
1.  Introduction
Molecular-biological tools and so-called omics techniques, i.e., (meta)genomics, (meta)transcriptomics, (meta)
proteomics analyses, have been used to characterize microbial reactions in various environments such as riparian 

Abstract  Molecular-biological data and omics tools have increasingly been used to characterize 
microorganisms responsible for the turnover of reactive compounds in the environment, such as 
reactive-nitrogen species in groundwater. While transcripts of functional genes and enzymes are used as 
measures of microbial activity, it is not yet clear how they are quantitatively related to actual turnover rates 
under variable environmental conditions. As an example application, we consider the interface between 
rivers  and groundwater which has been identified as a key driver for the turnover of reactive-nitrogen 
compounds, that cause eutrophication of rivers and endanger drinking water production from groundwater. In 
the absence of measured data, we developed a reactive-transport model for denitrification that simultaneously 
predicts the distributions of functional-gene transcripts, enzymes, and reaction rates. Applying the model, 
we evaluate the response of transcripts and enzymes at the river-groundwater interface to stable and dynamic 
hydrogeochemical regimes. While functional-gene transcripts respond to short-term (diurnal) fluctuations of 
substrate availability and oxygen concentrations, enzyme concentrations are stable over such time scales. The 
presence of functional-gene transcripts and enzymes globally coincides with the zones of active denitrification. 
However, transcript and enzyme concentrations do not directly translate into denitrification rates in a 
quantitative way because of nonlinear effects and hysteresis caused by variable substrate availability and 
oxygen inhibition. Based on our simulations, we suggest that molecular-biological data should be combined 
with aqueous geochemical data, which can typically be obtained at higher spatial and temporal resolution, to 
parameterize and calibrate reactive-transport models.

Plain Language Summary  Molecular-biological tools can detect how many enzymes, functional 
genes, and gene transcripts (i.e., precursors of enzyme production) associated with a microbial reaction exist in 
a sample from the environment. Although these measurements contain valuable information about the number 
of bacteria and how active they are, they do not directly say how quickly a contaminant like nitrate disappears. 
Nitrate, from agriculture and other sources, threatens groundwater quality and drinking water production. In 
the process of denitrification, bacteria can remove nitrate by converting it into harmless nitrogen gas using 
specialized enzymes. The interface between rivers and groundwater is known as a place where denitrification 
takes place. In this study, we use a computational model to simulate the coupled dynamics of denitrification, 
bacteria, transcripts, and enzymes when nitrate-rich groundwater interacts with a nearby river. The simulations 
yield complex and nonunique relationships between the denitrification rates and the molecular-biological 
variables. While functional-gene transcripts respond to daily fluctuations of environmental conditions, enzyme 
concentrations and genes are stable over such time scales. High levels of functional-gene transcripts therefore 
provide a good qualitative indicator of reactive zones. Quantitative predictions of nitrate turnover, however, will 
require high-resolution measurements of the reacting compounds, genes, and transcripts.
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zones (Wang et  al.,  2019), lake and river sediments (Reid et  al.,  2018; Stoliker et  al.,  2016), groundwater 
(Anantharaman et al., 2016; Wegner et al., 2019), and oceans (Louca et al., 2016). They provide information 
about the microbial community composition, its functional and metabolic potential (i.e., genomic data), and 
activity (i.e., transcript data). The continuous developments in extraction and measurement techniques mean 
that in most natural environments measuring molecular-biological or omics markers is becoming more straight-
forward than measuring reaction rates. These methods can help to identify the relevant reactive processes at a 
particular site and the location of reactive zones, and have been hailed as proxies for reaction rates. However, 
quantitatively relating molecular-biological measurements to the turnover rates of nutrients or contaminants 
remains a challenge and the validity of the assumption that these are rate-proxies is still in question.

Many sequencing studies target taxonomy and diversity of organisms, without providing direct information about 
reactions rates. Meta-omics data primarily target the relative abundance of genes, transcripts, and proteins. This 
semi-quantitative information is particularly difficult to convert into rate expressions. In contrast, measurements 
of functional genes, their transcripts, and the corresponding enzymes directly relate to the abundance of organisms 
capable of specific metabolic pathways and their activity. Several studies have suggested using transcript levels or 
transcript-to-gene ratios to estimate reaction rates of contaminant (Brow et al., 2013; Rahm & Richardson, 2008), 
pesticide (Monard et al., 2013), or nitrogen-species turnover (Rohe et al., 2020).

Due to the high analytical costs of molecular-biological analyses, highly spatially and temporally resolved meas-
urements of gene, transcript, or enzyme concentrations hardly exist to date. Process-based modeling provides 
a useful tool with which to bridge between sparse molecular-biological measurements and otherwise highly 
resolved physical and chemical parameters (e.g., measured using probes), to help validate our conceptual under-
standing of a system's biological, geochemical, and physical functioning at scales relevant for management. In 
parallel, such models can also shed light on how transcript and enzyme concentrations relate to reaction rates, 
and how different factors affect that relationship. A few modeling approaches have been developed that explicitly 
simulate the levels of transcripts or enzymes, and how they regulate reaction rates, thus, providing a mechanistic 
link between these variables. For example, Li et al. (2017b) modeled the production of enzymes for denitrification 
during the incubation of hyporheic-zone sediments using an energetic approach. Song et al. (2017) described the 
regulation of denitrification enzymes with a cybernetic approach. In the latter, reaction networks are optimized 
with respect to a metabolic goal such as maximizing the microbial growth rate (Ramkrishna & Song, 2019). 
Other models feature a mechanistic description of the regulatory chain, including the production of transcription 
factors triggered by signaling molecules, production of mRNA, and translation into enzymes (Bælum et al., 2013; 
Koutinas et al., 2011; Störiko et al., 2021). While these approaches provide novel descriptions of enzymatically 
regulated microbial reactions, there is a lack of studies that analyze how the transport processes that characterize 
most environmental systems modulate the distributions of functional enzymes.

The microbial nitrogen cycle provides an ideal test case for the development of new modeling approaches that 
integrate molecular-biological data because the enzymes catalyzing the relevant reaction steps, and the genes 
coding for them, are relatively well known (Simon & Klotz, 2013). Specific microorganisms use reactive-nitrogen 
compounds as substrates for redox reactions that fuel their energy metabolism, constituting the main attenu-
ation process for nitrogen contamination in environmental systems (Kuypers et  al.,  2018). Denitrification is 
the key reaction for the permanent removal of nitrogen species from the environment because it converts the 
reactive-nitrogen species nitrate into inert N2 gas rather than into another reactive-nitrogen species.

We have analyzed the relationship between denitrification rates and transcripts and enzymes in well-mixed 
systems before (Störiko et al., 2021), but in environmental applications, the reactions are always coupled to trans-
port. Thus, an integrated analysis of the coupled effects of reactions and transport is required to properly assess 
the applicability of molecular-biological data in more complex settings. The interface between surface waters and 
groundwater is a good example to study denitrification and its interaction with transport. Hydrologic variations 
induce dynamic flow regimes, providing an analog for a diverse set of environmental conditions. In addition, the 
interface is integral at modulating the turnover of nitrogen compounds because steep redox gradients (from oxic 
rivers to anoxic groundwater) and the availability of labile organic carbon as an electron donor, either in the river 
water or in the hyporheic and riparian zones, enhance microbial reactions (Krause et al., 2011, 2017).

In this modeling study, we analyze the expected relationships between functional-gene transcripts, enzymes, and 
genes and denitrification rates in generic surface-water/groundwater systems with contrasting flow dynamics. We 
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hypothesize that concentrations of transcripts or enzymes in the environment are not a good predictor of reaction 
rates because several factors may complicate the relationship. For example, enzyme levels can be disconnected 
from transcript levels due to their different half-lives, and substrate availability, in addition to enzyme levels, regu-
lates the rate of a microbial reaction pathway (Moran et al., 2013; Störiko et al., 2021). Moreover, a meta-analysis 
of experimental studies pointed out that transcript abundances were not correlated with biogeochemical processes 
and that it is, therefore, essential to investigate the factors controlling gene abundance, transcription, translation, 
and enzyme activity to better interpret the patterns of gene and transcript abundances in the environment with 
respect to ecosystem processes (Rocca et al., 2015).

In our analysis, we apply the current state of knowledge to explore the applicability of molecular-biological data 
sets as proxies for turnover rates in near-natural settings. By using an enzyme-based reactive-transport model to 
predict functional-gene transcripts, enzyme concentrations, and denitrification rates, we aim to compare whether 
predicted transcript and enzyme behavior indeed mirror that of reaction rates, and if not, answer the question of 
why these differ. We demonstrate the general approach and the associated challenges in the context of denitri-
fication at the river-groundwater interface. Within this example, which we deliberately keep generic, we chose 
scenarios that differ in potential substrate limitation and dynamics to show their effects on the transcript-rate rela-
tionship. While the specific relationships depend on the chosen scenarios and parameter values, we show, via a 
sensitivity analysis, that the identified patterns are generalizable and unravel factors that determine transcript-rate 
relations that are transferable to other microbially mediated biogeochemical transformations in environmental 
systems. Finally, by addressing the challenges related to the quantification of transcripts, enzymes, and reaction 
rates identified on the grounds of our model results, we provide guidance on how to perform studies that integrate 
field measurements and modeling, going forward.

2.  Methods
2.1.  Model Scenarios

We set up three generic model scenarios that represent different hydrological conditions at the river-groundwater 
interface (Figure 1), ranging from steady-state hydrology and biogeochemistry to pronounced diurnal cycles. 
None of the scenarios describe a specific site. Instead, they serve as idealized test cases. The differences in 
biogeochemical and hydrological conditions between the scenarios enabled us to evaluate their impact on simu-
lated transcript and enzyme concentrations and reaction rates. In all scenarios, we considered microbial aerobic 
respiration and denitrification. Both pathways were coupled to the oxidation of dissolved organic carbon (DOC), 
released via hydrolysis of particulate organic carbon (POC) in the aquifer matrix and present in the inflow-
ing  river water.

The first scenario simulated constant groundwater discharge, where nitrate-rich water from the aquifer discharged 
into the river (Figure 1a), a common situation in agricultural landscapes. In addition, we assumed that the reactive 
POC concentration was highest near the river and decreased with increasing distance away from the streambed. 
That is, we imposed a gradient in the electron donor availability that focused the denitrification activity near the 
river-aquifer interface. Such spatial patterns in reactive POC are commonly observed in river-groundwater systems 
where the fresh organic matter trapped in the sediments in direct vicinity of the river is typically considerably 
more labile than the older POC at greater distance within the aquifer (Krause et al., 2011; Stelzer et al., 2011). 
The formulation of the gradient is presented in the next section (see Equations 11 and 12).

In the second scenario, we simulated oxic river water continuously entering the aquifer (Figure 1b), mimicking 
a bank-filtration scenario that could be either induced by pumping or by the natural hydraulic gradient of the 
system. Oxygen concentrations in river water can be subject to strong daily fluctuations, reflecting the inter-
play between radiation-dependent photosynthesis, aerobic respiration, and gas exchange in the river (Hayashi 
et al., 2012; Kunz et al., 2017). We considered two subscenarios: In the first, the oxygen concentration in the 
river remained at a constant level of 8 mg L −1 (bank filtration with constant oxygen), whereas in the second 
the concentration sinusoidally fluctuated about the mean value, yielding dynamic redox conditions close to the 
river-groundwater interface (bank filtration with periodic oxygen). Dissolved oxygen levels in real rivers typically 
show diurnal fluctuations with amplitudes that can vary significantly because of variations in degree of shading, 
turbidity, nutrient availability, and water depth. The bank-filtration scenario with constant oxygen concentration 
thus represents the limiting case with a true steady state.
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In a third scenario, denoted bank storage, we considered a flow reversal, induced by dynamic river-stage fluctu-
ations, reflecting, for instance, hydropeaking (Sawyer et al., 2009) or tidal influences (Figure 1c). Close to the 
river-groundwater interface, the flow reversal caused alternating oxic and anoxic conditions. Although we apply 
the model to an idealized river-groundwater transitional environment, the general conclusions drawn from this 
particular setting should more broadly apply to microbially mediated reaction systems in open, natural porous 
environments.

2.2.  Governing Equations

2.2.1.  Advective-Dispersive-Reactive Transport

We described transport and reactions of dissolved compounds (nitrate, nitrite, oxygen, DOC) via the 
one-dimensional (1-D) advection-dispersion-reaction equation. The evolution of compound i's concentration ci in 
space (x) and time (t) is thus given by

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
+ 𝑣𝑣

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
−𝐷𝐷

𝜕𝜕2𝑐𝑐𝑖𝑖

𝜕𝜕𝜕𝜕2
= 𝑟𝑟

𝑖𝑖

net
,� (1)

where v [m s −1] is the average linear flow velocity, D [m 2 s −1] is the dispersion coefficient, and 𝐴𝐴 𝐴𝐴𝑖𝑖
net

 is the net 
reaction rate of compound i. We used the parametrization of Scheidegger (1974) for dispersion:

𝐷𝐷 = |𝑣𝑣|𝛼𝛼𝐿𝐿 +𝐷𝐷𝑒𝑒,� (2)

where αL [m] is the longitudinal dispersivity and De [m 2 s −1] denotes the pore-diffusion coefficient. We further 
assumed that flow is at quasi-steady state, in which v is uniform in space and reacts instantaneously to changes in 
boundary conditions. In the groundwater-discharge and bank-filtration scenarios, the velocity is constant in time, 

Figure 1.  Schematic of the three simulation scenarios and the corresponding boundary conditions. The thick arrow at the river boundary indicates the groundwater 
flow direction. The inset plots in panel (b) illustrate the oxygen concentration in the river water used for the fixed concentration boundary condition over time. The inset 
plot in panel (c) illustrates the advective velocity v as function of time.
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whereas in the bank-storage scenario, we approximated v as a sinusoidal function of time with mean velocity 𝐴𝐴 𝐴𝐴𝐴 
[m s −1], amplitude 𝐴𝐴 𝐴𝐴𝐴 [m s −1] and frequency fv [s −1]:

�(�) = �̄ + �̂ sin (2����)� (3)

In all simulations, we neglected transport of bacterial cells because the majority (>99% according to Griebler 
et  al.  (2002)) of active microorganisms in the subsurface are attached to sediments (Smith et  al.,  2018). 
Transcripts and enzymes were assumed to be confined to the interior of bacterial cells and thus to be  
immobile.

2.2.2.  Microbial Reactions

We used an enzyme-based model formulation of microbial denitrification (Störiko et  al.,  2021) that reflects 
the biological regulation of reaction rates by explicitly simulating concentrations of transcription factors, 
functional-gene transcripts, and enzymes. The reaction model describes both aerobic respiration and reduction 
of nitrate to N2 via 𝐴𝐴 NO2

− as a reactive intermediate. Denitrification is coupled to the oxidation of organic carbon, 
formally expressed as succinate, serving as an electron donor and carbon source for the facultative anaerobe 
Paracoccus denitrificans. Herein, we applied the parameters of Störiko et al. (2021) specific to P. denitrificans 
to simulate denitrification coupled to DOC oxidation (assuming that succinate acts as a generalized form of 
DOC) to the flow scenarios outlined in Figure 1. Despite the parameters being specific to a pure-culture batch 
experiment (Qu et al., 2015), which may not be fully representative for denitrification by the natural microbial 
community in riverbed sediments, they provide an opportunity with which to probe the thus far poorly charac-
terized behavior of transcription and enzyme regulation in natural subsurface-transport settings, relevant for 
biogeochemical laboratory and field investigations. In the following, we briefly summarize key model processes 
and refer the reader to the original publication for more detail.

The catabolic reactions were described by the following stoichiometric equations:

7NO−
3 + C4H6O4

����
⟶ 7NO−

2 + 4CO2 + 3H2O� (4)

14NO−
2 + 14H+ + 3C4H6O4

����
⟶ 7N2 + 12CO2 + 16H2O� (5)

7O2 + 2C4H6O4 ⟶ 8CO2 + 6H2O� (6)

We chose the nirS gene (rather than norB or nosZ) as the marker gene for the second denitrification step because 
nitrite but not NO or N2O accumulated in the lab experiments used for calibrating the model, indicating that 
nitrite reduction to NO was the rate-limiting step.

For simplicity, denitrification is the only nitrogen-cycling process considered in the model presented here. In 
natural subsurface environments, such as the river-groundwater system simulated here, the co-occurrence of 
ammonium and O2 could activate nitrification, which would then act as another pathway producing nitrite and 
nitrate. In the absence of O2, dissimilatory nitrate reduction to ammonium (DNRA) could compete with denitri-
fication for nitrite. While, in principle, the integration of these (and other) additional nitrogen-cycling processes 
in the model along similar lines as denitrification is possible, currently their parameterization would be seriously 
hindered by the absence of pertinent observational data.

Gene expression is controlled by the transcription factors FnrP, sensitive to oxygen levels, NarR, regulated 
by nitrate and nitrite, and NNR, stimulated in the presence of nitrite and absence of oxygen. Transcription 
of the narG gene, coding for nitrate reductase (NAR), is initiated in the presence of FnrP and NarR, whereas 
the transcription of nirS, coding for nitrite reductase (NIR), requires NNR. The concentrations of transcripts 
were assumed to be at quasi-steady state with the transcription factor concentrations. The NAR and NIR 
enzymes are produced in response to narG and nirS levels and decay following a first-order rate (Störiko 
et al., 2021).
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Denitrification rates are a function of the enzyme concentrations, a double Michaelis-Menten term for the limi-
tation of electron-donor (DOC) and electron-acceptor (nitrate, nitrite) concentrations and an oxygen inhibition 
term:

𝑟𝑟𝑁𝑁 = 𝑘𝑘
𝑗𝑗

max
𝐸𝐸𝑗𝑗

𝑐𝑐𝑁𝑁

𝐾𝐾𝑁𝑁 + 𝑐𝑐𝑁𝑁

𝑐𝑐DOC

𝐾𝐾DOC + 𝑐𝑐DOC

𝐼𝐼
𝑗𝑗

O2

𝑐𝑐O2
+ 𝐼𝐼

𝑗𝑗

O2

� (7)

Here, 𝐴𝐴 𝐴𝐴
𝑗𝑗

max
 [s −1] is the amount of substrate that the enzyme j (NAR or NIR) can maximally turn over per time (also 

called turnover number), Ej [mol L −1] is the concentration of enzyme j that catalyzes the reaction of substrate N 
(nitrate or nitrite). KN [mol L −1] and KDOC [mol L −1] are the half-saturation concentrations for nitrate/nitrite and 
DOC, respectively, and 𝐴𝐴 𝐴𝐴

𝑗𝑗

O2

 [mol L −1] is the oxygen inhibition constant for enzyme j.

Aerobic respiration was described by a standard double Michaelis-Menten formulation with the maximum 
cell-specific respiration rate 𝐴𝐴 𝐴𝐴

O2

max
 [mol cell −1 s −1] and biomass concentration B [cells L −1]:

𝑟𝑟O2
= 𝜈𝜈

O2

max
𝐵𝐵

𝑐𝑐O2

𝐾𝐾O2
+ 𝑐𝑐O2

𝑐𝑐DOC

𝐾𝐾DOC + 𝑐𝑐DOC

� (8)

To predict the dynamics of transcripts and enzymes under conditions similar to those found in natural environ-
ments, we modified and complemented the parts of the model that relate to DOC and biomass. Here, the model 
was expanded to include the release of DOC from POC in the aquifer matrix, and its consumption by both deni-
trification and aerobic respiration. The latter yielded a DOC consumption dependent on the electron-acceptor 
consumption rates (defined in Equations 7 and 8) and their stoichiometric coefficients in the metabolic reaction:

𝑟𝑟
𝑗𝑗

DOC
=

𝛾𝛾𝑖𝑖
𝐷𝐷𝐷𝐷𝐷𝐷

𝛾𝛾
𝑗𝑗

𝐴𝐴

𝑟𝑟
𝑗𝑗

𝐴𝐴� (9)

and

𝑟𝑟DOC =

∑

𝑗𝑗

𝑟𝑟
𝑗𝑗

DOC
,� (10)

where 𝐴𝐴 𝐴𝐴
𝑗𝑗

𝐴𝐴
 and 𝐴𝐴 𝐴𝐴

𝑗𝑗

𝐷𝐷𝐷𝐷𝐷𝐷
 are the stoichiometric coefficients of the electron acceptor and DOC in reaction j and 𝐴𝐴 𝐴𝐴

𝑗𝑗

𝐴𝐴
 is the 

corresponding electron-acceptor reaction rate. We modeled the release of DOC from the POC-containing aquifer 
matrix as a first-order mass transfer process (Gu et al., 2007; Kinzelbach et al., 1991; Knights et al., 2017), with 
the first-order coefficient 𝐴𝐴 𝐴𝐴DOC

release
 [1/s]:

𝑟𝑟release = 𝑘𝑘
DOC

release

(
𝑐𝑐

sat

DOC
− 𝑐𝑐DOC

)
� (11)

The DOC saturation concentration 𝐴𝐴 𝐴𝐴sat

DOC
 [mol L −1] depends on the POC content of the sediment, which tends 

to decrease with distance from the river (Marmonier et  al.,  1995; Stelzer et  al.,  2011). Following Knights 
et al. (2017), we therefore assumed an exponential profile of 𝐴𝐴 𝐴𝐴sat

DOC
 :

𝑐𝑐
sat

DOC
= 𝑐𝑐

sat,0

DOC
exp

(

−
𝑥𝑥

𝑙𝑙

)

,� (12)

where l [m] is the length scale parameter for the concentration decrease (Table 1).

In contrast to the original formulation, bacterial growth was parameterized as a function of the oxidation of 
organic carbon coupled to both oxygen and nitrogen oxide reduction. The synthesis of biomass, represented with 
the molecular formula C10H18O5N2, can formally be described by the reaction

3C4H6O4 + 2NH+
4 ⟶ C10H18O5N2 + 2CO2 + 3H2O + 2H+� (13)

𝐴𝐴 NH4

+ is assumed to be nonlimiting for microbial growth, and is not explicitly simulated. Equation 13 was then 
coupled to the energy-gaining reactions (Equations 4–6) to obtain the overall metabolic reaction. The stoichi-
ometric coefficients in the metabolic reaction depend on the number of catabolic formula reactions that must 
be completed to generate the energy required for one anabolic formula reaction (and thus produce one mole of 
biomass). In turn, this number is directly related to the growth yield Yi [cells (mol C) −1], which corresponds to the 
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Parameter Description Value Unit Reference

Transport parameters

  v Linear velocity a 10 –5 m s −1 b

 𝐴𝐴 𝐴𝐴𝐴  Mean velocity c −10 −6 m s −1 d

 𝐴𝐴 𝐴𝐴𝐴  Velocity amplitude c 10 –5 m s −1 d

  fv Velocity frequency c 1 d −1 e

  αL Longitudinal dispersivity 0.1 M f

  De Effective diffusion coefficient 3 × 10 8 m 2 s −1 g

Reaction parameters

 𝐴𝐴 𝐴𝐴
NO

−

3

max
  NAR turnover number 4.4 × 10 4 s −1 h

 𝐴𝐴 𝐴𝐴
NO

−

2

max
  NIR turnover number 2.9 × 10 2 s −1 h

 𝐴𝐴 𝐴𝐴NO
−

3
  𝐴𝐴 NO

−

3
 half-saturation constant 5 μM i

 𝐴𝐴 𝐴𝐴NO
−

2
  𝐴𝐴 NO

−

3
 half-saturation constant 5 μM i

  KDOC DOC half-saturation constant 40 μmol C L −1 j

 𝐴𝐴 𝐴𝐴NAR

O2

  O2 inhibition constant for NAR 1 μM h

 𝐴𝐴 𝐴𝐴NIR

O2

  O2 inhibition constant for NIR 340 nM h

 𝐴𝐴 𝐴𝐴
O2

max
  Maximum cell-specific O2 oxidation rate 6.4 × 10 −19 mol cell −1 s −1 h

 𝐴𝐴 𝐴𝐴O2
  O2 half-saturation constant 31 μM h

 𝐴𝐴 𝐴𝐴DOC

release
  DOC release rate constant 0.2 d −1 k

 𝐴𝐴 𝐴𝐴
sat,0

DOC
  Maximum DOC saturation concentration 20.8 mmol C L −1 l

  L length scale for decrease in sediment POC 0.2 m m

 𝐴𝐴 𝐴𝐴
NO

−

3

max
  Maximum growth yield with 𝐴𝐴 NO3

− 2.6 × 10 13 cells (mol C) −1 n

 𝐴𝐴 𝐴𝐴
NO

−

2

max
  Maximum growth yield with 𝐴𝐴 NO2

− 1.6 × 10 13 cells (mol C) −1 n

 𝐴𝐴 𝐴𝐴
O2

max
  Maximum growth yield with O2 7.7 × 10 13 cells (mol C) −1 h, o

  Bmax Carrying capacity 3.3 × 10 11 cells L −1 p

  kdec Biomass decay constant 10 –7 s −1 q

Boundary conditions

 𝐴𝐴 𝐴𝐴in

O2

  O2 concentration in the river r 250 μM s

 𝐴𝐴 𝑐𝑐O2
  Mean O2 concentration in the river t 250 μM s

 𝐴𝐴 𝐴𝐴𝐴O2
  Amplitude of oxygen fluctuations t 94 μM u

 𝐴𝐴 𝐴𝐴river

NO
−

3

  𝐴𝐴 NO
−

3
 concentration in the river 161 μM v

 𝐴𝐴 𝐴𝐴GW

NO
−

3

  𝐴𝐴 NO
−

3
 concentration in groundwater 484 μM v

 𝐴𝐴 𝐴𝐴river

DOC
  DOC concentration in the river 167 μmol C L −1 w

 aGroundwater-discharge and bank-filtration scenarios.  bSee Bertin and Bourg (1994) for bank filtration and Kennedy et al. (2009) for groundwater exfiltration.  cBank-
storage scenario.  dGerecht et al. (2011) and Liu et al. (2017).  eDiurnal cycles.  fGelhar et al. (1992).  gBased on the approximation De = Dθ where D = 10 −9 m 2 s −1 is 
the molecular diffusion coefficient and θ = 0.3 is porosity.  hMedian of the parameters in Störiko et al. (2021).  iHassan et al. (2016).  jFixed to a value within reported 
ranges (Kinzelbach et al., 1991; Sanz-Prat et al., 2016).  kFixed to a value within reported ranges (Gu et al., 2007; Kinzelbach et al., 1991; Sanz-Prat et al., 2016; 
Sawyer, 2015).  lFixed to a value within reported ranges (Gu et al., 2007; Kinzelbach et al., 1991; Sawyer, 2015).  mKnights et al. (2017).  nFixed to a value within reported 
ranges (Hassan et al., 2014, 2016).  oValue corrected for the incorporation of organic carbon into biomass, which was not considered in Störiko et al. (2021).  pFixed 
to a value within reported ranges (Ding, 2010).  qFixed to a value within reported ranges (Ding, 2010; Kinzelbach et al., 1991).  rGroundwater-discharge, bank-storage, 
and bank-filtration scenarios with constant oxygen.  sLiu et al. (2017).  tBank-filtration scenario with fluctuating oxygen.  uKunz et al. (2017).  vGu et al. (2007) and Liu 
et al. (2017).  wHayashi et al. (2012), Bol et al. (2015), and Thurman (1985).

Table 1 
Parameter Values Used in the Simulation
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amount of biomass that is produced per mole of organic carbon consumed. The growth yield relates the growth 
rate associated to the electron acceptor i to the corresponding DOC-consumption rate:

𝑟𝑟
𝑖𝑖

growth
= 𝑌𝑌𝑖𝑖𝑟𝑟

𝑖𝑖

DOC� (14)

Furthermore, we applied a logistic term to the biomass-growth expression (not to the substrate consumption 
rates) to limit biomass growth to a set maximum density (e.g., Grösbacher et  al.,  2018). This is in line with 
observations that biomass densities in porous media reach a “carrying capacity,” even under nongrowth-limiting 
conditions (Ding, 2010; Mellage et al., 2015). The logistic growth term can be interpreted as a reduction in the 
maximum growth yield by the occupancy level:

𝑌𝑌𝑖𝑖 = 𝑌𝑌
𝑖𝑖

max

(

1 −
𝐵𝐵

𝐵𝐵max

)

,� (15)

where 𝐴𝐴 𝐴𝐴 𝑖𝑖
max

 is the maximum growth yield and Bmax is the carrying capacity. This implies that the growth yield and 
therefore the stoichiometric coefficients of the metabolic reactions depend on the biomass concentration. The 
model also accounts for biomass decay via a first-order term with the decay coefficient kdec [s −1]:

𝑟𝑟decay = 𝑘𝑘dec𝐵𝐵𝐵� (16)

leading to the build-up of dead biomass, which, in turn, decays in a first-order process with constant kmin, releas-
ing DOC via mineralization.

2.2.3.  Boundary Conditions

Fixed concentration (Dirichlet) boundary conditions were applied at the river and groundwater-inflow bounda-
ries. The river water was assumed to be saturated with respect to oxygen, and contained 10 mg L −1 of nitrate and 
2 mg L −1 of DOC. These concentrations correspond to anthropogenically influenced but not excessively eutrophic 
rivers. The inflowing groundwater was assumed to be anoxic but rich in nitrate (30 mg L −1) and depleted in DOC. 
The DOC concentrations were chosen based on meta-studies showing that DOC levels in groundwater are gener-
ally low whereas river water DOC concentrations tend to be higher (McDonough et al., 2020; Thurman, 1985). 
In the bank-filtration scenario with fluctuating oxygen levels, the oxygen concentration in the river was described 
by a sinusoidal function with amplitude 𝐴𝐴 𝐴𝐴𝐴O2

 [mol L −1], frequency 𝐴𝐴 𝐴𝐴O2
= 1 day −1 and mean value 𝐴𝐴 𝑐𝑐O2

 [mol L −1]:

𝑐𝑐
in

O2
(𝑡𝑡) = 𝑐𝑐O2

sin
(
2𝜋𝜋𝜋𝜋O2

𝑡𝑡
)
+ 𝑐𝑐O2� (17)

All other concentrations at the inflow boundary were constant over time, with values given in Table 1. At the 
outflow boundary, we assumed zero dispersive flux.

2.3.  Simulation Parameters

Parameters related to transcript and enzyme concentrations, denitrification and aerobic respiration were obtained 
from our previous study (Störiko et al., 2021) in which we calibrated the enzyme-based model with the laboratory 
data of Qu et al. (2015). In the simulations presented here, the median values of the parameter distributions in 
Störiko et al. (2021) were imposed (Table 1). Values of new parameters, i.e., those that were not included in the 
previous model (transport and DOC-related parameters) were chosen based on literature values.

2.4.  Sensitivity Analysis

We conducted a local sensitivity analysis that assessed the impact of reaction parameters on simulation results 
and, in a second step, identified influential reaction parameters by computing the principal components of param-
eter sensitivities. After determining the most sensitive parameter values, we analyzed their influence on our 
modeling results by model runs in which the most sensitive parameters were modified.

Local parameter sensitivities were normalized to the reference parameter values such that they correspond to 
the sensitivities of the outputs with respect to the log parameters. The normalized sensitivity sij of output fi with 
respect to parameter pj is given by
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𝑠𝑠𝑖𝑖𝑖𝑖 =
𝜕𝜕𝜕𝜕𝑖𝑖 (𝐩𝐩)

𝜕𝜕𝜕𝜕𝑗𝑗
𝑝𝑝𝑗𝑗 =

𝜕𝜕𝜕𝜕𝑖𝑖 (exp𝐪𝐪)

𝜕𝜕𝜕𝜕𝑗𝑗
� (18)

where qj = ln(pj). We approximated the sensitivities via direct numerical differentiation

𝑠𝑠𝑖𝑖𝑖𝑖 ≈
Δ𝑗𝑗𝑓𝑓𝑖𝑖

Δ𝑝𝑝𝑗𝑗
𝑝𝑝𝑗𝑗 ≈

𝑓𝑓𝑖𝑖 (exp (𝐪𝐪 + Δ𝑗𝑗𝐪𝐪)) − 𝑓𝑓𝑖𝑖(exp𝐪𝐪)

Δ𝑞𝑞𝑗𝑗
� (19)

where entry k of the vector Δjq is defined by

(Δ𝑗𝑗𝑞𝑞)𝑘𝑘 =

⎧
⎪
⎨
⎪
⎩

Δ𝑞𝑞𝑗𝑗 if 𝑘𝑘 = 𝑗𝑗𝑗

0 otherwise.

� (20)

We define

Δ𝑞𝑞𝑗𝑗 = log(1 + 𝛼𝛼),� (21)

where α is a small relative perturbation of the parameters that we chose to be 1%.

We computed sensitivities for all concentrations and the denitrification rates. Sensitivities were normalized by 
the spatial integral of each respective parameter, enabling a cross-comparison of parameter sensitivities with 
differing magnitudes.

𝑠𝑠
norm
𝑖𝑖𝑖𝑖

=
𝑠𝑠𝑖𝑖𝑖𝑖

∫
𝐿𝐿

0
𝑓𝑓𝑖𝑖(𝑥𝑥)d𝑥𝑥

,� (22)

where L = 4 m is the length of the domain.

For each scenario, we conducted a principal component analysis (PCA) of the sensitivity matrix (of size (nspecies 
nx) × nparameters in the steady-state scenarios and (nspecies nx nt) × nparameters in the time-variable bank-storage scenario) 
to identify parameter combinations that explain the (co-)variance of sensitivities in space and across concentra-
tions of different species.

2.5.  Numerical Methods

We used the cell-centered finite volume method to discretize the reactive-transport Equation 1 in space, applying 
a first-order upwind scheme for advection. The domain had a total length of 4 m and was divided into 200 cells 
with a uniform spacing of 2 cm. The resulting system of ordinary differential equations (ODEs) was solved with 
the backwards differentiation formula (BDF) as implemented in the CVODES solver in the SUNDIALS library 
(Hindmarsh et al., 2005). All code was written in Python 3.8, and the package Sunode (Seyboldt, 2021) that wraps 
CVODES was used for solving the ODEs. The simulations were run until reaching steady state (in the scenarios 
with constant boundary conditions) or dynamic steady state, that is, self-repeating time cycles in the scenarios 
with periodic boundary conditions.

3.  Results
3.1.  Zonation of Redox Species and Denitrifying Bacteria

The three model scenarios result in distinct spatial distributions of nitrogen species, transcripts, enzymes, biomass, 
oxygen, and DOC (Figure 2, rows a–f). In the following, we present and discuss the predicted steady-state concen-
trations scenario-wise in detail: groundwater discharge (Figure 2, left column), bank filtration (Figure 2, center 
column), and bank storage (Figure 2, right column).

3.1.1.  Scenario Groundwater Discharge

Nitrate enters the domain with inflowing groundwater, and remains at high concentrations (i.e., close to the 
inflow value) over the first 2 m of the domain, where the aquifer matrix contains only little POC (electron donor 
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limitation). At about 1.5 m from the river, nitrate begins to drop and is completely depleted at a distance of 0.25 m 
from the sediment-river interface. Nitrite concentrations increase, mirroring the drop in nitrate, until reaching a 
peak value of 340 μmol L −1 at 0.3 m and then decrease toward the river. Our model-predicted nitrite concen-
trations are higher than typically observed in natural sediments. Profiles of pore-water nitrite in several studies 
indicate that the concentrations are usually below 30 μmol L −1 (Akbarzadeh et al., 2018; Harvey et al., 2013; Stief 
et al., 2002). The parameter set used here is based on laboratory batch experiments with a single strain where 
strong nitrite accumulation was observed (Störiko et al., 2021). Thus, the high model-derived nitrite concentra-
tions are likely a feature specific for the microbial strain used in the experiments.

Figure 2.  Spatial distributions of nitrogen compounds (a), transcript (b) and enzyme (c) concentrations, biomass (d), oxygen (e), and dissolved organic carbon (DOC) 
(f) in the different scenarios. The steady-state solution in bank-filtration scenario with constant oxygen input is indicated by a dashed line. For the periodic solution in 
bank-filtration scenario with periodic oxygen input and the bank-storage scenario, the minimum and maximum values over time are indicated by the shaded area, the 
mean value is plotted as a solid line. Concentrations between 2.5 m and the groundwater-side domain boundary at 4 m are omitted because they are almost constant.
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The concentration of DOC drops from 280 μmol C L −1 at the sediment-river interface to below 40 nmol C L −1 
within 30 cm, driven by the prescribed exponentially decreasing content of POC in the sediment (the only source 
of DOC) away from the river boundary. The zones of nitrate and nitrite consumption coincide with elevated 
absolute concentrations of narG and nirS transcripts (i.e., in units of transcripts L −1) and NAR/NIR enzymes 
(Figure 2c, left column). In contrast, cell-specific narG transcript and NAR enzyme concentrations are high in 
the DOC-limited section of the domain, despite the absence of denitrification (Figure S1 in Supporting Informa-
tion S1). Nitrate triggers transcription but the low availability of the electron donor (DOC) yields low biomass 
concentrations, strongly limiting denitrification. High biomass concentrations are only reached close to the river, 
where the denitrification activity is the highest.

3.1.2.  Scenario Bank Filtration

The center column in Figure 2 shows the dynamics of the two bank-filtration scenarios with periodic and constant 
oxygen concentrations in the inflow. In the periodic bank-filtration scenario, concentrations do not reach a steady 
state but concentration time series converge to repeating diurnal cycles (often denoted dynamic steady state).

The model predicts a zonation of the redox processes starting with aerobic respiration at the inflow boundary, 
where oxygen-rich river water infiltrates. Nitrate, present in the incoming water, is subsequently reduced to 
nitrite and N2. The fluctuating oxygen concentrations in the river (inflow) in the bank-filtration scenario leads to 
a periodic shift in the location of the denitrification zone, which oscillates back and forth over 0.1 m about 0.2 m, 
as indicated by the position of the nitrite peak. At a given location, nitrate and nitrite concentrations fluctuate 
considerably over the course of the day. For example, nitrate concentrations at 0.2 m vary between 60 μmol L −1 
and total depletion. Nitrite is reduced to low, but nonzero “residual” concentrations (20 μmol L −1). The low 
concentration front subsequently penetrates deep into the aquifer.

Biomass concentrations are very stable over time in the scenario with a fluctuating inflow oxygen concentration 
and hardly differ from the scenario with constant oxygen input. Cell doubling times in the simulations range from 
a few hours to several days, which is in accordance with literature values (Mailloux & Fuller, 2003). Similarly, 
biomass decay is slow (with a half-life of about 80 days, see Table 1), such that the biomass does not respond 
to daily cycles of substrate availability. Biomass concentrations are highest at the river-inflow boundary where 
neither oxygen nor DOC are limiting and cell densities reach the maximum capacity Bmax. At locations where 
oxygen and nitrate are consumed, the remaining low nitrite concentrations can only sustain the survival of a small 
biomass pool (starting at 1.3 m from the river boundary), which in turn reduces the denitrification rate to values 
close to zero.

Transcripts of the narG gene are abundant in the region where nitrate is available and nirS transcripts co-occur 
with nitrite. In the scenario with dynamic boundary conditions, the transcript concentrations of denitrification 
genes exhibit a distinct diurnal cycle with an amplitude of up to 70% (narG) and 100% (nirS) of the mean value, 
in some parts of the domain. Concentrations of NAR and NIR enzymes follow the patterns of narG and nirS 
transcripts, but are much more dampened, with amplitudes that are 1 order of magnitude smaller than those 
of the corresponding transcripts. This difference stems from the different time scales of production and decay 
of  transcript and enzymes. While transcripts usually decay within a few minutes (Bernstein et al., 2002; Härtig 
& Zumft, 1999) and are therefore assumed to be at quasi-steady state in our simulations, enzyme half-lives range 
on the order of several hours to days (Maier et al., 2011).

Because of the high DOC concentration (0.1 mmol L −1) imposed at the river boundary, the river water serves 
as a DOC source. The DOC concentration, however, drops sharply in the aquifer due to the high microbial 
electron-donor demand, driven by the presence of oxygen and nitrate. Outside of the zone of denitrification, 
the DOC concentration rises toward the groundwater boundary, driven by the hydrolysis of POC, reaching a 
maximum at about 1 m. The decreasing POC content away from the river yields a final gradual decline in DOC 
approaching the groundwater boundary.

3.1.3.  Scenario Bank Storage

In the bank-storage scenario, the alternating inflow of nitrate from the aquifer and from the river leads to the 
formation of two distinct zones of denitrification (Figure 2, right column). The first one is located directly at the 
river-aquifer interface. It is active only at the times when flow is from the river into the aquifer, hence supplying 
nitrate. We estimated the maximum penetration depth of the river water by integrating the positive part of the 
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velocity function over one period. Via advection only, the water penetrates 0.23 m into the aquifer. Oxygen and 
nitrate reach that point only at very low concentrations because they are rapidly depleted after entering the aquifer.

The second zone of denitrification at about 1.1 m is fed by nitrate from the incoming groundwater. At the aquifer 
boundary, denitrification is mainly limited by carbon availability, such that nitrate concentrations remain at high 
values until the distance to the river is x ≈ 1.5 m, after which they sharply decrease. Due to the flow reversal, 
this denitrification zone shifts between 1 m and 1.35 m over time. The response of concentrations to the dynamic 
flow is generally similar to the bank-filtration scenario where the dynamics are caused by fluctuating oxygen 
concentrations. Both solute concentrations and mRNA strongly fluctuate over time while enzyme concentrations 
and biomass are stable because of their longer time scales of production and decay.

Compared to the other two scenarios, the DOC concentration in the bank-storage scenario is high in the 1.2 m 
adjacent to the river. On average, the magnitude of the advective velocity is smaller in this scenario. This reduces 
the incoming mass flux of electron acceptors (nitrate and oxygen) in comparison to the other scenarios as the 
electron-acceptor concentrations remain the same. Additionally, more organic carbon can be released into each 
water parcel due to the longer residence time. Both effects lead to the overall higher DOC concentration. This 
highlights that the flow velocity is an important control on the carbon availability and thus microbial reaction 
kinetics in groundwater.

3.2.  Impact of Model-Parameter Values

Our sensitivity analysis identified influential parameters via a PCA of local parameter sensitivities. In all scenar-
ios, the first principal component explains nearly all of the variance in the parameter sensitivities (groundwater 
discharge: 97.7%, bank filtration: 91.3%, bank storage: 85%, see Figure S5 in Supporting Information S1). Only 
a few parameters contribute to the first component in all scenarios: The concentrations of nitrate in the inflowing 
groundwater and river water, the concentrations of oxygen and DOC in the river water, as well as the parameters 
related to carbon release from the matrix (see Figure S6 in Supporting Information S1).

Based on the PCA, we created an alternative parameter set by perturbing the reference parameters according to 
the weight wj given to each parameter j in the first principal component (Figure S6 in Supporting Information S1). 
The perturbed parameter 𝐴𝐴 𝐴𝐴∗

𝑗𝑗
 is given by

𝑝𝑝
∗

𝑗𝑗
= 𝑝𝑝𝑗𝑗 exp (ℎ𝑤𝑤𝑗𝑗) ,� (23)

where h is a scaling factor.

A negative value of h produces a parameter set that increases the carbon availability in the system compared to the 
reference parameters and decreases the nitrate input into the system. Since the reactive system is strongly limited 
by carbon availability when using the reference parameter values, we chose to perturb the parameters toward a 
less carbon-limited system. We computed the concentration distributions and reaction rates with the alternative 
parameter set using h = −2 for the groundwater-discharge scenario. The perturbed parameters range between 0.2 
and 2.5 times the reference parameters.

The spatial distributions of simulated concentrations using the alternative parameter sets are shown in Figure S7 
in Supporting Information S1. Spatial and temporal patterns are generally similar to the ones in the simulations 
based on the reference parameters (Figure 2), but the perturbed parameters lead to a shift in the reaction zone. For 
example, denitrification in the groundwater-discharge scenario directly starts when the groundwater enters the 
domain. Transcript and enzyme concentrations are the highest between x = 4 m and x = 2.5 m.

3.3.  Relationship Between Transcripts/Enzymes and Reaction Rates

Based on our simulation results, we computed denitrification rates to explore how transcript and enzyme concen-
trations relate to the denitrification activity in the different scenarios (see Figure 3 for transcripts and Figure S4 
in Supporting Information S1 for enzymes).
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3.3.1.  Scenario Groundwater Discharge

In the groundwater-discharge scenario, the system reaches a steady state where the enzyme concentrations are 
proportional to transcript concentrations. Therefore, it is sufficient to analyze the relationship between reaction 
rates and transcripts or enzymes. For simplicity, we compare rates to transcripts in Figures 3a and 3b. The rela-
tionships between rates and transcripts are nonlinear and the correlation is positive in some parts of the domain, 
but negative or zero in other parts. At the groundwater-inflow boundary (dark blue colors), both narG transcript 
concentrations and 𝐴𝐴 NO3

− reduction rates are close to zero and increase toward the river (lighter colors). However, 
when the rates reach 10 nmol L −1 s −1 at 0.39 m, the trend reverses, i.e., where transcript levels decrease reaction 
rates increase and reach their maximum at 0.27 m. At the points closest to the river boundary, both the nitrate 
reduction rate and narG transcript levels return to zero, closing the hysteresis loop.

The concentrations of nirS transcripts rise between 1 and 0.3 m (Figure 3b). However, their increase does not 
correspond to an increase in reaction rates, suggesting that under certain conditions, transcript concentrations, 
and reaction rates may be completely decoupled. One may intuitively expect that increasing reaction rates would 
be accompanied by increasing transcript concentrations. However, the rise of reaction rates between 0.3 and 
0.17 m is concomitant with the opposite, a decrease in transcript concentrations. A positive correlation between 
nirS transcript concentrations and reaction rates is only observed in the 15 cm closest to the river. The strong 
nonlinearity of the transcript-rate relationships (and partly negative correlations) can be explained by the limited 
availability of DOC over most of the domain (which in this scenario originates from the river and hydrolysis of 
POC). The latter limits denitrification, whereas transcript production is still triggered by the presence of nitrate 
and nitrite, irrespective of electron-donor availability.

3.3.2.  Scenario Bank Filtration

Figures  4a and  4c show the relationship between transcript concentrations and denitrification rates for the 
bank-filtration scenario with a fluctuating oxygen inflow concentration. Reaction rates and transcript concen-
trations (and, to a smaller extent, also enzyme concentrations) both fluctuate over the course of the day, but the 
signals have a phase shift. This leads to a hysteresis in the relationship between transcript concentrations and 
reaction rates, with a different hysteretic pattern at different locations. Overall, transcript concentrations and 
denitrification rates do not show a clear (linear) relationship. These results suggest that it may not be possible to 

Figure 3.  Relationships between the concentrations of functional-gene transcripts narG (upper row) and nirS (lower row) with the denitrification rates in the 
different scenarios. In the scenarios, where concentrations do not reach constant steady-state values but exhibit repeating diurnal cycles, daily averages of rates, and 
concentrations are shown. The color indicates the spatial coordinate with dark blue corresponding to the groundwater-inflow boundary and light green corresponding to 
the river boundary. Note that the axis scales are different for the groundwater-discharge scenario.
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infer the denitrification activity at a given time and location from determining the transcript concentration at a 
single time point.

The relationship between enzyme concentrations and denitrification rates (Figures  4b and  4d) is also highly 
nonlinear and location-specific. However, it exhibits less pronounced hysteresis loops because, in contrast to 
transcripts, the characteristic times for enzyme production and decay are longer than the time scale of the fluc-
tuations. As a consequence, in dynamic steady state with diurnal cycles, the enzyme concentrations remain 
almost constant throughout the day, whereas the reaction rates fluctuate in response to the periodic concentration 
changes of aqueous substrates. Thus, enzyme distributions could, under the right conditions, be used as proxies 
for delineating the average denitrification activity.

For the mitigation of nitrate contamination in groundwater daily averages of reaction rates are of greater inter-
est than their diurnal fluctuations. To investigate whether repeated transcript measurements could be used as 
indicators of denitrification activity, we compare the daily averages of the denitrification rates and the transcript 
concentrations in Figures 3c and 3d. As can be seen, upon averaging more distinct positive correlations emerge, 
although they are still nonunique, particularly in the case of nirS transcripts, where the same transcript concentra-
tion can be associated with rates that differ by more than 1 order of magnitude. Different combinations of nitrite, 
oxygen, and DOC concentrations can lead to the same transcript concentration, while the factors describing 
substrate limitation and oxygen inhibition affecting denitrification rates differ. The relationship looks very similar 
for transcripts and enzymes because daily averages of transcript concentrations are almost proportional to enzyme 
concentrations (see Figure S2 in Supporting Information S1).

The relationship between steady-state transcript concentrations and denitrification rates for the bank-filtration 
scenario with constant oxygen input (Figures 3e and 3f) slightly differs from the bank-filtration scenario with 
periodic oxygen concentrations (Figures 3c and 3d), but essentially mirrors its characteristic features. For exam-
ple, both bank-filtration scenarios yield a positive, but nonunique, relationship of narG transcripts with the rates, 
whereas nirS transcripts exhibit a strong hysteretic behavior. It is to be expected that the relationships are gener-
ally similar for the steady-state solution and daily averages of the periodic solution as the simulated concentration 

Figure 4.  Relationships of transcript (left column) and enzyme (right column) concentrations with denitrification rates for the bank-filtration scenario where river 
water with fluctuating oxygen concentrations infiltrates groundwater. Colors indicate the time point within the diurnal cycle. Every point x in space shows a distinct 
pattern (with one “loop” corresponding to one point in space), and many of them are nonlinear and hysteretic in time.
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profiles are nearly the same in both cases (Figure 2, center), but nonlinearity in the rate laws can lead to the 
observed differences.

3.3.3.  Scenario Bank Storage

Similar to the bank-filtration scenario with periodic oxygen concentration in the inflow, the periodic reversal 
of flow in the bank-storage scenario results in complex relationships between the transcript or enzyme concen-
trations and the denitrification rates (Figure S3 in Supporting Information  S1). However, in contrast to the 
bank-filtration scenario with periodic oxygen concentration, daily averages of transcript concentrations and reac-
tion rates (Figures 3g and 3h) show two clearly distinct patterns, corresponding to the two denitrification zones, 
and resembling to some extent the patterns of the pure groundwater-discharge and pure bank-filtration scenarios. 
In both zones, the relationships are nonlinear and nonunique, analogous to all other scenarios. This is most 
evident for the narG transcripts (shown in Figure 3d).

4.  Discussion
4.1.  Comparison of the Transcript-Rate Relationship Between Scenarios

We compared the relationship between transcript concentrations and reaction rates between the different 
scenarios to evaluate how biogeochemical and hydrological conditions affect the relationship according to the 
three scenarios. Transcript concentrations and reactions rates differed between the scenarios. For example, we 
observed that narG transcript concentrations are highest in the groundwater-discharge scenario, driven by the 
higher nitrate concentrations in the groundwater in comparison to the river water in the bank-filtration scenarios. 
In the bank-storage scenario, transcript concentrations are lower because microorganisms receive nitrate input 
only half of the time. While the exact absolute differences (e.g., in the slope or exact shape of the curve, or in 
magnitudes of reaction rates and transcript concentrations) are dependent on the choice of parameters and are 
hence site-specific, several general trends emerge.

Two patterns are common to all scenarios; they arise from the general system behavior and corresponding model 
structure, not from individual parameter values. First, we observe that in both dynamic scenarios time-shifts 
between the dynamics of transcripts and reactions yield a complex relationship between transcript concentrations 
and reaction rates. Averaging transcript concentrations over 1 day significantly simplifies the relationship in both 
cases (compare Figures 4 and 3). Even though this temporal uncoupling also depends on the values of reaction 
parameters that dictate the response times of transcripts and enzymes, the uncertainty of these parameters is 
relatively small in comparison to other parameters such as the half-saturation constants, where literature values 
range over several orders of magnitude (García-Ruiz et  al.,  1998). Typical time scales for the response time 
of transcripts and enzymes are on the order of minutes and hours, respectively (Bernstein et al., 2002; Maier 
et al., 2011). The second common pattern is that the relationship between (average) transcript concentrations and 
reaction rates is strongly nonlinear and nonunique. This is the case because, at least in our model, transcription 
also occurs under nonideal conditions, i.e., when reaction rates are limited by substrate availability or oxygen 
inhibition. Different combinations of limiting and inhibiting conditions at different locations produce the spatial 
hysteresis patterns.

Figure S8 in Supporting Information S1 shows the relationships between transcript concentrations and reaction 
rates obtained with the alternative parameter sets that we generated by perturbing sensitive parameters. Even 
though the exact shape of the relationship differs from the one obtained with the reference parameter values 
(compare Figure  3) both cases share the same qualitative features. The relationship between transcripts and 
denitrification rates is strongly nonlinear and hysteretic in space. The similar trends obtained after perturbing 
sensitive model parameters in comparison to the original parameter set provides confidence in the robustness of 
our parameters and the transferability of our model-based findings.

4.2.  Unraveling the Relationship Between Transcript Concentrations and Reaction Rates

The relationships between transcript concentrations and denitrification reaction rates, presented in Section 3.3, 
clearly show that transcript concentrations are not a reliable predictor of denitrification rates, even in cases where 
these are proportional to enzyme concentrations. Deviations from an expected linear relationship arise because 
denitrification rates are not only limited by enzyme concentrations (which, in turn, are ultimately determined by 
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the nitrogen species triggering transcription), but also by substrate availability (in our study DOC and nitrogen 
species) and oxygen inhibition. In the following, we refer to the denitrification rates under in situ conditions that 
are limited by substrate availability and oxygen inhibition as the effective rates. In the model, we can eliminate 
these limitations by dividing the rate by the corresponding Michaelis-Menten or inhibition term, resulting in what 
we denote as potential denitrification rates. We performed this analysis successively with an increasing number 
of limitation terms, yielding a series of different potential rates. When these potential rates are compared to the 
transcript concentrations, clear positive relationships emerge (Figure 5).

In the groundwater-discharge scenario (Figures 5a and 5c), removing the DOC limitation yields a nearly linear 
relationship, highlighting that carbon limitation is the most important rate-limiting factor in this scenario. The 
remaining nonlinearity of narG transcripts at low reaction rates can be explained by the presence of nitrite near 
the river boundary, triggering narG transcription even though nitrate levels and thus nitrate-removal rates are low.

The current model assumes that transcription of the denitrification genes is independent of DOC availability. 
While this approach is consistent with the current understanding of the targeted regulation of denitrification 
genes by nitrogen species and oxygen (Gaimster et al., 2018), our model formulation neglects unspecific mecha-
nisms of gene regulation that act to shut down microbial metabolism at low carbon availability, thereby affecting 
denitrification genes. Accounting for transcription downregulation of the denitrification genes under carbon limi-
tation in our model formulation would likely yield relationships between transcripts and reaction rates closer to 
the potential rates without DOC limitation (Figure 5). Nonlinear effects of DOC limitation on the reaction rates 
would persist. However, the absolute deviation from a linear relationship would be negligible when transcript 
concentrations and, therefore, potential rates are close to zero. Under extreme electron-donor limitation, our 
model predicts very low absolute transcript concentrations even without explicitly accounting for DOC-controlled 
downregulation of transcription because DOC-limitation restricts microbial growth, leading to low biomass and, 
thereby, low transcript concentrations. However, if there is evidence for a large abundance of inactive denitrifiers, 
the model might need to distinguish between the active and an inactive microbial pool, in which transcription is 
shut off (e.g., Chavez Rodriguez et al., 2020).

Figure 5.  Relationship between the concentrations of functional-gene transcripts narG (upper row) and nirS (lower row) with potential denitrification rates after 
removing the effects of O2 inhibition, dissolved organic carbon (DOC) limitation, nitrogen substrate limitation, or combinations thereof. (Note: Scenarios where 
concentrations do not reach a steady state are omitted because correcting for the rate limitations based on time-averaged concentrations is not a valid approach).
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In the case of bank filtration with a constant oxygen concentration (Figures 5b and 5d), accounting for the DOC 
limitation term alone does not remove the nonlinearity because oxygen inhibition also exerts an important control 
on denitrification. Eliminating both DOC limitation and oxygen inhibition leads to an approximately linear rela-
tionship between transcripts and potential rates. However, the potential rates are orders of magnitude larger than 
the effective (substrate-limited and inhibited) reaction rates.

In the scenarios in which concentrations undergo periodic fluctuations in time (bank filtration with period oxygen 
in the inflow and bank storage), applying the correction terms would only be permissible for the time-variable 
rates and concentrations, but not for the averages. This is because the correction terms are nonlinear and the 
concentrations involved are strongly correlated in time. Under such conditions, the product of their time-averaged 
values is not the same as the time average of their product. Hence, applying corrections to the time-averaged rates 
to obtain a more unique relationship of the time-averaged transcript concentrations is not permissible. Similar 
effects have been described for spatial correlations of degrader communities and substrate concentrations in 
carbon cycling models. Chakrawal et al. (2020) used scale-transition theory to analyze how spatial correlations 
among state variables or between state variables and kinetic parameters affect upscaled reaction rates. In theory, 
the same method could be applied to obtain time-averaged rates based on average concentrations. However, it 
requires knowing the covariance terms of substrate and enzyme concentrations in time, which is not possible in 
practice because highly time-resolved measurements of transcript or substrate (DOC, nitrogen species) concen-
trations in groundwater are not available in the first place.

4.3.  Capturing Transcript Signatures in the Field

Our simulations show that transcripts of denitrification genes respond to short-term (diurnal) fluctuations 
of electron-acceptor concentrations, yielding highly temporally variable transcript concentrations at the 
river-groundwater interface. In such a dynamic system, analyses based on transcripts of functional genes would 
strongly depend on the time point of sampling. Transcripts exhibiting a low, even undetectable, abundance at a 
given time, may be present at much higher concentrations at other times of the day, and vice versa. Hence, inter-
pretations on overall system behavior based on transcript concentrations obtained from sporadic sampling events, 
could be misleading in highly dynamic biogeochemical environments such as those found at the river-groundwater 
interface.

Based on our modeling results, we simulated transcript measurements over time and space to illustrate, how 
different sampling frequencies and times can affect the outcome captured by measurement campaigns. Figure 6a 
shows time series of nirS transcript concentrations in the bank-filtration scenario with fluctuating oxygen concen-
trations at a distance of 0.17 m from the river, sampled at different frequencies (weekly samples, daily samples, 3 
and 10 samples per day). We added a small random time perturbation to the sampling times to represent a realistic 
situation. The high sampling frequency of 10 samples per day captures the diurnal signal quite well. Taking 3 
samples per day also captures the dynamic behavior of the system, albeit with less accuracy, with many of the 
peaks cut off and an apparent signal that is more irregular than then true one. Daily and weekly sampling creates 
apparent patterns in the data that are not linked to any real process but that are due to sampling the diurnal signal 
at slightly different times each day or week.

Figure 6b shows a spatial profile of simulated transcript measurements, taken at two different times of the day. 
While the general shape of the two profiles is similar, the location of the peak is shifted by about 10 cm, and 
between 5 cm and 20 cm the concentrations between the two time points differ by up to 2 orders of magnitude. 
This example emphasizes the need to consider the relevant time scale of variation for transcripts when planning 
measurement campaigns. When transcription is regulated by redox-active species such as nitrate and oxygen 
(as is the case for denitrification), simple tools like redox-sensitive or oxygen-sensitive probes could provide a 
first approximation of what the relevant time scale for transcript dynamics is and guide the sampling frequency 
accordingly.

4.4.  Implications for the Design of Field Sampling and Measurements

In contrast to transcripts, the concentrations of functional enzymes and functional biomass (which can be esti-
mated by functional-gene concentrations) are much more dampened and hardly respond to diurnal fluctuations 
of electron-acceptor availability because of the longer time scales of their production and decay, as discussed in 
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Section 3.1.2. As a consequence, DNA-based methods such as the quantification of functional genes or metagen-
omics can provide information less dependent on short-term fluctuations of electron-acceptor or electron-donor 
concentrations. However, a DNA-based approach, analogous to an enzyme-based approach, is subject to other 
uncertainties related to DNA's persistence and presence outside of active organisms (relic DNA) that can distort 
the characterization of the microbial community (Carini et al., 2016; Lennon et al., 2018; Nielsen et al., 2007), 
an effect not considered in this study. Different approaches to filter out the signals from relic DNA (viability 
PCR, e.g., Carini et al., 2016; Fittipaldi et al., 2012) and inactive microbes (BONCAT-FACS, selecting for trans-
lationally active cells, e.g., Couradeau et al., 2019) have been developed in the past years but are not yet applied 
routinely.

The unresponsiveness of enzyme concentrations and biomass in a system with short-term dynamics also implies 
that incorporating their time-variability into a biogeochemical model is not necessary and they can be assumed to 
be constant in time (i.e., via a biomass-implicit rate formulation). However, spatial variations should be consid-
ered, e.g., by using spatially variable rate coefficients. In systems in which the concentrations of electron accep-
tors vary over larger time scales (seasonal dynamics, flood events with effects of several days), the temporal 
variability of functional biomass and particularly enzyme concentrations might also play a role. Measurements of 
functional enzymes would also provide a more robust picture of microbial activity compared to functional-gene 
transcripts, because they are less affected by short-term fluctuations. Unfortunately, the quantification of func-
tional enzymes (as opposed to transcripts) is not yet an established measurement technique for environmental 
samples, even though some pioneering studies have been performed (e.g., Li et al., 2017a).

Daily averaged transcript concentrations, however, are proportional to enzyme concentrations (for the scenarios 
investigated here), thus implying that several transcript measurements in time could replace the more difficult 
to measure enzymes in groundwater systems. Because only averages are required, mixing samples from several 
time points prior to RNA extraction could also help to reduce transcript measurement efforts. The main challenge, 
however, lies in obtaining samples from the same location at several time points, as sampling for gene quantifi-
cation is destructive. When reactions are much slower than advective transport (low Damköhler number), several 
samples along a flow path at a single time point (representing water parcels infiltrated at different times) could 
replace samples from the same location at several time points. In our simulations, however, reactions deplete 
substrates within a few centimeters. Water parcels with a time difference of 12 hr are separated by a distance of 
0.43 m, such that averaging over the locations does not provide a replacement for the temporal average at a single 

Figure 6.  Simulated measurements of the nirS transcript concentrations in the bank-filtration scenario with fluctuating oxygen concentrations. (a) Effect of different 
sampling frequencies on a time series measured at a fixed location (x = 0.17 m). (b) Dependence of a spatial profile on the time of the measurement.
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location. Therefore, samples should be taken at adjacent locations, corresponding to the same distance along a 
flow path (which would be made more difficult by heterogeneity). The latter illustrates the difficulty of acquiring 
time-resolved field measurements of transcripts. However, column experiments in the laboratory that simulate 
conditions in the field (see, e.g., Liu et al., 2017) provide a potential alternative, and would be a useful addition 
to capture higher-resolution dynamics.

Even after time averaging, transcript or enzyme concentrations are not reliable predictors of reactions rates. The 
relationships in the simulated scenarios are nonunique and nonlinear. Our analysis reveals that enzyme concen-
trations can be interpreted as a proxy for potential rates, which are hypothetical rates in the absence of specific 
limitations, such as substrate limitation and oxygen inhibition. These limitations reduce the potential rates toward 
the effective (in-situ) reaction rates.

Based on these findings we argue that an approach to predict denitrification rates directly from transcript or 
enzyme data would need to account for the challenges outlined, necessitating the following steps: As a first step, 
the relationship between transcript concentrations and potential reaction rates needs to be determined. This could 
be achieved with lab incubations under nonlimiting conditions. A caveat here is that under nonlimiting conditions, 
a different part of the microbial community with a different physiology might be more active than under in-situ 
conditions (Hazard et al., 2021), modifying the relationship. In a system at steady state the relationship between 
transcript concentrations and potential reaction rates should ideally be linear. Measured transcript concentrations 
can subsequently serve as a predictor of potential rates which then need to be amended by rate-limiting factors 
like substrate limitation to obtain the effective reaction rates. This correction step does not only require measure-
ments of the involved solute concentrations, but also estimates of parameters describing rate-limiting factors of 
reaction kinetics (half-saturation and inhibition constants). Such parameter values are often not well known and 
reported values typically range over several orders of magnitude (see, e.g., García-Ruiz et al., 1998). Therefore, 
additional experiments to determine specific parameters of the studied system would be necessary.

Extending process-based reactive-transport models to simulate molecular-biological data provides a powerful 
integrative approach to predict reaction rates from concentrations and molecular-biological data. Upon calibra-
tion to all available data, such a process-based model can deliver reaction rates at time points and locations where 
no data are available. We therefore suggest the following strategy of combining molecular-biological data, bioge-
ochemical measurements, and modeling to determine denitrification rates.

1.	 �Measure functional enzymes, genes, or transcripts to determine temporally stable, spatial profiles of the active 
functional biomass: Our simulations show that profiles of daily averaged transcript concentrations, enzymes, 
and functional biomass are very similar and may generally be linked to the denitrification activity. Given 
the challenges of measuring time averages of transcript concentrations and excluding inactive biomass in 
DNA-based methods, enzyme measurements seem to be the most accurate proxy variable for active func-
tional biomass. These data will provide a relative measure of the spatially variable maximum rate coefficient 
in a biomass-implicit rate formulation. Compared to an enzyme-explicit formulation (as used in this study), 
a biomass-implicit formulation has the advantage that it requires fewer parameters. The hypothesis that the 
active functional biomass maintains a constant spatial distribution should be verified with repeated measure-
ments at different time points, and seasonal trends could be accounted for by using season-dependent rate 
coefficients. If a considerable time-variability of active functional biomass is observed, a biomass-explicit 
or enzyme-explicit model formulation that provides a process-based explanation for the variability should 
replace the biomass-implicit formulation.

2.	 �Measure oxygen, nitrogen substrates, and DOC at several locations with a high temporal resolution: These 
data are required to appropriately account for substrate limitations and oxygen inhibition. The required resolu-
tion depends on the typical length and time scales of the system and might need to be determined iteratively. 
Spatial gradients and dominant temporal dynamics should be resolved. To capture the short-term variability 
inherent to these variables, continuous logging with probes, if possible, is a good approach (e.g., for oxygen). 
Otherwise, manual measurements should also cover several temporal scales. For example, hourly measure-
ments that capture diurnal dynamics on individual days could be combined with daily or weekly samples to 
provide information about longer-term dynamics.

3.	 �Use a process-based model to obtain temporally and spatially resolved predictions of concentrations and 
reaction rates: The model integrates the different data types through the calibration of model parameters, 
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yielding estimates of total in-situ denitrification rates, that are otherwise impossible to obtain with direct 
measurements.

The predictions of a reactive-transport model strongly depend on transport related parameters, such as flow 
velocities or solute fluxes at boundaries, governed by subsurface hydraulic conductivity. Therefore, at field 
sites, complementary hydrogeological data should accompany biogeochemical investigations. For example, 
natural-tracer and artificial-tracer studies can provide information on travel times and the average flow velocity. 
If flow cannot reasonably be assumed to be uniform and one-dimensional, hydraulic head data at several loca-
tions and aquifer tests to obtain hydraulic conductivity (e.g., slug tests) are required to set up a groundwater flow 
model.

5.  Conclusions
Our model exercise highlights some of the prospects and limitations of using functional-gene transcripts 
and enzymes to characterize biogeochemical reactions at the river-groundwater interface. Concentrations of 
functional-gene transcripts quickly respond to changes in substrate concentrations and oxygen levels, implying 
that dynamic systems need to be sampled at the appropriate temporal resolution. High transcript and enzyme 
concentrations spatially coincide with active processes (here, denitrification) and are therefore qualitative indi-
cators of reactive zones. Substrate limitation and oxygen inhibition of the enzymes, however, lead to complex, 
nonunique relationships between transcript or enzyme concentrations and reaction rates. Admittedly, our model 
only considers one part of the subsurface nitrogen cycle in detail (i.e., gene regulation of denitrification). The 
advantage is that it enables a relatively straightforward analysis of the resulting patterns. However, even then, 
the model predicts the emergence of complex relationships between transcript or enzyme concentrations and 
the denitrification rate. Thus, we caution against the use of concentrations of functional-gene transcripts and 
enzymes as direct proxies of microbial reaction rates.

Our results highlight that a rigorous quantitative interpretation of transcript or enzyme data requires a process-based 
mathematical model that is able to reflect nonlinear interactions between biogeochemical processes and the regu-
lation of gene and enzyme abundances. While our purely numerical study provides predictions of expected tran-
script and enzyme behavior in dynamic natural systems, it does not replace laboratory and field investigations. 
In fact, we emphasize that further improvements in enzyme-explicit models should go hand-in-hand with the 
acquisition of highly temporally resolved data that enable us to interrogate and calibrate the models.

The general, qualitative conclusions from our analysis should be transferable to other microbial reaction systems 
in environmental settings. Soils, for instance, are a very dynamic environment where redox conditions can change 
abruptly through changes in hydrological conditions like drainage or flooding (Pronk et  al.,  2020; Zhang & 
Furman, 2021). Such short-term fluctuations will lead to a disconnect of quickly reacting transcript concentra-
tions from enzyme concentrations and, consequently, reaction rates. Additionally, oxygen availability in soils can 
vary spatially over very short distances because the slow diffusion of oxygen into the matrix produces anoxic 
microsites (Zhang & Furman, 2021). The spatial hysteresis patterns that our model predicts for larger spatial 
gradients of oxygen and nitrogen species (centimeter to meters) might then occur on very small spatial scales 
(millimeters).

In many environmental or engineered systems, other nitrogen-cycling processes (e.g., nitrification, annamox, 
DNRA), alternative electron donors (e.g., reduced sulfur and iron species/minerals), and the temperature depend-
ence of the reaction kinetics can all affect denitrification rates. Incorporating parallel and competing processes to 
the current version of our model will likely be necessary to capture nitrogen reaction dynamics at any particular 
site. In addition to modifying the spatial and temporal distributions of concentrations and reaction rates, this may 
also change the transcript-rate relationships. However, we expect that the general features that we observed—
time-variable nonlinear and nonunique relationships—will remain valid.

Acronyms
BDF	 Backwards Differentiation Formula
DNRA	 Dissimilatory nitrate reduction to ammonium
DOC	 Dissolved organic carbon
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NAR	 Nitrate reductase
NIR	 Nitrite reductase
ODE	 Ordinary differential equation
POC	 Particulate organic carbon

Data Availability Statement
Version 0.2.0 of the Python package Nitrogene (Störiko et al., 2022) used for defining the reaction model and 
analyzing output data is preserved at https://doi.org/10.5281/zenodo.6584591, available under an MIT license 
and developed openly at https://gitlab.com/astoeriko/nitrogene. The repository also contains the output data used 
to generate figures. Version 0.2.0 of the Python package adrpy (Störiko, 2022) used for coupling the reactions 
to 1-D advective-dispersive transport is preserved at https://doi.org/10.5281/zenodo.6584641, available under 
an MIT license and developed openly at https://gitlab.com/astoeriko/adrpy. Version 0.2.2 of the Sunode library 
(Seyboldt, 2021) used to solve the ODEs resulting from spatial discretization of the advection-dispersion-reaction 
equation is preserved at https://doi.org/10.5281/zenodo.5213947, available under an MIT license and developed 
openly at https://github.com/aseyboldt/sunode.
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