
1.  Introduction
Croplands pose a special challenge to land surface modeling due to their large variety in properties in space 
and time that are related to differences in phenological development and crop management. Crop management 
includes cultivar selection, sowing and harvest dates, sowing density, and fertilization. Crop types like, winter and 
spring wheat, winter and spring barley, rapeseed, maize, soy beans, sugar beet or potatoes have different seasonal 
developments. Their crop-specific development stages significantly impact green leaf area index (LAI), green 
vegetation fraction (GVF), rooting depth, plant height, stomatal resistance, etc., and thus the energy flux parti-
tioning at the land surface (Bohm et al., 2019; Gayler et al., 2014; Ingwersen et al., 2018; Wizemann et al., 2014). 
Crop growth models simulate the development stages of the crops including rooting depth, LAI and plant height 
in dependence of the weather, soil state, crop properties, and farmer crop management. Further, they simulate 
the actual stomatal resistance in dependence of the weather and plant dependent photosynthesis – all quantities 
impacting the transpiration and therefore land-atmosphere (L-A) feedback. In 2010, the Agricultural Model Inter-
comparison and Improvement Project was initiated to improve agricultural models based on their intercompari-
son and evaluation using high-quality global and regional data and best scientific practices (Asseng et al., 2013). 
Among the crop-models were Gecros (Yin & van Laar, 2005), Sucros (Goudriaan & van Laar, 1994) and Ceres 
(Ritchie et al., 1985) as part of the framework Expert-N (Biernath et al., 2011). These three crop-models are also 
available coupled to stand-alone land surface models of regional climate models (RCMs) (Ingwersen et al., 2018; 
van den Hoof et al., 2011; Zou et al., 2019).

Weather and climate in the mid-latitudes of the northern hemisphere widely depends on L-A interaction since 
the landscape is heterogeneous due to different soil properties and land cover as well as due to orography. Agri-
cultural croplands show a weather dependent annual cycle of vegetation characteristics such as LAI, GVF and 
rooting depth. Santanello et al. (2018) give a detailed overview of the importance of L-A feedback in weather and 
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climate modeling and the history of L-A feedback modeling. Also, the Global Land-Atmosphere System Studies 
and LoCo (Local L-A Coupling) projects are introduced. This research resulted in a variety of metrics developed 
for studying L-A feedback quantitatively (Dirmeyer et al., 2012, 2014; Miralles et al., 2019; Vogel et al., 2018). 
This is especially important since the extremes like heavy precipitation events, droughts and heatwaves are 
expected to increase and show a strong dependence on L-A interaction (Zscheischler & Fischer,  2020). For 
instance, large-scale desert plantations have been proposed as a bio-geoengineering strategy to mitigate climate 
change by carbon sequestration and local climate modification (Becker et al., 2013; Wulfmeyer et al., 2014). 
Branch and Wulfmeyer (2019) developed a global feedback index to predict the impact of desert plantations on 
regional clouds and precipitation development. They “demonstrated that rainfall enhancement can be realized 
over desert agroforestry plantations and within a wide range of desert areas—a very exciting prospect for arid or 
semiarid regions.” For Europe, Jach et al. (2020) applied LoCo metrics to RCM simulations from 1986 to 2015 in 
dependence of land-cover changes to regionalize the dominant L-A coupling pathways. They found, for example, 
that land use change modified the humidity and stability of the planetary boundary layer (PBL) by changing the 
surface flux partitioning.

Energy and water fluxes at the land surface and within the atmospheric boundary depend on the atmospheric, 
vegetation and soil state (Mahrt, 2000; Maronga & Raasch, 2013) that is, moisture, temperature and momen-
tum in the PBL impacts and depends on the land surface. Milovac et al. (2016) showed that the surface energy 
fluxes in an RCM impact the temperature and moisture in the whole PBL as well as the entrainment fluxes at its 
top. Potential evapotranspiration is determined by LAI and rooting depth, that is, the plant; actual evapotranspira-
tion is determined by the atmosphere. The interaction of exchange processes determines the water vapor pressure 
deficit of the leaves, the vegetation temperature, and the energy partitioning at the land surface. Since these 
depend both on the weather patterns and crop type, the current approach of frozen annual cycles of LAI and GVF 
of croplands in most RCMs results in errors in seasonal forecasts and climate simulations. Furthermore, crop 
growth and crop quality depend also on the atmospheric CO2 concentration (Högy et al., 2019). The dependence 
of crop growth on atmospheric CO2 concentration is included in sophisticated crop growth models and becomes 
important for climate projections. While the importance of crop models has already been addressed by global 
climate models (Osborne et al., 2007), their implementation in RCMs is a more sophisticated challenge and still 
in its infancy (Harding et al., 2015; Partridge et al., 2021). The reason is that with increasing grid resolution, 
dominant crop types emerge for each grid cell, which is relevant from a modeling perspective since for example, 
maize, soy beans, winter wheat and rapeseed show different weather and crop-dependent development. This 
means that in RCMs more specialized crop models need to be applied.

A shortcoming of almost all RCMs is the aforementioned static annual cycle of vegetation variables such as LAI 
and GVF in croplands. Most models applied in the Coordinated Downscaling Experiment (CORDEX) flag-
ship pilot study on Land Use and Climate Across Scales do not apply dynamic vegetation simulation (Davin 
et al., 2019), neglecting that the annual cycle depends not only on the Julian day of the year and the vegetation 
class but are driven by the seasonal weather pattern. When they do apply a dynamic vegetation in croplands, 
they do not distinguish between different crops. Field experiments (Imukova et al., 2015; Ingwersen et al., 2011; 
Wizemann et  al.,  2014) show a strong year-to-year variation in the vegetation development in croplands in 
Germany and its dependence on the crop type. Further, high resolution satellite data (e.g., Copernicus Climate 
Change Service information, 2018) show the spatial and temporal year-to-year variability of the vegetation devel-
opment. In particular, LAI is a crucial variable for the energy partitioning at the land surface resulting in a model 
sensitivity to L-A feedback (e.g., Mahowald et al., 2016; Williams & Torn, 2015).

State-of-the-art land surface models applied in RCMs use vegetation parameters set for vegetation types to calcu-
late the energy and water fluxes at the surface, but most do not simulate the plant physiology and growth of leaves 
and roots. Croplands are only one category, neglecting that some crops (e.g., winter wheat) emerge already in 
late autumn and start growing in March while others like maize emerge in May (Ingwersen et al., 2018). Crop 
models  applied in RCMs need to be coupled with their land surface models which exchange fluxes with the 
atmosphere every timestep, that is, within 5–60 s, depending on the spatial resolution. Further, they need to be 
parameterized for a wide range of crop varieties and be computationally efficient.

Ingwersen et al. (2018) described in detail the requirements for coupling a crop model originally developed for 
agricultural applications such as yield calculations to a land surface model of an atmospheric model. In their 
work, they exemplify this for the generic crop growth model Gecros (Yin & van Laar, 2005) and the land surface 
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model Noah-MP (Niu et  al.,  2011). Noah-MP as applied with the Weather Research and Forecasting model 
(WRF) (Skamarock et al., 2008) does not distinguish between the phenology development of crop types. Address-
ing this model limitat Ingwersen et  al.  (2018) and Liu et  al.  (2016) coupled crop models to the land surface 
model Noah-MP. Noah-MP-crop by Liu et al. (2016) was developed and parameterized for maize and soybean, 
two dominant crops in the central U.S. Ingwersen et al. (2018) coupled Gecros with Noah-MP to contrast the 
development of two major crops of mid Europe, maize and winter wheat, and analyzed the results at field sites 
in comparison with the standard Noah-MP cropland parameterization. Ingwersen et al.  (2018) as well as Liu 
et al.  (2016) demonstrated a better agreement of the magnitude and temporal development of the LAI by the 
simulations with the crop growth models. Liu et al. (2016) and Ingwersen et al. (2018) forced their simulations 
with observed weather data, that is, the results do not incorporate the L-A feedback. While Noah-MP-Gecros 
improved both latent and sensible heat fluxes, Noah-MP-Crop only improved the LAI and sensible heat flux, but 
not the latent heat flux. In contrast to Noah-MP-Crop, Noah-MP-Gecros includes dynamic root growth which is 
essential for root water uptake control and a dynamic harvest date. In these stand-alone simulations the simulated 
crop growth and resulting surface energy fluxes do not affect the atmospheric temperature, moisture and wind.

Partridge et al. (2021) conducted WRF-Noah-MP simulations coupled with the crop growth model of Noah-MP-
crop for maize and soy beans in the USA. The crop model coupling improved the LAI but no significant change 
was found in in temperature and precipitation which they also attribute to the missing root growth dynamics and 
dynamic harvest dates. Root growth and harvest are both included in Gecros. Since crop growth is weather and 
crop-type dependent from sowing to harvest, the objective of this study is to analyze the impact of LAI simulated 
by a crop growth model on the L-A feedback. Following the coupling approach for Noah-MP-Gecros (Ingwersen 
et al., 2018), this study integrated Gecros into the source code of WRF-Noah-MP and investigates the impact 
on the L-A coupling strength for the 2005 growing season in Germany, in comparison to WRF-Noah-MP with 
its default table-based green LAI and rooting depth approach. Agricultural land covers 51% of the land surface 
in Germany (BMEL,  2017), of these 16,7 million ha about 70%,6% are cropland. Suitable metrics to quan-
tify L-A feedback depend on the processes and the temporal, spatial and vertical scales of interest (Santanello 
et al., 2018) and available data source. One measure covering the daily to annual time scale and surface states, 
surface fluxes and the PBL is the two-legged coupling index (TLCI) with its atmospheric and terrestrial coupling 
indices (Dirmeyer, 2011; Guo et al., 2006; Santanello et al., 2018) and is therefore selected in this study to quan-
tify the impact of a crop growth model on L-A feedback from April to August.

In the second section, the model setup, analysis metrics and case study are introduced. The impact of the crop 
model inclusion is shown in Section  3, the enhancement of the L-A coupling strength by the crop model is 
discussed in Section 4, and Section 5 concludes.

2.  Materials and Methods
2.1.  WRF Model Setup

This study applies the WRF model version 3.7.1 coupled with the land surface model Noah-MP on the convec-
tion permitting resolution of 0.03° (∼3,057 m) and 50 vertical levels for Germany. The simulations were run on 
the CRAY XC40 at the High Performance Computing Center Stuttgart (HLRS) on 360 cores in Message Pass-
ing Interface mode. CMIP5 global climate simulations from 1960 to 2100 were downscaled with WRF within 
EURO- CORDEX (Warrach-Sagi et al., 2018) and ReKliEs-De (Hübener et al., 2017) to 0.11° (∼12 km) resolu-
tion and have been made available in daily time intervals (https://esgf.llnl.gov/). Further ERA-Interim reanalysis 
data (Dee et al., 2011) from 1989 to 2009 was downscaled in this framework for evaluation. In this case study, 
the underlying 3-hourly (Tier2) data from July 2004 to August 2005 from this reanalysis driven WRF simulation 
was downscaled to 3 km. Within EURO-CORDEX, WRF is applied as a multi-physics ensemble by the partic-
ipating institutions, that is, each institution applies a different set of parameterizations (Coppola et al., 2018; 
Davin et al., 2019; Jacob et al., 2020; Kotlarski et al., 2014). Building on the setup of the climate simulations 
of the University of Hohenheim within EURO-CORDEX (Bülow et  al.,  2019; Ivanov et  al.,  2018a,  2018b; 
Warrach-Sagi et al., 2013) in this study WRF was applied with the Morrison two-moment microphysics scheme 
(Morrison et al., 2009) and the radiation transfer models for long-wave and shortwave radiation CAM (Collins 
et al., 2004). Following the investigation of PBL schemes of WRF in Germany by Milovac et al. (2016) and the 
Arabian Peninsula by Schwitalla et al. (2020) the local MYNN-2 PBL scheme (Nakanishi & Niino, 2009) was 
selected. The land cover was based on the CORINE Land Cover (CLC) 2006 data, which was reclassified into the 

https://esgf.llnl.gov/
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IGBP-MODIS land cover types applied by WRF (Bauer et al., 2020). The applied soil texture data is based on the 
Harmonized World Soil Database (version 1.21) and available from Milovac et al. (2018).

2.2.  Coupling Gecros With WRF-Noah-MP

The impact study of crop growth on L-A feedback requires the coupling of WRF with a land surface model 
which is able to simulate the phenological development of dominant crops in the region of interest. For this 
purpose, the crop model Gecros coupled with the land surface model Noah-MP and evaluated for croplands 
in Southwest Germany (Ingwersen et  al.,  2018) was implemented in WRF. The implementation of Gecros 
into WRF-Noah-MP is described in the following sections. Noah-MP multi-physics options were adopted 
from Ingwersen et  al.  (2018): table LAI and calculated GVF (opt_dveg = 3), soil moisture factor for stoma-
tal resistance from Noah (opt_btr = 1), Topmodel-based runoff with groundwater (opt-run = 1), sensible heat 
exchange-coefficient based on Monin-Obukov-similarity theory (opt-sfc = 1), Koren's iteration for super-cooled 
liquid water (opt-frz = 1), two-stream radiation transfer scheme (opt-rad = 2), lower boundary of soil temper-
ature in 8 m depth (opt-tbot = 2) and a semi-implisit snow/soil temperature time scheme (stc = 1). The LAI in 
the Noah-MP table is based on the global Moderate Resolution Imaging Spectroradiometer monthly climatology 
from 2000 to 2008 (Myneni et al., 2002; Yang et al., 2011).

The generic crop growth model Gecros, its coupling with Noah-MP, and its parameterization are described in 
detail in Ingwersen et al. (2018). In brief Gecros simulates, among others, the temporal evolution of leaf, stem, 
and root biomass. The phenological development of the crop is controlled by biological time, which depends 
on temperature. The partitioning of assimilates between root and shoot is simulated based on the functional 
balance theory (Yin & Schapendonk, 2004). The Gecros version implemented in Noah-MP was extended for 
vernalization, winter dormancy, germination and emergence routines. Gecros separates soil into a rooted and an 
unrooted zone. The rooted zone, the zone from which water is extracted by the crop, continuously expands until 
the maximum rooting depth is reached. Note that the rooting depth regulates the potential root water uptake of 
the plants and therefore impacts transpiration. To summarize, while Noah-MP applies a constant root depth of 
1 m for cropland and a static annual cycle of the LAI, Noah-MP-Gecros simulates a dynamic above and below 
ground crop growth.

In Germany, winter wheat and maize are representatives of two contrasting crop groups. Imukova et al. (2015) 
termed “early-covering” crops, that is, crops that are sown in fall or early spring and already have a closed canopy 
in April/May (winter wheat, winter barley, winter rapeseed, winter oats, etc.) and “late-covering” crops, that is, 
crops that are sown in spring and have a closed canopy from June/July often well into September/October (maize, 
sugar beet, soybean). Noah-MP-Gecros was calibrated and validated on a comprehensive field data set of in total 
16 site-years for winter wheat and maize. In the case of winter wheat, four phenological parameters and eight 
generic crop parameters were calibrated. The root mean square error of the LAI in the calibration and validation 
runs was 0.76 m 2/m 2 and 0.74 m 2/m 2, respectively. For the late-covering crop maize the obtained parameteri-
zation, however, showed a highly asymmetrical temperature sensitivity. By means of a sensitivity study, they 
demonstrated that a temperature bias of ±1.5 K of a climate model directly propagates to the crop model which 
resulted in case of maize in poor crop simulations. An increase of 1.5 K moved the harvest day from 4 October 
to 30 August. A decrease by 1.5 K, in contrast, led to the situation that maize did not reach maturity. The temper-
ature bias of RCMs is within this order of magnitude (Ivanov et al., 2018a; Kotlarski et al., 2014). Therefore, we 
applied Noah-MP-Gecros only for early-covering crops using the winter wheat parameterization, whose growth 
is not as sensitive to temperature bias as that of maize. For grid cells with cropland with dominant late-covering 
crops in Germany and outside of Germany, Noah-MP was applied without Gecros (see Section 2.3).

For the first time, we have implemented Gecros within an atmospheric model. Until the implementation into WRF 
version 3.7.1, introduced in this study, Gecros had only been coupled to the stand-alone version of Noah-MP and 
applied with a half-hourly time step (Ingwersen et al., 2018). This transition from the offline single-column model 
Noah-MP-Gecros to the parallelized code of the coupled WRF-Noah-MP-Gecros model required the inclusion 
of 60 prognostic spatially distributed variables related to the crops, their growth, ripening and harvest into WRF. 
Examples are development stage, leaf nitrogen, carbon in roots, stem and leaves and the distinction between green 
and total LAI. Gecros had to be adapted to simulate crop growth within every WRF-Noah-MP time step of a few 
seconds. Note that currently only early-covering crops are parameterized in WRF-Noah-MP-Gecros, other crops 
can be included in the future once the parameters are determined. Further, spatial maps for crop types simulated 
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by WRF-Noah-MP-Gecros and their sowing dates are required for each simulation year. WRF-Noah-MP calls the 
crop model for each cropland grid cell when it is identified as early-covering crop by the map. For all other grid 
cells the Gecros module is not called from Noah-MP, that is, in case of cropland grid cells the model currently 
distinguishes two crop types: Winter wheat, which is used for the representation of early-covering crops, and 
the default Noah-MP cropland parameters, which are used for representing all other crops. For all grid cells 
with default cropland, Noah-MP is called with the Ball-Berry photosynthesis scheme. For grid cells containing 
early-covering crops, land surface processes simulated with Noah-MP are thus extended by plant development 
and photosynthesis simulated with Gecros. Model simulation starts at the beginning of the cropping season 
before the first crops are sown, that is, after harvest in summer. Early-covering crops like winter wheat are sown 
in autumn and late-covering crops like maize are sown the following spring. Note that each grid cell is either 
early- or late covering crop because the model does not allow for a tile approach. To estimate the crop sowing 
dates, a cross-sectional analysis of observed sowing dates for winter wheat (doyseed) in Germany was performed 
in dependence of a threshold date doythr, at which the remaining cumulated temperature sum (for the rest of the 
year) exceeds a given critical level based on the positive 2m-temperature difference to 5°C. The critical level of 
the remaining temperature sum is derived from observed sowing dates and was fixed for early-covering crops 
in this study to 170.62 K. It was derived from 31 pairs of climate and phenological observation stations spread 
in Germany which were less than 10 km apart, deviated in altitude by less than 100 m. Only observations that 
provided at least 10 observations ending after 2010 were included in the regression. Years were treated as fixed 
effects. The empirical regression obtained (F statistics: 15.43; standard error (doythr): 0.04196; t value (doythr): 
6.258) was

������� = 206.84 + 0.26255 ����ℎ�� (1)

Farmer crop management other than sowing and harvest, for example, tillage, fertilization and plant protection 
was not explicitly modeled. Hence, we assume a healthy crop stand with nutrients well-supplied. Crop harvest 
in the model occurred at simulated crop maturity. Following their early-covering crops, farmers in Germany 
typically grow a catch crop (e.g., mustard or phacelia). To capture this crop rotation in our simulations, the LAI 
in grid cells after early harvest was set to 0.7 m 2/m 2. An LAI of 0.7 m 2/m 2 reflects the situation that the soil is 
usally not fully baer after harvest. After harvest the soil may be covered with an intermediate crop, volunteer 
cereals or weeds.

2.3.  Case Study: Growing Season 2005 in Germany

2.3.1.  Configuration of the Case Study

Germany is characterized by gradients in the phenological phases due to both maritime to continental climate 
from North to South, and altitudes changes between coastal lowlands in the North to the Alps in the South-
east, with low mountain ranges in between. The Rhine valley in the West is characterized by a warm and mild 
climate and therefore an early start of the growing season. Two 1-year simulations were run for the case study: 
WRF-Noah-MP was applied as control simulation (CTRL) and WRF-Noah-MP-Gecros for the experiment 
(EXP_CROP) from July 2004 to August 2005. Simulation of early-covering crops with Gecros in EXP_CROP 
was confined to grid cells within Germany only, and grid cells outside Germany were simulated with as in CTRL, 
because (a) the winter wheat parameterization applied has so far only been evaluated for Germany (Ingwersen 
et al., 2018) and (b) fully covering phenological observations were available for Germany only. This means CTRL 
and EXP_CROP differ for cropland grid cells with early covering crops, where instead of applying prescribed 
values Gecros calculates the LAI, rooting depth and plant height. The analysis of the growing season requires the 
model simulation to start before the first sowing dates of the early-covering crops – meaning before September 
in Germany. For the case study, we deliberately selected a year without extreme events because a drought like 
2003 will severly impact the surface energy balance regardless of the crop parameterization. Weather data from 
the German Weather Service (DWD, 2019) shows that with respect to the reference period 1981–2010, the period 
from summer 2004 to summer 2005 was a normal weather period in Germany, as the mean seasonal temperatures 
and precipitation did not deviate by more than 0.3 K and 5%. During this period no droughts occurred, that is, 
evapotranspiration was mainly modulated by soil moisture variation, vegetation properties, and weather. Figure 1 
shows the orography, soil texture data and land cover types aggregated to the model resolution with the WRF 
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Figure 1.  Static fields for Weather Research and Forecasting (WRF) in the model domain aggregated to the model grid 
resolution of 0.03° with the WRF pre-processing system. (a) Orography, (b) IGBP-MODIS vegetation classification of WRF 
based on CORINE Land Cover (CLC) 2006 data (Bauer et al., 2020) and (c) soil texture (based on Harmonized World Soil 
Database (version 1.21)) (Milovac et al., 2018).
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pre-processing system over the simulation domain of 392 × 436 grid cells. The WRF pre-processing aggregates 
the soil texture and land cover type based on the dominant class.

2.3.2.  Crop Maps

For our case study, we needed to define those cropland cells where the Gecros winter wheat simulation was 
performed. We considered the winter wheat simulation as representative for early-covering crops (in Germany 
mainly: winter wheat, winter barley, spring barley, winter rapeseed, rye, oats and potatoes). The Noah-MP default 
parameterization is considered representative for late-covering crops (in Germany: maize, soybean or sugar beet). 
We used agricultural land use data from the 2010 Agricultural Census, which is publicly available at the district 
(NUTS3) level, to determine the share of late-covering crops (maize, soybean, sugar beet) in each German munic-
ipal district. By overlaying the district map and the vegetation type input map, we identified the WRF 0.03° grid 
cells with vegetation type cropland that belonged to each district and randomly categorized each cell as being 
covered by either late-covering crops or early-covering crops using the late-covering crop share as probability 
for the random allocation. In this way, the overall crop type share in each district could be preserved in the map, 
although this procedure led to a more agglomerated land use pattern than in reality, where different crops are 
more finely intermixed at typical plot sizes between 1 and 10 ha and alternating between cells from season to 
season due to crop rotation.

An alternative allocation approach was also tested, which first realized the random allocation at a grid resolution 
of 1 ha in order to then aggregate to the 0.03° WRF resolution by the largest area fraction principle. Due to the 
relative dominance of early-covering crops in nearly all areas, however, this second approach reduced the overall 
late-covering crop share in the input map to ∼2.5% of German cropland compared with ∼21% in reality. For this 
experiment, we decided that the error introduced by such a gross underrepresentation of the total area would 
likely be more distorting than the error introduced by the aforementioned overagglomeration of crop type areas, 
thus the first approach was kept.

Figure 2a shows the cropland grid cells and early-covering crop grid cells in the model domain. As mentioned 
above, sowing and harvesting dates were made dynamic in our WRF-Noah-MP-Gecros simulation study. For the 
sowing dates of winter wheat, the relationship found in formula 1 was applied to all grid cells, taking a weighted 

Figure 2.  (a) Map for the application of Noah-MP-Gecros (early-covering crops) and Noah-MP (Other cropland and other land), (b) sowing date [julian day] for 
early-covering crops in Germany.
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average of six past years of the cumulated temperature sums into account. Figure 2b shows the sowing dates 
applied in this case study. Harvest was assumed in dependence of crop maturity as simulated by Gecros.

2.4.  Data and Validation Metrics

2.4.1.  Observational Data for Evaluation

Simulation results were evaluated for the main growing season of early – covering crops from April to August. 
The evolution of the LAI was compared with Copernicus Climate Change Service (C3S) satellite derived data 
(Copernicus Climate Change Service information, 2018) and the temperature (2 m height) with gridded observa-
tional data (OBS) from the German Weather Service (Krähenmann et al., 2016). The C3S LAI data set version 
1.0 is available at 1 km horizontal resolution at a temporal resolution of 10 days for the study period from SPOT/
VEGETATION. Camacho et al. (2013) evaluated the LAI data against ground data and found “very good agree-
ment across the whole range of LAI values, with a slight underestimation for the highest values.” Both, the C3S 
LAI data set and the temperature data set were regridded to the model grid applying the nearest neighbor method 
with the CDO (Climate Data Operators) software (Schulzweida, 2019).

2.4.2.  Distribution Added Value

The distribution added value (DAV) developed by Soares et al. (2017) is a statistical metric based on the Perkins 
Skill Score (Perkins et al., 2007) to analyze statistically the overlap of the pdfs of a variable in order to study the 
added value of a higher model resolution. Here we apply this metric to analyze monthly mean temperatures of 
CTRL and EXP_CROP in comparison with OBS:

𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

=

∑𝑛𝑛

1
min (𝑍𝑍𝐸𝐸𝐸𝐸𝐸𝐸_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑍𝑍𝑂𝑂𝑂𝑂𝑂𝑂 ) −

∑𝑛𝑛

1
min (𝑍𝑍𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑍𝑍𝑂𝑂𝑂𝑂𝑂𝑂 )

∑𝑛𝑛

1
min (𝑍𝑍𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑍𝑍𝑂𝑂𝑂𝑂𝑂𝑂 )

� (2)

S is the Perkins Skill Score, n is the number of bins of the pdf of the analyzed variable, Z is the frequency of values 
in a given bin. A positive DAV indicates a larger overlap of the area underneath the pdfs of ZEXP_CROP with OBS 
than ZCTRL and OBS, a negative value of DAV is a loss and 0 indicates no gain by EXP_CROP.

2.4.3.  Land Atmosphere Coupling Strength Metrics

Santanello et al. (2018) gave an overview of statistical and process-based metrics suitable to quantify the L-A 
coupling. LoCo strength was analyzed using soil moisture η, latent heat flux LH and convective available poten-
tial energy (CAPE) because we were mainly interested whether the incorporation of crop growth had an influence 
on the likelihood of convection initiation. LH and soil moisture η are prognostic variables and CAPE is calculated 
from prognostic variables, while the PBL height depends on the parameters and threshold values of the diag-
nostics of the applied turbulence parameterization in WRF. For 2000–2008 from northern to southern Germany, 
Rüdisühli et al. (2020) identified ∼20%–∼50% summer precipitation as convective eventsunder weak synoptic 
conditions. CAPE is a measure for the atmospheric stability and depends on the atmospheric humidity which is 
related to the latent heat flux among others. Large values show the potential that subsequent convection may have. 
Note, that whether convection is ultimately triggered and whether this leads to convective precipitation depends 
on further atmospheric conditions that are not the subject of this study. For daily, monthly and annual timescale a 
statistic based LoCo metric to study the process chain between surface states, surface fluxes and PBL properties 
are the terrestrial coupling index (TCI), the atmospheric coupling index (ACI) and the TLCI developed by Guo 
et al. (2006) and Dirmeyer (2011). The coupling strength of TCI TCI, noting the relationship

��� = �(�)���
��� (3)

where dLH/dη is the slope of the linear regression between LH and η, and σ(η) stands for the standard deviation 
of η (Santanello et al., 2018). Further, the ACI between the daytime (6–21 UTC) LH and the maximum daily 
convective available potential energy (CAPE) can be calculated as:

��� = �(��)�����
���� (4)

For the TLCI the regression results in
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���� = �(�)���
��

�����
���� (5)

All these coupling indices are based on a linear regression of considered variables and weighted by the standard 
deviation of the considered base line variable (Jach et al., 2020). The indices recognize that it is not sufficient to 
consider the correlation between two variables to quantify the coupling strength. There needs also to be sufficient 
variability over time in the base line variable. For a reliable regression a time series of at least 100 days is needed. 
Therefore, the coupling strength was calculated for April to August. Results were tested on the 97.5% significance 
level applying the Student-t test. Grid cells showing no significance are excluded from the analyses.

Following Jach et  al.  (2020) the analyses are complemented by a comparison of the frequency of 
non-atmospherically controlled (nAC) days from both simulations. nAC is based on the process metric convective 
triggering potential-low-level humidity index. Process-level metrics can be used as a diagnostic tool to repre-
sent L-A feedback in model simulations (https://www.pauldirmeyer.com/coupling-metrics) or from various data 
sources (Wakefield et al., 2021). nAC days have intermediate moisture levels and unstable conditions in the lower 
atmosphere around sunrise (Findell & Eltahir, 2003), which allow turbulent heat flux distribution to influence 
locally triggered deep convection during the following day. On the other hand, on atmospherically controlled 
days, atmospheric conditions probably prevent a decisive influence of the land surface on deep convection. First 
and foremost, differences in the frequency of nAC days indicate an influence of vegetation on the average ABL 
moisture and/or stability, which in turn suggests an L-A feedback on the seasonal time scale. Second, an increase 
in the frequency of nAC days indicates a higher relevance of the land surface for convective processes, which in 
turn indicates an L-A feedback on the diurnal time scale.

The three metrics TCI(η,LH), ACI(LH, CAPE) and TCLI(η, LΗ,CAPE) and nAC days were chosen to study if 
the inclusion of a crop growth model impacts the simulated L-A coupling strength and to which extent this is 
along the terrestrial leg, the atmospheric leg or the whole chain. The three coupling indices were calculated 
applying the portable FORTRAN 90 code modules from the open-source code package Coupling Metrics Toolkit 
(CoMeT, 2016; www.coupling-metrics.com) wrapped into a NCAR Common Language (NCL) code program.

3.  Results
Compared to CTRL, the crop model in EXP_CROP changes the rooting depth and LAI. This changes soil mois-
ture content, soil and vegetation temperature, and energy fluxes between the land surface and the atmosphere. 
The fluxes also depend on the atmospheric state (temperature, humidity, wind speed) and they also impact 
CAPE. Cold/warm temperatures in spring would cause a slow/fast crop growth and development of LAI and 
rooting depth. A low/high LAI and rooting depth allow less/more evapotranspiration when the soil moisture and 
energy is not limited. If the soil moisture limits the evapotranspiration, this impacts the sensible heat flux. The 
surface energy fluxes impact the atmospheric state and stability, CAPE can be used to express the differences 
in the impact in the simulations. EXP_CROP and CTRL differences in LAI, temperature and L-A feedback are 
connected, however, atmospheric advection and precipitation are a result and additional impact. In the following 
the results for LAI and temperature are evaluated and the resulting atmospheric coupling strengths EXP_CROP 
and CTRL are shown.

3.1.  Crop Growth Simulation: The Leaf Area Index

The area of a single grid cell of the CTRL, EXP_CROP and C3S is 900 ha. A grid cell of this size classified as 
cropland in Germany is covered with several early and late covering crops and it is fragmented by hedges, forest 
patches, villages and roads. In CTRL the LAI of a cropland grid cell is not simulated but taken from a table. In 
EXP_CROP a grid cell with early-covering crops takes the LAI value of a single simulated crop (winter wheat). 
The satellite derived gridded data set C3S shows the effective LAI of a grid cell. that is, grid cells classified as 
cropland in CTRL and EXP_CROP (Figure 2a) in C3S have the dominant vegetation class cropland but also 
include the signals of other vegetation classes but also roads and buildings. For the gridded data C3S has a mean 
bias of −0.25 m 2/m 2, a RSME of 0.79 and a correlation of 0.87 in comparison with ground data (Fuster Ochando 
& Sánchez-Zapero, 2019). To allow a comparison between simulated and observed LAI only grid cells classified 
as early-covering crops (see Figure 2a) with more than 60% cropland are analyzed. These are colored grid cells 

https://www.pauldirmeyer.com/coupling-metrics
http://www.coupling-metrics.com
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in Figure 3, which shows the LAI for five selected dates during the growth, ripening and harvest of agricultural 
crops from April to August for the CTRL and EXP_CROP simulations in comparison with the OBS set C3S. 
C3S (Figure 3, left column) shows a clear seasonal cycle with lowest values in spring, maximum LAI values of 
up to 6 m 2/m 2 at the end of June and declining values over the ripening and harvest period in July and August. 
Further, a pronounced spatial heterogeneity is visible in the maps with the fully developed LAI on 30 June and the 
following decline, which is more rapid in central Germany, because there the crops were fully developed earlier 
on, resulting in an earlier ripening and harvest.

In CTRL (Figure 3, right column), all crop grid cells show uniform values of LAI following a temporal cycle 
without any spatial heterogeneity. Note, CTRL does not distinguish between the green and total LAI. In particu-
lar, the CTRL simulation underestimates LAI values until the end of June. In July and August, instead of show-
ing declining LAI values, as expected due the maturing of early-covering crops, the LAI values remain on the 
maximum level.

The EXP_CROP simulation (Figure 3, middle column) produces a distinct spatial heterogeneity in April and 
July due to weather dependent growth and ripening. Until 20 May the LAI developed in all grid cells, ripening 
(and resulting decline) occurs in July. On 20 August most early covering crops were harvested and a catch crop is 
assumed. In April EXP_CROP alike C3S shows an increase in LAI. In central Germany and along the Baltic sea 
it is larger than in C3S. Regions in central Germany showing an LAI above 2 m 2/m 2 on 10 April coincide with an 
early sowing date the previous autumn (see Figure 2b). Early-covering crops already emerge in autumn and then 
fall into dormancy until spring. So the crops in these grid cells already had more time to grow than in other areas. 
In EXP_CROP the sowing date is based on the climatological temperature (see Section 2.2). At the end of July 
and August, the ripening and harvest is visible in C3S indicated by lower LAIs. This ripening and harvest occurs 
delayed in EXP_CROP except for western Germany, where it occurs too early. But its distribution is well visible 
while CTRL still shows the maximum LAI and no spatial heterogeneity.

The temporal evolution of the spatially averaged LAI of grid cells with more than 60% cropland classified as 
early covering crops for four subdomains with different LAI cycles is shown in Figure 4. The subdomains were 
selected according to sowing date (Figure 2b) and geographical location. The location of the four subdomains - 
Central Germany (A), Western Pomerania in North-Eastern Germany (B), Rhine Valley in Western Germany (C) 
and Lower Bavaria in South-Eastern Germany (D) - are shown in Figure 4e. The C3S data show a pronounced 
seasonal cycle starting with an LAI of 1.1–1.5 m 2/m 2 in April. In Central and Western Germany (Fig. 4a, c), a 
LAI maximum of 5 m 2/m 2 and 3.5 m 2/m 2, respectively, is reached on 20 June. In July, due to maturity, harvest 
and catch crops, the LAI decreases to 1.7 m 2/m 2 and 1.9 m 2/m 2 respectively by 10 August. In North-Eastern and 
South-Eastern Germany (Figures 4b and 4d), the maximum LAI of 4.9 m 2/m 2 and 3.4 m 2/m 2, respectively, is 
reached on 30 June. In July and August, there was a rapid decline in LAI in North-Eastern Germany, while in 
South-Eastern Germany the decline was much slower and was still 2.2 m2/m2 at the end of August.

Due to the static annual cycle of cropland LAI in CTRL, this simulation produces a uniform seasonal cycle in all 
subdomains with maxima of 3 m 2/m 2 in August and crop emergency on the 15 April. In Central and North-Eastern 
Germany (Figures 4a and 4b) the simulated CTRL cycle is also delayed by 2 months and reached maxima on 
10 August are 2 m 2/m 2 too low. In the Rhine Valley and South-Eastern Germany (Figures 4c and 4d) the CTRL 
maxima are 0.5 m 2/m 2 lower than the C3S maxima and delayed by 1 month. In contrast to CTRL, EXP_CROP 
simulates LAI in grid cells of early-covering crops, therefore the time series differ for each sub-domain as in C3S. 
For Central Germany (Figure 4a), EXP_CROP simulates an LAI maximum of 4.7 m 2/m 2, which is 0.3 m 2/m 2 
lower and 1.5 months too early. In North-Eastern Germany (Figure 4b) the simulated LAI shows a similar behav-
ior with a maximum LAI of 4.4 m 2/m 2 on 20 May. In the Rhine Valley (Figure 4c), EXP_CROP simulates the 
C3S LAI on 10 April and 20 August. It increases too much until 20 May, when the LAI is 4.0 m 2/m 2, while C3S 
has a LAI of 2.6 and CTRL 0.7 m 2/m 2. In South-Eastern Germany (Figure 4d) EXP_CROP slightly underesti-
mates the observed increase in April by 0.3–0.8 m 2/m 2. Atmospheric temperature biases in the lowest atmos-
pheric layer of the model carry over to the plant model and influence the pace of plant development. April shows 
a warm bias (see Section 4.2), which leads to an over-rapid plant growth.

Summarizing the comparison of CTRL and EXP_CROP with C3S in the four subdomains the CTRL simulation 
does not show the observed regional weather dependence of the growth and decline in LAI, that is, the maxima 
are underestimated especially in central and northern Germany and delayed by 1 month. Despite the plausible 
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Figure 3.  Green leaf area index (LAI) [m 2/m 2] from the satellite derived data Copernicus Climate Change Service (C3S), 
and the simulations EXP_CROP and control simulation (CTRL) for early-covering cropland gridcells with more than 60% 
cropland. Note, CTRL does not distinguish between the green and total LAI.
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overestimation of LAI between Mid-May and Mid-June during the growing period in EXP_CROP, its simulated 
spatial pattern and temporal variations shows the crop's growth condition in response to the weather, which has 
more agreement with C3S than CTRL.

From Figures 3 and 4, it can be seen that the crop growth model is essential to capture the weather and crop 
dependent spatial heterogeneity and temporal development of the LAI. This cannot be achieved by standard table 
values derived for given climate such as crops and sowing density. For two locations in Southwest Germany, 
Ingwersen et al. (2011, 2018) and Wizemann et al. (2014) demonstrated on the basis of multi-year field meas-
urements that major crops (winter rapeseed, winter wheat, winter barley, silage maize) have a weather dependent 
temporal development. Depending on the year's and region's weather, differences between the LAI development 
of EXP_CROP and C3S were of a similar order. The maximum LAI level of the CTRL run was distinctly lower 
than in the EXP_CROP run. This lower LAI in the CTRL run and its shifted seasonal cycle reflects that Noah-MP 
was developed for the conditions of the US and represents their representative mix of crops. Note that in the 
US, crop production is less intensive than in Germany. Winter wheat is drilled with larger row-spacing, nitrogen 
fertilization rates are less than half of those applied by German farmers, and soils are usually neither plowed nor 
worked with a harrow/cultivator. Consequently, crop yields per hectare and also the LAI values are considerably 
lower than in Germany. While at the sites that were used for calibrating Gecros the average winter wheat yield 
was 8.3 t/ha between the years 2016–2018, in the same time frame the average winter wheat yield in the US was 
3.4 t/ha (USDA, 2019). LAI values in the “breadbasket” of the US, the great plains, are rarely exceeding values 
of three (Y. Lu et al., 2017).

The comparison underlines the necessity of including more crop types and especially catch crops in the simula-
tions to reach observed grid scale LAIs.

Figure 4.  Areal mean green leaf area index (LAI) [m 2/m 2] from the satellite derived data Copernicus Climate Change Service (C3S), and the simulations EXP_
CROP and control simulation (CTRL) for early-covering cropland gridcells with more than 60% cropland of selected subdomains: (a) Central Germany, (b) Western 
Pommerania in North East Germany, (c) Rhine Valley in West Germany, (d) Lower Bavaria in South East Germany. (e) shows the location of the subdomains A-D in 
the C3S LAI displayed in Figure 3 for the 30 June 2005. Note, CTRL does not distinguish between the green and total LAI.
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3.2.  Temperature

Temperature is a variable of major interest in weather and climate research. It is also a key forcing variable for 
impact models. Since the temperature does not only depend on synoptic weather conditions but also on coupled 
L-A processes, differences in the temperature at 2-m height of CTRL and EXP_CROP simulations are analyzed.

Figure 5 shows the gridpoint time series of the mean monthly temperatures in Germany for April–August 2005 
pooled together in probability density functions (PDFs for CTRL, EXP_CROP and OBS). The DAV (Equation 2) 
is calculated for each month and displayed in each figure. In April and May, higher temperatures than observed 
are simulated, while in June lower temperatures than observed are simulated. In July the pdfs of the simulated 
temperatures are too flat indicating an overestimation of the lower and higher temperature quantiles and an under-
estimation of the middle part. From April to July the DAV shows an added value of the implementation of the crop 
model. With a DAV of 0.74 May is the largest added value of all months. In August both simulations overestimate 
the the higher temperature quantiles, but while CTRL underestimates the middle part and overestimates the lower 
quantiles, EXP_CROP underestimates the lower temperatures and therefore also overestimates the middle part. 
Therefore in August DAV is negative.

Maps of monthly mean temperatures differences are displayed in Figure 6. All months show a mean difference 
of up to +3 K and −2.5 K between CTRL and OBS. A gradient from under-to overestimation from north to 
south (June to August) respectively Northwest to Southeast (April) is visible. In May no underestimation is 
evident but an increasing overestimation from Northwest to Southeast. In most parts of Germany the simulated 
2m-temperatures in April, May and August are overestimated, whereas in June significant underestimates were 
found in the northern regions of the country. The Alpine foreland in the Southeast displays a large overestimations 
throughout the entire growing season. In July, the temperature bias shows a North-South gradient: CTRL is too 
cold in the North and too warm in the South. In Central Germany, the bias is smaller than ±1 K. Finally, August 
shows a warm bias of 1–2 K in Central Germany and of 2–3 K in the South.

Such biases in WRF simulated 2m-temperature with Noah-MP were also found by Chen et al. (2019) for North 
America and Stergiou et al.  (2021) for Central Europe and cannot be associated with a single variable. They 
can be the result of synoptic conditions, feedback processes and parameterizations. To name three examples: 
(a) from April to July, both experiments overestimate the global radiation in southern Germany and underes-
timate it in northern Germany (not shown); (b) in Noah-MP the vegetated fraction depends on the LAI (Niu 
et al., 2011), which impacts the grid cells' 2m-temperature as a results of an under-/overestimation in LAI; (c) the 
PBL connects the land surface state and resulting fluxes to the free atmosphere and Milovac et al. (2016) showed 
that therefore the feedback processes and their parameterization impact the temperature and moisture simulation.

The application of the crop growth model reduces the temperature biases. In April and May, the temperature 
difference between EXP_CROP and CTRL is up to −2 K in the regions that were too warm in CTRL. June, July 
and August show that EXP_CROP has up to 1.5 K higher temperatures in the North West, where CTRL was up 
to 2.5 K too cold. The application of the crop growth model causes a cooling of up to 2 K compared to CTRL, 
which has a mean warm bias of 3 K. In July, some smaller regions in West Germany see an enhancement of the 
simulated temperature warm bias by up to 1.6 K.

At this point it is also important to note that temperature biases impact simulated crop growth and vice versa. 
Emergence and crop growth depend to a large extent on temperature. Biases of the atmospheric temperature in the 
model's lowest atmospheric level propagate to the crop model and influence the pace of crop development. April 
shows a warm bias, which results in faster crop growth. Crops reach the maximum LAI earlier than observed. 
Ripening is delayed in July and August.

Note that both, CTRL and EXP_CROP show a temperature bias and in EXP_CROP the relationship between 
temperature bias and LAI development stages is well visible. But even though a temperature bias is still present in 
EXP_CROP, it is reduced with respect to CTRL as a result of higher LH and an intensified L-A coupling in EXP_
CROP (Figures 8 and 9). The impact on the LAI is seen in EXP_CROP in Section 4.1 and discussed in Section 5.

3.3.  Latent and Sensible Heat Flux

The latent heat flux is proportional to the evapotranspiration, that is, in contrast to the sensible heat flux it 
depends on the water vapor pressure deficit and stomatal resistance which is a function of air temperature, root 
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Figure 5.  Distribution added value (DAV) and spatial probability density functions (PDF) of monthly mean temperatures 
of Germany for the observational data (black), control simulation (blue) and EXP_CROP (red). DAV is calculated with a 
binwidth of 1°C between 1°C and 36°C.
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zone soil moisture, LAI, radiation and photosynthesis. The net photosyn-
thesis rate itself is a function of radiation, temperature, LAI, plant available 
water, among others. The Pearson correlation coefficient of latent and sensi-
ble heat flux is a measure of L-A coupling (Knist et al., 2017). In case of 
energy limiting the fluxes, the correlation is positive, in case the root zone 
soil moisture and LAI limit the evapotranspiration when no energy limitation 
is present, the correlation is small or negative with respect to L-A feedback.

Figure 7 shows the montly mean latent and sensible heat flux and their Pear-
son correlation coefficient for EXP_CROP and CTRL for cropland grid 
cells. Both experiments from April to July show an approximate North-South 
gradient with largest latent heat fluxes in the South and lowest in the North-
west, a gradient following the maritime to continental climate. Except for 
August, when the crops are partially harvested in EXP_CROP, the latent 
heat flux is larger in EXP_CROP than CTRL. This is in agreement with 
the development and magnitude of the LAI (Figures 3 and 4). The sensible 
heat flux shows a similar but weaker North-South gradient with significantly 
lower fluxes except for the southern half of Germany in August. The latent 
heat flux in Germany's croplands dominates over the sensible heat flux in 
the growing season and its stronger magnitude in EXP_CROP contributes 
to the cooler temperatures than in CTRL (Figures  5 and  6). The Pearson 
correlation coefficient shows a stronger dependence of the fluxes on the land 
surface  conditions in EXP_CROP: During April (Figure 3), in regions with 
the largest LAI over central Germany the latent heat flux is limited by the 
stomatal resistance, while in CTRL only energy availability limits the fluxes. 
From May to July this is the case throughout the domain, except for some 
scattered regions in northern Germany in June and July. In CTRL the limita-
tion of the latent heat from May to July flux only occurs in the regions with 
strong latent heat flux and is less scattered, recall that LAI and rooting depth 
are spatially contant in CTRL.

3.4.  Terrestrial and Atmospheric Coupling Strength

The sensitivity of the LH variance to variations in η of the land surface model 
is expressed by a positive TCI (see Equation 3), that is, which is presented 
in Figure 8a for the main growing period. A negative TCI suggest that the 
LH drives variations in η but does not express feedback on the atmosphere 
(Dirmeyer, 2011). In CTRL, the terrestrial coupling is only existent south of 
51°N, and moreover the values are mostly between 5 and 15 W/m 2. EXP_
CROP shows significant TCI values of more than 10 W/m 2 south of 52°N 
except in the orographic terrain (see Figure 1) of the low mountain ranges 
and the foothills of the Alps. The strongest coupling is seen south and west of 
the mountain range in the center of Germany and the lowlands in the South 
West with a TCI of more than 20  W/m 2. In North West Germany, which 
has a stronger maritime influence, and in the alpine region in South West 
Germany, EXP_CROP shows no sensitivity of LH to η variation. In general, 
except for North West Germany, the dynamic crop growth model enhanced 
the coupling of LH to η. Note that in EXP_CROP the rooting depth and LAI 
are both dynamic and dependent on the weather footprint during the growing 
season.

The sensitivity of maximum daily CAPE variance on daytime LH (between 
6 and 21 UTC) variability is expressed by a positive ACI (Equation  4). 
Figure  8b show a significant atmospheric coupling strength of more than 
50 W/m 2 in both simulations with maxima of more than 150 W/m 2 in the 

Figure 6.  Differences of monthly mean temperature in 2-m height between 
control simulation (CTRL) and observational data (Krähenmann et al., 2016) 
and between EXP_CROP and CTRL.
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inland cropland regions between 48°N and 52°N and 8°E and 13°E. EXP_CROP shows a stronger atmospheric 
coupling than CTRL. Note that strong ACI coincides with large TCI in both simulations. Further, EXP_CROP 
shows a strong ACI in South-Eastern Germany.

Combining the terrestrial and atmospheric segment of the L-A coupling results in the TLCI (see Equation 5), 
which describes the sensitivity of daily maximum CAPE variance on η variation via the daytime LH variation. 
Positive values result from an impact of soil moisture via latent heat fluxes on CAPE showing the full coupling 
path between the terrestrial and atmospheric segment. Negative values occur due to the negative TCI and there-
fore suggest that LH variation impacts the soil moisture variation but this does not feed back to the atmosphere. 
Figure 8c shows pronounced L-A coupling in regions where ACI maxima coincide with TCI maxima (Figures 8a 
and 8b). North of 51°N CTRL shows no coupling between η variation and CAPE via LH. Only between 49°N and 

Figure 7.  Monthly mean latent and sensible heat flux and their Pearson correlation coefficient in cropland grid cells of Germany in EXP_CROP and control simulation 
(CTRL). Non-cropland grid cells in Germany are in gray.
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51°N as well as 9°E and 11°E TCLI shows values above 40 W/m 2. In EXP_CROP only the North Sea coast in 
the North West and the Alpine region in the South do not show any L-A coupling via these metrics. Thus, except 
for the maritime North West and mountain ranges, the inclusion of the crop model turns regions with no L-A 
coupling on this path in CTRL into regions with positive coupling strength in EXP_CROP.

Figure 8.  Coupling index based on daily data from April–August 2005 for (a) Terrestrial Coupling Index (TCI) for the 
sensitivity of the latent heat flux to variations in soil moisture; (b) Atmospheric Coupling Index (ACI) for the sensitivity of 
the CAPE to variations in daytime (6–21 UTC) LH; (c) two-legged coupling index (TLCI) for the sensitivity of the convective 
available potential energy (CAPE) to variations in soil moisture via daytime (6–21 UTC) LH based on daily data from April–
August 2005. Positive values indicate coupling strength. Inside Germany non-significant grid cells are in gray.
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While CAPE is a measure for the potential of the occurrence of convection, convection inhibition (CIN) is a 
measure for capping deep convection. In case |CIN| is smaller than 50 J/kg and CAPE is larger than 500 J/kg, the 
capping of convection is weak and the atmosphere is at least marginally unstable. Figure 9 shows the number 

Figure 9.  Number of days per month when at the same time of the day the threshold values of |CIN| < 50 J/kg and CAPE > 500 J/kg occur in EXP_CROP and control 
simulation (CTRL) and their difference for cropland grid cells in Germany. Non-cropland grid cells in Germany are in gray.
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of days per month when at the same time of the day these threshold values are met and therefore indicates deep 
convection occurrence in cropland grid cells. In EXP_CROP general more days occur in the more continental 
climate of southern Germany than in the maritime climate in the North which is in agreement with Rüdisühli 
et al. (2020). CTRL only shows this gradient in July. From June to August depending on the region 4 to 11 more 
such days occur in EXP_CTRL than in CRTL with maxima in Bavaria (Southeast) in August. The regions coin-
cide with larger coupling indices (Figure 8) in EXP_CROP and CTRL.

Figure 10 shows the number of nAC days between April and August 2005 for both simulations supporting the 
findings from the coupling indices. In eastern and southern Germany away from mountain ranges and the coasts 
CTRL shows 20–40 nAC days, in western and central Germany they are between 10 and 25. The inclusion of the 
crop-model increases the number of nAC in most of the domain by at least 10 days. A few regions with more than 
25 nAC days in CTRL show a decrease by 5–10 days.

4.  Discussion
Surface energy and water fluxes depend on the state of the atmospheric boundary layer (especially temperature 
and moisture gradients), soil (moisture, temperature) and vegetation (especially LAI and rooting depth). The 
atmosphere controls the photosynthesis and transpiration and therefore phenological development mainly via the 
radiation, temperature, humidity and wind speed. The surface water and energy balance determines the soil mois-
ture and leads to an indirect control of photosynthesis by the atmosphere: in case of soil moistures below field 
capacity root water uptake is restricted by soil water content in the root zone. Summarizing this means that the 
phenological development impacts and depends on the L-A feedback. In CTRL the phenological cycle of crops 
depends on the seasonal cycle only while in EXP_CROP for early covering crops it is simulated in dependence 
of the atmospheric and soil state. The crops were drilled in autumn and emerged before their dormancy period in 
winter. This allowed for an early start of crop growth in spring once the temperatures were reaching a threshold 
value.

In this study, the local L-A coupling was quantified for CTRL and EXP_ CROP by analyzing TCI, ACI and 
TCLI based on η, LH and CAPE. The variables η, LH and CAPE reflect non-linear relationships between weather 
dependent vegetation properties (stomatal resistance, LAI and rooting depth), soil state (moisture and temper-
ature) and the weather itself (radiation, precipitation, pressure, wind, humidity profiles, temperature profiles). 
In EXP_CROP, the crop development stages, that is, tillering, stem elongation, booting, flowering, ripening 
and senescence, depend on the temperature while the biomass production and therefore root growth and LAI 
depend on the photosynthesis, which depends on the stomatal resistance. The stomatal resistance depends on η 
and the atmospheric properties and stability in the surface layer and controls LH in case of soil water limitation. 
The inclusion of a crop growth model that is capable of simulating the LAI development in dependence of the 

Figure 10.  Non-atmospherically controlled (nAC) days in EXP_CROP and control simulation (CTRL) and their difference.
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weather, does not only impact the terrestrial segment of the L-A coupling but also the atmospheric segment. In 
regions that are less impacted by maritime climate conditions in spring and summer, the variation in η impacts the 
LH and CAPE sensitivities. For southern Germany this is also visible in CTRL, but less pronounced. Especially 
the LoCo hot spot areas with respect to the η – LH – CAPE process chain in central Germany are not captured 
by CTRL (Figures 7 and 8). A reason is the significantly underestimated LAI in CTRL (Figures 3 and 4) and a 
constant rooting depth, both impacting the η – LH relationship in non-water limited conditions. The crop growth 
in EXP_CROP does not only determine LAI development but includes dynamical root growth which impacts the 
water fluxes and hence LH. The importance of considering root growth in Noah-MP has been demonstrated by 
Gayler et al. (2014). Further the analyses of nAC which is based on the atmospheric stability in dependence of the 
land surface state supports the results: the phenological dynamics in LAI and rooting depth in cropland increase 
the number of days with local L-A feedback. Jach et al. (2020) found for Mid-Europe for summer 1986–2015 that 
nAC days have a higher probability for precipitation than atmospherically controlled days. CTRL showed in most 
regions 25%–50% less nAC days than EXP_CROP, highlighting the importance of a dynamic LAI and root depth.

Gradients in the phenological phases caused by North-to-South climate and altitude variations as well as the 
warm Rhine valley imprint on the results of EXP_CROP.  EXP_CROP simulates the weather dependent and 
therefore spatially heterogeneous seasonal cycle of the cropland LAI in Germany, while CTRL shows a static 
seasonal cycle in LAI and therefore no spatial heterogeneity. CTRL significantly underestimates the LAI and 
does not simulate its decline in July and August. EXP_CROP in general simulates the observed maxima and the 
increase and decline of the LAI, though LAI increase is too fast in April and May and declines in most regions 
too late and therefore not as gradual as observed in July and August.

The current model limitation of WRF-Noah-MP-Gecros to simulate the effective LAI of the grid cells can be 
addressed by further development of the crop growth model for more crops and crop rotations. A greater detail 
in crop specification/classification should also go along with a higher spatial resolution, either by lower grid cell 
size (at least down to a typical plot size of 2–5 ha in Western Germany) or by a tile approach in order to capture 
the high spatial fragmentation of (not only) Western European agriculture.

A known issue basically in all RCM simulations that do not use data assimilation is the internal variability 
when it comes to quantifying changing signals (Giorgi & Bi, 2000). This can be addressed via an ensemble of 
simulations and/or multiple years. Lavin-Gullon et al. (2021) studied the internal variability versus multi-physics 
uncertainty for convection permitting simulations in central Europe with WRF. They found “for near-surface 
temperature the spread associated to parameterizations was above that due to the internal variability,” the variable 
is rather constrained by the model physics than the internal variability. The scope of this study is the presenta-
tion of WRF-Noah-MP-Gecros and its general impact on L-A feedback. In Germany the weather is temporally 
and spatially very variable, so that many meteorological conditions occur, especially in the season from April 
to August, which is particularly important for the L-A exchange. Winter wheat is very well simulated with 
Noah-MP-Gecros in its development as a function of weather (Ingwersen et al., 2018). This is enhanced in this 
study with WRF-Noah-MP-Gecros where the atmosphere reacts to this plant growth in EXP_CROP and this 
affects the growth accordingly. The goal here is to study if this enhances L-A-feedback. Further studies will be 
required to quantify the long-term L-A feedback with an ensemble of multi-year simulations and multi-physics 
ensembles (e.g., including different PBL and surface layer schemes) as well as OBS.

It is important to study and to verify L-A feedback metrics advanced observations in the future. Novel synergies 
of instrumentation (Späth et al., 2016; Wulfmeyer et al., 2018) provide not only surface state and surface flux 
measurements but also the necessary atmospheric profiles, gradients, and turbulent moments of tempe-rature, 
moisture and wind (Behrendt et  al.,  2019) to understand and quantify the LoCo process chain (Santanello 
et al., 2018). Implementation of such observati-on systems at observatories such as the L-A Feedback Obser-
vatory (LAFO, https://lafo.uni-hohenheim.de/en) in Stuttgart (Germany) allows for the validation of the L-A 
feedback in models, since this requires multi-year data during the main growing season for multiple crops due 
to their large variability in weather responses (Ingwersen et al., 2011; Wizemann et al., 2014). GEWEX Land 
Atmosphere Feedback Observatories have also been introduced and proposed to be operated in other climate 
regions (Wulfmeyer et al., 2020).

https://lafo.uni-hohenheim.de/en
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5.  Conclusions
Weather and climate in the mid-latitudes of the northern hemisphere widely depends on L-A interaction. The 
landscape is heterogeneous due to different soil properties and land cover as well as due to orography. Land 
use and land cover changes are getting increasing attention in global and regional climate change modeling due 
to their impact on regional climate. Studies by Branch and Wulfmeyer  (2019), Kumar et  al.  (2013), Lejeune 
et al. (2017) and Noblet-Ducoudré et al. (2012) confirm the impact of land use and land cover on the climate and 
therefore temperatures. While global climate models in Coupled Model Intercomparison Project Phases 5 and 6 
(CMIP5, CMIP6) simulations include biogeochemical land surface models with weather dependent vegetation 
dynamics Arora et al. (2020) and Huang et al. (2016), this is not yet state of the art in RCMs (Davin et al., 2019).

Agricultural croplands show a weather dependent annual cycle of vegetation character-istics such as LAI, GVF, 
and rooting depth. Current state of the art RCMs apply fixed annual cycles of vegetation characteristics, which 
cause biases in surface fluxes and incorrect representation of L-A feedback and errors in atmospheric variables 
and PBL evolution. This study implemented an advanced vegetation parameterization represented by Gecros 
model inside of Noah-MP for croplands with winter wheat in Germany (Ingwersen et al., 2018). By conduct-
ing a 1-year impact study with the coupled WRF-Noah-MP-Gecros model (EXP_CROP), we demonstrated a 
strengthening of L-A feedback comparing to WRF-Noah-MP with the default static seasonal LAI cycle (CTRL). 
Its strength was analyzed for the process chain of η, LH and CAPE applying the terrestrial, atmospheric and 
two-legged coupling indices.

Regions that did not show any L-A feedback in CTRL, showed emerging feedback between the η, LH and CAPE 
in EXP_CROP.This also resulted in more days with an unstable atmosphere and weakened convection inhibition 
especially during summer. Except for the maritime North West and mountain ranges, the inclusion of the crop 
model turns regions with no L-A coupling on this path into regions with positive coupling. Our work shows that 
the impact is positive and results in a bias reduction on the local monthly mean temperature, depending on the 
month and region biases reduce by up to 2–3 K. Except for August the monthly temperature DAV improves in 
EXP_CROP.

These results of the simulations confirm that for seasonal and climate simulations it is crucial to simulate a 
weather-driven crop development due to its significant impact on L-A coupling. Given this information in the mid 
to long term, farmers might be able to adapt crop choice to help mitigate changing environmental stresses. The 
sensitivity of the L-A coupling and therefore climate to crop growth calls for the implementation of more crops 
and crop management (sowing dates, sowing density, N fertilization etc.) with intense cooperation with the crop 
modeling community to derive the necessary parameter sets.

More important for future convection-permitting seasonal and climate simulations in cropland dominated regions, 
our simulations results show that the implementation of a crop growth model leads to:

•	 �Spatially heterogeneous crop development (Figure 3)
•	 �Higher LAI values and a stronger pronounced LAI seasonality (Figures 3 and 4)
•	 �Declining LAI values during the ripening and harvest periods (Figures 3 and 4)
•	 �Intensified L-A coupling (Figures 7 and 8)
•	 �More days with conditions for deep convection (Figure 9)

and

•	 �A significant bias reduction of monthly mean temperatures (Figure 5).

This study's implementation of the crop model Gecros was released with WRF version 4, which enables the 
simulation of the annual phenological development of croplands in a changing climate when downscaling CMIP6 
climate projections in the future. This is crucial for the regional climate simulations in mid-latitudes due to the 
L-A feedback processes and the currently observed and expected future change in phenological phases.
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Data Availability Statement
The Copernicus Climate Change Service information (2018) satellite derived LAI was compared with used to 
evaluate the model simulations in croplands is freely available at https://cds.climate.copernicus.eu/ via down-
load. The gridded observed daily 2m-temperature OBS used for evaluation of the model simulations is freely 
available at the climate data center of the German Weather Service via download from https://opendata.dwd.
de/climate_environment/CDC/grids_germany/daily/Project_TRY/air_temperature_mean/ and described by 
Krähenmann et al. (2016). The simulations CTRL and EXP_CROP required forcing data. We used our 3-hourly 
(Tier2) data from the 0.11° grid WRF simulations forced with ERA-Interim reanalysis data (Dee et al., 2011). 
These simulation data sets (CTRL, EXP_CROP and the forcing data) are very large, they can be made available 
by request from the corresponding author. The namelist.input file for the WRF simulations and analyzed varia-
bles (temperature, LH, SH, CAPE, CIN, LAI, nAC) from CTRL and EXP_CROP are available at the depository 
Zenodo via https://doi.org/10.5281/zenodo.6501984 (Warrach-Sagi, 2022). Weather Research and Forecasting 
version 3.7.1 was used for CTRL and EXP_CROP. The WRF source code can be obtained from http://www2.
mmm.ucar.edu/wrf/users/download/get_source.html after registration. The applied WRF version 3.7.1 code 
changes for Gecros can be obtained upon request from the corresponding author. The land cover was based on 
the CLC 2006 data (http://land.copernicus.eu/pan-european/corine-land-cover/clc-2006/view), which was reclas-
sified into the IGBP-MODIS land cover types applied by WRF (Bauer et al., 2020). The applied soil texture data 
is based on the Harmonized World Soil Database (version 1.21) and available from the World Data Center for 
Climate (https://doi.org/10.1594/WDCC/WRF_NOAH_HWSD_world_TOP_SOILTYP, Milovac et al. (2018)). 
The software package NCL (Brown et al., 2012) was applied for the figures and the calculation of the Pearson 
correlation coefficients and can be downloaded from https://www.ncl.ucar.edu/. The climate data operator soft-
ware is freely available at https://code.mpimet.mpg.de/projects/cdo/files and described by Schulzweida (2019). 
The Coupling Metrics Toolkit (CoMeT; https://www.coupling-metrics.com) is an open-source code package 
(Santanello et al., 2018), we used it to calculate the coupling indices TCI, ACI and TLCI.
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