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Abstract
Island biogeography provides concepts for conservation 
management as fragmented habitats are comparable to 
ocean islands. Remote sensing can help to extract ter-
restrial habitat islands on the landscape scale. However, 
little is known about the effects of image resolution and 
classification algorithms on resulting island size and re-
lated parameters. We study the combined effect of three 
image resolutions (2, 10, and 30  m) and three classifica-
tion algorithms (Artificial Neural Network, Random Forest, 
Support Vector Machine) by extracting quartz islands from 
WorldView-2 imagery using image segmentation. We com-
pared four island parameters (i.e., area, distance, shape 
index, and perimeter–area ratio between resolutions and 
classifiers). We found that in all cases, image resolution 
and classification algorithms had a strong effect. However, 
image resolution was more important for area and shape. 
Artificial Neural Network always provided the best perfor-
mance as a classifier (OA: 0.880, kappa: 0.801, F1: 0.912). 
Hence, conservation strategies could lead to different re-
sults when different pattern extraction strategies are ap-
plied. Future studies which aim at extracting terrestrial 
habitat islands from image datasets should aim for the 
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1  | INTRODUC TION

Isolated special habitats such as forest fragments, rocky outcrops, inselbergs, and remnant grassland patches 
(Burke, 2002; Itescu, 2019; Matthews, 2021) can be characterized as terrestrial habitat islands embedded in a 
“sea” of dissimilar matrix habitats (Mendez-Castro et al., 2021; Ottaviani et al., 2020). Due to isolation by distance 
and specific environmental conditions acting as filters to the species pool, terrestrial habitat islands are often rich 
in endemic species (Kier et al., 2009). A recent study by Wintle et al. (2019) highlighted the importance of small 
isolated habitat patches for supporting biodiversity. Consequently, these types of habitats are of particular inter-
est for conservation management and species protection likewise. Island biogeography provides theories that can 
help to identify areas of high species richness and local endemism, which help conservation managers prioritize 
areas for conservation management. However, the information on number, size, and distribution of terrestrial hab-
itat islands in an area cannot easily be quantified from the ground. This is particularly difficult in vast and remote 
areas with reduced access by road. Remote sensing provides the means to extract this information from satellite 
imagery with high reproducibility, objectivity, and low cost.

Quartz islands, also referred to as quartz fields (Schmiedel & Jürgens,  1999; Van Tonder, Milton, & 
Cameron, 2014), quartz patches (Curtis, Stirton, & Muasya, 2013), quartz-lag gravel habitat (Ellis & Weis, 2006), 
or quartz gravel plains (Ellis, Weis, & Gaut, 2006), are edaphic habitat islands in the Succulent Karoo and adjacent 
biomes of southern Africa, which present a unique, edaphically arid ecosystem surrounded by matrix vegeta-
tion on zonal soils (Schmiedel & Jürgens, 1999). These quartz islands have their own vegetation, which differs 
strongly from the matrix vegetation in terms of structure, composition, and diversity (Eibes et al., 2021; Schmiedel 
& Jürgens,  1999). Sometimes, sharp boundaries at the scale of a few decimeters between quartz islands and 
the matrix occur, caused by strong changes in soil pH and electrical conductivity (Schmiedel, Kühne, Twerski, 
& Oldeland, 2015). Quartz islands are an important habitat for habitat specialists and locally endemic species 
(Schmiedel, 2002, 2004; Schmiedel & Jürgens, 1999) and conservation areas in South Africa have been imple-
mented to conserve this special habitat type. This is also the case for the Knersvlakte Nature Reserve, our study 
area. Nevertheless, there is still a considerable lack of detailed spatial information on their distribution at the 
landscape scale to support conservation management. Many small quartz islands are scattered throughout the 
landscape, making it difficult to adequately map all quartz islands individually. Indeed, it is still unclear how many 
quartz islands exist altogether, how much area they cover, and what their spatial configurations are. Remote 
sensing is a potential tool that could help to create these urgently required maps, potentially discovering hundreds 
or even thousands of previously unknown habitat islands and aiding conservation management and resource ex-
ploitation (esp. mining) by red-flagging ecologically sensitive areas.

Few studies have previously worked on mapping land cover and land use change in the Knersvlakte. Desmet, 
Cowling, Ellis, and Pressey (2002) provide an example for conservation planning in the Knersvlakte presenting 
a map based on field work, expert opinions, and herbarium information. Rodríguez-Caballero et al. (2017) used 
the airborne hyperspectral CASI-sensor to map two types of microbial surface communities, one of them being 
hypolithic soil crusts on quartz. Although they did not intend to map quartz islands at the landscape scale, they 
found that quartz islands and surrounding soil types differed strongly in their hyperspectral signatures and that 
this information could be used to map quartz islands at a larger spatial scale. The best study currently available 
on mapping quartz islands was performed by De Klerk, Gilbertson, Luck-Vogel, Kemp, and Munch (2016), who 
wanted to inform practitioners on the best setup to apply to remote sensing to map quartz islands. They com-
pared the suitability of pan-sharpened SPOT-5 (2.5 m) and Landsat 8 (15 m) to map quartz islands on an area of c. 

highest possible resolution and compare the outcomes of 
different classifiers to ensure the best possible results.
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20 × 40 km. Furthermore, they compared 24 different scenarios (e.g., pixel-based vs. object-based classification, 
two vs. three land cover classes, two different classifiers [Maximum Likelihood vs. Support Vector Machine]), as 
well as two different image datasets (RGB vs. PCA). They were able to map quartz islands with 99.23% accuracy 
and a kappa of 0.9 using the object-based image classification and the Maximum Likelihood classifier for the 
SPOT-5 two-class solution.

Despite the high conservation value of the quartz islands in the Knersvlakte, no map of the quartz island 
at the landscape scale was made available. Furthermore, new very-high-resolution satellites allow finer spatial 
resolutions (e.g., the WorldView missions). A higher resolution is also important for testing island biogeogra-
phy theories on quartz islands, where the size of even small quartz islands within a quartz island archipelago 
is critical to determine aspects of area, isolation, and insularity (Mendez-Castro et al., 2021). However, for 
conservation planning and management, where funding is often limited, the use of freely available satellite 
data can be a relevant criterion. Therefore, Sentinel-2, with a resolution of 10 m, might also be a good candi-
date for mapping quartz islands given the free-of-charge availability of the image data, higher native resolution 
(i.e., without pan-sharpening), and more spectral information. Object-based analysis is often the best choice 
for high-resolution data. Algorithms provided by open-source projects often give equal results to commercial 
algorithms and are often favored by conservation managers, who typically have constrained budgets (Rocchini 
et al., 2017). Finally, the combined effects of image resolution and classification algorithms on the variability 
of island parameters extracted from image segments have not been explored previously in the literature in the 
context of island biogeography.

With this study, we aim to map quartz islands as edaphic habitat islands at the landscape scale in the Knersvlakte 
region to support local conservation management in assessing the extent and distribution of endemic-rich quartz 
islands, as well as providing a baseline for fundamental (island biogeographic) research. We use an extensive 
ground truth dataset to validate three land cover classes: quartz, matrix, and dense rivier (ephemeral river valley) 
vegetation. After applying open-source object-based image analysis (OBIA) methods, we evaluate three machine 
learning classifiers applied to three image resolutions and four different image datasets. Finally, we characterize 
the resulting quartz island dataset by exploring conservation-relevant island characteristics and discuss this pat-
tern in the light of island biogeography.

2  | MATERIAL S AND METHODS

2.1 | Study area

The Knersvlakte bioregion is situated in the winter-rainfall-dominated Succulent Karoo Biome (Mucina et al., 2006) 
in the west of South Africa. It comprises approximately 6300 km2 (Hoffman, Skowno, Bell, & Mashele, 2018) 
of a gently undulating plain bordered to the south, east, and north by higher elevated areas and southwest by 
the Namaqualand Sandveld bioregion (Desmet,  2007). The Knersvlakte is underlain by heterogeneous sedi-
ments of the Nama Group, dominated by shale, phyllite, and limestone, and is intruded by numerous quartz veins 
(Watkeys, 1999) from which the gravel layer of the quartz islands originates (Schmiedel & Jürgens, 1999).

In comparison to other arid areas in South Africa, the Succulent Karoo in general is characterized by mild cli-
mate conditions and highly predictable winter rainfall (Desmet, 2007). The Knersvlakte receives an average annual 
rainfall of 150 mm, with the wet season ranging from May to September (Mucina et al., 2006).

The study was carried out on the farm of Moedverloren (−31.460972°S, 18.449583°E) in the southwestern 
Knersvlakte, which forms part of the provincial Knersvlakte Nature Reserve (Figure 1). The vegetation of this farm 
has been classified as unit SKk3 (Knersvlakte Quartz Vygieveld) of the natural vegetation of South Africa (Mucina 
et al., 2006). The study area is dominated by quartz islands and has not been grazed by domestic livestock for 
more than 20 years, so that the quartz fields here can be regarded as nearly undisturbed by direct human impact.
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2.2 | Ground truth

Ground truthing of the study area was carried out between August and October 2019. For this purpose, 47 quartz 
islands of various sizes and shapes were randomly selected based on image interpretation. We marked 185 loca-
tions as quartz and 67 as matrix during the ground survey. Larger islands were surveyed with multiple locations. 
In these cases, we kept a minimum distance of at least 150 m to ensure non-overlapping of plots at coarser image 
resolutions. Based on field experience we later added further expert-based training points directly in the satellite 
image to further refine the classification and to intensify the discrimination between different ground signals such 
as quartz (n = 359), matrix (n = 148), sand (n = 238), and dense vegetation (n = 156). Sand was later merged with 
the matrix class. In total, we assembled 1153 sampling points (i.e., quartz = 544, matrix = 453, and vegetation = 
156).

2.3 | Image data

We acquired archived WorldView-2 eight-band multispectral image data (WV2) with a 2  m resolution for the 
study area from a commercial provider (https://www.landi​nfo.com). Images were taken in the dry season on April 
17, 2011. Although the images were not recent, we knew that there was no landscape turnover during the last 
10 years from our long-lasting field experience in the region. Image data were delivered as an orthorectified prod-
uct in UTM projection (EPSG 32734) by the vendor. We further conducted an atmospheric correction using the 
OpticalCalibration module of the Orfeo Toolbox (McInerney & Kempeneers, 2015) to convert raw digital numbers 
to surface reflectance at the top of atmosphere (TOA) level. The necessary information was available in the image 

F I G U R E  1 Map showing the location of the study area in the context of the Knersvlakte bioregion in South 
Africa (a). White quartz islands occur in this landscape on hills and in the plains (b). The ground is covered by 
small and large quartz pebbles and vegetation consists of small succulent shrubs (c)

https://www.landinfo.com
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metadata. As we were interested in comparing the effect of different image resolutions, we coarsened the WV2 
imagery (2 m pixel size) to the different resolutions of 10 and 30 m. Resampling of satellite imagery was done in 
SAGA-GIS (Conrad et al., 2015) using the resampling tool and the b-spline interpolation algorithm. This had the 
advantage that differences in sensor and settings like acquisition time, azimuth, and spectral bandwidth did not 
influence our study and potential differences are expected to be merely an effect of image resolution.

As potential predictor variables we extracted all eight spectral bands (Coastal, Blue, Green, Yellow, Red, 
RedEdge, NIR1, NIR2) and calculated the Perpendicular Vegetation Index (PVI; Qi, Chehbouni, Huete, Kerr, & 
Sorooshian, 1994). The coastal and blue bands were added as we wanted to verify their potential ability to discrim-
inate quartz signals from other reference classes. We chose the PVI over the commonly used NDVI as the perfor-
mance of distance-based vegetation indices is improved for arid ecosystems (Silleos et al., 2006). Furthermore, we 
follow De Klerk et al. (2016) in comparing the single spectral bands (called RGB) to a dimension-reduced dataset, 
called PCA. We calculated the principal component analysis on the eight-band image data and retained the first 
three principal components (PC1, PC2, PC3).

Further, we acquired a 2 m digital elevation model (DEM) provided by the Centre for Geographical Analysis, 
Stellenbosch University. The data were provided in a geographic coordinate system and then projected into the 
same UTM system as the image data. As we were interested in how much topographical information can improve 
the final classification, we derived a set of topographical variables from the DEM. These were the Topographic 
Wetness Index (TWI), Relative Slope Height (RSH), and Total Curvature (TC). These indices are related to water 
availability and landscape structure, which strongly affects vegetation distribution in arid ecosystems (Abutaha, 
El-Khouly, Jürgens, & Oldeland, 2020; Rodríguez-Moreno & Bullock, 2014). Handling of the DEM, preparation of 
the topographical data, and PCA were done with SAGA-GIS (Conrad et al., 2015).

2.4 | Image segmentation

Image segmentation is the process of splitting image regions into homogeneous groups of pixels that correlate 
with spectral homogeneous image objects. Although commercial image segmentation packages often achieve 
very good results, we wanted a free and open-source solution which is applicable for small conservation manage-
ment units in South Africa. We chose the seeded region-growing algorithm (Adams & Bischof, 1994) available in 
the toolchain “OBIA image segmentation” in SAGA-GIS (Conrad et al., 2015). This algorithm first scatters seed 
points across the raster dataset based on local minima and/or maxima of brightness in a channel. Then, regions 
are grown from the seed points until either the semi-variance signals a strong change in brightness values or when 
regions touch each other. The result is a polygon layer which is more or less in congruence with the spatial objects 
recognizable from the image data. The OBIA settings for the different resolutions were chosen after experiment-
ing with the bandwidth parameter until a satisfying result was achieved. In general, a small bandwidth (<4) leads to 
small polygons, while larger values result in a reduced set of large polygons. The effect of the neighborhood and 
the variance in feature space was negligible, but the effect of variance in spectral space was high, so we set this 
parameter to 100, 60, and 20 for 2, 10, and 30 m, respectively. For each of the resulting polygon segments we cal-
culated mean and standard deviation for each band of the four multiband raster datasets. For example, TWI_mean 
represents the mean of the TWI values of a single polygon while TWI_sd represents the standard deviation of all 
values for that particular polygon.

2.5 | Segment classification

After image segmentation, the resulting polygons have to be classified into one of the three designated land cover 
classes: quartz, matrix, and vegetation. We chose three different machine learning algorithms which are known 
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to perform well on image datasets (Liu, Abd-Elrahman, Morton, & Wilhelm, 2018; Oldeland, Revermann, Luther-
Mosebach, Buttschardt, & Lehmann, 2021). These are Random Forest (RF), Artificial Neural Network (ANN), and 
Support Vector Machine (SVM). We refer the reader to Kuhn and Johnson (2013) for an introduction to these 
methods. All classification steps were carried out in the statistical programming environment R (v4.0.5; R Core 
Team, 2019) with the caret package (Kuhn, 2020) using the respective methods parRF, nnet, and svmRadial. The 
polygon segments were split into a training and a test dataset with an 80:20 ratio. Training the classifiers was 
based on a repeated 10-fold cross-validation procedure with 10 repeats. Model tuning parameters were set for 
each classifier individually. For RF, we incremented the number of parameters to enter at each split (mtry) from 2 
to 32 (i.e., 2, 5, 8, 12, 15, 18, 22, 25, 28, 32). The number of trees was kept constant at 2000. The ANN was tuned 
by changing the number of nodes (size) from 1 to 10, each combined with decay values of 0.001, 0.01, and 0.1. 
Finally, the SVM was tuned by testing the hyperparameter “C” with values 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, and 128. 
Resampled data (n = 100) were kept with the results to allow further interpretation of training data behavior. The 
best training dataset was then predicted on the remaining test dataset and classifiers were evaluated.

2.6 | Model evaluation

All sets of classifier–dataset–resolution were evaluated for overall accuracy (OA), kappa (K), and F1 score (F1). 
While OA and kappa evaluate the classifier performance across all land cover classes, the F1 score measures the 
ratio of precision and recall for single classes (Kuhn & Johnson, 2013). We report F1 values only for the class of 
interest (i.e., “quartz islands”). Recall measures the ability of the model to find all true positives of a class in a data-
set; precision measures the proportion of those predicted positive that are actually positive in the relevant class. 
The F1 score balances both measures as recall decreases when precision increases. For all evaluation metrics, 
higher values indicate a higher accuracy. Variable importance was calculated for the best-performing dataset for 
all resolutions and algorithms using the varimp function of the caret package (Kuhn, 2020). For the RF algorithm, a 
model-based solution to calculate variable importance is available. It is based on the comparison of the out-of-bag 
error for each single tree and an error after permuting the variables. For ANN and SVM, there is no model-based 
way to calculate importance, hence they use the area under curve (AUC) value for multiple two-class classifica-
tions (Kuhn & Johnson, 2013). For each predictor, the AUC is calculated for each pair of classes. For the target 
class, the maximum AUC value is identified across all pairs and used as the variable importance for that class and 
predictor. Thus, the importance values are not comparable between algorithms as calculations differ. Values are 
scaled between 0 and 100 for a better visual comparison between the resolutions.

2.7 | Effect of resolution and algorithm on island parameters

In order to better understand the effects image resolution and classification algorithms have on derived island 
parameters, we calculated four descriptive parameters that are commonly used in island biogeography: area, dis-
tance to nearest island, shape index, and perimeter-to-area ratio (PAR). Area and distance are important descrip-
tive variables of islands, with area often being the most important driver of island biodiversity (MacArthur & 
Wilson, 1967). The shape index is used to measure shape complexity (or compactness) of an object. The inter-
pretation of the PAR is similar in that elongated objects, or those with a complex shape, have higher ratios than 
objects with the same area but with a more compact shape and straight perimeter. In general, small objects usually 
have higher PARs than larger objects as the shape is more complex (Helzer & Jelinski, 1999). The PAR is calculated 
as perimeter divided by area. It is often used in conservation management to rank habitat fragments (Ciarleglio, 
Wesley Barnes, & Sarkar, 2009). We calculated area and distance in SAGA-GIS (Conrad et al., 2015); shape index 
and PAR were calculated in R using the package VLSM (Knevels, 2019).
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We calculated GLMs with each island parameter as a response variable and the interaction of resolution and 
algorithm as fixed factors. As the parameters were highly skewed, we used the gamma family for strictly positive 
and skewed distributions. We checked the residuals of each model but did not find strong deviations from the as-
sumed residual behavior (i.e., neither spatial autocorrelation nor heteroskedasticity was detected). We then used 
the ggeffects package (Lüdecke, 2018) to predict the marginal interaction means and confidence intervals for the 
specified interactions.

3  | RESULTS

3.1 | Model comparison

We applied the object-based image segmentation to 12 different image datasets. We then compared three differ-
ent machine learning classifiers applied to a test dataset for OA, kappa, and F1 for the class “Quartz.” In general, 
the PCA-based datasets were consistently ranked higher than the RGB-based datasets by the evaluation metrics 
(Table 1). The best-performing classifier was the ANN applied to the WorldView-2 imagery with 2 m resolution 
and the PCA reduced image data combined with the topographic information (Table 1). It reached the highest OA 
(0.88) and kappa (0.80) values, while the F1 score was slightly lower compared to the F1 score of the SVM classi-
fier (0.912 vs. 0.916). This indicates a slightly greater accuracy at class level of the classification for the SVM. The 
ANN algorithm also performed best in 3 out of 4 (or 11 out of 12) datasets. In many cases SVM was the weakest 
classifier, while RF always performed second best.

The differences between the evaluation metrics were higher between the different resolutions than between 
the classifiers (Table 1, Appendix 1). In other words, the resolution had a higher impact on the classification out-
come than the algorithms used for classification. The differences between the datasets were also smaller than for 
the different resolutions (Table 1). Very high resolution (2 m) always performed best, while the coarse resolution 
of Landsat 8 (30 m) performed constantly worse with OA < 0.82, kappa < 0.7, and F1 < 0.9. The resolution of 

TA B L E  1 Model evaluation of test datasets for the different scenarios of image resolution and data treatment

Random forest Artificial neural net Support vector machine

Dataset Res OA Kappa F1 OA Kappa F1 OA Kappa F1

PCA 2 0.825 0.705 0.877 0.846 0.745 0.899 0.846 0.741 0.885

PCA 10 0.776 0.629 0.868 0.815 0.694 0.873 0.767 0.609 0.857

PCA 30 0.752 0.584 0.824 0.770 0.605 0.860 0.748 0.573 0.819

PCA+TOPO 2 0.846 0.740 0.904 0.880 0.801 0.912 0.872 0.785 0.916

PCA+TOPO 10 0.845 0.742 0.909 0.853 0.759 0.913 0.845 0.741 0.903

PCA+TOPO 30 0.813 0.688 0.889 0.787 0.639 0.869 0.765 0.604 0.873

RGB 2 0.795 0.657 0.843 0.859 0.764 0.896 0.816 0.691 0.863

RGB 10 0.763 0.608 0.848 0.828 0.716 0.891 0.810 0.682 0.885

RGB 30 0.752 0.586 0.831 0.783 0.632 0.853 0.774 0.610 0.878

RGB+TOPO 2 0.842 0.735 0.900 0.863 0.771 0.896 0.868 0.777 0.900

RGB+TOPO 10 0.836 0.729 0.905 0.858 0.766 0.911 0.853 0.756 0.912

RGB+TOPO 30 0.778 0.630 0.848 0.826 0.707 0.900 0.765 0.601 0.866

Note: For each dataset, the highest values for each metric are displayed in bold while the lowest are in italics. The 
dataset displayed in bold was the best solution, while the dataset displayed in italics was the worst performing.
Abbreviations: OA, overall accuracy; Res, resolution.
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Sentinel 2 (10 m) was always ranked second and never performed best or worst. Depending on the algorithm, the 
differences between 2 and 10 m resolution were strong, with the ANN algorithm having large differences and RF 
the smallest differences. This makes RF a robust classifier across the range of resolutions and datasets compared, 
although ANN still achieves the highest accuracy. A comparison of the results for the 100 times repeated classifi-
cations of the training datasets shows that the 2 and 10 m outcomes are in some cases not significantly different 
(Appendix 1). Hence, both resolutions provide similar quality in terms of the evaluation criteria.

The outcome of the OBIA was displayed for the best classification model as a map overlay on the satellite 
imagery (Figure 2). The different maps (Figure 2a–c) show the effect of coarsening the resolution based on the 
same image source (i.e., WorldView-2). While the main structure remains visible in the coarsest resolution (30 m), 
it becomes blurry caused by the averaging of neighboring cells similar to real Landsat imagery. The differences be-
tween the 2 and 10 m resolutions seem rather subtle as even small-scale features remain visible on the 10 m scale. 
However, when the resulting polygon segments are compared (Figure 2d–f), it becomes apparent that there are 
strong differences between these resolutions. First, the number of quartz patches was five times larger on the 2 m 
(1002 patches) than the 10 m scale (191 patches), while on the 30 m scale only 74 patches could be determined. 
This discrepancy results from the much higher resolution leading to many small patches, and probably more noise. 
Second, all three resolutions capture the main structure of the quartz patch distribution. The coarse resolution 
leads to large polygons which are split into subsequent smaller polygons at the finer resolutions. None of the maps 
show any pattern which is not visible at a finer resolution. Hence, quartz patches themselves can be found on all 
scales, but the highest resolution provides most of the detail.

The variable importance for the single predictors was similar for all resolutions but differed between the algo-
rithms (Appendix 2). The predictors PCA1_mean, PCA3_mean, and PVI_mean scored 100% for different combi-
nations of algorithm and resolution. The topographical parameters had high and medium importance in SVM and 
RF, but often <50% importance for ANN. The SVM algorithm had many predictors with high importance, while 

F I G U R E  2 Subsets of the WorldView-2 satellite imagery on the different spatial resolutions (2 m (a + d),  
10 m (b + e), 30 m (c + f)) showing white quartz islands and brown matrix vegetation. The landscape is dissected 
by dry riverbeds covered by dense vegetation. The lower row shows the results of the image segmentation at 
the respective image resolution

(a) (b) (c)

(d) (e) (f)
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the ANN had only a few predictors with importance >50%. There were no clear differences in variable importance 
between mean and standard deviation values.

3.2 | Resolutions and algorithms

A map of the optimal classification model onto the WorldView-2 imagery is shown in Figure 3. It is notable that 
quartz islands differ from other bare soil or sandy patches, visible in the imagery, and cover about one-third of the 
study area (Figure 3a). The resulting landscape pattern resembles typical ocean island patterns; a large continent 
or main island is surrounded by many small archipelagos consisting of medium-sized or smaller islands (Figure 3b). 
In total, 5873 polygons and 1002 quartz islands were classified at the highest resolution, while quartz islands at 
10 m (n = 191) and 30 m (n = 74) were much fewer. The statistics for the island biogeographical parameters result-
ing from the best-performing algorithm (ANN) differed between the three resolutions (Table 2). Median values 
differed strongly between the different resolutions, while maximum values differed between the algorithms by 
several magnitudes. For example, the maximum value for PAR at 2 m was above 0.25, while at 30 m the maximum 
was on average 0.05 (Figure 4). In general, at coarser resolutions the error bars become larger as there are fewer 
polygons.

The analysis of the categorical predictors and their interactions showed that interactions between algorithm 
and resolution were significant for area and PAR (Table 3). The likelihood ratios showed that resolution was always 
the most important factor. Still, as interactions were significant in some cases, both factors should be interpreted 
simultaneously when significant. By plotting the marginal means and respective confidence levels (Figure 4), sev-
eral important points can be deduced. First, high-resolution imagery leads to smaller islands (i.e., smaller area 
values when compared to coarser resolutions). On average, the islands at 2 m resolution are several magnitudes 
smaller than at 10 and 30 m resolution (cf. the maps in Appendix 3). This is probably caused by delineating more 

F I G U R E  3 Results of the classification process overlaid on the WorldView-2 satellite image (a) and as a map 
(b) to highlight the island-like behavior of the quartz islands. The main island (M) is the largest contiguous quartz 
patch, while island clusters or archipelagos also appear at varying distances from the main island (e.g., A1, A2)
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quartz islands at higher resolutions. Quartz islands are also more complex in shape at 2 m resolution, as indicated 
by the higher shape index values (Figure 4). Resolution also has a strong impact on the distance values, which are 
lowest for the many small islands at 2 m resolution (independent of the algorithm) and are increasingly larger at 

TA B L E  2 Summary statistics for island biogeographical parameters based on the Artificial Neural Network 
(ANN) image segmentations calculated for the three different resolutions

2 m (n = 1001) 10 m (n = 190) 30 m (n = 73)

AREA

Mean (SD) 6870 (65,000) 35,100 (149,000) 104,000 (223,000)

Median [Min, Max] 636 [4.00, 1,950,000] 6,300 [100, 1,960,000] 39,600 [6,300, 1,700,000]

DIST

Mean (SD) 30.5 (49.7) 91.1 (131) 161 (137)

Median [Min, Max] 16.1 [2.00, 629] 52.4 [10.0, 1,040] 120 [30.0, 720]

PAR

Mean (SD) 0.278 (0.247) 0.0717 (0.0551) 0.0274 (0.0105)

Median [Min, Max] 0.210 [0.0214, 2.00] 0.0623 [0.0129, 0.400] 0.0258 [0.00874, 0.0571]

SHAPE

Mean (SD) 1.74 (0.636) 1.65 (0.532) 1.63 (0.507)

Median [Min, Max] 1.53 [1.13, 8.42] 1.49 [1.13, 5.09] 1.45 [1.17, 4.22]

Note: n represents the number of quartz islands minus one, because the main island was removed from the dataset. All 
parameters are strongly right-skewed, hence mean and median values differ. See Appendix 4 for a complete table.

F I G U R E  4 GLM results displayed as error bar plots at different spatial resolutions and algorithms. Points 
represent the mean and error bars the confidence interval of predicted area (a), distance (b), shape index (c), and 
perimeter-to-area ratio (PAR) (d). Differences are significant at the 5% level if error bars do not overlap
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coarser resolutions. The PAR showed a mirrored pattern of area with larger (and less complex) areas having smaller 
PAR values. Here, differences between the algorithms are also weak (Figure 4). Furthermore, at 10 and 30 m res-
olution the differences are less strong, indicating less complex shapes at coarser resolutions. Statistics for all four 
parameters at all resolutions are listed in Appendix 4.

4  | DISCUSSION

Our study finds that the finest (2 m) resolution provided the best results for mapping the quartz island landscape 
in the study area of the Knersvlakte, South Africa. The moderate resolution (10 m) yielded comparable classifica-
tion quality, while the coarsest resolution (30 m) was not enough to map the island patterns sufficiently. However, 
the optimal resolution also depends on the target size (e.g., single trees, forest patches, and single forests all re-
quire different image resolutions in order to properly capture the boundaries of the targets). Hence, the target size 
also influences the required image resolution. For the quartz islands of the Knersvlakte, we can confirm the out-
come of the study by De Klerk et al. (2016), who compared SPOT 5 (5 m pan-sharpened to 2.5 m) versus Landsat 
(30 m pan-sharpened to 15 m). The higher resolutions led to more accurate classifications than the coarser resolu-
tions. However, De Klerk et al. (2016) used two different types of sensor data and applied pan-sharpening, which 
distorts the spectral values, in order to improve the resolution. Thus, it is not clear how strong image processing, 
sensor characteristics, and different sun angles affect their results. In our approach, we have eliminated these ef-
fects by coarsening a single image. We did not apply pan-sharpening, which could have increased the resolution of 
the WorldView-2 imagery to 40 cm. This resolution, however, would come with a trade-off (i.e., the distortion of 
the spectral signals) and, depending on the pan-sharpening algorithm, not all spectral bands could have been used 
(Liu & Mason, 2009). Furthermore, the detail within the quartz islands could distract the algorithms from finding 
correct quartz island boundaries as within-object heterogeneity increases at submeter resolutions (Nagendra & 
Rocchini, 2008). As we did not verify the effects of pan-sharpening on our results, this additional step should be 
considered in future studies. Although the 2 m resolution performed best, the 10 m resolution was not signifi-
cantly different. The resulting landscape pattern at 10 m contained less than half the amount of quartz islands 
than at 2 m and probably contained fewer tiny islands. We can conclude that very high resolution within the range 
of 2–10 m leads to good results in terms of model quality and credibility of the resulting quartz island pattern. 
We further confirm the general tendency that higher resolutions lead to better results when object-based image 
analysis is applied.

Our analysis showed that the ANN algorithm provided consistently good results for this particular dataset. In 
combination with the 2 m resolution, it provided the best performance. RF and SVM algorithms are often applied 
in remote sensing studies as well, and can also lead to good results (Thanh Noi & Kappas, 2018). Other studies that 
compared similar classification algorithms (Oldeland et al., 2021; Raczko & Zagajewski, 2017; Sothe et al., 2020) 
also found that ANN provides the best performance and is well suited to analyze OBIA segments. However, the 
performance of these machine learning classifiers often depends more on the analyzed dataset than on general 

TA B L E  3 ANOVA tables (Type II) based on deviance values for the gamma GLMs

Area Distance Shape PAR

Chi² df p(Chi²) Chi² df p(Chi²) Chi² df p(Chi²) Chi² df p(Chi²)

Res 1965.30 2 <0.001 522.10 2 <0.001 14.643 2 <0.001 433.98 2 0.064

Algo 12.92 2 <0.01 13.50 2 <0.01 1.686 2 0.430 6.45 2 <0.05

Res +Algo 42.06 4 <0.001 2.02 4 0.732 0.494 4 0.974 25.48 4 <0.001

Note: Likelihood ratio-based chi² values are given for the main factors of image resolution (res), classification algorithm 
(algo), and their interaction.
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superiority. Deep learning algorithms, which were not considered here, also provided good results and should be 
compared in future studies (Liu et al., 2018; Sothe et al., 2020). We suggest that studies aiming at extracting and 
classifying image segments should always take different classification algorithms into consideration to identify the 
best-performing algorithm.

The interaction of image resolution and classification algorithm had a strong effect on the variability of the 
four island biogeographical parameters. However, there was no clear pattern in the interactions across the com-
pared factors. In particular, the classification algorithms yielded higher and lower values without a consistent 
pattern. Image resolution had a stronger and much clearer effect on area and shape index. At higher resolutions, 
island area was smaller on average. Here, the 2 m resolution provided the smallest average island area values, 
while at 10 and 30 m resolution the island area was several hundred square meters larger. As the 2 m resolution is 
probably more accurate, coarser resolutions could significantly overestimate quartz island size. Given the high im-
portance of area as an explanatory variable for species richness on islands (MacArthur & Wilson, 1967; Matthews, 
Steinbauer, Tzirkalli, Triantis, & Whittaker, 2014; Triantis, Guilhaumon, & Whittaker, 2012), the effect of image 
resolution should be carefully considered in future studies when extracting island patterns from image datasets, 
especially with respect to habitat islands.

Distance to the nearest island was also strongly affected by image resolution. Distance between islands at the 
2 m resolution was significantly smaller than at coarser resolutions. This might be caused by the larger number 
of small or tiny islands which were rather close. At this resolution the statistical distributions of area and dis-
tance were strongly right-skewed, hence the majority of islands had only small sizes as well as small distances to 
the nearest island. The role of the classification algorithm is not very clear, although on the landscape scale the 
patterns look very different (Appendix 3). We assume that this behavior is related to stochastic elements of the 
classifiers and that slight changes in the imagery would lead to different outputs. In conclusion, distances depend 
strongly on image resolution but differ little between classification algorithms.

The shape index provided a similar picture (i.e., higher island shape complexity at the highest image resolution). 
Although the shape of an island should not be correlated with area per se, larger islands at the 2 m resolution were 
also more complex. We interpret this effect of image resolution as a matter of clearer boundary delineation. At 
coarser resolutions, image pixels are usually a mixture of different objects (Liu & Mason, 2009) and thus object 
boundaries become blurry, making it difficult to draw sharp boundaries and thus leading to long and straight 
edges. The fuzzy nature of many boundaries at the matrix–quartz island interface (Schmiedel et al., 2015) probably 
supports this effect at coarser resolutions. Hence, high resolution allows for larger and more complex islands and 
thus probably a more realistic pattern.

The PAR is an indicator which is used in conservation management to rank habitats (Ciarleglio et al., 2009). 
PAR acted like a mirrored version of the area parameter in terms of average values (i.e., lower values of PAR 
corresponded to higher area values, while high PAR values represented less compact but small objects that can 
be complex in shape). As PAR numerically depends on area, but also on shape, it behaves relatively similarly. 
In fact, Wang and Malanson (2007) already mention the high correlation between area and edge-related indi-
cators. However, many island parameters used in island biogeography, and also in conservation management, 
depend on area. This supports our hypothesis that image resolution is an important parameter that should be 
discussed when island biogeographical datasets are extracted from image datasets using object-based image 
analysis.

High-resolution satellite imagery leads to a more precise quantification of area, distance, and shape of quartz 
islands. This has high relevance for nature conservation because plant species on quartz islands are often nano-
phytic (Schmiedel & Jürgens, 1999). Thus, their habitats are often quite small scale and their distribution very 
patchy. Although alpha diversity is low within each habitat, the high patchiness (habitat diversity) within an island 
results in high gamma diversity as a result of high beta diversity between habitats (Eibes et al., 2021). This is a likely 
reason why the quartz islands of the Knersvlakte are a major contributor to the exceptionally high biodiversity in 
the Succulent Karoo Biome (Cowling, Rundel, Desmet, & Esler, 1998). A precise quantification of area, distance, 
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shape, and other characteristics of quartz islands will allow conservation managers and practitioners to better 
balance land use and resource exploitation with the protection of these fragile and vulnerable ecosystems. Equally 
important, a precise quantification of quartz island characteristics enables us to apply island biogeographic the-
ory to quartz islands to better understand the underlying processes governing taxonomic, functional, and phy-
logenetic diversity as well as endemism. In turn, this understanding can aid decision-making and conservation 
practices but can also be transferred from our model system to study other edaphic-habitat islands in dryland 
ecosystems worldwide (e.g., on gypsum or serpentinite).

5  | CONCLUSIONS

Four conclusions can be drawn from our study on the effects of image resolution and classification algorithms 
on the precision of island size and island biogeographic parameters. First, the number of islands and their sizes 
depend on the image resolution. Although it might be difficult to tell the “true” number of islands in a landscape, 
the coarser the image resolution is, the higher is the chance of missing smaller islands. High image resolution thus 
leads to more precision. Second, image resolution and classification algorithms showed small interaction effects. 
As it will be unknown beforehand if such interactions exist, we recommend explicitly checking for such interac-
tions to better understand the model results. As expected, image resolution was important for all island-related 
parameters, while the shape index showed a less strong effect. Algorithms only differed at the scale of a specific 
resolution. Third, although the ANN had the best performance as a classifier, this may not be the case in other 
studies. Hence, we emphasize the need to compare multiple classification algorithms and apply hyperparameter 
tuning in order to get the best possible (statistical) outcome. Finally, landscape features such as the analyzed 
quartz islands from the Knersvlakte, an arid biodiversity hotspot of South Africa, can often be interpreted as 
terrestrial-habitat islands and thus island biogeographic theory can be applied, allowing theory-based conserva-
tion strategies. Future studies which aim at extracting terrestrial-habitat islands from image datasets should aim 
for the highest resolution and compare the outcomes of a set of different classifiers to ensure the best possible 
performance.
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APPENDIX 1
Model evaluation for resampled training data. Each resampling consists of 100 repetitions based on 10 cross-
validation runs each with 10 repeats. Overall Accuracy (a) and Kappa (b) led to the same ordering
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QUARTZ ISLANDS DATASETS
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