
1. Introduction
The cooling rate of the core is controlled by the thermal conductivity of the mantle at the core-mantle boundary 
(CMB) (Lay et al., 2008). A thermally-stratified outermost core develops if the mantle is not able to remove the 
heat supplied by conduction at the top of the core (Lister & Buffett, 1998; Mound et al., 2019). This is a plausible 
scenario given the extant data on the thermal conductivities of the mantle and core materials (Williams, 2018). 
Crystallization of the inner core leaves lower density elements in the liquid, causing compositional buoyancy to 
be a major driver of present-day core convection (Driscoll & Du, 2019). Prior to inner core nucleation, however, it 
is less clear whether thermal or compositional convection alone could have driven the geodynamo (Davies, 2015; 
Du et al., 2019; Pozzo et al., 2012). And yet Earth's paleomagnetic record is much older (at least 3.4 Gy (Tarduno 
et al., 2010; Tarduno et al., 2020)) than current estimates of inner core age (∼1 Gy (Bono et al., 2019; Davies, 2015; 
Driscoll & Bercovici, 2014; Pozzo et al., 2012)), so some combination of buoyancies certainly drove dynamo 
action. The plausibility of thermally driven convection in the core prior to inner core nucleation depends on 
many factors, notably thermal conductivity of iron alloys (Davies, 2015; Driscoll & Bercovici, 2014; Landeau 
et al., 2022). Recent experimental reports on the thermal conductivity of iron at the CMB differ by nearly a factor 
of seven, ranging from 33 to 226 W/m/K (Gomi et al., 2013; Konopkova et al., 2016; Ohta et al., 2016; Zhang 
et al., 2020). The source of this large discrepancy has not been identified.

High-pressure experiments in diamond anvil cells (DACs) allow measurements of thermal conductiv-
ity at CMB conditions, but accurate knowledge of the sample thickness is crucial in these experiments 
(Zhou et  al.,  2022). Despite their importance, the thicknesses of samples are almost never measured in 
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situ in DACs. Instead, the thickness of each sample at high pressure, l, 
is commonly inferred from the measured thickness prior to the experi-
ment (Zhang et al., 2020) or after decompression (Geballe et al., 2020; 
Gomi et  al.,  2013), assuming isotropic contraction upon compression 
or isotropic expansion upon decompression: l/l0  =  (V/V0) 1/3, where V0 
and V are the unit cell volumes at 1 atm and high pressure given by the 
room temperature equation of state. In this study, we employ direct opti-
cal measurements of the thickness of samples in DAC experiments and 
find that it evolves in a strongly non-isotropic fashion for a mechanically 
diverse set of samples. Using our measurements to correct the results of 
previous studies for non-isotropic behavior, we find that the discrepancy 
in iron conductivities is indeed smaller than the discrepancy without our 
correction. In situ measurements of sample thickness are thus crucial for 
accurate future measurements of thermal conductivity in DACs.

2. Materials and Methods
The flat tips of diamond anvils form an interferometer; thus, the distance 
between the anvils can be measured directly by analyzing the interference 
pattern in the spectrum of a reflected (or transmitted) white light if the refrac-
tive index of the sample is known (Dewaele et al., 2003; Kim et al., 2021). 
Here we apply a recently developed approach (Lobanov et al., 2022) to meas-
ure the diamond-to-diamond separation upon compression up to ∼135 GPa 
(P at the CMB) and subsequent decompression. Briefly, our approach 
involves reflecting a broadband laser probe from the diamond-sample-di-
amond assemblage and recording the reflected signal on a charge-coupled 
device. The ratio of incoming (I0) and reflected (I1 + I2) intensities (Figure 1) 

averaged over 550–650 nm allows finding the refractive index at 600 nm (n600nm). The sample thickness (l) is then 
obtained from the spectral separation of the observed extrema which yields the optical path length (n600nml) under 
the assumption that index dispersion in the measured spectral range is small. The overall uncertainty in l is ∼1% 
(Lobanov et al., 2022).

We prepared sample chambers by indenting 250  μm thick rhenium foils 
between 300 or 200 μm flat anvils or 300/150 μm or 300/100 μm beveled anvils 
and subsequently laser-drilling holes with diameters of ∼100 or ∼35 μm at 
the center of the indentation. The sample chambers were filled entirely with 
either SiO2 glass (aSiO2), Al2O3, MgO, KCl, NaCl, or Ar. These are common 
pressure media used in DAC experiments, and they have diverse mechan-
ical properties ranging from highly incompressible Al2O3 (K0  =  255  GPa 
(Oganov & Ono, 2005)) to highly compressible Ar (K0 ∼ 2.65 GPa (Dewaele 
et al., 2021)). The bulk moduli of B1 and B2 NaCl and KCl are intermediate 
(K0 ∼ 20–30 GPa (Dewaele et al., 2012; Dorogokupets & Dewaele, 2007)) 
while aSiO2 is relatively compressible in the pressure range 0–40 GPa but 
more incompressible at pressures above 40  GPa (Petitgirard et  al.,  2017). 
Refractive indices of these materials will be reported elsewhere. Pressure was 
measured by the diamond Raman edge method with the relative uncertainty 
of ±5% (for 300/150 and 300/100 μm bevel/culet diameters) (Akahama & 
Kawamura, 2004) and by the spectral position of the ruby R1 line (for 200 
and 300 μm culet diameters) (Syassen, 2008). The thicknesses of several fully 
decompressed samples were measured by cutting through the gaskets with 
a focused ion beam (FIB) and directly imaging the thickness in a scanning 
electron microscope (SEM).

Figure 1. Intensity ratio spectra ((I1 + I2)/I0) measured in KCl at 84.5 GPa at 
the center of the diamond anvil cell (DAC) cavity and ∼5 μm off the center. 
See Lobanov et al. (2022) for graphical definitions of the measured quantities. 
The gray box depicts the spectral range used for averaging the signal to obtain 
the refractive index at 600 nm (n600nm). The different contrast of the two 
fringe patterns is due to diamond cupping (van Straaten & Silvera, 1988), 
which apparently has no effect on the inferred refractive index. The optical 
path length (n600nml) is ∼30 nm longer when measured off center from the 
axis of the diamond anvils. This is not a significant source of error in sample 
thickness.

Figure 2. Diamond-diamond distance (sample thickness) in diamond anvil 
cell experiments with Al2O3, MgO, NaCl, KCl, Ar, and silica glass (aSiO2) as 
samples on compression (solid symbols) and decompression (hollow symbols). 
Gray shading inside symbols marks the thicknesses of fully decompressed 
samples measured with an SEM. The legend also indicates the diamond culet 
diameter. The uncertainty in sample thickness is ∼1%.
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3. Results
All absolute sample thicknesses recorded upon compression (solid symbols) and decompression (open symbols) 
are shown in Figure 2. Regardless of the sample, its thickness upon compression is always smaller than calculated 
assuming isotropic contraction (Figure 3 LEFT), likely due to uniaxial stress conditions in the sample cavity: 
σaxial > σradial. The decrease in normalized thicknesses upon compression to ∼100 GPa is larger for relatively 
compressible materials (e.g., KCl, Ar) than for incompressible ones (e.g., Al2O3, MgO) (Figure 3 LEFT). This 
observation indicates that the thinning upon compression is material-dependent. However, other experimental 
parameters also affect the evolution of sample thickness. Notably, the diamond culet diameter, the starting gasket 
thickness, the initial sample chamber diameter, and the sample packing ratio (initial volume of sample/volume 
of sample chamber). The effect of diamond culet diameter is clear in the relative thickness data for KCl: smaller 
culets result in greater thinning (Figure 3 LEFT). For a fixed sample and culet diameter, the normalized thick-
nesses upon compression is reproducible within ∼10% (see aSiO2, 100 μm culets). Upon decompression, isotropic 
expansion would predict that all samples thicken. Surprisingly, all samples in this study thin upon decompression 
from the highest pressure down to ∼10–20 GPa. Upon final decompression from ∼10 GPa to ambient pressure, 
all samples thicken, consistent with direct thickness measurements by SEM/FIB in select fully decompressed 
samples. These decompression trends are similar to that noted in helium by Dewaele et al. (2003). Sample thinning 
upon decompression is also evident from the radial stretching of the gasket holes filled with Al2O3 (300/100 μm 
bevel/culet diameter) or KCl (300/150 μm bevel/culet diameter). In the case of Al2O3, the radial stretching upon 
decompression from 135.5 to 9.5 GPa is 33%, while the expected isotropic expansion is only 8% (Figure S1 TOP 
in Supporting Information S1). Similarly, decompressing KCl from 84.5 to 8 GPa results in a radial expansion of 
40%, whereas the expected isotropic expansion is 16% (Figure S2 TOP in Supporting Information S1). Possible 
reasons for thinning upon decompression are related to forces at the gasket-diamond interface. The observed 
outward flow of the sample upon decompression could be triggered by the release of stresses on gasket mate-
rial near the edge of the culet, due to elastic relaxation of the “cupped” diamond culet (Hemley et al., 1997). In 
addition, a decrease in static friction between diamond and gasket could allow sample material to flow along the 
diamond-gasket interface, as suggested by the observation of the recovered gasket-sample assemblage (Figure S1 
BOTTOM in Supporting Information S1).

4. Discussion
Previous DAC studies of iron conductivity at 135  GPa relied on the assumption of isotropic contraction/
expansion of iron samples upon compression/decompression in Al2O3 (Gomi et al., 2013) and aSiO2 (Zhang 
et al., 2020) pressure media. The adequacy of this assumption depends on the extent to which the deformation 
of iron is affected by the uniaxial stresses developed in the pressure media. Because the yield strength of iron 

Figure 3. Diamond-diamond distance (sample thickness) normalized to its pre-compression value (LEFT) and after full 
decompression (RIGHT) as compared to models of isotropic contraction and expansion, following the equations of state in 
Refs. (Dewaele & Torrent, 2013; Dewaele et al., 2006, 2012; Petitgirard et al., 2017; Speziale et al., 2001). The thicknesses of 
Fe in NaCl and Ar media are from Konopkova et al. (2016).



Geophysical Research Letters

LOBANOV AND GEBALLE

10.1029/2022GL100379

4 of 7

is smaller than that of Al2O3 and of aSiO2 (Dong et al., 2014; Gleason & Mao, 2013; Hemley et al., 1997; 
Lacroix et al., 2012; Mao et al., 2008; Singh et al., 1998; Wakabayashi et al., 2015), we assume the linear 
strain of iron in each dimension is equal to the linear strain of Al2O3 or aSiO2, and refer to this as the “match-
ing strains assumption” hereafter. When iron is compressed in a pressure medium with lower yield strength, 
one might expect thickness variations that are relatively close to the isotropic model, at least compared to 
compression of iron in Al2O3 or aSiO2. Yet, direct thickness measurements by white-light interferometry 
reported by Konopkova et al. (2016) show that iron samples in NaCl and Ar media thin by ∼25–38% upon 
compression to 35–130  GPa, whereas the expected isotropic thinning is only 5%–12%. (Figure  3 LEFT). 
These data show that the thinning of iron samples is nearly as great as that of NaCl and Ar (despite their 
relatively low yield strengths). We surmise, therefore, that the “matching strains assumption” may represent 
the maximum yet common departure from the isotropic thinning model, even for samples in relatively soft 
pressure media.

These observations motivate us to use our data on the variation of thicknesses of Al2O3 and aSiO2 upon compres-
sion and decompression to approximate the error in the thickness estimates of iron samples at 135 GPa caused by 
the assumption of its isotropic contraction and expansion. Non-isotropic contraction of aSiO2 to 135 GPa results 
in 45% thinning in our experiments, whereas the isotropic model for iron used in Zhang et al. (2020) predicts 
a mere 12% thinning (Figure 3 LEFT). Decompression of alumina from 135 GPa results in 9% thinning in our 
experiments, whereas the isotropic model for iron used in Gomi et al. (2013) predicts a 9% thickening (Figure 3 
RIGHT). These discrepancies, combined with the matching strains assumption, suggest that systematic errors of 
several tens of percent may be present in the inferred values of conductivity in previous studies.

For metals, thermal conductivity (k) is related to electrical resistivity (ρ) through the Wiedemann-Franz Law:

𝑘𝑘 =
1

𝜌𝜌
𝐿𝐿𝐿𝐿 (1)

where L is the Lorentz number and T is temperature. In the experiments of Zhang et  al.  (2020) and Gomi 
et al. (2013) the resistivity of iron samples is calculated by:

𝜌𝜌 = 𝜌𝜌0
𝑅𝑅

𝑅𝑅0

𝑙𝑙

𝑙𝑙0
 (2)

where ρ0 is the resistivity at ambient pressure, R0 (R) and l0 (l) are resistances and thickness at ambient (high) 
pressure. Combining this equation with the Wiedemann-Franz Law yields the proportionality, k ∝ ρ −1 ∝ l0/l. Our 
results suggest that the models of isotropic contraction and expansion underestimate l0/l and k in experiments 
where l0 is measured prior to compression, but overestimate l0/l and k in experiments where l0 is measured after 
decompression.

Following this logic, we now estimate thickness-related errors in k reported by Zhang et al.  (2020) and Ohta 
et al.  (2016). Note that here we correct the high-temperature values reported by Ohta et al.  (2016) who used 
the room-temperature conductivities of Gomi et al. (2013) for normalization. Assuming the errors in estimated 
sample thicknesses at 135 GPa discussed above, we obtain the following corrections to the thermal conduc-
tivity of iron at the pressure and temperature conditions near the CMB: 100 → 133 W/m/K (+33%) for Zhang 
et al. (2020) and 226 → 185 W/m/K (−18%) for Ohta et al. (2016). The proposed corrections bring the experi-
mental values closer together, and closer to the computed conductivities of iron at similar pressure-temperature 
conditions from the studies of de Koker et al. (2012) and Pozzo et al. (2012). However, more recent computations 
of the thermal conductivity of hcp-Fe at CMB conditions that consider electron-electron and electron-phonon 
scattering point toward a lower value of ∼100 W/m/K (Xu et al., 2018). Importantly, the proposed corrections are 
merely estimates, because the details of pressure-dependent changes in sample thickness depend on many factors, 
including the relative yield strength of sample versus pressure medium, the strength and compressibility of the 
gasket material, the shape and size of electrodes, and the gasket's starting thickness and hole diameter. In addition, 
samples may irreversibly thin at the laser-heated spot due to the release of stresses. Nonetheless, these corrections 
demonstrate that the controversy in the thermal conductivity of iron at CMB conditions may be partially recon-
ciled by the revised estimates of sample thickness. Although the thicknesses of iron samples have been measured 
by white-light interferometry at high pressure in Konopkova et al. (2016), the low values of thermal conductivity 
of iron (33 W/m/K at the CMB) could be systematically biased due to complex, irreversible variations in samples 
thickness induced by laser heating.
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More generally, a word of caution is in order for many other reports on thermal and electrical conductivity 
at high pressure. The electrical conductivities of Fe-Si-Ni alloys at CMB conditions reported in Refs. (Zhang 
et al., 2021, 2022) likely need an upward revision because of the assumption of isotropic contraction. Sample 
thickness at high pressure is also essential for the experimental techniques that determine lattice thermal conduc-
tivity in DACs. In these experiments the inferred values of thermal conductivity, k, depend on estimates of 
sample thickness, l, with an analytical relationship that can be described by k ∝ l n with n ≥ 1.5. Yagi et al. (2011) 
proposed n = 2 for the thermoreflectance method, which has subsequently been used to study lattice thermal 
conductivity of lower mantle minerals (Ohta et al., 2012; Okuda et al., 2017, 2020; Yagi et al., 2011). For the 
laser flash method, Geballe et al. (2020) suggests that n = 1.5. Similarly, the inferred thickness of ∼100 nm-thick 
metallic films at high pressure is a crucial parameter for accurate determination of k during time-domain ther-
moreflectance measurements (Chen et al., 2011). In situ measurements of the thickness of these films could be 
important to test the model of thickness changes during compression used in such studies (Chen et al., 2011; 
Hsieh et al., 2017, 2018, 2020; Marzotto et al., 2020). Likewise, in situ measurement of thickness of metal films 
on substrates could be important to test the isotropic model of thickness change assumed in picosecond acoustics 
experiments (Decremps et al., 2014; Edmund et al., 2020). Sample thickness is also essential for the spectro-
scopic determination of optical absorption coefficients, which serve as primary input for estimates of radiative 
thermal conductivity (Goncharov et al., 2006, 2008, 2015; Keppler et al., 2008; Lobanov et al., 2017, 2020, 2021; 
Murakami et al., 2014, 2022; Thomas et al., 2012). Deviations from isotropic contraction and expansion may 
partially account for the large discrepancy in the estimates of radiative conductivity at the base of the mantle 
(∼0.5–5 W/m/K). Nonetheless, further direct optical measurements of sample thickness in strong and weak pres-
sure media are needed to test the isotropic contraction/expansion assumption and the matching strains assumption.

In closing, we demonstrated that samples contract and expand in a strongly non-isotropic way in DACs for a range 
of mechanically diverse samples. In all cases, the decrease in thickness is anomalously large upon both compres-
sion and decompression. Future measurements of mantle and core thermal conductivity will need to quantify 
sample thickness at high pressure.

Data Availability Statement
The data set used in this work is deposited at Mendeley Data, V4 (https://doi.org/10.17632/wnvbty8y83.4).
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