
1.  Introduction
Numerical models of the atmosphere such as numerical weather prediction (NWP) models or climate models 
both face the challenge of properly resolving physical processes on all relevant spatial and temporal scales. These 
include many processes operating at scales smaller than the grid-spacing of the models, for example, cloud phys-
ics, which therefore cannot be explicitly represented. As a consequence, all of these subgrid processes need to 
be parameterized, that is, their effect on the resolved scales needs to be modeled. In the context of cloud mode-
ling, a good parameterization is crucial to capture the impact of clouds on radiation, the hydrological cycle, and 
dynamics. Since parameterizations are usually not rigorously derived from first principles, they contain ad-hoc 
assumptions or rely on the fitting of observed data. Parameters are introduced which are uncertain to some degree 
or even represent artificial processes without a strict physical interpretation. Consequently, it is important to 
assess the impact of this so-called parametric uncertainty, that is, the degree to which the uncertainty in a specific 
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parameter value choice influences the model result. There are several attempts to understand the sensitivity of 
parameters in the literature.

The probably most straightforward way to investigate parametric uncertainty is to pick a specific parameter 
deemed to be particularly uncertain or important and to conduct a number of simulations with different choices 
for the numeric value of this parameter. Morris (1991) describes plans for independent random sampling using 
a sampling matrix to assess the impact of single parameters with varying perturbance with few simulations. 
Another method described there uses Latin hypercube sampling, which samples the uncertain parameter space 
while ensuring maximum distance between different parameter combinations. Finally, he describes the usage 
of cluster sampling, which considers more than one effect during a simulation as long as these effects do not 
strongly affect each other. Specific examples in the context of cloud modeling are the studies by Igel and van den 
Heever (2017a); Igel and van den Heever (2017b), who considered a parameter describing the width of the drop-
let size distribution in shallow cumulus clouds. By varying this parameter, they found that its value significantly 
affects the simulated clouds.

In the context of cloud microphysics, statistical sampling techniques were used, for example, by Johnson 
et al. (2015), who used a maximin Latin hypercube design, which maximizes the minimum distance between 
points, to obtain a statistically meaningful sample of a multidimensional parameter space. Based on the sampling 
with complex model simulations, they construct a statistical emulator, being a surrogate representation using the 
Gaussian process as initially proposed by Oakley and O’Hagan (2004). That allows a variance-based analysis 
of the impact of several (input) parameters on the model output. Although emulators can be very effective, they 
often rely on prior knowledge, which might not always be available, or on assuming specific distributions of the 
parameters, for example, a Gaussian distribution. Also, in the case of high dimensional parameter spaces, many 
complex model simulations are still required. Following the idea of applying emulators, Wellmann et al. (2018) 
trained emulators for deep convective clouds using idealized cloud-resolving model simulations in order to assess 
the parameter sensitivity, and Regayre et al. (2014) investigated the sensitivity of radiative properties of clouds  to 
aerosols in a global climate model. These approaches investigate only a single parameter or a small number (in the 
order of 10) of parameters due to the large number of computationally expensive simulations required.

An entirely different approach, which incorporates uncertainty into the model itself rather than quantifying it 
in additional experiments, is outlined in Chertock et al.  (2019). A stochastic Galerkin method is employed to 
solve the Navier-Stokes equations coupled to a cloud model. One carefully chosen parameter is assumed to be 
stochastic, and the resulting distribution of all model state variables is estimated as a solution to the model, that 
is, including their mean and standard deviation. Although this approach is extremely powerful, it becomes highly 
expensive to include several independent stochastic variables. Computing the statistical distribution of the model 
variables in response to assumed distributions of model parameters provides a complete and desirable treatment 
of parametric uncertainty. However, the stochastic Galerkin approach is, at the moment, only feasible for a very 
small number of stochastic parameters.

Buizza et al. (1999) introduced Stochastically Perturbed Parametrization Tendencies (SPPT; refined by Palmer 
et  al.  (2009)). SPPT pools the uncertainty of several processes and uses spatio-temporally correlated multi-
plicative noise for perturbing parametrized tendencies. Since tendencies are not independent of each other, the 
perturbance must be applied to the sum of the parametrized tendencies. This is not ideal since all processes 
are perturbed using the same error characteristics, assuming a perfect correlation with each other (Leutbecher 
et al., 2017). Christensen et al. (2017) generalized this approach such that six physics processes are perturbed 
independently (iSPPT). This increases the variance of ensemble simulations, and one can estimate the impact of 
distinct processes. These benefits come at a cost: perturbing parameters independently increases the dimension-
ality of the phase space, and parametrization schemes are assumed to be perfectly uncorrelated. Grouping similar 
and correlated processes and perturbing those is an intermediate approach between SPPT and iSPPT.

Ollinaho et al. (2017) developed the Stochastically Perturbed Parametrizations (SPP) scheme that can be applied 
complementary to SPPT. In SPP, one adds stochastic noise that varies in time and space on a process-level. The 
perturbations are independent to each of the parameters, but the perturbation patterns contain a spatial and tempo-
ral correlation that evolve as a first order auto-regressive process. Lang et al. (2021) revised SPP by perturbing 
additional parameters and modifying the probability distributions used in the scheme. In this revised version, 
27 parameters are perturbed with six of them in the cloud scheme. The medium-range forecast scores and the 
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computational cost are similar to SPPT, but the degree of freedom remains higher than in SPPT. Therefore, tuning 
SPP is still more challenging.

Since existing approaches are currently only capable of exploring the sensitivity of model simulations to a very 
limited set of parameters and given the overall number of parameters entering complex parameterization schemes, 
the main question remains: how can we effectively find the most sensitive parameters? To answer this question, 
we explore the use of algorithmic differentiation (AD; also known as automatic differentiation), which was used 
for the first time in the context of cloud schemes for idealized trajectories and a simple warm-rain microphysics 
scheme by Baumgartner et al. (2019).

A thorough explanation of AD is given by Griewank and Walther (2008). In a nutshell, AD considers a computer 
program as a long concatenation of elementary operations which are differentiable. As a consequence of the 
chain rule, the whole program is differentiable. The AD technique allows to compute its derivatives with a linear 
increase of the execution time depending on the number of output or input parameters. Based on the computed 
derivatives, one can rank model parameters by their direct and indirect impact for a given model trajectory during 
run time without further work. Bischof et al. (1996) demonstrated a sensitivity analysis with the MM5 mesoscale 
modeling system, where a tangent linear model, a model to describe the linearized evolution of errors or pertur-
bations, is created with AD to assess the impact of adding additional observations to the initial temperature field. 
Kim et al. (2006) applied AD to the Community Climate System Model (CCSM), where a sensitivity-enhanced 
simulation was investigated to identify important thermodynamic and dynamic parameters and to provide a tuning 
guide, which demonstrated how easy a multivariate sensitivity analysis can be done with AD in Fortran 77. AD is 
a tool that is often used outside of sensitivity analysis. A prominent example of optimizing parameters of a model 
via gradient descent is machine learning (e.g., Paszke et al., 2019). AD may be used for any maximization of 
an objective function using gradient descent or Newton's method (Margossian, 2019) or other algorithms where 
gradients are needed, such as in fluid dynamics, where differentiating fixed point iterations may be necessary, and 
AD is used to decrease the memory requirement (Schlenkrich et al., 2008).

In this study, we use AD to gain insight into the sensitivity of the cloud microphysical evolution of air parcels 
with hundreds of uncertain model parameters and 23 prognostic cloud state variables in a two-moment cloud 
microphysics parameterization. Applying AD at every time step increases the execution time by roughly a third in 
our simulation. We use warm conveyor belt (WCB) trajectories as a case study, which are of special interest due 
to their impact on large-scale precipitation patterns, the hydrometeor, and potential vorticity distribution in a wide 
region (Madonna et al., 2014). The formulation of the microphysics is based on the cloud scheme as implemented 
in the Icosahedral Nonhydrostatic (ICON; Zängl et al. (2015)) model or the COnsortium for Small-scale MOde-
ling model (COSMO; Baldauf et al. (2011)) and was originally presented in Seifert and Beheng (2006a); Seifert 
and Beheng (2006b). We use this scheme to compute the sensitivity of multiple state variables for hundreds of 
model parameters along trajectories to identify the key parameters that have the biggest impact on each model 
state variable. We further evaluate the relevance of gradients for each time step for the longer term (i.e., about the 
next half hour) cloud microphysical evolution.

The outline of this study is as follows: in Section 2, we give an introduction to AD, we present the trajectories 
used, and we describe the model for the cloud microphysical evolution. Section 3 contains the methods used 
to quantify sensitivities using either AD or ensemble simulations for comparison. We give an example of how 
sensitivities change over time in Section 4, and we discuss the identified key parameters. Section 5 dissects the 
relevance of sensitivities for longer time evolution and gives an example of a possible pitfall when applying 
algorithmic differentiation. We close this study with a conclusion and suggestions for future work in Section 6.

Table 1 gives an overview of the model state variables and sedimentation rates and their notation, and Table 2 lists 
the ten most important parameters identified by AD for each model state variable. Table A1 shows the identified 
most important parameters with a description and the model state variable with their largest impact. Table 3 
shows the correlation between AD-estimated and ensemble-estimated deviations for mass densities, whereas 
Table B1 shows the correlation for all model state variables and sedimentation rates.
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2.  Data and Methods
In the following, we explain the principles of algorithmic differentiation, the 
different modes that can be used, and the limits of this method to evaluate 
gradients. We give an overview of the convective trajectories that have been 
identified for the extratropical cyclone Vladiana. Finally, we describe some 
key equations of the microphysical model.

2.1.  Algorithmic Differentiation

Algorithmic Differentiation (AD) is a technique to compute derivatives of 
a given computer code. Once implemented, the computation of the deriv-
atives is achieved automatically alongside the usual run of the computer 
code, hence the computation of the derivatives is automatic (Griewank 
& Walther, 2008). The derivative of the program may also be seen as the 
sensitivity of the output to an input. Since any computer code is a concat-
enation of simple differentiable functions, so-called “elemental operators,” 
such as addition, multiplication, trigonometric functions, or exponentials, the 
chain rule implies that the whole code, and hence the model it represents, 
is differentiable. For the subsequent description of AD, we follow the nota-
tion and exposition by Sagebaum et  al.  (2019). Given a theoretical model 

𝐴𝐴 ∗
∶ 𝑋𝑋 𝑋 ℝ

𝑛𝑛in → 𝑌𝑌 𝑌 ℝ
𝑛𝑛out with nin input (or model) parameters and nout 

output (or model state) variables, we can formally write its implementation 
𝐴𝐴  as a concatenation of elemental mappings Φi

� = (�) = ��,� ◦Φ� ◦Φ�−1 ◦ ⋯ ◦Φ2 ◦Φ1 ◦ ��,� (�),� (1)

with 𝐴𝐴 𝐴𝐴 𝐴 ℝ
𝑙𝑙 the space of the intermediate values, V = X × U × Y the space of 

the program evaluation Φi(v), and k = l + nout the number of operations. Each 
elemental mapping has the form 𝐴𝐴 Φ𝑖𝑖(𝑣𝑣) =

(
𝑣𝑣1,… , 𝑣𝑣𝑛𝑛in+𝑖𝑖−1

, 𝜙𝜙𝑖𝑖(𝑣𝑣), 0,… , 0
)
 , 

where 𝐴𝐴 𝐴𝐴𝑖𝑖 ∶ 𝑉𝑉 → ℝ is an elemental operator. The matrix 𝐴𝐴 𝐴𝐴𝑋𝑋𝑋𝑋𝑋 ∈ ℝ(
𝑛𝑛in+𝑘𝑘)×𝑛𝑛in 

projects an input vector onto the first nin components of an (nin + k) vector, 
and ��,� ∈ ℝ�out×(�in+�) projects an (nin + k) vector onto its last nout compo-
nents for the final output. It is important to note that the resulting gradients 
are given by the implemented model 𝐴𝐴  and not by the underlying theoretical 
model 𝐴𝐴 ∗ . This implies several dependencies for the derivatives: they may 
depend on the numerical methods, the time step size, the machine precision, 

the evolution of the model, that is, each set of initial parameters may result in different gradients. Baumgartner 
et al. (2019) give an example of different temporal evolutions of the derivative with different time steps in their 
Figure 4. Furthermore, parameters in a model used solely as thresholds, that is, as an argument in an if-clause, 
may have a big impact on the model output by changing the control flow, but a gradient cannot be determined. As 
an example, consider the following function:

𝑦𝑦(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) =

⎧
⎪
⎨
⎪
⎩

2 ⋅ 𝑥𝑥 for 𝑥𝑥 ≤ 𝑎𝑎

𝑥𝑥
𝑏𝑏

for 𝑥𝑥 𝑥 𝑥𝑥

� (2)

In this example, a is a threshold, which would be implemented with an if-clause such as if (x <= a). A gradient  
∂y/∂a would yield zero for both cases, even though changing a can potentially change the evolution of the model. 
In addition, a gradient ∂y/∂b is always zero if the latter case does not occur during the simulation, which demon-
strates the dependency of gradients on the progression of the model. If the exponent in Equation 2 was a instead 
of b, then AD would yield a gradient for ∂y/∂a, but only for the case x > a. Another caveat is when a gradient 
becomes a complex number, which might not be handled by an AD tool, and where the interpretation is not 
straightforward if the input and output are restricted to real numbers. We discuss this aspect with an example in 
Appendix C.

Model state variable Notation

Water vapor mass density Qvapor

Cloud droplets mass density Qcloud

Rain droplets mass density Qrain

Graupel mass density Qgraupel

Hail mass density Qhail

Ice mass density Qice

Snow mass density Qsnow

Cloud droplet number density Ncloud

Rain droplet number density Nrain

Graupel number density Ngraupel

Hail number density Nhail

Ice crystal number density Nice

Snowflake number density Nsnow

Rain droplet number density (sedimentation) Nrain,out

Graupel number density (sedimentation) Ngraupel,out

Hail number density (sedimentation) Nhail,out

Ice crystal number density (sedimentation) Nice,out

Snowflake number density (sedimentation) Nsnow,out

Rain droplets mass density (sedimentation) Qrain,out

Graupel mass density (sedimentation) Qgraupel,out

Hail mass density (sedimentation) Qhail,out

Ice mass density (sedimentation) Qice,out

Snow mass density (sedimentation) Qsnow,out

Note. The word “sedimentation” refers to the mass and number densities that 
sediment out of the simulated air parcel.

Table 1 
An Overview of the 23 Model State Variables for Which Sensitivities Are 
Calculated
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Two important questions can be addressed using AD:

1.	 �To which input is a given model state variable ys most sensitive?
2.	 �Which output does the model parameter xp influence the most?

d

d𝑥𝑥
� (3)

From a mathematical point of view, both questions can be answered using the 
Jacobian of the model 𝐴𝐴  . The strength of AD becomes eminent by noting 
that AD computes the effect of the program's Jacobian on a given vector 
without forming the Jacobian explicitly. This is the benefit of AD since the 
Jacobian can require large amounts of memory with many input and output 
variables. Furthermore, the evaluation for desired gradients can be optimized, 
reducing any possible overhead that might come with different techniques 
for evaluating the Jacobian implicitly. The obtained gradients are in machine 
precision, avoiding round-off problems as in, for example, finite-difference 

Model state variable Top 10 parameters

Water Vapor Mass Density geob,ice, geoa,ice, bccn,4, cccn,4, velb,ice

bccn,1, cccn,1, dccn,4, accn,4, geob,graupel

Cloud Mass Density bccn,1, bccn,4, cccn,1, cccn,4, dccn,4

dccn,1, accn,4, geob,graupel, kr, accn,1

Rain Mass Density geob,rain, αrain, βrain, velb,rain, z −1

bccn,1, bccn,4, cccn,1, cccn,4, geoa,rain

Graupel Mass Density velb,rain, velb,graupel, geob,rain, geob,graupel, z −1

vela,rain, psat,melt, vgraupel,sedi,max, geoa,rain, vela,graupel

Hail Mass Density μrain, geob,rain, xrain,min,frz, xmin,rain, Drainfrz,ig

geoa,rain, νrain, z −1, βrain, kr

Ice Mass Density geob,ice, dccn,4, accn,4, velb,rain, dccn,1

accn,1, velb,ice, z −1, vice,sedi,max, geoa,ice

Snow Mass Density μrain, geob,snow, aHET, velb,graupel, geob,rain

geob,graupel, velb,rain, velb,snow, psat,melt, vela,graupel

Cloud Droplet Particle Density bccn,4, cccn,4, bccn,1, cccn,1, dccn,4

accn,4, dccn,1, accn,1, dccn,3, bccn,3

Rain Droplet Particle Density bccn,1, bccn,4, cccn,1, cccn,4, dccn,4

dccn,1, αrain, βrain, accn,4, accn,1

Graupel Particle Density geob,rain, geob,ice, μrain, velb,graupel, velb,rain

geob,snow, Drainfrz,gh, geoa,rain, aHET, velb,ice

Hail Particle Density μrain, xrain,min,frz, xmin,rain, geob,rain, Drainfrz,ig

geoa,rain, aHET, bHET, αrain, velb,rain

Ice Particle Density dccn,4, accn,4, dccn,1, accn,1, velb,ice

cccn,4, dccn,2, cccn,1, Tmult,max, geob,ice

Snow Particle Density geob,rain, μrain, geob,ice, aHET, geob,snow

Drainfrz,gh, geoa,rain, velb,ice, velb,rain, geoa,ice

Note. The parameters are sorted by the associated MSDpred(ys). Cloud droplets are most sensitive to parameters related to 
CCN activation (see Equation (13)), whereas frozen hydrometeors are mostly sensitive to the geometry of particles.

Table 2 
The top 10 Parameters for Each Model State Variable ys

Model state variable ys r(ys) without zero sensitivities r(ys)

Water Vapor Mass Density 0.863 0.889

Cloud Mass Density 0.927 0.904

Rain Mass Density 0.901 0.868

Graupel Mass Density 0.900 0.845

Hail Mass Density 0.906 0.818

Ice Mass Density 0.924 0.884

Snow Mass Density 0.864 0.815

All Together 0.887 0.543

Note. The second column uses only those parameters xp, where AD estimated 
a sensitivity above zero, that is, where MSDpred(ys, xp) > 0.

Table 3 
Spearman's Rank Correlation for AD-Estimated Deviation MSDpred and 
Ensemble-Estimated Deviation MSD for Every Mass Density State Variable
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methods. AD calculates in one sweep either the partial derivatives of all outputs with respect to one input, called 
forward mode, or the partial derivatives of one output with respect to all inputs, called backward mode. The first 
question posed above, that is, that regarding the biggest impact on a given output variable, refers to the backward 
mode of AD, which is recommended when more input than output parameters are present (nin > nout). The second 
question corresponds to the forward mode recommended for nout > nin. The difference between those modes 
becomes clear by looking at the calculation of the directional derivatives for the forward mode suitable for each 
direction 𝐴𝐴 𝐴𝐴𝐴 ∈

{
𝑒𝑒1, 𝑒𝑒2, . . . , 𝑒𝑒𝑛𝑛in

}
 :

𝑦̇𝑦 =
d

d𝑥𝑥
(𝑥𝑥)𝑥̇𝑥𝑥� (4)

where x ∈ X is the vector of input variables (initial state or, in our case, model parameters), y ∈ Y is the vector of 
output variables (in our case, the model state variables), and ei denotes the standard unit vector in direction i. On 
the other hand, in the backward mode AD calculates the adjoint derivative for every adjoint direction, denoted by 

𝐴𝐴 𝐴𝐴𝐴 ∈

{
𝑒𝑒1, 𝑒𝑒2,… , 𝑒𝑒𝑛𝑛out

}
 , via

𝑥̄𝑥 =
d

d𝑥𝑥
(𝑥𝑥)

T
𝑦̄𝑦𝑦� (5)

The number of necessary calculations for the forward mode depends on the number of input variables nin, whereas 
the backward mode scales with the number of output variables nout. In our model, we are going to analyze 
177 model parameters and their impact on 23 output parameters, such that nin = 177 ≫ 23 = nout, and hence 
we use the backward mode. Applying AD increases the execution time of our simulations by roughly a third. 
We selected the parameters based on the model descriptions given by Seifert and Beheng (2001); Seifert and 
Beheng (2006a, 2006b), Seifert (2008), Phillips et al. (2008), Hallett and Mossop (1974), and Hande et al. (2016). 
Parameters that have an explicit dependency on other parameters have been excluded wherever possible and the 
impact of the latter is tracked instead. For example, Seifert and Beheng (2006a) describe a parameter 𝐴𝐴 𝐴𝐴𝐴vent,𝑛𝑛 (their 
Equa tion (88)) for calculating an averaged ventilation coefficient (their Equation (85)). This constant depends 
on the diameter-mass relation, the velocity-mass relation, and on the constants of the generalized Γ-distribution 
which are tracked instead. Resolving all dependencies is not feasible for all parameters, that is, coupled parame-
ters whose values are tuned are tracked as they were independent. We discuss this in more detail in Section 3.1.

AD can be implemented via source transformation, that is, by parsing code with an external program to produce 
additional code that has statements for the forward or backward mode. Tapenade (Hascoet & Pascual, 2013) is 
such a tool written in Java for Fortran; some features for newer Fortran versions and C are also implemented. 
There is, however, a major drawback of source transformation: features from modern languages, such as classes 
or templates, which can make it easier to implement AD in a model, are not easily supported. A different approach 
is operator overloading, avoiding the aforementioned downside while maintaining similar execution speeds (see 
Hogan (2014) for the benefits of static polymorphism and expression templates used in operator overloading). In 
this case, an operator returns an expression template (Veldhuizen, 1995) rather than a (temporary) object, where 
lazy evaluation is used in order to create structures during compile time representing calculations that are only 
evaluated when needed. Rather than creating possibly multiple temporary objects to get the result stored in a 
single object, an expression graph is created, which a compiler can optimize, even ignoring the normal order of 
evaluation of a language. Polymorphism allows the treatment of different objects of different types but with the 
same base type as if they are of the same type using the same interface, such that different expression templates 
can be evaluated together. CoDiPack (Code Differentiation Package; Sagebaum et al., 2019) is a tool that uses 
this approach for C++, and we apply this tool to our simulations. The data layout used in CoDiPack creates a 
small memory footprint, and caching strategies of the processors can be applied. CoDiPack has been created for 
High Performance Computing environments and is used in simulation packages such as adFVM (Talnikar & 
Wang, 2019) or SU2 (Economon et al., 2016).

2.2.  Trajectories From Warm Conveyor Belts

Warm conveyor belts (WCBs) are an important phenomenon of extra-tropical weather, since “the WCB repre-
sents a well-defined moist airflow at the leading edge of the trough, ascending from the boundary layer to the 
upper troposphere, and is regarded as the primary cloud- and precipitation-producing flow within extratropical 
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cyclones” (Wernli, 1997). It is the strong ascent in the WCB that typically causes the formation of clouds and 
precipitation, which result in an increasing potential temperature (due to latent heating) and a decreasing specific 
humidity along the WCB (e.g., Madonna et al., 2014). The latent heating occurring during WCB ascent further 
has been demonstrated to affect the potential vorticity structure throughout the troposphere with direct implica-
tions for flow dynamics (e.g., Joos & Wernli, 2012). Hence, WCBs play an important role in the dynamics of 
extratropical cyclones and associated precipitation (e.g., Büeler & Pfahl, 2017). Case study investigations suggest 
that the details of the cloud microphysics scheme can matter for the resulting potential vorticity structure and 
thereby impact the larger scale dynamics (Joos & Forbes, 2016).

Considerations of the WCB ascent in convection-permitting simulations have highlighted the importance of 
embedded convection in WCBs. The different ascent rates in the “conventional” continuously and slantwise 
ascending WCB trajectories differ from those of trajectories experiencing rapid, convective lifting along segments 
of their ascent due to the embedded convection (e.g., Oertel et al., 2019). The ascent rates imply differences in 
the dominant cloud microphysical processes in the two sub-sets of WCB trajectories (e.g., Oertel et al., 2020), 
which makes both slantwise and convective ascending trajectories interesting test cases for themselves. It has 
further been suggested that slantwise ascending trajectories dominate the large-scale precipitation pattern, the 
hydrometeor, and potential vorticity distribution at large-scales, while trajectories with convective ascending 
segments have a bigger impact on surface precipitation rates (Oertel et al., 2019, 2020). Following the catego-
rization introduced by Oertel et al. (2020), a WCB trajectory is considered slantwise if the 400 hPa and 600 Pa 
ascent times are between 1.5 to 3.5 hr and 6.5–22 hr, respectively. A WCB trajectory is convective if the fastest 
400 hPa and 600 hPa ascent times are shorter than one hour and three hours, respectively. Due to their impact 
on cloud evolution and, therefore, various microphysical processes that occur in a short time, we here focus on 
convective WCB trajectories.

Trajectories are computed for the extratropical cyclone “Vladiana,” which developed from 22 to 25 Sep 2016 in 
the North Atlantic during the North Atlantic Waveguide and Downstream Impact Experiment field campaign 
(Schäfler et  al.,  2018). Figure  1a shows the convective WCB trajectories, and Figure  1b displays the evolu-
tion of pressure along these trajectories, that is, indicates the ascent rates of the air parcels. The simulation of 
the case-study we use here to derive trajectories was conducted with the COSMO model version 5.1 (Baldauf 
et al., 2011) following the model setup described by Oertel et al. (2020). In contrast to Oertel et al. (2020), we 
use the two-moment scheme by Seifert and Beheng (2006a) for representing cloud microphysics as described 
in Section 2.3. The trajectories have been computed with the COSMO online trajectory scheme (Miltenberger 

Figure 1.  Overview of all convective trajectories with either a 400 hPa or 600 hPa ascent within one or three hours, 
respectively, in our data set. (a) The geographic location of all trajectories (over the North Atlantic Ocean). The blue shade 
represents the number of trajectories. (b) The evolution of parcel air pressure for different sets of trajectories relative to the 
onset of rapid ascent. The 75th percentile is dot-dashed, the 50th percentile (median) is a solid line, and the 25th percentile is 
dashed. The shading indicates the area between min and max pressure values at each time step.
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et al., 2013). The positions of the trajectories are calculated from the resolved 3D wind field at every model time 
step, here 20 s. We use the same starting positions and times of the online trajectories as in Oertel et al. (2020).

Our data set consists of 2,199 convective trajectories where 2,036 trajectories ascend 400 hPa within one hour, and 
1,240 trajectories ascend 600 hPa within three hours. These two categories are not mutually exclusive such that 
1,077 trajectories fall into both categories. For each category, we computed three representative trajectories, that 
is, the 25th, 50th, and 75th percentile trajectory. Figure 1b shows the temporal evolution of pressure and Figure 2 
that of the specific humidity (a), liquid water content (b), frozen water content (ice, snow, graupel, and hail) (c), 
and the temperature (d) along the convective trajectories. From these trajectories the thermodynamic conditions 
(T(t), p(t)) and initial values (Qvapor(t = t0), Qcloud(t = t0), …) are used to drive our box-model simulation.

2.3.  Description of the Cloud Microphysics Model

We re-implemented the two-moment cloud microphysics, as described later in this section, in C++ in order to 
apply AD with the library CoDiPack. We use the thermodynamics from representative trajectories, that is, the 
25th, 50th, and 75th percentile trajectories, of the COSMO simulation as drivers to get a realistic thermodynamic 
evolution of individual air parcels. Figure 3 depicts the workflow of the simulation. These selected thermody-
namic air parcel trajectories, together with the parcel's initial specific humidity, are used for a recomputation of 
the cloud microphysical evolution using a box-model simulation. We apply the Runge-Kutta method of order four 
(Hairer & Wanner, 1996) for our cloud microphysics, whereas the default integration method for COSMO is the 
Runge-Kutta method of order three. Our choice is, in the worst case, as accurate as the COSMO variant in the 

Figure 2.  An overview of all convective trajectories with either a 400 hPa (purple) or 600 hPa (green) ascent within one or three hours, respectively, in our data set. 
We set the start time to the start of the ascent of the trajectories and show the 25th (dashed line), 50th (solid line), and 75th percentiles (dot-dashed lines). The shaded 
area enfolds the entire data region. (a) shows the specific humidity, (b) the sum of cloud and rain droplet mass densities, (c) the sum of snow, ice, graupel, and hail mass 
densities, and (d) the temperature.
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limit of Δt → 0, such that we could trace any unreasonable results to our implementation and rule out our chosen 
integration scheme as the source for any issues.

The processes are implemented with parallel operator splitting (Barrett et al., 2019). Therefore each process is 
being evaluated using the same state in the Runge-Kutta substep, and their impact is added to the state at the end 
of each iteration as outlined in Figure 3. After the microphysical processes are done within a single Runge-Kutta 
step, we use saturation adjustment (i.e., Asai, 1965; Fisher & Caplan, 1963; Kogan & Martin, 1994; Soong & 
Ogura, 1973; McDonald, 1963), where we assume that water vapor and cloud droplets are in thermodynamic 
equilibrium and adjust the temperature accordingly.

We update the thermodynamic variables every time step with the precomputed values from the COSMO simu-
lation. Temperature and pressure changes due to cloud microphysical processes are taken into account within 
each Runge-Kutta substep. As an example, for a time step from t to t + Δt, the temperature T(t) and T(t + Δt) is 

Figure 3.  Workflow of the simulation for every Runge-Kutta step K of order four. The colors indicate which mass or 
number densities are changed in the respective microphysical process. Parallel operator splitting is applied, that is, all 
processes operate on the same model state in each iteration, and results are gathered at every step. The thermodynamics from 
precomputed trajectories is read from a NetCDF-file, and used as drivers.
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given by the COSMO simulation. For any Runge-Kutta substep, we consider the effect of the microphysics as a 
function f:

𝑓𝑓 (𝑡𝑡𝑡 𝑡𝑡 ) =
𝑑𝑑𝑑𝑑 (𝑡𝑡)

𝑑𝑑𝑑𝑑

||||mphys
� (6)

Then the effect is calculated in each substep with:

𝑘𝑘1 = 𝑓𝑓 (𝑡𝑡𝑡 𝑡𝑡 )� (7)

𝑘𝑘2 = 𝑓𝑓

(
𝑡𝑡 +

Δ𝑡𝑡

2

, 𝑇𝑇 + Δ𝑡𝑡
𝑘𝑘1

2

)
� (8)

𝑘𝑘3 = 𝑓𝑓

(
𝑡𝑡 +

Δ𝑡𝑡

2

, 𝑇𝑇 + Δ𝑡𝑡
𝑘𝑘2

2

)
� (9)

𝑘𝑘4 = 𝑓𝑓 (𝑡𝑡 + Δ𝑡𝑡𝑡 𝑡𝑡 + Δ𝑡𝑡 ⋅ 𝑘𝑘3)� (10)

The final temperature T(t + Δt) is given by the COSMO simulation and not the weighted sum of all changes ki 
as usually done for the Runge-Kutta method. The difference between the temperature calculated via the weighted 
sum and the value given by the COSMO simulation is in O(10 −2K) which is the effect of latent heating. This is 
done analogously for pressure. In addition to updating the thermodynamics at every time step, we add any sedi-
mentation influx as diagnosed from the COSMO simulation to our box, as this depends on the processes in the 
column above the parcel and hence cannot be calculated from our box-model. In contrast, hydrometeor fluxes out 
of the parcel due to sedimentation are computed by our box-model.

The cloud microphysical model used for simulations along the pre-calculated WCB trajectories (see Section 2.2) 
is a re-implementation of the two-moment microphysics as implemented in the COnsortium for Small-scale 
MOdeling (COSMO) model (Baldauf et  al.,  2011) and Icosahedral Nonhydrostatic (ICON) model (Zängl 
et al., 2015) and described by Seifert and Beheng (2006a); Seifert and Beheng (2006b). Some differences to the 
original description by Seifert and Beheng (2006a) and our implementation exist, and these will be explicitly 
mentioned below. In addition, we use ice multiplication described by Hallett and Mossop (1974) and follow the 
notation for ice multiplication from Seifert (2002). We implemented heterogeneous ice nucleation as described by 
Phillips et al. (2008) and homogeneous ice nucleation as described by Kärcher et al. (2006). A complete overview 
of all parameters and the notation in the corresponding sources is given in the supplementary information.

In a two-moment scheme, one assumes a fixed distribution type and width to describe the particle size distri-
bution of each hydrometeor category. Two moments, which typically are the mass densities in [kgm −3] and the 
number densities in [m −3] (Khain et al., 2015), are the prognostic variables in the scheme. The particle mass 
distribution f [m −3 kg −1] is assumed to follow a Γ-distribution of the form (Seifert & Beheng, 2001)

𝑓𝑓 (𝑚𝑚) = 𝑁𝑁0𝑚𝑚
𝜇𝜇
exp (−𝜆𝜆𝜆𝜆

𝜈𝜈
) ,� (11)

where m is the mass, N0 is the intercept, μ is the shape parameter, λ is the slope, and ν is the dispersion parameter.

The nth moment of a distribution f is defined as

𝑀𝑀
(𝑛𝑛)

=
∫

∞

0

𝑚𝑚
𝑛𝑛
𝑓𝑓 (𝑚𝑚)𝑑𝑑𝑑𝑑𝑑� (12)

such that for n = 1, one gets the mass density over all particle sizes, which is used in one-moment schemes as well, 
and for n = 0, one gets the number density. Mass densities are given for different hydrometeor types q ∈ {Qcloud, 
Qrain, Qsnow, Qice, Qgraupel, Qhail}. Overall, two-moment schemes can be more realistic than one-moment schemes 
(Khain et al., 2015), for example, due to the representation of aerosol effects that decrease the droplet size with an 
increase in aerosol number density or due to calculating drop density in addition to drop mass in sedimentation 
processes.

In the following, we outline one process that has been changed compared to the setup used in COSMO and two 
processes that are most relevant for the discussion of key uncertain parameters in Section 4.2.
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The Cloud Condensation Nuclei (CCN) activation differs from the activation method by Seifert and Beheng (2006a) 
and that used in the COSMO simulation. The parameterization in COSMO uses empirical activation spectra in 
the form of a power law of saturation. Therefore, one needs to determine the change in saturation with time dS/
dt to calculate the activation rate. Assuming that activation is dominated by the vertical velocity w, an approx-
imation of w∂S/∂z is used in COSMO. This obviously needs information of the saturation above and below the 
current grid point. Since our box simulation does not have this information, we use the parameterization by 
Hande et al. (2016) instead, which has been used in different studies with ICON (e.g., Costa-Surós et al., 2020; 
Heinze et al., 2017). The parameterization solely depends on the air parcel's vertical velocity w and the pressure p:

CCN(𝑤𝑤𝑤 𝑤𝑤) = 𝐴𝐴(𝑝𝑝) ⋅ arctan(𝐵𝐵(𝑝𝑝) ⋅ log(𝑤𝑤) + 𝐶𝐶(𝑝𝑝)) +𝐷𝐷(𝑝𝑝).� (13)

The dependence of aerosol concentrations (and size distribution) on pressure p is parameterized by the following 
equations:

𝐴𝐴(𝑝𝑝) = 𝒂𝒂𝐜𝐜𝐜𝐜𝐜𝐜,𝟏𝟏 ⋅ arctan (𝒃𝒃𝐜𝐜𝐜𝐜𝐜𝐜,𝟏𝟏 ⋅ 𝑝𝑝 + 𝒄𝒄𝐜𝐜𝐜𝐜𝐜𝐜,𝟏𝟏) + 𝒅𝒅𝐜𝐜𝐜𝐜𝐜𝐜,𝟏𝟏,� (14)

𝐵𝐵(𝑝𝑝) = 𝑎𝑎ccn,2 ⋅ arctan (𝑏𝑏ccn,2 ⋅ 𝑝𝑝 + 𝑐𝑐ccn,2) + 𝒅𝒅𝐜𝐜𝐜𝐜𝐜𝐜,𝟐𝟐,� (15)

𝐶𝐶(𝑝𝑝) = 𝑎𝑎ccn,3 ⋅ arctan (𝒃𝒃𝐜𝐜𝐜𝐜𝐜𝐜,𝟑𝟑 ⋅ 𝑝𝑝 + 𝑐𝑐ccn,3) + 𝒅𝒅𝐜𝐜𝐜𝐜𝐜𝐜,𝟑𝟑,� (16)

𝐷𝐷(𝑝𝑝) = 𝒂𝒂𝐜𝐜𝐜𝐜𝐜𝐜,𝟒𝟒 ⋅ arctan (𝒃𝒃𝐜𝐜𝐜𝐜𝐜𝐜,𝟒𝟒 ⋅ 𝑝𝑝 + 𝒄𝒄𝐜𝐜𝐜𝐜𝐜𝐜,𝟒𝟒) + 𝒅𝒅𝐜𝐜𝐜𝐜𝐜𝐜,𝟒𝟒.� (17)

The parameters highlighted in Equations 14–17 are key parameters that are discussed in detail in Section 4.2. The 
parameter A(p) controls the magnitude of CCN, B(p) the shape, and C(p) and D(p) regulate the dependency on 
vertical velocity and CCN concentration, respectively.

In the following, we discuss some processes that contain important parameters according to our analysis (see 
Section 4.2). First, heterogeneous freezing of raindrops is represented in the Seifert and Beheng (2006a) cloud 
microphysics scheme following the parameterization by Bigg (1953). A stochastical model is used where the 
relative time rate of change of the size distribution is given by

1
�(�rain)

��(�rain)
��

|

|

|

|het
= −�rain�het(� )� (18)

with Qrain the mass density of rain droplets and T the temperature of the environment. Bigg (1953) deduced from 
his experiments that the rate of ice-germ formation is

𝐽𝐽het(𝑇𝑇 ) = 𝑏𝑏HET ⋅ exp (𝑎𝑎HET ⋅ (𝑇𝑇freeze − 𝑇𝑇 ) − 1) .� (19)

The change in rain mass and particle number density using Equation 11 and Equation 18 is then

𝜕𝜕𝜕𝜕
(𝑛𝑛)

𝜕𝜕𝜕𝜕

||||het

= −𝑀𝑀
(𝑛𝑛+1)

𝐽𝐽het(𝑇𝑇 ).� (20)

In order to calculate the moment M (n+1) defined in Equation 11, we need to express the intercept and slope of the 
particle mass distribution by the mass and particle number density with

𝑁𝑁0 =
𝜈𝜈𝜈𝜈

Γ

(
𝜇𝜇+1

𝜈𝜈

)𝜆𝜆
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𝜈𝜈

� (21)
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,� (22)

where N is the particle number density and the mean particle mass 𝐴𝐴 𝑚𝑚 = 𝑄𝑄∕𝑁𝑁 is the quotient of mass and particle 
number density. Now we can calculate the moments for number density (n = 0) and mass density (n = 1) for 
Equation 20 as

𝑀𝑀
(1) = 𝑁𝑁𝑚𝑚� (23)
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Note that 𝐴𝐴 𝐴𝐴
(2) = 20 ⋅𝑁𝑁𝑚𝑚

2 if the Marshall-Palmer distribution for rain droplet size is used, as done in our 
simulation.

A second important parameterization according to our analysis in Section 4.2 is the representation of sedimenta-
tion velocity. The sedimentation velocity is formulated by Seifert (2008) (his Equation (A10)) as

𝑣𝑣𝑘𝑘 = 𝛼𝛼rain − 𝛽𝛽rain

(
1 +

𝛾𝛾rain

𝜆𝜆

)
−(𝜇𝜇+𝑘𝑘+1)

� (25)

where k = 0 is selected to compute the sedimentation velocity for the number density and k = 3 for mass densities. 
The parameter λ denotes the slope and μ the shape of the underlying assumed particle size distribution in Equa-
tion 11. The shape parameter μ can be expressed as follows:

� =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(�rain + 1)∕
(

geo�,rain
)

− 1 if�cloud ≥ �crit

�rain,�,0 ⋅ tanh (4 ⋅ �rain,�,2 ⋅ ��)�rain,�,5 + �rain,�,4 if�cloud < �crit and�rain ≤ �rain,�,3

�rain,�,1 ⋅ tanh (�rain,�,2 ⋅ ��)�rain,�,5 + �rain,�,4 otherwise

� (26)

with δD = Drain − μrain,c,3 and Qcrit = 10 −7 kg ⋅ m −3. The formulation of μ depends on the mass of cloud droplets 
Qcloud and the mean diameter size Drain of rain droplets. We do not apply a sensitivity analysis for parameter 
μrain,c,5 = 2 but we use it to demonstrate possible pitfalls of applying AD in Appendix C.

Finally, the mean diameter of a hydrometeor is calculated as

𝐷𝐷 = geo
𝑎𝑎
⋅ 𝑚𝑚

geo𝑏𝑏
.� (27)

The mean diameter is used, that is, as a threshold and as a parameter for the break-up of large rain droplets, for 
riming of cloud or rain droplets, or conversion of graupel to hail. See the supplementary information for an exten-
sive list of all parameters.

Our re-implementation of the cloud microphysics is slightly different from COSMO, which bears the question of 
how different the simulation is. We present in Figure 4 a comparison of our simulation and the data from COSMO 
for four randomly selected trajectories from our data set for specific humidity, liquid and frozen water content, 
and snow mass density. Even though we switched the CCN activation to a different formulation, hydrometeors are 
formed at similar time steps, and the magnitude of different hydrometeor mass densities is the same. This shows 
that the simulation with our implementation is reasonable, although the results can be transferred to COSMO 
only to a certain degree. An exact recreation of COSMO is not needed but rather a realistic, nonidealized simula-
tion in order to show how AD can help to identify and to quantify important parameters.

3.  Estimation of Cloud Microphysics Uncertainties
In order to validate the gradients calculated with AD, we use these to linearly predict the deviation of a simulation 
if the corresponding parameter was perturbed in Section 3.1. In addition, we evaluate the spread of ensemble 
simulations with perturbed parameters in Section 3.2. At last, we describe how we use Spearman's rank correla-
tion in Section 3.3 to check for a nonlinear correlation between AD-estimated deviations and ensemble-estimated 
deviations.
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3.1.  From Sensitivity to Predicted Mean Squared Deviation

Using AD, we can calculate gradients at every time step for every model state variable with respect to every 
model parameter. These gradients differ in size depending on their impact and the magnitude of the involved 
model state variable. In order to quantify only the impact of parameters, we formulate a predicted deviation based 
on the gradients that are averaged over all time steps and trajectories. It is not always possible within an exist-
ing cloud microphysics parameterization to represent all interconnections between processes, not least because 
many parameter values are a result of previous tuning experiments, where parameter interdependencies were 
considered but are not explicitly formulated in the parameterization equations. Our main purpose for the analysis 
is to identify parameters and processes with a large impact on cloud property forecasting. If such a parameter is 
coupled to another parameter which is not found with our approach since the second parameter only has a minor 
impact on the results, the major impact of the first parameter is not negated. Therefore, we consciously postpone 
the inclusion of such nonlinear relationships to a further study.

First, we gather data by evaluating gradients for all model state variables listed in Table 1 at every time step, with 
respect to each model parameter as outlined in Equation 5. Thus, we evaluate

𝜕𝜕𝜕𝜕𝑠𝑠

𝜕𝜕𝜕𝜕𝑝𝑝

=
𝜕𝜕

𝜕𝜕𝜕𝜕𝑝𝑝

(𝑥𝑥)
T
𝑒𝑒𝑠𝑠 for all 𝑝𝑝 = 1,… , 𝑛𝑛in and 𝑠𝑠 = 1,… , 𝑛𝑛out,� (28)

Figure 4.  Comparison of the cloud microphysical evolution as simulated by our box-model (orange) and simulated in the COSMO model (blue). Results are shown for 
four randomly selected trajectories from the complete data set, where two achieve a convective 400 hPa ascent, and the other two achieve a convective 600 hPa ascent. 
Panel (a) shows the specific humidity, (b) the cloud and rain droplet mass densities, (c) the sum of ice, snow, graupel, and hail, and (d) snow mass density.
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where the adjoint direction is given by es, and the pth model parameter of 𝐴𝐴  is denoted by xp. Note that we use 
the adjoint derivative since we track sensitivities for far more input parameters than there are output parameters 
with 177 = nin ≫ nout = 23. A table of all 177 input parameters is given as supplementary information (Table S1).

We store these snapshots of all sensitivities for every simulated time step in NetCDF-4 files, which can be used 
for further analysis.

These sensitivities can be seen as the estimated impact a perturbed model parameter has on a model state variable 
in the considered time step. In order to identify the most important parameters, we use the sensitivities computed 
by AD. We predict the deviation of the given model state variable 𝐴𝐴 𝐴𝐴

(𝑖𝑖𝑖𝑖𝑖)
𝑠𝑠  at trajectory j and time step i using an 

Euler integration step perturbing the model parameter xp by 10% compared to the unperturbed parameter value:

Dpred(��, ��) =
��(�,�)�

���
⋅ 0.1 ⋅ ��� (29)

The 10% perturbation represents the uncertainty inherent in a given parameter and could be adapted to represent 
different levels of uncertainty in the value of the various parameters in future work. Here, we use 10% to scale 
the perturbation for all model parameters, as it is not possible to objectively determine the uncertainty of all 177 
investigated model parameters.

The predicted mean squared deviation over all time steps and over all ntraj representative trajectories for the model 
state variable ys by theoretically perturbing the model parameter xp by 10% of its original parameter value is

MSDpred(��, ��) =
1

�time ⋅ �traj
⋅
�traj
∑

�=1

�time
∑

�=1

(

Dpred(��, ��)
)2.� (30)

In this equation, ntime is the number of simulated time steps. Model parameters with low values of MSDpred for 
a given model state variable ys have a low impact over all time steps on this model state variable. Perturbing 
parameters with low MSDpred for all model state variables would have a minuscule effect on the simulation. 
Parameters with a large value of MSDpred for any model state variable have a high impact on the simulation, such 
that perturbations would change the model state variables notably. The MSDpred, according to Equation 30, has 
been computed for the six representative trajectories (see Section 2.2 for the selection criteria). Each trajectory 
is simulated with a time step of Δt = 20 s from −2,800 s = −46.67 min ≤ t ≤ 26,000 s = 433.33 min (relative to 
the start of the ascend). We use 30 min as spin-up time for our simulation, where we discard the collected data to 
avoid any initial bias that might be present in the COSMO data from its initialization. The results using MSDpred 
to find key parameters are discussed in Section 4.2.

MSDpred has two drawbacks in the context of physical consistency: (a) we predict deviations by perturbing param-
eters independently, although model parameters do have physical relations, for example, the terminal fall velocity 
of a rain droplet is closely related to its size and shape. (b) We perturb every parameter by a fixed percentage, 
even though some parameters might have a more narrow validity range, while for others, a larger perturbation 
factor could be used. These arguments nevertheless do not interfere with our analysis since we want to show the 
meaningfulness of the gradients given by AD and the overall impact of model parameters compared to each other. 
It is planned in future work to include physical relations between the model parameters.

3.2.  Estimating Uncertainty of Cloud Microphysics With Ensemble Simulations

Since the AD-computed sensitivity is by definition specific to the time step at hand, it is a priori unclear if the 
sensitivity will attain similar large values at the following time steps. As an example, consider a dissipating cloud 
with only a few cloud droplets left but a huge number of rain drops. In this situation, the number of cloud droplets 
is very sensitive to the accretion rate parameter since this parameter describes the rate at which cloud droplets are 
collected by rain. A slight increase of that parameter for the next time step could result in a complete collection 
of all remaining cloud droplets by rain drops, rendering this parameter completely irrelevant for subsequent time 
steps.

To investigate if the AD-derived sensitivities have any meaning beyond the investigated time step, we define a 
mean squared deviation based on the results of ensemble simulations. This is complementary to MSDpred(ys, xp), 
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which is a theoretical deviation of a simulation if a model parameter xp was perturbed by 10% based on AD. In 
order to get a comparable measurement to the predicted deviation by perturbing a parameter at an arbitrary time 
step, we start ensemble simulations for every parameter xp with l = 64 members each at t = −1,000 s = −16.67 min 
before the ascend starts. These are ntraj ⋅ |xp| ⋅ 64 = 6 ⋅ 177 ⋅ 64 = 67,968 simulations with perturbed parameters. 
The model state and environment variables are reset to the initial, unperturbed trajectory every 30 min. Applying 
SPP or any other sophisticated perturbation scheme would require fine-tuning for hundreds of parameters which 
is out of scope for this paper. Therefore, we apply a simple perturbation scheme as baseline. As a consequence, 
our sensitivity analysis is about the overall impact of model parameters. In contrast, a more detailed uncertainty 
analysis would have to incorporate the uncertainty of each model parameter, which may be assessed with different 
sampling distributions. From the point of view of tuning model parameters, our approach can underestimate the 
potential of a parameter if 10% is lower than the possible range of a given parameter. The potential changes to 
prognostic variables is overestimated if 10% is larger than the uncertainty of a model parameter.

By running the simulations for a longer but limited time, the ensembles will not be too far off from the unper-
turbed trajectory, such that sensitivities from the original trajectory apply to a certain degree to the perturbed 
ensemble even in later time steps and the state variables of the ensemble members can be compared in a mean-
ingful way. Given the nonlinearity of the cloud scheme, a large perturbation, for example, 10% of a parameter, 
has the ability to trigger other cloud processes compared to the unperturbed run. If such a situation occurs, then 
the temporal evolution of the cloud changes in a nonlinear way, where AD-estimated deviations based on an 
Euler-step may have little meaning. To cover not only nonlinear deviations based on large deviations but also 
minor effects upon small perturbations, for example, 1% of a parameter, we use a random perturbation. In every 
ensemble, we perturb exactly one parameter xp, using the uniform distribution 𝐴𝐴  (lower, upper)

𝑥̃𝑥𝑝𝑝 =  (𝑥𝑥𝑝𝑝 ⋅ 0.9, 𝑥𝑥𝑝𝑝 ⋅ 1.1) ,� (31)

where 𝐴𝐴 𝐴𝐴𝐴𝑝𝑝 denotes the perturbed parameter. Analogous to the formulation in Equation 30, we can define the mean 
squared deviation for our ensembles as

MSD(��, ��) =
1

�time ⋅ �traj ⋅ �
⋅
�traj
∑

�=1

�
∑

�=1

�time
∑

�=1

(

�(�,�)� − �̃(�,�,�,�)�
)2
,� (32)

with ntime the number of simulated steps, 𝐴𝐴 𝐴𝐴
(𝑖𝑖𝑖𝑖𝑖)
𝑠𝑠  the model state variable ys at the unperturbed trajectory j and time 

step i. In this equation, 𝐴𝐴 𝐴𝐴𝐴
(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
𝑠𝑠  denotes the model state variable ys of the kth perturbed ensemble member at time 

step i, with k = 1, …, l perturbed parameter values of parameter xp. As stated in Section 3.1, we do not respect 
the coupling of model parameters where perturbing one parameter should affect another parameter but rather use 
these deviations as proof of how AD predicts deviations if a single parameter is perturbed.

3.3.  Connection of AD- and Ensemble-Derived Sensitivities

In order to evaluate the correlation between predicted deviations and deviations from perturbed ensembles, we 
calculate Spearman's rank correlation coefficient for every model state parameter ys with

� (��) =
cov

(

rank
(

MSDpred(��, ��)
)

, rank(MSD(��, ��))
)

�rank(MSDpred(��,��))�rank(MSD(��,��))
for all �� ∈ �,� (33)

where 𝐴𝐴 𝐴𝐴rank(MSDpred(𝑦𝑦𝑠𝑠,𝑥𝑥𝑝𝑝)) and 𝐴𝐴 𝐴𝐴
rank(MSD(𝑦𝑦𝑠𝑠,𝑥𝑥𝑝𝑝)) are the standard deviations of the rank variables. Thereby, we can 

quantify any nonlinear correlation between the deviation predicted from AD results and the deviation estimated 
from ensemble simulations. A correlation near zero would indicate that there is little correlation between sensi-
tivities found via AD and those found in the perturbed ensembles. A value of r(ys) near one or negative one 
means there is a (non-)linear correlation and perturbing model parameters with a high impact according to AD 
change  the simulation significantly. A parameter with a higher rank has a larger (predicted) impact and is, there-
fore, useful to identify processes of interest. The usage of rank correlation instead of, for example, Pearson's 
correlation coefficient is needed because a mapping of evaluations of a local linearization (our gradients) to the 
spread of ensembles in a nonlinear model is not trivial. Pearson correlation, however, is a measure of linear corre-
lation, whereas ranked correlation can be used to assess the significance of the relation between two rankings. 
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Filtering small values is a way to improve regular Pearson correlation for 
our case, but then it relies on how the cutoff for the filtering is determined. 
Furthermore, predicted deviations tend to overshoot, leading to lower corre-
lation even if the relative impact is correct compared to other parameters. Our 
main focus in this study is to identify essential parameters and processes and 
validate their importance relative to each other, which is feasible with ranked 
correlation. We added Table S2 in the supporting information where we use 
Pearson's correlation coefficient. However, with the nonlinear correlation, 
we see correlation values from 0.007 to ≈1 for individual model state varia-
bles where model parameters with no identified sensitivity have been filtered 
out. This indicates that Pearson's correlation coefficient is not an appropriate 
summary of the data since either a lot of data points in the tails are highly 
linearly correlated (high correlation) or the correlation is not linear (low 
correlation). A low correlation using Pearson's correlation coefficient can 
be attributed to outliers but we filtered parameters with no identified sensi-
tivity already out. The high nonlinearity of the model and the drawbacks in 
the context of physical consistency in our technique explained in Section 3.1 
prohibit a ranked correlation of exactly one. We expect AD to predict sensi-
tivities to every model state variable equally well, which would yield similar 

correlation values for all model state variables. The strength of the correlation and whether correlation occurs or 
not are discussed in Section 5.

4.  Key Uncertain Cloud Microphysics Parameters
In this section, we use the setup described in Section  2.2 and Section  2.3 with the AD-estimated deviation 
MSDpred from Section 3.1 for identifying model parameters with the largest overall impact on the cloud micro-
physical evolution. First, in Section 4.1, we illustrate sensitivities for a single trajectory to show their changes 
over time. Then, in Section 4.2, the parameters with the largest impact on the cloud microphysical simulation are 
presented, and the physical plausibility of the results is discussed.

4.1.  Sensitivities for a Single Trajectory

The results of the AD algorithm are illustrated with the example of the median trajectory with a convective 
600 hPa ascent. We chose this trajectory as an example due to its longer ascent such that any sensitivities might 
be seen over more time steps compared to the other trajectories considered (see Section 2.2). Figure 5 shows the 
temporal evolution of rain water mass (blue dots) along with the predicted deviation for five model parameters. 

These parameters were selected due to having the largest mean impact over 
time on the rain mass density out of all 177 parameters considered.

At the start of the ascent, rain mass density rises strongly and decreases 
quickly around 20  min. After a secondary maximum around 40  min, rain 
water mass diminishes as the parcel rises and eventually glaciates. The differ-
ent scales of the rain mass density (left y-axis in Figures 5 and 6)hint at a 
nonlinear correlation between AD-estimated deviation and deviations from 
perturbed ensemble simulations. We describe this relationship in detail in 
Section 5.

Among the identified important model parameters there are geob,rain (expo-
nent for calculating the mean size of a rain drop), γrain (exponent for rain sedi-
mentation), αrain (constant in rain sedimentation), and βrain (coefficient in rain 
sedimentation), which give rise to similar values of AD-estimated deviations 
and roughly follow the evolution of the rain mass density. These parameters 
for rain are mainly influencing the removal of rain mass by sedimentation. 
As in a rising air parcel, sedimentation is one of the key sinks of rain mass, 

Figure 5.  Temporal evolution of rain mass density and AD-estimated 
deviation for five high-ranking uncertain parameters along the median 
trajectory rising 600 hPa in about 1.7 hr. Mass density is aligned to the left 
y-axis, predicted deviation for each model parameter corresponds to the right 
y-axis.

Figure 6.  Temporal evolution of snow mass density and AD-estimated 
deviation upon perturbing geob,rain by 10% along the median trajectory 
rising 600 hPa in about 1.7 hr. Mass density is aligned to the left y-axis, 
AD-estimated deviation corresponds to the right y-axis.



Journal of Advances in Modeling Earth Systems

HIERONYMUS ET AL.

10.1029/2021MS002849

17 of 30

and sedimentation is proportional to the available rain mass neither the importance of these nor the temporal 
evolution of their impact is surprising.

Another, albeit more artificial, parameter linked to sedimentation appears in the results: the inverse parcel height 
z −1. This parameter is reminiscent of the vertical discretization in COSMO. In the context of the microphysics 
scheme, the parameter corresponds to the discrete grid box in the 3D-model COSMO. The air parcel height 
directly enters the formulation of the sedimentation fluxes. The relative impact of sedimentation-related parame-
ters decreases with increasing time, that is, as the parcel rises to higher altitudes. This is likely due to the increas-
ing importance of other sink terms in the mixed-phase region of the cloud.

Figure 6 shows the evolution of snow mass density and the AD-estimated deviation upon perturbing geob,rain by 
10%. Similar to the results for rain mass density, geob,rain has a quite large impact on the snow mass density. The 
sensitivity is largest in a time window around 80–100 min after the parcel ascent starts, which corresponds to 
the time interval of rapid glaciation (not shown). At later times little rain water is left (Figure 5), and hence rain 
freezing has no impact on the further cloud microphysical evolution of the parcel. Also note, that in contrast to the 
results for rain mass density, AD-estimated deviation for snow mass density does not scale with the mass density 
itself. This highlights that parameters are not always important throughout the simulation and that sensitivities do 
not necessarily change smoothly with time, underlining the nonlinearity of the model.

4.2.  Key Parameters and Physical Interpretation

In this section, we identify the parameters with the highest impact on microphysics and discuss the implica-
tions. Then, we go into detail about how to address uncertainties by providing a (subjective) categorization for 
each model parameter. We use the term model state variable loosely, where we include sedimentation rates in 
the model state. To identify the 10 model parameters with the highest AD-estimated deviation for each model 
state variable as the key uncertain parameters (Table 2), we calculate the mean squared deviation MSDpred(ys, 
xp) from Equation 30 for all model state variables and all 177 model parameters. Since most model parameters 
are in the top 10 for multiple model state variables, the complete set of key uncertain parameters consists of 
only 42 distinct parameters, which are listed in Table A1. One might be interested only in the parameters with 
an effect on the same order of magnitude as the most important parameter. One has to take the nonlinearity of 
cloud microphysics into account, whereas MSDpred is a linear extrapolation. Predictions for some parameters 
with a large impact might overshoot, that is, because there is not enough mass to accommodate the perturbance. 
Therefore, using a wider range is recommended. If we look at two orders of magnitude of the largest MSDpred, the 
set of parameters coincides mostly with the top 10 parameters as described above. The list of parameters within 
two orders of magnitude for each parameter adds geoa,graupel and dccn,3 and removes bHET, xrain,min,frz, Tmult,max, and 
Drainfrz,ig. The minimum size of rain droplets xrain,min,frz used in conversion of rain droplets to ice, graupel, and hail, 
and in homogeneous freezing is in the top 10 list due to its impact on hail. The same is true for the partitioning 
threshold Drainfrz,ig for freezing rain droplets to hail and for the coefficient bHET for heterogeneous rain freezing. 
With little hail formation there is sparse data such that these additional parameters may be included with our 
approach compared to using a threshold. The coefficient Tmult,max used for Hallet-Mossop ice multiplication is 
added to the top 10 parameters list due to its impact on ice number density and sedimentation of ice number, 
which is just on the edge of being included in the list using two orders of magnitude as cut-off (see Table A1). 
The additional parameter dccn,3 for CCN activation found by using a cut-off due to its impact on the cloud number 
is not surprising given that most parameters from CCN activation have a large impact. We already know that this 
process is important. The geometry parameter geob,graupel has a large impact on graupel mass density, therefore it 
is not far-fetched to assume that geoa,graupel is important as well as identified by using a cut-off. All in all, using 
either a cut-off or the top ten parameters only slightly changes the overall list of identified parameters such that 
both approaches may be used.

A useful categorization of key uncertain parameters is according to the physical process representation in which 
they are used. We found six parameters linked to the mass-diameter relationships (“geo” parameters in Table 2) 
of different hydrometeors, which matches the results of previous studies (e.g., Gilmore et  al., 2004; Morales 
et  al.,  2018). Seven further parameters are related to the fall velocity-diameter relationships (“vel” parame-
ters in Table 2), which is consistent with other studies (e.g., Forbes & Clark, 2003; Hong et al., 2009; Posselt 
et al., 2019). Those parameters are used in many process representations, and altered values of these parameters 
change multiple process rates during a single time step.
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A set of influential parameters is associated with the parameterization of rain sedimentation velocity from Equa-
tion 25. The formulation of μ in the exponent depends on the number of cloud droplets and the mean diameter size 
of rain droplets in Equation 26. We identified the parameters νrain and geob,rain from this equation as key param-
eters. However, they only matter if the cloud mass density is above the given threshold of Qcrit = 10 −7 kg ⋅ m −3. 
This is expected in our data set of convective ascending air parcels, where cloud formation happens in a short 
period of time, and the mass of cloud droplets exceeds the threshold early on. Later on, when rain droplets are 
bigger, the impact of the upper limit of the fall velocity αrain in Equation 25 becomes dominant, which reduces the 
impact of the parameters of the corresponding case in Equation 26. This relation is mirrored in the AD-estimated 
sensitivities (see Table A1), where αrain shows the largest impact, closely followed by the coefficient βrain. Next is 
γrain, with an AD-estimated deviation of an order of magnitude lower. Furthermore, αrain changes the fall velocity 
for all sizes in a constant manner, whereas βrain scales the fall velocity for all sizes by a factor determined by μ and 
γrain, with the largest impact on light particles.

Finally, an influential process parameterization contributing multiple parameters to the top 10 list of the most 
influential parameters is the CCN activation. The importance of CCN activation is consistent with previous stud-
ies on the impact of aerosol abundance on cloud microphysics (e.g., Carrió et al., 2014; Khain, 2009; Loftus & 
Cotton, 2014; Tao et al., 2007). The parameterization, according to Hande et al. (2016), contains 16 parameters, 
which result from an approximation of parcel model simulations for specific vertical profiles of aerosol size 
distributions. The parameterization captures the vertical velocity w dependence of the CCN activation spectrum 
and the dependence of aerosol concentrations (and size distribution) on pressure p (compare Equations (13) and 
(14) to (17)). Eleven of these parameters are found in our list of influential parameters (Table A1): dccn,3, bccn,3, 
and dccn,2 act on number densities, whereas cccn,1, accn,1, bccn,4, cccn,4, bccn,1, dccn,4, accn,4, and dccn,1 act on mass densi-
ties. These parameters are highlighted in bold in Equations 14–17. Inspecting Figure 3, only the water vapor, the 
cloud droplet mass, and the cloud droplet number density are directly influenced by CCN activation. However, 
AD reveals that the uncertainty in the above parameters also impacts the value of other model state variables by 
affecting subsequent processes. For example, changes to dccn,2 also change Nice. Note that we listed the model state 
variable with the highest sensitivity to a given parameter in Table A1. Hence, despite not appearing in Table A1 
also water vapor and cloud droplet mass and number density are affected by changes in the CCN activation 
parameters, albeit with a lower absolute value than by other parameter perturbations.

Given the likely interdependence of the different parameters in the fit, we want to highlight a few interesting 
aspects instead of discussing one specific parameter: most of our identified eleven parameters are found in the 
equations for A(p) and D(p), which can be interpreted as representing the absolute number concentration of aero-
sols at different altitudes in the atmosphere. Perturbing accn,1, accn,4, dccn,1, or dccn,4 will change the overall number 
concentration while altering bccn,1, bccn,4, cccn,1, or cccn,4 modifies the vertical structure of the aerosol number 
concentration profile. Again, the importance of the aerosol number concentration and its vertical variation is in 
line with previous studies on the aerosol impact for parcel model simulations. Interestingly, uncertainty in the 
parameters affecting the absolute aerosol number concentration has the largest impact on ice mass density or 
ice sedimentation rates, pointing to mixed-phase processes and freezing processes as a consequence of aerosol 
perturbations. However, for AD to recognize these sensitivities, the ice mass has to be impacted in the same time 
step as the perturbation in CCN activation. This is only possible if secondary activation is allowed while cloud 
droplets are freezing in the mixed-phase region of the cloud, which has not been investigated before with WCB 
trajectories. A more complicated implementation of aerosols taking into account supersaturation and aerosol 
budgets would be needed to redeem this potentially unphysical behavior. In contrast, the parameters describing 
the shape of the vertical profile of aerosols act on water vapor as well as cloud and rain water mass, where a 
direct physical link to CCN activation in a single time step is more plausible, even though rain water mass is not 
involved in the process. The remaining three influential parameters identified in our analysis act on B(p) and C(p), 
that is, the vertical velocity dependence of activated CCN. Physically perturbing these would imply changes in 
the aerosol size distribution (its width or mean diameter) or the chemical aerosol composition at a given pressure 
level. With the exception of dccn,2, altering their value has the largest impact directly on the cloud droplet number 
concentration, which is physically meaningful.

So far, we have identified parameters with a large impact and discussed the ramifications. Next, we want to 
address how to deal with the sensitivities. Ideally, one would like to find constraints on the uncertain parame-
ters in order to reduce the uncertainty inherent in the cloud microphysical scheme. The degree to which this is 
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possible depends on the nature of the parameter and the available observational or laboratory data. In order to 
provide guidance on the origin of the parameters, we grouped all model parameters into four possible categories.

1.	 �Artificial (total 62): Parameters that have no direct physical meaning or interpretation and are purely needed 
as a result of parameterizing a process and that are not used as thresholds.

2.	 �Artificial (Threshold; total 79): Parameters used as thresholds, sometimes in addition to being parameters 
in the formulation of a process, are considered artificial since not all real processes act within hard thresh-
olds. Thresholds need to be their own category because AD cannot calculate sensitivities for arguments in 
if-clauses. However, parameters in this category can be used like normal parameters in addition to thresholds, 
such that AD may yield a sensitivity (see Section 2.1).

3.	 �Physical (High Variability; total 27): Parameters with a physical interpretation but their values need to be 
considered as highly uncertain either due to uncertainties in observations and measurements or due to the 
chosen parameterization.

4.	 �Physical (total 9): Parameters with a physical interpretation but with less uncertain values compared to the 
parameters in the latter category.

This categorization of parameters is somewhat subjective and not meant as an ultimate grouping of variables; 
instead, it is meant to give an idea of the type of the parameter in question and which types are important. From 
the 42 identified key uncertain parameters, 23 fall into the “artificial” category, 7 are thresholds, 11 belong to the 
category of “physical” parameters with high variability, and one belongs to the category of physical parameters 
with low variability.

Even considering that the grouping is the result of expert consultation, such that the total number for each cate-
gory may vary, we can outline the effect of each on cloud microphysics. With 34 parameters being either artifi-
cial or having a high variability, this illustrates that robust estimation of the intrinsic uncertainty of parameters 
is important for estimating their impact on cloud microphysical uncertainty. For physical parameters with high 
uncertainty, one should concentrate on making more and more precise measurements to reduce their uncertainty 
and consequently reduce their impact on the uncertainty of the model state variables. However, since artificial 
parameters carry sensitivities of comparable magnitudes, these parameters continue to influence the uncertainty 
of the model state variables even if the physical parameters would be known exactly (e.g., Allen et al., 2003; 
Palmer et al., 2005; Wilks, 2005). Finding physical constraints for those artificial parameters will be much more 
challenging or not possible at all.

As an example for an influential, artificial assumption, the artificial parameter aHET for heterogeneous freezing 
from Equation 19 has the third-largest impact on snow mass density. The underlying assumption is that every 
ice embryo of equal size that comes from a population of supercooled water droplets has the same probability of 
reaching the size of a critical embryo (Pruppacher & Klett, 2010). The probability is a result of random fluctua-
tions of water molecules. This leads to the exponential form given in Equation 19 with aHET as a coefficient and 
bHET as an exponent. This stochastical hypothesis is then fitted against experimental results (e.g., from Barklie & 
Gokhale, 1959). While experimental errors can be reduced such that the parameter uncertainty in the formulation 
is reduced, the overall impact of the artificial parameter aHET and therefore of the stochastic hypothesis remains 
large. If the stochastic hypothesis is not correct or incomplete, then the assumed functional form of Equation 19 
is flawed. Such structural uncertainty in the formulation of heterogeneous ice nucleation cannot be reduced with 
experiments. However, AD helps to identify artificial parameters and accompanying assumptions that have a 
large impact on the simulation.

A brief summary of the key results from this section: (a) the most influential parameters for the immediate further 
evolution of the cloud can be determined with AD. (b) The most important process representations involving 
uncertain parameters are the mass-diameter and fall speed-diameter relationships and the CCN activation. (c) 
Both directly physically motivated and purely artificial parameters are in the list of most influential parame-
ters identified with AD. (d) Artificial parameter uncertainty may depend on experimental results, which can 
be improved, and on underlying assumptions of a process, where finding constraints on the uncertainty is more 
challenging. Note that the grouping of the parameters is based on expert consultation such that the classification 
is not unambiguous but it gives an idea what kind of questions can arise when investigating a given parameter.
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5.  The Longer-Time Evolution of Sensitivities
We have demonstrated the use of AD in identifying key uncertain parameters by averaging sensitivities for differ-
ent model state variables in Section 4. In this section, we investigate the relevance of AD-predicted sensitivities 
for longer simulation periods by comparing the AD-estimated deviation MSDpred to the ensemble-estimated devi-
ation MSD (e.g., the impact of the maximum size of rain droplets on cloud droplet mass density). The perturbed 
ensemble parcel model simulations start every 30 min along the baseline parcel trajectory (setup described in 
Section 3.2). This comparison to ensemble simulations of the longer-term cloud microphysics evolution is impor-
tant to assess the bearing of instantaneous sensitivities beyond individual time steps. The highly nonlinear nature 
of cloud microphysics implies that a relation between the two is far from guaranteed.

We present in Figure  7 the relation between AD-estimated deviations and deviations estimated from 
ensemble simulations for water vapor mass density (a), and (b) zoomed in, and cloud droplet mass 
density (c) and (d) zoomed in. The x-axis shows the logarithmic AD-estimated mean squared deviation, 

𝐴𝐴 log
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 (Equation 30). The y-axis shows the logarithmic ensemble-estimated mean 
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 (Equation  32). Each data point corresponds to the MSD  
estimates for a certain model parameter xp. Results are shown separately for the different categories of param-
eters, that is, artificial, threshold, physical, and highly uncertain physical parameters, introduced in Section 4 
(see different colors in Figure 7). The 90% confidence ellipses illustrate the correlation between AD-estimated 
deviation and ensemble-estimated deviation for all categories except threshold parameters. The range of the two 
axes is different for two reasons: (a) MSDpred is an estimate of deviation by a perturbation of 10%, whereas MSD 
is based on random perturbations of up to 10% around the original parameter value. (b) AD-estimates use only 
gradients with an Euler step, which is not always accurate in a nonlinear model, as discussed in Section 3.2. The 
figures for the other model state variables have similar shapes to the ones shown for water vapor and cloud droplet 
mass density with different ranges in the axis and are therefore not shown here but can be found in Figure D1.

To quantify the relation between AD estimated and ensemble estimated sensitivities, we use Spearman's rank 
correlation coefficient from Equation 33, denoted r in the following. Since the distribution of AD-estimated 
over ensemble-estimated MSD is similar across all model state variables (Figure 7), we can use r to compare the 
correlation between each model state variable. Taking all model state variables and model parameters without 
zero sensitivities according to AD, we get r = 0.887, indicating a relatively high ranked correlation. Looking at 
each model state parameter individually, we can find the same high or even higher correlation coefficients (see 
the second column of Table 3 for mass densities and the second column of Table B1 for all model state variables) 
with the exception of sedimentation rates of hail mass and particle number density. For all other state variables, 
the AD-estimated deviation rank predicts the ensemble-estimated deviation rank with comparable certainty. The 
lower score for sedimentation rates of hail can be attributed to the very small amount of hail in our simulation.

The aforementioned correlations excluded parameters with zero sensitivity, that is, parameters with no impact on 
the baseline simulation. Since a perturbation of these parameters might still trigger a process that was initially 
absent, it makes sense to also include these in the discussion. The correlations taking into account all parameters 
are shown in the third column of Table 3 and are mostly slightly smaller compared to the values in the second 
column, where parameters with zero sensitivity are excluded. The difference is small because Spearman's corre-
lation is not very sensitive to outliers on the tails, where few parameters have a high ensemble-estimated deviation 
and a zero AD-estimated deviation. However, if we consider all parameters for all model state variables together, 
r becomes much smaller.

The reason for the comparably low correlation is explained in detail in Appendix B. In short, AD-estimated devia-
tion can be arbitrarily small due to an Euler step that is done to estimate the deviation, whereas ensemble-estimated 
deviation has a minimum for most parameters. This minimum is different for each model state variable, such that 
low AD-estimated deviations map to different orders of magnitude for ensemble-estimated deviations, which 
breaks any correlation in this range. A correlation is only visible for parameters with an ensemble-estimated 
deviation above the minimum. Hence, despite the smaller correlation if all parameters and state variables are 
considered jointly, the AD-estimated deviations and ensemble-estimated deviations overall agree.

Concerning correlations between AD- and ensemble-estimated deviations for the different parameter categories 
introduced in Section 4, a clear ranked correlation for all categories except threshold parameters is discernible 
with the 90% confidence ellipses from Figure 7. Threshold parameters that are used for calculations, as well as the 
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control flow of the model, cannot easily be evaluated by AD (see Section 2.1). Therefore it is expected that these 
display a poor correlation between AD-estimated and ensemble-estimated sensitivities. Physical parameters with 
high variability and artificial parameters can be found on the top right of both plots in Figure 7, which suggests 
that those parameters contribute the most to model uncertainty. Furthermore, the results presented here confirm 

Figure 7.  Relation between AD-estimated deviation and ensemble-estimated deviation via perturbing parameters for water vapor (a) and cloud droplet mass density 
Panels (b), (d) present a zoomed-in version of the right edge of panels (a) and (c), respectively, with a black dashed line representing the 1:1 line. Parameters are below 
this line if the AD-estimated MSD is larger than the ensemble-estimated MSD and vice versa. Each symbol indicates MSDpred(Qvapor or Qcloud, xp) and MSD(Qvapor or 
Qcloud, xp) for a specific uncertain parameter xp. Symbols are color-coded according to the classification into artificial, threshold, and physical parameters with high and 
low uncertainty introduced in Section 4. In addition, 90% confidence ellipses around data points with AD-estimated deviations above zero are shown for each parameter 
class.
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that artificial parameters not used as thresholds and physical parameters with a high variability have a larger 
impact on the simulation compared to other parameters, see Section 4.2, even on longer timescales.

Given the overall high rank correlation between the AD-estimated deviations, which are based on instantaneous 
derivatives and linear predictions via an Euler step for a given simulation, and the ensemble-estimated deviations 
from perturbed ensemble simulations, we can infer that the key parameters found via AD are indeed parame-
ters with a long-term effect on the simulation. The similar rank correlation across most model state variables 
shows  that AD is not limited to few characteristics of a model but can be applied to a wide range of variables and 
parameters. Parameters that have shown zero sensitivity in AD analysis are an exception since they either influ-
ence the control flow or had no impact on the given simulation used in the AD evaluation.

6.  Discussion and Summary
This study describes the usage of Algorithmic Differentiation (AD) to assess the impact of 177 uncertain param-
eters within a two-moment cloud microphysics scheme at once. This study contrasts with numerous other studies 
which only consider few parameters, mainly fewer than 10.

We emphasize that each model carries two fundamental types of uncertainties:

1.	 �Structural uncertainty,
2.	 �Parametric uncertainty.

Structural uncertainty refers to the structure of the model formulation, for example, the right-hand side of a 
differential equation. Parameter uncertainty refers to the uncertainty of the model parameters which are present in 
a chosen formulation. Ideally, this uncertainty should be included in the model using a stochastic representation 
(Buizza et al., 1999). At best, one would reduce the structural uncertainty by finding new formulations which 
depend less on artificial parameters, but this may not be feasible due to computational constraints or incom-
plete physical understanding of the process in question. Structural uncertainty inherent in virtually every subgrid 
parameterization cannot be unveiled by the use of AD since AD only allows the investigation of implemented 
code. An interesting idea to approach the structural uncertainty of the cloud model formulations is outlined in 
Morrison et al. (2020), where Bayesian machine-learning techniques are used to determine the “most probable” 
structure for the governing differential equation using observational data. However, the more classical approach 
to formulate the model equation relies on either physical understanding of the processes, constructing a fit curve 
based on observed or simulated data, or even a mixture of these variants. Uncertain parameters might be present 
in both approaches, and AD helps to find the most sensitive ones.

We re-simulate the microphysics within air parcels of a warm conveyor belt using the two-moment scheme by 
Seifert and Beheng (2006a) with CCN activation by Hande et al. (2016) along given WCB trajectories to get 
realistic thermodynamic parcel evolutions. Therefore, this study does not have a coupling to the flow dynamics 
and thermodynamic parcel evolution. We limit ourselves to three representative trajectories (25th, 50th, and 
75th percentile) for convective trajectories with a 400 hPa ascent within one hour and a 600 hPa ascent within 
three hours each. These trajectories are associated with the North Atlantic extratropical cyclone “Vladiana” that 
occurred 22–25 Sep 2016 (Schäfler et al., 2018). By applying AD using CoDiPack (Sagebaum et al., 2018) on 
the microphysics, we gather the sensitivities of 23 model state variables to 177 model parameters for every time 
step. Those sensitivities are averaged over six representative trajectories and over all time steps to quantify the 
overall impact of each model parameter.

We determine the most important parameters through the ranking of their AD-estimated sensitivity on each 
model state variable. According to AD, the most sensitive parameters have their origins in several physical 
processes (sedimentation of rain, CCN activation, and heterogeneous freezing) and specific assumed relations 
(influence of mass on terminal velocity and mass-diameter relations).

The sedimentation velocity of rain droplets is a process featuring multiple parameters with a large impact. The 
relation of fall velocity-diameter size follows a power law with an upper limit for the fall velocity. This upper limit 
is the most important parameter in the formulation, followed by the coefficient that scales the fall velocity for 
different sizes. Parameters in the exponent of the power law depend on the amount of cloud mass and rain droplet 
size, which are thresholds for different formulations.
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We further identified 11 of 16 parameters from CCN activation as key parameters, highlighting the importance of 
the process. This is consistent with previous studies on the impact of aerosols abundance on cloud microphysics 
(e.g., Carrió et al., 2014; Khain, 2009; Loftus & Cotton, 2014; Tao et al., 2007). Even though only water vapor 
and cloud droplets are involved in this process, AD reveals an indirect impact of some parameters to other model 
state variables through subsequent processes. Most of the identified parameters can be interpreted as representing 
the absolute number concentration of aerosols at different altitudes in the atmosphere. The parameters affect 
either the absolute number concentration or the vertical structure of the aerosol number concentration profile.

The nature of the parameter and the available observational or laboratory data determine how much a parameter's 
uncertainty can be constrained. As a (subjective) guidance, we grouped all model parameters into four possible 
categories, namely artificial, artificial (threshold), physical (high variability), and physical.

Among the 42 identified important parameters, there are 11 physical parameters with significant uncertainty, 
such as parameters to calculate the particle velocity or the thermal capacity of ice crystals. Furthermore, there are 
23 artificial parameters, that is, parameters for fitted curves as for example, CCN concentrations or coefficients 
to calculate the diameter of a snowflake. The large number of artificial parameters identified as key parame-
ters might render some artificial assumptions more influential than the precise model physics. Finding physical 
constraints for such parameters will be much more challenging than for physically motivated parameters or not 
possible at all.

AD considers instantaneous derivatives of processes with respect to the uncertain parameters. However, it is not 
clear whether these translate to an impact of a given parameter choice over longer integration times due to the 
highly nonlinear nature of cloud microphysics. Therefore, we simulated ensembles with one perturbed param-
eter starting every 30 min along the considered thermodynamic trajectory with an integration time of 30 min. 
Based on these ensemble simulations, we can estimate the impact of a parameter on a model state variable by 
perturbing each parameter individually for 30 min intervals. By comparing these changes in model state varia-
bles to the expected changes based on AD instantaneous sensitivities averaged over the same time horizon, we 
found a strong (ranked) correlation between both except for threshold parameters, which are used for the control 
flow of the simulation. This ranked correlation indicates that parameters with a large impact according to AD 
also considerably impact a parcel model simulation upon perturbation. Furthermore, the correlation is similar 
for all analyzed model state variables, implying that AD performs similarly well regardless of which model state 
variable is investigated.

The key results from this study are as follows:

1.	 �Algorithmic Differentiation can be used to gather sensitivities at every time step for hundreds of parameters 
at once.

2.	 �The most influential parameters for the immediate further evolution of the cloud can be determined with AD.
3.	 �The most important process representations involving uncertain parameters for our WCB trajectories are the 

mass-diameter and fall velocity-diameter relationships, the CCN activation, and heterogeneous freezing.
4.	 �Sensitivities at every time step are relevant for more extended simulation periods (at least 30 min).

In order to quantify the uncertainty precisely, future work should include better characterization of the uncer-
tainty ranges of individual parameters and take into account any dependencies between model parameters. 
Furthermore, the sensitivities of each time step could be used to pinpoint a time step, where creating an ensemble 
with perturbed parameters has an impact on the longer-time evolution in order to save computation time. Such 
improvements are achievable since AD gives an objective identification of key uncertain parameters of a model, 
where the ranking of these parameters is correct even if a longer integration time is taken into account. However, a 
more detailed understanding of the connection between AD-estimated sensitivities and uncertainty of a forecast is 
necessary. This can be achieved by exploring the impact of select parameters with a perturbation scheme that has 
a good probabilistic skill such as SPP. Another improvement can be achieved by implementing a full 3D model, 
where the effects of interaction to the environment are tracked. We expect to see changes in latent heating in this 
case, which in turn can affect the buoyancy. This would be more critical for trajectory paths that are not as stable 
as those from WCBs, for example, case-studies for deep convection would benefit from a 3D environment within 
a fully time-evolving model.
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Appendix A:  Most Important Parameters According to AD

Model param. MSD MSDpred Parameter description

Cloud Mass Density

  bccn,1 8.31 × 10 −11 9.36 × 10 −15 Artificial: Parameter for calculating CCN concentration during CCN 
activation Hande et al. (2016)

  bccn,4 2.00 × 10 −10 9.06 × 10 −15 Artificial: Parameter for calculating CCN concentration during CCN 
activation Hande et al. (2016)

  cccn,1 1.27 × 10 −10 7.86 × 10 −15 Artificial: Parameter for calculating CCN concentration during CCN 
activation Hande et al. (2016)

  cccn,4 2.90 × 10 −10 7.61 × 10 −15 Artificial: Parameter for calculating CCN concentration during CCN 
activation Hande et al. (2016)

  dccn,4 5.54 × 10 −9 1.22 × 10 −15 Artificial: Parameter for calculating CCN concentration during CCN 
activation Hande et al. (2016)

  dccn,1 9.82 × 10 −10 8.27 × 10 −16 Artificial: Parameter for calculating CCN concentration during CCN 
activation Hande et al. (2016)

  accn,4 4.32 × 10 −9 6.94 × 10 −16 Artificial: Parameter for calculating CCN concentration during CCN 
activation Hande et al. (2016)

  kr 8.41 × 10 −11 4.01 × 10 −16 Artificial: Coefficient for accretion of cloud droplets to rain droplets

  accn,1 7.50 × 10 −10 3.55 × 10 −16 Artificial: Parameter for calculating CCN concentration during CCN 
activation Hande et al. (2016)

Rain Mass Density

  geob,rain 2.37 × 10 −9 1.26 × 10 −13 Artificial: Exponent for diameter size calculation

  αrain 1.68 × 10 −9 4.36 × 10 −14 Physical (High Variability): Constant in rain sedimentation

  βrain 9.03 × 10 −10 1.48 × 10 −14 Physical (High Variability): Coefficient for rain sedimentation

  z −1 2.14 × 10 −10 9.33 × 10 −15 Artificial: Inverse of air parcel size (height) used in explicit sedimentation

  geoa,rain 8.59 × 10 −11 4.82 × 10 −15 Artificial: Coefficient for diameter size calculation

Graupel Mass Density

  velb,rain 4.34 × 10 −10 1.87 × 10 −14 Physical (High Variability): Exponent for particle velocity

  velb,graupel 2.15 × 10 −9 1.24 × 10 −14 Physical (High Variability): Exponent for particle velocity

  geob,graupel 1.60 × 10 −10 6.98 × 10 −15 Artificial: Exponent for diameter size calculation

  vela,rain 3.75 × 10 −11 1.31 × 10 −15 Physical (High Variability): Coefficient for particle velocity

  psat,melt 4.42 × 10 −11 1.31 × 10 −15 Physical: Saturation pressure at T = Tfreeze

  vela,graupel 1.39 × 10 −11 3.77 × 10 −16 Physical (High Variability): Coefficient for particle velocity

Hail Mass Density

  μrain 1.31 × 10 −11 1.53 × 10 −15 Physical (High Variability): Shape parameter of the generalized 
Γ-distribution

  xrain,min,frz 1.64 × 10 −18 3.46 × 10 −19 Artificial (Threshold): Minimum size of particle for freezing

  xmin,rain 1.77 × 10 −18 3.46 × 10 −19 Artificial (Threshold): Minimum size of the particle used in one-moment 
schemes

  Drainfrz,ig 7.18 × 10 −24 8.31 × 10 −20 Artificial (Threshold): Size thresholds for partitioning of freezing rain in 
the hail scheme

Ice Mass Density

  geob,ice 1.21 × 10 −9 4.93 × 10 −16 Artificial: Exponent for diameter size calculation

  velb,ice 1.07 × 10 −10 1.29 × 10 −17 Physical (High Variability): Exponent for particle velocity

  vice,sedi,max 1.70 × 10 −11 6.51 × 10 −18 Artificial (Threshold): Maximum sedimentation velocity parameter

  geoa,ice 1.46 × 10 −11 6.13 × 10 −18 Artificial: Coefficient for diameter size calculation

Table A1 
The Set of Parameters if We Gather the Ten Most Important Ones for Each Model State Variable
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Appendix B:  Correlation Between AD-Estimated MSD and 
Ensemble-Estimated  MSD

Table A1 
Continued

Model param. MSD MSDpred Parameter description

Snow Mass Density

  geob,snow 5.21 × 10 −11 2.58 × 10 −16 Artificial: Exponent for diameter size calculation

  aHET 8.84 × 10 −12 1.19 × 10 −16 Artificial: Exponent for rain freeze with data of Barklie and Gokhale

  velb,snow 8.50 × 10 −13 8.47 × 10 −18 Physical (High Variability): Exponent for particle velocity

Cloud Droplet Particle Density

  dccn,3 1.83 × 10 13 2.20 × 10 13 Artificial: Parameter for calculating CCN concentration during CCN 
activation Hande et al. (2016)

  bccn,3 1.83 × 10 13 1.46 × 10 13 Artificial: Parameter for calculating CCN concentration during CCN 
activation Hande et al. (2016)

Hail Particle Density

  bHET 3.94 × 10 −10 1.82 × 10 −14 Artificial: Coefficient for rain freeze with data of Barklie and Gokhale

Ice Particle Density

  dccn,2 1.07 × 10 10 2.29 × 10 8 Artificial: Parameter for calculating CCN concentration during CCN 
activation Hande et al. (2016)

  Tmult,max 2.37 × 10 7 9.85 × 10 7 Artificial: Coefficient used in Hallet-Mossop ice multiplication

Snow Particle Density

  Drainfrz,gh 1.55 × 10 −4 9.22 × 10 3 Artificial (Threshold): Size thresholds for partitioning of freezing rain in 
the hail scheme

Sedimentation Of Rain Droplet Mass Density

  γrain 4.90 × 10 −13 3.82 × 10 −15 Physical (High Variability): Exponent for rain sedimentation

  νrain 3.17 × 10 −13 1.56 × 10 −15 Physical (High Variability): Parameter to calculate the shape of the 
generalized Γ-distribution

Sedimentation Of Graupel Mass Density

  vgraupel,sedi,max 3.75 × 10 −13 1.15 × 10 −15 Artificial (Threshold): Maximum sedimentation velocity parameter

  ρvel 1.46 × 10 −14 5.65 × 10 −17 Artificial: Exponent for density correction

Sedimentation Of Snow Crystal Mass Density

  vsnow,sedi,max 4.99 × 10 −16 3.32 × 10 −19 Artificial (Threshold): Maximum sedimentation velocity parameter

Note. Equation 30 defines the AD-estimated MSDpred, where we only show the highest AD-estimated deviation among all mass densities unless the parameter did not 
impact mass densities. In that case, the AD-estimated deviation on number density and precipitation is considered. There are 42 different parameters in total.

Model State Parameter ys r(ys) without zero sensitivities r(ys)

Water Vapor Mass Density 0.863 0.889

Cloud Mass Density 0.927 0.904

Rain Mass Density 0.901 0.868

Graupel Mass Density 0.900 0.845

Hail Mass Density 0.906 0.818

Ice Mass Density 0.924 0.884

Snow Mass Density 0.864 0.815

Cloud Droplet Particle Density 0.901 0.880

Table B1 
Spearman's Rank Correlation for AD-Estimated Deviation and Ensemble-Estimated Deviation for Every Model State 
Variable and All Model State Variables Together
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If we look at the correlation for all parameters together, Spearman's rank correlation coefficient falls to 0.543, 
where the different magnitudes of outliers influence the coefficient. As an example, we can compare the outliers 
for cloud droplet mass and number density. Outliers on the left tail for cloud droplet mass density (Figure 7) are 
data points where the ensemble-estimated deviation does not go below a certain point with

MSDpred(�cloud, ��) ⪅ 10−27 and MSD(�cloud, ��) ≈ 10−18.� (B1)

For cloud number density (not shown), the corresponding values are orders of magnitudes higher with

MSDpred(�cloud, ��) ⪅ 10−12 and MSD(�cloud) ≈ 103.� (B2)

To assure that these outliers appear only at the tail, that is, where parameters have a minor effect, we can calculate 
r for all model state variables but only with parameters xp with a sufficiently large effect. We define sufficiently 
large here broader than in Section 4.2 with

for all 𝑥𝑥𝑝𝑝 there exists 𝑦𝑦𝑠𝑠 with MSDpred (𝑦𝑦𝑠𝑠, 𝑥𝑥𝑝𝑝) ≥ 𝑃𝑃75

(
MSDpred (𝑦𝑦𝑠𝑠, 𝑥𝑥)

)
.� (B3)

P75(MSDpred(ys, x)) is the 75th percentile of MSDpred(ys, x) for a given model state variable ys. We do not include 
sedimentation of hail for this, since hail sedimentation is never triggered, and therefore all MSDpred = 0. With 
these restrictions, we get a set of 99 parameters and a correlation of r  =  0.901, which is in range with the 
coefficients for each model state individually. The high correlation indicates that the AD-estimated sensitivities 
correlate with ensemble-estimated sensitivities for parameters with a large impact rather than with a low impact. 
Further, it reveals that AD-estimated sensitivities are correctly ranked throughout different model state variables 
despite the different magnitudes of those variables, such that they can be put in relation to each other.

Appendix C:  Possible Pitfall of Applying AD
When applying AD, one must carefully examine the codomain of the model and the sensitivities. As an example, 
we take a detailed look at the parameter μrain,c,5. This parameter serves as an example here, it is not a parameter 
one can use for tuning. It acts as an exponent for calculating the shape parameter μ during rain evaporation. It 
is an example for a parameter featuring a gradient with complex numbers that can be a source of error for AD 
analysis, as hinted in Section 2.1. To illustrate the issue in more detail, we demonstrate with a simple example 

Table B1 
Continued

Model State Parameter ys r(ys) without zero sensitivities r(ys)

Rain Droplet Particle Density 0.942 0.898

Graupel Particle Density 0.855 0.799

Hail Particle Density 0.788 0.617

Ice Particle Density 0.874 0.789

Snow Particle Density 0.850 0.807

Sedimentation of Rain Droplet Mass Density 0.886 0.872

Sedimentation of Graupel Mass Density 0.880 0.845

Sedimentation of Ice Crystal Mass Density 0.920 0.883

Sedimentation of Snow Crystal Mass Density 0.846 0.754

Sedimentation of Rain Droplets 0.917 0.886

Sedimentation of Graupel Particles 0.839 0.813

Sedimentation of Ice Crystals 0.842 0.777

Sedimentation of Snow Crystals 0.791 0.730

All Together 0.887 0.543

Note. The lower correlation in hail is probably due to the overall low amount of hail in the simulation. Sedimentation of hail 
has not been triggered, therefore there is no correlation to be found.
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why the gradient is not always real-valued in this case. Equation 26 describes the relationship between the shape 
parameter μ and μrain,c,5, which we can simplify for the case Qcloud < Qcrit and Drain ≤ μrain,c,3, and ignoring μrain,c,0 
and μrain,c,4 to assume a function of the form

𝑦𝑦 = tanh

(
(4 ⋅ 𝜇𝜇rain,𝑐𝑐𝑐2 ⋅ (𝐷𝐷rain − 𝜇𝜇rain,𝑐𝑐𝑐3))

𝜇𝜇rain,𝑐𝑐𝑐5

)
.� (C1)

To see, what any AD algorithm has to calculate, we set

�1 = 4 ⋅ �rain,�,2 ⋅ (�rain − �rain,�,3) ) ,

�2 = ��rain,�,5
1 ,

� = tanh (�2) .
� (C2)

Applying the chain rule results in

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕rain,𝑐𝑐𝑐5

=
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕rain,𝑐𝑐𝑐5

= sech
2

(𝑤𝑤2) ⋅𝑤𝑤
𝜇𝜇rain,𝑐𝑐𝑐5

1
⋅ log (𝑤𝑤1) .� (C3)

But for the case Drain < μrain,c,3 we have w1 = Drain − μrain,c,3 < 0, and the gradient becomes a truly complex number 
after taking the logarithm log(w1).

This shows a limitation of AD when functions are assumed to have real-valued derivatives or where using 
complex-valued derivatives is not optimized and therefore not used by default. One can apply custom functions 
for calculating derivatives with CoDiPack for special cases if the rest of the model is real-valued, but interpreting 
complex gradients is a problem in itself, as the imaginary part might not have an intuitive or physical meaning. 
Running the whole model with complex numbers comes at a computational cost, which may not be reasonable if 
only a single parameter might lead to complex gradients. Further note that Seifert and Beheng (2006a) fixed the 
value of this parameter to μrain,c,5 = 2, and did not describe it as a parameter for model tuning.

Appendix D:  Comparison of AD-Estimation and Ensemble-Estimation

Figure D1.  Relation between AD-estimated deviation and ensemble-estimated deviation via perturbing parameters. 
Each symbol indicates MSDpred(ys, xp) and MSD(ys, xp) for a specific uncertain parameter xp and a model state variable ys. 
Symbols are color-coded according to the classification into artificial, threshold, and physical parameters with high and low 
uncertainty introduced in Section 4. The different magnitudes of cloud number and mass density result in the two distinct 
clusters visible here.



Journal of Advances in Modeling Earth Systems

HIERONYMUS ET AL.

10.1029/2021MS002849

28 of 30

Data Availability Statement
The source code (Algorithmic Differentiation for Sensitivity Analysis in Microphysics v2.2) and the input data 
with representative trajectories as used in this study are available via Hieronymus (2022). The full set of trajecto-
ries is available via iRODS of the Johannes Gutenberg-University Mainz. A script to download the data is given 
in Hieronymus (2022).
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