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Abstract
Extreme wind storms can strongly influence short-term variation in lake ecosystem functioning. Climate

change is affecting storms by altering their frequency, duration, and intensity, which may have consequences
for lake ecosystem resistance and resilience. However, catchment and lake processes are simultaneously affecting
antecedent lake conditions which may shape the resistance and resilience landscape prior to storm exposure. To
determine whether storm characteristics or antecedent lake conditions are more important for explaining varia-
tion in lake ecosystem resistance and resilience, we analyzed the effects of 25 extreme wind storms on various
biological and physiochemical variables in a shallow lake. Using boosted regression trees to model observed vari-
ation in resistance and resilience, we found that antecedent lake conditions were more important (relative
importance = 67%) than storm characteristics (relative importance = 33%) in explaining variation in lake eco-
system resistance and resilience. The most important antecedent lake conditions were turbidity, Schmidt stabil-
ity, %O2 saturation, light conditions, and soluble reactive silica concentrations. We found that storm
characteristics were all similar in their relative importance and results suggest that resistance and resilience
decrease with increasing duration, mean precipitation, shear stress intensity, and time between storms. In addi-
tion, we found that antagonistic or opposing effects between the biological and physiochemical variables influ-
ence the overall resistance and resilience of the lake ecosystem under specific lake and storm conditions. The
extent to which these results apply to the resistance and resilience of different lake ecosystems remains an
important area for inquiry.

Extreme storms that produce high wind speeds, rain del-
uges, and floods can have meaningful effects on the function-
ing of lake ecosystems (Tsai et al. 2008; Tsai et al. 2011;
Kasprzak et al. 2017; Ji et al. 2018; Stockwell et al. 2020).
Severe storms can affect a variety of physical lake processes
primarily through the runoff of terrestrial nutrients from
precipitation (Gaiser et al. 2009; de Eyto et al. 2016;

Zwart et al. 2017), wind induced mixing of the water column
(Klug et al. 2012; Shade et al. 2012; Giling et al. 2017), lake
sediment resuspension (Qin 2004; Zhu et al. 2014), and the
heating/cooling of surface waters (Wüest and Lorke 2003;
Woolway et al. 2018). Collectively, storm-induced effects on
lake processes may have consequences for the resistance, resil-
ience, and overall functioning following storm disturbances
(Holling 1973, 1996; Havens et al. 2016; Hillebrand
et al. 2018). The resistance and resilience of lake ecosystems
are considered to be a critical aspect of a lake’s intrinsic ability
to oppose change in the face of a disturbance (resistance) and
to recover (resilience) to antecedent functions following expo-
sure to extreme storms (Holling 1973; Pimm 1984; Carpenter
et al. 1992; Scheffer et al. 1992, 1994; Holling 1996; Carpenter
et al. 2001; Pimm et al. 2019). A definition of resilience intro-
duced by Holling (1973) encapsulates both ideas of resistance
and resilience and states “that resilience is a measure of the
persistence of systems and of their ability to absorb change
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and still maintain the same relationships between
populations, or state variables.” The definition integrates resis-
tance and resilience, and allows for local asymptotic recovery
(Pimm 1984) to multiple equilibria (Holling 1973; Donohue
et al. 2016). In addition, we used this definition because it
avoids assumptions of steady states and associated global equi-
libria, and rather assumes that ecosystems operate far from
any steady state, or global equilibrium, and that ecosystems
are in constant flux and continuously undergoing gradual
changes through time (Gunderson 2000; Gunderson
et al. 2012). More generally put, the definition has come to be
interpreted as whether a system returned to its pre-disturbance
equilibrium, or entered a new one (Gunderson 2000;
Gunderson et al. 2012; Donohue et al. 2016). Using this inter-
pretation, resistance is the degree to which a system or system
variable is able to resist (i.e., absorb) change in the face of a
disturbance and resilience is then the level to which the system
recovered to (i.e., either to the same or different equilibrium)
following the disturbance. We use the term equilibrium in the
sense that lakes are able to find a new balance following a dis-
turbance by adapting, or reorganizing through changes in
population relationships and/or state variables.

As a result of climate change, the frequency and intensity
of extreme storms are expected to increase (Rockel and
Woth 2007; Gastineau and Soden 2009). Increases in peak
wind intensities will ultimately expose many inland waters to
more extreme wind storms sometimes including heavy precip-
itation (Donat et al. 2010; Haarsma et al. 2013; Baatsen
et al. 2015). Long-term changes in regional storm frequency,
duration, and intensity may have meaningful effects on the
resistance and resilience of lake ecosystems following storms
by affecting physical, chemical, and biological interactions
(Tsai et al. 2011; Shade et al. 2012; Stockwell et al. 2020).

Lake responses to extreme wind disturbances depend on
antecedent lake conditions and storm characteristics (Havens
et al. 2001, 2011, 2016; Jones et al. 2008, 2009; Perga
et al. 2018; Stockwell et al. 2020). For example, a small alpine
lake exposed to severe storms was not strongly modified as a
result of storm characteristics, but rather as a result of unusu-
ally warm dry spells preceding the storms (Perga et al. 2018).
The antecedent conditions of the catchment basin allowed for
large suspended solid inputs, which persistently modified the
lake’s metabolic and thermal dynamics. In addition, physical
and biological modifications experienced in lakes as a result of
extreme storms result from interactions between atmospheric
and catchment processes (Jennings et al. 2012; Klug
et al. 2012; Favaro and Lamoureux 2014; Kuha et al. 2016).
While previous studies demonstrate that severe storms induce
variable responses in lakes, it is unclear if storm characteristics
are more important than the lake’s antecedent conditions.
Resolving the relative role of these two classes of variables will
substantially enhance our understanding of how climate
driven alterations to storm characteristics are interacting with

alterations in catchment processes and lake conditions to
shape lake ecosystem resistance and resilience.

Here, we analyzed how physiochemical and biological
properties of a shallow lake resist and recover from extreme
wind storms. An extreme storm is generally defined as those
events lying in the outermost 90th, 95th, or 99th percentile of
the local weather history (IPCC 2012). For the purpose of this
research, we used extreme value theory to estimate the proba-
bility of a given shear stress quantile and analyze those events
in the 99th percentile (IPCC 2012). The primary research goal
was to determine whether storm characteristics (frequency,
duration, intensity, wind direction, and precipitation), or aver-
age antecedent lake conditions (pH, %O2 saturation, water
temperature, turbidity, conductivity, Schmidt stability, photo-
synthetic active radiation, total and soluble reactive phospho-
rus, soluble reactive silica, and total nitrogen) were more
important for explaining the resistance and resilience of the
lake ecosystem following storms. Here, we tested whether
antecedent lake conditions are more important than storm
characteristics in shaping the resistance and resilience of the
lake. We tested this by: (1) classifying and examining extreme
shear stress events observed from high-frequency wind data
collected on a shallow lake; (2) quantifying resistance and
resilience indices based on short-term effects of extreme shear
stress events on lake ecosystem response variables; and
(3) determining the relative importance of storm characteris-
tics vs. antecedent lake conditions for explaining variation in
the resistance and resilience of the lake’s physiochemical (pH,
%O2 saturation, and water temperature) and biological (chlo-
rophyll a, phycocyanin, and turbidity) properties by fitting
boosted regression trees (BRT). By characterizing the drivers of
variation in lake ecosystem resistance and resilience, our
results provide useful heuristics for understanding the com-
plexity of lake ecosystem resistance and resilience responses to
storms in the context of overall warming trends.

Methods
Study site

Located southeast of Berlin, Germany, Müggelsee is a shal-
low polymictic, eutrophic lake with a mean depth of 4.9 m, a
max depth of 7.9 m, and surface area of 7.2 km2 (Köhler
et al. 2005). The River Spree is the lake’s major tributary which
influences the lake’s bio-physical processes and retention
times, which ranges between 6 and 8 weeks. The catchment
area is approximately 7000 km2 and consists of urban, agricul-
ture, and forest (Köhler et al. 2005). When atmospheric condi-
tions become unstable due to warming in spring, westerly
winds flow across the lake, steadily increasing in frequency
and speed through June when atmospheric conditions begin
to stabilize. Westerly winds give way to southwesterly winds
in July and the frequency of high-speed wind gusts decreases
through October. However, extreme wind events have been
recorded across seasons. Because of the lake’s morphology and
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east to west orientation, the wind often travels across the
lake’s lengthiest fetch, resulting in frequent mixing with only
short periods of stratification lasting from less than a day up
to several weeks (Wilhelm and Adrian 2008). Frequent mixing
makes the lake prone to upwelling, or resuspension events,
especially in spring (Kozerski and Kleeberg 1998). In addition
to atmospheric forcing, Müggelsee experiences strong seasonal
and periodic algal blooms that can influence the thermal
structure and mixing dynamics of the lake, particularly in
spring (Shatwell et al. 2016). Shallow lakes similar to Müg-
gelsee are potentially more sensitive to extreme storms
because they are more immediately susceptible to changing
meteorological conditions (Gerten and Adrian 2001) and due
to stronger interactions that occur between lake sediment and
the water column (Qin 2004; Havens et al. 2016). The
resuspension of lake sediment may affect resistance and resil-
ience of Müggelsee through changes in nutrient concentra-
tions, light availability, and algal biomass following storms
(Kozerski and Kleeberg 1998; Duarte et al. 2004; Guadayol
et al. 2009; Zhu et al. 2014).

High-frequency data collection
Müggelsee is equipped with a high-frequency monitoring

station that is anchored at 5.3 m depth and 300 m from the
northern shoreline (52�26046.100N; 13�3900.200E). The station
simultaneously measures meteorological and limnological
parameters. Data used here were collected between 2002 and
2017, and span the months between March and November.
Five-minute measurements of pH, %O2 saturation, water tem-
perature, chlorophyll a, phycocyanin, and turbidity were col-
lected using a multi-parameter probe (YSI 6600 V2-4/YSI6560;
YSI Inc.) at a depth of 1.5 m. In addition, hourly measure-
ments of water temperature are taken every 0.5 m through the
water column to a depth of 5 m, which was used to calculate
Schmidt stability. Measurements of water temperature are
made with a physical sensor, while determination of hydrogen
ion concentrations was measured using a pH electrode. Opti-
cal sensors equipped with antifouling wipers designed for lens
cleaning take measurements of oxygen saturation, chlorophyll
a, turbidity, and phycocyanin. Measurements of underwater
light were collected using two spherical photosynthetic avail-
able radiation (PAR) sensors (LI-193SA, LICOR, Nebraska)
placed at 0.75 and 1.25 m depth. To characterize wind, we
used the anemometric measurements of maximum wind
speed and mean direction, which are taken every 5 min at
10 m above the lake surface (Schalenanemometer;
Thies GmbH).

Shear stress quantification
We chose shear stress as our primary stressor driving

changes in lake characteristics during extreme wind storms
because it is the best predictor of wave-generated sediment re-
suspension events, which may strongly affect ecological
dynamics in Müggelsee (Kozerski and Kleeberg 1998).

Resuspension events in Müggelsee are short lived local events
that tend to be higher in the spring and into the summer, and
decrease in the fall due to spring time resuspension and subse-
quent redistribution of sediment in the lake (Kozerski and
Kleeberg 1998). Resuspension events in Müggelsee primarily
re-suspend finer sediments and debris from the shallower and
sheltered parts of the lake (Kozerski and Kleeberg 1998). Fol-
lowing the methodology described by Rohweder et al. (2008)
and Laenen and LeTourneau (1996), shear stress was calcu-
lated for every given wind speed and direction as a function of
lake depth. Maximum wind speed (ms�1) data was collected
in 5 min intervals and used to calculate shear stress between
March and November.

Using the R packages “rgdal” (version 1.4-3) and “proj4”
(version 1.0-8) (Urbanek 2012; Bivand et al. 2016), a list of
shoreline coordinates and grid of points every 100 m within
the lake were extracted from a shapefile in QGIS (version
2.18.15). The output data were then used to calculate effective
fetch using the function fetch_len_multi from the R package
“waver” (version 0.2.1) (Marchand and David 2018). Bottom
shear stress was then calculated in Newtons/m2 (N/m2) for all
possible fetches and for Müggelsees’ average lake depth of
5 m. This required the computation of the wave geometry fol-
lowing wave forecasting equations for shallow waters and lin-
ear wave theory (Komar and Gaughan 1972; U.S. Army Corps
of Engineers Shore Protection Manual 1984) (see Supporting
Information for equations and specific details on calculating
fetch and shear stress).

Extreme wind storm classification
Extreme shear stress events were classified by calculating

the return period, or the maximum shear stress which is
exceeded, on average, once every T days (see Eq. 1) during the
growing season (i.e., March to November) (Palutikof
et al. 1999). Return periods were estimated following methods
based on generalized extreme value (GEV) distributions and L-
moments summary statistics for parameter estimation
(Hosking 1990;Palutikof et al. 1999; Gilleland and Katz 2006,
2016). GEV is considered to be a family of distributions:
Gumbel (k¼0 ), Fréchet k>0ð Þ , and Weibull k<0ð Þ and is
determined by the tail behavior of each distribution (Laib and
Kanevski 2016). We use L-moment statistics as it has been
suggested to provide better parameter estimation when the
time series under consideration is less than 20yr. The cumula-
tive probability of a shear stress quantile (XT) with a return
period (T) is given by:

XT ¼ βþα

k
1� �ln 1� 1

T

� ��� k
)(
k≠0 ð1Þ

Where XT is the return period, β is the mode of the extreme
value distribution (location parameter), α is the dispersion
(scale parameter), and k is the shape parameter which
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determines the type of GEV distribution (Palutikof et al. 1999;
Gilleland and Katz 2006, 2016). By calculating the return
period, we are able to determine the return level, or the
probability of a given daily peak in shear stress level exceeding
1/ T days. For example, a daily shear stress event estimated to

occur every 100 d or more in a system would have a probability of

occurring on any given day of 1/100 = 0.01. Before the shear stress

data were fitted to an extreme distribution model, it was trans-

formed from the 5 min maxima collected at the monitoring station

to daily maxima. We then fitted an extreme value distribution

model and return periods were computed using the fevd and

return.level functions in the R package “extRemes” (version 2.0)

(Gilleland and Katz 2006, 2016). To see an example of R code, see

Supporting Information.

Quantification of resistance and resilience indices
Indices provide a useful tool for standardizing the storm

responses across variable type and for interpreting and com-
paring the resistance and resilience of different ecosystems
including lakes (Orwin and Wardle 2004; Tsai et al. 2011;
Cantarello et al. 2017; Guillot et al. 2019). Resistance is the
amount of change induced by the initial disturbance when
compared to the mean antecedent conditions, while resilience
is the level to which the lake parameter under scrutiny recov-
ered to after being disturbed (Holling 1973; Pimm 1984;
Donohue et al. 2016). To calculate the resistance (RS) index
for each individual lake parameter, we used the following
function (Orwin and Wardle 2004):

RS t0ð Þ¼1� 2 D0j j
Cþ D0j jð Þ ð2Þ

Where t0 is the time at which the lake parameter has
reached max displacement (P0 ) and D0 is the difference
between the baseline conditions (C) and the max displacement

point P0 , or the maximum value to which a lake parameter has

been disturbed to (Fig. 1 and S1). It is necessary before quantifying

resistance and resilience to define a baseline from which the two

components can be calculated for each lake parameter. Because we

were trying to capture the immediate conditions of the lake, we

determined 3 d would represent the baseline (C) or antecedent con-

ditions for calculating resistance and resilience for each lake

parameter. This was determined by calculating the mean of each

lake parameter 3 d, 1 week, and 2weeks prior to the event. The

further back in time we went, the closer to the annual mean was

calculated, which we considered not representative of the immedi-

ate state of the lake conditions.

The resilience index was calculated when the lake parame-
ter under observation had returned to antecedent conditions,
or when it returned to an alternative conditional state and it
was clear that the system variable was more than likely not
responding to the storm, but rather being governed by other
system dynamics at time tx . To determine this point of recov-
ery, an initial time window was pre-defined, beginning after

the peak in the lake parameter response and extending to the
end of the 3-d post storm condition period. Post storm condi-
tions were defined as the 3-d period beginning when shear
stress returned to zero. The recovery point Dx was then deter-
mined by calculating the standard error in the lake parameter
in a rolling window Px with a minimum length of 72h and
starting at P0 (Fig. 1). The lake parameter was then averaged
over the window with the lowest standard error and selected
as its recovery level. Because it is impossible to know, or pre-
dict when and at what level a lake parameter will recover, the
time series could be narrowed or widened respectively upon
visual inspection if it appeared the lake parameter recovered
faster, or did not recover within the pre-defined post storm
time window. Thus, the resilience (RL) index was calculated as
follows:

RL txð Þ¼ 2 jD0 j
D0 þ Dxj jj Þ�1ð ð3Þ

Where tx is time at which the value of the lake parameter
returned to antecedent conditions, or to an alternative equilib-
rium, and Dx is the difference between (C) and the recovery

mean value Px at time tx (Fig. 1). Seasonal variation at times

prevented lake variables from returning to their antecedent states.

For example, following storm-driven cooling of the water column,

water temperature rarely recovered to antecedent conditions during

the fall because the general cooling trend of the lake at those times

of year prevailed over the temperature recovery. Thus, to calculate

resistance and resilience, we seasonally adjusted the data so that

resilience can be interpreted as a return to conditions expected at

the specific time of year. All lake parameters were seasonally

decomposed and adjusted using the msts and mstl function as part

of the R package “forecast” (version 8.5) (Hyndman and

Khandakar 2008). We did this by first determining the number of

hourly observations for a given variable and sampling year and then

transforming the time series into a multi-seasonal time series (msts)

and then decomposing the seasons and trends using Loess function

(mstl). The mstl function is fully automated and requires just a sin-

gle setting which is a vector of the seasonal components being tested

(for algorithm equations, see de Livera et al. 2011). We tested for

daily oscillations (24 h seasonality) in pH, %O2 saturation, water

temperature, chlorophyll a, and phycocyanin. However, it was deter-

mined that turbidity, phycocyanin, and water temperature all dis-

play annual seasonality, while chlorophyll a, pH, and %O2

saturation displayed weak daily oscillations and annual seasonality.

Each lake parameter was then seasonally adjusted by subtracting the

identified seasonal component from the original data. To see an

example of R code, see Supporting Information.

Resistance and resilience range between �1 and 1, where a
value of 1 indicates maximal resistance and resilience of the
observed lake parameter. A resistance of 0 indicates there has
been a 100% reduction or enhancement in the observed
parameter. A resilience value of 0 indicates no recovery
(e.g., D0= Dx). Negative values of resistance indicate there has
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been more than a 100% change in the observed parameter
(e.g., jD0 j > C), while negative values for resilience indicate
that the parameter continued to move away from (C). In the
case, it was not clear where P0 was occurring and/or if
the overall response was positive or negative, we used BRT to
determine the overall response of the lake parameter under
scrutiny. This step helps break down the direct and indirect
effects of the storm to properly identify whether there was a
positive or negative reaction toward the storm. In more gen-
eral terms, it can be the case that there was an initial response
to the storm which was a positive one, but as the storm prog-
ressed there was also a negative response which ends up being
approximately equal distant from antecedent conditions as
the positive response. To break the resulting tie and to deter-
mine the correct peak, we used BRT models and visualized
results using partial dependency plots to determine the overall
effect. BRT models to aid in the identification of P0 were fitted
with a maximum of 10,000 trees, a tree complexity of 2, a
learning rate starting at 0.82, and decreasing by a factor of two
with an ending rate at 0.1 �10�9, and to introduce random-
ness into the model stochastic bag fractioning of (0.5, 0.6, 0.7)
was used (Elith et al. 2008). Models were selected based on the
combination of model hyper-parameters; number of trees, tree
complexity, and learning rate that resulted in the least

predictive error, or the model that results in a mean deviance
standard error that is closest to 0. The selection of model
parameters was optimized by cross-validating model results
with those data that are excluded as an independent test set.
The optimization and selection of hyper-parameters are auto-
mated by fitting models using the function gbm.step as part
of the R package “dismo” (version 1.1-4) (Hijmans et al. 2017).
The function uses a 10-fold cross-validation process to deter-
mine the optimal number of boosting trees to be used in the
final model (Hastie et al. 2001; Elith et al. 2008). The algo-
rithm works by first dividing the data into 10 subsets and then
fits gradient boosted models (gbm) of increasing complexity
along the fold sequence, where which the residual deviance is
calculated at each step. Each fold processed results in a gbm
model and its associated holdout residual deviance, standard
error, and the optimal number of trees fitted. The model that
results in the lowest holdout deviance is then fit and selected
as the final model (Hijmans et al. 2017). The predictor vari-
ables for these models were shear stress, pH, %O2 saturation,
water temperature, chlorophyll a, phycocyanin, and turbidity
(see model formula in following section). In the case that
there was no distinguishable response, either a reduction, or
enhancement in the lake parameter, the parameter under
observation was assigned a “1” for resistance and resilience

Fig. 1. Example of how to quantify resistance (RS) and resilience (RL) of a lake parameter (z axis) during a resuspension event in June 2007 that has a
mean antecedent value of C (red lines are the 95% confidence interval surrounding the true mean of C). An extreme shear stress event occurs during a
given time frame (gray blocked area) and a lake parameter reaches its maximum response P0 at time t0 where resistance is an index of the absolute mag-
nitude of this change D0 = jC – P0j. Resilience is then an index of the level to which the lake parameter has recovered beginning at time tx, where
Dx = jC – Pxj, or the absolute difference between C and the average value Px taken over a 72 h window with the lowest standard error in the lake parameter.
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(i.e., no perturbation and complete recovery). Lastly, because
calculating resistance and resilience was an automated process
with pre-defined time windows, it was also the case that the
function would in some storm scenarios select points in time
for P0 which were not associated with the storm. In these
cases, we specified a time window for the function to find an
appropriate P0.

Lake resistance and resilience analysis
To determine if the storm characteristics or antecedent lake

conditions were more important for predicting the resistance
and resilience of all measured lake parameters (i.e., resistance
and resilience indices of pH, %O2 saturation, water tempera-
ture, turbidity, chlorophyll a, and phycocyanin), we combined
all resistance and resilience indices into a single BRT model
where the values of resistance and resilience were the response
(we call this the combined indices model). Before being intro-
duced into the model, we conducted a co-linearity analysis to
reduce the number of correlated predictors. When predictors
showed a Pearson correlation of r > 0.50 we selected the pre-
dictor that made more sense in predicting lake ecosystem
resistance and resilience. For example, water temperature was
chosen over air temperature and day of the year over atmo-
spheric pressure and humidity. The 3-d baseline period used
as the control conditions for quantifying resistance and resil-
ience was considered to be the antecedent lake conditions.
Antecedent lake conditions included the following predictor
variables: pH, %O2 saturation, turbidity (NTU), water tempera-
ture (�C), conductivity (μS/cm), Schmidt stability (J/m2)
(i.e., stratification strength), photosynthetically active radia-
tion (PAR) (W/m2), total phosphorus (μgP/l), total nitrogen
(mgN/l), and total soluble reactive silica (mgSi/l). Characteris-
tics associated with the storm were mean wind direction (�),
precipitation (mm), duration (h), maximum shear stress
(N/m2), and time between storms (months). Time between
storms was calculated as the time accrued since the last storm,
which provides insight into how storm frequency influences
resistance and resilience of the lake. All other storm character-
istics were measured during a defined storm period which was
centered on the peak in shear stress, and was defined as begin-
ning when shear stress was zero prior to the peak and ended
when shear stress returned to zero after the peak. The year in
which the storm occurred was converted to decimal year and
included in the model. Also to control for independence in
resistance and resilience of response variables, we included
in the model a two-level factor representing resistance and
resilience metrics and a six-level factor representing each
response variable’s resistance and resilience indices. Lastly,
because antecedent lake conditions were seasonally adjusted
to be consistent with the conditions under which resistance
and resilience were quantified, we also included the day of
year on which the shear stress peak occurred as a proxy for
seasonality in the model. All data and statistical analysis were
carried out using the program R (R Core Team 2019). Schmidt

stability was calculated using the R package “rLakeAnalyzer”
(Winslow et al. 2018). Nutrient data were collected once
weekly from the epilimnion of which the most recent nutrient
measurement (i.e., 1–4 d) prior to the storm was used as a pre-
dictor in the model. Total phosphorus, nitrogen, and silica all
showed annual seasonality and were seasonally decomposed
and adjusted using the mstl function as part of the R package
“forecast” (version 8.5) (Hyndman and Khandakar 2008). The
BRT model formula was as follows (for full details on BRT, see
Elith et al. 2008):

Y RSRLð Þ ¼ f 0 xð Þþ f 1 xð Þþ f 2 xð Þ:

Where Y(RSRL) is resistance (RS) and resilience (RL) index
values and fi are decision trees where x is the predictor variables
including antecedent lake conditions and storm characteristics.
The model followed the same structure described in the quanti-
fying resistance and resilience section, however, to select the
final model we compared the performance of models with vary-
ing tree complexities of 1,2,3,4,5 to allow for more interactions
and bag fractioning was decreased to (0.3,0.4,0.5) which
decreased the sensitivity of the models to outliers. Models were
selected based on the combination of model hyper-parameters;
number of trees, tree complexity, and learning rate. The combi-
nation of hyper parameters that resulted in a model with the
lowest mean deviance standard error and highest predictive
power was selected. Partial dependency plots of the fitted values
were created to visualize and interpret the most influential vari-
ables describing lake ecosystem resistance and resilience. Partial
dependency plots provide the marginal effects, or the greatest
instantaneous change in resistance and resilience relative to
each storm characteristic and antecedent lake condition. Partial
dependency plots were generated using the R packages
“ggplot2” and “ggpubr” (Wickham 2016; Kassambara 2020). In
addition to fitting the above described combined indices model
(i.e., model combining both physiochemical and biological var-
iables), we also fitted two separate models, one with only the
biological indicators of resistance and resilience as a response
(i.e., resistance and resilience of chlorophyll a, phycocyanin,
and turbidity), and another with physiochemical indicators of
resistance and resilience as a response (i.e., resistance and resil-
ience of pH, %O2 saturation, and water temperature). Fitting
these models provided further clarity on the roles of antecedent
lake conditions and storm characteristics on the two groups of
variables independently.

Results
Wind storm classification

Results from fitting the extreme distribution model suggest
that the shear stress maxima follow a Weibull distribution,
which is typical of wind extremes (for model fit and results,
see Fig. S2). We decided to analyze those shear stress events
which were estimated to have return periods of 100 d or more
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(i.e., probability of occurring on any given day = 0.01), which
corresponds to wind extremes that generated peaks in shear
stress ≥ 0.93 N/m2 (Fig. 2). Applying this 100 d threshold to
the 5 min time series resulted in the identification of
30 storms, of which 25 were suitable for our study because

they had minimal data gaps for all response variables analyzed
here. All wind storms were then analyzed at hourly time
scales. The identified events occurred throughout the seasonal
spectrum, with 5 between the months of March and May,
13 between June and August, and 7 between September and

Fig. 2. (a) Wind rose depicting the frequency of shear stress events and wind direction for Müggelsee. The legend shows the shear stress levels for a
given wind direction. (b) Left shows the estimated return times of shear stress events, where the vertical dashed line represents the estimated return
period in days and the horizontal dashed line represents the shear stress level that is expected to occur for the given return period. The relationship is not
exactly 1 to 1 because shear stress measurements include the effect of fetch and wave characteristics. (b) Right shows the relationship between wind and
shear stress. Here we have analyzed those events that are estimated to occur on the lake every 100 d or more, or daily peak shear stress > 0.93 N/m2 and
max wind speeds between 21 and 35 ms–1 which was a total of 30 storm events identified. (c) Is the time series of 5 min maximum shear stress used to
classify extreme events. The black line shows the 0.93 N/m2 threshold used to classify events.
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October. Duration varied among the events and ranged
between 42 and 157 h with an average of 110 h. These types
of events are estimated to occur on the lake every 0.27–3.5 yr
and generated hourly shear stress means between 0.1 and
0.3 N/m2 with peaks between 0.2 and 0.9 N/m2 (Fig. S3). In
terms of wind speed, these events produced maximum wind
speeds between 21 and 35 (ms�1) (Table S1). Wind primarily
traveled across the lengthiest fetch and on average was in con-
tact with the surface of the water for 3.2 km with storms hav-
ing a mean wind direction of southwest. However, wind
directions ranged between less frequent directions such as S to
ESE, to more frequent directions such as SSW to W (Fig. 2).
Observations were complete for pH, %O2 saturation, and
water temperature for each storm event between 2002
and 2017. However, there were missing observations for tur-
bidity during events in July 2002 and June 2003, and for chlo-
rophyll a in July 2002. Phycocyanin was not collected at the
monitoring station until 2008 and was complete through 2017.

Resistance and resilience indices
The identified storms induced varying effects in the

observed lake parameters which were divergent in their
response to the storms (Fig. 3). Spearman correlations suggest
the most significant relationships (P ≤ 0.05) between the dif-
ferent indices were between the resistance and resilience of
water temperature, turbidity, pH, and %O2 saturation (Fig. 4).
Water temperature resistance and resilience were found to be
negatively correlated with resistance of chlorophyll a and with
the resilience of phycocyanin conditions, suggesting that
changes in phytoplankton conditions following storms were
more likely when there were strong changes in water tempera-
ture. Furthermore, water temperature resilience was more
likely when antecedent turbidity conditions were resistant
toward the storms. Water temperature generally decreased
with a mean of �0.5�C sd � 1.6 with one storm decreasing
temperature by �4�C. Two of the storms resulted in no
change in temperature, while eight of the storms generated
increases in water temperatures between 0.2 and 2.4�C. Water
temperature had a resistance mean of �x¼0:71. However, the
changes in temperature that did occur were generally persis-
tent and water temperature resilience on average was low and
had an index mean of �x¼0:33 (Figs. 5 and S4). Resistance of
pH was significantly (P≤0.05) and negatively correlated with
water temperature resilience, which suggests greater changes
in pH were more likely when water temperature did not return
to antecedent levels. However, pH resistance and resilience
were found to be significantly (P ≤0.05) and positively corre-
lated with the resistance and resilience of %O2 saturation, and
negatively correlated (P ≤0.05) with the resilience of turbidity
conditions, suggesting that changes in pH conditions are sig-
nificantly related to the displacement and recovery of algal
conditions following the storms. pH departed very little from
antecedent conditions and had an resistance mean of �x¼
0:90, however, small changes in pH were moderately

persistent in the system with a resilience mean of �x¼0:49
(Figs. 5 and S4). In the most extreme cases, pH conditions
were either enhanced or reduced by 0.6 pH units, respectively.
Percent O2 saturation resistance was significantly (P ≤0.05)
and negatively correlated with turbidity resilience, suggesting
that greater changes in oxygen saturation conditions can be
expected when turbidity conditions did not return to anteced-
ent conditions (Fig. 4). Percent O2 saturation was moderately
resistant and resilient to change and had a mean of �x¼0:50
and �x¼0:49, respectively (Figs. 5 and S4). Storms had oppos-
ing effects on %O2 saturation depending on whether satura-
tion levels were below or above 100% at the onset. The storms
tended to reduce %O2 saturation when levels were >100%
(10 of 25 storms, with 2 storms further enhancing %O2 satura-
tion), while storms enhanced %O2 saturation when levels
were below 100% (also 8 of 25 storms, with 5 storms further
reducing %O2 saturation). Results from a regression analysis
suggest that %O2 saturation level is significantly related to
whether storms increase or decrease oxygen saturation levels
(R2 = 0.48, F = [1, 23.6], P<0.001).

Turbidity resilience was significantly and negatively corre-
lated to the resistance of pH and %O2 saturation, suggesting
that greater changes in pH and %O2 saturation are expected
when turbidity conditions are not resilient as a result of sedi-
ment resuspension and/or changes in phytoplankton biomass
(Fig. 4). Turbidity enhancement following storms can mostly
be interpreted as a result of sediment resuspension (16 of
23 storms), while turbidity reductions most likely result from
short term vertical mixing of phytoplankton (6 of 23 storms).
At least one storm in August 2011 enhanced turbidity condi-
tions due to bloom formation (Fig. 3). Storms on average
changed the turbidity conditions in the lake by �87% with a
resistance mean of �x¼0:17, with eight storms registering neg-
ative values of resistance. However, turbidity conditions in the
lake tended to be resilient with a mean of �x¼0:54. Neverthe-
less, in 3 of the 23 storms, turbidity conditions continued to
move away from antecedent conditions (i.e., negative values
of resilience). In all three storm events, the lake was in an
unseasonably clear state, and took place in early April 2014
and in October 2002 and 2017 (Figs. 5 and S4). In relation to
chlorophyll a, the storms tended to change chlorophyll
a concentrations on average by 100% with a mean resistance
of �x¼0, with 50% of storms causing more than 100% change
in chlorophyll a concentrations (12 of 24 storms). Overall,
chlorophyll a conditions tended to be moderately resilient
with a mean of �x¼0:55 (Figs. 5 and S4). Chlorophyll a on
average increased by 3.2 μg/L following storms (10 of
24 storms) and nearly equally decreased by �3.3 μg/L (14 of
24 storms). Phycocyanin showed low resistance with a mean
of �x¼0, with storms able to induce more than 100% change
in phycocyanin (9 of 18 storms). Phycocyanin was moderately
resilient with a mean of �x¼0:53, where only 1of the 18 storms
caused phycocyanin fluorescence to move away from anteced-
ent algal conditions (Figs. 5 and S4). Phycocyanin fluorescence
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in the lake on average decreased by 0.50 RFU following 7 of
18 storms. Lastly, in four of the storm scenarios, there were no
discernable response and were assigned a 1 for resistance and
resilience for water temperature (1/25), chlorophyll a (2/24),
and phycocynin (1/18).

Storm and antecedent lake condition effects on lake
ecosystem resistance and resilience

To determine if the storm characteristics or antecedent lake
conditions were more important, BRT results provide a rank-
ing of predictor variables in terms of each variable’s relative
importance. The relative importance of each variable is calcu-
lated as a function of the frequency with which it was

included in the BRT’s individual regression trees and the
improvement to the model that resulted from its inclusion
(Elith et al. 2008). The final combined indices model
(n = 280) was fitted with a tree complexity of 5, 1700 trees, a
learning rate of 0.0128, a mean deviance standard error of
0.14, and had a cross-validated correlation mean of 0.56
(adjusted R2 = 0.76) (Table S2).

Variability in the individual predicted indices was the most
important predictor of lake ecosystem resistance and resilience
with a 29.6% relative importance in the model (Fig. 5), which
suggests that the individual variability in the predicted resis-
tance and resilience of the biological and physiochemical indi-
ces is important for describing the lake’s resistance and

Fig. 3. Four of the 25 analyzed shear stress events and the responses of lake ecosystem variables used to calculate resistance and resilience. The figure
provides an indication of the variability in storm events (i.e., shear stress = top row) and the responses of pH, %O2 saturation, water temperature, turbid-
ity, chlorophyll a, and phycocyanin (see legend). The gray-shaded areas represent the time during which the identified storm event occurred. Because
the response variables are seasonally adjusted negative values are present in some figures. For example, the storm in October 2017 hit the lake when
chlorophyll a and phycocyanin concentrations were unseasonably low.
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resilience following storms. The resistance and resilience of
the biological variables (i.e., chlorophyll a, phycocyanin, and
turbidity) under certain antecedent conditions suggest that
the storms were capable of changing these variables by 100%
or more (Fig. 5). The second most important variable (9.2%)
was the factor representing the independence of resistance
and resilience, which suggests that exploring these individu-
ally and among the two groups of variables may be important.
Because the model contained several neutral variables
(i.e., RS/RL factor, variable indices factor, year, and day of the
year), we rescaled the relative importance of the antecedent
lake conditions and storm characteristics by summing their
relative importance and then dividing the overall sum of ante-
cedent lake condition and storm characteristic by the sum of
the two. These results suggest that the rescaled antecedent
lake conditions were more important (scaled relative impor-
tance 67%) than storm characteristics (scaled relative impor-
tance 33%) (Fig. 5). The relative importance of antecedent
physiochemical conditions effecting lake ecosystem resistance
and resilience were turbidity (7%), Schmidt stability (6.8%), %
O2 saturation (3.4%), PAR (3.4%), conductivity (3.3%), water
temperature (3.1%), and pH (2.2%). Lake resistance and resil-
ience increased with increased levels of turbidity, stratifica-
tion, PAR, and pH, while it decreased with increasing oxygen
saturation, conductivity, and water temperature (Fig. 6).

Antecedent nutrient concentrations of soluble reactive silica,
total phosphorus and total nitrogen had relative importance
levels of 3.3%, 2.7%, and 1.9%, respectively. Low to moderate
levels of antecedent soluble reactive silica and total nitrogen
lead to increased resistance and resilience (Fig. 6). Storm char-
acteristics were fairly equal in describing the resistance and
resilience of the lake which tended to decrease with increasing
duration (3.9%), shear stress intensity (3.8%), time between
storms (3.7%), and when storms came from less frequent wind
directions (2.9%) (Figs. 6 and 8). However, the results suggest
that increasing mean precipitation was equally as important
(3.9%) as duration, and increased resistance and resilience fol-
lowing storms. The relative importance of the day of the year
and the year in which the storm took place was 2.3% and
2.2%, respectively. Lake ecosystem resistance and resilience
varied with season and greater negative effects were observed
in mid-summer to fall (Figs. 6 and S6). Lastly, storms occurring
after 2012 increasingly had negative effects on the resistance
and resilience of the lake (Figs. 6 and 8).

Storm and antecedent lake conditions antagonistic effects
on lake biological and physiochemical resistance and
resilience

Modeling the two groups of variables separately provided
insight into the nonlinear effects of the antecedent lake condi-
tions and storm characteristics, we see in the combined indi-
ces model described in the previous section. To clarify how
antecedent lake conditions and storm characteristics were
influencing the lake’s biological and physiochemical resis-
tance and resilience responses independently, we fit two
models, one with only the biological indicators of resistance
and resilience as a response, and another with physiochemical
indicators of resistance and resilience as a response. Both
models were identical in structure as the combined indices
model. The biological model (n = 130) was fitted with tree
complexity of 5, 1250 trees, a learning rate of 0.0032, a cross-
validated correlation mean of 0.50 (adjusted R2 = 0.50), and a
mean deviance standard error of 0.19. The physiochemical
model (n = 150) was fitted with a tree complexity of 5, 1950
trees, a learning rate of 0.0016, a cross-validated correlation
mean of 0.51 (adjusted R2 = 0.49), and a mean deviance stan-
dard error of 0.07.

While the same antecedent lake conditions and storm char-
acteristics were similar in their relative importance between
the biological and the physiochemical models, the order in
which they affect the two groups of variables changed
(Fig. S5). In Figure 6, we can see that resistance and resilience
tended to go in the same direction when considering all
response variables. However, underlying antagonistic, or
opposing effects on the resistance and resilience of the two
groups of variables and independently within the
physiochemical group of variables are driving some of
the uncertainty and nonlinear dynamics, we see in Fig. 6.
Antagonistic effects on the resistance and resilience of the two

Fig. 4. Hierarchical clustering of spearman correlations between the
varying resistance (RS) and resilience (RL) indices. Those relationships that
have two stars above them were significant at P ≤ 0.05 level, one star indi-
cates a correlation at a P ≤ 0.10 level. Blue circles represent positive corre-
lations while red circles represent negative correlations. The size of the
circle indicates the strength of the relationship, with bigger circles rep-
resenting stronger correlations between indices.
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groups of variables were identified for both antecedent lake
conditions and storm characteristics, which include the effects
of %O2 saturation, water temperature, pH, soluble reactive sil-
ica, total nitrogen, storm duration, day of the year, and the
year in which the storm took place. Antagonistic effects
between resistance and resilience within the physiochemical
variables were present as a result of antecedent total phospho-
rus, mean precipitation, and wind direction.

Antagonistic effects resulting from varying antecedent %O2

saturation suggests that when saturation levels were greater
than 100% resistance and resilience of the physiochemical
environment increased, while the biological resistance and
resilience decreased (Fig. 7). Surface water temperatures greater
than 15�C resulted in increased resistance and resilience of the
biological variables and vice versa for the physiochemical vari-
ables, suggesting that increased water temperatures increases
the biological variables’ (i.e., algal conditions) ability to
recover from storm-induced effects (Fig. 7). Antecedent pH
conditions led to antagonistic effects between the groups of
variables and suggest that increasing pH levels decreases the
resistance and resilience of the physiochemical environment,
while resistance and resilience of the biological conditions
increased with increasing pH (Fig. S6). Storm durations over

100 h resulted in decreased resistance and resilience of the
biological variables, while it increased the resistance and resil-
ience of the physiochemical variables, which suggests that
long-duration mixing homogenizes the physiochemical envi-
ronment resulting in increased resistance and resilience
(Fig. 7). Seasonality led to antagonistic effects with spring to
early summer conditions increasing the resistance and resil-
ience of the biological variables and vice versa for the
physiochemical variables (Fig. S6). Lastly, during the time
series, the lake experienced a step change in conductivity in
2012 and decreased turbidity conditions after 2013. Changes
in conductivity and turbidity may have led to differences in
how the two groups of variables respond to storms, with bio-
logical resistance and resilience decreasing after 2013 and vice
versa for the physiochemical variables (Fig. 7; see Fig. S6 to see
all antagonistic effects which are not shown in Fig. 7).

Antecedent total phosphorus, mean precipitation, and
wind direction drove the resistance and resilience of the
physiochemical variables in different directions, while
the resistance and resilience of the biological variables were
driven in the same direction (Fig. 8). Increasing antecedent
total phosphorus led to increased resistance and decreased
resilience, which when compared with the combined indices

Fig. 5. Observed lake ecosystem resistance and resilience is given in (a). (b) The rescaled percent relative importance of antecedent conditions and
storm characteristics, while the results from the antecedent lake condition predictions and storm characteristic predictions are given in (c) and (d),
respectively. The indices are interpreted in terms of percent change where 0 represents either 100% change regarding resistance, or 0% recovery regard-
ing resilience. (c) and (d) The predicted lake ecosystem resistance and resilience (quantified on a standardized scale from �1 to 1), relative to each of the
response variables. The violin plots are box plots which are surrounded by kernel density distributions which give the probability of resistance and resil-
ience following a storm for each of the response variables. The predictions made using the antecedent lake conditions suggests that the conditions prior
to the storm hitting were relatively more important than the storms characteristics themselves. The black line in (a) shows at which point storms were
causing more than 100% change/0% recovery, while in (b) and (c) it represents the median resistance and resilience across the individual predicted
indices.
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model suggests that the decreased resilience in the
physiochemical environment is driving that pattern (Figs. 6
and 8). Similarly, the increased resistance and resilience in the
combined indices model as a result of increased mean precipi-
tation is primarily being driven by the resistance in the
physiochemical environment (Figs. 6 and 8). In relation to
wind direction, there is not any clear picture drawn from the
combined indices model (Fig. 6), but here we find that wind
directions from less frequent directions decreased the

resistance of the physiochemical variables and increased resil-
ience (Fig. 8). Those storms coming from less frequent direc-
tions are also those that were the shortest in duration, which
suggests why the physiochemical environment would recover
quicker under those conditions. Resistance and resilience of
the biological variables decreased when storms came from less
frequent wind directions (Fig. 8). However, it seems changes
in wind direction are mostly driving lake resistance dynam-
ics (Fig. 6).

(a)

(b)

(c)

(d)

Fig. 6. Line graphs show partial dependence of both the physiochemical and biological (i.e., combined indices model) resistance (RS = red line) and
resilience (RL = blue line) (quantified on a standardized scale from �1 to 1), relative to antecedent lake conditions and storm characteristics. The graphs
are in order of importance (see percentages) based on the variable on the x-axis. The gray-shaded area around the lines is the standard error or the uncer-
tainty surrounding the predicted median. The density plots above each line graph show the distribution of each antecedent lake condition or storm char-
acteristic along the x-axes. For example, most storms hit Müggelsee when Schmidt stability was low and relatively few storms hit during high Schmidt
stability. Thus, the rapidly increasing relationship in resistance and resilience depicted in the associated line graph is most robust due to the richness of
data over those ranges of Schmidt stability. Only total nitrogen is not shown due to low importance (1.9%).
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Discussion
We identified 25 extreme wind storms and analyzed their

effects on the resistance and resilience of Müggelsee, a shal-
low, polymictic lake ecosystem in Berlin, Germany. We then
determined if storm characteristics or antecedent lake condi-
tions were more important in describing the lake’s ability to
be resistant and resilient following the analyzed storms.
Although storms analyzed produced high wind speeds which
suspended sediment, and were accompanied by varying levels
of precipitation, we found that antecedent lake conditions
were more important than the storms’ frequency, duration,
and intensity (Fig. 5). The most important antecedent lake
conditions affecting lake ecosystem resistance and resilience
following the storms were antecedent turbidity conditions
and level of thermal stratification followed by %O2 saturation,
light conditions, silica concentrations, conductivity, and water

temperature (Fig. 6). In relation to storm characteristics, we
found that storm duration was the most important followed
by mean precipitation, mean shear stress, and storm fre-
quency (Fig. 6). Here, we focus on the lake conditions and
storm characteristics which were found to be the most influ-
ential for determining the lake’s resistance and resilience.
Throughout the discussion, resistance, and resilience are dis-
cussed in tandem because the varying biological and
physiochemical resistance and resilience values tended to vary
together (Fig. 6). This does not mean that resistance and resil-
ience of the physiochemical and biological variables were
always affected in the same direction (Figs. 7 and 8), but that
the lake showed higher—or lower—probabilities for being
both resistant and resilient under certain conditions. We fur-
ther found that results from the models which consider the
lake’s biological and physiochemical resistance and resilience

(a) (b) (c) (d)

Fig. 7. The partial dependency plots (quantified on a standardized scale from �1 to 1), in columns (a) and (b) show the marginal effects of antecedent
lake conditions and storm characteristics on the resistance and resilience of the biological variables, while columns (c) and (d) show the marginal effects
in relation to the physiochemical variables. In the figure, we see the resulting effects of %O2 saturation, water temperature, duration, and year in which
the storm took place. When comparing the two groups of variables we can see that there are antagonistic effects on the resistance and resilience of the
two groups of variables. For example, %O2 saturation above 100% increases resistance and resilience of the physiochemical variables, while the resistance
and resilience of the biological variables decreases.
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independently, suggest that antecedent lake conditions and
storm characteristics leading to antagonistic effects on the
resistance and resilience of the two groups of variables, respec-
tively, is driving some of the nonlinear dynamics we see in
the combined indices model (i.e., model combining both
physiochemical and biological variables) (Figs. 6, 7, and 8).
Lastly, it is important to note that the results also suggest that
the lake ecosystem is less resistant and resilient to storms of
increasing duration and intensity.

Lakes are often simultaneously disturbed by natural-
(e.g., from storms, droughts, and floods) and human-induced
impacts (e.g., from urban, agriculture, and other nonpoint
sources of pollution) which are likely interacting to determine
antecedent lake conditions (Huber et al. 2008; Kuha
et al. 2016; Perga et al. 2018). In the case of Müggelsee, the
results suggest variability in antecedent biological and physi-
cochemical dynamics such as turbidity, Schmidt stability, %
O2 saturation, and light conditions are affecting Müggelsee’s
ability to resist and recover from storm driven changes (Figs. 6
and 7).

Antecedent lake conditions
Antecedent turbidity conditions were found to be the most

important lake condition shaping resistance and resilience of
the lake. Being a eutrophic lake, antecedent turbidity is pri-
marily driven by algal conditions in the lake, especially
through mid to late summer. However, at certain times of the
year, primarily in spring and fall, the lake can experience sedi-
ment resuspension which can also drive antecedent turbidity
conditions (Kozerski and Kleeberg 1998). Changes in
turbidity conditions are generally the primary effect of a wind
storm blowing over a shallow lake that is prone to
resuspension. The results suggest that the lake was more resis-
tant and resilient under turbid rather than clear antecedent
conditions. However, if the lake is already turbid, for example
as a result of high algal biomass, any sediment that is
suspended as a result of a storm is mostly negligible and not
the primary driver of the water column dynamics. Therefore,
higher turbidity as a result of increased algal biomass increases
the resistance and resilience of the lake’s physiochemical vari-
ables (Figs. 6 and 7). On the other hand, when a lake is in a

Fig. 8. The partial dependency plots (quantified on a standardized scale from �1 to 1), in columns (a) and (b) show the marginal effects of antecedent
lake conditions and storm characteristics on the resistance and resilience of the biological variables, while columns (c) and (d) show the marginal effects
in relation to the physiochemical variables. In the figure we see the resulting effects of total phosphorus, mean precipitation, and wind direction. When
comparing the two groups of variables we can see that the resistance and resilience of the biological variables are driven in the same direction, while
there were antagonistic effects on the resistance and resilience of the physiochemical variables as a result of these antecedent lake conditions and storm
characteristics.
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clear water phase, it is more susceptible to storm induced tur-
bidity through sediment resuspension. In cases where shear
stress is indeed high enough to resuspend sediment, the likeli-
hood that the storm will temporarily change the state of the
lake from clear to turbid increases. Therefore, a clear lake
would be less resistant to changes in turbidity, whereas even if
resilience is affected, it is primarily related to the resettling of
sediment. Previous work found that extensive macrophyte
coverage can provide enhanced resistance and resilience to
turbidity resulting from a storm (Ibelings et al. 2007). How-
ever, since antecedent turbidity conditions are dependent on
algal biomass and considering algal metabolic processes like
photosynthesis and nutrient consumption, exploring how
changes in %O2 saturation and soluble reactive silica are
linked with the resistance and resilience of the lake ecosystem
can be insightful.

Whether the lake was resistant and resilient following the
storm was partially dependent on whether antecedent %O2

saturation was above or below 100% (Figs. 6 and 7). Oxygen
saturation levels in the lake are driven by a number of factors
including seasonal driven changes in water temperature and
stratification, atmospheric diffusion, and primary production
(Fondriest Environmental Inc. 2013). Storms were more likely
to increase %O2 saturation when the antecedent level was
below 100% while storms tended to decrease %O2 saturation
when antecedent levels were above 100% (Figs. 3 and 7).
Changes in antecedent %O2 saturation levels below 100% that
are enhanced by a storm can partially be explained by the
increased gas exchange at the atmosphere-water interface due
to waves, which also partially shapes the resistance and resil-
ience of the lake under such saturation conditions. On the
other hand decreases in %O2 saturation levels above 100%
can partially be explained by diffusion of O2 into the atmo-
sphere as a result of an oversaturated system. Oxygen satura-
tion levels above 100% led to increased resistance and
resilience of the physiochemical environment, which is a
strong indication that metabolic processes are to some extent
engineering water column dynamics before and after the
storms. In relation to the biological variables, resistance and
resilience decreased with antecedent %O2 saturation levels
above 100%, which makes sense, as we would expect higher
algal biomass to be displaced and/or reduced under such con-
ditions. At the lake ecosystem level (i.e., model combining
both physiochemical and biological variables) we see that
resistance and resilience decreased with %O2 saturation above
100%, which suggests that when a bloom is present that resis-
tance and resilience of the lake is largely determined by bio-
logical rather than physiochemical processes following a
storm (Fig. 6).

Antecedent soluble reactive silica concentrations, a proxy
for diatom biomass, were also found to be an important ante-
cedent lake condition shaping the resistance and resilience of
the lake. Siliceous lake sediments have been used in paleo-
environmental studies to infer changes in historical

storminess periods spanning hundreds of years, which pro-
vides some indication that silica concentrations are sensitive
to changes in regional storm patterns (Krawiec and Kauf-
man 2014). Silica concentrations in Müggelsee are primarily
driven by seasonal variation, sedimentation and become more
bio-available in the water column through wind driven
mixing in spring and fall (Köhler and Nixdorf 1994; Kozerski
and Kleeberg 1998; Sommer et al. 2012). Concentrations of sil-
ica may represent whether the lake was well mixed with cool
water temperatures and low diatom biomass (i.e., high con-
centrations of soluble silica prior to the storm), or when a dia-
tom bloom was present (i.e., low to moderate concentrations
of soluble silica) (Saunders et al. 2009; Ngupula et al. 2014). In
our study, we found that mixed conditions (i.e., high concen-
trations of silica) was linked to storm driven decreases in the
resistance and resilience of the lake ecosystem (Fig. 7). How-
ever, silica concentrations had antagonistic effects on the bio-
logical and physiochemical variables respectively (Fig. S6).
Resistance and resilience of the lakes physiochemical condi-
tions tended to increase with low to moderate concentrations
of silica (i.e., when a diatom bloom was present), while the
opposite was found for the biological conditions (Fig. S6). This
confirms the strong linkage of the lake’s diatom community
to antecedent thermal conditions, in a way which reduces the
impacts of a storm and increases the lake’s ability to recover to
its pre-storm physiochemical structure. Spring blooms in Müg-
gelsee, mostly dominated by diatoms, have been shown to
have a direct effect on the transparency, stratification length,
and thermal dynamics of the lake (Shatwell et al. 2016). We
found that spring to early summer time conditions, the pres-
ence of stratification, and moderate concentrations of silica
leads to a higher probability of the biological and
physiochemical lake conditions to be more resistant and resil-
ient following the storms (Figs. 6 and S6). The study con-
ducted by Shatwell et al. (2016) provides some indication to
why silica is an important antecedent condition influencing
the recovery of the lake’s physiochemical environment, at
least as it pertains to spring time storms and lake conditions.
However, many interacting effects are possible when relating
the effects of storms on an algal community. High antecedent
algal biomass can lead to light limitation (Rinke et al. 2010;
Shatwell et al. 2016), which is exacerbated by suspended sedi-
ments, potentially leading to decreasing biomass. On the
other hand, antecedent algal communities with low biomass
may not be light, but nutrient limited and could benefit from
any increase in nutrients (i.e., silica and/or phosphorus) as a
consequence of resuspension (Figs. 8 and S6). For example,
phycocyanin (i.e., cyanobacteria) may benefit from an
increase in other nutrients such as phosphorus or nitrogen as
a result of resuspension, which may increase the resilience of
the cyanobacteria community following a storm (Shade
et al. 2012). Similarly, diatom community composition may
be leading to different resistance and resilience responses due
to functional groups having adaptations related to chemical
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gradients, uptake of nutrients, position in the water column,
or light harvesting, which are all affected by antecedent lake
conditions and storms (Saunders et al. 2009; Krawiec and
Kaufman 2014; Ngupula et al. 2014). Saunders et al. (2009)
found that the two most important predictors of diatom abun-
dance across nutrient and chemical gradients of 50 coastal
and inland lakes were conductivity and pH, both of which
were found to be relatively important in shaping lake ecosys-
tem resistance and resilience (Figs. 5 and 6).

The resistance and resilience of the lake were partially
shaped by antecedent conductivity and pH conditions (Figs. 6
and S5). Lake pH and conductivity dynamics are determined
by similar factors such as hydrogeological processes, lake size
relative to watershed size, point, and nonpoint sources of pol-
lution and atmospheric inputs (Eilers et al. 1983; Fondriest
Environmental Inc. 2013, 2014; Pal et al. 2015). Additionally,
pH variability is being driven by seasonal variation in water
temperature and stratification, and phytoplankton biomass.
While these variables are important for the resistance and
resilience of the lake, it is difficult to isolate a single mecha-
nism, or interaction that determines the pH and conductivity
of a water body. Müggelsee’s conductivity, while continuously
high through the time period we consider, made a shift from
an average of 725 � 40.6 (μS/cm) between 2002 and 2012
(storms; n = 14), to 819 � 45 (μS/cm) between 2013 and 2017
(storms; n = 11). The shift in mean conductivity was caused
by gradual increases in sulfates in the lake as a result of
groundwater infiltration into the river Spree containing old
mine tailings (Graupner et al. 2014). The results suggest that
the resulting increase in average hourly conductivity led to a
greater likelihood of storm induced effects on the resistance
and resilience of the lake ecosystem. While it is unclear which
processes pH and conductivity are affecting, their overall
importance in maintaining stable metabolic states, influence
on various life stages of aquatic organisms, and roles in the
cycling of nutrients is most likely why they are an important
component of lake ecosystem resistance and resilience follow-
ing storms (Caraco et al. 1993; Fondriest Environmental
Inc. 2014).

Storm characteristics
Low antecedent turbidity conditions and high shear stress

levels from less frequent wind directions led to higher proba-
bilities of low resistance and resilience (Fig. 6 and S5). Turbid-
ity conditions during the time series analyzed shifted from a
mean of 1.7 � 1.2 (NTU) between 2002 and 2012 (storms;
n = 14), which decreased to a mean of 0.4 � 1 (NTU) between
2013 and 2017 (storms; n = 11). The shift in turbidity condi-
tions of the lake also coincides with decreasing trends in chlo-
rophyll a and phycocyanin levels. The results suggest that the
shift toward a more clear water state led to higher probabilities
of the lake’s physiochemical environment to be more resistant
and resilient following storms. Wind frequently blows from
the west to south west (Fig. 2), which likely results in lateral

deposition of sediment in more sheltered areas of the lake,
which sets the stage for resuspension when storms come from
less frequent directions (Figs. 2 and S5). The storm, however,
would need to be long enough in duration and high in shear
stress intensity to see a subsequent impact on the lake’s ability
to be resistant and resilient following the storm. However, the
extent to which the storm affects the overall turbidity condi-
tions, as stated prior depends on the antecedent turbidity con-
ditions (i.e., the presence of an algal bloom or not). With the
shift to more clear antecedent conditions the likelihood of
resuspension does not increase, but the likelihood that
resuspension events play a greater role in changing turbidity
conditions likely does increase. In addition to duration, shear
stress, and wind direction, the resistance and resilience of the
lake were equally influenced by mean precipitation and storm
frequency (Figs. 6 and 7).

While climate change is expected to change the regional
patterns in storms (IPCC 2012), a dramatic change in the aver-
age wind direction is mostly transitive, meaning that if the
average wind direction changes to what is now a less frequent
direction, we speculate that the impacts will only last until
sediment has been deposited elsewhere in the lake. Further-
more, it is unlikely that single pulse storm disturbances are
able to change the overall long-term state of a lake. Only in
rare examples have lakes shifted in functional states (e.g., clear
to turbid) as a result of a single, short lived weather event
(Bachmann et al. 2005; Gaiser et al. 2009). However, com-
pounded extreme storm events that previously tended to be
rare are becoming more frequent as a result of climate change,
making long-term effects and regime shifts more probable
(Paine et al. 1998; IPCC 2012; Havens et al. 2016). According
to resilience theory, a higher frequency of disturbances is
expected to have longer-term consequences for the resilience
of an ecosystem due to the overlapping of storm impacts
(Paine et al. 1998). Here, we found the opposite, the greater
the time-interval between storms, the greater the effect of the
storm on the resistance and resilience of the lake ecosystem
(Fig. 7). However, the results also show that there were partial
antagonistic effects as a result of time accrued between storms,
which suggest resistance and resilience of the biological vari-
ables sharply decreased with decreasing time between storms
(Fig. S6). While mean precipitation was found to be the sec-
ond most important storm characteristic, we mention it last as
there is more uncertainty surrounding how it effects lake eco-
system resistance and resilience. In Fig. 6, we see that increas-
ing mean precipitation increases the resistance and resilience
of the lake ecosystem, however, this pattern is largely being
driven by the high resistance of the physiochemical variables
(Fig. 8), and the fact that many of the storms were not accom-
panied by high levels of precipitation. It is more likely that
increasing mean precipitation decreases the resistance and
resilience of the lake ecosystem under mean lake conditions
(Fig. 8). Regardless of the primary effect, precipitation was
found to be strongly influencing the resistance and resilience
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of the lake lending further evidence that storms accompanied
with moderate to high levels of precipitation have a strong
influence on maintaining a clear or turbid state (Bachmann
et al. 2005; Gaiser et al. 2009).

Results suggest that if storms simultaneously (1) become
longer in duration, (2) are accompanied by higher levels of
precipitation, and (3) increases in intensity, the likelihood
of storms impacting the resistance and resilience of the lake
will increase. However, duration of storms had an antagonistic
effect on the biological and physiochemical variables indepen-
dently. Physicochemical variables increased in resistance and
resilience following long duration storms but vice versa for
the biological variables. Given the strong role of antecedent
lake conditions and their potential interactions with storm
characteristics in determining the resistance and resilience of
the lake, and the fact that lake conditions and storm charac-
teristics vary locally and regionally, the way in which a partic-
ular lake responds to extreme wind storms likely depends on
size, depth, trophic state and stratification regimes (Jones
et al. 2008, 2009; Stockwell et al. 2020).

Conclusion
Antecedent lake conditions and storm characteristics play a

critical role in shaping a lake’s ability to be resistant and resil-
ient following extreme wind storms. However, changes in
baseline antecedent lake conditions such as in turbidity, strati-
fication, %O2 saturation, soluble reactive silica, water tempera-
ture, conductivity, and pH may be more important for driving
lake ecosystem resistance and resilience following storms.
Enhancing lake ecosystem resistance and resilience following
storms may be partially accomplished by controlling anthro-
pogenic inputs which affect the lake’s transparency and chem-
ical dynamics. However, while near-term management
strategies may enhance lake ecosystem resistance and resil-
ience, there is nothing that can manage the increasing dura-
tion, precipitation, and frequency of storms except slowing
the rate of global climate change. Further research in the area
of resistance and resilience is promising for increasing our
understanding of how different ecosystems respond to
extreme disturbances of different types in varying conditional
states (Pimm et al. 2019).
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