
1. Introduction
The Humboldt Upwelling System is one of the most important regions contributing to global fisheries, though 
the origin of the high fish production relative to phytoplankton production remains unclear. Benefiting from 
constantly upwelled nutrients, the Humboldt system is highly productive throughout the year, supporting a produc-
tive zooplankton community and further nourishing a rich small pelagic fish stock (e.g., anchovies and sardines; 
Bakun & Weeks, 2008). While Pauly and Christensen (1995) suggest that 25% of phytoplankton production is 
required to sustain fish catch in upwelling regions, Friedland et al. (2012) found phytoplankton production to be 
a poor predictor for fishing yield. Phytoplankton and fish production are related by trophodynamics which may 
boost or buffer responses of different trophic levels to changes in environmental conditions. The terms “trophic 
amplification” and “trophic attenuation,” therefore, were introduced to describe a change in a higher trophic level 
that is more or less prominent than in a lower trophic level, respectively (Kirby & Beaugrand, 2009).

Traditional theory (Lindeman, 1942) assumes that the portion of phytoplankton production transferred to fish 
(food chain efficiency) depends on the efficiency of energy transfer across trophic levels (trophic transfer effi-
ciency) and the length of the food chain (food chain length). Different biomes strongly differ in their trophic 
transfer efficiencies and food chain lengths (Pauly & Christensen, 1995; Ryther, 1969). For these differences, 
multiple factors play a role, such as physical-biogeochemical conditions (e.g., temperature, light and nutrients; 
Du Pontavice et al., 2020; Dickman et al., 2008) and multiple ecological processes (e.g., zooplankton feeding 
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strategy; Heneghan et al., 2016; Mitra et al., 2014; Prowe et al., 2019). Previous model studies resolving ecol-
ogy up to mesozooplankton suggest that trophic transfer efficiency is affected by hydrodynamically driven 
predator-prey encounter (Legendre & Rassoulzadegan, 1996) and growth efficiencies of each trophic level, while 
food chain length is determined, amongst others, by phytoplankton composition (Stock et al., 2014).

The Humboldt system is characterized by a strikingly high food chain efficiency, even compared to other eastern 
boundary upwelling systems (Chavez et al., 2008). The lower trophic ecosystem is highly seasonal with plankton, 
and export efficiency, oddly opposing the seasonality of upwelling of nutrient-rich waters (Echevin et al., 2008; 
Xue et al., 2022). The seasonality of lower trophic levels due to environmental conditions is expected to affect 
higher trophic levels in the Humboldt system. To better understand the Humboldt system trophodynamics, we 
derive equations for trophic transfer efficiency and food chain length based on Ulanowicz (1995). It allows us to 
disentangle their roles in variations of the food chain efficiency and identify a dominant contribution of trophic 
transfer efficiency. The mechanism is regulation of predator-prey encounters due to compression and dilution of 
prey with varying mixed layer depths. We then extrapolate our findings to the global scale by using the seasonal 
cycle of observational estimates and simulations from two global models to investigate how the governing mech-
anism may act in other biomes that are similarly productive as the Humboldt system.

2. Methods
2.1. Regional Physical - Biogeochemical Model: CROCO-BioEBUS

We use a three-dimensional regional physical model CROCO (Coastal and Regional Ocean COmmunity model; 
Shchepetkin & McWilliams, 2005) coupled with the biogeochemical model BioEBUS (Biogeochemical model 
for the Eastern Boundary Upwelling Systems; Gutknecht et al., 2013) for analyses of the seasonality of tropho-
dynamics. A detailed description of the model set-up and evaluation can be found in Xue et al. (2022). We focus 
on the 200 km wide band off the Peruvian coast (Figure S1b in Supporting Information S1) characterized by high 
phytoplankton production that overlaps with the coastal habitat of anchovy (Bertrand et al., 2004).

CROCO is a free-surface, split-explicit regional ocean circulation model. We employ a two-way nesting approach 
and use the embedded “small” domain for analyses. It has a resolution of 1/12° extending from 5°N to 31°S and 
69°W to 102°W, and 32 vertical sigma levels, with a finer resolution toward the surface of 0.5–2 m in shallow 
waters. Initial and boundary conditions and surface forcing are provided by monthly climatological SODA reanal-
ysis from 1990 to 2010 (Carton & Giese, 2008) and COADS heat and freshwater flux data (Worley et al., 2005). 
BioEBUS is a nitrogen-based model with four plankton groups representing small and large phytoplankton along 
with microzooplankton and mesozooplankton (Gutknecht et al., 2013). Microzooplankton graze on both phyto-
plankton with a preference for small phytoplankton, while mesozooplankton graze on the other three groups, 
favoring microzooplankton the most and small phytoplankton the least. Initial and boundary conditions for phyto-
plankton are based on monthly climatological SeaWiFS (O’Reilly et al., 1998), nitrate and oxygen concentrations 
are taken from CARS (Ridgway et  al., 2002). The model is climatologically forced for 30 years and the last 
5 years are used for analyses.

2.2. Analytical Derivation of Trophic Transfer Efficiency and Food Chain Length

Following the original concept in Kirby and Beaugrand (2009), we define “seasonal trophic amplification” as a 
more prominent relative seasonal amplitude of higher trophic level (mesozooplankton) net production compared 
to that of a lower trophic level (phytoplankton). To investigate the disproportionate energy transfer, we attribute 
variations of food chain efficiency (FCE) to variations of trophic transfer efficiency (TTE) and food chain length 
(FCL). We calculate TTE and FCL based on the amount of energy transferred between trophic levels (TL), 
applying the analytical formulations in Ulanowicz (1995). This approach accounts for the fact that food webs 
typically represent “webs” where predators graze on multiple prey types and converts them into “chains.” In 
our derivations below we calculate net production (NP, in mmol N m −3) of each plankton group as the part that 
is potentially available for the next trophic level: Net phytoplankton production (NPsphy and NPlphy of small and 
large phytoplankton, respectively) is computed as the nitrogen uptake subtracting exudation; net zooplankton 
production (NPszoo and NPlzoo of micro- and mesozooplankton, respectively) is the assimilated fraction of grazing 
(grazing minus fecal pellets) minus respiration.
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2.2.1. Food Chain Length

We define FCL as the highest trophic position, mesozooplankton in our model. Following Ulanowicz (1995), we 
define a trophic transformation matrix T (Equation 1) that allows the mapping of net production of the plankton 
compartments of the model food web to a chain. The rows of T represent trophic levels, and the columns are 
different plankton groups, that is, small and large phytoplankton and then small and large zooplankton.

𝐓𝐓 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0

0 0 1 𝐷𝐷pz

0 0 0 𝐷𝐷zz

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

 (1)
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lzoo

𝐺𝐺lzoo
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+ 𝐴𝐴

szoo
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 represents total mesozooplankton grazing. Dpz and Dzz are the fractions of phyto- 
and microzooplankton in the mesozooplankton diet. By definition, the sums of the columns add up to 1, that is 
Dpz + Dzz = 1. Mesozooplankton (column 4) can be considered partially trophic level 2 (TL2, row 2) and 3 (TL3, 
row 3) as it grazes on both phytoplankton (TL1, row 1) and microzooplankton (TL2, row 2). The trophic level of 
mesozooplankton, that is FCL, can then be calculated as:

FCL = TLlzoo = 2 ∗ 𝐷𝐷pz + 3 ∗ 𝐷𝐷zz = 2 ∗
(
𝐷𝐷pz +𝐷𝐷zz

)
+𝐷𝐷zz = 2 +𝐷𝐷zz (2)

Hence, a value of two indicates complete herbivory, 2.5 50% herbivory, 50% carnivory, and 3 complete carnivory.

2.2.2. Trophic Transfer Efficiency

We calculate TTE based on the net production of the plankton compartments combined with the trophic transfor-
mation matrix. First, we get the net production for each trophic level (NPTL) by multiplying the trophic transfor-
mation matrix T with the vector composed of the net production values of each plankton compartment:
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 (3)

Thus, net production of TL3 refers to the part of mesozooplankton that is grazing on microzooplankton

NPTL3
= 𝐷𝐷zz ∗ NPlzoo (4)

Then, we define TTE as the ratio of net production between trophic levels (TL):

TTE𝑛𝑛 =
NPTL𝑛𝑛+1

NPTL𝑛𝑛

 (5)

2.2.3. Food Chain Efficiency

Based on the FCL (Section 2.2.1) and the TTE (Section 2.2.2), we obtain an equation for the FCE. Equation 5 
allows us to express 𝐴𝐴 NPTL3

 in terms of the production of lowest trophic level and the subsequent energy transfers 
to TL3:

NPTL3
= NPTL2

∗ TTE2 =
(
NPTL1

∗ TTE1

)
∗ TTE2 (6)
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Equating Equations  4 and  6 and considering Equation  2 leads to an equation relating mesozooplankton net 
production (NPlzoo) with net phytoplankton production (NPphy), TTE and FCL:

NPlzoo = NPphy
TTE1 ⋅ TTE2

FCL − 2
 (7)

From this follows that FCE, here representing the ratio of net mesozooplankton production to phytoplankton 
production, is directly linked with TTE and anti-correlated with FCL:

FCE =
NPlzoo

NPphy

=
TTE1 ⋅ TTE2

FCL − 2
 (8)

2.2.4. Predator-Prey Encounter Efficiency (EE)

To assess the importance of predator-prey vertical encounter efficiency for TTE, we define EE within the water 
column as:

EE =

∑𝑛𝑛

𝑖𝑖=1
(prey𝑖𝑖 ⋅ pred𝑖𝑖)

∑𝑛𝑛

𝑖𝑖=1
prey𝑖𝑖 ⋅

∑𝑛𝑛

𝑖𝑖=1
pred𝑖𝑖

 (9)

n stands for the number of vertical grid boxes. preyi and predi represent the biomass concentrations of predator 
and prey within the grid box i. EE is calculated by weighting the thicknesses of the grid boxes. It is affected by 
both vertical distributions and biomass concentration of predator and prey, with the value ranging from 0 to 1. An 
EE of 0 means no overlap between predator and prey. A value of 1 means both predator and prey are concentrated 
in the same single grid box, reaching the full potential of predator-prey trophic transfer (every predator can eat 
all prey).

2.3. Global Models and Observation

To test the global applicability of our findings in the Humboldt system, we use two contrasting global models: 
(a) the University of Victoria Earth System Climate Model version 2.9 (UVic-model; Weaver et al., 2001; Keller 
et al., 2012) with relatively coarse resolution and simple food web structure; (b) the Geophysical Fluid Dynam-
ics Laboratory Earth System Model 2.6 (GFDL-model; Stock et al., 2017) with relatively fine resolution and 
complex food web structure.

The UVic-model uses a horizontal resolution of 1.8° (latitude) × 3.6° (longitude) and 19 vertical levels, with 
50 m vertical resolution near the surface. The marine ecosystem component has two phytoplankton (nitrogen 
fixers, regular phytoplankton) and one zooplankton groups. Detailed model set-up description and evaluation are 
in Yao et al. (2019, without iron configuration). Model results after a 3,000-year spin up are used in this study.

The GFDL-model combines the global climate model GFDL CM2.6 (Delworth et al., 2012) with the planktonic 
ecosystem model COBALT (Stock et al., 2014). Its ocean component has an approximate spatial resolution of 
10 km and 50 vertical layers, with 10 m vertical resolution over the top 200 m. COBALT contains three phyto-
plankton (small, large, diazotrophs) and three zooplankton groups (micro-, meso-, macrozooplankton). Trophic 
interactions are size-based and designed to represent plankton physiology and predator-prey interactions (see 
Stock et al. (2017) for details). Model results after a 50-year simulation with fully coupled configuration, forced 
by year 1990 conditions, are used in this study.

The observationally based FCE is calculated following Stock and Dunne  (2010) using satellite-based phyto-
plankton production estimates (VGPM; Behrenfeld & Falkowski, 1997). Mesozooplankton production is calcu-
lated using mesozooplankton biomass from the COPEPOD Database (O’Brien, 2007) and growth rate estimated 
following Hirst and Bunker (2003) based on temperature and chlorophyll from MODIS (https://oceancolor.gsfc.
nasa.gov/data/aqua/). The seasonal pattern of the FCE is first normalized at each station and then averaged over a 
biome to avoid weighting large absolute values of the FCE higher. The seasonal cycles for specific locations with 
data coverage throughout the year yield similar results (Figure S5 in Supporting Information S1). The observed 
mixed layer depth (MLD) is taken from the ARGO mixed layer database (http://mixedlayer.ucsd.edu/) using the 
temperature threshold mean MLD (Holte et al., 2017), which was also used to infer the simulated MLD with a 
starting depth of 0.5–2 m. For detailed model MLD evaluations, please see Xue et al. (2022).

https://oceancolor.gsfc
https://oceancolor.gsfc
http://mixedlayer.ucsd.edu/
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2.4. Biome Definition

The relation of MLD and FCE is analyzed globally, subdivided by productive 
and oligotrophic regions. Productive and oligotrophic regions are categorized 
by the annual mean surface chlorophyll above and below 0.1 mg Chl m −3 for 
observational data and 0.15 mg Chl m −3 for model results, respectively. A 
higher threshold for model simulations is used to account for the relatively 
high bias (Figure S2 in Supporting Information S1) and achieve similar biome 
distribution in comparison with observational estimates. Productive regions 
reflect the high-latitude, tropical and coastal regions with high macronutri-
ent and pronounced phytoplankton concentrations. The oligotrophic regions 
generally correspond to the subtropical gyres.

3. Results and Discussion
3.1. Trophic Transfer Efficiency Drives Trophic Amplification

The amplitude of seasonal variations in mesozooplankton production is 
more prominent than that of phytoplankton, revealing the feature of trophic 
amplification on a seasonal scale (hereafter referred to as “seasonal trophic 
amplification,” Figure 1a). Phytoplankton and mesozooplankton production 
vary seasonally in phase, with high production in austral summer and low 
production in winter. The fraction of phytoplankton production resulting 
in mesozooplankton production, that is FCE, is 9.5% on average, which is 
roughly consistent with observational estimates (Figure S1 in Supporting 
Information S1), with a maximum of 17% in austral summer and a minimum 
of 3% in winter. The seasonal variation of the FCE is reflected in an ampli-
fied seasonal variation of mesozooplankton production (83% relative to its 
annual mean) compared to that of phytoplankton (35%).

Seasonal trophic amplification in our model is mainly introduced by variations in TTE, while FCL plays a negli-
gible role (Figure 1b). As evident from Equation 8, variations of the FCE can be decomposed into effects from 
TTE and FCL. TTE varies seasonally in phase with net phytoplankton and mesozooplankton production, contrib-
uting most to the seasonal variation of the FCE and thus trophic amplification (Figure 1b). The seasonal variation 
of FCL is small by comparison. We, therefore, focus on TTE of seasonal trophic amplification in the following 
sections.

3.2. Taking a Mixed Layer Depth Perspective to Grazing

TTE, as the dominant driver of seasonal trophic amplification, is mainly affected by variations of predator graz-
ing. The fate of phytoplankton production is either grazing by zooplankton, which is then used for respiration, 
egested as fecal pellets, or passed on to the next trophic level, or not to be consumed by grazers (Figures 2a 
and 2b). In austral winter, a relatively smaller fraction of phytoplankton production is being grazed (57%) than 
in summer (65%). The fraction of production that is passed on to the next trophic level (TTE) is also lower in 
winter (17%) than in summer (33%). The production of fecal pellets relative to phytoplankton production stays 
approximately the same in winter and summer (Figures 2a and 2b), while biomass-specific production of fecal 
pellets is substantially smaller in winter. While a larger share of phytoplankton production is used for zooplank-
ton respiration in austral winter, this is due to reduced biomass-specific zooplankton grazing combined with a 
roughly constant biomass specific respiration rate (Figure 2c). Therefore, with reduced losses to fecal pellets in 
winter, and an approximately constant biomass-specific respiration, the dominant process determining how much 
production is available to the next trophic level, thus TTE, is predator grazing.

For predator grazing, predator-prey encounter efficiency, which is driven by the MLD, is more important than 
total (vertically integrated) prey biomass (Figure 3). If predator and prey are diluted over a deeper mixed layer, the 
potential for predator-prey encounters is smaller. We pick a month in austral summer and winter, respectively, that 
host roughly the same amount of vertically integrated prey biomass within the water column (60 mmol N m −2, 

Figure 1. Trophic amplification due to seasonally varying trophic transfer 
efficiency (TTE): (a) Seasonal cycles of net phytoplankton (NPphy, green), 
mesozooplankton production (NPlzoo, purple) and FCE (NPlzoo/NPphy, yellow). 
The y axis range spans 100% of change relative to the annual mean for each 
variable; (b) seasonal cycles of the terms in Equation 8 to assess the relative 
contributions from trophic transfer efficiency between trophic levels 1 and 2 
(TTE1, light blue) and trophic levels 2 and 3 (TTE2, dark blue), and food chain 
length (FCL; as 1/(FCL − 2), red) over the water column within the focus 
region. The y axis range spans 50% of change relative to the annual mean for 
each variable.
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Figure 3a) at different MLD (February: 10 m; June: 35 m). Predator and prey are more concentrated in a shal-
lower mixed layer in February while they are more diluted in June. The high predator and prey concentration in 
a thinner layer allows the predator to graze more efficiently due to a high encounter efficiency, hence supporting 
a high specific grazing rate for the predator. This mechanism reflects a significant correlation between MLD and 
the vertical encounter efficiency (Figure 3b). Similar findings have also been proposed in a horizontal perspec-
tive that the spatial distribution drives the covariance of predator and prey and dominates over total biomass in 
regulating the system production and food web structure (e.g., front system; Benoit-Bird & McManus, 2012; 
Woodson & Litvin, 2015).

3.3. A Negligible Role of Food Web Structure?

Seasonal changes in food web structure, thus food chain length, have a negligible effect on the trophic ampli-
fication (Figure 1b). In our model, the food chain length varies very little around 2.5 (thus 1/(FCL − 2) stays 

Figure 2. Reduced trophic transfer efficiency in winter (TTE) due to reduced efficiency of grazing: Fate of phytoplankton 
production in austral (a) summer; and (b) winter. The sizes of the pie charts are representative for the magnitude of 
phytoplankton production. (c) Biomass-specific rate of respiration (purple), fecal pellet production (blue) and production 
available to the next trophic level (red) in austral summer and winter. The sum of all colored components (respiration, fecal 
pellets and the production available to the next trophic level) represents zooplankton grazing; only the grazed (colored) parts 
are being processed by zooplankton.
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around 2), with mesozooplankton grazing nearly equally on phytoplankton 
and microzooplankton. The food chain tends to be shorter when the phyto-
plankton community is more strongly dominated by large phytoplankton, 
reflecting a more efficient food web structure.

The limited flexibility in our simulated food web structure, for example, 
through fixed diet preferences, cannot fully capture the complex trophic 
interactions of the real ecosystem. The predator diet preference in the model 
is fixed based on body size (Boyce et al., 2015), allowing only for a limited 
variation of the food web structure and FCL and their contribution to varia-
tions of the FCE. A previous study found that different FCL is the major cause 
of FCE differences across ocean biomes (Stock & Dunne, 2010). A deliberate 
change in food web structure (albeit limited to the lower trophic levels that 
the model resolves) by manipulating the diet of the two zooplankton groups 
does not have a notable effect in our model (see Supporting Information S1 
for detailed sensitivity studies). But given the limitation of the simplified 
description of food web dynamics in the model, no general conclusions about 
the role of food web structure should be derived from this study.

3.4. MLD Driving Trophic Transfer: A Common Feature of Productive 
Regions

The negative correlation between MLD and FCE is not only apparent in the 
Humboldt system but also in other productive regions. To test the impor-
tance of the MLD for the FCE, we globally define “productive regions”, 
which include the Humboldt system, versus “oligotrophic regions” that are 
bottom-up limited and comparatively low in phytoplankton production (see 
Methods section). The spatial patterns of the simulated productive regions 
from the UVic-model and the GFDL-model generally match the observa-
tional estimates (Figures 4a–4c). A clear negative correlation of the FCE and 
the MLD in the productive regions (Figures 4d–4f) is apparent in the obser-
vational estimates and the model simulations. A relatively low FCE generally 
coincides with deep MLD, consistent with the dilution and concentration of 
prey reducing the predator-prey encounter efficiency, and thereby grazing 
and the FCE. Worth noticing, while the dominant mesozooplankton group 
in the Humboldt upwelling system has not been observed to do diel vertical 
migration (Massing et al., 2022), it has been commonly observed elsewhere. 
Despite using deep waters as a refuge during the day, diel vertical migration 
is unlikely to affect MLD and FCE correlations because zooplankton feed 
primarily near the surface (Hays, 2003), where prey is diluted regardless of 
zooplankton movement. Stock et al.  (2014) compared annual average FCE 
across different regions of the globe and similarly found a comparatively 
prominent role of dilution of prey for the high latitude regions.

The seasonal variation of FCE is governed by different mechanisms in 
oligotrophic regions, with much lower correlation coefficients compared 
to productive regions (Figures  4g–4i). As oligotrophic regions are 
nutrient-limited, deepening mixed layers in the models bring up nutrients 
from below that stimulate phytoplankton growth. Mixing events have been 
observed in the North Pacific gyre to significantly increase not only phyto-

plankton production but also zooplankton biomass (McGowan & Hayward, 1978). When food availability for 
zooplankton is low, as is the case in oligotrophic regions, zooplankton growth efficiency is very sensitive to a 
given change in food. This is because the limited grazed food is needed to sustain basic functions (e.g., respira-
tion), as zooplankton is “starving.” In contrast, zooplankton growth efficiency is much less sensitive to changes 

Figure 3. Reduced efficiency of grazing (specific grazing rate) due to prey 
dilution in deep winter mixed layers: (a) Vertical profiles of predator biomass 
specific grazing rate (d −1) in February and June with color indicating the prey 
concentration (TL1, mmol N m −3) and size of the circle indicating the predator 
concentration (TL2, mmol N m −3) within the focus region; inserts show prey 
vertically integrated over the water column (green), the mixed layer depth 
(yellow), and the average mixed layer biomass specific ingestion rate (light 
blue); (b) Correlation of mixed layer depth and vertical encounter efficiency 
(EE, Equation 9) with colors indicating the time of the year (months). R 2 value 
of the correlation is shown on the left side.
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in food concentration when food is plentiful (Figure 2 in Stock et al., 2014). Thus, in oligotrophic regions, one 
may expect a positive response of the FCE to deepening mixed layers, as partially indicated in the global models.

Both global models tend to capture the correlation between MLD and FCE in productive regions, regardless of 
different trophic resolutions. While the value of FCE in the GFDL-model roughly matches the observed estimate 
of 6% in the productive regions, the value of FCE is much higher in the UVic-model, possibly due to resolving 
only one trophic link. Nevertheless, in agreement with the classic paradigm (Ryther, 1969), the FCE in both 
models is generally higher in productive than in oligotrophic regions.

4. Implications and Conclusions
Our model simulates seasonal trophic amplification driven by mixed layer dynamics in the Humboldt and other 
productive systems. To pinpoint the origin of the seasonal amplification, we have applied an analytical approach 
that allowed us to define and disentangle the contributions to the seasonal variation of the food chain efficiency 
(FCE) of the efficiency of production transfer between trophic levels (TTE), and the length of the food chain 
up to the top predator (FCL). In our model, the TTE is the main contributor to the seasonal amplification in the 
Humboldt system, and it is mainly driven by the mixed layer dynamics. The same mechanism also seems to apply 
to other oceanic biomes characterized by elevated chlorophyll, such as coastal and high latitude oceans. A caveat 
of our models is that the food web structures do not fully resolve the complexity of the real ecosystem, that is, 
seasonal variations of the FCL may play a larger role in the real ocean. Our results highlight that the annual values 
of FCE typically analyzed by previous studies emerge from a dynamic seasonal cycle.

The term trophic amplification was coined in analyses of climate change projections, with ocean warming 
affecting more strongly the higher than the lower trophic levels (Chust et al., 2014; Kirby & Beaugrand, 2009; 

Figure 4. Indication for seasonal mixed layer depth (MLD) variations driving food chain efficiency (FCE) beyond the Humboldt system: Ocean biomes calculated 
from (a) observations, (b) UVic-model and (c) GFDL-model with productive (green, above 0.1 mg Chl m −3 (observations)/0.15 mg Chl m −3 (model)) and oligotrophic 
(yellow, below 0.1 mg Chl m −3 (observations)/0.15 mg Chl m −3 (model)) regions. Dots in (a) indicate the locations of observations. Average seasonal cycles of MLD 
(black) and food chain efficiency (FCE, the ratio of net mesozooplankton production to phytoplankton production, Equation 6, color) for (d and g) observations (e and 
h) UVic-model and (f and i) GFDL-model, normalized by the mean MLD and FCE for each biome: productive (green, (d to f) and oligotrophic (yellow, g to i) regions. 
Values in brackets indicate the absolute values of annual means. R 2 values of the correlations between MLD and FCE are shown in the top-left side of each panel.
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Kwiatkowski et al., 2019; Lotze et al., 2019; Stock et al., 2014). Different responses of phytoplankton biomass 
are projected by climate models for low versus high latitude regions with global warming. Positive trophic ampli-
fication, with increases of biomass in each trophic level, is found more commonly in high latitude regions. Stock 
et al. (2014) suggest that shoaling of winter mixed layers and ice melting due to global warming may play a role, 
leading to productivity increases and tighter coupling between predators and prey. In contrast, increased nutrient 
limitation arising from enhanced stratification may cause negative trophic amplification in low latitude regions 
(Chust et al., 2014; Kwiatkowski et al., 2019; Stock et al., 2014).

We note that next to mixed layer dynamics other mechanisms may affect predator-prey encounters, with the poten-
tial to further intensify trophic amplification, such as expanding oxygen minimum zones. Schukat et al. (2021) 
observed in the Humboldt system that key mesozooplankton species, such as calanoid copepods, almost exclu-
sively restrict themselves to the surface layer above the oxygen minimum zone, allowing the Peruvian anchovies 
to forage more easily and efficiently and supporting the high fish yield in the Humboldt system. We hypothesize a 
potential positive feedback loop where positive amplification triggered by shallowing mixed layers, or a shoaling 
of the oxycline, increases the export of organic material to the deeper ocean, as a result of both enhanced phyto-
plankton production and export efficiency (Xue et al., 2022). The enhanced export then could lead to enhanced 
oxygen consumption at depth, and to a further expansion of the oxygen minimum zone (Riebesell et al., 2007), 
resulting in further enhanced prey concentration and trophic amplification, and in turn more export, thereby 
closing the feedback loop.

Based on our findings of the present-day seasonality of the Humboldt lower trophic ecosystem dynamics, we 
suggest that positive trophic amplification may promote export of organic material under global warming not 
only in the Humboldt system but also in the high latitudes as a result of both increasing phytoplankton production 
(e.g., Sallée et al., 2013, 2021), and higher food chain efficiency (Chust et al., 2014; Kwiatkowski et al., 2019; 
Stock et al., 2014) with shallowing mixed layers. Improving understanding of seasonal dynamics may facilitate 
the interpretation of ecosystem sensitivities in observational data, and help to further improve the simulation of 
sensitivities in climate models, thereby improving climate projections.

Data Availability Statement
Regional model (CROCO-BioEBUS) data is available through Xue et al. (2022). Global model data is available 
through Yao et al. (2019) for the UVic model data and Stock et al. (2017) for the GFDL model data.
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