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Abstract

A limited number of gauging stations, especially for nested catchments, hampers a

process understanding of the interaction between streamflow, groundwater and

water usage during drought. Non-commercial measurement devices can help over-

come this lack of monitoring, but they need to be thoroughly tested. The Dreisam

River in the South-West of Germany was affected by several hydrological drought

events from 2015 to 2020 during which parts of the main stream and tributaries fell

dry. Therefore it provided a useful case study area for a flexible longitudinal water

quality and quantity monitoring network. Among other measurements the setup

employs an image-based method with QR codes as fiducial marker. In order to assess

under which conditions the QR-code based water level loggers (WLL) deliver data

according to scientific standards, we compared its performance to conventional

capacitive based WLL. The results from 20 monitoring stations reveal that the river-

bed was dry for >50% at several locations and even for >70% at most severely

affected locations during July and August 2020, with the north western parts of the

catchment being especially concerned. Highly variable longitudinal drying patterns of

the stream reaches emerged from the monitoring. The image-based method was

found valuable for identification and validation of zero level occurrences. Neverthe-

less, a simple image processing approach (based on an automatic thresholding algo-

rithm) did not compensate for errors due to natural conditions and technical setup.

Our findings highlight that the complexity of measurement environments is a major

challenge when working with image-based methods.
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1 | INTRODUCTION

Periodic and temporary streamflow may occur naturally in Intermit-

tent Rivers and Ephemeral Streams (IRES; Leigh & Datry, 2017; Datry

et al., 2017). The proportion of IRES in the global river network is

estimated at 30% excluding and 50% including headwater streams

(Costigan et al., 2016; Fortesa et al., 2021). Regime shifts from peren-

nial to intermittent streamflow are estimated to occur more often in

the future, also on the Northern Hemisphere (Döll & Müller

Schmied, 2012) and could have severe consequences for riverine
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ecosystems, especially where aquatic biota is not adapted to tempo-

rary drying (Acuña et al., 2020; Leigh & Datry, 2017). In addition, the

most extreme form of low flows is a partial or full drying-up of stream-

beds and such hydrological droughts have exacerbated in many

regions (van Loon, 2015). Therefore, monitoring and understanding

the dynamics of IRES has been given rising attention in recent

research.

Activation and deactivation patterns of river networks and can

also be described using statistical or hierarchical models (Botter

et al., 2021; Botter & Durighetto, 2020; Durighetto et al., 2020;

Godsey & Kirchner, 2014; Lovill et al., 2018; Senatore et al., 2021).

While these approaches allow mapping and modelling of the active

streamlength and drainage density, they are not primarily concerned

with processes along rivers and ecological implications of IRES. For

research about interdisciplinary impacts, the concept of aquatic states

has therefore evolved and is widely used for classification of IRES

(Fovet et al., 2021; Leigh & Datry, 2017; Meerveld et al., 2020;

Messager et al., 2021; Pastor et al., 2022). The concept defines three

hydrological phases (flowing, standing, dry) corresponding to the dif-

ferent habitats (lotic, lentic, terrestial) generated in response to differ-

ent flow conditions (Costigan et al., 2016; Datry et al., 2017; Gallart

et al., 2017).

Up to date, classification of the hydrological regimes of IRES is

hindered by a lack of continuous observations and status data (water,

no water, flow, no flow). In global hydrometric datasets, stream

reaches and streams with a mean annual flow <50m3s�1 are likely to

be underrepresented (Messager et al., 2021). Due to this data gap,

simulating and predicting streamflow intermittency has often been

based on spatial predictors, such as topography, slopes or drainage

area, transmissivity (Kaplan et al., 2019; Olson & Brouillette, 2006)

and has often been validated using hydrographic maps or field map-

ping (e.g., Botter & Durighetto, 2020; Durighetto et al., 2020; Jensen

et al., 2017; Jensen et al., 2018; Shaw et al., 2017; Ward et al., 2018;

Zimmer & McGlynn, 2017).

In practice, many gauging stations make use of water level data

and calculate streamflow at any given time based on rating curves and

streamflow field measurements. However, water level information

remains an at-site point information taken at one isolated cross-

section of the stream. Moreover, zero flow and zero water level mea-

surement is challenging to gauge with conventional techniques

because installation errors of measurement devices, data errors and

ambiguity hinder a correct interpretation of zero flow readings

(Heiner et al., 2011; Zimmer et al., 2020). The heterogeneity of the

stream bed due to changing flow conditions and sediment transport

may lead to erroneous identification of zero flow or zero water level,

for example if ponding occurs locally along the river section. If occur-

rence of zero-flow or zero-water level is not measured with sufficient

accuracy and temporal and spatial resolution, also models for water

resource management and for the prediction of drought and low flows

will remain uncertain as they require reliable data of these states for

validation and calibration (Hannah et al., 2011).

The development of non-conventional sensors for in situ moni-

toring has become useful to gather more observational data on stream

reaches. The simplicity of the installation in remote areas, the poten-

tial to measure continuously with high resolution, the affordable cost

and therefore less risk of financial losses in case of damages, and

other advantages make them an attractive alternative to conventional

methods (Chapin et al., 2014). In particular, electrical conductivity and

temperature loggers (Bhamjee et al., 2016; Blasch et al., 2002;

Larson & Runyan, 2009; Peirce & Lindsay, 2015; Zanetti et al., 2022;

Zimmer & McGlynn, 2017) and float switch or flow sensors

(Assendelft & van Meerveld, 2019) have been successfully used to

monitor aquatic state changes of small headwater streams and stream

reaches. To study the connectivity of stream networks for ungauged

catchments and areas suffering from data scarcity the use of remote

sensing is often proposed (Gleason & Smith, 2014; Stoll &

Weiler, 2010). Disadvantages of the latter are however the low tem-

poral resolution and data gaps due to obstacles such as cloud cover

(Spence & Mengistu, 2016). In general, aerial surveys are not applica-

ble in areas with dense tree cover along streams (Roelens et al., 2018)

and vegetation's moisture may lead to misinterpretation (Eltner

et al., 2018; Spence & Mengistu, 2016). On-site image-based tech-

niques are increasingly applied for monitoring. They contain an addi-

tional visual information that reduced the probability of

misinterpretation (Leduc et al., 2018). An advantage is that they do

not require on-site calibration (Gilmore et al., 2013; Kaplan

et al., 2019; Leduc et al., 2018; Young et al., 2015), for example,

detected the edge position of streams manually and assumed that

each edge coordinate is linearly related to the water stage. They used

a width-stage relationship to derive streamflow. Particle image veloci-

metry (PIV) also belongs to this group of methods but water velocity

is measured directly using short videos (Perks et al., 2020; Piton

et al., 2018). Another option to obtain information on the water level

or streamflow is to use image pattern recognition algorithms (Elias

et al., 2020; Eltner et al., 2018; Eltner et al., 2021), staff gauges

(Bruinink et al., 2015; Seibert et al., 2019; Strobl et al., 2020; Zhang

et al., 2019) or fiducial grid patterns (Gilmore et al., 2013; Kaplan

et al., 2020). The quality and resolution of the data obtained with

image-based methods is still lower in comparison to traditional gaug-

ing methods. But the significantly lower cost and the simplicity of the

method allows a broader application (Eltner et al., 2018; Royem

et al., 2012; Schoener, 2018). Applications for citizen science and

crowd-based water level measurements also makes use of image-

based methods (Etter et al., 2020; Strobl et al., 2020; Seibert

et al., 2019). The risk of errors due to measurement installation and

maintenance is lower but the information is not collected during fixed

time intervals and the content may deviate depending on the person

who collected the data. The use of fiducial markers in citizen science

is promising because it transports an exact value when recognized

correctly.

The catchment of the Dreisam river in south western Germany is

known as a perennial river; But its tributaries as well as parts of the

upper and lower main stream can fall dry during extreme meteorologi-

cal drought events, such as in the years 2003 and 2018 (Erfurt

et al., 2020). During such hydrological drought situations, the main

gauging station, located in the Dreisam Valley at Ebnet upstream of
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Freiburg, has been found not to be representative of the severity of

water level and flow conditions across the basin (Blauthut

et al., 2017). Until a recent reconstruction of the station's

crosssection (HVZ-Baden-Württemberg, 2021), zero water levels

could not be derived from the multiple decades-long time series of

hydrometric data from the main gauging station in the valley due to

uncertainties for recordings of water levels below 20 cm. In addition,

hydrological dynamics of different river reaches might be different in

comparison to the location of the gauging station depending on the

hydraulic properties and the geometry of the riverbed and its interac-

tion with the groundwater. Hence, the main gauging station has pro-

vided little indication of the true dry river conditions in the valley. To

better understand the drying pattern in the catchment a network of

water level gauges was installed. It allowed to monitor a hydrological

drought event in 2020 with three governing questions:

1. Is it possible to use an image based method for water level mea-

surements based on QR-code detection?

2. What are problems and possible causes related to a QR-code

image based water level logging?

3. Is it possible to identify zero level occurrences and drying patterns

of the stream reaches using the specific measurement techniques?

To answer these questions, we compare the time series of two

different measurement methods: an image-based measurement

method using QR-codes as fiducial markers and a conventional capac-

itive Water Level Loggers (WLL) technique. We explore the range,

temporal evolution and the correlation of the water level time series

measured with both methods at 11 locations in the study area. Subse-

quently, we identify potential error sources for the measurement of

zero water levels using image-based WLL and propose specific correc-

tions for different error sources. We then implement a method to

determine zero water level occurrences and use the image-based

method as an additional source of information to validate the event

selection. The obtained drying patterns enable an analysis of longitu-

dinal connectivity in the catchment.

2 | METHODS

2.1 | Measurement approach

The water level (often also refered to as river stage, water height,

stage height) is described as the perpendicular distance from the bot-

tom of the riverbed to the water surface. An advantage of image-

based measurements is that the additional visual information con-

tained in each image provides an additional possibility to validate the

dry status of the riverbed (Gilmore et al., 2013; Kaplan et al., 2019;

Royem et al., 2012; Schoener, 2018; Zhang et al., 2019). In order to

obtain an information on the water level, a reference point or fiducial

marker is necessary. The three position markers implemented in the

structure of QR-Codes allows the recognition of the marker in images

independent of their location on the actual image (Pandya &

Galiyawala, 2014). Using QR-Codes as a fiducial marker thus does nei-

ther require the detection of a water line on the image, nor does it

require the definition of a region of interest as it is often required

image-based water level measurement (Chapman et al., 2020; Eltner

et al., 2021; Kuo & Tai, 2022; Young et al., 2015; Zhang et al., 2019).

Another advantage of QR-codes is that they are still readable if part

of them are not well visible. Due to numerous industrial applications,

a selection of open source libraries (Abeles, 2013; Abeles, 2016;

Hudson et al., 2015) is available for the detection of QR-codes, which

faciliates the implementation of QR-Codes as fiducial marker for the

measurement of water levels. In our measurement setup QR-codes

(Figure 1) were printed onto a HPL (high pressure laminat) panel

(dimensions 60x85cm). Each QR-Code covers 10x10cm. The horizon-

tal distance between the codes is 44mm and the vertical distance is

20mm. Between the columns, there is a vertical offset of 33mm. A

key factor for the choice of the size and placement of the QR-codes

(in order to guarantee recognition) is to find the optimal compromise

between picture resolution and the distance between the camera and

the panel. In our setup, each QR-code represents a distinct water level

of 0�72cm in steps of 3 (a total of 25 QR-codes per panel; Figure 1,

Table 1). With this QR-code configuration, the water level can thus be

measured at a maximum accuracy of 3cm. The lowest QR-Code rec-

ognized by the software is representative for the water level. The

camera used is a DOERR SnapShot Mini 5.0 wildlife camera and mea-

sures at an image resolution of 8 MP. During nighttime, the camera

automatically switches to infrared mode while lowering the resolution.

The cameras take an image every 15min. This high temporal resolu-

tion was chosen to capture fast water level rise and recession. A bat-

tery with an initial electric potential of 6.5 V and an electric charge of

4.5 Ah was used.

A variety of software solutions to read QR-codes due to the

numerous applications of QR-codes in industry and other sectors are

available (reviewed by Abeles, 2018). For our study, the QR-codes are

read using the python wrapper pyboof for the java library BoofCV

(Abeles, 2016, 2021). The approach detects the positioning detection

markers of a QR code and the alignment markings. According to a per-

formance evaluation of the provider, BoofCV is able to read multiple

QR codes in one image, while the processing time is not longer than

with other packages. For all of the available QR code software, dam-

aged QR codes, images with bright spots and non-compliant QR codes

are problematic for detection performance of the software. The pack-

age was also chosen because it can be implemented on a Rasperry PI

(Linux-based single-board computer) allowing automatic data trans-

mission in the future. Additionally, an android app is already available

for BoofCV for easy handling or citizen science advancement.

The second method used in this study is a capacitive water level

observation. An Odyssey Capacitance water level logger (Ody

Ltd, 2013) was installed at every measurement location. It measures

the capacity of a condensator consisting of a teflon coated wire and

the water in the river bed. Teflon coating is the dielectric between the

wire and the water. The higher the water level, the larger is the plate

of the condensator and thus, the higher the measured voltage. The

Ody loggers can measure with an accuracy of �0:5cm (Table 1). Each
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logger was calibrated in a laboratory environment. Ody loggers were

installed in the field using PVC pipes (Figure 1). Considering the tech-

nical properties of both measurement methods alone, QR has a lower

accuracy and requires also more effort for post processing (Table 1).

2.2 | Image processing

Errors due to image-based water level measurements can be classified

into three categories according to (Gilmore et al., 2013): Errors due to

the quality of the pictures also mentioned in (Leduc et al., 2018), due

to local environment (light conditions) or due to software and image

recognition. To reduce the effect of the errors on the final data set,

processing techniques can be used to select erroneous images before

(pre-processing) or to select erroneous values after the actual QR

code recognition (post-processing). The software deals with some of

these error types. In the case of images with over exposure and strong

light reflections, the software will not recognize a QR code and ulti-

mately issue a NAN value. Erroneous values can then be excluded.

However, pre-processing might be valuable in order to reduce the

number of images to be read and hence the total computational effort

and time needed for conversion of the image data set into a time

series of water levels (although this also depends on the computer

system used). Images with overexposure and strong light reflections

can be filtered using a threshold on the grey-scale image for bright

colours. Major inaccuracies in the water level data set however, are

caused by images with few light reflections and with sediment accu-

mulation. In such cases, the information on a single QR code is lost

where light reflections or sediment accumulation occur but the soft-

ware still reads the remaining QR codes. Sediment accumulations

occur most likely on the bottom of the QR code panel below the

water surface and deposits remain on the panel once the water level

decreases. The derived water level will thus be biased towards higher

values in comparison to the actual, true water level. This may also be

the case for images with few light reflections, if those appear on the

bottom of the visible part of the QR code panel right above the water

surface.

In this study, we chose benchmark images with sediment accumu-

lation, strong light reflections, relatively few light reflections and over-

exposure (Figure 2) to investigate if it is possible to filter images with

theses issues (Table 2) by means of a multi-threshold approach.

Hereby, multiple thresholds are defined based on the intensity of grey

scale values of the pixels in an image. The thresholds can either be

specified manually or using an algorithm for automatic thresholding.

Due to their accuracy and speed, algorithms that are calculating

thresholds by maximization of between-class variance (Otsu's method)

are commonly used (Kotte et al., 2018; Otsu, 1979). We use a Multi

Otsu threshold with 5 classes (0–4). Thus, the different pixels can be

classified into different ‘regions’ based on these thresholds (Figure 2).

Region 0 contains pixels of lowest intensity (black) while region four

contains pixels of highest intensity (white). Ideally, the pixels con-

cerned by one of the error sources belong to one specific region. If

the number of pixels in an image belonging to this specific region is

large in comparison to the number of pixels in this region in an image

with normal conditions, the image is most likely affected by the error

source and can be removed; for example, for strong light reflections,

the amount of pixels with very high intensity is expected to be larger

with respect to an image with normal light conditions.

To identify overexposure and light reflections, the percentage of

pixels in region 4 with respect to total pixels (Ppix 4ð Þ) and to identify

sediment accumulation, the percentage of pixels in region 3 with

respect to total pixels (Ppix 3ð Þ) was calculated using Equation (1).

Np regionð Þ is the number of pixels for the specific region and Nptot is

the total number of pixels of the image.

Ppix regionð Þ¼Np regionð Þ
Nptot

�100 ð1Þ

Using this approach, it is possible to distinguish between strong over-

exposure or strong light reflections and normal conditions (Table 2).

However, it is challenging to distinguish between normal conditions

and sediment accumulation or few local light reflections in the image.

The filtering of such images is complex and therefore, a specific meth-

odological approach needs to be applied rather than a simple algo-

rithm for automatic thresholding.

F IGURE 1 Measurement setup Wagensteig tributary
summer 2020

TABLE 1 Main properties of the measurement methods

Image-based WLL Capacitive WLL

Method QR Ody

Data transmission manual manual

Accuracy 3 cm ±0.5 cm

Data processing Yes No

Pre-/post-processing Yes No

Abbreviation: WLL, water level loggers.
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Due to the complexity of filtering the QR code images and the

lower accuracy in comparison to the Ody measurements (which would

call for an entire study of its own), we used only the Ody data for data

analysis and selection of zero level occurrences. However, we can

make use of the visual information in the images in order to validate

the zero level occurrences based on the Ody data.

2.3 | Zero water level definition

Zero water level means that there is no more water present at the

deepest point of the river cross section and that there is neither flow-

ing nor standing water present in the riverbed. To retrieve the IRES

status information (dry, standing water, flowing water), a distinction

F IGURE 2 The benchmark images for the different error sources, histograms with thresholds depicted by vertical red lines and the resulting
classification after Multi-Otsu thresholding with the pixels coloured per region they belong to
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has to be made between zero water level and zero flow conditions

(Datry et al., 2017; Meerveld et al., 2020). The methods presented in

this study only focus on the distinction between the dry and the wet

status. The determination of the status change from flowing to stand-

ing water could either be achieved manually through visual inspection

of the images or through the development of an algorithm (e.g., using

neural networks) for recognition of flow patterns. Both was not within

the scope of this work but could potentially be implemented in the

future. Another limitation of the method is, that the water level is only

measured directly at one specific spot due to the installation of the

measurement devices at one specific point along the river at the bor-

der of the river bed next to the river bank. Ponding can not be directly

measured if the measurement device is not located at the deepest

point in the river bed section, a point which may change after each

sediment transport event.

If there is a vertical offset between the deepest point of the river

bed and the location of the measurement device, it is difficult to dis-

tinguish if the riverbed is entirely dry or if it is only dry at the borders

while standing water remains at the deepest point. To make a distinc-

tion here, the water level, at which the water is likely standing and not

flowing anymore needs to be known. However, the point of no flow is

site specific as it depends largely on the hydraulic properties and

geometry of the river section (and not only on the cross-section of

the river bed) and therefore, the generation of a rating curve for each

location is a prerequisite. This should be kept in mind if any of the pre-

sented methods are used to establish a data-set of zero water levels.

Potential sources of inaccuracy for both measurement methods

can be due to measurement installation and measurement principle.

Specifically for the QR method, a software is required to read the

images in order to obtain an information from the fiducial markers on

the images. The result of the measurement thus also depends largely

on the quality of the image, the local environment (light conditions)

and on the software and image recognition algorithms used (Gilmore

et al., 2013). The quality of the image and the chances for recognition

of the fiducial marker also rely on the ratio of the distance of the

panel and the camera and on the focal point.

In order to measure zero water level with the measurement

methods used in this study, corrections are required for both, the

capacitive and the image based method. Corrections of the QR data

can be needed (1) for specific locations where the panel position is

not vertical and (2) where there is an offset between the bottom edge

of the panel and the bottom of the river bed. However, specific care

was taken in order to avoid inclination and a vertical offset of the QR

panels and accordingly no offset correction was required for the QR

data. An offset correction was however necessary for the Ody data.

The Ody loggers are hanging vertically in PVC tubes without direct

connection to the bottom of the river bed. Also, water levels mea-

sured by the Ody loggers may overestimate water levels for low elec-

trical conductivities due to remaining soil moisture once the riverbed

is already dry. A small, positive offset of the Ody measurements is

therefore expected. To take both of these possible offsets into

account, we applied a correction based on the minimum in the time

series. This means that a low water level between 0 and 10 cm is mea-

sured once the water level reaches zero. A correction of this offset

can either be done manually using the pictures from the cameras

installed at most of the stations or by defining an offset. Here, the the

offset was corrected by the mean of the minima in the Ody water

level time series for all stations, where a minimum value below 10 cm

had been measured.

2.4 | Measurement comparison

The main objective of this study is the assessment of different error

sources of the image-based and a capacitive water level logging with

regard to measurement of zero water level. For this purpose, we

assumed that a correction using the deepest point in the river bed

cross section is not required. In a first step, we compare the perfor-

mance of the measurement methods with regard to data availability,

time and effort for maintenance as well as for the evaluation and data

handling. Furthermore, we compared the water levels measured with

both methods.

A general measure to investigate the strength and direction of an

association between two variables is the correlation coefficient r.

Here, we calculated the Spearman rank correlation for a rolling win-

dow with a window width of 96 steps (equals 1 day). This allows to

evaluate whether the water levels are rising or falling at the same

moment or not within the time interval of a day and if this association

changes over the course of time. Subsequent to the method compari-

son and the corrections, a method for filtering of zero level occur-

rences from the available time series is presented. Zero level

occurrences were selected based on the choice of a threshold and the

coefficient of variation. First, the t was defined as the sum of the mini-

mum and 5% of the maximum value in the time series:

T¼ xmin þ0:05xmax ð2Þ

with xmin and xmax being the minimum and maximum in the time series

at each measurement location. In a next step, the coefficient of varia-

tion (CV) based on a hourly mean (or daily mean) was calculated. If the

CV remained below 0:1 with respect to the hourly mean for at least

4 h at a specific time, it was considered that zero water level occurred.

The 4 h hereby represent a generalized time threshold for our specific

study catchment. The best suitable time threshold may vary depend-

ing on the measurement environment (see also section 5.3).

TABLE 2 Counted pixels per region

Benchmark image Region P_pix (%) Error type

Normal 3 12.01 Deposits

Sediment accumulation 3 11.38

Normal 4 20.27 Light conditions

Light reflections 4 16.01

Strong reflections 4 44.84

Overexposure 4 44.88
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Furthermore, the additional visual information contained in the

QR images allows a validation of zero level occurrences for each loca-

tion. Images corresponding to the date and time of the zero level

occurrences were selected to check for false positive errors. All other

images were used to check for false negative errors, i.e. those for

which no zero level was found in the Ody time series. Due to the time

lag between Ody and QR measurements, it can be assumed that zero

level occurrences start earlier (when soil moisture is still high) and end

later (when soil moisture increases) than measured with the Ody

method. Images 1 day before zero level started and 1 day after zero

level ended were therefore excluded from the selection for the valida-

tion exercise. The selected images were then visually inspected and

classified as ‘dry’ and ‘not dry’. Hereby, a dry riverbed corresponds to

the status where there is neither standing nor flowing water visible in

the image. Finally, the percentage of images (among a random choice

of 10% of all images) recognized as ‘dry’ (false positives) or ‘not dry’
(false negatives) defined if the validation was successful or not.

3 | THE STUDY AREA

The Dreisam catchment covers a total area of 577 km2. Figure 3

shows the catchment and the locations of the measurement devices

in the Dreisam valley (25km2). The length of the river network in the

Dreisam valley is about 108 km. The average streamflow measured at

the main gauging station in Ebnet is 5:7 m3s�1 (HVZ-Baden-W

rttemberg, 2021). The porous aquifer consists of alluvial materials

with 30�50m depth and it is used as a main source of water supply

of the city of Freiburg im Breisgau. Within the Dreisam valley, terrains

is flat and slopes are gentle (8%), while hillslopes on the edges are

steep transitions to the mountainous higher-elevation parts of the

catchment. Elevation ranges between 309m a.s.l. at the lowest point

and 1480ma.s.l. at the highest point (Feldberg) of the catchment

(Wissmeier & Uhlenbrook, 2007). The area around the Feldberg sum-

mit in the Black Forest upstream of the Dreisam valley (Feldberg area)

has a mean snow cover extent of about 37% between October and

April (Sauter et al., 2010) and snow is an important contribution to

streamflow in spring.

The monitoring system in the Dreisam valley consists of 20 mea-

surement stations located in the main tributaries and the main river

(Dreisam; Figure 3). At 11 locations, the water level is measured with

both, the QR and Ody method. The maximum and the minimum dis-

tance of the measurement locations from the catchment outlet in

Ebnet is 13.4 km (W1) and 0.5 km (E8). Riverbed width of the tribu-

taries ranged between 2 m for smaller and 8 m for wider stream

reaches in October 2020 (widths around 10 were only measured in

the Dreisam itself), though it varies according to flow conditions. The

length of the single tributaries varies between 8 and 19 km and the

subcatchment areas between 13 and 47m2 (see Table 1 in Data S1).

Drying events from observations and reporting by public media in

specific river sections during the previous years guided the initial

choice of the location.The selection of measurement locations gener-

ally aimed to gauge regular distances to the mouth of the tributary

into the main river. Measurements should represent a longitudinal

section of the stream reach downstream of the measurement location

until the next station or the mouth into the main river. In all of the

important stream reaches, water level loggers could be installed at

least at one location close to the mouth of the stream reaches into

the main river and at one location upstream close to the alluvial aqui-

fer borders. If an official gauging station was present upstream (such

as at the Rotbach tributary or in the Brugga tributary), no additional

station was installed upstream.

In practice, many practical limitations to possibilities for installa-

tion existed (option to fix equipment, private/public property

F IGURE 3 Overview of the extent of the Dreisam catchment in South Western Germany, the upper part of the Dreisam catchment and the
monitoring system in the Dreisam valley (25 km²)
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situation, etc.). The image-based method with QR-code panels was

only used in locations where the panels could be deployed on a verti-

cal surface. These were either large rocks or bridges, weirs or small

hydroelectric power plants. Settings differ with regard to light condi-

tions and shape or size of the river sections. In order to investigate

the effect of light reflections on the output of the image-based

method, some of the cameras were placed below bridges. Further-

more, care was taken that the panel position was vertical and, that the

distance between the panel and the camera was adequate to maintain

the necessary image resolution (<5 m). The position of the camera

was adjusted as such that the panel was portrayed in the centre of

the image. However, due to the manual maintenance of the cameras

and the influence of the natural environment, it was not guaranteed

that the position remained exactly the same during the whole mea-

surement time span. At each measurement location additional staff

gauges were installed. Water levels are logged by Ody and QR WLL

with a temporal resolution of 15 min.

4 | RESULTS

4.1 | Comparison of the measured water levels

First, both WLL methods are compared with regard to their applica-

tion and operability based on the operational time, time and effort for

installation and processing of the data. The Ody data was processed

with the Odyssey Software (Ltd, 2012). Processing of the QR images

took significantly longer, but is not possible to obtain the time needed

for reading one image with QR because the number of QR codes

detected per image varies according to water level and error sources.

For example, reading of 100 images took 1.57 min with an Core i7

processor. The effort for the installation was comparable for both

methods. Overall, the maintenance cost was higher for the image-

based method due to the energy consumption of the camera set at

high resolution. A battery with an electric charge of 4.5 Ah was

sufficient to keep the cameras running for approximately 1 month in

winter and 2 months in summer on average. According to the manu-

facturer of the Ody loggers, the battery life is > 9 months. Thus, bat-

tery replacement and data collection needs to be done at higher

frequency for the QR method. On the other hand, the maintenance

cost and effort for the QR measurements was high due to manual ver-

ification of the image section, the manual data collection and regular

replacement of the memory cards.

The data sets obtained with the different measurement methods

differ with regard to data availability and completeness of the time

series, data quality and consistency of the measured water levels. The

data measured by the monitoring system was processed for the time

period between June and October 2020. The density distributions of

all water levels measured during the study period at each station vary

(Figure 4). Whereas the violin plot of some locations is multimodal or

bimodal (K1, W4, B2, E4, E2), the distribution is unimodal for other

locations (E6, E8). For some locations (e.g., K1, RE1, E4), the shape of

the distribution differs depending on the measurement method used.

The violin plots indicate that where the shape of the violin of the

Odyssey and QR code data are more alike (E8, E6),low water levels

occur at higher frequency in the Odyssey data set, except for B2 and

RO2B. In general, there are more outliers in the QR code data set in

high water levels. The percentage of available data per station is con-

siderably lower for the QR data in comparison to the Ody data

(Figure 5b). More than 50% of data was missing at some locations

(i.e., at RO2A, RO2B and E2). Additionally, the temporal evolution of

the water levels (15 resolution) between June and October 2020 at

each measurement location is analysed (Figure 5a). While the water

level remains constant at some locations during the measurement

period (i.e., constantly high water levels at RO2B and constantly low

water levels at E6 and E8), other locations show stronger fluctuations

and in some cases also a stronger tendency for low water levels to

occur in the summer months (i.e., D2, E2, W4). Furthermore, the range

of water levels measured with the Odyssey method suggests that the

closer the stations are to the outlet of the catchment, the lower are

F IGURE 4 Distributions of all measured
water levels per station for both measurement
methods. Measurement locations are sorted left
to right with increasing distance from the
catchment outlet
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the water levels in general. The further away the measurement loca-

tions are from the catchment outlet, the stronger are the fluctuations.

With regard to the distance from the catchment outlet, the QR code

measured water levels do not show any clear differences(Figure 5a).

In general, fast changes from low to very high water levels occur more

often in the QR water level time series (i.e., RE1).

The rolling correlation shows, that there is no clear relation of

Ody and QR measurements (Figure 5c). Exceptions are RE1 and K1.

At RE1, a relation of both measurements appears for most of the days.

In some locations (i.e., K1) even a negative relation exists, meaning

that the Ody water levels increase (decrease) while QR water levels

decrease (increase). Note, that R cannot be calculated for a standard

deviation (STD) of 0, which is the case when zero water level occurs

over longer time windows than a day (e.g., at E8, E6 and W4). We also

calculated R using a rolling mean with a window width of 1 day

(96 steps) and the daily means for each station (Figure 5c Rtot). For

daily resolution we find higher Rtot (e.g., at RO2B, RO2A, E6 and RE1).

At some stations however, the number of dates when QR

F IGURE 5 Data availability and rolling R for Ody and QR water levels. (a) The range of water levels measured with each of the methods.
(b) Percentage of available data per method and measurement station. (c) The rolling R for both measurement methods
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measurements and Ody measurements are available is very low

(61days only at RO2B, 65 days only at RO2A).

4.2 | Hydrographs

The hydrographs (15 min resolution) of the Ody and QR measure-

ments show the different temporal dynamics at different locations

along the stream reaches (Figure 6b–e blue lines. More hydrographs

are shown in the Figure A4 and A5 in Data S1). Ody data was cor-

rected using the mean of the minimum in the water level time series

for all stations, which was 5 cm (Figure 6c,e black points; see sec-

tion 2.3). In the Ody hydrographs at locations E8 in the Eschbach and

W4 in the Wagensteig tributaries, a time span with constantly (slope

close to zero) very low water levels below 5 appears several times in

between the peaks in the course of the study period (Figure 6c,e).

Water level rise often occurs shortly after rainfall events (Figure 6a),

as expected due to the fast reacting character of the hydrological sys-

tem (Uhlenbrook, 1999; Wissmeier & Uhlenbrook, 2007). The QR

hydrographs reflect the same general pattern as the Ody hydrographs

but with more outliers towards higher water levels. Longer time spans

with constantly low water levels are not visible in the QR hydro-

graphs. Instead smaller, high frequency fluctuations occur in between

the marked peaks while water levels rarely drop below 10 (Figure 6a,

c). The spread in the rolling STD is also noticeably smaller for the

water levels measured with the Ody method (water levels are less

scattered), regardless of the temporal resolution (15 min, hourly or

daily). All in all, the hydrographs show, that water levels measured via

QR tend to be overestimated in comparison to the Ody data (despite

QR measurements being limited to 73 cm), similar to what the range

of water levels in Figures 4 and 5 indicates.

The different results of Ody and QR code measurements can

be explained by looking at different error sources that are typical

for image-based measurements of water levels. After visual inspec-

tion of the images in our data set, we identified sediment accumula-

tion on the panel, light reflections and overexposure as the major

error sources (Figure A1 in Data S1). Overexposure occurs in loca-

tions, where the angle between QR code panel and the sun is par-

ticularly unfavourable at a certain time during the day. This effect

of back radiation can be enhanced by the colour of the panel back-

ground and higher roughness of the panel surface. Light reflections

are mostly caused in places, where the interaction of sun light and

leaves of trees or other plants create a pattern of light and shadow

on the panel. Sediment accumulation is caused by the deposit of

organic material on the panel at and below the water surface.

When the river bed dries, the deposits dry, remain on the panel and

conceal a part of the QR codes. The three error types are caused by

the local environment. We therefore focused on errors due to local

environment for pre-and post processing of the images (see

section 2.2).

F IGURE 6 Precipitation from
the DWD (a) and Hydrographs
with 15 min water levels of QR (b,
d) and Ody (c,e) measurements in
summer 2020 at two
measurement stations of the
Wagensteigbach and Eschbach
river reach. Corrected data is
displayed in black and the

Standard deviation is shaded. The
zero water level occurences and
the threshold is shown in red.
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4.3 | Zero level occurrences

With the Ody data set we analysed zero level occurrences for all sta-

tions along the tributaries. Zero level occurrences were selected from

the Ody data based on a threshold value and a rolling coefficient of

variation (see also section 2.3). In Figure 6b–e, the hydrographs, the

threshold and the selected zero level occurrences in the time series

(highlighted in red) are shown for the two locations with different

dynamics at the Eschbach tributary (E8) and the Wagensteigbach trib-

utary (W4) (see also Figure 3). E8 represents an example with particu-

larly long dry phases, whereas dry phases occuring at W4 are

significantly shorter and transition times from high to low water levels

are faster. As time lapse cameras and Ody loggers were closely

installed and the river bed and loggers are on the images in most

cases, it was assumed that the images from the time lapse cameras

can be used for validation of the zero level occurrences (see sec-

tion 2.2). However, due to the high temporal resolution of 15 min, the

visual inspection of images at locations where the riverbed is prone to

run dry frequently and for several days requires tremendous time and

effort. For E8, this would have required to visually inspect 8323

images. Therefore, a random choice of 10% of the images (corre-

sponding to zero for false positive and to no zero water level occur-

ences for false negative errors) were validated. The riverbed was

classified as dry (not dry) for 100% (48%) of the images at E8 and for

100% (85%) of the images at W4 corresponding to Ody zero water

levels (corresponding to no zero water levels). While false positive

errors remain sparse, there is a tendency for false negative errors to

occur at E8. A possible explanation is, that the catchment-specific

threshold chosen for zero water level selection leads to underestima-

tion of zero water level occurrences at this specific location. Despite

this underestimation at specific locations, the validation illustrates,

that the selection of zero level occurrences is robust in general

(Table 2 in Data S1).

Hence, an analysis and inter-comparison of the total zero level

occurrences per month of the different locations for the measurement

period between June and October 2020 is feasible. The same meth-

odology for zero water level filtering was applied to all other locations

in the catchment (see Figure A7 in Data S1. All locations with Ody

loggers are included as shown in Figure 3). An overview of the

monthly percentage of zero occurrence is given in Table 3 for the Ody

data set. The percentage of zero level occurrence is calculated based

on the total number of values N that was measured at each location

per month.

Zero water levels begin to occur in June 2020 and increase

throughout July and August as the severity of the hydrological

drought increases at a number of locations with zero flows over lon-

ger time periods (Figure 7). E8 was dry for 100% of the time in July,

68% in August and 66% in September (Figure 7). In September, zero

level occurrences start to decrease again and most locations recover

from the drying until October 2020, when E8 remains the only station

where the riverbed is still partially dry. In general, this pattern indi-

cates, that especially the northwestern stream reaches of the study

area are prone to drying out (see also Figure A2 in Data S1). Addition-

ally, a longitudinal drying pattern emerges along the Eschbach river, as

TABLE 3 Total number of measured values (N) and percentage of zero level occurences per month

Month 2020 May Jun Jul Aug Sept Oct May Jun Jul Aug Sept Oct

Stations N Percentage (%)

B2 434 2880 2976 2976 2880 1217 - - - - - -

D1 0 0 731 2976 2880 1212 - - - - - -

D2 533 2880 1496 1001 2081 593 - - - 76 2 -

D3 0 0 0 1011 2880 1202 - - - 9 54 -

E2 516 2880 2976 2976 2880 1208 - - 9 28 1 -

E4 0 0 1149 3912 2880 1206 - - 61 48 - -

E6 512 2880 2963 2975 2880 1203 - 23 58 43 19 -

E8 509 2880 2977 2975 2880 1201 - 36 100 68 66 33

IB1 123 2580 2666 2855 2880 1344 - - - 30 14 -

IB2 134 2580 3613 3342 2864 1344 - - 8 9 - -

K1 436 2882 2975 2976 2880 1215 - - - - - -

RE1 136 1494 2254 2976 2880 1220 - 19 - - - -

RO2A 250 2880 3761 4464 4320 2016 - 21 69 31 23 -

RO2B 250 2880 2976 3906 4320 2016 - - - - - -

W1 137 2580 3613 3531 2880 1344 - - - - - -

W2 156 2880 3614 4465 2952 1344 - 7 30 16 - -

W3 135 2580 3614 4464 4319 2016 - - 11 5 - -

W4 246 2880 2975 2976 2880 1310 - 0 33 29 24 -

ZA1 140 2880 3763 4464 4320 2016 - - - - - -
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downstream stations dry out first and upstream stations follow later

in July and August (Figure 7). Nevertheless, streams in the central part

of the catchment also show relatively high monthly percentage of

zero levels from July to September. The south western parts of the

catchment are least prone to drying out.

The mean monthly percentage of zero occurrences along the trib-

utaries represent typical but different longitudinal drying patterns

(Figure 7). Zero flows are mostly more frequent for the downstream

stations close to the outlet (distance in km along the river network)

and decrease in the upstream direction >8 km. The only exception is

RO2A, which is experiencing relatively high zero flow occurrence on

average even though it is located at medium distance from the outlet.

However, clear longitudinal trends do not occur at all stations and

change points in the longitudinal profiles indicate local influences on

hydrological dynamics. Regarding the temporal evolution during the

summer of 2020, four different patterns emerge with (1) relatively

high zero occurrence increasing throughout summer and decreasing

slightly towards the end of summer (E8, E6, E4, RO2A, W4); (2) high

zero occurrence at the beginning of summer and no or decreasing

zero occurrence afterwards (RE1); (3) zero occurrence increasing

towards the end of summer (D3, D2) and (4) relatively low number of

zero occurrence or only increasing slightly during summer (W3, W2,

IB1, IB2, B2). Type (4) patterns are mostly experienced by the

upstream stations, which indicates that they are in general less

affected by drying than downstream stations.

In order to estimate the difference between zero water levels

based on Ody and QR, the percentage change (
xody�xqrð Þ
jxodyj

�
100) between

Ody and QR zero water level occurrences was calculated (for the loca-

tions with data of both measurement methods; see also Figures A3

and A6 in Data S1). At most locations, the percentage of zero levels

measured with the Ody data surpasses the percentage of zero levels

measured with the QR data in July and August (strongest for the

Eschbach tributary with a percentage change of > 90%).

5 | DISCUSSION

5.1 | Technical challenges of QR code based WLL

In this this study we tested a new experimental setup to measure

water levels with the the QR method in a natural environment and

with a focus on zero flow identification. We used QR codes as fiducial

markers because of readily available software. However, other fiducial

markers may also be well suited for water level measurement

(Fiala, 2010; Kalaitzakis et al., 2021). Different error sources of QR

WLL limit the use and impact the uncertainty of the measurements

and led especially to overestimation of low water levels in comparison

to the Ody WLL method. Future application of QR WLL may improve

the setup based on our findings. Firstly, the accuracy of the QR WLL

is limited to (3 cm) due to the size and arrangement of the QR codes

on the panel. This accuracy is not sufficient for water level measure-

ments according to the guidelines of the federal state of Baden Würt-

temberg (LAWA, 2018) and to develop rating curves. Also, this

relatively coarse resolution leads to higher risk of positive outliers if

more than one QR code cannot be read. In general, the image resolu-

tion is dependent on the focal length of the camera or image, the size

of and the distance between the QR codes (Gilmore et al., 2013).

Thus, an application of the method in other streams with larger widths

may be limited, due to a decreasing image resolution with increasing

distance between the camera and the panel (even though this also

depends on the camera used). In our setting, a key aspect was to find

a low-cost solution, that is easily applicable and also holds potential

for the use in citizen science. It is therefore expected, that better pho-

tographic equipment and better image resolution could be beneficial

for QR-code recognition. Hence, the error sources that were identi-

fied with our measurements in a natural environment (see Figure A1

in Data S1) might be reduced with experiments with varying technical

setups in laboratory environment in order to find the smallest

F IGURE 7 Total monthly zero water level occurences per measurement location in percent for the Ody data and the longitudinal drying
patterns determined from the percentage of Ody zero water level occurences of each month. The colour and size of the markers represent the
percentage of zero water level occurences.

12 of 18 HERZOG ET AL.



resolution possible to deliver valuable results. Underwater detection

of fiducial markers might also be an issue, although this likely occurs

under very specific conditions (Čejka et al., 2019; dos Santos Cesar

et al., 2015). Problems with sediment accumulation and with different

illumination could be reduced using different panel coatings but those

need to be bio-compatible as they should not be harmful to other

organisms in the aquatic ecosystem. The occurrence of light reflec-

tions is also strongly controlled by smoothness of the panel surface.

The smoother the surface, the more reflections will occur. On the

other hand, a smooth surface provides less favourable conditions for

strong sediment accumulation than a rough surface. Light reflections

are also a result of the postion of the panel and the position of the

sun and therefore always occur for a certain duration and not perma-

nently. Few light reflections occur likely at the beginning (when the

disturbance due to sunlight starts) and at the end (when the distur-

bance due to the sunlight stops) of the time during which light reflec-

tions or overexposure occur in general. Problems with over exposure

and light conditions may also be avoidable if the geographical orienta-

tion of the measurement location is taken into account in locations

without much vegetation cover (a North oriented panel is likely not as

much affected by sunlight as a South, West or East oriented panel).

We have also shown that a distinction between different error

sources by means of simple, automatic image-processing techniques

is not yet possible (Figure 2). Such a method could either be applied

to pre-select images affected by error sources or to remove wrong

values in the time series using the time stamp of the erroneous image

afterwards. Using an automatic thresholding algorithm, it was possible

to identify overexposure and strong light reflections while it was not

possible to distinguish between normal conditions and few light

reflections or sediment accumulation. To reliably filter erroneous

images in a pre-or post-treatment, image-processing techniques still

need to be improved with a focus on different degrees of light reflec-

tions and sediment accumulation. An algorithm, that compares the

threshold of a particular image to the prior or following image taken

could probably be useful to identify the beginning and the end of the

light reflections automatically. Further refinement of the approach

could consist in using mean values of the pixel percentage Ppix for all

images belonging to the specific error groups and all normal images of

one station instead of using benchmark images only. The regions and

Ppix given in Table 2 are site-specific (here for the station E4) and

needs to be defined for every measurement location in order to finally

apply pre- or post-processing. A simple Otsu-thresholding algorithm is

not sufficient to filter erroneous images. There may be other image

processing techniques that could be applied but it was out of the

scope of this study to develop a new methodological approach.

Certainly, there is a need to compare the performance of differ-

ent algorithms. So far (Zhang et al., 2019) compared Order-Statistic-

Filtering (OSF) to Otsu-thresholding for water line detection and

achieved better results during foggy and rainy conditions but not

during sunny conditions (which are the main reason for light reflec-

tions). Up to date, image processing cannot compensate for refine-

ment of the experimental design to avoid the above-mentioned

problems.

Despite deliberate maintenance, several data gaps appear in our

QR dataset (Figure 5). A possibility to reduce maintenance cost for

both methods is to use cameras or data loggers with automatic data

transmission for long-term monitoring to simplify data collection,

troubleshooting and to avoid deficiency of the devices for longer time

periods. However this requires either more financial resources or

problems related to the energy consumption of self-made automatic

data loggers based on Raspberry PI systems need to be solved first.

For example, (Eltner et al., 2018) used a car battery to obtain data

with 30 min to 1 h resolution. Furthermore, data transmission with

such data loggers only works in areas with mobile coverage and such

sensors may be sensitive to temperature as well, as it was shown by

Elias et al. (2020) in combination with smartphone cameras.

5.2 | Measurement comparison

The quality and the amount of the data obtained with the QR method

is lower while the data handling is also more complicated in compari-

son to the data obtained with capacitive water level logging. We

therefore assumed that the data obtained with the Odyssey loggers is

more reliable for an analysis of zero levels. Specific for the measure-

ment of zero water levels, the combination of the general error

sources when using image based measurements and the use of QR

codes as fiducial marker may lead to an overestimation of low water

levels at a specific resolution. This should be kept in mind when devel-

oping such image based methods using fiducial markers further—

particularly for citizen science applications. While the use of QR may

reduce uncertainty due to subjectivity when interpreting the informa-

tion on stage height contained in images visually, the flow state can-

not be measured directly without making the assumption that the

presence of water automatically indicates flow as well (at least not

using an automatic algorithm). Thus, this is one of the shortcomings of

the Ody method with respect to application in IRES. Therefore, it is

essential to compare the Ody with other measurement methods.

Those could also be electrical resistance measurements, which have

also been successfully used for monitoring of the aquatic states of

IRES (Assendelft & van Meerveld, 2019; Bhamjee et al., 2016; Blasch

et al., 2002; Chapin et al., 2014), ultrasound and radar technologies,

which are also commonly used in hydrometry (LAWA, 2018) or even

image-based information if the flow state is assigned manually (Kaplan

et al., 2019, 2020).

Furthermore, the correlation analysis revealed partial contradic-

tory behaviour of QR and Ody measurement, which impeded comple-

mentary usage/merging of the two data sets. Nevertheless, the

combination of the logged water levels and the visual data contained

in the images from the QR-codes provides several advantages. On the

one hand, it allows to check for external confounding factors in the

river bed or the local environment that may influence measurements.

On the other hand, the information contained in the image was useful

for validation of the Ody measurements. The sensitivity of the Ody

measurements to soil moisture could also result in a time lag between

the true occurrence of zero water level and the actual recorded zero
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water level. This was not taken into account in this study but a com-

plementary use of Ody and image-based information also yields

potential for an identification of the time lag.

A huge effort for image processing is necessary in comparison to

the capacitive water level measurement. The quality of the result

dependends on the image processing software used. Advanced image

processing methods solve specific problems and are often developed

for medical purposes and measurements under stable (laboratory)

conditions. Kaplan et al. (2019) used the open source software ImageJ

(Schneider et al., 2012) and new image processing techniques and

machine learning algorithms (neural networks) are further developed

in order to identify specific patterns and might also deal with natural

conditions for hydrological purposes (Eltner et al., 2021; Ljubiči�c

et al., 2021). Convolution neural networks have been found to be

more robust to environmental conditions (Eltner et al., 2018, 2021), in

agreement with our findings that light conditions are, among others, a

major error source. We conclude that error sources have now been

well identified, but that the solutions from an image treatment or arti-

ficial intelligence perspective have not yet been solved. This implies

that up to date, particular care needs to be taken regarding the choice

of measurement locations when working with image-based technolo-

gies (particularly in environments with tree shading).

5.3 | Confidence and interpretation of zero level
occurrences

We successfully validated zero level occurrences based on the Ody

data using images of the river bed. False negative errors slightly

exceeded false positive errors, which indicates that zero water level

occurrences are likely underestimated and not overestimated.

The thresholds and constraints (CV <0.1 for 4 h) used are spe-

cific for the study catchment in general but they are not specific for

each measurement location. A generalization of these constraints for

catchments of larger size requires further research because the

dynamic behaviour of the river reach has to be taken into account

(long dry periods vs. short dry periods). In a specific location where

fast fluctuations are likely to occur, the time threshold should be

smaller. If it is likely that the riverbed dries over longer periods at

specific locations, a larger time threshold could be a better choice.

The use of generalized criteria for the whole catchment lead to a

higher amount of false positive errors at locations, where standing

water predominates (RO2A, E6, E4) and to false negative errors at

locations where zero water level predominates (E8) throughout the

summer months. A very particular case with remaining low water

levels during the whole summer was RO2A (according to visual

inspection of the images of the false positive validation this con-

cerned 100% of the images, where no flow and thus standing water

was found). The latter shows, that information on all aquatic states is

extremely relevant also for the identification of zero water level. In

general, the approach of zero water level selection could benefit

from a definition of thresholds and criteria specific to each stream

reach or location.

Zero level or intermittency occurrence has often been validated

using data from field mapping campaigns (e.g., Durighetto et al., 2020;

Godsey & Kirchner, 2014; Goulsbra et al., 2014; Jensen et al., 2017;

Jensen et al., 2019; Lovill et al., 2018; Olson & Brouillette, 2006;

Shaw, 2016; Shaw et al., 2017; Whiting & Godsey, 2016; Zimmer &

McGlynn, 2017). Our results show that validation with image-based

measurement methods is a promising alternative and helps to identify

potential uncertainties in consequence of the threshold chosen. The

validation of zero level occurrences also yields further potential for

the application of deep learning techniques to identify zero water

levels from the images. Under the assumption that zero water levels

measured with the Ody loggers are also represented by the informa-

tion contained in the images, similar data sets could be used as train-

ing and validation data.

Altogether, the analysis of zero level occurrences denotes, that

the obtained data set is suitable for an event based analysis of zero

water level events in our example catchment. We were able to iden-

tify the longitudinal drying patterns per month in different stream

reaches in the Dreisam valley between June and October 2020 and to

show that there are spatio-temporal differences of the occurrence of

zero water level at different locations (Figure 7). The spatiotemporal

evolution of the longitudinal drying suggests a top-down connectivity

in most of the river reaches (Goulsbra et al., 2014; Peirce &

Lindsay, 2015) because dry conditions occur earlier and at the down-

stream locations, while more water is still present in early summer and

also refills earlier at the end of summer at upstream locations

(Figure 7). This decreasing drying downstream is particularly observed

in the northern part of the catchment (Eschbach). The plots suggest

that the drying in the main river occurs later potentially due to the

lower contributions of the river reaches in late summer. However, the

interpretation of the spatio-temporal pattern of the main river is ham-

pered by the low amount of data at D3 in July (Table 3). Even though

less zero water levels occur in the upper tributaries (Ibenbach, Wagen-

steigbach, Rotbach), the pattern indicates bottom-up connectivity.

These differences could in part be explained by physiographic charac-

teristics. In the deep valley aquifer surface water- groundwater inter-

actions can cause changes from infiltrating to exfiltrating conditions.

In contrast, the Ibenbach, Wagensteig and Rotbach tributaries follow

narrow valleys with less groundwater for exchange but they are closer

to high-elevation headwaters with generally more subsurface contri-

butions from hillslopes (Uhlenbrook et al., 2002, 2004). The contradic-

tory situation at RO2A and RO2B despite the short distance is most

likely caused by water usage (there is a weir discharging water for

hydropower generation in vicinity of the stations). Exceptions with no

or very low amount of zero water levels are the downstream locations

at the Reichenbach (RE1), Brugga (B2) and Zastler (K1) tributary.

The drying patterns in Figure 7 are exemplary for this data set

obtained and allow the development of hypotheses on the hydrologi-

cal processes. However, while the results of this study are restricted

by the measurement uncertainties and by the different lengths of the

time series measured per month, they provide an outlook what could

be gained from a more complete longitudinal temporal profile in terms

of process understanding. To pursue a classification of the stream
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network into ephemeral, intermittent or perennial, there is a need to

collect data of the entire hydrological year and of streamflow data for

further analysis of the spatio-temporal behaviour of intermittent

streams (for example in order to use active stream length

vs. discharge relationships (Shaw et al., 2017; Zanetti et al., 2022) or

to differentiate between different origins of hydrological flow

(Zimmer & McGlynn, 2017)). For the measurement methods used in

this study, rating curves (the relationship to calculate discharge as a

function of recorded water levels) need to be developed to obtain dis-

charge data. The generation of such rating curves could be a next step

to estimate the contribution of each of the stream reaches to the main

river and to quantify the amount of water that is missing once differ-

ent stream reaches dry up. This is an essential step for the assessment

of different control factors for the observed spatio-temporal patterns,

especially in the context of an altered river system (with water

abstraction and hydroelectric power generation).

6 | CONCLUSION

This study evaluated the potential of an image-based measurement

method using time lapse cameras and QR-codes as fiducial marker

compared to a capacitive measurement method for measuring zero

water levels in a meso-scale catchment with temperate climate in

South Western Germany. We found, that the largest errors using

image-based measurements were due to the local environment. The

available open source QR code readers were not able to distinguish

between images affected by such errors (i.e., light reflections due to

patterns of light and shadow or due to the water surface and sedi-

ment accumulation) and a normal image. Where overexposure or sedi-

ment accumulation occurs, the information on the fiducial marker is

lost leading to wrong measurement results. Therefore, image proces-

sing can only be used in order to exclude the erroneous images prior

to QR code recognition with a software. We experienced, however,

that a simple algorithm for automatic thresholding is not sufficient in

order to account for error sources due to the natural environment.

Thereby, we conclude, that the choice of the measurement location is

extremely important when working with image-based methods, espe-

cially if stream reaches are partially tree-shaded. To effectively moni-

tor IRES using combinations of image-based measurements and other

methods, image-processing needs to be improved specific for errors

due to the natural environment. Due to the above mentioned error

sources and the high efforts for maintenance and data handling, the

data obtained with the image-based method could not be used alone

for an analysis of zero level occurrences. The analysis of zero level

occurrences between spring and autumn 2020 using the data of the

capacitive measurement method showed the potential of such mea-

surements to gain insight into drying patterns and processes. To

obtain information on longitudinal connectivity it was crucial to disen-

tangle the drying dynamics of the different tributaries. Monitoring

approaches should therefore at least focus on the scale of tributaries

(and not only on the catchment-scale) to study IRES processes in

detail.
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