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Abstract
New cross-validation diagnostics have been derived by further partitioning
well-established impact diagnostics. They are related to consistency relations,
the most prominent of which indicates whether the first-guess departures of a
given observation type pull the model state into the direction of the verifying
data (when processed with the ensemble estimated model error covariances).
Alternatively, this can be regarded as cross-validation between model error
covariance estimates from the ensemble (which are used in the data assimi-
lation system) and estimates diagnosed directly from the observations. A sta-
tistical cross-validation tool has been developed that includes an indicator of
statistical significance as well as a normalization that makes the statistical com-
parison largely independent from the total number of data and the closeness
of their collocation. We also present a version of these diagnostics related to
single-observation experiments that exploits the same consistency relations but
is easier to compute. Diagnostics computed within the Deutscher Wetterdienst’s
localized ensemble transform Kalman filter (LETKF) are presented for various
kinds of bins. Results from well-established in-situ measurements are taken
as a benchmark for more complex observations. Good agreement is found for
radio-occultation bending angle measurements, whereas atmospheric motion
vectors are generally also beneficial but substantially less optimal than the cor-
responding in-situ measurements. This is consistent with reported atmospheric
motion vector height assignment problems. To illustrate its potential, a recent
example is given where the method allowed identifying bias problems of a sub-
group of aircraft measurements. Another diagnostic relationship compares the
information content of the analysis increments with a theoretical optimum.
From this, the information content of the LETKF increments is found to be
considerably lower than those of the deterministic hybrid ensemble–variational
system, which is consistent with the LETKF’s limitation to the comparably
low-dimensional ensemble space for finding the optimal analysis.

K E Y W O R D S

analysis information content, consistency relations, ensemble covariance, ensemble Kalman filter,
observation impact, optimality condition

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Author. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q J R Meteorol Soc. 2022;148:2853–2876. wileyonlinelibrary.com/journal/qj 2853

https://orcid.org/0000-0001-7953-7393
http://creativecommons.org/licenses/by-nc-nd/4.0/


2854 STILLER

1 INTRODUCTION

The quality of numerical weather prediction (NWP)
strongly depends on the proper use of observational
data for improving the forecast model’s initial conditions
through the data assimilation (DA) process. Modern DA
methods ingest a great variety of data types that corre-
spond to measurements on very different scales and which
are generally distributed inhomogeneously in space and
time.

Assessing the impact that these data have on the NWP
process is important, but rigorous tests are numerically
very expensive. Fortunately, methods have been developed
that offer a reasonably cheap approximate impact mea-
sure. Here, the pioneering work goes back to Langland
and Baker (2004), who started from a verification function
(or forecast metric) and presented a method how a proxy
for the contribution of the different observation types to
this metric can be computed at very low additional cost
(called forecast sensitivity to observation impact [FSOI]).
Though the original method required the adjoint of the
forecast model (which is available in a four-dimensional
variational system), Liu and Kalnay (2008) showed how
the same type of verification metric can be evaluated
using the ensemble of an ensemble Kalman filter. Later,
Kalnay et al. (2012) showed how such computations of an
ensemble-based FSOI (EFSOI) can be achieved in an even
simpler (and numerically cheaper) way. An approach for
computing an FSOI for a hybrid system was presented by
Buehner et al. (2018).

Although so far, in most of the work in the field,
forecast impact is measured via verification against an
analysis state (i.e., verification in state space), Sommer
and Weissmann (2016) and Necker et al. (2018) used
an observation-based measure instead—which had also
been proposed by Todling (2013)—which they tested
within the ensemble system of the German Weather
Service (Deutscher Wetterdienst, DWD). Also, Cardinali
(2018) used an observation-based forecast metric with
the adjoint-based system of the European Centre for
Medium-Range Weather Forecasts. Though the spatial
and temporal coverage of observations is less homoge-
neous, verifying against them has the advantage that it
avoids the problem of self-verification—resulting from cor-
relations of forecast errors with those of the state used for
verification; for example, see Kotsuki et al. (2019). Using
observations as a proxy for the truth (rather than an anal-
ysis state) particularly permits the verification at shorter
forecast lead times. Even the verification at the analysis
time (forecast lead-time zero) is possible.

There are two main motivations for computing the
impact of observations in an NWP system. First, partic-
ularly in times of limited resources, knowing the impact

of the different parts of the observing system is crucial
for planning and decision-making with respect to the
ongoing efforts and developments concerning the gener-
ation, distribution, and processing of observational data.
To this end, the focus is usually on the relative impor-
tance (or ranking) of the different observation types, and
some studies have been made to show that, for the rank-
ing, FSOI-type statistics may give results similar to what is
obtained from denial experiments.

The second motivation stems from the fact that exploit-
ing observations in an NWP system is not always trivial
and all the underlying mathematical concepts rely on var-
ious theoretical assumptions, many of which are violated
by most real-world observations. Making optimal usage of
a given observation type requires great efforts and error
mitigation measures, which depend on both the respec-
tive observations and the DA system employed. To this
end, (E)FSOI-type statistics have been used to design qual-
ity control methods (Hotta et al., 2017a; Chen and Kalnay,
2019), to tune the error-covariance matrix (Hotta et al.,
2017b), and, generally, to facilitate the usage of new data
types in a DA system (Lien et al., 2018).

The work presented here revisits the established
(E)FSOI statistics to develop diagnostic tools for identi-
fying observation types (or groups of observations) that
are processed suboptimally by the respective DA system.
For this, the established (E)FSOI diagnostics are split into
two parts, each of which is related to a different aspect of
the data-processing system and for which different con-
sistency relationships are derived. These consistency rela-
tionships provide reference values for these diagnostics
and also allow some interpretation outside the FSOI con-
text. Further, we provide a normalization that renders
results largely independent from the total number of obser-
vations and the closeness of their collocation and, also, an
indicator of statistical significance (which reflects both the
magnitude and the number of the different contributions).

The aim of the diagnostics discussed herein is not
just to assess whether the impact is beneficial but also
to give some idea to what extent the processing of an
observation type is consistent with the expectations and
assumptions that are the theoretical basis of the DA sys-
tem. Though we do not expect these theoretical assump-
tions to be met precisely, the strategy of this work is to
first gain some experience of the kind of correspondence
that can be expected between such idealized theoretical
values and the statistics gathered from real-world data.
Working with the local ensemble transform Kalman fil-
ter (LETKF)—see Hunt et al. (2007)—that is operational
at the DWD, we start by looking at well-established obser-
vation types that are known to have a clearly beneficial
impact in our DA system. (This also gives some inter-
esting insights into the functioning and limitations of
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the DA system.) Starting with in-situ measurements from
radiosondes (TEMPs) and aircraft, we show differences
with the more complex GPS radio occultation (GPSRO)
measurements; and we also demonstrate, in the example
of wind measurements from atmospheric motion vec-
tors (AMVs), how some less-optimal behavior of these
more indirect measurements can be identified by compar-
ing their statistics with those from TEMPs and aircraft.
Also, as another example for the method’s potential, we
present some recent results where the cross-validation
method allowed identifying bias problems with a type
of aircraft temperature measurements in the DWD’s DA
system.

Compared with more traditional cross-validation
applications—for example, as developed by Ménard
and Deshaies-Jacques (2018a) and Ménard and
Deshaies-Jacques (2018b)—the main difference of the
new diagnostics is the partitioning of the corresponding
verification function, which is called “mean-square-error
costfunction” by Ménard and Deshaies-Jacques (2018a). In
the following, we make use of the FSOI-type partitioning to
allow us to identify contributions from different observa-
tion types from a single analysis (i.e., without performing
denial experiments), plus a further partitioning produc-
ing impact-related diagnostics that can be interpreted
with respect to consistency relations. However, in contrast
to some previously introduced residual-based consis-
tency diagnostics (e.g., Hollingsworth and Lönnberg,
1986; Desroziers et al., 2005), our aim is not to estimate
observation errors and their covariance but to diagnose
the performance that an observation type has in the
DA process and whether this is consistent with other
observations. For this, the non-diagonal elements of the
background error covariance in observation space play an
essential role; indeed, our new diagnostics can also be used
for validating the background error covariances employed.
This, however, is restricted to the cross-covariances
between statistically independent observations for which
these observations give us a direct estimator.

This article is structured as follows. The mathematical
foundations for the new diagnostics and their interpreta-
tion are given in Section 2. This part is largely independent
of whether FSOI is computed for an ensemble or vari-
ational system and whether observations or an analysis
state are used for verification. A more detailed descrip-
tion of the corresponding diagnostic strategy that has been
developed for our LETKF system is given in Section 3, and
the results related to some major observation types are
presented in Section 4. Section 5 discusses these results
in the context of our diagnostic strategy, and some of the
avenues that this will involve in the future are described in
Section 5.1.

2 MATHEMATICAL
FOUNDATIONS

2.1 FSOI-type statistics

FSOI-type statistics start from a verification function J that
quantifies the impact which the observations yo assimi-
lated at the analysis time t0 have on the forecast at time
t0 + t. Here, yo is a vector whose dimension is the number
of all assimilated observations. Using further the vector yv

for the data used for verification (at time t0 + t), while yv|a

and yv|b are the corresponding model equivalents (com-
puted from model forecasts initialized at analysis time t0
with the analysis xa and the first guess xb, respectively) we
define the verification function

J
def!
= 1

2
(||yv − yv|a||2 − ||yv − yv|b||2). (1)

This exhibits negative values (indicating beneficial obser-
vation impact) if the forecast starting from the analysis
(yv|a) fits the verification data yv better than that starting
from the background state (yv|b). Though, for the results
presented herein, observations are used for the verification
(i.e., yv are observations made at verification time t0 + t),
the mathematical relations derived herein are more gen-
eral. To this end, yv can be any vector-type quantity that
serves for verification (e.g., like an analysis state at time
t0 + t). The metric || … || is then defined via the scalar
product

||yv − yv|a||2 = (yv − yv|a)TC−1(yv − yv|a),

where the symmetric and positive definite matrix C must
be adequate for the chosen verification space.

The standard FSOI procedures partition this verifica-
tion function into a sum of the form

J =
∑

𝛼∈{obs}
J
𝛼

(2)

whose terms are attributed as the contribution of the
respective observation 𝛼 (i.e., the 𝛼 component of yo) to
the verification function J. For the work presented here,
the components J

𝛼

are further partitioned into two dif-
ferent components that can be related to different con-
sistency relations and which yield information about dif-
ferent aspects of the observations and how they are used
in the DA system. As shown in the following, we can
write

J
𝛼

= −1
2
[2Jb

𝛼

− Jab
𝛼

] (3)



2856 STILLER

with

Jb
𝛼

= (yv − yv|b)TC−1
̂P

a
{v, o}R−1𝚷

𝛼

(yo − yb) (4a)

Jab
𝛼

= (yv|a − yv|b)TC−1
̂P

a
{v, o}R−1𝚷

𝛼

(yo − yb) (4b)

where R is the employed observation error covariance
matrix and𝚷

𝛼

is a projection operator that sets all compo-
nents of yo apart from 𝛼 to zero.

Here, we have introduced the matrix

̂P
a
{v, o} ≡ HvMtPaHT (5)

where H and Pa are the linearized observation operator
and the employed error-covariance matrix of the analysis
state, Mt is the time evolution operator (between analysis
time t0 and verification time t0 + t), and Hv is the lin-
earized version of the operator that computes the model
equivalents yv|a and yv|b from the corresponding forecast
model states at verification time. When verifying with
observations (which is the case for all the applications dis-
cussed in this article), Hv is the corresponding observation
operator linearized about the background state; for ver-
ification against analysis, Hv is the identity operator (or
possibly some interpolation operator if the verifying anal-
ysis is on a different grid than the forecast model that is
tested).

Note that if the different factors on the right (i.e., the
operators Mt, Hv, and HT as well as the covariance matrix
Pa) were all fully correct (which in particular implies that
the corresponding linear approximations must be fully
valid), the quantity ̂P

a
{v, o}would be the error covariance

matrix (or more precisely the cross-covariance matrix)
between the verification space vector yv|a (which is valid
at verification time t0 + t) and the observation-space vector
ya (the analysis in observation space valid at t0); that is,

̂P
a
{v, o} = cov(e{yv|a}, e{ya})

where e{∶} denotes the error, or difference from the truth,
of the respective quantity.

In the following, to derive Equations 4a and 4b, we use
the notation

ea = yv|a − yv

eb = yv|b − yv

to write

J = 1
2
[(ea)TC−1ea − (eb)TCeb]

= 1
2
(ea + eb)TC−1(eb − ea)

= 1
2
(ea + eb)TC−1(yv|a − yv|b)

= 1
2
(ea + eb)TC−1HvMtK(yo − yb) (6)

where K is the Kalman gain matrix and yb the model equiv-
alent of the observation vector yo corresponding to the
first-guess state xb (i.e., to a short-term forecast). In the last
step,

yv|a − yv|b = HvMtK(yo − yb) (7)

was used. Rewriting Equation (6) further by introducing

ea + eb = 2(yv|b − yv) + (yv|a − yv|b) (8)

in the first set of parentheses on the right-hand side, writ-
ing the Kalman gain matrix in the form

K = PaHTR−1 (9)

or equivalently

HvMtK = ̂P
a
{v, o}R−1

and using yo − yb =
∑
𝛼

𝚷
𝛼

(yo − yb), the verification func-
tion J can be decomposed as given by Equation (2) with
Equations 3,4a, and 4b. Note that this result is consistent
with what was found by Kalnay et al. (2012) and which has
been strongly exploited in the literature.

2.2 The role of the different
components of J𝜶

Owing to the statistical nature of observation and back-
ground errors, J

𝛼

and its components introduced in
Equation (3) are statistical quantities. Therefore, to get
meaningful results, one needs to take the average over
(or the sum over) a sufficient number of observations, in
which case the results are related to the statistical expecta-
tion values. In the following, statistical expectation values
will be indicated by the use of angle brackets ⟨∶⟩.

2.2.1 The cross-validation diagnostic

We would initially like to note that the first component Jb
𝛼

of J
𝛼

can be independently related to a different type of
verification function, which we define as

Jb = (yv − yv|b)TC−1(yv|a − yv|b) (10)
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and which can be related to J by writing

J = −Jb + 1
2
||yv|a − yv|b||2. (11)

This can be directly obtained by substituting Equation (8)
into the third line of Equation (6). Following the analysis
that led to Equation (4a)—that is, introducing Equation (7)
with Equation (9) and the definition Equation (5) into
Equation (10)—one finds that

Jb =
∑

𝛼

Jb
𝛼

;

that is, Jb
𝛼

is the 𝛼 contribution to Jb.
From Equation (11), a beneficial impact from the

analysis (i.e., J < 0) is only possible if Jb
> 0. Examining

Equation (10), the reason for this is evident, as from its
definition, if Jb is negative, the analysis increments yv|a −
yv|b have the opposite sign to the first-guess departures of
yv, which means that the analysis pulls the model state
in the opposite direction to the verifying data. We there-
fore take it as a fundamental necessary condition for an
observation type to possibly have a positive impact that
its contribution Jb

𝛼

to the verification function Jb must (on
average) be positive; that is,

⟨Jb
𝛼

⟩ > 0. (12)

Note that this is mainly a condition for the first-guess
departures of the observations to which the component Jb

𝛼

is most sensitive.
For practical applications, a more sensitive condition

for identifying suboptimalities is obtained by comparing
Jb
𝛼

with a reference value for the magnitude that this diag-
nostic would assume if basic assumptions made in the
derivations of our DA systems were fully fulfilled. To derive
such a reference value we rewrite Equation (4a) using the
trace function. Given that Tr[aTb] = Tr[baT] (for any vec-
tors or matrices a and b that have the same dimension) we
can write

⟨Jb
𝛼

⟩ = Tr[C−1
̂P

a
{v, o}R−1𝚷

𝛼

⟨(yo − yb)(yv − yv|b)T⟩] (13)

where the expectation value on the right-hand side can be
considered as an estimator for the error cross-covariance
between the background error of yb at analysis time t0 with
that of yv|b at verification time t0 + t. Using 𝜖v and 𝜖o for the
errors of the verifying data yv and the assimilated obser-
vations yo, respectively, and the superscript “tr” for the
true values of the respective quantities, we write for this
expectation value

⟨(yo − yb)(yv − yv|b)T⟩

= ⟨[𝜖o − (yb − ytr)][𝜖v − (yv|b − yv|tr)]T⟩
= ⟨(yb − ytr)(yv|b − yv|tr)T⟩
= cov(e{yb}, e{yv|b}) (14)

where it was assumed that all errors 𝜖v of the verify-
ing data yv and 𝜖o of the assimilated observations yo are
bias free, uncorrelated with forecast errors, and mutually
uncorrelated.

A reference value for Jb
𝛼

is now obtained by replacing
this observation estimate for the background error covari-
ance by the corresponding quantity from the DA and NWP
system. In strict analogy to ̂P

a
{v, o} in Equation (5), we

define

̂P
b
{v, o} ≡ HvMtPbHT

, (15)

which would yield

̂P
b
{v, o} = cov(e{yv|b}, e{yb})

if the respective linear operators and covariance matrices
used by the NWP system were fully valid. With this we
define the estimator

⟨Jb
𝛼

⟩estim = Tr[C−1
̂P

a
{v, o}R−1𝚷

𝛼

̂P
b
{o, v}] (16)

for Jb
𝛼

, where ̂P
b
{o, v} is the transpose of ̂P

b
{v, o} defined

in Equation (15).

2.2.2 The optimal information content

The second component Jab
𝛼

of J
𝛼

is proportional to the size
of the analysis increments, which raises the question about
what the optimal size of these increments is. Just looking at
Equation (3) one might be tempted to aim for a very small
(or even negative) value of ⟨Jab

𝛼

⟩. This, however, neglects
the nonlinear nature of the verification function J and that
if the analysis state xa was optimal for initializing the fore-
cast with respect to the verification function J then the
following optimality condition1 would be fulfilled:

⟨Jb
𝛼

⟩ = ⟨Jab
𝛼

⟩. (17)

One way to see this is to consider the initial conditions

xâ = xa + 𝛿𝜆(v)
𝛼

K𝚷
𝛼

(yo − yb). (18)

1In this article we are referring to this equation as the optimality
condition. However, we would like to point out that, as far as we can see,
this is only a necessary condition for that the analysis state xa (or
equivalently Mtxa) could be optimal in minimizing the verification
function J.
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with

𝛿𝜆

(v)
𝛼

=
⟨Jb
𝛼

− Jab
𝛼

⟩

⟨||HvMtK𝚷𝛼

(yo − yb)||2⟩
, (19)

which coincide with xa if Equation (17) is fulfilled (in
which case 𝛿𝜆

(v)
𝛼

= 0). Using the linear approximation
(which is central to the Kalman filter), the corresponding
forecast (in verification space) takes the form

yv|â = yv|a + 𝛿𝜆(v)
𝛼

HvMtK𝚷𝛼

(yo − yb), (20)

which for 𝛿𝜆(v)
𝛼

≠ 0 fits better with the verifying data than
yv|a, and then one has (see Appendix A.1 for details):

⟨||yv − yv|â||2⟩ = ⟨||yv − yv|a||2⟩ − (𝛿𝜆(v)
𝛼

)2

× ⟨||HvMtK𝚷𝛼

(yo − yb)||2⟩ (21)
< ⟨||yv − yv|a||2⟩.

This shows that Equation (17) (or equivalently 𝛿𝜆(v)
𝛼

= 0) is
a necessary condition for xa (or equivalently Mtxa) being
a global minimum of the verification function J, since
otherwise—that is, if Equation (17) is not fulfilled—the
initial condition xâ leads to a smaller value of J. A slightly
different proof for this is also given in Appendix A.2, which
shows that Equation (17) is also a necessary condition for
a local minimum at x = xa (a local minimum requires that
any derivative of J with respect to the initial conditions is
zero at x = xa).

In Appendix A.3, we further show more specifically
that the optimality condition, Equation (17), holds if

̂P
b
{v, o}[ ̂Pb + R]−1⟨(yo − yb)(yo − yb)T⟩𝚷T

𝛼

= ⟨(yv − yv|b)(yo − yb)T⟩𝚷T
𝛼

(22)

is fulfilled (where ̂Pb
≡ HPbHT). If the mathematical

assumptions on which the DA system is based were fully
fulfilled, one could write

[ ̂Pb + R] = ⟨(yo − yb)(yo − yb)T⟩ (23)

for the error covariances of the assimilated observations,
so that Equation (22) takes the form

̂P
b
{v, o}𝚷T

𝛼

= ⟨(yv − yv|b)(yo − yb)T⟩𝚷T
𝛼

. (24)

Equation (24) can be regarded as a consistency relation
for the background error covariance between verification
and assimilation space. If it is fulfilled, the covariance
used in the DA system ̂P

b
{v, o}, defined in Equation (15),

equals what is diagnosed by the observations, accord-
ing to Equation (14). Equation (22) can be regarded as a

generalization of this consistency relation, which is rele-
vant in situations where Equation (23) is clearly violated.
This particularly includes situations where observation
errors are inflated, which in practice is often done to com-
pensate for possible suboptimal features (or a suboptimal
processing) of some observation types. As computing the
left-hand side of Equation (22) is highly non-trivial, in the
following we will also consider the corresponding relation
for single-observation experiments (for which the vector
yo has only a single component “yo

𝛼

”) which include effects
from possible error inflation for the observation yo

𝛼

. More
precisely, we use

̂P
b
{v, o}𝚷T

𝛼

Q
𝛼

= ⟨(yv − yv|b)(yo − yb)T⟩𝚷T
𝛼

(25)

with

Q
𝛼

=
⟨(yo

𝛼

− yb
𝛼

)2⟩

( ̂Pb
𝛼𝛼

+ R
𝛼𝛼

)
(26)

as another generalization of Equation (24), which in situ-
ations where the errors of yo

𝛼

are inflated is more closely
related to the optimality condition, Equation (17), than the
relation in Equation (24).

3 FSOI-BASED DIAGNOSTICS
FOR AN ENSEMBLE DA SYSTEM

3.1 The new diagnostics

Applying the analysis from the last section further to the
DWD LETKF gave rise to various statistical diagnostics
(as shown, for example, in Figure 2), and the principal
aim of this section is to make the reader familiar with
the different curves in such graphs. For computing these
EFSOI-type statistics we follow Sommer and Weissmann
(2016) to use observations for verification (i.e., yv are obser-
vations made at verification time t0 + t) with the metric
C being the error covariance matrix of these observations.
The main challenge for computing the verification func-
tion J and its components from Equation 4a and 4b is to
estimate the analysis error cross-covariances ̂P

a
{v, o}, and

to this end we use the respective estimates ̂Pa
en[v,𝛼] from the

LETKF, which, as explained in Appendix B, is the respec-
tive covariance ̃Pa

en[v,𝛼] (between ya
𝛼

and yv|a
v ) from the

ensemble multiplied by the localization function 𝜂

t(v, 𝛼);
that is,

̂Pa
en[v,α] = ̃Pa

en[v,𝛼] ∗ 𝜂t(v, 𝛼). (27)

It should be noted that the LETKF actually uses a different
type of localization (called R-localization), where, instead



STILLER 2859

of reducing the background covariance to zero for large
distances (called B-localization), the observation error
grows exponentially as a function of distance between
the observations and the region for which the anal-
ysis is performed. Since the weight observations are
given in the analysis are largely determined by the
ratio of the background and observation error variances
employed, R-localization generally has a similar effect
to B-localization. Equation (27) is best characterized as
B-localization in observation space, which is the way local-
ization is usually performed for EFSOI applications—for
example, see Houtekamer and Zhang (2016) and refer-
ences therein for a discussion of different localization
types.

As indicated in Equation (B3), the localization func-
tion employed in this work is just a superposition of two
Gaspari–Cohn functions (Gaspari and Cohn, 1999), where
the vertical (lz) and horizontal (lh) localization length
scales are kept at constant values, with lh = 300 km and
the dimensionless value lz = 0.3 for the vertical localiza-
tion in logarithmic pressure coordinates. This value for lz
differs from the corresponding length scale used in our
LETKF, which varies linearly as a function of logarith-
mic pressure from lz = 0.3 at the surface to lz = 0.8 at
the model top. Though for higher levels this difference
could lead to an underestimation regarding the full EFSOI
(J
𝛼

), the interpretation of the components Jb
𝛼

and Jab
𝛼

in
terms of consistency relations remains valid as the same
localization is applied to all quantities (including refer-
ence values) consistently. Note that in most studies the
EFSOI localization differs from the localization employed
in the ensemble Kalman filter, not only in terms of local-
ization type (e.g., R- and B-localization) but also in that the
FSOI localization includes the model state at verification
time (which generally differs from the analysis time; for
example, see Gasperoni and Wang (2015) and references
therein for a discussion of the consequences).

Using Equation (27) and restricting to the case where
observation error covariance matrices are diagonal (with
elements Rvv for the verification data and R

𝛼𝛼

for the
assimilated data) one obtains for the verification function
components Equations 4a and 4b

Jb
𝛼

=
∑

v

̂Pa
en[v,𝛼]

(yv
v − yv|b

v )(yo
𝛼

− yb
𝛼

)
RvvR

𝛼𝛼

(28a)

Jab
𝛼

=
∑

v

̂Pa
en[v,𝛼]

(yv|a
v − yv|b

v )(yo
𝛼

− yb
𝛼

)
RvvR

𝛼𝛼

(28b)

where the sum is over all verification observations yv
v . In

this case, the corresponding reference value, defined in
Equation (16), is given by

⟨Jb
𝛼

⟩estim =
∑

v

̂Pa
en[v,𝛼]

̂Pb
en[v,𝛼]

RvvR
𝛼𝛼

. (29)

3.1.1 Single-observation diagnostics

It should be noted that another extremely useful set of
diagnostics that does not require knowledge of the anal-
ysis error covariance ̂Pa

en[v,𝛼] can be easily calculated at
the same low cost. These are the corresponding statis-
tics related to single-observation experiments. Though the
standard FSOI considered so far is a proxy for the impact
that an observation yo

𝛼

has when assimilated simultane-
ously with all the other observations—and which can
be obtained from the last line of Equation (6) by set-
ting all first-guess departures, apart from that for yo

𝛼

, to
zero—single-observation statistics yield the impact of yo

𝛼

that would be obtained if no other observation was assimi-
lated. They are obtained by replacing in Equations 28a and
28b the analysis error covariance ̂Pa

en[v,𝛼] and the analysis
increments (yv|a

v − yv|b
v ) by their single-observation coun-

terparts:

̂Pa;SO
[v,𝛼] = ̂P

b
en[v,𝛼]

R
𝛼𝛼

̂Pb
𝛼𝛼

+ R
𝛼𝛼

. (30)

(yv|a;SO
v − yv|b

v ) = ̂Pb
en[v,𝛼]

yo
𝛼

− yb
𝛼

̂Pb
𝛼𝛼

+ R
𝛼𝛼

(31)

which are the corresponding values that would be
obtained if yo

𝛼

was the only assimilated observation. More
detailed results are given in Appendix D.

3.2 Curves in the top graphs

Most central in Figures 2–7 are the blue curves, which
are related to the component Jb

𝛼

. More precisely, the blue
curves in the top graphs of these figures correspond to
the sum S(Jb

𝛼

) of Jb
𝛼

over all observations 𝛼 which can be
found in the respective bins as given on the x-axes of such
graphs. From the discussions in Section 2.2.1, it follows
that the blue curves have to be greater than zero if the
assimilated observations pull the model towards the ver-
ifying data. This is a necessary condition for that these
observations have a positive impact at all (with respect to
this verification metric).

The corresponding reference values S(⟨Jb
𝛼

⟩estim)—see
Equation (29)—are given by the respective green curves,
and in this study the cross-validation mainly refers to
the comparison of the blue with the green curves. More
precisely, it is a comparison between background error
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covariances in observation space between the assimilated
(yb
𝛼

) and the verifying (yv|b
v ) observation. The green curves

represent the covariance that the DA system employs
(which is obtained from the ensemble) and the blue curves
show the corresponding values obtained from the obser-
vations. Background error covariances are a central part
of modern DA systems, which distribute the information
from the observations in model space. The cross-validation
procedure can be interpreted as a test of how such covari-
ances actually fit with the observations.

The top graphs of Figure 2 also show a curve that
is proportional to the traditional EFSOI impact measure
J
𝛼

. The thin black curves (which correspond to bound-
aries of the lightly shaded regions in these graphs) yield
2S(Jb

𝛼

) − S(Jab
𝛼

) = −2S(J
𝛼

). Important in these graphs are
also the curves with the cyan squares, which, as explained
in Appendix C, give an impression of the statistical signif-
icance of the data collected in the respective bins. These
curves give the standard deviation of a corresponding
stochastic model process whose increments have the same
magnitude as the contributions to the sum S(Jb

𝛼

) but for
which the sign is completely random (so that the expec-
tation value of this stochastic process is zero). It is clear
that if the magnitude of the blue curve is anywhere close
to this curve there is a strong possibility that the data in
such a bin are not statistically significant. Whereas for
strictly Gaussian data the values rarely differ by more
than three standard deviations from the truth, we would
like to emphasize that the data for which these sums
are computed are generally not Gaussian (even in the
case that the respective observation and forecast errors
are Gaussian), so that encountering more than three stan-
dard deviations may not be sufficient to “prove” statistical
significance.

3.3 The normalized (bottom) graphs

The bottom graphs differ from the top graph mainly by the
fact that all curves in the bottom graphs are normalized;
that is, all curves in these graphs have been divided by the
same function N (which is computed independently for
each of the respective bins). To facilitate the comparison
between the different curves, N has been chosen so that
the magnitude of the scaled green curves is always between
zero and one. Although in a first trial N was set directly to
the values of the green curves, this led to problems in bins
where the localization functions 𝜂t(v, 𝛼) are very small and
for which the ratios between, for example, the blue and
the green curves may assume very large values. Therefore,
instead of using Equation (29) we write

N = S(⟨̃Jb
𝛼

⟩estim), (32)

where

⟨̃Jb
𝛼

⟩estim =
∑

v

̂Pa
en[v,𝛼]

̃Pb
en[v,𝛼]

RvvR
𝛼𝛼

is obtained from Equation (29) by replacing ̂Pb
en[v,𝛼]

through the unlocalized ensemble covariance ̃Pb
en[v,𝛼].

Since ̃Pb
en[v,𝛼] differs from ̃Pben[v,𝛼] only by a factor 𝜂t(v, 𝛼),

the green curves in the normalized graphs are effectively
weighted averages of the localization function 𝜂t(v, 𝛼)—see
Equation (B3) for more details—and, therefore, always
assume positive values between zero and one.

In addition to most curves from the top graphs, the nor-
malized bottom graphs also show a curve related to the
second component Jab

𝛼

of J
𝛼

. The red curves in the bottom
graphs show S(Jab

𝛼

)∕N and, from the optimality condition,
Equation (17), it follows that if the size of the analysis
increments was optimal with respect to the verification
function J then the red curves should coincide with the
respective blue curves.

4 SOME RESULTS

Most of the statistics presented in the following were pro-
duced within the global LETKF, which works in conjunc-
tion with the icosahedral nonhydrostatic (ICON) NWP
model. Some comparison is also made with the anal-
ysis increments from our hybrid ensemble–variational
(EnVar) system, which in conjunction with the ICON
model provides the best global forecast at DWD. The EnVar
system corresponds to a three-dimensional variational
(3D-Var) scheme for which the background error covari-
ance matrix is a linear combination of a static component
(30%)—which is derived with the National Meteorological
Center’s method; see Parrish and Derber (1992)—plus a
flow-dependent component from the LETKF (70%).2 The
statistics shown in Sections 4.1–4.3 were produced from a
test suite at DWD that ran for several months, starting at
the beginning of December 2018. More precisely, the data
employed correspond to the control of the suite (which is
close to DWD’s operational system in spring 2019) and data
were taken from the 25-day period December 7, 2018, to
January 1, 2019. The example in Section 4.4 corresponds to
the control run of another test suite that started in March
2020, and the data for this study were taken for the whole
month of June 2020.

All the plots presented in this article are for fore-
cast lead time t = 0; that is, they indicate the impact

2This flow-dependent component proved to be essential for the forecast
quality and upgrading the former 3D-Var system to the EnVar system
led to a major forecast quality boost at DWD.
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on the analysis. This is the simplest case, as it isolates
issues regarding the processing of data by the DA system
from those related to the initialization and performance
of the forecast model (which includes problems related
to balances and different types of nonlinearities). Apply-
ing the diagnostics to the case t = 0 is possible as we use
observations for verification—verifying against the analy-
sis requires sufficiently large values of t, as, for example,
discussed in Privé et al. (2020).

A major objective of this work is to gain some experi-
ence of what type of correspondence one may expect for
the diagnostics (and their reference values) introduced in
the last section. For this we produce such statistics for
some-well established observations which are measure-
ments from radiosondes (TEMPs) and aircraft, bending
angles from radio occultations (GPSRO) and horizontal
wind from AMVs (or satellite observations [SATOBs]).
Whereas TEMPs and aircraft provide quasi-independent
measurements of temperature, moisture, and horizontal
wind, the GPSRO bending angles are sensitive to temper-
ature and (particularly in the troposphere) also to mois-
ture. We always start with the in-situ measurements from
TEMPs and aircraft (for which the localization procedure
of the LETKF is most appropriate) and use the results as
a benchmark for the more complex GPSRO and SATOB
measurements.

The new diagnostics introduced in the last section (see
Equations 28a,28b, and 29) are all inversely proportional
to the observation errors R

𝛼𝛼

and Rvv, which in this context
can be regarded as scaling factors. In our global DA system
we have to distinguish the observation errors that are pro-
vided as input via a namelist (which is determined using
the Desroziers method plus some tuning) and the errors
that are actually used in the analysis. In our global sys-
tem (which is true for the hybrid variational and the global
LETKF), the latter correspond to the input values plus an
increase from the variational quality control (Var QC3). In
Sections 4.2 and 4.3, the values actually employed are used
for the errors R

𝛼𝛼

of the assimilated observations, and the
unmodified input value is used for the verification data. A
different choice would have led to some quantitative dif-
ference, but the general conclusions of this article would
be unchanged.

3Note that though the purpose of the Var QC is to reduce the weight
only for those observations for which the first-guess departure is larger
than a specified value (because such observations are less trusted), for
the adjoint computations to be continuous a differentiable function is
used for the relation between the size of the inflation and the first-guess
departures. This means that observation errors are inflated also for
small model departures, for which, however, the inflation should be
very weak and have no significant influence on the analysis.

As already explained, our cross-validation proce-
dure (i.e., comparing the blue and the green curves in
Figures 2–7) can be regarded as a test for the corre-
spondence between the background error covariance esti-
mated by the ensemble with that from the observations
using Equation (24). In principle, the consistency relations
Equations 24 and 25 can be tested in a more straightfor-
ward sense (which is, however, less feasible for bin related
diagnostics). To give a better impression of the ensem-
ble’s overall skill for estimating background error covari-
ances, we start by showing results from such a more direct
comparison between the two covariance estimates in sub-
section 4.1. These are made with the global data set only
and are meant to complement the bin related diagnostics.
After that, plots showing results for the new diagnostics (as
described in Section 3) are presented in Section 4.2, where
the first diagnostic test (correspondence between the blue
and the green curves) is discussed while Section 4.3 focuses
on the diagnostics related to the observational informa-
tion content of the analysis increments (by comparing
the red and the blue curves of those plots). Further, the
example of a recent application of the cross-validation
method, which allowed identifying bias problems of a
small subset of aircraft measurements is presented in
Section 4.4.

4.1 Direct comparison of background
error covariances

To get a more direct impression of the ensemble’s capa-
bility of estimating realistic covariances, we compare the
values of the ensemble estimated covariance with the
observation-based estimate—using Equation (24) or its
generalization Equation (25). In this subsection, all quan-
tities are scaled with the observation error standard devi-
ations that are used as input to our global DA system.4
Further, for the purpose of this comparison, the localiza-
tion function has been replaced by a step function, which
means that the ensemble covariance without localization
̃Pb

en[v,𝛼], directly obtained via Equation (B1), is taken as
the ensemble estimate whereas spurious correlations are
(largely) suppressed by limiting the statistics to pairs of
observations for which the localization function is larger
than 0.5. For producing the respective bottom graphs in
Figure 1, these data have first been stratified according to
the scaled ensemble covariance

4Using the errors that are modified by the Var QC would link the scaling
factors to the magnitude of the observation minus first-guess
departures, which would obscure the direct correspondence of the
covariance estimates tested in this subsection.
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̃Pb
en[v,𝛼]

√
RvvR

𝛼𝛼

(33)

and then averages have been computed over the closest M
neighbors. The x-axis of those graphs corresponds to the
averages of the scaled ensemble covariances—mean values
of Equation (33) in the respective bins—whereas on the
y-axis the average of

(yv
v − yv|b

v )(yo
𝛼

− yb
𝛼

)
√

RvvR
𝛼𝛼

(34)

is displayed by the red points (with M = 500) and blue
lines (M = 5, 000), which ideally should be on the diagonal
(i.e., the black line) if the two covariance estimates cor-
responded perfectly and the averaging of the observations
had fully converged.

However, as argued in Section 2.2, in cases where the
variance ⟨(yo

𝛼

− yb
𝛼

)2⟩ differs significantly from ̂Pb
𝛼𝛼

+ R
𝛼𝛼

(which is the value assumed in the DA system), the value
for the covariance employed in the DA system should also
differ from what would be expected from Equation (24).
Then Equation (25), which can be regarded as a generaliza-
tion of Equation (24)—and which is more closely related
to the optimality condition Equation (17)—becomes more
relevant for assessing the suitability of the covariances for
the DA process. To allow a test of Equation (25), the cyan
curves in Figure 1 show the average values of

Q
𝛼

̃Pb
en[v,𝛼]

√
RvvR

𝛼𝛼

(35)

for the respective bins, and if Equation (25) was correct
(and the averaging was sufficient and adequate) then the
red and blue curves would coincide with the respective
cyan curves. Note that if ⟨(yo

𝛼

− yb
𝛼

)2⟩ = ̂Pb
𝛼𝛼

+ R
𝛼𝛼

holds
then one has Q

𝛼

= 1, in which case the cyan curves are
identical to the diagonals in these plots.

To get some indication of the relative importance of
the different covariance regimes in the bottom graphs, the
black curves in the top graphs are proportional to the num-
ber of occurrences nbbin of observations pairs (yv

v , yo
𝛼

) in
equidistant covariance bins, whereas the red curve shows
the product of nbbin with the mean x value (i.e., the mean
covariance) of those bins. Since the assimilation impact of
an observation is proportional to the size of the covariance
(it is zero if the covariance is zero), the actual importance
of a covariance regime is better characterized by the red
curve.

The impact of assimilating radiosondes on verification
against aircraft is shown in Figure 1a,c. For most of the
bins, the blue curve in Figure 1c is reasonably close to

the black diagonal, which indicates a good to very good
correspondence between the covariance estimates from
the ensemble and those obtained from the observations.
Particularly for large (normalized) covariances, the blue
curve is a little below the diagonal which indicates that the
ensemble somewhat overestimates the actual covariance.
Here, from the fact that the cyan curve is also below the
diagonal, the optimality condition—for single-observation
experiments, Equation (25)—appears to be reasonably ful-
filled for such larger background deviations.

The good correspondence seen from Figure 1c is typi-
cal for most in-situ measurements (particularly when both
measurements correspond to the same model variable).
For zonal wind from AMVs versus aircraft, however, the
covariance computed from the observational data is much
smaller than the one estimated by the ensemble. This may
be related to the known problem of assigning the proper
height for AMVs (which means that these observations
effectively have a forward operator problem). Note that, as
seen from the cyan curve, the problem is partly compen-
sated by having Q

𝛼

substantially smaller than one for the
AMVs, which is related to observation error inflation.

From the bottom rows of Figure 1 one finds
that for observations measuring different quantities,
like radiosonde humidity versus aircraft temperature
(Figure 1e,g) and GPSRO versus radiosonde tempera-
ture (Figure 1f,h), the ensemble’s skill for estimating
the covariance is a little smaller but generally still quite
impressive. An exception are regimes where (in Figure 1g)
the ensemble diagnoses positive correlation between air-
craft temperature and radiosonde humidity and for which
the actual (i.e., observation-based) covariances are seen
to be substantially smaller. Though the reasons for the
ensemble’s overprediction of such positive covariances
might be complex, from the top graph one finds that the
corresponding weather situations are less frequent and the
data seem statistically much less important than those for
which negative correlation is diagnosed by the ensemble.

4.2 Comparing ensemble-based
covariances with observations for different
types of bins

We first discuss plots regarding in-situ measurements from
TEMPs and aircraft. In Figure 2 and Figure 3a–h one can
see from the (unnormalized) graphs (Figure 2a–d, i–l, q–t,
3a–d) that the blue and green curves seem to agree reason-
ably well if the distance between the observations is not too
large. This is in accordance with the results from in-situ
measurements in Figure 1c, which show a good correspon-
dence between the covariance estimated with the observa-
tional data and that from the ensemble. The normalized
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F I G U R E 1 Statistics of the background error covariances between different observation types. A comparison is shown between
covariance estimates from the ensemble given on the x-axis—value computed from Equation (33)—with that from the observations on the
y-axis—as computed from Equation (34. Red dots (M = 500) and blue curves (M = 5, 000) are obtained from averaging of bins of different
size M. The cyan curves correspond to the averages over Equation (35). The respective upper graphs (a, b, e, f) show statistics for equally
spaced covariance bins as given on the x-axis (the x-axis shows the same quantity as in the bottom graph). Black histogram: number of data
nbbin in bins. Red curve: nbbinabs(cov), where cov is the mean x-value of the respective bins. Units of the curves and the size of the bins in the
top graph are arbitrary, as the only purpose is to indicate the relative importance of the respective covariance regimes for the statistics
displayed in the respective bottom graph. The top rows show results for zonal wind u with (a, c) u from radiosondes (𝛼) versus u from aircraft
(v) and (b, d) u from atmospheric motion vectors (𝛼) versus u from aircraft (v). The bottom rows show (e, g) aircraft temperature (𝛼) versus
radiosonde relative humidity (v) and (f, h) GPS radio occultation (𝛼) versus radiosonde temperature (v). ob/obs, observation; fg, first guess
[Colour figure can be viewed at wileyonlinelibrary.com]

graphs (Figure 2e–h, m–p, u–x, 3e–h) give a more detailed
view and show that, indeed, apart from very few excep-
tions, the sign of the blue curves is almost everywhere
positive, indicating a beneficial impact contribution. In
the figures shown in this section, some of the most noisy
data bins (with a small data count) have already been dis-
carded by omitting bins at the edge of a plot for which the
normalization factor—see Equation (32)—is smaller than
one. One finds that for the majority of the plotted bins the
blue curve is at least one order of magnitude larger than
the magnitude of the corresponding noise estimates (cyan

squares), which gives some confidence that the sign of the
blue curves in these bins is statistically relevant.

From the normalized bottom graphs, particularly in
Figure 2 and the top rows of Figure 3, one can see a gen-
eral trend that the blue curves tend to increase from north
to south (left columns) and from high to low altitudes
(i.e., low- to high-pressure levels, second columns, graphs
f, n, and v). This probably reflects the larger uncertainty
of the model state in the Southern Hemisphere (where
we have less observations so that our model state is less
constrained) and near the ground (where the atmospheric

http://wileyonlinelibrary.com
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F I G U R E 2 Diagnostics described in Section 3 for measurements from aircraft verified by those from radiosondes (TEMP) in bins of
(a, e, i, m, q, u) latitude, (b, f ,j, n, r, v) decadic logarithm of vertical pressure (P) coordinate, (c, g, k, o, s, w) difference of (natural) logarithmic
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measurements of (a–h) temperature (T), (i–p) relative humidity (RH), and (r–x) for temperature measurements from aircraft versus humidity
measurements from radiosondes [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 3 The same as Figure 2 but for different measurements of zonal velocity u (instead of temperature and/or humidity). (a–h) u
from aircraft verified by radiosondes. (i–x) u from satellite observations (SATOB) versus (i–p) radiosondes (TEMP) and (r–x) aircraft [Colour
figure can be viewed at wileyonlinelibrary.com]
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flow is more strongly affected by unresolved processes).
Larger uncertainty of the model state means that the
assimilated observation can have a stronger impact, which
explains higher values of the blue curves in these regions.
Further, in the two right columns of these figures, the nor-
malized blue curves, like the respective green curves, have
distinct peaks at small separation distances. The peaks of
the blue curves, however, tend to be higher, indicating that,
in these bins, the actual covariance (or variance) of the
respective background errors is larger than the values esti-
mated with the ensemble. The peaks of the blue curves,
however, decrease much faster in the near range, so that at
intermediate distances the blue curves are generally well
below the green curves. This underlines the importance of
the localization function for reducing the covariances esti-
mated from the ensemble (these results actually suggest
that a more rapidly decreasing localization function would
lead to even more realistic covariances at intermediate sep-
aration distances). At larger separation distances, where
the green curves go to zero (proportionally to the localiza-
tion functions), the blue curves have a much broader tail,
which is generally well above the respective green curve.

Results related to the impact of assimilating tempera-
ture (from aircraft) on verification against relative humid-
ity (from TEMPs) are shown in the two bottom rows of
Figure 2. Though these graphs generally look qualitatively
quite similar to those from the upper rows of Figure 2
(where the two independent observations considered in
each graph measure the same physical quantity), the most
striking difference is probably the asymmetric decay of the
blue curve’s peak at low vertical distances in Figure 2w.
The decay of the blue curve with vertical separation dis-
tance is faster when the humidity measurements are at
lower altitude (larger pressure) than the temperature mea-
surements. This illustrates that the actual spatial decay of
covariances or correlations is more complex than assumed
by the localization functions employed. Nevertheless, as
already observed in Figure 1g, the ensemble also seems to
have significant skill for estimating the cross-covariances
between temperature and humidity (and also for other
cross-covariances, not shown).

For the zonal wind data from SATOBs displayed in
Figure 3i–x, statistics from the two verification types
(against TEMP and aircraft) shown in the normalized bot-
tom graphs seem to agree quite well with each other. For
both verification types the blue curves are, however, sub-
stantially lower than their counterparts from the aircraft
versus TEMP statistics in Figure 3a–h. From the normal-
ized graphs in Figure 3o,p,w,x one finds that the blue
curves are remarkably flat with respect to the distance
between the observations with the small distance peaks
typical for in-situ measurements largely missing (or at
least strongly reduced) in these data. In contrast to this,

the tails at larger vertical distances decay at a similar
or even slower pace than for the aircraft versus TEMP
diagnostics in Figure 3a–g. Suboptimalities regarding the
height assignment for SATOB AMVs have been reported
(Folger and Weissmann, 2014; 2016) and the lack of the
short distant peak (while the large distance tail is not
affected) seems consistent with this. Moreover, looking at
the SATOB versus aircraft data (Figure 3w), the tail of the
blue curve at positive logarithmic distance, ln(P2∕P1), is
particularly broad and exhibits higher values than for the
aircraft vs TEMP data in Figure 3g. These bins with posi-
tive ln(P2∕P1) correspond to data where the height of the
aircraft measurements is lower than the height assigned
to the AMV observations, and having larger than expected
covariances in these bins could be related to AMVs for
which the assigned altitude is too high, which appears con-
sistent with findings from Folger and Weissmann (2014).

The corresponding statistics for GPSRO bending angles
validated against temperature measurements from aircraft
are shown in Figure 4a–h. Similar to the results from
in-situ data, in the normalized GPSRO related graphs the
blue curves show smaller values in the Northern Hemi-
sphere than in the Southern Hemisphere. In stark contrast
to in-situ measurement results (as seen in Figure 2 and
Figure 3a–h), however, is the dependence on the vertical
separation distance where the distinct peak of the blue
curves (found for in-situ measurements) seems to be miss-
ing in Figure 4g. Instead, there is a substantially flatter and
broader maximum peaking at small positive values and
some noisy structure at negative separation distances (pos-
itive vertical distances indicate that the nominal height
assigned to the GPSRO measurement is at greater alti-
tude than the radiosonde). This underlines the more com-
plex structure of the GPSRO measurements, which are
non-local, so that the measurement height or localization
height (which is assigned by the LETKF to all observa-
tions) has to be interpreted as some kind of vertical average
of the region that contributes to the measurement. Still, for
this non-local observation type also, FSOI statistics show
clearly positive benefits with a magnitude that is only a
little smaller than our theoretical expectations.

Figure 4i–p shows the corresponding results for verifi-
cation with temperature measurements from radiosondes.
Compared with aircraft data, verification against TEMP
generally yields somewhat higher values for the blue
curves in most normalized bins (Figure 4m–p). Differ-
ences are most significant in the Tropics (Figure 4e,m) and
also for large horizontal separation lengths (Figure 4h,p)).
From the pressure-level-related bins (Figure 4n) one finds
a quite excellent agreement between blue and green curves
at higher (i.e., stratospheric) altitudes where one has no
aircraft data (as commercial aircraft do not fly there).
Indeed, we found that most of the differences between the
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F I G U R E 4 The same as Figure 2 but for GPS radio occultation (GPSRO) observations verified by temperature from (a–h) aircraft and
(i–p) radiosondes (TEMP) [Colour figure can be viewed at wileyonlinelibrary.com]

top and bottom rows of Figure 4 can be attributed to such
altitude; and if restricted to altitudes below 170 hPa (as
shown in Figure 5), the differences with what is obtained
for aircraft verification diminishes strongly. In particu-
lar, the greater horizontal correlation length observed
from Figure 4p is mostly related to the stratosphere and
much reduced for data from altitudes below 170 hPa (see
Figure 5d). This emphasizes the importance of the spatial
distribution of the verifying data in those statistics.

4.3 Information content of analysis
increments

In almost all plots discussed so far,5 red curves
are significantly below blue curves for basically all

5Apart from those related to SATOB data for which the blue curves have
particularly small values.

latitude- and height-related bins. The same is true for
co-localization-distance-related bins, provided that the
distance between the observations is not too large. For
the in-situ measurements in particular one finds that the
discrepancy between the curves is largest at smaller dis-
tances, which might indicate that the DA system is not
able to capture the full information content at small scales.

Though this may be partly related to observation-error
inflation, we found a strong indication that the finite
ensemble size (and the fact that the LETKF con-
structs the analysis increments only within the quite
low-dimensional ensemble space) plays an important role
there. To check this point we have reproduced the results
from Figure 2 but with the first-guess departures and
analysis increments from the LETKF being replaced by
those from the hybrid EnVar system6. Note that the EnVar

6In those graphs, the interpretation of the correspondence between the
red and blue curves in terms of the consistency relations still holds even
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F I G U R E 5 The same as the corresponding plots in Figure 4
(i.e., statistics of GPS radio occultation [GPSRO] data verified by
radiosonde temperature [TEMP T] in latitude and horizontal
distance bins) but for radiosonde data restricted to altitudes lower
than 170 hPa [Colour figure can be viewed at
wileyonlinelibrary.com]

system uses exactly the same observation errors as the
LETKF. The main difference is that the analysis of the
EnVar system is not limited to the relatively small ensem-
ble space as for the LETKF.

Comparing Figure 7 with Figure 2a–h, the better corre-
spondence between the red and blue curves for the EnVar
increments (shown in Figure 7) is quite striking (particu-
larly at smaller distances between the observations), which
seems to confirm the hypothesis that the limitations of
the LETKF are a major reason for the comparably low
information content of the analysis increments. Such lim-
itations are discussed by Hotta and Ota (2021), who show
that the ensemble size gives an upper limit to the infor-
mation content that can be represented by the analysis
increments. These arguments can explain why the larger
information content at small distances is not seen in the
LETKF analysis increments, whereas the lower informa-
tion content at large distances appears to be captured
similarly well as in the EnVar system (which does not have
these limitations).

Note that Figure 7 cannot be used to deduce the actual
FSOI score for the EnVar system as the curves were pro-
duced using the analysis covariance matrix of the LETKF
(and not that of the EnVar system that would be necessary
for computing the impact score). It is, however, legitimate

though the curves in these graphs are not directly linked to the impact
of the observations in the EnVar system. Note that, in this figure, the
green curves are not true estimators for the blue curves as the
background error estimate from the ensemble was used, which accounts
only for part of the corresponding covariance from the EnVar system.

to link the different curves to the respective consistency
relations discussed earlier, which allows the interpretation
that the better fit of the red with the blue curve (compared
with Figure 2) indicates a more optimal exploitation of
the information content from the assimilated data by the
EnVar. This is consistent with the better forecast obtained
from the hybrid system.

4.4 A recent application of the
cross-validation method

This subsection gives the example of a recent application
of the cross-validation diagnostic. The statistics used for
this are from the single-observation version explained in
Section 3.1 (and in Appendix D). Apart from the cyan
curves in Figures 8 and 10 (which will be explained in the
following), the statistics presented in this subsection corre-
spond to their counterparts from original cross-validation
diagnostics discussed in Section 4.2.

When cross-validating satellite radiances with
radiosondes and aircraft data, for some upper troposh-
eric channels we found a huge discrepancy between
results corresponding to the different verification data. As
shown in Figure 8, cross-validation against radiosondes
(TEMP) showed quite excellent agreement for Advanced
Microwave Sounding Unit (AMSU) channel 7, whereas
cross-validation against aircraft data indicated a clearly
suboptimal correspondence between the satellite radi-
ance and in-situ temperature measurement. As shown in
Figure 9, it was found that the negative contributions to
the blue curve in the aircraft verification were dominated
by a region over the northwest Atlantic. When restrict-
ing statistics to the region marked by the red rectangles
in Figure 9 (as is done in Figure 10a), the correspon-
dence between temperature measurements from aircraft
and radiosondes turned out to be much worse than the
global statistics shown in Figure 2b,f. It turned out that
this bad correspondence was caused only by one specific
type of aircraft data, often referred to as Aircraft Reports
(AIREP)data (which is labeled with code type 141 in the
bufr data files), whereas the correspondence of the Air-
craft Meteorological Data Relay (AMDAR) temperature
measurements in this region was actually quite good (see
Figure 10b, where AIREP data have been excluded). As
seen from Figure 10c, the AIREP temperature data gen-
erally verify very badly against radiosondes. Figure 11
shows that most of the contributions (and particularly the
negative/detrimental contributions) from this data type
originate from the North Atlantic (east and west), which is
therefore likely to have a significant impact on the forecast
for Europe.
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F I G U R E 6 The same as the corresponding graphs from Figure 4 but for GPS radio occultation (GPSRO) data verified by relative
humidity measurements from (a, c, e, g) radiosondes (TEMP RH) and (b, d, f, h) aircraft measurements. Statistics are collected in bins of
(a, b, e, f) logarithmic pressure differences and (c, d, g, h) the logarithmic pressure height of the radiosonde measurement [Colour figure can
be viewed at wileyonlinelibrary.com]

–90 –60 –30 0 30 60 90
10

0

10
1

10
2

10
3

Aircraft T vs TEMP T

–90 –60 –30 0 30 60 90
Latitude (°)

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a)

(e)

4 4.2 4.4 4.6 4.8 5
10

0

10
1

10
2

10
3

Aircraft T vs TEMP T

4 4.2 4.4 4.6 4.8 5
log

10
(P [Pa])

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)

(f)

–0.4 –0.2 0 0.2 0.4
10

0

10
1

10
2

10
3

Aircraft T vs TEMP T

–0.4 –0.2 0 0.2 0.4
ln(P

2
/P

1
)

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c)

(g)

0 100 200 300 400 500 600
10

0

10
1

10
2

Aircraft T vs TEMP T

0 100 200 300 400 500 600
Hor.distance (km)

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d)

(h)

F I G U R E 7 The same as the top rows from Figure 2 but replacing the first-guess departures and analysis increments from the localized
transform ensemble Kalman filter by the corresponding quantities from the deterministic hybrid ensemble–variational system [Colour figure
can be viewed at wileyonlinelibrary.com]

Figure 10a,c actually indicates that the problem with
this data type is bias related. The cyan curves in these
graphs are taken from the same statistics as the blue
curves. The only difference is that for each of the pressure
bins the mean bias of the bin has been subtracted from
the aircraft measurements. A bias problem of the AIREP
temperature data is plausible, as in contrast to the corre-
sponding AMDAR data the AIREP temperatures are not
bias corrected since the aircraft temperature bias correc-
tion (as implemented in our DA system) requires some
aircraft identification, which is not provided for this data
type.

Following the discovery of this bias problem, data
denial experiments were performed. These showed,
mostly for Europe, a small but consistent forecast improve-
ment when the AIREP temperature data where not
assimilated. As a consequence, these data have been black
listed in the DWD’s operational system. It should, how-
ever, be noted that the clearly positive (beneficial) values
of the cyan curves in Figure 10a,c suggest that a positive
impact from these data should be achievable by some rela-
tively simple bias correction method. We therefore expect
to be able to put these data back into operations after ade-
quate changes to the bias correction procedure for aircraft

http://wileyonlinelibrary.com
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F I G U R E 8 Cross-validation between brightness temperature
from the Advanced Microwave Sounding Unit (AMSU) A channel 7
with temperature measurements from (a) radiosondes and (b)
aircraft. The curves correspond to the same kind of statistics as, for
example, in Figure 2b but for the single-observation version of the
cross-validation diagnostics (see Sections 3.1 and 3.2). Shown is also
the bias corrected curve “S(Jb

𝛼

) b.c.” which corresponds to the sum
S(Jb

𝛼

) over the terms Jb
𝛼

but for which, in each pressure bin, the
mean (i.e., the bias) of the brightness temperatures’ first-guess
departures has been subtracted from the satellite data. [Colour
figure can be viewed at wileyonlinelibrary.com]

temperature data (efforts in this direction are currently
under way).

5 SUMMARY AND FURTHER
DISCUSSION

This work shows that the standard FSOI diagnostic
that is aimed at quantifying assimilation-related forecast
improvements can be written as the sum of two diagnostic
components, each giving insight into a different part of the
DA process. More precisely, the question of whether the
assimilation of a given observation type improves the fit
to some verification data is partitioned into the following
sub-questions:

1 Do the first-guess departures (when processed with the
ensemble-based covariances) pull the analysis state in
the direction of the verifying data?

2 Do the analysis increments contain the observational
information in an optimal way (with respect to the
verification function J)?

It is clear that the first point (addressed by the first
diagnostic component) is most fundamental for assess-
ing whether an observation type could have a beneficial
impact at all (given the employed background error covari-
ances). In contrast, the size of the analysis increments that
is assessed by the second diagnostic (related to the sec-
ond point) is sensitive to the relative weight given to the
background and observations, and more generally to the
functioning and fine-tuning of the DA solver. To this end,
we found that, in our global NWP system, the analysis
increments produced by the hybrid EnVar system are sig-
nificantly more optimal than those from the LETKF, which
we believe to be due to the small dimension of the ensem-
ble space to which the LETKF is limited when searching
for the cost function minimum.

Most of this article focused on the first question,
and it is a major objective of this work to establish a
cross-validation formalism based on the consistency rela-
tion corresponding to the first diagnostic component.
The aim is the testing of new or less-trusted observation
types by cross-validation with more established ones. The
method presented is much more flexible than the testing
through denial experiments, allowing the cross-validation
of individual observation types (e.g., like AMVs from cer-
tain latitudes or vertical heights, or with other specified
conditions), which may be essential for finding the source
of a suboptimality or for understanding the outcome of
testing or tuning measures that are designed to improve

F I G U R E 9 Geographical distributions of the contributions to the su S(Sb
𝛼

) over the terms Jb
𝛼

in Figure 8 for Advanced Microwave
Sounding Unit A channel 7 brightness temperature verified by (left) aircraft and (right) radiosondes. Positive (negative) contributions are
beneficial (detrimental) and indicate that the assimilation of the satellite data pulls the model closer towards (further away from) the
corresponding verification data. [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 10 The same cross-validation diagnostics as in Figure 8 but for temperature measurements from aircraft validated against
radiosondes for (a) a region over the northwest Atlantic (40◦–70◦ N × 30◦–50◦ E), (b) like (a) but Aircraft Reports (AIREP) data (code type
141) excluded, and (c) no spatial restrictions but for AIREP data only. Statistics have been collected in logarithmic bins related to the vertical
pressure levels of the radiosonde measurements as indicated on the x-axis. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 11 The same geographical distribution as
plotted in Figure 9 but for temperature data from Aircraft
Reports (code type 141) verified by radiosonde temperature
as considered in Figure 10. [Colour figure can be viewed at
wileyonlinelibrary.com]

the impact of some observation type. For this, the identi-
fication of biased aircraft data described in Section 4.4 is a
good example.

The proposed method depends strongly on the suitabil-
ity of the (ensemble-based) background error covariances
employed, and an important part of this work was to pro-
duce such cross-validation diagnostics with observations
that are of good quality (and which are known to have a
clearly positive impact). For this, the independent in-situ
measurements from TEMPs and aircraft played a cen-
tral role. Also, a more direct assessment of the ensemble
estimated covariances has been presented in this arti-
cle, which, however, was performed on the whole global
dataset (and not related to individual bins).

Overall, tests with in-situ observations only, showed an
excellent agreement of the proposed consistency relations,
though some limitations of the ensemble-based covari-
ances could be identified. For example, the decay of ensem-
ble covariances with collocation distance was found to be
slower than for the observation-based covariances. Also,
the decay with the vertical collocation distance of the
observation-based cross-covariances of humidity and tem-
perature showed some asymmetry that is not reproduced
by the ensemble-based covariance estimates. Still, the
overall excellent agreement with the consistency relation

for the in-situ measurements gives us some confidence
that the ensemble-based covariances are of sufficient qual-
ity to allow a meaningful interpretation of the proposed
cross-validation diagnostics.

Apart from giving some impression of the quality of
the ensemble-estimated covariances, these results from
in-situ observations also served as a benchmark for testing
the more complex observation of GPSRO bending angles
and SATOB winds. This particularly allowed us to identify
some less-optimal (though still clearly beneficial) behavior
of the SATOB wind data that appears consistent with prob-
lems related to the height assignment reported by Folger
and Weissmann (2014; 2016).

For GPSRO, the agreement with in-situ measurements
is overall quite good, particularly when verified with
radiosonde temperature in the stratosphere, where the
horizontal correlation length for background errors is
much larger than at lower vertical levels. A marked differ-
ences of GPSRO to the case of in-situ measurements (both
verified against other in-situ measurements) is that the
covariance has a more complex dependence on the verti-
cal distance between the observations. This underlines the
non-local nature of the bending angle measurements. The
results suggest that somewhat lower vertical levels (i.e.,
localization heights) than the ones currently assigned for

http://wileyonlinelibrary.com
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the GPSRO data might actually lead to a slightly higher
FSOI score particularly when verified against humidity
measurements.

The data discussed in this article (and particularly the
example in Section 4.4) illustrate that, though requiring a
lot of care (as for any statistical investigation), the interpre-
tation of the proposed diagnostics in terms of consistency
relations can give some valuable insight into how observa-
tional data are processed in the DA system and can help to
identify situations or aspects that are less optimal than one
might assume.

5.1 Future work and applications

The new diagnostics have a great wealth of potential appli-
cations for which the work presented is meant as a starting
point that will help the interpretation of these diagnostics
when applied to more complex situations and observation
types. Depending on the investigation, this may involve
further related diagnostics, some of which, in the frame-
work presented here, can be constructed in a straightfor-
ward manner. Examples of this are the bias-subtracted
diagnostic given by the cyan curves in Figure 10 that
helped tracing back the bad cross-validation results of
some aircraft data to a bias problem. Also, multidimen-
sional bins (like the latitude–longitude bins in the geo-
graphical plots in Figures 9 and 11) may be important for
some investigations.

An obvious extension of the results presented herein
is to produce statistics for forecast lead times t > 0. This
involves covariances at different times (t0 and t0 + t) and
comparing the results with those for t = 0 presented
herein, which may give some insight into the ability of the
forecast model to propagate observational information in
time. This may give some indication of which aspects of
observational information are most relevant for produc-
ing a good forecast (rather than a good analysis, which
was the focus of the work presented herein). Such results
may be affected by imbalances of the analysis state (e.g.,
resulting from feedback with model parametrizations) or
other model issues that make their interpretation more
challenging so that the comparison with the results for
t = 0 presented herein (which are not affected by these
influences) may be of great relevance.

A major observation type in modern DA are satel-
lite radiances. Their great importance, together with their
sensitivity to various (possibly detrimental) influences,
like undetected clouds, aerosols, or trace gases, makes the
application of this method to this data type one of our pri-
orities. Applying the new ensemble-based diagnostics to
satellite radiances has two aspects. One is the processing
in the LETKF, and particularly the impact of localization

on these strongly non-local data (whose assimilation in
an ensemble system with vertical localization is always
to some degree suboptimal). The other is the identifica-
tion of issues related directly to the observations and their
first-guess departures. In practice, we are most interested
in observation-related issues, particularly as they should
also be relevant to our hybrid EnVar system, which also
makes use of the ensemble-estimated covariance matrix
and which produces DWD’s best global forecast. Detect-
ing such issues is, however, strongly dependent on an
adequate localization, as the ensemble-based diagnostics
compare observations only within the assigned localiza-
tion region. Therefore, as will be described in a future
publication, finding a good localization height for satel-
lite radiances has been a first step for investigating this
observation type with the new diagnostics.

We would like to point out that we expect the prob-
ably most widespread application of our cross-validation
method to be in the context of single-observation impact
assessment (described in Section 3.1 and Appendix D),
which was also employed in the example given in
Section 4.4. The single-observation diagnostics exploit the
same consistency relation as the cross-validation diagnos-
tic related to the full analysis but do not require any
input related to the analysis state and, therefore, allow
the testing of alternative preprocessing procedures with-
out repeating the analysis step. For example, alternative
cloud screening methods, changes to height assignments,
or, generally, any changes to the observation operator can
be tested with respect to their consistency with the ver-
ifying observations. It particularly permits the testing of
new observations prior to their use in the assimilation
system.
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APPENDIX A. THE OPTIMALITY CONDI-
TION

A.1 Condition for a global minimum of the verifica-
tion function J
Here, we show the equality in the upper line of
Equation (21) that proves the optimality condition in
Equation (17) is a necessary condition for xa being a
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global minimum of the verification function J. Using the
definition of the metric and the notation

yv|â = yv|a + 𝜹yv|a

with

𝜹yv|a = 𝛿𝜆(v)
𝛼

HvMtK𝚷𝛼

(yo − yb)

one can write

⟨||yv − yv|â||2⟩ = ⟨[(yv − yv|a) − 𝜹yv|a]T

× C−1[(yv − yv|a) − 𝜹yv|a]⟩
= ⟨||yv − yv|a||2⟩ + ⟨||𝜹yv|a||2⟩

− 2⟨(yv − yv|a)TC−1
𝜹yv|a⟩.

To see that this equals the right-hand side of the first line of
Equation (21), we rewrite the expression in the last angle
brackets on the right-hand side using

(yv − yv|a)TC−1
𝜹yv|a

= 𝛿𝜆(v)
𝛼

{(yv − yv|a)TC−1HvMtK𝚷𝛼

(yo − yb)}

= 𝛿𝜆(v)
𝛼

{Jb
𝛼

− Jab
𝛼

}

= (𝛿𝜆(v)
𝛼

)2||HvMtK𝚷𝛼

(yo − yb)||2,

where in the second line the definitions from Equations 4a
and 4b have been used, whereas the last line follows
directly from the definition of 𝛿𝜆(v)

𝛼

in Equation (19).

A.2 Condition for a local minimum of the verifica-
tion function J
From the arguments in Section 2.2 it is clear that the opti-
mality condition, Equation (17), has to hold for any global
minimum of the verification function J. In the following,
we show that this is the case also for any local minimum.
More precisely, we show that Equation (17) is a necessary
condition for that the derivative of J with respect to the
initial conditions is zero (at a local extremum of a differen-
tiable function the derivative is zero in all directions). For
this, we replace the analysis xa by the more general initial
conditions xini with

xini({𝜆
𝛼

}) = xb +
∑

𝛼∈{obs}
K𝜆

𝛼

𝚷
𝛼

(yo − yb),

which coincide with xa if all the scaling factors 𝜆
𝛼

equal
one. With this we generalize the verification function
by replacing yv|a by yv|ini, which is the model equiv-
alent to yv based on a model run starting from xini.

One has

J[xini] = 1
2
(||yv − yv|ini||2 − ||eb||2)

and

d(J[xini])
d𝜆

𝛼

= (yv − yv|ini)TC−1 d(yv|ini)
d𝜆

𝛼

= (yv − yv|ini)TC−1HvMtK𝚷𝛼

(yo − yb), (A1)

where we have used

d(yv|ini)
d𝜆

𝛼

= HvMt
d(xini({𝜆

𝛼

}))
d𝜆

𝛼

= HvMtK𝚷𝛼

(yo − yb).

Note that for xini = xa, Equation (A1) can be written as

d(J[xini])
d𝜆

𝛼

|
|
|
|
|{𝜆

𝛼

}={1,1,… ,1}
= Jb

𝛼

− Jab
𝛼

,

so that Equation (17) follows directly from

d⟨J[xini]⟩
d𝜆

𝛼

|
|
|
|
|xini=xa

= 0,

which has to hold if ⟨J[xini]⟩ has a local minimum at
xini = xa.

A.3 Optimality condition and error covariances
In the following we show that Equation (22) is a sufficient
condition for the optimality condition Equation (17). For
this, using the definition and properties of the trace func-
tion Tr[∶], we write the expectation values of Jb

𝛼

and Jab
𝛼

(see
Equations 4a and 4b) in the form

⟨Jb
𝛼

⟩ = Tr[C−1
̂P

a
{v, o}R−1𝚷

𝛼

⟨(yo − yb)(yv − yv|b)T⟩]
(A2a)

⟨Jab
𝛼

⟩ = Tr[C−1
̂P

a
{v, o}R−1𝚷

𝛼

⟨(yo − yb)(yv|a − yv|b)T⟩],
(A2b)

where Jab
𝛼

differs from Jb
𝛼

only by yv being replaced by yv|a

in the second line. One finds that Equation (17) holds if

𝚷
𝛼

⟨(yo − yb)(yv|a − yv|b)T⟩ = 𝚷
𝛼

⟨(yo − yb)(yv − yv|b)T⟩,
(A3)

and in the following we will show that this is equivalent to
Equation (22).
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For this we use the Kalman gain matrix of the following
form, which is algebraically equivalent to Equation (9):

K = PbHT[ ̂Pb + R]−1
, (A4)

with ̂Pb = HPbHT being the background covariance
matrix Pb (at analysis time t0) transformed into observa-
tion space (of the assimilated observations). We further
define

̂P
b
{v, o} ≡ HvMtPbHT

,

which (in strict analogy to ̂P
a
{v, o} in Equation (5)) would

yield ̂P
b
{v, o} = cov(yv|b

, yb) if the respective linear opera-
tors and covariance matrices used by the NWP system were
fully valid. With this we can write

(yv|a − yv|b) = ̂P
b
{v, o}[ ̂Pb + R]−1(yo − yb), (A5)

and therefore

⟨(yv|a − yv|b)(yo − yb)T⟩

= ̂P
b
{v, o}[ ̂Pb + R]−1⟨(yo − yb)(yo − yb)T⟩. (A6)

Then, Equation (22) is obtained from Equation (A3)
by taking the transpose of both sides and substitut-
ing ⟨(yv|a − yv|b)(yo − yb)T⟩ on the left-hand side (of the
transpose of Equation (A3)) by the right-hand side of
Equation (A6).

APPENDIX B. USING THE ENSEMBLE TO
ESTIMATE COVARIANCE MATRICES

Kalman filter methods require error covariances of the
model background state for which ensemble Kalman fil-
ters make the assumption that such covariances can be
estimated from the respective ensemble covariances. Sim-
ilarly, in such a framework, the analysis error covariance
is related to the covariance of the analysis ensemble. Here,
to compute analysis covariance ̂P

a
{v, o} (between veri-

fication and observation space) from the Nens ensemble
members of the LETKF, we define the incremental ensem-
ble members in verification space Yv|a and observation
space Ya (with components Y v|a(i)

v and Y a(i)
𝛼

, respectively).
Let yv|a(i)

v and ya(i)
𝛼

be the values of yv|a
v and ya

𝛼

for the ith
ensemble member; then, Y v|a(i)

v = yv|a(i)
v − yv|a

v is the differ-
ence from the corresponding ensemble mean value yv|a

v
(and similarly Y a(i)

𝛼

= ya(i)
𝛼

− ya
𝛼

).

With this we compute the ensemble covariance ̃Pb
en[v,𝛼]

as

̃Pb
en[v,𝛼] = (Nens − 1)−1

Nens∑

i=1
[Y v|a(i)

v Y a(i)
𝛼

] (B1)

from which the estimator ̂Pa
en[v,𝛼] for the [v, 𝛼]-component

of ̂P
a
{v, o} is given by the product

̂Pa
en[v,𝛼] = ̃Pb

en[v,𝛼] ∗ 𝜂t(v, 𝛼), (B2)

where 𝜂

t(v, 𝛼) is the localization function between the
component yv|a

v of the verifying data and the analysis
observation ya

𝛼

. (The corresponding equations for the
background covariance matrix are obtained by replacing
the superscript “a” by “b” in all the equations and defi-
nitions in this section.) We sometimes refer to ̂Pa

en[v,𝛼] as
the localized ensemble covariance, whereas ̃Pa

en[v,𝛼] is the
corresponding unlocalized covariance.

Localization is an essential technical procedure when
estimating covariances via finite-size ensembles. It is
needed to suppress spurious correlations that occur as
a result of the small ensemble size. Most common is
the localization in state space where 𝜂(v, 𝛼) is a function
of the distance between the two observations that goes
to zero for large distances. Popular is the Gaspari–Cohn
function (Gaspari and Cohn, 1999), which has some
similarity with a Gaussian but has a finite support.
Here, we use a superposition of Gaspari–Cohn func-
tions gc(∶) for the horizontal distance Δh and the differ-
ence in logarithmic pressure Δ[log(p)] between the two
observations:

𝜂

t(v, 𝛼) = gc
(
Δh
lh

)

gc
(
|Δ[log(p)]|

lz

)

, (B3)

where the vertical and horizontal localization length scales
lz and lh are tunable input parameters.

APPENDIX C. STATISTICAL SIGNIFICANCE

When testing Equation (12), a central question is
whether the sign of S(Jb

𝛼

) is statistically significant. All
significance tests (e.g., like Student’s t-test) have to make
some assumption about the nature of the errors that might
not be fulfilled for the data considered here. For the case
where the amount of data is reasonably large (which is the
case we are mostly interested in) these tests often give very
similar results. Here, we have decided to use a significance
indicator based on a very simple error model (and which
therefore is very simple to apply) but which is sensitive to
both the number and the magnitudes of the contributions
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in a respective bin.7 More precisely, we compare the data Ai
collected for a given bin with a model problem in which the
data have the same magnitude but where the sign is com-
pletely random, which implies ⟨Ai⟩ = 0 and ⟨AiA𝑗

⟩ = 𝛿i𝑗A2
i

so that also the sum over a bin

S(A) ≡
m∑

i=1
Ai

has zero mean expectation value (i.e., ⟨S(A)⟩ = 0) and the
variance can be written as

⟨S(A)2⟩ =
m∑

i=1

m∑

𝑗=1
⟨AiA𝑗

⟩ = ⟨S(A2)⟩.

In the following, to get an impression whether the sign
of the sum S(Jb

𝛼

) computed for a given bin is statistically
relevant, in the graphs presented in this article it is always
compared with the standard deviation estimate V

b
𝛼

of the
corresponding noise model:

V
b
𝛼

=
√

S[(Jb
𝛼

)2]. (C1)

Of course, since Jb
𝛼

is generally not a Gaussian vari-
able (even for the case where the observational data are
Gaussian), V

b
𝛼

should only be seen as a rough indicator
for which three standard deviations might generally not be
sufficient to ensure statistical relevance.

APPENDIX D. SINGLE OBSERVATION DIAG-
NOSTICS

The diagnostics introduced in this article can also be
applied to experiments where only a single observation

7Problems with statistical significance arise particularly when either the
population in a bin is too small or when the sum is dominated by a
small number of large contributions.

(i.e., the observation 𝛼) is assimilated, in which case the
corresponding analysis increments and analysis covari-
ances are given by

yv|a;SO
v − yv|b

v = ̂Pb
en[v,𝛼]

yo
𝛼

− yb
𝛼

̂Pb
𝛼𝛼

+ R
𝛼𝛼

(D1)

̂Pa;SO
[v,𝛼] = ̂P

b
en[v,𝛼]

R
𝛼𝛼

̂Pb
𝛼𝛼

+ R
𝛼𝛼

(where the additional superscript “SO” indicates that
the respective quantity corresponds to single-observation
assimilations). Introducing this into Equations 28a and
28b yields

Jb;SO
𝛼

=
∑

v

̂Pb
en[v,𝛼]

(yv
v − yv|b

v )(yo
𝛼

− yb
𝛼

)

Rvv( ̂P
b
𝛼𝛼

+ R
𝛼𝛼

)
(D2a)

Jab;SO
𝛼

=
∑

v

̂Pb
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while the expectation value, Equation (29), is
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