allmann-Rahn et al. (2018) because in the guide field configuration that we consider 
in Section 3.2 a relaxation toward uniform temperature is more appropriate than a relaxation toward isotropic 
pressure. Both yield similar results overall though.
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3.  Benchmark Problems
3.1.  Landau Damping and Two-Stream Instability

In Section 2.2, we have shown from a theoretical perspective that the combination of a Vlasov and a fluid solver 
in the presented way yields correct solutions to the Vlasov equation (within the accuracy of the solvers). In this 
section, we want to confirm this numerically at the example of standard tests for kinetic plasma solvers. In these 
test problems physical effects occur over short time spans and the resolution is high so that the standard PFC 
scheme does conserve energy and momentum precisely. That makes the setups ideal for verifying the moment 
fitting scheme which should yield identical results. No correction of the moments is to be expected but the 
Maxwellian part of the distribution function will still be fully handled by the fluid solver with kinetic heat flux 
input.

The discussed setups focus on electron effects and are purely electrostatic. Therefore, we use a Poisson solver to 
calculate the electric field and choose the following normalization: Time in inverse electron plasma frequency 

𝐴𝐴 𝐴𝐴−1

𝑝𝑝𝑝0
 , length in electron Debye length λD,0, velocity in electron thermal velocity vt,0, mass in electron mass me, 

temperature in initial electron temperature T0 and finally ϵ0 = 1. The initial condition for the Landau damping 
setup is 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒0(𝑥𝑥𝑥 𝑥𝑥) =

1
√

2𝜋𝜋
exp

(

−𝑣𝑣2∕2
)

(1 + 𝛼𝛼cos(𝑘𝑘𝑘𝑘)) with 𝐴𝐴 𝐴𝐴 = 0.5 𝜆𝜆−1

𝐷𝐷𝐷0
 and a static and spatially uniform neutral-

izing ion background. The one-dimensional domain has an extent of −2π λD,0 to 2π λD,0 and the velocity space of 
−vmax to vmax. In the linear Landau damping case it is vmax = 4.5 vt,0 and α = 0.01 with a resolution of 32 × 32 cells, 
whereas in the non-linear case it is vmax = 6 vt,0 and α = 0.5 with a resolution of 32 × 64 cells. The two-stream 
instability initial condition is 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒0(𝑥𝑥𝑥 𝑥𝑥) =

1
√

2𝜋𝜋
𝑣𝑣2 exp

(

−𝑣𝑣2∕2
)

(1 + 𝛼𝛼cos(𝑘𝑘𝑘𝑘)) with vmax = 5 vt,0, α = 0.01 and a 

domain from 0 to 4π λD,0. The resolution is 64 × 64 cells.

Figure 1a shows the damping of electric wave energy obtained from standard PFC (black) and moment fitting 
(gray dotted) simulations of linear Landau damping together with the analytic damping rate (orange). The results 
are mostly identical and in both cases the damping rate is 𝐴𝐴 𝐴𝐴 = 0.153𝜔𝜔−1

𝑝𝑝𝑝0
 (analytic: 𝐴𝐴 𝐴𝐴 = 0.153 3𝜔𝜔−1

𝑝𝑝𝑝0
 ) and the 

oscillation frequency is ω = 1.41 ωp,0 (analytic: ω = 1.416 ωp,0). Non-linear Landau damping is also equally 
well represented by both methods as shown in Figure 1b. The same results can be found in Filbet et al. (2001). 

Figure 1.  Comparison of the standard PFC and the moment fitting Vlasov solvers. (a) Electric energy next to the analytical 
damping rate (orange line) in linear Landau damping, (b) electric energy in non-linear Landau damping, (c) and (d) 
distribution function fe obtained from the two methods in a two-stream instability setup at 𝐴𝐴 𝐴𝐴 = 30𝜔𝜔−1

𝑝𝑝𝑝0
 .
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In Figures 1c and 1d it is shown that the distribution functions obtained from the standard PFC scheme and the 
moment fitting scheme also match in the highly non-Maxwellian case of a two-stream instability.

3.2.  Orszag-Tang Turbulence

A plasma turbulence setup is well-suited for testing the moment fitting Vlasov solver (and also the gradient fluid 
solver) because of the broad range of plasma phenomena that are relevant for the dissipation of energy like multiple 
types of waves, magnetic reconnection and Landau damping. The Orszag-Tang turbulence setup we use has periodic 
boundary conditions and thus is also a good setup to check the solvers' conservation properties. As we will show, 
the moment fitting Vlasov solver yields results that agree with those from a published fully kinetic PIC simulation.

The initial conditions are taken from Grošelj et al. (2017) (parameters A1). A domain of size Lx = Ly = L = 8π 
di,0 is simulated. The magnetic field is Bx = −δB sin(2πy/L), By = δB sin(4πx/L) and Bz = 1B0 and the velocities 
are ux,s = −δu sin(2πy/L), uy,s = δu sin(2πx/L), uz,i = 0 and 𝐴𝐴 𝐴𝐴𝑧𝑧𝑧𝑧𝑧 = −

2𝜋𝜋

𝐿𝐿
𝛿𝛿𝐵𝐵𝜇𝜇0(2cos(4𝜋𝜋𝜋𝜋∕𝐿𝐿) + cos(2𝜋𝜋𝜋𝜋∕𝐿𝐿)) . Here, 

the magnitude of the perturbation is given by δu = 0.2vA,0 and δB = 0.2B0. In z-direction a current results from 
Faraday's law which is accounted for by the electron velocity. Ideal MHD Ohm's law yields for the electric field 
Ex = −δuB0 sin(2πx/L), Ey = −δuB0 sin(2πy/L) and Ez = 0. The initial density is uniform ns = n0 apart from a 
small perturbation added to the electron density to satisfy Gauss's law. Temperatures are defined via Ti/Te = 1 and 

𝐴𝐴 𝐴𝐴𝑖𝑖 = 2𝜇𝜇0𝑛𝑛0𝑘𝑘𝐵𝐵𝑇𝑇𝑖𝑖∕𝐵𝐵
2

0
= 0.1 . Ion-electron mass ratio is set to mi/me = 100 and speed of light to c = 18.174 vA,0. The 

spatial resolution is 512 2 in the Vlasov simulations (two cells per electron inertial length) and 2,048 2 in the fluid 
simulation. The velocity space in the Vlasov case goes from −14 vA,0 to 14 vA,0 for the electrons and from −1.5 
vA,0 to 1.5 vA,0 for the ions, each resolved by 34 3 cells.

Three numerical models are compared in Figure 2: The moment fitting Vlasov solver, the standard PFC Vlasov 
solver and the fluid solver with gradient heat flux closure (Equation 6). In the upper row the distribution of 
energy over time is shown whereas the lower row gives an impression of the current density's spatial structure 
in out-of-plane direction. Looking at the current density, it is immediately evident that there is good agreement 

Figure 2.  The deviation of magnetic energy, ion kinetic energy, ion thermal energy, and electron thermal energy from the 
initial values and the out-of-plane current density jz/(qin0vA,0) at 𝐴𝐴 𝐴𝐴 = 62.83Ω−1

𝑖𝑖𝑖0
 in Orszag-Tang turbulence. Shown for (a) the 

moment fitting Vlasov solver, (b) the standard PFC Vlasov solver and (c) the gradient closure fluid solver.
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between the moment fitting Vlasov model and the gradient fluid model while the standard Vlasov solver stands 
out. The reason can be identified from the energy plots which show magnetic energy ∫d 3x B 2/(2μ0), ion kinetic 
energy 𝐴𝐴 ∫ d3x𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝐮𝐮

2
𝑖𝑖
∕2 and species thermal energies ∫d 3x (N/2)nskBTs where N is the dimensionality of veloc-

ity space. Total energy 𝐴𝐴  = ∫ d3x
∑

𝑠𝑠

(

𝑚𝑚𝑠𝑠𝑛𝑛𝑠𝑠𝐮𝐮
2
𝑠𝑠∕2 + 𝑛𝑛𝑠𝑠𝑘𝑘𝐵𝐵𝑇𝑇𝑠𝑠

)

+ 𝐁𝐁
2∕ (2𝜇𝜇0) + 𝜖𝜖0𝐄𝐄

2∕2 is conserved in the Vlasov-
Maxwell system with periodic boundary conditions. However, the standard Vlasov solver suffers from substantial 
numerical heating so that electron thermal energy increases to four times the initial value. In consequence, total 
energy reaches 1.5 times the initial value by the end of the simulation. The moment fitting Vlasov solver on the 
other hand conserves energy well with an error smaller than 𝐴𝐴 5 ⋅ 10−5 (𝑡𝑡 = 0) as shown in Figure 3.

In both the moment fitting Vlasov model and the fluid model ion kinetic energy is first converted into magnetic 
energy. After 𝐴𝐴 𝐴𝐴 = 40Ω−1

𝑖𝑖𝑖0
 the magnetic energy is partly converted back to ion kinetic energy through magnetic 

reconnection. Over time magnetic and kinetic energy decrease in favor of thermal energy as expected in a turbu-
lent plasma. In gyrokinetic turbulence Kawazura et  al.  (2019) found that when the magnetic energy is larger 
than the thermal energy, electrons are typically more strongly heated than ions. This is also the case in the 
kinetic moment fitting simulation here, in agreement with the PIC and gyrokinetic simulations from Grošelj 
et al. (2017). Generally, the evolution of energy distribution is in excellent agreement with Grošelj et al. (2017) 
(note the different normalization). However, the fluid model does not correctly predict the ratio of electron and 
ion thermalization. This could be improved by fine-tuning the characteristic spatial frequencies in the gradient 
closure expression (Equation 6), which have direct influence on the magnitude of the heat flux and therefore on 
dissipation and heating.

The current density structure of both the moment fitting kinetic model and the fluid model (Figures 2d and 2f) 
matches that of the PIC simulation in Grošelj et al. (2017). In the center of the domain a current sheet has 
formed where magnetic field lines reconnect. The numerically heated plasma in the standard Vlasov model 
features increased dissipation so that in this case a magnetic island forms within the current sheet. The heat-
ing is less problematic for lower mass ratios like mi/me = 25 because of the smaller extent of electron velocity 
space and the resulting smaller cell sizes. In that case, however, the ion and electron scales are not separated 
well leading to over- or underestimation of electron effects with influence on the turbulence development.

3.3.  GEM Reconnection

One central advantage of the moment fitting Vlasov method is that the numerical necessity for high velocity 
resolutions is relaxed. To demonstrate this, we employ the GEM reconnection problem (Birn et al., 2001) that has 
been studied extensively by many authors and compare moment fitting Vlasov simulations at low velocity space 
resolutions with higher-resolved moment fitting as well as standard PFC simulations.

The initial configuration is given by a Harris equilibrium with density ns = n0 sech 2(y/λ) + nb and magnetic field 
Bx = tanh(y/λ)B0 + δBx, By = δBy. The background density is nb = 0.2 n0 and the half-width of the current sheet 
is λ = 0.5 di,0. The temperature is uniform and defined by 𝐴𝐴 𝐴𝐴0𝑘𝑘𝐵𝐵 (𝑇𝑇𝑒𝑒 + 𝑇𝑇𝑖𝑖) = 𝐵𝐵2

0
∕ (2𝜇𝜇0) , Ti/Te = 5. A perturbation 

of the magnetic field is added to initiate the reconnection process which is given by δBx = −ψ0π/Ly cos(2πx/
Lx) sin(πy/Ly), δBy = ψ02π/Lx sin(2πx/Lx) cos(πy/Ly) with ψ0 = 0.1B0di,0. The magnetic field gradients are associ-
ated with a current density which is distributed among electrons and ions according to uz,i/uz,e = Ti/Te. All particles 
contribute to the current density without discrimination between background and sheet particles. The reduced ion 
to electron mass ratio and speed of light are mi/me = 25 and c = 20 vA,0, respectively. The simulated domain is of 

Figure 3.  Error in total energy conservation over time in the moment fitting Vlasov simulation of Orszag-Tang turbulence.
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size Lx × Ly = 8π di,0 × 4π di,0, here resolved by 512 × 256 cells. It is periodic in x-direction, has conducting walls 
for fields and reflecting walls for particles in y-direction and is translationally symmetric in z-direction. Electron 
velocity space ranges from −12.5 vA,0 to 12.5 vA,0 and ion velocity space from −5.5 vA,0 to 5.5 vA,0.

In Figure 4a the development of the reconnected flux is compared between the moment fitting and the standard 
PFC Vlasov solver at velocity space resolutions of 32 3 and 18 3. Both high-resolution runs and the low-resolution 
moment fitting run feature a similar slope and saturation, indicating identical reconnection physics in the three 
simulations. Onset of reconnection is slightly earlier when the standard Vlasov solver is used because of the 
higher electron temperature caused by numerical heating. The effect of large velocity space cell sizes is clearly 
evident in Figure 4b. While the well-resolved standard Vlasov run has an energy conservation error of 25% at the 
end of the simulation, the run with lower v-space resolution violates energy conservation by even 75%, accom-
panied by an incorrect representation of the reconnection process. While non-positive energy conserving Vlasov 
schemes do not have this issue, they suffer from numerical oscillations which at such low resolutions typically 
impair the reconnection significantly and often render the simulation unstable. On the contrary, the moment 
fitting Vlasov model conserves total energy for both resolutions without numerical oscillations.

The out-of-plane current density profiles shown in Figures 4c–f agree as far as the moment fitting simulations 
and the high-resolution standard PFC simulation are concerned. In contrast, the low-resolution standard PFC 
simulation (Figure 4f) shows incorrect results. Similar to the reconnection layer in the turbulence simulation 
(Figure 2b) a magnetic island forms due to the high temperature. At the same low resolution of 18 3, the moment 

Figure 4.  Comparison of the moment fitting and the standard PFC Vlasov solvers at velocity space resolutions of 32 3 and 
18 3. The out-of-plane current density jz/(qin0vA,0) is shown when the magnetic flux is ψ = 2 B0di,0.
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fitting Vlasov method yields good results that can even be considered more accurate than those obtained from the 
standard method at 32 3 as the current sheet is thinner and less dissipated.

Of course velocity space resolution cannot be arbitrarily low also for the moment fitting method: The relevant 
physical features in the distribution function must still be appropriately represented by the discretization and the 
numerical errors from the advection scheme and the discretized integration to obtain heat flux must be suffi-
ciently small. In particular an under-resolution of structures in the high energy tails of the distribution function 
limits the accuracy of the heat flux which is needed as an input for the fluid equations. Therefore, the moment 
fitting can compensate for numerical errors of the Vlasov scheme, but it cannot compensate for insufficient reso-
lution of physical phenomena. However, this is similar to the situation in PIC methods where it is also possible 
to under-resolve velocity space without introducing numerical issues, but of course with the consequence of 
physical inaccuracies.

4.  MMS Reconnection Events
4.1.  Magnetotail

On July 11, 2017 at 22:34 UT a reconnection event in the Earth's magnetotail was measured by the MMS space-
craft as described in detail by Torbert et al. (2018). In the two articles by Nakamura et al. (2018) and Genestreti 
et al. (2018) physical parameters were extracted from the MMS measurements as initial conditions for a fully 
kinetic PIC simulation and excellent agreement between the simulation results and the measurement data was 
found as well as accurate estimations of the reconnection rate in this magnetotail event. Here, we perform a simu-
lation with the same initial conditions as in Nakamura et al. (2018) using the moment fitting Vlasov solver to 
confirm their simulation results and to verify the Vlasov solver with data from MMS measurements. The absence 
of noise also allows us to analyze heat flux in our simulation and thus in the modeled reconnection event.

The initial spatial profiles of density and magnetic field again follow from the Harris equilibrium: 
ns = n0 sech 2(y/λ) + nb, Bx = tanh(y/λ)B0 + δBx, By = δBy, and Bz = −Bg. The plasma parameters are nb = n0/3, 
λ = 0.6 di,0, and guide field Bg = 0.03 B0. There is now a discrimination between sheet particles (those with 
density n0  sech 2(y/λ)) and background particles (those with density nb). The sheet particles get temperatures 
defined by 𝐴𝐴 𝐴𝐴0𝑘𝑘𝐵𝐵 (𝑇𝑇0,𝑒𝑒 + 𝑇𝑇0,𝑖𝑖) = 𝐵𝐵2

0
∕ (2𝜇𝜇0) , T0,i/T0,e = 3 and are responsible for the total current density. The back-

ground particles are initially static and have temperatures Tbg,s = T0,s/3. Maxwellian distributions are calculated 
for sheet and background particles and then added up. Reconnection is initiated by a small Gaussian perturbation 

𝐴𝐴 𝐴𝐴𝐴𝐴𝑥𝑥 = −𝜉𝜉 (2𝑦𝑦∕𝜆𝜆) exp
(

−(𝑥𝑥∕(𝑎𝑎𝑎𝑎))
2
)

exp
(

−(𝑦𝑦∕𝜆𝜆)
2
)

 and 𝐴𝐴 𝐴𝐴𝐴𝐴𝑦𝑦 = 𝜉𝜉 (2𝑥𝑥∕(𝑎𝑎𝑎𝑎)) exp
(

−(𝑥𝑥∕(𝑎𝑎𝑎𝑎))
2
)

exp
(

−(𝑦𝑦∕𝜆𝜆)
2
)

 where 
a = Lx/Ly and ξ = 0.01 B0. To break the symmetry we also add random noise of magnitude 10 −6 B0 to Bx. The 
domain goes from −Lx/2 to Lx/2 in x-direction and −Ly/2 to Ly/2 in y-direction and with Lx = 120 di,0 and Ly = 40 
di,0. Electron velocity space ranges from −20 vA,0 to 20 vA,0 and ion velocity space from −5 vA,0 to 5 vA,0. We set 
the ion-electron mass ratio to mi/me = 100 and the speed of light to c = 30 vA,0. The resolution is 1536 × 512 × 36 3 
cells. The simulation quantities transfer to SI units using n0 = 0.09 cm −3 and B0 = 12 nT (Nakamura et al., 2018) 
so that di,0 = 759.0 km, de,0 = 17.71 km, vA,0 = 872.5 km/s, vA,e,0 = 37,386 km/s, and E0 = vA,0B0 = 10.47 mV/m.

In Figure 5 the MMS3 measurements are shown next to the simulation data along a virtual path through the elec-
tron diffusion region, visualized by the white line in Figure 5c. Cell averages in the simulation are interpolated to 
the path using a bivariate spline interpolator. The simulation frame is the plasma's rest frame and the virtual path 
models the movement of the plasma away from Earth through the MMS spacecraft. The measurements are trans-
ferred from GSM coordinates to the simulation coordinate system according to L = [0.9482, −0.2551, −0.1893], 
M = [0.2651, 0.3074, 0.9139], N = [−0.1749, −0.9168, 0.3591], which is the coordinate system obtained by 
Genestreti et al. (2018) adapted to our simulation axes. We use publicly available data from the dual electron 
spectrometers (Pollock et al., 2016), the fluxgate magnetometer (Russell et al., 2016) and the electric field double 
probe (Ergun et al., 2016; Lindqvist et al., 2016). There is excellent agreement between simulation and meas-
urements both qualitatively and quantitatively. Differences in magnitude, especially of the electric field, can be 
attributed to the artificially reduced ion-electron mass ratio in the simulation. The simulation also agrees very 
well with the much better resolved and computationally more expensive PIC simulation in Nakamura et al. (2018) 
concerning both reconnection rate and spatial structures. Of course their simulation is highly accurate (the reso-
lution is better, and mi/me is higher) and more computational resources have been invested than in the Vlasov 
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simulation presented here. Nevertheless, it should also be taken into account that we restricted our virtual path 
to a straight line while they allowed fluctuations around a straight path which gives more freedom to match the 
measurement data. The Vlasov approach has advantages in the representation of the electric field which is free of 

Figure 5.  (a) Electron velocity, magnetic field and electric field along a virtual path in the magnetotail reconnection 
simulation at 𝐴𝐴 𝐴𝐴 = 75Ω−1

𝑖𝑖𝑖0
 and (b) as measured by MMS and (c)–(h) simulation state at 𝐴𝐴 𝐴𝐴 = 75Ω−1

𝑖𝑖𝑖0
 . (c) ux,e/vA,0 and the virtual 

path, (d) ux,i/vA,0 alongside the magnetic field lines, (e) electron heat flux scalar 𝐴𝐴 |𝐪𝐪𝑒𝑒|∕

(

𝑚𝑚𝑖𝑖𝑛𝑛0𝑣𝑣
3

𝐴𝐴𝐴0

)

 , (f) ion heat flux scalar 

𝐴𝐴 |𝐪𝐪𝑖𝑖|∕

(

𝑚𝑚𝑖𝑖𝑛𝑛0𝑣𝑣
3

𝐴𝐴𝐴0

)

 , (g) 𝐴𝐴 𝐴𝐴𝑒𝑒∕

(

𝑚𝑚𝑖𝑖𝑣𝑣
2

𝐴𝐴𝐴0
∕𝑘𝑘𝐵𝐵

)

 and direction of qe as arrows, (h) 𝐴𝐴 𝐴𝐴𝑖𝑖∕

(

𝑚𝑚𝑖𝑖𝑣𝑣
2

𝐴𝐴𝐴0
∕𝑘𝑘𝐵𝐵

)

 and direction of qi as arrows.
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noise. This clearly shows in the good agreement between simulated and measured electric field. The difference 
between the measurement of EN and the simulation Ez is due to difficulties in measuring the offset of the out-of-
plane electric field (Genestreti et al., 2018).

Panels (c) and (d) of Figure 5 show zoomed-in views of the electron and ion outflow velocities, respectively. 
Electron outflow saturates at ∼0.4 vA,e,0 and ion outflow has peak velocities of ∼1.1 vA,0 at later times. The 
magnetic field lines shown in panel (d) have clearly reconnected at the time. Since there is no discrete particle 
noise in the Vlasov simulation, an accurate analysis of heat flux in the simulation is possible. We plotted the 
magnitude of the electron heat flux vector |qe| in Figure 5e and its direction together with electron temperature Te 
in Figure 5g. There are peaks in heat flux at the separatrix borders which correspond to peaks in the electric field. 
Thus, electron heat flux is dominated by energy transfer from the electric field to the particles, one important 
mechanism being electron Landau damping. Comparing the locality of heat flux with the temperature profile, it 
is evident that heat flux is often located where temperature gradients are strong as for example, at the separatrix 
border. However, the heat flux is not necessarily along the temperature gradients because fluctuations that are 
subject to Landau damping are primarily in direction of the magnetic field which is reflected in the direction of 
the heat flux. This also shows both the good potential and the deficits of the temperature gradient closure (6) that 
we used for modeling Landau damping within the ten-moment multifluid simulations of plasma turbulence in 
Section 3.2. The gradient closure captures the location of heat flux at the temperature gradients, but the magnetic 
field should be taken into account to better capture the direction of the heat flux.

In Figures 5f and 5h, heat flux and temperature are shown for the ions. Ion heat flux differs significantly from 
electron heat flux both concerning location and mechanism. While there is some heat flux at the separatrix 
boundaries, much more is present in the outflow with a peak where the magnetic field is the strongest—in 
Figure 5 visible at x ≈ ±10 di,0. There, heat flux is generated through remagnetization of the outflowing ions 
which start to gyrate and thus are more susceptible to wave–particle interactions. In consequence part of their 
kinetic energy is converted into thermal energy. Ion heating due to remagnetization in the outflow has also been 
measured in laboratory reconnection (Yamada et  al.,  2014). Unexpectedly, there is a second place of strong 
heat flux further downstream (starting from x ≈ ±20 di,0) which is caused by fluctuations in x-direction, that is, 
dominated by the Qxxx component of the heat flux tensor. To weaker extent it is also present in the electrons. This 
second heat flux peak is located at the head of the outflow where the outflow particles meet current sheet and 
background particles that have not been accelerated in x-direction. One explanation of the heat flux is a possibly 
increased wave activity in this region due to the outflow, accompanied by energy transfer through wave–particle 
interactions. Microinstabilities related to the different velocity distributions of the outflow particles compared to 
the sheet and background particles might also cause heat flux.

4.2.  Foreshock

In T. Z. Liu et al. (2020) two reconnection events measured by MMS in the Earth's foreshock are reported and 
modeled with PIC simulations. The event with a strong guide field that we want to discuss took place on Novem-
ber 10, 2017 at 17:26:17 UT. We perform a Vlasov simulation and compare it to measurements and PIC results. 
The initial conditions are as described in Section 4.1 but with the plasma parameters that were chosen by T. Z. 
Liu et al. (2020): The guide field is now Bg = 1B0, the background density is nbg = 0.2 n0, temperature ratio is T0,i/
T0,i = Tbg,i/Tbg,i = 4, initial current sheet half-width is λ = 0.5 di,0, speed of light is c = 20 vA,0 and the domain is 
of size Lx = 102.4 di,0, Ly = 25.6 di,0. We use a resolution of 1152 × 288 × 36 3 cells and ξ = 0.025 B0 as the initial 
perturbation's magnitude.

A comparison between the simulation data interpolated along a virtual path and the publicly available MMS1 
data is shown in Figure 6. The measurements are transferred from GSE coordinates to the simulation coordinate 
system as given by T. Z. Liu et al. (2020), adapted to our simulation axes: L = [0.58, 0.24, 0.78], M = [−0.50, 
0.85, 0.11], 𝐴𝐴 𝐴𝐴 = [−0.64,−0.45, 0.62] . There is good qualitative agreement between simulation and MMS data, 
for example, in the out-of-plane electron velocity uz,e caused by the reconnecting magnetic field and in the elec-
tron outflow velocity ux,e. In both simulation and measurements there is an oppositely directed Bx above and 
below the x-line current sheet. The guide field Bz has in both cases the same quantitative relation to the back-
ground field Bx. In the measured event the guide field rises strongly after passing a local minimum which may 
be caused by turbulence in the foreshock reconnection and is not seen in the two-dimensional simulation. Also, 
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Figure 6.  (a) Electron velocity, magnetic field and electric field along a virtual path in the foreshock reconnection simulation 
at 𝐴𝐴 𝐴𝐴 = 30Ω−1

𝑖𝑖𝑖0
 and (b) as measured by MMS and (c)–(h) simulation state at 𝐴𝐴 𝐴𝐴 = 30Ω−1

𝑖𝑖𝑖0
 . (c) ux,e/vA,0 and the virtual path, (d) Bz/B0,  

(e) electron heat flux scalar 𝐴𝐴 |𝐪𝐪𝑒𝑒|∕

(

𝑚𝑚𝑖𝑖𝑛𝑛0𝑣𝑣
3

𝐴𝐴𝐴0

)

 , (f) ion heat flux scalar 𝐴𝐴 |𝐪𝐪𝑖𝑖|∕

(

𝑚𝑚𝑖𝑖𝑛𝑛0𝑣𝑣
3

𝐴𝐴𝐴0

)

 , (g) 𝐴𝐴 𝐴𝐴𝑒𝑒∕

(

𝑚𝑚𝑖𝑖𝑣𝑣
2
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∕𝑘𝑘𝐵𝐵

)

 and direction of qe 

as arrows, (h) 𝐴𝐴 𝐴𝐴𝑖𝑖∕
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 and direction of qi as arrows.
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the electric fields only fit very roughly. Quantitatively the measured electric field and the electron velocities are 
rather low compared to the simulation. Quantitative agreement between model and measurements cannot be 
expected—a more precise estimate of the initial plasma parameters and possibly a three-dimensional simulation 
to account for instabilities and turbulence would be necessary. Nevertheless, the qualitative agreement suggests 
that the measured current sheet is indeed due to magnetic reconnection.

The electron outflow velocity ux,e is shown in Figure  6c. It differs notably from the weak guide field case 
(Figure 5c) and has maxima along the separatrix boundaries with low Bz on the sides where Ex is in outflow direc-
tion. The outflow velocity is reduced by the guide field, peaks at ∼0.37 vA,e,0 and later goes back down to ∼0.22 
vA,e,0, much lower than when the guide field is weak. On the contrary, ion outflow velocity becomes larger (here 
∼1.5 vA,0 later in the simulation) when the guide field is strong, as has been suggested by Haggerty et al. (2018). 
For a direct comparison of the spatial structure with the PIC simulation in T. Z. Liu et al. (2020) we have plotted 
the out-of-plane magnetic field in Figure 6d. There is good agreement between the two methods, their PIC results 
are overall very similar to the continuum Vlasov results here.

Electron heat flux (Figure 6e) in this strong guide field scenario is even more localized at the separatrix border 
than in the weak guide field simulation. It is again related to peaks of the electric field which now has a stronger 
preference for one side of the separatrix border due to the stronger guide field. Electron temperature (panel (g)) 
has its maximum along the x-line current sheet and is less spread out compared to the weak guide field case 
because heating is reduced perpendicular to the guide field. Ion heat flux (panel (f)) is dominated by the Qzzz 
component of the heat flux tensor. It has a peak next to the maximum of |By| at (x, y) ≈ ±(7, 0) di,0 and another 
peak where |Bx| and |Bz| are both large at (x, y) ≈ ±(10, 1) di,0. That means even when there is a strong guide field, 
a rapid increase in magnetic field strength leads to a transfer of the ion kinetic energy to thermal energy. However, 
it is evident in the lower magnitude of the heat flux compared to the weak guide field case that the particles are 
already magnetized before entering the area where the magnetic field strength increases. The in-plane direction of 
the heat flux vector shown in Figure 6h varies heavily near the magnetic o-line due to the fast changing direction 
of the magnetic field at this place. Ion temperature (Figure 6h) is the highest near the separatrix border which may 
be associated with the transport of heated ions into this region along with the outflow.

5.  Conclusions
Traditional continuum Vlasov schemes have the reputation of being computationally expensive which is due 
to the numerical necessity of high velocity space resolutions. PIC methods can be constructed to be stable and 
conserve energy decently at comparatively low numbers of particles per cell, whereas in continuum methods a 
representation of velocity space with the same degrees of freedom typically leads to non-conservation of energy 
or numerical oscillations. Consequently, continuum Vlasov simulations were primarily applied to small-scale or 
two-dimensional problems, or electrons were treated non-kinetically. To address this issue, we developed a new 
dual Vlasov solver which uses a standard positivity-preserving Vlasov scheme to update the distribution function, 
and an energy conserving partial differential equation solver to update velocities and temperatures. By means of 
moment fitting, the schemes can work together as a positivity-preserving and energy-conserving Vlasov solver 
that has good stability properties and deals well with coarse velocity space resolutions.

The new method enables us to address large-scale non-linear problems with continuum Vlasov simulations. We 
performed simulations of reconnection events measured by the MMS probe and obtained excellent agreement 
with measurements. In the simulated reconnection events in the Earth's magnetosphere electron heat flux is 
dominated by energy transfer from the electric field to the electrons while ion heat flux is dominated by transfer 
of ion kinetic energy to thermal energy via remagnetization. A Vlasov solver like the one presented in this article 
can compete with PIC solvers concerning computational cost. The continuum Vlasov simulations presented in 
this article agree well with published PIC simulations, validating both methods. The continuum method and the 
PIC method have their respective strengths and it is valuable to have different options at hand for fully kinetic 
modeling of large-scale plasmas.

The next step will be spatial coupling of the Vlasov model to multi-fluid and MHD models in order to reach 
global scales. The continuum Vlasov model is well-suited for smooth spatial coupling since the noise-free 
distribution function is available (Lautenbach & Grauer, 2018; Rieke et al., 2015). Using an energy conserving 
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Vlasov solver eases the coupling because temperature gradients at the model interfaces due to numerical heating 
(Rieke et al., 2015) are avoided. Ideally a plasma is represented by a hierarchy of models from fully kinetic over 
hybrid-kinetic to multi-fluid and MHD models depending on the plasma effects that need to be captured in the 
respective regions. In this hierarchy ten-moment multifluid models can be efficiently used. In many cases they 
can approximate kinetic plasmas well as we have shown in the present article at the example of a plasma turbu-
lence simulation. The ten-moment multifluid model may be used either on its own or as an accurate electron 
model in hybrid fluid-kinetic simulations.

There is potential to further improve the moment fitting Vlasov solver in the future. The partial differential 
equation solver may be extended to not only conserve energy but also conserve momentum (similar to Amano & 
Kirk, 2013; Balsara et al., 2016) so that the resulting dual Vlasov solver will then preserve positivity and conserve 
charge, energy and additionally momentum. The moment fitting method is also a candidate to make low-rank 
Vlasov simulations (Kormann, 2015) conservative. Using low-rank decomposition and compression of the distri-
bution function, much higher velocity space resolutions (larger than 128 3 cells) become possible.

Data Availability Statement
The data that was used in this article is available at https://vlasov.tp1.ruhr-uni-bochum.de/data/paper-JGR-2021 
together with the Python scripts that generate the figures.
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