
1.  Introduction
Several recent global ocean circulation models are formulated on unstructured triangular meshes (Danilov 
et  al.,  2017; Korn,  2017; Wang et  al.,  2014) or their dual, quasi-hexagonal meshes (Ringler et  al.,  2013). 
Unstructured-mesh models are also widely used in coastal applications (see, e.g., Androsov et al., 2019; Chen 
et al., 2003; Fringer et al., 2006; Zhang et al., 2016). Triangular and hexagonal meshes are also common in atmos-
pheric modeling (see, e.g., Dubos et al., 2015; Gassmann, 2013; Kühnlein et al., 2019; Skamarock et al., 2012; 
Wan et al., 2013). A question often arises on how to compare their resolution to that of the models formulated on 
regular quadrilateral meshes. In contrast to quadrilateral meshes, the number of cells and the number of vertices 
differ by the factor of two on triangular meshes, which creates an ambiguity. For a mesh composed of equilateral 
triangles the side of triangle is 𝐴𝐴

√

3 larger than the distance between the centers of triangles. Which of these two 
lengths is an analog of the cell side length of quadrilateral meshes in terms of resolution?

The concept of “resolution” discussed here is a geometrical one, that is, we are interested in the largest wave-
numbers or smallest wavelengths that characterize discrete data on a given triangular (or hexagonal) mesh. 
The geometrical resolution should not be mixed with effective resolution which characterizes the scales where 
dynamics are not affected by dissipation and numerical errors (see, e.g., Skamarock, 2004; Soufflet et al., 2016). 
The effective resolution depends not only on the mesh, but also on the details of discretization (including the 
placement of discrete variables) and numerical algorithm. While one is finally interested in the effective reso-
lution, its estimates are difficult (Soufflet et  al.,  2016) and require dedicated studies. Existing studies show 
that for finite-volume models the effective resolution is much coarser than the geometrical resolution (see, e.g., 
Skamarock,  2004; Soufflet et  al.,  2016). A rigorous definition of geometrical resolution in this work cannot 
compensate for the lack of dedicated studies on effective resolution for common finite-volume discretizations 
on triangular meshes. However, it reduces the ambiguity occurring when one tries to relate simulations on trian-
gular and quadrilateral meshes, or to distinguish between eddy resolving and coarse meshes as suggested by 
Hallberg (2013).

In fact, the question on geometrical resolution is addressed in numerous textbooks on solid state physics (see 
e.g., Kosevich, 2005). This work only repeats the known answers as applied to modeling on triangular meshes.
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The key concept is that of mesh translations that leave the mesh unchanged. 
They define a primitive unit cell (unit cell further), which is the smallest 
repeating element of the mesh. The invariance of mesh to these translations 
leads to a reciprocal lattice in wavenumber space, and wave vectors become 
defined up to translations along the reciprocal lattice. Section 2 introduces 
the notions of unit cell, reciprocal lattice, and the first Brillouin zone of trian-
gular mesh. The first Brillouin zone defines the maximum resolved wave-
number. The same notions will be valid for dual Voronoi (hexagonal) meshes 
obtained by connecting circumcenters of triangles.

The area of unit cell turns out to be equal to that of median-dual control 
volume on triangular meshes or hexagonal cell on dual meshes, that is, the 
unit cells are directly related to vertex (cell) degrees of freedom (DOFs) of 
finite-volume discretizations on triangular (dual hexagonal) meshes.

The placement of discrete DOFs at vertices, cells or edges results in different 
numbers of discrete DOFs because the ratio of vertices to cells to edges is 
approximately 1:2:3 on triangular meshes and 2:1:3 on dual meshes. A naive 
expectation is that the resolved wavenumbers become larger if the DOFs are 
placed on cells or edges. This expectation lies behind such definitions of 
resolution as the square root of triangle area for cell placement of DOFs on 
triangular meshes, in analogy to quadrilateral meshes, where this is obviously 
the case. Sections 2 and 3 explain that the resolved wavenumbers and hence 
geometrical resolution for the cell and edge placement on triangular meshes 
are defined by the reciprocal lattice and are the same as for the vertex place-

ment. Instead of larger wavenumbers, extra DOFs on cells or edges lead to the formation of numerical modes. 
Generally these modes are artifacts of discretizations. However, despite their presence and unchanged geomet-
rical resolution, the cell or edge placement may ensure more accurate representation of physical mode, that is, a 
higher effective resolution, because of smaller numerical stencils.

The concluding section concentrates on practical aspects.

2.  Resolved Wave Numbers
Resolved wave numbers are related to the smallest translationally invariant element of the mesh. Consider a 
regular infinite triangular mesh composed of equilateral triangles in plane geometry. We introduce coordinates x, 
y with origin at one of the mesh vertices and, for definiteness, orient the triangles so that all vertices are obtained 
through the set of translations z = {zm,n},

𝐳𝐳𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝐚𝐚1 + 𝑛𝑛𝐚𝐚2, 𝐚𝐚1 = (1, 0)𝑎𝑎𝑎 𝐚𝐚2 = (1∕2,
√

3∕2)𝑎𝑎𝑎� (1)

where a is the triangle side length, and m, n are integer numbers. A rhombus, defined by vectors a1 and a2, is a 
unit cell of the triangular lattice (see Figure 1). The selection of vectors a1 and a2, and therefore the selection of 
rhombi is not unique, however all possibilities correspond to the same set of translations z. Note that one needs 
to combine a pair of nearest triangles, one pointing upward/north and one pointing downward/south in the plane 
of Figure 1, to obtain a unit cell. Instead of this triangular mesh one may consider a dual mesh, obtained by 
connecting circumcenters of triangles with a common edge (the Voronoi tesselation). One deals with the same 
set of translations z in these cases.

Consider a Fourier harmonic 𝐴𝐴 𝐴𝐴 = 𝑇𝑇 𝐤𝐤𝑒𝑒
𝑖𝑖𝐤𝐤⋅𝐱𝐱 of scalar field T, where 𝐴𝐴 𝑇𝑇 𝐤𝐤 is the amplitude, k = (k, l) is the wave vector, 

and x the position vector. For simplicity, we sample this field at vertices of triangular mesh. The values of this 
field at the vertices xm,n = zm,n will be the same if k is replaced by k + q, where q is such that

𝑒𝑒
𝑖𝑖𝐪𝐪⋅𝐳𝐳

= 1.�

As a consequence, if the vertex values of T are used to find the wave vector k, this can be done only up to vectors 
q. The equation above implies that q is a set of wave vectors {qr,s} in the wavenumber space,

Figure 1.  Triangular mesh, a unit cell, the reciprocal lattice and the first 
Brillouin zone. Left: Vectors a1 and a2 describe possible translation and define 
a unit cell of triangular mesh (the orange rhombus). Right: In k-space, this 
leads to the set {qr,s} of wavevectors (blue circles) creating a reciprocal lattice. 
A Voronoi cell of this lattice is the first Brillouin zone (the yellow hexagon). 
Wavevectors in reciprocal unit cell (orange rhombus) can be brought to the 
first Brillouin zone by translations q. The triangle formed by dashed lines and 
the edge of hexagon, together with five similar triangles (not shown) form the 
second Brillouin zone.
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𝐪𝐪𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝐛𝐛1 + 𝑠𝑠𝐛𝐛2,� (2)

where r and s are integer numbers and the vectors b1 and b2 are such that

𝐚𝐚𝑖𝑖 ⋅ 𝐛𝐛𝑗𝑗 = 2𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 ,�

which gives

𝐛𝐛1 = (2𝜋𝜋∕𝑎𝑎)(−1, 1∕
√

3), 𝐛𝐛2 = (2𝜋𝜋∕𝑎𝑎)(0, 2∕
√

3).�

here, δij is the Kronnecker delta, and i, j = 1, 2. The lattice formed by the points qr,s is called a reciprocal lattice 
(Figure 1). A unit cell of the reciprocal lattice is a rhombus formed by b1 and b2 (painted orange in the right 
panel of Figure 1). Same as with the physical space, the unit cell is not uniquely defined, however all possibilities 
correspond to the same reciprocal lattice.

Because the wave vector k is defined up to qr,s, it is sufficient to consider k only within a unit reciprocal cell 
containing q0,0. However, a rhombic unit cell does not include all directions of wave vector, and is not suited to 
answer the question on geometrical resolution. One needs a set of k-points that are closer to q0,0 than to any other 
qr,s. A polygon bounding this set is the Voronoi cell around q0,0. The cell is referred to as the first Brillouin zone 
of the reciprocal lattice. It is colored yellow in Figure 1. The wave vectors in the unit cell (orange) and in the first 
Brillouin zone (yellow) either coincide or differ by a wave vector from q and are indistinguishable on the trian-
gular mesh. The first Brillouin zone contains wavenumbers that are closer to q0,0 than to any other qr,s and thus 
defines maximum resolvable wavenumber. The Voronoi tesselation is produced by drawing lines perpendicular 
to the edges of triangular mesh through the edge midpoints. These lines also bound triangles lying outside the 
first Brillouin zone adjacent to its edges (one is shown by dashed lines in Figure 1). These triangles cover the 
first Brillouin zone if displaced by appropriately chosen qr,s. Taken together, they are referred to as the second 
Brillouin zone.

The longest wavevector bounded by the first Brillouin zone depends on the direction (see Figure 1). The worst 
case corresponds to the directions of vector b1 or b2:

|𝐤𝐤|max = |𝐛𝐛1|∕2 = 2𝜋𝜋∕(
√

3𝑎𝑎) = 𝜋𝜋∕ℎ,�

that is, the geometrical resolution of equilateral triangular mesh is defined by the height of triangles h. The reso-
lution is higher in the direction of a1, but one is using the radius of the inscribed circle assuming isotropy.

At this point it is instructive to apply the same reasoning to a quadrilateral mesh with a cell side a. We obviously 
have a1 = (1, 0)a, a2 = (0, 1)a, and b1 = 2π(1, 0)/a, b2 = 2π(0, 1)/a, and conclude after drawing the Voronoi cell 
around q0,0 that the worst case is |k|max = π/a. This is what is commonly referred to as the maximum wavenumber 
on a quadrilateral mesh.

On a regular triangular mesh obtained by splitting quadrilateral cells in two triangles, one will continue to deal 
with two lattice vectors, the unit cells and reciprocal lattice of the quadrilateral mesh. The maximum wavenumber 
will be π/a, same as for the quadrilateral mesh. Although we do not do it here, one can easily generalize compu-
tations to arbitrary regular triangular meshes.

The geometrical resolution is defined by the reciprocal lattice, which in turn is defined by the set of translations 
z. The latter does not depend on the placement of discrete DOFs unless the placement and discretization formally 
corresponds to a finer mesh. (For example, placing DOFs at vertices and mid-edges and treating all these DOFs 
similarly corresponds to a finer mesh obtained by splitting each triangle in four by connecting mid-edges.) As a 
result, the geometrical resolution is independent of the placement of DOFs if z is not redefined.

3.  What Happens if DOFs Are Placed on Triangles
There are more cells (triangles) and edges than vertices on triangular meshes, and the statement at the end of the 
previous section is counterintuitive. The intention of this section is to explain what happens using an example of 
cell placement.
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Figure  2 shows the nearest neighborhood of triangles pointing upward (u 
triangles) and downward (d triangles) in the plane of Figure 2. Because of the 
difference in the orientation of the stencil of neighbors, all discrete operators 
depend on whether they are computed on u or d locations. For definiteness, 
we consider the Laplacian of scalar field T given at cell locations.

For an equilateral triangular mesh the discrete Laplacian operator defined on 
the stencil of nearest neighbors is written as

(𝖫𝖫𝑇𝑇 )𝑐𝑐 =
4

𝑎𝑎2

∑

𝑛𝑛∈ (𝑐𝑐)

(𝑇𝑇𝑛𝑛 − 𝑇𝑇𝑐𝑐) ,�

where 𝐴𝐴  (𝑐𝑐) is the set of (three) triangles neighboring triangle c (sharing 
edges). For Figure 2, 𝐴𝐴 (𝖫𝖫𝑇𝑇 )𝑢𝑢𝑐𝑐 =

(

4∕𝑎𝑎2
)

(𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 − 3𝑇𝑇𝑐𝑐) for the left panel, 
and 𝐴𝐴 (𝖫𝖫𝑇𝑇 )𝑑𝑑𝑐𝑐 =

(

4∕𝑎𝑎2
)

(𝑇𝑇4 + 𝑇𝑇5 + 𝑇𝑇6 − 3𝑇𝑇𝑐𝑐) for the right panel. It can be readily shown that the expression for the 
Fourier symbol of 𝐴𝐴 𝖫𝖫 depends on the kind of triangle.

Indeed, let us take T as a single Fourier harmonic 𝐴𝐴 𝐴𝐴 = 𝑇𝑇 𝐤𝐤𝑒𝑒
𝑖𝑖𝐤𝐤⋅𝐱𝐱 . Inserting this expression in the expressions for the 

Laplacian, we find

(𝖫𝖫𝑇𝑇 )𝑢𝑢𝑐𝑐 =
(

4∕𝑎𝑎2
) (

−3𝑇̄𝑇𝐤𝐤 + 𝑉𝑉 𝑇̄𝑇𝐤𝐤

)

𝑒𝑒
𝑖𝑖𝐤𝐤⋅𝐱𝐱𝑐𝑐 ,� (3)

(𝖫𝖫𝑇𝑇 )𝑑𝑑𝑐𝑐 =
(

4∕𝑎𝑎2
) (

−3𝑇̄𝑇𝐤𝐤 + 𝑉𝑉
∗
𝑇̄𝑇𝐤𝐤

)

𝑒𝑒
𝑖𝑖𝐤𝐤⋅𝐱𝐱𝑐𝑐 ,� (4)

where V = e −2ilh/3 + e −ika/2 + ilh/3 + e ika/2 + ilh/3 and the asterisk denotes complex conjugate. The exponents appearing 
in V take into account the phase differences between triangle c and its neighbors.

In the expressions for the Laplacian Equations 3 and 4 we factored out the phase multiplier 𝐴𝐴 𝐴𝐴
𝑖𝑖𝐤𝐤⋅𝐱𝐱𝑐𝑐 . This would have 

ensured that the amplitude of the Laplacian is independent of location if we were performing similar computa-
tions for quadrilateral cells. However, the complex-valued amplitudes of the Laplacian operator in Equation 3 
and 4 differ at u and d locations because V is complex-valued, so that V ≠ V*. This means that the field of 
Laplacian due to a single Fourier harmonic is double-valued if we factor out the phase multiplier 𝐴𝐴 𝐴𝐴

𝑖𝑖𝐤𝐤⋅𝐱𝐱𝑐𝑐 : the result 
depends on whether it is assessed on u or d triangles. We would have arrived at the same conclusion using Taylor's 
series expansion of the discrete operators at u and d triangles or considering other differential operators.

As a consequence of this behavior, any evolving discrete field T defined on triangles will contain a mode of vari-
ability between u and d triangles. An analog of single Fourier harmonic in this case is the pair

𝑇𝑇
𝑢𝑢

𝑐𝑐 = 𝑇𝑇
𝑢𝑢

𝐤𝐤𝑒𝑒
𝑖𝑖𝐤𝐤⋅𝐱𝐱𝑐𝑐 , 𝑐𝑐 ∈ 𝑢𝑢

,�

𝑇𝑇
𝑑𝑑

𝑐𝑐 = 𝑇𝑇
𝑑𝑑

𝐤𝐤𝑒𝑒
𝑖𝑖𝐤𝐤⋅𝐱𝐱𝑐𝑐 , 𝑐𝑐 ∈ 𝑑𝑑

,�

where 𝐴𝐴 𝑢𝑢 and 𝐴𝐴 𝑑𝑑 are the subsets of triangles with the same orientation and 𝐴𝐴 𝑇𝑇
𝑢𝑢

𝐤𝐤 and 𝐴𝐴 𝑇𝑇
𝑑𝑑

𝐤𝐤 are respective amplitudes. 
Now note that in the computations of the Laplacian above, the result on a u location depends on the neighboring 
values of T on d locations and vice versa.

Thus, the Fourier symbol is the matrix

�� =
(

4∕�2
)

⎛

⎜

⎜

⎝

−3 �

� ∗ −3

⎞

⎟

⎟

⎠

.�

It connects the amplitudes of Laplacian operator at u and d locations with the amplitudes of Fourier harmonic,

⎛

⎜

⎜

⎝

(𝖫𝖫𝑇𝑇 )
𝑢𝑢

𝐤𝐤

(𝖫𝖫𝑇𝑇 )
𝑑𝑑

𝐤𝐤

⎞

⎟

⎟

⎠

= 𝖫𝖫𝐤𝐤

⎛

⎜

⎜

⎝

𝑇𝑇
𝑢𝑢

𝐤𝐤

𝑇𝑇
𝑑𝑑

𝐤𝐤

⎞

⎟

⎟

⎠

.�

Figure 2.  The stencils of neighbors of u and d triangles are oriented 
differently, leading to different discrete differential operators.
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The eigenvalues of 𝐴𝐴 𝖫𝖫𝐤𝐤 are

𝜆𝜆± =
(

4∕𝑎𝑎2
)

(

−3 ±
√

𝑉𝑉 𝑉𝑉 ∗

)

,� (5)

with the eigenvectors 𝐴𝐴 𝐯𝐯+ =
(
√

𝑉𝑉 𝑉

√

𝑉𝑉 ∗

)𝑇𝑇

 and 𝐴𝐴 𝐯𝐯− =
(
√

𝑉𝑉 𝑉−
√

𝑉𝑉 ∗

)𝑇𝑇

 . 
One readily finds that λ+ tends to −k 2 −l 2 if ka, lh → 0, that is, it approx-
imates the Fourier symbol of the continuous Laplacian operator. The other 
eigenvalue tends to −24/a 2; it does not provide an approximation. The 
first eigenvector tends to v+ → (1,1) T for small wavenumbers. In contrast, 

𝐴𝐴 𝐯𝐯− → (1,−1)𝑇𝑇 =
(

1, 𝑒𝑒𝑖𝑖𝑖𝑖
)𝑇𝑇  for small wavenumbers, that is, it corresponds to a 

checkerboard pattern (oscillations within unit cells). This pattern is generally 
well controlled in numerical applications.

One can readily see that λ+ ≠ λ− at the boundary of the first Brillouin zone 
(except for the corners), as illustrated in Figure 3 (the dark gray and black 
lines). Because of this gap, λ− cannot be a mapping from the second Brillouin 
zone to the first one and is a numerical mode. (If λ+ and λ− and the related 
eigenvectors were coinciding at the boundary of the first Brillouin zone, the 
distinction between u and d amplitude would be redundant.)

Thus by placing DOFs on cells instead of vertices (and doubling the number 
of discrete DOFs) one does not make the geometrical resolution finer, but 
creates a numerical mode in addition to the physical one. The edge placement 

would lead to similar consequences. Discretizations of primitive equations involve many additional details which 
are not considered here. The cell or edge placement of DOFs is used in finite-volume models based on staggered 
discretizations. For all them the geometrical resolution is determined by the sets of translations z and q in the x- 
and k-space respectively, same as for the collocated discretization by Kühnlein et al. (2019).

There are two related questions. First, if one is loosing DOFs to numerical modes for cell or edge placement, 
what does one gain using discretizations relying on cell or edge placement on triangular meshes? Second, what 
happens if one opts for high-order discretizations, for example, based on high-order continuous or discontinuous 
Galerkin methods. Such discretizations associate many discrete DOFs with each mesh element, and an expecta-
tion is that they would resolve larger wavenumbers.

The answer to the first question is that despite losing DOFs to numerical modes, one may get a more accu-
rate physical mode than with the discretizations using the vertex placement. In addition to expected differences 
between staggered and collocated discretizations one more reason is that numerical stencils for differential oper-
ators imply smaller distances between the DOFs in such cases. Staying in the context of the example considered 
in this section, Figure 3 compares the eigenvalues of the discrete Laplacian for the cell-based DOFs Equation 5 
with that of vertex discretization. The nearest-neighbor Laplacian in this case is approximated as

(𝖫𝖫𝑇𝑇 )𝑣𝑣 =
(

1∕2ℎ2
)

(

−6𝑇𝑇𝑣𝑣 +
∑

𝑛𝑛∈ (𝑣𝑣)

𝑇𝑇𝑛𝑛

)

,�

where v is the vertex index, and 𝐴𝐴  (𝑣𝑣) is the set of vertices neighboring v. Its Fourier symbol is λ = (1/2h 2)(2 cos
(ka) + 2 cos(ka/2 + lh) + 2 cos(−ka/2 + lh) − 6). Despite 𝐴𝐴 (𝖫𝖫𝑇𝑇 )𝑣𝑣 relies on more discrete values, the eigenvalue for 
vertex placement (light gray curve) is less accurate than λ+ (dark gray curve).

It is therefore the effective resolution, and not the geometrical resolution that might be improved by using cell 
or edge placement provided that numerical modes are controlled. The example above is just an illustration that 
the effective resolution is affected by the placement of DOFs. We will not discuss this topic any further; it 
requires special studies and an account for numerous additional details (see, e.g., Soufflet et  al.,  2016). For 
some further details on discretizations and numerical modes see, for example, Le Roux (2012) and Danilov and 
Kutsenko (2019) and references therein.

Figure 3.  The dimensionless eigenvalues a 2λ (light gray, vertex placement), 
and a 2λ+ and a 2λ− (dark gray and solid black respectively, cell placement) of 
discrete Laplacians. k is directed at the angle of π/6 to the x-axis. The dashed 
line plots the continuous case −a 2(k 2 + l 2). There is a gap between λ+ (dark 
gray) and λ− (black) at the boundary of the Brillouin zone 𝐴𝐴 |𝐤𝐤|𝑎𝑎 = 2𝜋𝜋∕

√

3 . 
Since λ− is disconnected from λ+, it corresponds to the numerical mode of cell 
placement.
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Only a sketch of the answer is provided for the second question. Extra DOFs inside mesh unit cells will generally 
lead to additional modes of variability unless the discretization formally implies a smaller unit cells. However, 
for higher-order discretizations, the gaps between some of the modal eigenvalues at the boundary of the first Bril-
louin zone might become small. Such additional modes would become close to higher-wavenumber contributions 
from higher Brillouin zones into the first Brillouin zone (see, e.g., Cotter & Ham, 2011). They may imply subcell 
resolution if they are accurate enough. The question is whether (or when) the presence of gaps can be ignored. It 
requires further studies for particular cases.

4.  Conclusions
The geometrical resolution of triangular meshes is rigorously defined by the size of the first Brillouin zone and 
corresponds to the wavenumber π/h, where h is the triangle height, for meshes based on equilateral triangles. 
It corresponds to π/a for meshes obtained by splitting quadrilateral cells with side a in a regular way. Thus h 
or a, respectively, have to be compared to the size of quadrilateral cells on regular quadrilateral meshes. Since 
triangles on meshes used in practice commonly tend to equilateral, we provide some further detail assuming that 
we deal with such meshes. The discussion will also be relevant for dual (hexagonal) meshes, in which case a is 
the distance between cell centers. Note that the analysis of Section 2 can be applied to arbitrary regular meshes.

Given quadrilateral and triangular meshes with the cell side a, the maximum wavenumber for an equilateral trian-
gular mesh is 𝐴𝐴 2∕

√

3 times higher than on the quadrilateral mesh. If S is the area of the computational domain, it 

will be covered by Nq = S/a 2 quadrilateral cells and 𝐴𝐴 𝐴𝐴𝑡𝑡 = (2∕
√

3)𝑆𝑆∕𝑎𝑎2 unit cells of triangular mesh. For Nt = Nq, 

a triangular mesh provides 𝐴𝐴 (2∕
√

3)
1∕2

 better resolution (about 9%) than its quadrilateral counterpart. The reason 
is a higher mesh symmetry. Thus, quadrilateral and triangular meshes are approximately equivalent in terms of 
geometrical resolution if they have close numbers of vertices, not cells (but cells have to be used to compare 
hexagonal and quadrilateral meshes). It is customary to characterize the size of computational triangular meshes 
by the number of vertices. For orientation, a typical 1/4° quadrilateral ocean mesh contains about 1M wet verti-
ces, and there are about 9M wet vertices on a 1/12° quadrilateral mesh.

If a triangle side (or the distance between cell centers on dual meshes) is used to estimate the resolution, the 
estimate is too conservative, because a ≈ 1.16h for equilateral triangles. On the other hand, if the square root of 
triangle area is used as a measure of resolution for a discretization placing DOFs on cells, it gives the estimate 
3 −1/4h ≈ 0.75h which is 25% finer than the real resolution. The discrepancy becomes even worse if the distance 
between triangle centers is taken (2h/3). A rather good estimate is provided by the square root of the area of unit 
cell (twice the triangle area or area of the dual cell) which is only 9% coarser than the real resolution. While 
each of such estimates can be acceptable under certain circumstances, they can be misleading in a general case 
when triangular meshes are compared to quadrilateral meshes. For example, with the definition of resolution as 
a square root of triangle area, a triangular mesh with triangle side 15.2 km (and height 13 km) is characterized 
as a 10 km mesh. The computational effort needed to run simulations on a quadrilateral meshes with nominal 
resolutions of 10, 13, or 15.2 km is quite different.

Although the notion of geometrical resolution could help to distinguish between coarse, eddy-permitting or eddy 
resolving meshes (see, e.g., Hallberg, 2013), and to approximately relate simulations carried out on meshes of 
different type (quadrilateral, triangular or hexagonal), it cannot be interpreted as a measure of real, effective reso-
lution. For low-order discretizations as in the models mentioned in the Introduction, the effective resolution is 
much coarser than the geometrical one (Soufflet et al. (2016) report wavelengths of 10a against 2a, where a is the 
cell side). Soufflet et al. (2016) demonstrate that the effective resolution is sensitive to many details of discretiza-
tion, including time stepping and the order of advection schemes. Models formulated on triangular or hexagonal 
meshes come with additional factors like numerical modes and obviously different ratios between scalar and 
vector DOFs than on quadrilateral meshes. The central question for future research is on the effective resolution 
of the components of climate models formulated on triangular or hexagonal meshes.
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