Mainzer	geowiss. Mitt.	31	S. 223-258	11 Abb.	3 Tab.	Mainz, Oktober 2002

Geologischer Aufbau und Grundwasserfließvorgänge im Nordwestteil der Pfälzer Triasmulde (Sickinger Höhe und Westpfälzische Moorniederung im Bereich der TK 25, Blatt 6610 Homburg)

Teil 2

Hydrogeologische Grundlagen, Hinweise zum unterirdischen Abflussgeschehen und zum Brunnenbau

Hubert Heitele

Kurzfassung: Die Funktion der im Teil 1 (HEITELE 2001) beschriebenen Grundwasserleiter wird im Teil 2 zusammen mit ihren Grundwässern näher erläutert. Je nach Höhenlage und tektonischen Gegebenheiten gelangen die unterirdischen Abflüsse zu verschiedenen Vorflutern. Es kann gezeigt werden, dass der unterirdische Abfluss der tiefen Grundwasserleiter des Arbeitsgebietes (Rehberg-, Trifels- und Stauf-Schichten) größtenteils zu den Vorflutern in der Saarpfälzischen Moorniederung gelangt.

Beim Brunnenbau sollen je nach Standort die Ausführungen gewählt werden, die dem Abflussgeschehen in den Grundwasserleitern optimal angepasst sind, so dass bei der Förderung nur Grundwässer mit ähnlichen Druckhöhen und Lösungsinhalten genutzt werden.

Abstract: The function of the aquifers, that has been described in part 1 (HEITELE 2001), are explained together with their groundwaters in part 2. According to the altitude and the tectonical circumstances the subsurface runoffs feed different receiving channels. It can be shown, that the subsurface runoffs of the deeper aquifers of the area (Rehberg-, Trifels-, Stauf-layers) mostly feed the receiving channels at the "Saarpfälzische Moorniederung".

The well-constructions design should be choosed according to the hydrogeological position. The constructions should be suited to the runoff of the aquifers, so only groundwaters with similar pressure heights and solution contents are used at the production.

The groundwater mining in the different subsurface catchment areas should be limited according to the groundwater recharge in the deep aquifers of 5 $l/(s \cdot km^2)$ in the NW-part and 6 $l/(s \cdot km^2)$ in the SE-part of the area.

Inhalt

- 1. Einleitung
- 2. Klima
- 3. Oberirdische Gewässer
- 4. Grundwasser
- 4.1. Grundwasserstockwerke und ihre Quellen
- 4.2. Lösungsinhalte der Grundwässer, Grundwassertemperaturen
- 4.3. Vergleich der Niedrigwasserabflüsse am 05.08.1999, Hinweise zum unterirdischen Abflussgeschehen und zur Grundwasserneubildung
- 4.4. Spezifische Brunnenergiebigkeiten, Neigungen der Grundwasseroberflächen und -druckflächen, Hinweise zu den unterirdischen Wasserscheiden
- 5. Wasserversorgungsanlagen, Hinweise zum Brunnenbau

Schriften

1. Einleitung

Die hydrogeologische Kartierung des Blattgebietes von Homburg bzw. einiger seiner Teilgebiete war ausgehend von der bayerischen geologischen Kartierung (Аммом 1903) mehrfach Gegenstand von Bearbeitungen, die teilweise veröffentlicht wurden (Drumm 1942, Heitele 1968, Einsele et al. 1969) oder noch nicht abgeschlossen sind, wie z.B. die Arbeiten zur grenzüberschreitenden Grundwasserbewirtschaftung Saarland/Rheinland-Pfalz (Landesamt für Wasserwirtschaft 1993) und zur hydrogeologischen Kartierung des Raumes Kaiserslautern, die etwa die Osthälfte des Blattgebietes mit beinhaltet.

Für eine vertiefte hydrogeologische Untersuchung eignet sich das Blattgebiet von Homburg in besonderem Maße, da es die regional bedeutenden Teilräume für die Grundwassererschließung und -entnahme, nämlich die saarpfälzische Moorniederung und die westpfälzische Hochfläche, mit z.T. genutzten exemplarischen Einzugsgebieten erfasst. Die in den 90er Jahren des 20. Jahrhunderts durchgeführten hydrologischen Erhebungen und Messungen wurden durch eine geologische Ergänzungskartierung begleitet (Teil 1 dieser Arbeit, HEITELE 2001).

2. Klima

Das Klima Mitteleuropas wird durch den ständigen Wechsel der Wetterlagen gekennzeichnet. Die häufige Ablösung der Zufuhr von kalten und warmen, feuchten und trockenen Luftmassen ist auch für das Klima des Blattgebietes charakteristisch, wobei die südwestlichen bis nordwestlichen Luftströmungen überwiegen. Die letzteren transportieren oft atlantische Tiefausläufer heran, die einen bedeutenden Teil der Niederschläge erbringen (Achilles 1982, Fuchs & WERNER 2002, Wasserwirtschaftlicher Rahmenplan Rheinpfalz 1982).

Die zeitliche und räumliche Verteilung der mittleren Niederschlagshöhen im Blattgebiet können nach Angaben des Deutschen Wetterdienstes (DWD) zusammengefasst werden (s. Tab. 1, Abb. 1). Diese Angaben werden durch langjährige Mittelwerte der Klimahauptstation in Homburg (ungefähre Koordinaten: Rechtswert 25 98 380, Hochwert 54 66 480; Höhe ü. NN: ca. 233 m) sowie durch weitere Niederschlagsmessstellen in Bruchmühlbach und Martinshöhe gestützt (Herr SCHANNE, Bruchmühlbach; s. Tab. 3).

Die für die Grundwasserneubildung wichtigen Niederschläge im Winterhalbjahr erreichen die höchsten Werte von November bis Januar (Maximum im Dezember), wobei die Spitzenwerte durch Stauwirkung am nordwestexponierten Schichtstufenrand der Sickinger Höhe auftreten (im Blattgebiet vornehmlich im Bereich der höchsten Erhebungen westlich und nördlich von Martinshöhe). Die Messwerte der Stationen in Homburg und Bruchmühlbach zeigen, dass die Niederschlagshöhen schon am Fuß der Schichtstufe abrupt ansteigen (s. Abb.1). Im Bereich der gesamten von Südwesten nach Nordosten durch das Blattgebiet verlaufenden Schichtstufe erreichen die mittleren Niederschlagshöhen Werte wie in weiten Gebieten des Pfälzerwaldes, nämlich Jahressummen zwischen 850 und 950 mm. Diese Niederschlagssummen und das Dezember-Maximum weisen auf ein Überwiegen des atlantischen gegenüber des kontinentalen Einflusses hin.

Die Niederungen in den Leegebieten der Nordwestwinde weisen die geringsten mittleren Niederschlagshöhen im Blattgebiet auf. Es sind dies die im Lee des Pfälzer Berglandes gelegene Westpfälzische Moorniederung und die im Lee der Schichtstufe der Sickinger Höhe befindliche Talweitung bei Wiesbach. Der Minimalwert von wenig über 700 mm mittlerer Jahresniederschlagssumme befindet sich am Blattrand nordwestlich von Bruchmühlbach. Bei Bruchmühlbach sind damit die Areale mit den minimalen und

Geologischer Aufbau und Grundwasserfließvorgänge im Nordwestteil der Pfälzer Triasmulde

Abb. 1: Mittlere hydrologische Jahressummen des Niederschlages in mm für die Zeitreihe 1952 bis 1999 (vereinfacht, nach Angaben des Deutschen Wetterdienstes, DWD 2000).

maximalen Jahresniederschlagssummen im Blattgebiet nur gut 2 km voneinander entfernt (s. Abb.1). Hier wird der Einfluss der Schichtstufe auf das Klimageschehen besonders deutlich, denn mit rd. 200 m Höhendifferenz erhebt sie sich im Blattgebiet nirgendwo mächtiger über die Moorniederung. Der tiefste Punkt des Blattgebietes mit einer Höhenlage von 227 m NN liegt am Glan nördlich von Bruchmühlbach, die höchste Erhebung mit 433,3 m ü. NN ist der Gipfel des Rothenberges östlich von Bruchmühlbach.

Mittlere Niederschlagssummen im pfälzischen Teil des Blattgebietes burg (Bereich außerhalb Stadtgebi burg) der Jahresreihe 1952 bis 199 Angaben des DWD (2000)	rheinland- von Hom- et Hom- 9 nach	Mittlere Niederschlagssummen der Klima- hauptstation Homburg; Jahresreihe 1953 bis 1998 nach Angaben von Achilles (1982) und DWD (2000)
Januar	74	76
Februar	63	65
März	62	63
April	54	56
Mai	69	76
Juni	73	79
Juli	67	70
August	68	72
September	65	68
Oktober	70	70
November	77	79
Dezember	91	92
Jahressumme	833	866
Hydrologisches Winterhalbjahr:	421	430
Hydrologisches Sommerhalbjahr:	412	435
November — Januar	242	247

Tabelle 1: Mittlere Niederschlagssummen in mm.

3. Oberirdische Gewässer

Die Ausbildung des Gewässernetzes (Abb. 2) in Abhängigkeit vom geologisch-tektonischen Aufbau des Blattgebietes wurde schon im Teil 1 der Arbeit erläutert. Im Folgenden wird daher hauptsächlich das oberirdische Abflussgeschehen in den einzelnen Einzugsgebieten näher beschrieben.

Östlich des Stadtgebietes von Homburg verläuft die oberirdische Wasserscheide zwischen den Einzugsgebieten der Mosel und des Mittelrheins bzw. zwischen der Blies und dem Glan auf dem nordwestlichen Schichtstufenrand der Sickinger Höhe (höchster Punkt: 433,3 mNN); in Homburg-Bruchhof quert sie die Westpfälzische Moorniederung von Südosten nach Nordwesten (tiefster Punkt: 241,1 mNN; s. Abb. 2).

Die wichtigsten Vorfluter im Einzugsgebiet der Blies sind der Erbach, der Lambsbach und der Wiesbach (letzterer mit ausgeprägten Verzweigungen nach Osten und Norden). Der bei Waldmohr ins Blattgebiet eintretende Glan erhält aus der Moorniederung den von Bruchhof kommenden Schwarzbach (auf Abb. 2 nicht vermerkt, um Verwechselungen mit dem Schwarzbach im Süden zu vermeiden) von Nordwesten den Neuwoogbach bzw. Kohlbach und von Süden den Frohnbach und den Mühlbach bei Bruchmühlbach.

Das tiefste Niveau der Hauptvorfluter des Blattgebietes liegt sowohl bei der Blies (Homburg-Einöd, TK 25 Blatt 6709) als auch beim Glan (Ohmbachmündung nahe des Nordrandes der Bruchniederung, TK 25 Blatt 6510) bei ca. 220 m ü. NN. Am Südrand der Bruchniederung verlässt der Glan das Blattgebiet in einer Höhenlage von ca. 227 m ü. NN (Mündungsbereich von Frohnbach und Mühlbach), während der Erbach das Stadtgebiet von Homburg in Höhen von 232 bis 230 m ü. NN durchquert. Damit bildet der Glan am Fuß der Schichtstufe der Sickinger Höhe die tiefste Vorflut auf dem Blatt. Die Blieszuflüsse Lambsbach und Wiesbach verlassen im Süden das Blattgebiet in Höhenlagen von 241 m ü. NN (Kirrberg) und 247 m ü. NN (Winterbach).

In Abhängigkeit von den Niederschlagshöhen und dem geologischen Aufbau in ihren Einzugsgebieten zeigen die oberirdischen Gewässer sehr unterschiedliche Abflussspenden; weitere wichtige Regimefaktoren sind die Morphologie in den Einzugsgebieten, deren Höhenlage zu den Hauptvorflutern und im Blattgebiet auch nicht zuletzt die Grundwasserentnahmen. Dies zeigen Beobachtungen und Messungen, die im Ausstrichbereich des saarpfälzischen Buntsandstein in den hydrologischen Jahren 1966 und 1967 von EINSELE et al. (1969) und speziell im Blattgebiet der TK 25, 6610 Homburg von HEITELE (1968) durchgeführt wurden. Einen langjährigen Vergleich gestatten drei auf den Nachbarblättern 6710 und 6510 befindliche Abflusspegel, die Teilgebiete unseres Blattgebietes erfassen. Es sind dies der Glanpegel in Nanzdietschweiler, dessen Einzugsgebiet beinahe zur Hälfte im Rotliegend des Pfälzer Berglandes liegt, der aber auch Teileinzugsgebiete in der Bruchniederung und am nach Nordwesten exponierten Schichtstufenrand der Sickinger Höhe beinhaltet (Messungen seit 1980), der Auerbachpegel in Oberauerbach mit dem inneren Teil der Sickinger Höhe (Wiesbach) als Einzugsgebiet (Messungen seit 1980) und der regional übergeordnete Schwarzbachpegel in Contwig oberhalb der Auerbachmündung (Messungen seit 1953); dessen Einzugsgebiet umfasst weite Gebiete der südwestpfälzischen Hochfläche und den Nordwestteil des Pfälzerwaldes, dessen Abflüsse durch einen weiteren Schwarzbachpegel in Thaleischweiler erfasst werden. Der Einfluss des Rotliegend-Einzugsgebietes auf den Glanabfluss bei Nanzdietschweiler kann durch einen Ohmbachpegel bei Gries abgeschätzt werden. Weitere Vergleiche gestatten sporadische Abflussmessungen in verschiedenen Teileinzugsgebieten unseres Blattes (s. Abb. 2).

Die hydrogeologischen Besonderheiten der Haupteinzugsgebiete können durch die Gegenüberstellung der Niedrig- und Hochwasserabflussspenden der Pegel aufgezeigt werden.

Die mittlere Niedrigwasserabflussspende kann als Maß des Abflusses der im Sommerhalbjahr im Mittel noch vorhandenen Grundwasservorräte eines Einzugsgebietes angesehen werden. Sie ist von den genannten Einzugsgebieten beim Glan (Pegel Nanzdietschweiler) mit ca. 2,04 l/(s · km²) (Jahresreihe 1979/1998) am niedrigsten; hierbei zeigen sich die geringe Speicherfähigkeit der Rotliegendgebiete (ca. 42 % dieses Glan-Einzugsgebietes), die relativ geringen Niederschlagsmengen in der Moorniederung bei den dortigen oft sehr geringen Flurabständen des Grundwassers und der Transfer großer Grundwassermengen durch Wasserwerke in anderen Einzugsgebieten (ca. 5 Mio. m³/a). Die höchste mittlere Niedrigwasserabflussspende wird in den Schwarzbachpegeln Contwig und Thaleischweiler erreicht, nämlich 5,47 l/(s · km²) (Jahresreihe 1979/98) und 5,80 l/(s · km²) (Jahresreihe 1978/98). Darin kommt zum Ausdruck, dass die relativ hohen Niederschlagsmengen in dem im gesamtem Einzugsgebiet anstehenden Buntsandstein bei meist hohen Flurabständen des Grundwassers abseits der schmalen Talauen der Hauptvorfluter zu einem bedeutenden Anteil versickern oder durch Seitenbäche infiltriert werden können.

Abb. 2: Regionale Übersicht mit der oberirdischen Wasserscheide zwischen den Einzugsgebieten der Mosel und des Mittelrheins sowie den Vorflutern mit Pegeln und periodischen Abflussmessstellen.

Mit einer mittleren Niedrigwasserabflussspende von 3,75 l/(s km²) (Jahresreihe 1980/ 1999) nimmt der Auerbach eine Zwischenstellung zwischen den beiden großen Einzugsgebieten des Glans und des Schwarzbachs ein. Darin zeigt sich, dass die im Vergleich zum Schwarzbacheinzugsgebiet etwas geringeren Niederschlagsmengen im hier anstehenden Buntsandstein zum geringeren Anteil gespeichert werden oder als unterirdischer Abfluss zum Teil in andere Einzugsgebiete gelangen. Die sehr hohen Hochwasserabflussspenden des Auerbachs (z.B. beim Starkniederschlag am 21.12.1993 eine Abflussspende von 544 l/(s \cdot km²)) machen deutlich, dass starke Abflüsse von den verlehmten Hochflächen nur zu einem relativ kleinen Teil in den an steilen Hanglagen ausstreichenden Buntsandstein-Grundwasserleitern infiltriert werden können. Dies zeigt auch ein Vergleich mit den relativ moderaten Hochwasserabflussspenden des Schwarzbachs: der Pegel Thaleischweiler mit weiten und kaum verlehmten Hauptbuntsandsteinflächen im

Einzugsgebiet hatte am 21.12.1993 eine Abflussspende von 55,7 l/(s \cdot km²); der Pegel Contwig beinhaltet in seinem Einzugsgebiet schon große Gebietsteile mit ähnlichem geologischen Aufbau wie beim Auerbach (Höhenrücken mit Oberem Buntsandstein und Muschelkalk), was nahezu zu einer Verdoppelung der Hochwasserabflussspende am 21.12.1993 führte (95,5 l/(s \cdot km²)). Die relativ hohe Abflussspende des Auerbachs ist natürlich auch darauf zurückzuführen, dass dessen Einzugsgebiet mit ca. 74 km² bei Oberauerbach wesentlich kleiner ist als das des Schwarzbachs mit ca. 530 km² bei Contwig.

Die Hochwasserabflussspende des Glanpegels bei Nanzdietschweiler nimmt eine Zwischenstellung zwischen dem Auerbach und dem Schwarzbach ein. Sie betrug 222,4 $l/(s \cdot km^2)$ am 21.12.1993, (beim Ohmbachpegel in Gries waren es 210,4 $l/(s \cdot km^2)$). Im Hinblick auf die gemäßigten Niederschlagshöhen in den beiden Einzugsgebieten sind diese relativ hohen Werte hauptsächlich darauf zurückzuführen, dass im überwiegend schluffig-tonigen Rotliegend des Ohmbacheinzugsgebietes nur geringe Wassermengen versickern können und dass die bei Starkregen in den Moorflächen entstehenden Seen nachhaltig den Oberflächenabfluss verstärken.

4. Grundwasser

4.1. Grundwasserstockwerke und ihre Quellen

Die im Teil 1 der Arbeit (HEITELE 2001) näher beschriebenen Grundwasserleiter bilden die Grundwasserstockwerke des Blattgebietes. Da sie bestimmten Schichtabfolgen zugeordnet sind, kann ihre Verbreitung und Tiefenlage aus der Geologischen Karte (Abb. 3) und den hydrogeologischen Schnitten ersehen werden, von denen hier die Schnitte E bis G beigefügt sind (s. Abb. 5–7; die Schnitte A bis D sind in Teil 1 enthalten).

Im Nordwestteil des Blattgebietes (Moorniederung und angrenzende Gebiete) streichen die Grundwasserstockwerke der Stauf-, Trifels- und Rehberg-Schichten (zSt, sT und sR) zu Tage. Sie speisen dort bzw. haben dort eine Vielzahl artesischer Quellen gespeist — im Bereich der saarländischen Grundwasserentnahmegebiete sind sie versiegt — , die unter der quartären Bedeckung meist nur undeutlich zu lokalisieren sind. Ihre große Bedeutung liegt darin, dass sie die Torfgebiete entlang des Glan und seiner Nebenbäche als Grundquellen ständig mit Grundwasser versorgen (bzw. versorgten; ältere Bohrungen und Profilaufnahmen im Nordwestteil des Blattgebietes s. OBE-NAUER 1929). Zum Teil sind sie in landwirtschaftlich genutzten Gebieten durch Dränagen und Entwässerungsgräben gefasst. Entlang einer zwischen der Autobahn und der Ortslage von Bruchmühlbach streichenden Störung machen sie sich durch einen Streifen früh schmelzenden Schnees im Winter bemerkbar (z.B. Bruchquelle, Nr. 1 in Tab. 2). Einige wenige entspringen am Fuß der Sickinger Höhe als Hang- bzw. Schichtquellen in den Rehberg-Schichten (z.B. Dorfquelle Bruchmühlbach, Nr. 72 in Tab. 2; s. auch REIS 1899, S. 77).

Nahezu alle Trinkwasserversorgungsbrunnen des Blattgebietes nutzen je nach Lage und Tiefe unterschiedliche Abfolgen der zSt-, sT- und sR-Grundwasserstockwerke (s. auch Tab. 2), für die in den hydrogeologischen Schnitten bereichsweise ein mittleres Druckniveau der Grundwässer eingetragen ist.

Die über den Rehberg-Schichten folgenden Karlstal-Schichten (sK 1–3) beinhalten in ihrem mittleren Teil, der Karlstal-Felszone (sk2), mehrere Grundwasserstockwerke (s. Abb. 5–7, hydrogeol. Schnitte E bis G). Diese sind im Bereich der nordwestlich der Sickinger Höhe vorgelagerten Bergrücken (Landeskrankenhaus und Stumpfer Gipfel in Homburg bis Schulberg bei Bruchmühlbach) meist nur teilweise von Grundwasser erfüllt und speisen eine Reihe von Talrandquellen und Hangquellen sowohl an der Nordwestseite als auch an der Südostseite der Bergrücken. In Tabelle 2 sind von diesen

__Geologischer Aufbau und Grundwasserfließvorgänge im Nordwestteil der Pfälzer Triasmulde

230

Abb. 3: Geologische Karte (Abkürzungen der Einheiten s. Abb. 5 a).

231

Quellen der Vogelhausbrunnen (Nr. 24), die Schwanenweiherquelle (Nr. 64), die Mönchquelle (Nr. 14), die Pfaffenquelle (Nr. 3) und die Quelle Tausendmühle (Nr. 2) aufgeführt (Lage s. Abb. 4).

Häufig sind die Quellaustritte an der Basis der grundwasserleitenden Felsbänke erosiv bzw. subrosiv in die im Liegenden anstehenden grundwasserstauenden bis -hemmenden Dünnschichten-Abfolgen verlegt, von wo sie durch Hangschuttanhäufungen an die Talränder gelangen; dort bilden sie, teils zusammen mit direkten Zuflüssen aus Felsbänken, zahlreiche Feuchtbiotope.

Im Talgebiet des Lambsbachs bilden die sK2-Felsbänke in vielen Abschnitten und im Talgebiet des Wiesbachs überall die obersten tiefen Grundwasserstockwerke, die außer in einigen Abschnitten des Lambsbachtales alle ständig von Grundwasser erfüllt sind. Sie speisen eine Reihe von artesischen Quellen, u.a. die vermutlich stärkste Quelle des Blattgebietes (Schüttung 10–15 l/s) beim ehemaligen Pumpwerk in Wiesbach (Nr. 20 in Tab. 2 und Abb. 4; Abb. 5–7).

Tab. 2: Quellen und Brunnen mit neueren Analysen des Geologischen Landesamtes sowie weiterer staatlicher Dienste und anerkannter chemischer Labors (Mittelwerte, überwiegend aus den Jahren 1999/2000; die Lage der häufiger beprobten Quellen Nr. 1–26 ist in Abb. 4 vermerkt; die stratigraphischen Abkürzungen sind in Abb. 5b erläutert).

Nr.	Bezeichnung der Quelle bzw.	Strati-	Koordi	Höhe	GH	pН	NO ₃ -	
	des Brunnens (mit Angabe der Endteufe in m)	graphie	Rechtswert	Hochwert	[m NN]	[°dH]		[mg/l]
1	Bruchquellen	sT	26 06 100	54 74 350	228	3,0	6,1	28
2	Quelle Tausendmühle	sK2	26 06 060	54 72 040	265	2,2	6,1	18,5
3	Pfaffenquelle	sK2	26 02 390	54 70 580	285	4,8	5,3	13
4	Possberg-Quelle	soZ	26 03 200	54 70 780	345	7,5	6,5	65
5	Vogelquelle	soZ	26 03 040	54 71 480	325	2,4	5,0	20
6	Quelle in der Böswiese	soZ	26 05 160	54 71 200	370	4,5	6,3	40
7	Pfarrwaldquelle	soZ	26 05 630	54 71 680	370	4,6	5,6	27
8	Winterberg-Quelle	soZ	26 02 780	54 69 100	300	7,0	6,9	17
9	Nepbach-Quelle	soV	26 05 110	54 69 390	380	16,0	7,5	38
10	Lamach-Quelle	soZ	26 05 820	54 70 120	340	10,0	7,4	25
11	Quelle am Großen Kehrberg	soZ	26 00 570	54 68 540	330	5,1	6,4	9
12	Quelle am Karlsbergweiher	soZ	26 00 100	54 67 210	290	7,0	7,0	6,5
13	Hirschbrunnen	soZ	26 00 760	54 67 480	310	2,3	6,5	3,1
14	Mönchquelle	sK2	26 01 810	54 66 480	255	3,0	6,3	7,5
15	"Sauloch"-Quelle	sK3	26 02 080	54 67 330	260	7,0	6,8	29
16	Dorfquelle Käshofen	soV	26 03 090	54 66 060	345	26,5	7,2	50
17	Dorfquelle Rosenkopf	soV	26 04 340	54 68 730	373	22,0	7,5	60
18	Röswald-Quelle	soZ	26 04 800	54 67 650	295	10,0	7,2	47
19	Quelle im Lamachtal	sK2	26 05 720	54 68 430	270	2,3	5,5	6
20	Quelle ehem. PWK Wiesbach	sK2	26 05 740	54 67 260	260	3,6	6,7	7,5
21	Quelle bei der kath. Kirche Wiesbach	sK2	26 05 620	54 67 400	260	4,7	6,6	22
22	Nesselborn	soV	26 03 790	54 67 130	345	22,0	7,4	40
23	Frohnbrunnen	soV	26 07 590	54 65 750	335	25,3	7,7	36
24	Vogelhausbrunnen	sK2	26 00 400	54 65 260	250	2,8	6,0	5,0
25	Dorfquelle Großbundenbach	mu	26 03 510	54 64 200	350	25,5	7,7	45
26	Quelle nordwestlich Knopp	soV	33 90 860	54 67 800	345	19,3	7,2	34
27	Waschbrunnen Kleinbundenbach	soV	26 04 710	54 64 640	330	22,5	7,2	40
28	Haselborn/Krähenberg	soV	26 07 180	54 66 900	360	16,5	7,2	54,5

Geologischer Aufbau und Gr	rundwasserfließvorgänge	im Nordwestteil	der Pfälzer	Triasmulde
----------------------------	-------------------------	-----------------	-------------	------------

Nr.	Bezeichnung der Quelle bzw. des Brunnens (mit Angabe der	Strati- graphie	Koordi	naten	Höhe [m NN]	GH [°dH]	pН	NO ₃ - [mg/l]
	Endteufe in m)	0 1	Rechtswert	Hochwert				. 0 .
29	Obere Herrsitzquelle/Martinshöhe	soV	33 90 050	54 68 860	360	18,9	8,1	29
30	Quelle am Höhhölzchen/Martinshöhe	soV	26 07 470	54 69 470	365	11,2	7,1	44
31	Bachborn/Lambsbach	soV	26 04 750	54 69 870	380	12,4	7,4	38
31	Hopfentalquelle (Martinshöhe)	soV	33 90 410	54 69 490	375	14,0	7,5	44
32	Petersbergquelle/Mörsbach	soZ	26 02 100	54 64 040	310	7,9	7,1	22
33	Quelle am Bubenberg	soZ	26 03 260	54 64 940	300	10,2	7,1	37
34	Felsentalquelle 2/Winterbach	soZ	26 07 030	54 64 840	280	7,7	7,3	45
35	Felsentalquelle 1/Winterbach	sOF	26 07 080	54 64 530	260	7,3	6,6	48
36	Dorfbrunnen Winterbach	sOF	26 07 100	54 64 000	250	11,1	7,3	31
37	Quelle am Ferstel/Wiesbach	sOF	26 05 620	54 66 490	260	5,9	6,7	32
38	Quelle am Jagdhaus Sieber	sOF	26 04 700	54 63 620	258	15,4	7,4	24
39	Steinborn/Krähenberg	soZ	26 06 660	54 66 840	340	17,4	7,2	50
40	Quelle im Engetal	sOF	26 04 860	54 68 140	290	9,3	7,0	42
41	Erlenborn/Krähenberg	soZ	26 06 770	54 66 400	280	8,7	7,1	15
42	Burgberg-Quellen/Wiesbach	soZ	26 05 720	54 675 40	300	8,6	6,9	39
43	Quelle Pletschmühle/Martinshöhe	soZ	26 07 060	54 69 680	310	7,0	7,0	23
44	Quelle südlich Kläranlage/Martinshöhe	soZ	26 07 170	54 70 050	325	5,4	6,8	17
45	Dorstelbrunnen/Martinshöhe	soZ	26 06 700	54 70 240	355	22,0	7,5	40
46	Quelle nördlich Wasserturm/Martinshöhe	soZ	33 90 000	54 70 880	375	8,6	6,8	78
47	Quelle am Blaulberg/Martinshöhe (SE)	soZ	26 06 820	54 71 040	385	4,5	5,8	43
48	Quelle am Blaulberg/Martinshöhe (SW)	soZ	26 06 410	54 71 070	395	8,9	6,7	80
49	Elendsklammquelle/Martinshöhe	soZ	26 05 960	54 70 960	335	8,5	7,7	25
50	Quelle am Nußberg	soZ	26 05 890	54 70 810	380	6,2	6,5	44
51	Quelle am Heidenkopf/Lambsborn	soZ	26 05 170	54 70950	360	5,1	5,7	37
52	Quelle am Häpeler Weg/Lambsborn	soZ	26 04 520	54 70 540	350	6,0	6,2	36
53	Obere Münchbachquelle/Lambsborn	soZ	26 03 750	54 70 280	350	6,4	6,6	41,6
54	Untere Münchbachquelle/Lambsborn	soZ	26 03 600	54 70 400	320	4,4	7,0	18,4
55	Quelle im Kronwald/Lambsborn	soZ	26 03 475	54 70 450	320	4,8	6,5	18,0
56	Quelle Reichmann/Bechhofen	soZ	26 03 580	54 69 230	310	3,0	5,4	30
57	Quelle bei HB Meierei/Lambsborn	soZ	26 03 980	54 71 140	390	5,1	6,5	18
58	Quelle im Pfaffenloch/Lambsborn	soZ	26 03 470	54 71 330	330	5,8	6,3	32
59	Waadtquelle (Vers. Thamfald, Lambsborn)	soZ	26 02 600	54 70 840	350	7,8	6,2	63
60	Quelle hinter der Waadt/Lambsborn	soZ	26 02 700	54 70 850	350	6,5	6,0	50
61	Schmilbachquelle/Lambsborn	soZ	26 02 880	54 70 940	350	5,0	5,6	75
62	Quelle westlich Gr. Kehrberg	soZ	26 00 310	54 68 620	330	2,8	6,2	2
63	Mohrenquelle	soZ	26 00 920	54 66 340	290	5,4	5,9	4,1
64	Schwanenweiherquelle	sK	26 00 940	54 66 170	280	3,3	6,1	7,5
65	Quelle unter der Steig/Wiesbach	sK3	26 06 79—	54 68 150	270	5,1	5,1	23
66	Quelle am Wiesbacher Hof	sK	26 05 740	54 67 440	260	4,6	6,6	16
67	Quelle Bauerstraße, Wiesbach	sK	26 05 600	54 67 520	260	3,9	5,1	14
68	Quelle Türr/Wiesbach	sK2	26 05 530	54 67 040	260	8,1	6,4	42
69	Quelle am Neupel/Bechhofen	sK	26 02 440	54 69 900	295	6,8	6,4	55
70	Quelle beim alten PWK Käshofen	sK	26 01 540	54 66 180	258	9,9	6,8	13,1
71	Quelle in Kirrberg nördlich							
	Lambsbachbrücke	sK	25 99 150	54 63 520	240	2,1	7,3	19
72	Dorfquelle Bruchmühlbach	sR	26 06 400	54 73 530	238	3,5	6,3	27
73	Brunnen "Stamper Mühle" (30)	sK	26 05 960	54 65 550	250	6,1	7,5	5,7
74	Brunnen Reesberger Hof (79)	sOF	33 90 800	54 70 860	410	2,7	6,5	19

Hubert Heitele

Nr.	Bezeichnung der Quelle bzw. des Brunnens (mit Angabe der	Strati- graphie	Koordi	Höhe [m NN]	GH [°dH]	рН	NO ₃ - [mg/l]	
	Endteufe in m)	0 1	Rechtswert	Hochwert		. ,		
75	Schernau Tiefbrunnen Alt (85)	sK	26 07 200	54 71 690	356	5,5	6,2	45
76	Schernau Tiefbrunnen Neu (100)	sK	26 07 160	54 71 740	340	4,2	5,7	49
77	Brunnen Lambsborn, Alt (80)	sK	26 04 300	54 70 630	309	5,5	5,3	45,8
78	Brunnen Lambsborn, Neu (259)	sR/sT	26 03 930	54 70 650	305	2,6	5,9	29
79	GWM bei TB Lambsborn, Neu (10)	sK	26 03 920	54 70 650	305	4,2	6,3	19
80	Brunnen Vollmar, Lambsborn (25)	sK	26 03 550	54 70 760	310	10,0	6,5	91
81	Brunnen Bettink/Lambsborn (20)	sK3	26 02 920	54 70 390	290	3,7	5,9	8
82	Brunnen Altschuh/Lambsborn (40)	sK3	26 03 000	54 70 350	298	4,1	6,1	15
83	Brunnen 1 Bechhofen (70)	sK	26 02 530	54 69 420	282	3,0	5,9	11,0
84	Brunnen 2 Bechhofen (100)	sK	26 02 500	54 69 250	278	3,2	6,0	12,0
85	Brunnen 1 Käshofen (60)	sK	26 01 900	54 66 320	260	7,5	6,8	11,0
86	Brunnen 2 Käshofen (155,8)	sK/sR	26 01 920	54 66 470	255	2,9	6,5	4,0
87	Brunnen Kirrberg, Alt (80)	sK	25 99 935	54 64 050	245	5,5	6,5	8,2
88	Brunnen Kirrberg, Neu (205)	sK/sR	25 98 790	54 63 550	250	3,2	6,5	12,3
89	Tiefbrunnen Hauptstuhl (100)	sK/sR	33 90 200	54 74 410	280	1,3	5,8	13,4
90	Tiefbrunnen Bruchmühlbach (160,5)	sR/sT	26 06 100	54 72 660	245	1,5	6,5	6,6
91	Flachbrunnen Bruchmühlbach (52,5)	sR	26 06 100	54 72 630	245	1,5	6,2	11,2
92	Brunnen Hirning/Vogelbach (22)	sK/sR	26 02 820	54 72 130	236	2,6	5,8	11,7
93	Stadtwerke Homburg Br. 1 (250)	sR/sT	25 98 300	54 66 405	235	4,9	6,1	22
94	Stadtwerke Homburg Br. 2 (250)	sR/sT	25 98 220	54 66 625	233	13,0	5,8	27
95	Stadtwerke Homburg Br. 3 (112)	sR	25 98 290	54 66 890	233	9,9	5,7	25
96	Stadtwerke Homburg Br. 4 (220)	sR/sT	25 99 130	54 67 015	241	3,5	6,0	8
97	Stadtwerke Homburg Br. 6 (120)	sK/sR	25 98 720	54 67 290	237	4,5	5,5	25
98	Stadtwerke Homburg Br. 7 (120)	sK/sR	25 98 990	54 67 730	244	4,0	5,3	29
99	Stadtwerke Homburg Br. 8 (150)	sK/sR	25 99 770	54 66 450	288	1,6	6,0	13
100	Stadtwerke Homburg Br. 9 (100)	sK/sR	25 98 780	54 66 880	234	3,6	5,9	20
101	Stadtwerke Homburg Br. 10 (143)	sR/sT	25 97 370	54 69 450	258	3,9	5,5	20
102	Stadtwerke Homburg Br. 11 (150)	sR/sT	25 97 200	54 69 260	263	5,2	5,8	36
103	Stadtwerke Homburg Br. 12 (150)	sR/sT	25 97 450	54 69 200	263	2,2	5,5	20
104	WVO Königsbruch Br. 1 (120)	sR	25 99 020	54 70 020	244	0,8	5,6	3,1
105	WVO Königsbruch Br. 2 (120)	sR	25 99 540	54 69 930	239	0,8	5,5	4,3
106	WVO Königsbruch Br. 4 (250)	sK/sR/sT	25 99 480	54 69 300	243	3,2	5,1	35
107	WVO Königsbruch Br. 5 (250)	sK/sR/sT	25 99 135	54 68 990	244	2,4	5,6	26
108	WVO Königsbruch Br. 8 (120)	sR	25 98 760	54 69 680	241	0,8	6,5	3,7
109	WVO Königsbruch Br. 9 (120)	sR	25 99 010	54 69 320	240	1,2	5,7	7,5
110	WVO Königsbruch Br. 10 (143)	sK/sR	25 99 310	54 69 640	239	1,8	5,5	22
111	WVO Königsbruch Br. 11 (150)	sR/sT	25 99 210	54 70 320	240	0,9	5,5	3,1
112	WVO Königsbruch Br. 12 (150)	sR/sT	26 00 005	54 70 390	237	1,1	5,5	9,3
113	WVO Königsbruch Br. 13 (250)	sK/sR/sT	25 99 910	54 69 890	239	1,3	5,5	13
114	GWM 3022 Waldmohr (12,9)	sR	25 98 810	54 72 660	253	3,7	7,0	0,1
115	GWM 3030 I Buchholz (7,4)	sR	26 04 440	54 74 060	231	2,7	6,4	6
116	GWM 3030 II Buchholz (55,9)	sR	26 04 440	54 74 060	231	1,6	6,7	2,5
117	GWM 3036 Waldmohr (51)	sR	26 00 980	54 71 520	236	2,1	5,5	33
118	GMW 3064 I Waldmohr (12,8)	sR	25 99 490	54 70 610	241	3,7	5,7	23
119	GWM 3064 II Waldmohr (102,8)	sR	25 99 490	54 70 610	241	1,6	6,5	2,2
120	Brunnen BAB-Raststätte Waldmohr (30)	sR	25 99 550	54 71 820	241	3,1	n.b.	14,6
121	Brunnen Ohlbühler Hof/Waldmohr (72)	sT/zSt	25 97 920	54 73 290	268	6,0	5,9	65
122	Brunnen Spiegeltal/Waldmohr (107)	sR/sT/zSt	25 98 550	54 71 950	253	1,6	5,8	17,4

Geologischer Aufbau und Grundwasserfließvorgänge im Nordwestteil der Pfälzer Triasmulde

NI.	Parcial I O II I	<u></u>						
INF.	. Dezelchnung der Quelle bzw.		Koordi	Höhe	GH	pН	NO3-	
	des Brunnens (mit Angabe der	graphie			[m NN]	[°dH]		[mg/]]
	Endteufe in m)		Rechtswert	Hochwert	[]	[]		[IIIB/I]
123	GWM Spiegeltal/Waldmohr (102)	sR/sT/zSt	25 97 900	54 71 625	257	T 2	6 T	14.6
124	Ohmbach-Verb GWM Mohrmühle (50)	sT	25 98 932	54 73 127	247	3.6	5 7	7.0
125	Ohmbach-Verb. GWM US-Depot				21/	5,0	5,7	7,9
	Zaun (50); Neuer Brunnen	sR/sT	25 99 289	54 73 248	248	16	51	5.8
126	Ohmbach-Verb. Br. 1 (100)	sT/zSt	26 00 780	54 74 520	250	3.6	6.0	35
127	Ohmbach-Verb. Br. 2 (100)	sR/sT/zSt	26 00 240	54 74 290	2.42	2.9	6.0	20
128	Ohmbach-Verb. Br. 3 (104)	sT/zSt	25 99 700	54 74 330	244	1.9	6.3	52
129	Ohmbach-Verb. Br. 4 (100)	sT/zSt	25 99 110	54 74 020	247	12	6.0	55
130	Ohmbach-Verb. GWM T 13 (132)	sR/sT/zSt	26 00 840	54 74 070	237	2.9	6.9	44 88

Abb. 4: Untersuchungsgebiet mit Verwerfungen, hydrogeologischen Schnittlinien (Schnitte A bis D, s. HEITELE. 2001), wichtigen Tiefbrunnen und Grundwassermessstellen (z.B. Nr. 118 der Tab. 2) sowie den Quellen Nrn. 1–26 der Tab. 2.

Einige Brunnen für die Eigenversorgung und die öffentliche Wasserversorgung im Lambsbach- und Wiesbachtal nutzen die Grundwasserstockwerke der Karlstal-Schichten, für die in den hydrogeologischen Schnitten teilweise ein mittleres Druckniveau markiert ist.

Die auf die Oberen Karlstal-Schichten (sK3) folgende Obere Felszone (sOF) stellt zusammen mit den Zwischenschichten des Oberen Buntsandstein (soZ) das mächtigste Schichtglied der Bergrücken und Höhenzüge der Sickinger Höhe dar. Die in den hydrogeologischen Schnitten nicht getrennten Schichtglieder beinhalten eine Vielzahl von teilerfüllten Grundwasserstockwerken, die häufig markante Quellen speisen, die z.T. auf den hydrogeologischen Schnitten durch Zeichen angegeben sind. Die meisten der in Tab. 4 aufgeführten Quellen sind diesen Grundwasserstockwerken zuzuordnen; zusammen sind es 41, davon 5 dem Basis-Schichtglied sOF entspringend. In der Regel erreichen die Abflüsse dieser Hangquellen die Vorfluter in den Tälern nicht direkt oder nur teilweise; sie bilden meistens Quellsümpfe und versickern im Hangschutt, durch den sie z.T. als Zwischenabfluss in die Deckschichten der Talauen abgeführt werden. Dort verstärken sie oft die Bildung der Feuchtbiotope im Bereich der Karlstal-Schichten, wie z.B. im saarpfälzische Naturschutzgebiet im Lambsbachtal beiderseits der Straße Homburg-Käshofen. Je nach Ausstrichbreite der Karlstal-Schichten in den Unterhangflächen kann außerdem ein wechselnder Anteil der unterirdischen Abflüsse bzw. der Deckschichtenabflüsse aus den sOF- und soZ-Grundwasserleitern den Grundwasserstockwerken der sK-Abfolge zufließen.

Der über den Zwischenschichten folgende Voltziensandstein (soV) beinhaltet mit seinem Basisschichtglied, der Werksteinzone, das höchste bedeutende Grundwasserstockwerk der Sickinger Höhe. Zahlreiche Quellen (in Tab. 2 sind 10 genannt) säumen die ausstreichende Liegendgrenze dieser relativ geringmächtigen Abfolge (s. Abb. 5–7).

Wie die Abb. 8 und 9 zeigen, haben diese Quellen die höchsten Schwankungen im Schüttungsverhalten, in den Lösungsinhalten und in den Grundwassertemperaturen (s. Kap. 4.2.) im Bereich der Einzugsgebiete der Sickinger Höhe. Deutlich ist die starke Beeinflussung durch die oberirdischen Abflüsse und oberflächennahen Abflüsse ("Interflow") aus ausgedehnten Muschelkalkgebieten im Hangenden, die im Bereich der Werksteinzone z.T. versickern können. Die Gesamthärten sind häufig genau so hoch wie bei Muschelkalkquellen (s. Tab. 2), und die Abhängigkeit vom Klimageschehen ist ähnlich stark ausgeprägt.

Die Grundwasserleiter im Unteren Muschelkalk haben im Blattgebiet meist nur geringe Mächtigkeiten und kleine Einzugsgebiete. Die Quellen haben deshalb in der Regel kleine Schüttungen und versiegen häufig im Sommerhalbjahr. Eine Ausnahme stellt der beständig schüttende Waschbrunnen in Großbundenbach dar (Nr. 25 der Tab. 2), der im Süden eines sich nach Norden erstreckenden und in diese Richtung ansteigenden ausgedehnten Muschelkalkvorkommens entspringt (s. Abb. 3).

4.2. Lösungsinhalte der Grundwässer, Grundwassertemperaturen

Je nach Grundwasserstockwerk, Einzugsgebiet und Grundwasserneubildungsgeschehen haben die Grundwässer räumlich und zeitlich wechselnde Lösungsinhalte. Dabei sind die Unterschiede im Jahresablauf in den hochgelegenen Grundwasserstockwerken (Quellstockwerke der Bergzüge) wesentlich größer als in den gesättigten tiefliegenden Grundwasserstockwerken mit gespanntem Grundwasser.

Einen Überblick zu den mittleren Lösungsinhalten vermitteln Tab. 2 und die Abb. 9 und 10.

1.1	Schluff und Sand, schwach tonig, z.T. m	it
/	Torfeinlagerungen (Quartär der Talauen))

Tonlagen, Schluff - Ton - Stein, z.T. sandig (Grundwasserstauer)

Fein- bis Mittelsandstein, z.T. schluffig, überwiegend dünnschichtig und mürbe (Grundwasserhemmer)

Mittel- bis Grobsandstein, z.T. geröllführend, dünnbankig bis dickbankig und hart (Felssandstein, z.T. als Naturwerkstein nutzbar, Kluftgrundwasserleiter)

Unterer Muschelkalk

mu1T	: Terebratelzone mit basaler Hauptterebratelbank
mu1	: Muschelsandstein und Mergelige Schichten

Buntsandstein

soV	: Voltziensandstein
sOF + soZ	: Zwischenschichten mit Oberer Felszone
sK3	: Obere Karlstal - Schichten
sK2	: Mittlere Karlstal - Schichten (Karlstal - Felszone)
sK1	: Untere Karlstal - Schichten
sR	: Rehberg - Schichten
sT	: Trifels - Schichten
sSt bzw. zSt	: Stauf - Schichten

- _▼_ Druckhöhe des tiefen Grundwassers in den Rehberg- und Trifels-Schichten, z. T. vermutet.
- _▼_ Teilweise zusätzliche Angabe des höheren Niveaus der Grundwasseroberfläche bzw. der Druckhöhe des Grundwassers in der Karlstal-Felszone (abseits der Bohrungen vermutet).

Abb. 5a: Legende zu den hydrogeologischen Schnitten.

Abb. 8: Schüttungen charakteristischer Hangquellen (Nr. 16 u. 10 der Tab. 2) und einer artesischen Talrandquelle (Nr. 21 der Tab. 2) mit Niederschlagsmessungen der Station Schanne in Bruchmühlbach (s. Tab. 3).

Die Gesamtlösungsinhalte der Grundwässer werden durch deren elektrische Leitfähigkeiten widergespiegelt. Die Möglichkeit einer Einstufung erhält man auch durch den Vergleich der Gesamthärten. Eine Durchsicht deren Werte in Tab. 2 ergibt, dass diese bei dem stratigraphisch höchsten bedeutsamen Grundwasserleiter des Blattgebietes (Werkstein im Voltziensandstein, soV) zwischen 10° bis 25° dH liegen (meist über 15° dH) und bei den Grundwasserleitern im Hauptbuntsandstein (sK, sR und sT) 10° dH selten überschreiten, überwiegend jedoch unter 5° dH betragen. Die dazwischen befindlichen Grundwasserleiter der Zwischenschichten (soZ) und der Oberen Felszone (sOF) führen mit wenigen Ausnahmen Grundwässer mit Gesamthärten zwischen 5° und 15° dH, wobei Werte unter 10° dH am häufigsten sind.

Einen Überblick zu den jahreszeitlichen Schwankungen der Lösungsinhalte wird an wenigen repräsentativen Beispielen in Abb. 9 veranschaulicht. Man sieht, dass bei den Hangquellen des Voltziensandstein und der Zwischenschichten z.T. große Schwankungen vorliegen, während bei den Talrandquellen in den Karlstal-Schichten kaum Veränderungen festzustellen sind.

Die auf Grundwasserneubildungsvorgänge zurückzuführenden Schwankungen sind z.T. gegenläufig, was zum Beispiel je nach Einzugsgebiet auf das Vorherrschen von Verdünnungen bzw. auf den vermehrten Eintrag löslicher Stoffe zurückgeführt werden kann. Manchmal beobachtet man auch bei den Hangquellen relativ konstante Lösungsinhalte, was darauf schließen lässt, dass ihr Einzugsgebiet überwiegend im teilgesättigten Bereich des Gebirges liegt (z.B. Nr. 18, eine Quelle, die am Unterhang des Röswaldes im Basisbereich der Zwischenschichten aus einer Spalte einer Felsbank austritt).

Bei den einzelnen Grundwasserleitern weisen mittlere Gesamthärten, die deutlich von den entsprechenden Mittelwertsbereichen abweichen, auf Besonderheiten in den jeweiligen Einzugsgebieten der Quellen und Brunnen hin. So sind bei den Quellen des Voltziensandstein und der Zwischenschichten die Werte dann besonders niedrig, wenn im Einzugsgebiet kein Muschelkalk vorhanden oder dessen Verbreitung und Mächtigkeit relativ gering ist (z.B. im Lambsbach-Einzugsgebiet). Die höchsten Werte findet man am Rande der Muschelkalkrücken meist im Bereich von Ortslagen, was auf zusätzliche anthropogene Einträge hinweist, z.B. bei verschiedenen Dorfquellen auf der Sickinger Höhe.

Die relativ geringen Lösungsinhalte der Grundwässer in den Trifels-, Rehberg- und Karlstal-Schichten ist eine Folge der geringen Lösbarkeiten der Gesteine dieser Schichtenfolgen. Einträge aus Oberem Buntsandstein und Muschelkalk in den Einzugsgebieten der Sickinger Höhe oder aus dem Rotliegend am Nordwestrand der Moorniederung führen nur zu geringen Aufhärtungen, da die Grundwasserneubildungen für die tiefen Grundwasserleiter des Hauptbuntsandstein im Blattgebiet weitgehend in den Auen von Tälern mit ausstreichendem Hauptbuntsandstein liegen, in denen Oberflächenabflüsse aus Niederschlägen in Zeiten starker Grundwasserneubildungsvorgänge (Winterhalbjahr) dominieren. Erhöhte Aufhärtungen weisen auch hier auf verbreitete anthropogene Belastungen im Einzugsgebiet hin (Einzugsgebiet des Erbachs, das sich überwiegend im Stadtgebiet von Homburg befindet).

Dort wo anthropogene Belastungen zu erhöhten Gesamthärten führen, sind in der Regel auch die Nitratgehalte erhöht (s. Tab. 2). In Gebieten mit ausgedehnten Ackerflächen sind die erhöhten Nitratgehalte auf landwirtschaftliche Düngung zurückzuführen (z.B. am Nordwestrand der Moorniederung und auf der Sickinger Höhe). Die geringsten Nitratgehalte findet man in oberflächennahen Grundwässern in Torfgebieten (z.B. 0,1 mg/l bei der 12,9 m tiefen Grundwassermessstelle 3022 zwischen Waldmohr und Eichelscheid, Nr. 114 in Tab. 2); dies ist auf reduzierende Verhältnisse im Torf zurückzuführen.

Abb. 9: Saisonale Schwankungen der elektrischen Leitfähigkeiten und damit der Lösungsinhalte repräsentativer Quellen der wichtigsten Quellstockwerke (Lage s. Abb. 4 und Tab. 2).

Bei den in Tab. 2 aufgelisteten pH-Werten der Grundwässer des Blattgebietes sind nur bedingt Abhängigkeiten vom Lösungsinhalt derselben zu erkennen. Generell lässt sich sagen, dass die pH-Werte der Grundwässer mit relativ hohen Gesamthärten um den Neutralbereich (pH 6,5 bis 7,5) liegen. Höhere pH-Werte können in der Regel auf landwirtschaftliche Düngung im Einzugsgebiet zurückgeführt werden (z.B. auch der höchste Wert von pH 8,1 bei der Quelle Nr. 29). Niedrigere Werte findet man hauptsächlich dort, wo die Muschelkalküberdeckung in den Einzugsgebieten nur geringe Flächenanteile einnimmt oder gänzlich fehlt, also im Lambsbach-Einzugsgebiet und in den Einzugsgebieten der Moorniederung; hier liegen die pH-Werte vielfach unter 6, z.T. sogar nahe 5. Der Einfluss der sauren Niederschläge ist am deutlichsten bei der Vogelquelle (Nr. 5 in Tab. 2) zu sehen, die aus den Zwischenschichten im oberen Teil eines bewaldeten Nordwest-Hanges hoch über der Moorniederung entspringt (pH 5,0, der niedrigste beobachtete Wert).

Weitere das Gesamtbild der Lösungsinhalte ergänzende Eigenheiten können aus dem Piper-Diagramm (Abb. 10) ersehen werden.

Die in den Abbildungen 8 und 9 angeführten repräsentativen Quellen stellen hinsichtlich Schüttungsverhalten und Lösungsinhalte auch typische Beispiele dar für die Schwankungsbereiche der Temperaturen in den verschiedenen Grundwasserstockwerken. Der Dorfbrunnen in Käshofen zeigt Grundwassertemperaturen, die im jahreszeitlichen Wechsel etwa zwischen 10° und 12° C schwanken; ähnlich hohe Werte beobachtet man auch bei den Dorfbrunnen Nr. 25 und 27 der Tab. 2.

Diese relativ hohen Temperaturen der Grundwässer in hochgelegenen mu- und soV-Grundwasserleitern bei Ortslagen sind vermutlich auf ständige Wärmezufuhr aus Kanalisations- und Heizungsanlagen zurückzuführen. Bei vergleichbaren soV-Grundwasserleitern fern von Siedlungsgebieten schwanken die Grundwassertemperaturen etwa zwischen 8° und 10° C (z.B. bei den Quellen Nr. 9, 22 und 30 der Tab. 2). In diesem Bereich schwanken auch die Temperaturen zahlreicher Quellen aus soZ-Grundwasserleitern in mittleren Hanglagen, wobei die häufig gemessenen Quellen in der Lamach und im Röswald (Nr. 10 und 18 der Tab. 2) Temperaturschwankungsbreiten von 8,4° bis 9,7° bzw. 8,4 bis 9,2° C zeigen. Diese Werte liegen im Bereich der mittleren jährlichen Lufttemperaturen. Von Achilles (1982) wird die mittlere jährliche Lufttemperatur in Homburg mit 8,5° C angegeben (Mittel der Jahre 1954 bis 1978). Aus dem WASSERWIRTSCHAFTLICHEN RAHMENPLAN RHEINPFALZ (1982) kann entnommen werden, dass die entsprechenden Mittelwerte in der Moorniederung zwischen 9° und 10° C und auf der Sickinger Höhe zwischen 8° und 9° C liegen (Jahresreihe 1931 bis 1960). Beobachtet man an den Quellaustritten größere Temperaturschwankungen (z. B. bei der soZ-Quelle Nr. 4 der Tab. 2, der Possberg-Quelle, ca. 6–14° C), so ist ein längerer Zulauf von dem Quellaustritt aus dem Grundwasserleiter bis zur Quellfassung im Oberboden bzw. Hangschutt anzunehmen.

Artesisch aufsteigende Talrandquellen und durch Tiefbrunnen erfasste Grundwässer in größerer Tiefe sind durch Zufuhr von Erdwärme etwas "aufgeheizt". Die Temperaturschwankungen der tiefen Grundwässer sind sehr gering. Sie liegen bei der aus 20 bis 30 m Tiefe unter Talniveau aufsteigenden Quelle Nr. 20 in Wiesbach zwischen 9,6 bis 9,9° C und im Bereich der Endteufen der 150 bis 250 m tiefen Brunnen gewöhnlich zwischen 11 und 12° C.

4.3. Vergleich der Niedrigwasserabflüsse am 05.08.1999, Hinweise zum unterirdischen Abflussgeschehen und zur Grundwasserneubildung

In Tab. 3 sind die monatlichen und jährlichen Niederschlagssummen der Jahresreihe 1988 bis 2001 der privaten Wetterstation Schanne in Bruchmühlbach aufgelistet. Der

Abb. 10: Piper-Diagramm (stratigraphische Abkürzungen s. Abb. 5a). Von den in Tab. 2 aufgelisteten Brunnen, Grundwassermessstellen und Quellen (insgesamt 130) ist zur Darstellung der Verhältnisse der Lösungsinhalte im Piper-Diagramm eine repräsentative Auswahl aus den verschiedenen Grundwasserleitern getroffen worden. Während die Grundwässer aus dem Unteren Muschelkalk und dem Voltziensandstein mit relativ hohen Ca-Mg-Karbonat-Gehalten als eng begrenzte Gruppen erkennbar sind, zeigen die Lösungsinhalte der Grundwässer aus tieferen Grundwasserleitern deutliche und z.T. auch größere Schwankungsbreiten. Bei den allgemein relativ geringen Lösungsinhalten in dieser Gruppe sind die Tiefenwässer bzw. aus größerer Tiefe artesisch aufsteigende Wässer durch relativ hohe Hydrogenkarbonatgehalte auf der Anionenseite gekennzeichnet (z.B. Nr. 20, 115, 116 und 119). Dies ist bei der Grundwassermessstelle in Buchholz im flachen und tiefen Bereich (Nr. 115 und 116) der Fall, bei einer ebenfalls in der Moorniederung liegenden Grundwassermessstelle südlich Waldmohr nur im tiefen Bereich (Nr. 119). Hier zeigen sich die Auswirkungen größerer Grundwasserentnahmen, die den Aufstieg der Tiefenwässer zum oberflächennahen Grundwasser (Nr. 118) weitgehend unterbinden. Dieser Zustand zeigt sich auch bei den Nitratgehalten (s. Tab. 2).

mittlere Jahresniederschlag beträgt dort in diesem Zeitraum 860 mm, was etwa dem langjährigen Mittel am Schichtstufenrand der Sickinger Höhe entspricht (s. Kap. 2). Diese Jahresreihe, die den im hydrologischen Jahr 1991/92 beginnenden Messzeitraum dieser Arbeit beinhaltet, weist bis Ende des hydrologischen Sommerhalbjahres 1999 zu geringe oder durchschnittliche Jahresniederschlagssummen auf (Ausnahme: 1995).

Erst mit dem Dezemberniederschlag 1999 beginnt die feuchtere Periode der Jahre 2000 und 2001. Wenig davor liegt der Stichtag 05.08.1999, dem eine etwa dreiwöchige nahezu niederschlagsfreie Zeitspanne (Ausnahmen: 20.07.1999 mit 2 mm und 23.07.1999 mit 5 mm Niederschlag) vorausging und für den eine größere Anzahl von Abflussmessungen vorliegen. An diesem Stichtag hat auch die Grundwasseroberfläche in der Bruchniederung ein relativ tiefes Niveau.

Dies zeigen z.B. die schon erwähnten flachen Grundwassermessstellen Nr. 115 und 118 der Tab. 2, wobei sich sehr deutlich vor allem bei Nr. 118 die Niederschlagssituation im Messzeitraum widerspiegelt (s. Abb. 11). Auch bei den Quellen beobachtet man am Stichtag niedrige bis minimale Schüttungen (s. Abb. 8).

Tab. 3: Monats- und Jahresniederschlagssummen in mm der privaten Wetterstation Schanne in Bruchmühlbach bei TP 235,5 (Martinshöher Straße/Kaiserstraße, R 26 06 520, H 54 73 720).

Jahr	Januar	Februa	r März	April	Mai	Juni	Juli	August	Sept.	Okt.	Nov.	Dez.	Summe
1988	101	108	126	22	67	48	80	31,5	59	91	40	82	856
1989	33	60	67	127	30	68	77	65	42	60	48	136	813
1990	51	137	28	35	17	105	32	108	67	92	88	92	847
1991	82	23	29	36	14	78	58	4,5	41	60	92	66	584
1992	32	37	81	59	44	73	68	70	29	108	128	46	775
1993	72	17	13	41	115	25	88	20	110	85	23	249	858
1994	120	70	70	65,5	92	63	22	91	106	53	35	89	877
1995	182	74,5	102	109	110	40	54	48	95	45	43	64	967
1996	8	88	22	21	77	35	60	53	23	69	178	47	681
1997	20	126	32	25	57	133	75	66	17	52	77	112	790
1998	79	10	46	137	46	68	60	35	82	173	84	49	869
1999	71	77	109	72	37	55	76	53	65	72	56	157	900
2000	49	88	65	44	98	49	210	97	120	122	135	116	1193
2001	107	55	180	87	23	54	85	130	80	56	102	68	1027

Am 05.08.1999 wurden in den z.T. in Kap. 3. schon näher beschriebenen Einzugsgebieten die im Folgenden aufgelisteten Abflussspenden ermittelt. Die Zuordnung der ausgewählten kleineren Einzugsgebiete zu den Grundwasserleitern und den Hauptvorflutern kann aus der geographischen Übersicht (Abb. 2), der Geologischen Karte (Abb. 3) und den hydrogeologischen Schnitten (Abb. 5–7) entnommen werden. Die Fläche der oberirdischen Einzugsgebiete ist in km² in Klammern angegeben.

Bei Glan, Schwarzbach und Auerbach sind korrigierte Pegelmessungen des Landesamtes für Wasserwirtschaft angegeben; die übrigen Werte sind Messungen des Geologischen Landesamtes:

- Glan/Nanzdietschweiler (angegeben wird der nach dem Pegel bei Gries rückgerechnete Wert auf das ca. 118 km² große Teil-Einzugsgebiet im Buntsandstein einschließlich der Stauf-Schichten): ca. 3,0 l/(s · km²).
- Schwarzbach/Contwig (530): $6,0 l/(s \cdot km^2)$
- Auerbach/Oberauerbach (73,9): 4,0 $l/(s \cdot km^2)$

- Wiesbach/Winterbach (21,3): $4,1 l/(s \cdot km^2)$
- Winterbach/Winterbach (9,6): $2,4 l/(s \cdot km^2)$
- Felsbach/Wiesbach (7,7): $3,9 l/(s \cdot km^2)$ - Nepbach/Wiesbach (3,4): $0.5 l/(s \cdot km^2)$
- Lambsbach/Kirrberg (27,5): $1,4 l/(s \cdot km^2)$
- $0.34 l/(s \cdot km^2)$ - Lambsbach/Bechhofen (7,8):

Den beiden Bächen in Bruchmühlbach, Frohnbach (ca. 3) und Mühlbach (ca. 8), können nach späteren Messungen Abflussspenden von 0,3 bis 0,5 $l/(s \cdot km^2)$ zugeordnet werden.

Obwohl die Niederschläge im Nordosten der Sickinger Höhe am höchsten sind (s. Kap. 2. und Abb. 1), entspringen und verlaufen dort die Bäche dieser Aufstellung mit den geringsten Abflussspenden, nämlich der Nepbach, der Lambsbachoberlauf sowie der Frohnbach und der Mühlbach mit 0,5 l/s · km² und weniger. Dies ist nur so zu erklären, dass der größte Teil der Grundwasserneubildung in diesen Einzugsgebieten in tiefliegende Grundwasserleiter des Hauptbundsandstein gelangt und dort entsprechend dem Druckgefälle abfließt. Nach den hydrogeologischen Schnitten F-F' und G-G' (Abb. 6 und 7) ist die Abflussrichtung im Grundwasserleiter Karlstal-Felszone (sK2) überwiegend und in den tieferen Grundwasserleitern (sR, sT) ausschließlich in die Moorniederung, dem unmittelbaren Einzugsgebiet des am nächsten gelegenen Hauptvorfluters Glan, gerichtet. Diese unterirdischen Abflüsse machen sich im gesamten Einzugsgebiet des Lambsbachs bemerkbar, denn auch in seinem Unterlauf weist er im Vergleich zu den weiter südlich befindlichen Einzugsgebieten mit einer Abflussspende von 1,4 $l/(s \cdot km^2)$ bei Kirrberg einen sehr geringen Wert auf; wie der hydrogeologische Schnitt E-E' (Abb. 5b) zeigt, sind von hier aus auch unterirdische Abflüsse in das Einzugsgebiet des Erbachs anzunehmen, wo sich im Stadtgebiet von Homburg infolge erheblicher Grundwasserentnahmen ein weit ausgreifender Absenkungstrichter gebildet hat.

Wie die hydrogeologischen Schnitte zeigen bzw. andeuten, ist die unterirdische Wasserscheide in den Grundwasserleitern der Trifels- und Rehberg-Schichten zwischen den Einzugsgebieten in der Moorniederung und dem großen Einzugsgebiet des Schwarzbachs im Süden weit in das des letzteren verschoben und im Blattgebiet östlich des Wiesbachs anzunehmen. Die von den Hauptvorflutern relativ fern gelegenen Einzugsgebiete im Bereich dieser Wasserscheide, also der Wiesbach mit seinen östlichen Teileinzugsgebieten und der Auerbach in dessen südwestlicher Fortsetzung, zeigen am gewählten Stichtag mittlere bis relativ hohe Abflussspenden (2,4 bis 4,1 $l/(s \cdot km)$).

Demnach sind aus diesen Talgebieten relativ geringe unterirdische Abflüsse in entfernt gelegene Einzugsgebiete anzunehmen. Offensichtlich dominiert hier auch der Grundwasserleiter "Karlstal-Felszone" das lokale Geschehen, der sich in diesen Gebieten in nicht allzu großer Tiefe vollständig im gesättigten Bereich befindet und in dem die unterirdische Wasserscheide im Bereich des Wiesbachs oder nordwestlich davon liegt (s. Abb. 5 u. 7).

Den höchsten Wert zeigt der Schwarzbach beim Pegel Contwig mit 6,0 l/(s · km²). Dieser Wert liegt rd. 10 % über der langjährigen mittleren Niedrigwasserabflussspende (s. Kap. 3.), was auf eine eher normale Auffüllung bzw. Grundwasserneubildung der gesättigten Grundwasserleiter bzw. der gesättigten Bereiche der höheren Grundwasserstockwerke am Stichtag hinweist. Da im ziemlich großen Einzugsgebiet des Schwarzbachs Grundwasserentnahmen und unterirdische Abflüsse in Fremdgebiete eine vergleichsweise geringe Rolle spielen, kann als Richtwert der Region (teilüberdeckter Hauptbuntsandstein der südwestpfälzischen Hochfläche mit mittleren Jahresniederschlagshöhen

überwiegend zwischen 800 und 900 mm) 6 $l/(s \cdot km^2)$ als mittlere Grundwasserneubildungsspende angegeben werden, was annähernd 190 mm entspricht.

Dass trotz unterirdischer Zuflüsse aus Teileinzugsgebieten des Lambsbachs und des Wiesbachs für das Teileinzugsgebiet "Moorniederung und Randbereiche" des Glans am Stichtag eine Abflussspende von "nur" 3 $l/(s \cdot km^2)$ anzunehmen ist, kann auf die schon im Kap. 3. genannten Gründe zurückgeführt werden. Für den Erbach können keine Messwerte angegeben werden, da dieser in die Kanalisationsanlagen der Stadt Homburg einbezogen ist. Eine mögliche Stichtagsabflussspende dürfte jedoch aus den gleichen Gründen wie im Glan-Einzugsgebiet einen äußerst geringen Wert aufweisen.

4.4. Spezifische Brunnenergiebigkeiten, Neigungen der Grundwasseroberflächen und -druckflächen, Hinweise zu den unterirdischen Wasserscheiden

Von dem in Tab. 2 aufgeführten Bohrbrunnen und weiteren Brunnen im südwestlichen und nordwestlichen Stadtgebiet von Homburg (TK 25 Blatt 6609, Bliestal/Beeden sowie unteres und oberes Erbachtal) wurden die Pumpversuche zusammengestellt und die spezifischen Ergiebigkeiten ermittelt, d.h. es wurde der Quotient aus der Entnahmemenge (Brunnenleistung in l/s) und dem entsprechenden Absenkungsbetrag des Brunnenwasserspiegels (m) errechnet (BIESKE 1992, S. 239). Mit dem so definierten Rechenvorgang erhält man ein leicht zu vergleichendes Zahlenmaterial für die Hauptbuntsandstein-Grundwasserleiter.

Einzugsgebietbereiche	Spez. Brunnenergiebigkeit in $l/(s \cdot m)$
Bliestal (Beeden)	4—16
Unteres Erbachtal	8—17
Oberes Erbachtal	2—3
Nordrand der Moorniederung	1—5
(Jägersburg, Waldmohr, Schönenberg; z.T.	
mit zSt-Grundwasserleiter)	
Moorniederung	2—10
Südrand der Moorniederung	1-2
(Bruchmühlbach, Hauptstuhl)	
Lambsbachtal, Sickinger Höhe	
sR/sT-Grundwasserleiter	0,2—0,6
sK-Grundwasserleiter	0,3—11

Die Brunnen erfassen meist Schichtabfolgen der Trifels- und Rehberg-Schichten, am Nordrand der Moorniederung z.T. auch noch Stauf-Schichten, in den Tälern der Sickinger Höhe mit wenigen Ausnahmen nur Karlstal-Schichten. Obwohl die Brunnen unterschiedliche Bohrtiefen (ca. 20 bis ca. 250 m) und Abdichtungsstrecken (ca. 10 bis ca. 70 m) haben, sind die Werte vergleichbar, da die die Größenordnung der Werte vor allem bestimmenden höchsten Gebirgsdurchlässigkeiten in der Regel im Teufenbereich von 10 bis 100 m beobachtet werden, der von allen Brunnen zumindest teilweise erfasst wird.

Die Zusammenfassung der Einzelwerte ähnlicher Größenordnung in Gruppen ergibt somit eine grobe Einstufung für die oben genannten Teilräume.

Ausgehend von den Zahlenwerten zu den Brunnenergiebigkeiten, den oben gemachten Angaben und überschlägigen Berechnungen kann man für die wichtigsten Grundwasserleiter des Blattgebietes einen Streubereich der Transmissivitäten von ca. $2 \cdot 10^{-3}$ bis etwa $1 \cdot 10^{-5}$ [m²/s] angeben.

Im Bereich der Teilräume mit den relativ hohen spezifischen Brunnenergiebigkeiten beobachtet man beim Verlauf der Linien zur Angabe der Druckhöhen der tiefen Grundwässer auf den hydrogeologischen Schnitten sehr geringe Gefälle. Dies ist vor allem in der Moorniederung und ihren Randgebieten der Fall, wo Gefälle um oder weniger als 0,1 % zu ermitteln sind.

Im Bereich der Pumpmulden in Teileinzugsgebieten des Glans und des Erbachs sind höhere Gefälle anzunehmen, zu denen jedoch keine aktuellen Angaben gemacht werden können. In diesen Gebieten werden jährlich um 5 bzw. 10 Mio. m³ Grundwasser entnommen, was z.T. zu Dauerabsenkungen von über 10 m geführt hat.

Im Bereich der Sickinger Höhe werden im Einzugsgebiet des unteren Lambsbachs (Bereich Kirrberg) sowohl im tiefen Grundwasserleiter "Rehberg-Schichten" als auch im darüber liegenden Grundwasserleiter "Karlstal-Felszone" die höchsten spezifischen Brunnenergiebigkeiten in dieser Gruppe festgestellt. Aus den hydrogeologischen Schnitten C und E kann man in diesem Bereich Druckliniengefälle von nur 0,2 bis 0,4 % für den sR-Grundwasserleiter und meist weniger als 0,1 % für den sK-Grundwasserleiter ablesen, wodurch die hier erhöhten Transmissivitäten bestätigt werden.

Die größten Gefälle stellt man im Nordost-Teil der Sickinger Höhe (Bereich Wiesbach-Martinshöhe-Lambsborn) fest, wo für den sR/sT-Grundwasserleiter überwiegend 0,5 bis 1,5 % (z.T. bis 3 % Gefälle) anzunehmen ist. In diesem Bereich sind für den sK-Grundwasserleiter Gefälle von 1 bis 2 % anzunehmen (s. Abb. 6 und 7). In der dazugehörigen Gruppe der spezifischen Brunnenergiebigkeiten gelten für diesen Bereich – hierzu passend – die niedrigsten Werte.

Wie in Kap. 4.3. schon angemerkt sind für die tiefen Grundwasserleiter sR/sT und sK2 unterschiedliche unterirdische Wasserscheiden anzunehmen. Nach den hydrogeologischen Schnitten kann im gesamten Blattgebiet für den sR/sT-Grundwasserleiter keine eindeutige unterirdische Wasserscheide angegeben werden; es ist anzunehmen, dass der Großteil der unterirdischen Abflüsse dieses Grundwasserleiters im Bereich des Blattgebietes die Moorniederung erhält (evtl. Ausnahme: südöstlicher Teil des Wiesbacheinzugsgebietes, s. Schnitt E, Abb. 5). Die entsprechenden Anteile an den gesamten unterirdischen Abflüssen aus den einzelnen Einzugsgebieten dürften in weiten Bereichen schwanken; sie können zwischen minimalen mittleren Abflüsspenden von ca. 1 l/(s · km²) aus Teilen des Wiesbacheinzugsgebietes und maximalen Werten von ca. 5 l/(s · km²) aus dem oberen Lambsbachtal liegen.

Für den sK2-Grundwasserleiter zeigen die hydrogeologischen Schnitte im Blattgebietsanteil nördlich von Käshofen, dass die oberirdische Wasserscheide zwischen dem Wiesbach- und dem Lambsbacheinzugsgebiet etwa die unterirdische Wasserscheide des sK2-Grundwasserleiters zwischen der Moorniederung und dem Wiesbacheinzugsgebiet markiert. Südlich von Käshofen hat sie die Funktion einer unterirdischen Wasserscheide zwischen Wiesbach- und Lambsbacheinzugsgebiet, denn zum südwestlichen Teil des Blattgebietes hin geht der sK2-Grundwasserleiter in relativ hoch gelegene Grundwasserstockwerke über (s. Schnitt E, Abb. 5b).

Die Grundwasserscheiden in den hochgelegenen Grundwasserstockwerken der Einzugsgebiete der Sickinger Höhe (im Wesentlichen sOF-, soZ- und soV-Grundwasserleiter) dürften weitgehend mit den oberirdischen Wasserscheiden zwischen den Teileinzugsgebieten zusammenfallen. Es gibt keine Hinweise, dass das flache Schichteinfallen innerhalb der tektonischen Schollen eine merkliche Rolle spielt. Kleinere Verschiebungen können sich allenfalls im Nahbereich von Störungen ergeben, die, nach den Standorten der Quellen zu urteilen, teilweise "Dränagerichtungen" in den Grundwasserstockwerken vorgeben.

5. Wasserversorgungsanlagen, Hinweise zum Brunnenbau

Im Blattgebiet wurde die erste größere Wasserversorgung von 1773 bis 1793 für das Schloss Karlsberg eingerichtet und betrieben. Die Schlossanlagen erstreckten sich nahezu über das gesamte Areal der tektonischen Scholle, in der die Quellen Nr. 12 bis 14 liegen (s. Abb. 4 und Tab. 2). Die Quellkammern aus Bruchsteinen überdauerten die Zerstörung des Schlosses durch französische Revolutionstruppen im Jahre 1793 und sind mit zwischenzeitlich erneuerten Ausläufen heute noch präsent. Zur Deckung des gesamten Wasserbedarfs von Schloss Karlsberg wurde damals entlang des sich nach Nordosten erstreckenden Höhenrückens eine vielfach verzweigte Quellsammelleitung bis in die Gemarkung von Lambsborn gebaut. Alle genutzten Quellen entspringen ausschließlich aus Grundwasserstockwerken der Zwischenschichten (soZ) und der Oberen Felszone (sOF).

Ein Teil der Quellfassungen wurde im 19. Jahrhundert zur Speisung von Laufbrunnen in den umliegenden Ortschaften weiter verwendet. Ähnliche Anlagen in einfacher Bauweise waren damals die Grundlage der Wasserversorgungen aller Ansiedlungen im Blattgebiet, wobei auf den Höhendörfern der Sickinger Höhe nahezu ausschließlich der Werkstein-Grundwasserleiter im unteren Teil des Voltziensandstein (soV) genutzt wurde.

Parallel dazu wurden durch Abteufen von Schacht- und später Bohrbrunnen Einzelwasserversorgungen gebaut und betrieben (z.B. auch auf Schloss Karlsberg), die in der Regel ausschließlich oberflächennahe Grundwasserleiter nutzten. Diese Brunnen waren meist nicht tiefer als 30 m und erfassten z.B. auf der Sickinger Höhe den soV-Grundwasserleiter.

In der Moorniederung waren und in Kirrberg und Wiesbach sind solche Brunnen heute noch artesisch. Artesische Brunnen wurden z.B. auch im ausgedehnten Gestüt Eichelscheid östlich von Waldmohr als Pferdetränken genutzt.

Um die Wende 19./20. Jahrhundert wurde die Wasserversorgung durch den Bau von Pumpanlagen und Hochbehältern zunehmend zentralisiert. Von den Quellen wurden überwiegend nur noch solche mit relativ gleichbleibenden und ausreichenden Schüttungen aus unbelasteten, meist bewaldeten Einzugsgebieten genutzt. Hygienische Aspekte gewannen immer mehr an Bedeutung; so wurde z.B. nach einer Typhusepidemie im Jahre 1905 die Wasserversorgung von Käshofen umgestellt und die Trinkwassernutzung aus Schachtbrunnen und Quellen in der Ortslage aufgegeben. Als ergiebige und sichere Grundwassergewinnungsanlagen wurden in der zweiten Hälfe des 20. Jahrhunderts ausschließlich Tiefbrunnen mit Endteufen bis 250 m gebaut, die Grundwasserleiter der Stauf-, Trifels-, Rehberg- und Karlstal-Schichten erschließen. Durch sie sind der Trinkwasserbedarf der ansässigen Bevölkerung und der Brauchwasserbedarf der Industrie sichergestellt. Zusätzlich werden noch sowohl aus dem Erbach- als auch aus dem Glaneinzugsgebiet Fernwasserversorgungen bedient (Wasserzweckverband Ottweiler, Ohmbachverband).

Die Tiefbrunnen erhielten meist Abdichtungsstrecken von 10 bis 30 m (im Stadtgebiet von Homburg bis auf wenige Ausnahmen 30 m, der Richtwert einer Brunnenbaufirma aus Rohrbach bei St. Ingbert). Ein weiterer Ausbau mit Aufsatz- und Filterrohren wurde nur dann vorgenommen, wenn das Bohrloch störende Instabilitäten aufwies (z.B. starke Ausbrüche bzw. Nachfallbereiche).

Neuere Tiefbrunnen erhielten z.T. tieferreichende Abdichtungen (50 bis 70 m bei Nr. 78, 86 und 90 der Tab. 2), um hydraulische Kontakte mit oberflächennahen Grundwasserleitern zu vermeiden. Die Druckniveaus und die Lösungsinhalte der oberflächennahen Grundwässer im pfälzischen Buntsandstein unterscheiden sich nämlich meist deutlich von denen tieferer Grundwasserleiter. Auch zwischen den tieferen sind noch, wenn auch gewöhnlich in weit geringerem Ausmaß, entsprechende Unterschiede festzustellen. Die aus unterschiedlichen Druckhöhen resultierenden Austauschfließvorgänge im Brunnen können diesen erheblich belasten und zu Alterungen führen. Darunter sind hier vor allem Versandungen und Verockerungen zu verstehen. Letztere sind u.a. eine Folge zu unterschiedlicher Lösungsinhalte (besonders der Sauerstoffgehalte) der erfassten Grundwässer.

Die Erfahrungen beim Bau von Brunnen im Buntsandstein der Pfalz haben gezeigt, dass man mit den heutigen Möglichkeiten zu Voruntersuchungen funktionstüchtige Brunnen bzw. Brunnengruppen bauen kann, die die hydrogeologischen Gegebenheiten der jeweiligen Bereiche optimal nutzen.

Außerhalb der Moorniederung sind die höchsten Transmissivitäten in der Regel in Talauen anzutreffen, vornehmlich dort, wo diese sehr breit sind und Seitentäler abzweigen. Es sind dies Bereiche, in denen im Buntsandstein verstärkte und tiefreichende Subrosionen in tektonischen Zerrungszonen anzunehmen sind (z.B. Bereiche von Flexuren und Blattverschiebungen, oder auch Randgebiete tektonischer Schollen, insbesondere solche von Hochschollen). Solche Bereiche können aus geologischen Kartierungen abgeleitet und evtl. durch geophysikalische Flächenuntersuchungen näher eingegrenzt werden. Durch derartige Untersuchungen können auch die engeren Zonen von Verwerfungen (Abschiebungen) erkannt werden, die sich als Brunnenstandorte weniger eignen, da hier das Gebirge in der Regel instabil ist und die Transmissivitäten gering sind.

Der dann nach den lokalen Gegebenheiten unter Berücksichtigung eines optimalen Grundwasserschutzes festzulegende Brunnenstandort sollte durch einen Versuchsbrunnen näher erkundet werden. Gute Ergebnisse lassen sich im Pfälzer Buntsandstein erzielen, wenn als Versuchsbrunnen eine Kernbohrung gewählt wird (Kerndurchmesser ca. 100 mm, Bohrdurchmesser ca. 150 mm). Anhand des Kerns kann ein genaues Schichtenverzeichnis aufgestellt werden und die Einteilung in Grundwasserstauer, -hemmer und -leiter erfolgen. Dadurch wird die geophysikalische Vermessung des Bohrloches ergänzt, die in dem engen Bohrloch gute Messwerte zu folgenden Parametern liefern kann: Kaliber, γ -Ray, elektrische Widerstände des Gesteins (große und kleine Normale sowie fokussiertes Log), elektrische Leitfähigkeit und Temperatur des Grundwassers sowie, sofern möglich, Flowmetermessungen.

Durch die bohrlochgeophysikalischen Messwerte erhält man eine übergeordnete Gliederung des erbohrten Profils, Informationen zu den Grundwasserzutritten, pauschale Angaben zu den Transmissivitäten und Lösungsinhalten der Grundwässer sowie zur Erodierbarkeit bzw. Standsicherheit des Gesteins (letzteres über die Kalibermessung, die Bohrlochausbrüche anzeigt). Zwischenpumpversuche und Pumpversuche mit Packern ergeben genauere Kenntnisse über die Transmissivitäten der einzelnen Grundwasserstockwerke, der Lösungsinhalte der Grundwässer sowie Hinweise zu deren Druckhöhen.

Nach den Untersuchungsergebnissen können zum Bau der Hauptbrunnen meist verschiedene Varianten gewählt werden. Bei Buntsandsteinmächtigkeiten von weit mehr als 100 m, also am Südrand der Moorniederung und im Inneren der Pfälzer Mulde, ist es sinnvoll, an einem Standort zwei verschieden tiefe Brunnen zu bauen, die die dort anstehenden Grundwasserleiter ohne störende gegenseitige Beeinflussung erfolgreicher nutzen, als es durch nur einen Brunnen möglich wäre. Bei geringeren Buntsandsteinmächtigkeiten, wie in der Bruchniederung und am Nordwestrand der Pfälzer Mulde, ist diese Möglichkeit meist auch gegeben, aber bei zu niedrigen Brunnenleistungen oft nicht mehr wirtschaftlich. Grundsätzlich gilt, dass durch einen Brunnen nur solche Grundwasserleiter zusammen erfasst werden sollten, deren Grundwässer sich in den Lösungsinhalten und Druckhöhen nur wenig unterscheiden.

Die als Abdichtungsstrecken vorzugsweise einzubauenden hinterbetonierten Sperrrohre können je nach Brunnentyp Längen von ca. 20 m bis ca. 100 m und tiefer haben. In jedem Fall sollte die Abdichtung oberflächennahe Grundwasserleiter absperren, um evtl. Kontaminationen oder Verkeimungen von den Brunnenförderstrecken fernzuhalten.

Zur Minimierung von Eintrübungen und Sandführungen der Förderwässer sollten bei den Brunnen die Endbohrdurchmesser mindestens 500 mm betragen. Je größer die Bohrlochdurchmesser, um so geringer sind die Strömungen und Turbulenzen an der Bohrlochwand und im Bereich der wasserführenden Schichtflächen und Klüfte.

Die Erosionen bzw. Subrosionen betreffen hauptsächlich die grundwasserhemmenden "Sandfels"-Einlagerungen und -abfolgen (z.B. Dünnschichten des sR, sK1 und sK3) zwischen den grundwasserleitenden "Felssandsteinen", vor allem im Bereich der Kontaktflächen zwischen beiden (zu den Begriffen s. ROSENTHAL, 1995).

Ein weiterer wesentlicher Schutz lässt sich durch den Ausbau des Bohrloches mit Aufsatz- und Filterrohren und feiner Verkiesung (vorzugsweise Quarzkies mit Korndurchmesser 2–3 mm) erreichen. Dabei sollen die Aufsatzrohre mindestens bis zum gewählten Absenkungsziel reichen und ebenfalls in der anschließenden Filterrohrstrecke in Bohrlochabschnitten mit Ausbrüchen eingebaut werden.

Ausschließlich mit Sperrrohr ausgebaute Brunnen wurden früher in der Regel in diesem Bauzustand belassen, wenn die Absenkungen relativ gering waren und das Klarpumpen sehr erfolgreich verlief. Unter Vorbehalt eines nachträglichen weiteren Ausbaus ist diese Sparmaßnahme auch heute noch zu rechtfertigen. Beim Brunnenbetrieb sollten die Absenkungen die Sperrrohrtiefe nicht unterschreiten bzw. keinesfalls bis in die Filterstrecke reichen. Progressive Absenkungen im langjährigen Förderbetrieb sollten vermieden werden. Zu den aus den Niedrigwasserabflüssen abzuleitenden langfristigen mittleren Grundwasserneubildungsraten der tieferen Stockwerke von höchstens 5 l/(s · km²) in der Nordwesthälfte des Blattgebietes bzw. ca. 6 l/(s · km²) im Südosten sollte bei den Gesamtgrundwasserentnahmen durch Tiefbrunnen in den entsprechenden Gebieten ein gewisser Abstand gewahrt bleiben, um der Hauptursache von progressiven Absenkungen, nämlich zu hohen Fördermengen in den Einzugsgebieten, vorzubeugen.

Schriften

- ACHILLES, A. (1982): Das Klima der Kreisstadt Homburg-Saar, 25 Jahre Wetter: 1954 1978. 307 S., 215 Abb., (Saarpfalz-Druck). Homburg/Saar.
- Аммон, L. V. (1903): Erläuterungen zu dem Blatte Zweibrücken (Nr. XIX) der Geognostischen Karte des Königreiches Bayern. 182 S., (Piloty & Loehle) München.
- BIESKE, E. (1992): Bohrbrunnen. 7. Aufl., 417 S., 202 Abb., 27 Tab., (R. Oldenbourg) München, Wien.
- DEUTSCHER WETTERDIENST (DWD) (2000): Mittlere Niederschlagshöhen sowie regionalisierte Niederschläge 1952–1999. Ausgewertet durch das Landesamt für Wasserwirtschaft Rheinland-Pfalz, Mainz. – [unveröff.].
- DRUMM, R. (1942): Geologische Studien und Untersuchung der Grundwasserverhältnisse auf dem Nordwestflügel der pfälzischen Triasmulde zwischen Saarbrücken-Saargemünd und Kaiserslautern – Mitt. Ver. Naturkunde und Naturschutz in der Westmark, Pollichia, N. F., X., S. 5–68, 8 Abb., Bad Dürkheim.
- EINSELE, G. & BOZORGZAD-ARBAB, O. & HEITELE, H. & SEILER, K.-P. (1969): Hydrogeologische Untersuchungen in der Buntsandsteinzone des südlichen Saarlandes. Allgemei-

ner Teil: Neubildung und Speicherung von Grundwasser. – Geol. Mitt., 9, S. 1–74, 24 Abb., 15 Tab., Aachen.

- FUCHS, H.-J. & WERNER, M. (2002): Zur Klimaökologie des Donnersberges in der Nordpfalz. – Mitt. POLLICHIA, **87, 2000**, S. 19–41, 12. Abb., Bad Dürkheim.
- HEITELE, H. (1968): Versickerungsvorgänge in der Buntsandsteinzone des südlichen Saarlandes. Diss. Univ. Tübingen, 100 S., 32 Abb., 4 Tab., Tübingen.
- (1972): Versickerung von Niederschlägen in Deckschichten und im Gebirge des pfälzischen Buntsandsteingebietes. Mainzer geowiss. Mitt., 1, S. 70–81, 4 Abb., Mainz.
- (2001): Geologischer Aufbau und Grundwasserfließvorgänge im Nordwestteil der Pfälzer Triasmulde (Sickinger Höhe und Westpfälzische Moorniederung im Bereich der TK 25, Blatt Homburg), Teil 1, Geologischer Aufbau und stratigraphische Stellung der Grundwasserleiter. – Mainzer geowiss. Mitt., 30, S. 227–270, 8 Abb., Anhang, Mainz.
- LANDESAMT FÜR WASSERWIRTSCHAFT RHEINLAND-PFALZ (1993): Grenzüberschreitende Grundwasserbewirtschaftung Saarland/Rheinland-Pfalz, 1. Untersuchungsphase Teilgebiet "oberer Glan, Schwarzbach und Neuwoogbach" – Bilanzierung des Wasserhaushaltes. Bericht Nr. **216/93**, 30 S., 9 Abb., 9 Tab., Mainz.
- OBENAUER, K. (1929): Stratigraphie und Tektonik im Südostteil des Höcherberggebietes (Saarpfalz). 64 S., 1 Kte., 4 Profile, 20 Abb., (Privatdruck) Saarbrücken.
- REIS, O. M. (1899) Die westpfälzische Moorniederung, ein geologisch-hydrographisches Problem. – Geognost. Jh., **12**, S. 72–108, 1 Abb., Kassel.
- ROSENTHAL, R. (1995): Ingenieurgeologische Beschreibung der geotechnischen Eigenschaften des Unteren und Mittleren Buntsandsteins der Pfalz. Diss. Univ. Heidelberg, 284 S., 39 Tab., 46 Abb., Heidelberg.
- WASSERWIRTSCHAFTLICHER RAHMENPLAN RHEINPFALZ (1982): 2 Bde., 329 + 358 S., 85 Anl., (Ministerium für Landwirtschaft, Weinbau und Forsten) Mainz.

HUBERT HEITELE

Anschrift des Autors: Dr. HUBERT HEITELE, Geologisches Landesamt Rheinland-Pfalz, Emy-Roeder-Str. 5, D-55129 Mainz.

Manuskript eingegangen am 8.7.2002