
1.  Introduction
Methane formed in freshwater lakes is emitted to the atmosphere by different pathways, mainly by diffusion, 
ebullition, or plant-mediated release (Bastviken et  al.,  2011). However, gases may be trapped or accumulate 
during the ascension due to floating macrophytes (Attermeyer et al., 2016), ice-covers (Greene et al., 2014), ther-
moclines (Donis et al., 2017), or chemical gradients found in volcanic (Descy et al., 2012) and other meromictic 
lakes (Boehrer et  al.,  2017). In meromictic lakes, that is, permanently stratified lakes, chemical stratification 
causes a nonrecirculating monimolimnion that prevents the release of gases and nutrients into the upper water 
layers, and thus, to the atmosphere. The water body above the chemocline, the mixolimnion, may stratify into epil-
imnion and hypolimnion and may recirculate seasonally (Boehrer et al., 2017; Boehrer & Schultze, 2008). Due to 
the lack of mixing, oxygen may get depleted in the deeper layers of the hypolimnion of holomictic and meromictic 
lakes at the end of the summer stratification, and is usually depleted in the monimolimnion of meromictic lakes. 
Under anoxic conditions, anaerobic decomposition processes dominate, with carbon dioxide (CO2) and methane 
(CH4) being key products. In temperate latitudes, CO2 and CH4 concentrations reach on average < 1 mmol L −1 
in the hypolimnion of holomictic lakes (Juutinen et al., 2009), whereas these gases may accumulate to enormous 
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concentrations in the monimolimnion of meromictic lakes. The most prominent example is the meromictic Lake 
Kivu (Rwanda/Democratic Republic of the Congo); extreme gas concentrations originating from the nearby 
volcano Mount Nyiragongo (last eruption: May 2021) are stored in the deep water layers (ca. 85–100 mmol L −1 
CO2 and ca. 16–19 mmol L −1 CH4 dissolved in 450 m depth, Boehrer et al., 2019), and the increasing population 
in the catchment results in eutrophication and a continuous accumulation of biogenic methane (2.8 ± 1.8 mol 
CCH4 m −2 yr −1) (Nayar, 2009; Pasche et al., 2011). This resource is used to generate electricity via the KivuWatt 
Power Station, with 26 MW installed and 75 MW planned (Contour Global, www.contourglobal.com; Rwanda 
energy group, www.reg.rw, May 2021).

The occurrence of meromixis depends on (a) the morphometry of a lake, (b) its wind fetch, and (c) sufficient 
accumulation of ions in the deep water body to assure stable density gradients, leading to a chemical stratifica-
tion. Regarding lake morphometry, the lake needs to have a large maximum depth relative to the fetch length, 
that is, the horizontal distance or direction over which the wind blows. Sinkholes caused by the collapse of cover 
material into subterranean cavities are one potential reason for a morphometry causing meromixis. The area of 
Thuringia in central Germany experiences sudden sink falls regularly, due to cavities originating from natural 
processes, such as the dissolution of ground material of the former Zechstein Sea, and from anthropogenic activ-
ities, such as former salt mining.

Chemical stratification can be caused by groundwater inflows, among other things, if the ion concentration 
of the groundwater is exceptionally high and its exfiltration occurs in the deep areas of the lake. For example, 
water-filled former mining pits tend to become meromictic (Boehrer & Schultze, 2008). The absence of clogging 
layers in these young lakes facilitates the seepage of high ion concentrations from oxidized sediments into the 
bottom waters and the formation of intense chemical gradients. These ion-rich (high salinity) bottom waters 
have a much higher density than fresher water and remain permanently close to the lake bottom. Recently, Horn 
et al. (2017) described for the mining pit lake Vollert-Sued (Germany) ebullitive release rates of approximately 
10 mmol m −2 d −1 CH4 from supersaturated, deep waters into the atmosphere, and Boehrer et al. (2016) reported 
2.5 l of gas being dissolved in 1 L of water in the deep layers of the Guadiana pit lake in Southwest Spain. The 
most common examples for meromictic lakes, however, are found in volcanic craters, where CO2 originates from 
a mix of mantle fluids and thermometamorphic reactions with limestone (Cabassi et al., 2013). In the volcanic 
lakes Nyos and Monoun (both Cameroon), limnic eruptions released vast amounts of accumulated CO2 to the 
atmosphere and tragically caused the death of approximately 1,800 people, making these case studies globally 
well-known disasters (ISSA et al., 2013).

Meromictic lakes can contain the highest greenhouse gas concentrations in lakes worldwide, and the release of 
greenhouse gases to the atmosphere via limnic eruptions is far more impactful than the emission by diffusion, 
ebullition, and gas release during lake overturn. To the best of our knowledge, carbon dioxide and methane 
accumulation in meromictic lakes has mainly been studied in volcanic, mining, or tropical and subtropical lakes, 
whereas natural, nonvolcanic lakes in temperate regions have received little attention. The aim of the present 
study is to investigate and understand the carbon dioxide and methane dynamics in the meromictic Lake Burgsee 
(Thuringia, Germany), a naturally formed water-filled sinkhole. Furthermore, Lake Burgsee is an urban lake 
with a long eutrophication history and exposed to high loads of organic matter input, which intensified the accu-
mulation of greenhouse gases in its monimolimnion. For that purpose, we determined the concentrations of the 
greenhouse gases methane and carbon dioxide in the water column, as well as the methane production potential 
in the sediment and the methane emissions to the atmosphere.

2.  Material and Methods
2.1.  Study Site

Lake Burgsee is a small (surface area 10.3 ha), circular, eutrophic lake located in the spa town Bad Salzungen 
in Thuringia, Germany. While more than 80% of the lake is shallow (less than 4.3 m depth), there is a approxi-
mately 24 m deep sinkhole in the north-western part. The lake was formed approximately 10,000–15,000 years 
ago, but  14C dating indicates that the sinkhole is much younger (Bauriegel, 2004). Local folktales suggest that 
the strong earthquake in Lisbon in 1755 caused the ground to collapse on the north-western shore line of Lake 
Burgsee (Bauriegel, 2004; Ruck, 2017), and thus created the lake's sinkhole, but we could not find any formal 
evidence to confirm this. However, the area of Thuringia is prone to collapsing grounds and experiences 5–50 
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sinkholes per year, due to the subrosion of the prehistoric Upper Permian Zechstein by groundwater (https://www.
planet-wissen.de/natur/landschaften/erdfaelle/erdfaelle-thueringen-100.html). In Bad Salzungen, a rock salt layer 
lies in 130–150 m depth and feeds the local spa (Bauriegel, 2004). Lake Burgsee has no permanent inflows or 
outflows, except for several rain water drains, which end in the lake, and an above-ground outflow, which is 
almost always dry. The salinity gradient in combination with the shape and depth of the lake established a moni-
molimnion in the sinkhole and a meromictic water body.

In earlier times, wastewater from the spa laundry and wastewater from a large slaughterhouse were discharged 
directly into Lake Burgsee. Poor water quality (eutrophy) and unpleasant odors emitted under certain weather 
conditions from the lake have long been a nuisance due to the lake's central location within the city, particularly 
to the adjacent spa resorts. In order to improve water quality, external phosphate elimination using polyaluminum 
chloride (PAC) and iron(III) chloride sulfate (Ferrifloc) was carried out from 2000 to 2002. Water from the sink-
hole with its high chloride concentrations was pumped into the elimination plant, treated to remove P and returned 
into the epilimnion. Thus, most of the chemical gradient, that is, most of the monimolimnion was destroyed. Only 
the lowest approximately 0.5 m of the monimolimnion remained. Since 2002, phosphate (SRP—soluble reactive 
phosphorus) and chloride (Cl −) concentrations above ground increased again (SRP: from 17,650 ± 328 μg L −1, 
n = 5 in 1999–2000, to 311 ± 36 μg L −1, n = 2 in 2002 to 11,278 ± 700 μg L −1, n = 5 in 2011–2018; Cl −: from 
754 ± 57 mg L −1, n = 2 in 1999–2000 to >103 mg L −1, n = 1 in 2002 to 397 ± 31 mg L −1, n = 5 in 2011–2018; 
in 23 m depth, own measurements), thus re-establishing the chemocline and the monimolimnion.

2.2.  Sampling and Analytics

Preliminary gas analyses of water samples from the sinkhole have been performed in September 2017, and subse-
quently a more detailed investigation of the CH4 dynamics in Lake Burgsee was conducted in September 2018. 
While the main investigation concentrated on the dynamics in the sinkhole in both years, some additional samples 
were taken in 2018 at a shallow site (approximately 3.3 m depth) in the center of the lake (Figure 1).

Water samples were taken by different methods:

1.	 �A submersible pump (model Geo-Duplo-Plus, Comet, Germany) was attached to a multiprobe (YSI 6600, 
Yellow Springs Instrument Inc., OH, USA), lowered to the desired water depths (indicated by the pressure 

Figure 1.  Location of Lake Burgsee in Germany (a) and bathymetric map of the lake (b). The positions of the sampling sites 
are marked within the lake map.

https://www.planet-wissen.de/natur/landschaften/erdfaelle/erdfaelle-thueringen-100.html
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sensor of the YSI probe) and used to pump the water upwards through a 50 m long gas-tight Tygon tube 
(Wpump). Wpump samples were taken between 0 and 24.2 m depth in 2017 and until 23.6 m depth in 2018, in 
2 m increments until 16 m depth and with increasing sampling depth resolution close to the sediment (1 m 
increments until 20 m depth, 0.5 m increments until 23 m depth, 0.2 m increments until 24.2 m depth). The 
first three dead volumes of the tube (2.5 L each) retrieved by the pump were discarded before taking samples 
for further analyses.

2.	 �A water sampler (LIMNOS, Finland) was used to collect samples without pumping (Wsamp). Wsamp samples 
were only taken in 20 and 23 m depth in 2017, and in more detail in 2018 (5 m increments until 20 m depth, 
1 m increments until 23 m depth, 23.5 and 23.7 m).

3.	 �For the analysis of CH4, a third method was applied in 2018, using the M-ICOS system (Gonzalez-Valencia 
et al., 2014; Martinez-Cruz et al., 2020). This method also involved gentle pumping, followed by the passage 
of the water through an equilibrator (gas-liquid exchange membrane, MiniModule 1  ×  5.5 liqui-cel, 3M 
Wuppertal, Germany) and continuous gas-measurements using a new generation ultraportable greenhouse 
gas analyzer (UGGA 30P, Los Gatos Research Inc., California, USA), while lowering the tube toward the lake 
bottom (WM-ICOS).

Temperature, pH, dissolved oxygen (DO), conductivity, chlorophyll a (chl a) and blue-green algae phycocyanine 
(BGA) concentrations were measured by the aforementioned YSI probe. The lake water level was 243.2 m above 
sea level on 29 September 2017 and 242.6 m at 25 September 2018, that is, there was a difference of 60 cm. The 
variability of the water volume takes place in the upper water body due to precipitation onto and evaporation 
from the lake surface, due to rain water drainage tubes and surface runoff entering the epilimnion, and due to 
an aboveground outflow of epilimnetic water. Thus, the thickness of the monimolimnion is not affected, and all 
water depths of 29 September 2017 were recalculated as if the water level was 242.6 m above sea level. Wpump and 
Wsamp samples (except samples for TP analyses) were filtered on-site immediately after collection using syringe 
filters (0.45 μm, cellulose acetate). To avoid a loss of ammonium and dissolved metals, the corresponding samples 
were acidified with 2 M HCl to a pH of approximately 2. Samples were cooled until chemical analyses. Chloride 
(Cl −), nitrate (NO3 −), and sulfate (SO4 2−) were measured by ion chromatography (Dionex ICS2000, Thermo 
Fisher Scientific GmbH, Germany, DIN EN ISO 10304-1). Sodium was measured by inductively coupled plasma 
optical emission spectrometry (iCAP 6000, Thermo Fisher Scientific, Germany, DIN EN ISO 11885). Ammo-
nium and soluble reactive phosphorus (SRP) were determined photometrically by a segmented flow analyzer 
(SANplusSystem, Skalar Analytic GmbH, Germany, ammonium: EN ISO 11732, SRP: DIN EN ISO 6878). Total 
phosphorus (TP) was measured as SRP after digestion at 121°C and 0.12 MPa using peroxydisulfate.

2.3.  Gas Analyses

For gas analyses, Wpump and Wsamp samples from each water depth were filled in duplicate into 20 mL vials 
(triplicates at the water surface) and sealed air-free and gas-tightly with crimp aluminum caps. In 2017, ZnCl2 
(final concentration 75 mM) was injected through the septum at the sampling site as a fixative, to inhibit further 
microbial activities, while in 2018 it was added in the laboratory within 6 hr after sampling. Vials were stored 
upside down at 5°C in the dark until analysis. Helium (99.999%) was used to create headspaces in the water-filled 
vials, which were analyzed twice by a gas chromatograph (GC2014, Shimadzu, Japan) using a flame ion detector 
(FID) and a thermal conductivity detector (TCD) for CH4 and CO2, respectively. The gas dissolved in water (cw, 
in mol m −3) was calculated from the partial pressure of gas in the headspace (pgas, in Pa), taking into account 
the gas-water-equilibrium described by Henry's law (Equation 1). Partial pressures (pgas) were calculated (Equa-
tion 2) on gas concentrations (cgas, in mol m −3) in the vial headspace, the temperature (T, in K) during measure-
ment, and the gas constant R (8.314 Pa m 3 mol −1 K −1).

𝑐𝑐w = 𝐻𝐻𝑐𝑐𝑐𝑐
⋅ 𝑝𝑝gas� (1)

𝑝𝑝gas = 𝑐𝑐gas ⋅ 𝑇𝑇 ⋅ 𝑅𝑅� (2)

Henry's Law solubility constants (H cp, in mol m −3 Pa −1) were calculated (Equation 3) with Bunsen solubility 
coefficients (β) for CH4 and CO2, respectively, at standard temperature TSTD (273.15 K). Bunsen solubility coef-
ficients were calculated based on the salinity, the temperature during measurement (gas chromatograph set to 
50°C), and the constants A1, A2, A3, B1, B2, and B3 as described by Yamamoto et al. (1976) for CH4 and by 
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Weiss (1974) for CO2 (Equation 4). The salinity (S, in ppt) in Lake Burgsee was calculated based on the dominant 
chloride concentrations (𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶− , in ppm) (Equation 5).

𝐻𝐻𝑐𝑐𝑐𝑐
= 𝛽𝛽 ⋅ (1∕𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆)� (3)

ln 𝛽𝛽 = 𝐴𝐴
1
+ 𝐴𝐴

2
(100∕𝑇𝑇 ) + 𝐴𝐴

3
⋅ ln(𝑇𝑇 ∕100) + 𝑆𝑆

[

𝐵𝐵
1
+ 𝐵𝐵

2
(𝑇𝑇 ∕100) + 𝐵𝐵

3
(𝑇𝑇 ∕100)

2

]

� (4)

𝑆𝑆 = 𝑐𝑐𝑐𝑐𝑐𝑐− ⋅ (𝑀𝑀NaCl∕𝑀𝑀Cl
− )� (5)

UGGA data were recorded at high resolution (1 Hz frequency), and subsequently corrected for the delay time 
(transport time through the tube length), and the response time (nonlinear gas-stripping time of the membrane), 
as described in Gonzalez-Valencia et al. (2014). Concentrations in surface water samples analyzed by gas chro-
matography were taken as a reference to correct the M-ICOS gas concentration profiles in the water column.

To assess whether a limnic eruption, that is, a sudden eruption of dissolved gases from deep lake water, can 
occur in the near future in Lake Burgsee, we compared whether the sum of partial pressures of CO2 and CH4 
(Equation 1) above the lake bottom is close to the absolute pressure p (in Pa, Equation 6) in that depth h (Boehrer 
et al., 2017).

𝑝𝑝 = 𝑝𝑝0 + 𝜌𝜌 ⋅ 𝑔𝑔 ⋅ ℎ� (6)

The water density (ρ) in the water column of Lake Burgsee, calculated from temperature and salinity, varied from 
999.2 to 1000.5 kg m −3 from top to bottom. For the acceleration due to gravity (g), we used 9.81 m s −2. p0 is the 
atmospheric pressure of 1013.5 hPa.

2.4.  Gas Production Rates

In 2018, sediment samples were taken at both sites using a sediment corer (Uwitec, Austria). In the boat, overly-
ing water in the sediment cores (6 cm inner diameter) was carefully removed using a syringe, and sediments were 
gently pushed out from the bottom using a piston. Sediment was sliced into layers 0–2, 2–4, 4–6, 6–10, 10–15, 
15–20, and 20–25 cm depth. Sediments were stored cool and dark in zip-lock bags, from which air was removed 
as best as possible. CH4 production potentials were determined from sediment samples of two replicate cores. 
Four milliliter homogenized sediment was taken using a cut-off syringe and transferred into 20 ml vials contain-
ing 4 ml autoclaved lake water (121°C, 20 min). The sediment slurry was then degassed with N2 until no more 
methane could be detected. To determine gas production rates, headspace gas concentrations were measured after 
0, 1, 4, 5, 7, 8, 11, and 12 days by injecting 500 μl subsamples into a gas chromatograph (GC14A, FID, Shimadzu, 
Japan). Vials were shaken vigorously before headspace samples were taken. Between measurements, vials were 
stored upside down in the dark at 4°C. Methane production rates were calculated from the increase of CH4 in the 
headspace over time during the exponential phase, and related to the wet weight content of the sediment.

Remaining sediments were dried at 105°C until weight constancy to determine the water content. Dried sediments 
were then further combusted at 550° and 900°C to determine organic matter and calcium carbonate (CaCO3) 
contents by the loss on ignition (LOI).

2.5.  Diffusive Fluxes

Diffusive fluxes (Fgas, in mol m −2 h −1) to the atmosphere at the thin boundary layer (TBL) were calculated (Equa-
tion 7) based on the partial pressures of CH4 and CO2 at the water surface (pwater, in mol m −3) and in the air (pair, 
in mol m −3, based on water samples from the surface in 2017 and on surface M-ICOS measurements in 2018), 
and the wind speed dependent gas exchange coefficient (kx, in m h −1), as described by Cole and Caraco (1998). 
Schmidt numbers were taken from Wanninkhof (1992) to calculate the gas exchange coefficients of CH4 and CO2. 
Wind speed was very low and taken from a nearby weather station (www.michaelreissig.de/wetter.htm).

𝐹𝐹gas = 𝑘𝑘𝑥𝑥 ∗ (𝑝𝑝water–𝑝𝑝air)� (7)

In 2017, only the sinkhole site was investigated, while in 2018, surface water gas concentrations were measured 
at both sites.

http://www.michaelreissig.de/wetter.htm
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2.6.  Data

All graphs and statistics were performed using R (R Core Team, 2021), applying the packages tidyverse (Wickham 
et al., 2019), ggpubr (Kassambara, 2020), gridExtra (Auguie, 2017), and egg (Auguie, 2019). M-ICOS response 
times were calculated based on saturation curves measured above the sediment of Lake Burgsee's sinkhole, using 
the solver function in Excel.

3.  Results
Although the summer 2018 had been extraordinarily dry and hot, water temperatures in September were similar in 
2017 and 2018, with a maximum of approximately 15°C at the water surface and thermal stratification in 4–7 m 
water depth (Figure 2). Depth profiles of oxygen, conductivity, and pH confirmed a separation into epilimnion 
and hypolimnion at 6 m depth. Chlorophyll a and phycocyanine pigment concentrations indicated the presence 

Figure 2.  Conditions and concentrations in the water column at the sinkhole site of Lake Burgsee on 29 September 2017 (hollow triangles) and 25 September 2018 
(filled circles). Temperature (temp), pH, oxygen (O2), electrical conductivity (cond), chlorophyll a (chl a), blue-green algae phycocyanine (BGA), total phosphorus 
(TP), ammonium (NH4 +), nitrate (NO3 −), sulfate (SO4 2−), chloride (Cl −), and sodium (Na +). Values below the detection limit are excluded. Horizontal dotted lines 
highlight the depths of the thermocline (green) and the chemocline (purple).
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of a phytoplankton bloom in the epilimnion in 2017, while in 2018 peaks of chl a and especially phycocyanine 
pigments were observed at the lower border of the thermocline, where oxygen concentrations became low. Anaer-
obic conditions (<0.5% O2 saturation) were reached in 5–6 m depth and extended over the entire hypolimnion and 
below, while pH values decreased to <7.0 in 19 m depth. Further electron acceptors, such as nitrate, occurred only 
in the upper 4 m in 2017 (max. 0.8 mg NO3 − L −1 in 0 m) and in 8–14 m depth in 2018 (max. 0.9 mg NO3 − L −1 in 
10 m), while sulfate decreased in the water column from >50 mg SO4 2− L −1 at the water surface to about 12 mg 
SO4 2− L −1 in 23.6 m depth (Figure 2).

An additional, chemical, stratification was observed at 16–18 m depth, separating the hypolimnion from the 
underlying monimolimnion. SRP, TP, NH4 +, and Cl − increased strongly below 18 m depth and reached extremely 
high values (about 15 mg SRP L −1, 15 mg TP L −1, 113 mg NH4 +-N L −1, and 415 mg Cl −1 L −1 in 23.6 m depth; 
Figure 2). Chloride concentrations resulted in an increasing salinity gradient within the water column, reaching 
0.4‰ (still freshwater) in 23 m depth.

CH4 concentrations (Figure 3) in the water column (Wpump) increased 10- to 100-fold across the thermocline and 
oxycline (from 0.8 and 6.5 μmol L −1 in 4 m to 105.4 and 66.0 μmol L −1 in 8 m in 2017 and 2018, respectively), 
with a distinct peak in 6 m depth (2017: 115.0 μmol L −1; 2018: 96.0 μmol L −1). In contrast, CH4 concentrations 
increased more gradually across the chemocline, reaching CH4 concentrations of >2 mmol L −1 in 22.5 m (2017) 
and 21 m (2018, Wsamp; Table S1) water depth, respectively. Until 20 m depth, dissolved CH4 concentrations in 
the sinkhole gave similar results for Wpump and Wsamp (1.4 mmol L −1 each in 20 m depth, in 2018), but deviated 
increasingly with further depth, reaching 1.8 and 2.3 mmol L −1 in 21 m depth, respectively, as well as 2.0 and 
4.8 mmol L −1 in 23 m depth, respectively (in 2018). At the center site, CH4 concentrations were only measured 
by WM-ICOS and showed steady concentrations of 1.4–1.7 μmol L −1 throughout the water column (Figure S1 in 
Supporitng Information S1).

CO2 concentrations increased gradually with depth in 2017 without any distinct peaks (Figure  3), reaching 
maxima of 0.3 mmol L −1 in the epilimnion, 0.5 mmol L −1 in the hypolimnion, and 1.0 mmol L −1 in the moni-
molimnion. In 2018, CO2 concentrations were very low in the epilimnion (<0.06 mmol L −1), reached 0.2 mmol 
L −1 in the hypolimnion, but started to increase below the chemocline to a maximum of 1.5 mmol L −1 in the 
monimolimnion. In contrast to CH4, CO2 concentrations were similar for Wpump and Wsamp in all depth layers 
(e.g., both 1.1 mmol L −1 in 22 m depth in 2018). At the thermocline, 0.146 mmol CO2 L −1 were measured in 5 m 
depth by Wsamp and 0.079 mmol CO2 L −1 in 6 m depth by Wpump in 2018, showing a steep peak comparable to 
the one of CH4. Center site CO2 concentrations ranged from 1.1 to 1.4 μmol L −1 in 2018 (WM-ICOS; Figure S1c in 
Supporitng Information S1).

Based on water volume data per depth layer of the sinkhole, a total of 1.9 t CO2 and 1.0 t CH4 (Wpump) or 3.3 t 
CO2 and 1.8 t CH4 (Wsamp), respectively, were stored in the sinkhole in 2018 (Figure 4). The CH4:CO2 composi-
tions were around 2:1 in the epilimnion, 1:1 in the hypolimnion, and 3:1 in the monimolimnion (average Wpump 
and Wsamp), with a 5:1 ratio measured by Wsamp above the ground in 23.7 m depth. Due to different pH values, 
the CH4:CO2 ratio will differ from the CH4:DIC ratio among meromictic lakes. Since we measured CO2 by gas 
chromatography (TCD) and not DIC, we cannot provide the CH4:DIC ratio. However, at pH 6.3 in the moni-
molimnion of Lake Burgsee, roughly two thirds will be present as HCO3 −, that is, DIC will be three times higher 
than the measured CO2.

Combined, the partial pressures of the measured greenhouse gases CO2 and CH4 (max. 2.9 bar in 23.7 m depth, 
Wsamp) remained below the absolute pressure (3.3 bar in 23.7 m depth; Figure S2 in Supporitng Information S1). 
When assuming the presence and partial pressure of 0.78 bar for N2, the total partial pressure of gases would 
exceed the absolute pressure at the bottom of the monimolimnion. The very high CH4 concentrations at the 
bottom of the monimolimnion and the high sum of partial pressures may indicate an overestimation of the gas 
concentrations in the monimolimnion, however, we are not aware of any errors or inaccuracies made during the 
sampling, processing, or analyses. As we observed visually degassing during sampling from depth below 20 m, 
we assume that ebullition might occur frequently.

Diffusive gas fluxes from the water to the atmosphere, at the thin boundary layer, estimated an emission of 
3.53 ± 0.01 mmol CH4 m −2 d −1 and 1.51 ± 0.07 mmol CO2 m −2 d −1 above the sinkhole, and 0.77 ± 0.03 mmol 
CH4 m −2 d −1 and 0.39 ± 0.04 mmol CO2 m −2 d −1 at the lake center in 2018 (Figure 4). In 2017, gas fluxes were 
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Figure 3.  Profiles of CH4 and CO2 (mean ± SD, in μmol L −1) in the water column at the sinkhole site in 2017 and 2018, measured by pumping (Wpump, blue circles) 
and water sampler (Wsamp, red triangles). Horizontal dashed lines highlight the thermocline (green) and the monimolimnion (purple) depths. Inserted plots zoom into 
the increase of gas concentrations and decrease of oxygen saturation (gray dashed lines, second x-axis on the top) across the thermocline.
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estimated only above the sinkhole and were significantly lower for CH4, with 0.15 ± 0.01 mmol CH4 m −2 d −1, and 
higher for CO2, with 5.26 ± 2.3 mmol CO2 m −2 d −1.

Furthermore, in 2018, we measured the methane produced in the sediments, as well as the sediment character-
istics, and compared them between the sinkhole and the center of the lake. Sediment characteristics differed 
between the two sites, showing no drastic changes with depth for the sinkhole sediments but clear gradients at the 
central site sediments (Table 1). Sediments had a very high water content (>94%) in the top 6 cm of both sites. 
The water content decreased with depth in the center sediments, but only marginally in the sinkhole sediments. 
Sinkhole sediments contained a higher content of organic matter (mostly >50%) and organic carbon (mostly 
>25%) than center sediments, especially below 10 cm depth (Table 1). The content of CaCO3 was more than five 
times higher in the center than in the sinkhole sediments (Table 1).

Methane production potentials (MPP) were calculated after 8  days of incubation, as the exponential phase 
reached its peak during that time for almost all sediment samples. MPP were highest at the sediment-water 
interface (0–2 cm sediment depth) at both sites, with on average six times higher rates in the sinkhole than in 
the center sediments. In the center sediments, MPP were steadily around 0.011 ± 0.001 mmol CH4 L −1 wet sedi-
ment d −1 (average ± SD) until 25 cm depth. In the sinkhole sediments, MPP decreased strongly below 15 cm 
sediment depth, although organic matter and organic carbon content decreased only slightly below 15 cm depth. 

Figure 4.  Summary of CH4 and CO2 concentrations (μmol L −1, numbers in regular font), pools (kg, numbers in bold), and fluxes (μmol m −2 d −1, numbers in italics) in 
Lake Burgsee in 2018. Concentrations are measured by M-ICOS (air), Wpump (epilimnion and thermocline at the sinkhole site), Wsamp (hypolimnion and monimolimnion 
at the sinkhole site), and WM-ICOS (epilimnion at the center site). Methane production potentials (MPP, μmol L −1 d −1, numbers in brown) are given as averages of the 
upper 10 cm of sediment and the subjacent 10 cm below. Fluxes across the water-air interface are estimated from concentration differences at the thin boundary layer.
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Additionally, MPP differed largely between the replicate sediment cores taken in the sinkhole, with one of them 
showing 0.139 mmol CH4 L −1 wet sediment d −1 in 0–2 cm depth, and the other one 0.018 mmol CH4 L −1 wet 
sediment d −1 in the same depth.

4.  Discussion
The chemical dynamics in Lake Burgsee are largely determined by the sodium and chloride ions seeping or 
diffusing in from the underground rock salt source while precipitation and other waters dilute the surface water. 
Thus, there are strong upwardly decreasing gradients in the sinkhole's water column (Figure 2). Moreover, a 
strong decrease of sulfate concentrations with depth in the deep water of the sinkhole indicates a high activity of 
sulfate-reducing bacteria and suggests the production of toxic H2S in the anoxic environment. Sulfate-reducing 
bacteria may outcompete methanogens for the same substrates (Martens & Berner, 1974). Yet, methane produc-
tion in the meromictic sinkhole sediments of Lake Burgsee ranged in the same magnitude as in the sediments 
of holomictic meso-to eutrophic lakes (e.g., 137.5 μmol L −1 d −1 and 20.9 μmol L −1 d −1 in the eutrophic lakes 
Haussee and Dagow, respectively; Casper, 1992). Highest MPP (78.4 μmol L −1 d −1 in 0–2 cm) in Lake Burgsee 
occurred at the immediate sediment-water interface in response to freshly settled material. Similarly, in meromic-
tic lakes, MPP was highest in the sediment surfaces of Knaack Lake (18.2 μmol L −1 d −1; Winfrey & Zeikus, 1979) 
and ice-covered Lake Shunet (484.3 μmol L −1 d −1; Savvichev et al., 2005), while it increased with sediment depth 
in the Antarctic Lake Untersee (0.39 μmol L −1 d −1 in 0–5 cm of sediment and 0.88 μmol L −1 d −1 in 10–15 cm 
depth; Wand et al., 2006) and ice-covered Lake Shira (0.008 μmol L −1 d −1 in 0–2 cm to 0.025 μmol L −1 d −1 in 
25–30 cm depth; Savvichev et al., 2005), and no methane production was detected in the sediments of the pit lake 
Cueva de la Mora (Wendt-Potthoff et al., 2012). At the shallow center site of Lake Burgsee, oxygen availability 
in the overlying water as well as lower organic matter contents led to lower MPPs.

The content of calcium carbonate was distinctly lower in the sinkhole sediments (5%–7% of DW) than in the 
center site sediments. Calcite precipitation occurs in lakes due to a shift of the carbonate equilibrium toward 
CaCO3, often induced by the intense CO2 uptake of massive phytoplankton blooms in summer, and subsequently 
settles to the lake bottom (Fuchs et al., 2016; Kasprzak et al., 2017). Decreasing pH values in the sinkhole of Lake 

Site Depth (cm) WC (% of WW) OM (% of DW)
CaCO3 (% of 

DW)
Porosity (cm 3-IW/

cm 3-WS)
MPP a (μmol 
L −1 WS d −1)

Center 0–2 96.1 ± 0.3 36.3 ± 0.2 24.4 ± 0.1 1.00 ± 0.0002 12.6 ± 0.004

Center 2–4 95.2 ± 0.1 38.2 ± 1.3 14.1 ± 1.7 1.00 ± 0.0003 11.3 ± 0.6

Center 4–6 94.3 ± 0.04 48.9 ± 18.0 10.8 ± 7.6 0.99 ± 0.0022 10.8 ± 0.3

Center 6–10 93.6 ± 0.4 35.5 ± NA 15.3 ± 9.9 1.00 ± 0.01 10.8 ± 0.1

Center 10–15 91.1 ± 0.2 31.5 ± 0.3 8.0 ± 0.2 0.98 ± 0.0036 11.0 ± 0.7

Center 15–20 89.4 ± 0.01 29.9 ± 0.3 8.8 ± 0.1 0.97 ± 0.01 10.7 ± 0.3

Center 20–25 87.7 ± 0.1 23.0 ± 0.9 9.5 ± 0.3 0.96 ± 0.0029 10.9 ± 0.9

Sinkhole 0–2 95.8 ± 0.5 55.6 ± 2.9 5.3 ± 2.1 1.00 ± 0.0011 78.4 ± 85.3

Sinkhole 2–4 94.9 ± 0.4 48.6 ± 1.4 5.2 ± 0.8 1.00 ± 0.0004 43.3 ± 36.1

Sinkhole 4–6 95.5 ± 0.1 57.2 ± 0.5 6.4 ± 0.6 1.00 ± 0.0001 64.1 ± 63.7

Sinkhole 6–10 94.5 ± 0.04 52.3 ± 0.8 7.4 ± 0.6 0.99 ± 0.0019 68.9 ± 66.5

Sinkhole 10–15 94.9 ± 0.2 55.8 ± 0.4 5.4 ± 0.9 0.99 ± 0.0003 53.0 ± 58.7

Sinkhole 15–20 94.9 ± 0.6 52.1 ± 2.8 5.2 ± NA 0.99 ± 0.0019 19.1 ± 19.0

Sinkhole 20–25 93.3 ± 1.0 39.0 ± 0.6 7.1 ± 0.1 0.99 ± 0.01 4.0 ± 0.3

Note. DW, dry weight; IW, interstitial water; NA, not available; OM, organic matter; WC, water content; WW, wet weight; 
WS, wet sediment (mean ± SD, n = 2).
 aSediment characteristics were determined from sediment core 1 and 3, while MPP were measured from two subsamples per 
depth in sediment core 2.

Table 1 
Sediment Characteristics and Methane Production Potentials (MPP) in Different Sediment Depths at the Lake Center and 
Sinkhole in 2018
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Burgsee probably redissolve CaCO3 before it reaches the sediment and simultaneously increase CO2 concentra-
tions in the monimolimnion (max. concentration 1.0–1.5 mmol CO2 L −1, Figure 3, Table S1 in Supporitng Infor-
mation S1). Enhanced CO2 concentrations in the monimolimnion have also been observed in the karstic Lake La 
Cruz (>11 mmol CO2 L −1, Table 2) (Rodrigo et al., 2001). In the former mining lake Guadiana, extraordinary 
amounts of CO2 (>110 mmol CO2 L −1, Table 2) are produced and stored in the monimolimnion due to the disso-
lution of carbonates from rocks at low pH values (Sánchez-España et al., 2014). As saline waters in Lake Burgsee 

Lake Country Meromixis Max. depth (m) CO2 CH4 Reference

Albano Italy Volcanic 167 1.9 mmol L −1 0.4 mmol L −1 Cabassi et al. (2013)

Alverno Italy Volcanic 33 5.2 mmol L −1 1.1 mmol L −1 Cabassi et al. (2013)

Kivu Rwanda/DR Kongo Volcanic 485 >85 mmol L −1 >15 mmol L −1 Tietze (1978)

Kivu Rwanda/DR Kongo Volcanic 485 ∼12–19 mmol L −1 a Schmid et al. (2005)

Kivu Rwanda/DR Kongo Volcanic 485 92-94 mmol L −1 17–18 mmol L −1 Boehrer et al. (2019)

Monticchio Grande Italy Volcanic 35 4.9 mmol L −1 0.4 mmol L −1 Cabassi et al. (2013)

Monticchio Piccolo Italy Volcanic 38 14.1 mmol L −1 5.0 mmol L −1 Cabassi et al. (2013)

Monoun Cameroon Volcanic 99 146.3-157.2 mmol kg −1 2.7–3.9 mmol kg −1 Kling et al. (2005)

Monoun Cameroon Volcanic 99 88–153 mmol kg −1 Yoshida et al. (2010)

Monoun Cameroon Volcanic 99 152.1 mmol kg −1 4.0 mmol kg −1 Issa et al. (2013)

Nyos Cameroon Volcanic 210 363.8 mmol kg −1 2.4 mmol kg −1 Kling et al. (2005)

Nyos Cameroon Volcanic 210 338–359 mmol kg −1 Yoshida et al. (2010)

Nyos Cameroon Volcanic 210 369.3 mmol kg −1 2.4–3.7 mmol kg −1 Issa et al. (2013)

Pavin France Volcanic 92 1.0 mmol L −1 4.1 mmol L −1 Lehours et al. (2005)

Quilotoa Ecuador Volcanic 256 22.7 mmol kg −1 Aguilera et al. (2000)

Cueva de la Mora Spain Mining pit lake 40 40 mmol L −1 Wendt-Potthoff 
et al. (2012)

Guadiana Spain Mining pit lake 68 113.6–125.0 mmol L −1 Boehrer et al. (2016)

Vollert-Sued Germany Mining pit lake ∼1.1 mmol L −1 b , c ∼2.6 mmol L −1 b Horn et al. (2017)

Dendre Belgium Stone pit lake 30 0.9 mmol L −1 Roland et al. (2017)

Knaack Wisconsin, USA Saline 22 4.0 mmol L −1 Winfrey and 
Zeikus (1979)

Mono California, USA Saline 48 0.025–0.057 mmol 
L −1

Miller et al. (1993)

Sakinaw British Columbia, Canada Saline 20-140 (transect) 3.0–3.2 mmol L −1 Vagle et al. (2010)

Untersee Dronning Maud Land, 
Antarctica

Saline 105 ∼3.8 mmol L −1 c 21.8 mmol L −1 Wand et al. (2006)

Burgsee Germany Brackish 24 1.5 mmol L −1 5.0 mmol L −1 This study

Shira Khakassia, Russia Brackish 23 0.5 × 10 −3 mmol L −1 Savvichev et al. (2005)

Shunet Khakassia, Russia Brackish 3 31.3 × 10 −3 mmol L −1 Savvichev et al. (2005)

La Cruz Spain Ferric, karstic 24 11.1 mmol L −1 Rodrigo et al. (2001)

La Cruz Spain Ferric, karstic 24 2.2 mmol L −1 Oswald et al. (2016)

Matano Indonesia Ferric >590 1.4 mmol L −1 Katsev et al. (2010)

Matano Indonesia Ferric >590 <1 mmol L −1 1.4 mmol L −1 Crowe et al. (2011)

Lugano Switzerland/Italy Eutrophic 288 0.1–0.2 mmol L −1 Lehmann et al. (2015)

Note. Original values were transformed into mmol L −1 when possible. The dominant greenhouse gas is indicated in bold when both gases were measured.
 aBelow 450 m, 1974 and 2004; estimated from figure 4 in Schmid et al. (2005).  bIn 21 m depth, estimated from figure 6 in Horn et al. (2017) using WebPlotDigitizer 
(https://automeris.io).  cDIC converted to CO2 using PHREEQC.

Table 2 
Maximum CO2 and CH4 Concentrations in the Monimolimnion of Meromictic Lakes Presented in Literature

https://automeris.io/
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are derived in unknown quantity from deep underground brines of unknown chemical composition, it is possible 
that leached carbonates reach the monimolimnion via that route as well.

In addition, dissolved CO2 concentrations in the monimolimnion most likely derive from biogenic sources. Lake 
Burgsee is situated in the center of a small city, with an adjacent small recreational park and a subsurface outflow 
that is usually dry. Hence, organic matter from the catchment accumulates in the lake, and has accumulated due to 
former misuse of the lake as a recipient of wastewater. High chlorophyll a and phycocyanine concentrations above 
the sediment indicate that settled phytoplankton from summer blooms accumulates in the sinkhole (Figure 2). 
The funnel-like morphometry of the lake further promotes the transport of sinking particles towards the sinkhole, 
accumulating in the small volume at the bottom and fueling the decomposition processes in the permanently 
separated monimolimnion. Accordingly, CO2 and CH4 accumulate in the lowest water layers of the sinkhole, 
with CH4 reaching extraordinarily high concentrations compared to lakes that have a “normally” shaped, more 
voluminous bottom layer and/or experience regular mixing.

Among meromictic lakes (Table 2), the CO2 concentrations found in Lake Burgsee are quite low. Usually, CO2 is 
by far the dominant greenhouse gas, due to abundant supplies from, for example, volcanic sources or geochemical 
interaction (Boehrer et al., 2021). This is not the case in Lake Burgsee, where CH4 concentrations dominate and 
are comparatively high. Only few studies, such as Lehours et al. (2005), Wand et al. (2006), Horn et al. (2017), 
and Crowe et al. (2011), reported a higher concentration of CH4 than of CO2 in the monimolimnion of a lake. 
However, the CH4:DIC ratio may differ largely in these lakes, as well as in Lake Burgsee, due to different pH 
values. In anoxic environments, hydrogenotrophic methanogens can transform CO2 to CH4, which is the domi-
nant methanogenic pathway in the monimolimnion of the natural meromictic lakes Shira, Shunet, and Untersee 
(Savvichev et al., 2005; Wand et al., 2006). In Lake Burgsee, CH4 almost reaches its solubility maximum above 
the lake bottom (Table S1 in Supporitng Information S1), and even in the epilimnion CH4 concentrations are 
high. The partial pressures of greenhouse gases in the lake are only slightly below the absolute pressure, that 
is, close to posing a risk of eruption. It is likely, that ebullition occurs frequently. However, recent preliminary 
data (Figure S3 in Supporitng Information S1) show that the monimolimnion in Lake Burgsee receded in 2020 
and 2021, thus reducing the likelihood of an uncontrolled gas release and the risk for the local population. Lake 
Vollert-Sued has a maximum total gas pressure of 2.6 bar at the bottom of the monimolimnion, similar to the 
maximum partial pressure of the greenhouse gases at the bottom of the sinkhole in Lake Burgsee in 2018, and 
experiences high ebullitive gas release (Horn et al., 2017). However, Horn et al. (2017) stated that the gas release 
of CH4 and N2 was not as violent as from CO2-dominated limnic eruptions, and did not endanger the public. The 
increase of CO2 concentrations in Lake Burgsee between the 2 years of measurements in our study indicated the 
development of an increasing gas depot in the monimolimnion of the lake until 2018. Similarly, the so-called 
killer lakes Nyos and Monoun, which erupted in the 1980s, reached alarming concentrations again 15–20 years 
later, due to continuous CO2 recharge originating from magma (Halbwachs et al., 2004). Since 2001 and 2003, 
respectively, Lake Nyos and Lake Monoun are degassed in a controlled manner, but Kling et al. (2005) found that 
while CO2 concentrations in these lakes were lowered, CH4 concentrations continued to increase, and attributed 
this to biogenic CH4 production exceeding the gas release.

In holomictic lakes, CH4 concentrations in the hypolimnion are determined primarily by oxygen concentrations, 
organic carbon content, and the release of microbially produced methane from the sediment into the water column 
(Juutinen et al., 2009). The hypolimnetic CH4 concentrations in meromictic lakes are not directly linked to CH4 
production in bottom sediments, but are derived from diffusive fluxes from the monimolimnion and lateral sedi-
ments instead. During lake overturn in autumn and winter or after ice-melt in spring, very large amounts of 
CH4 that accumulated in the anoxic hypolimnion during stratification are oxidized (Rudd & Hamilton, 1978) or 
released into the atmosphere (Michmerhuizen et al., 1996). This storage flux can amount to approximately 20% 
of the total CH4 emission from a lake of the surface size of Lake Burgsee (Bastviken et al., 2004). A total of 0.3 t 
CH4 and 0.7 t CO2 (based on Wpump) could potentially be released from the epilimnion and hypolimnion of the 
sinkhole of Lake Burgsee during overturn, if not oxidized, transformed or released in advance.

CO2 and CH4 concentrations in Lake Burgsee decrease strongly from the sediment to the chemocline, and less 
strongly but continuously toward the thermocline. Distinct CO2 and CH4 peaks indicated an accumulation 
of gases below the thermal density border at very low oxygen concentrations. Recently, cyanobacteria have 
been found to produce CH4 under oxic and anoxic conditions (Bižić et  al., 2020), and may have contributed 
to the metalimnetic CH4 peaks in Lake Burgsee. During stable stratification, multiple phytoplankton species, 
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including cyanobacteria, may strive in the metalimnion or upper hypolimnion and form deep chlorophyll maxima 
(Selmeczy et al., 2016). However, with ∼100 μmol L −1 at the thermocline, CH4 concentrations in Lake Burgsee 
are far higher than those reviewed in Tang et al. (2016; 0.02–5 μmol L −1).

Oxidation may reduce methane concentrations by up to 99% during its diffusive ascension from the sediment 
towards the water surface (Bastviken et al., 2008; Frenzel et al., 1990). This leads to a decoupling of anaerobic 
methane production in sediments and emission across the water-atmosphere interface (Li et al., 2021). Frequently, 
CH4 oversaturation—relative to atmospheric CH4 concentrations—is detected at the water surface of freshwater 
lakes. In Lake Burgsee, CH4 concentrations reached approximately 7 μmol L −1 at the water surface above the 
sinkhole in 2018, similar to values observed in small ponds (summarized by Holgerson, 2015), and were oversat-
urated relative to the air above the lake (approximately 0.08 μmol L −1). In consequence, the diffusive CH4 trans-
port is directed from the water to the atmosphere (Schilder et al., 2013) and expressed as positive flux, estimated 
to reach 0.15 mmol CH4 m −2 d −1 in 2017 and >3 mmol CH4 m −2 d −1 in 2018 above the sinkhole. In summer 2018, 
large parts of Europe experienced an extended period of high air temperatures without any or with very little 
rainfall. This may have increased organic matter decomposition rates and lateral transport of CH4 towards the 
sinkhole, and/or triggered CH4 production by phytoplankton communities within the sinkhole. It is also possible 
that low atmospheric pressure or a vertical mixing event might have triggered a short-term increase in emissions. 
In the meromictic Lake Vollert-Sued, Horn et  al.  (2017) measured ebullitive fluxes of 11.0–27.4 mmol CH4 
m −2 d −1, depending on daily changes in air pressure. The authors also reported that the released gas derived from 
deeper, monimolimnetic waters.

Lake Burgsee presents an extreme case of spatial variability in emission rates, showing that an emission hotspot 
can exist above a significantly deeper lake area. Although both sites are within a few hundred meters distance to 
each other, the gas concentrations and fluxes across the water-atmosphere interface are much higher above the 
sinkhole than at the center site. On average, diffusive fluxes from lakes reach 0.6 mmol CH4 m −2 d −1 in temperate 
regions (Bastviken, 2009), which is below the estimated flux of 0.8 mmol CH4 m −2 d −1 at the center of Lake 
Burgsee. In the shallow center location, the presence of Aphanothece colonies in sediments may contribute addi-
tional CH4 (Bižić et al., 2020), increasing the emission beyond the mere diffusive flux of CH4 produced in the 
sediment from organic matter. As there is no thermocline or chemocline barrier hindering the release of CH4 from 
the shallow sediments at the lake's center site, CH4 may be emitted directly to the air, only reduced by oxidation 
during the short passage through the shallow water body.

In summary, Lake Burgsee is a naturally slightly saline meromictic lake that contains and probably releases 
impressive amounts of greenhouse gases that are unaccounted for. While volcanic and former mining meromictic 
lakes receive a certain degree of attention toward the analyses of their water chemistry and occasionally their 
content of greenhouse gases, naturally formed saline meromictic lakes are rarely investigated. The Zechstein 
Sea, which provides the brine source for Lake Burgsee, extended over vast parts of middle to northern Europe, 
and especially in salt mining and spa areas the occurrence of saline meromictic lakes is increased. The amount 
of greenhouse gases stored and released from naturally meromictic lakes is unknown, and there is no program to 
monitor their development or to assess their hazardous potential. Especially pollution and eutrophication accel-
erate greenhouse gas formation in meromictic lakes. In addition, climate change will in general increase water 
temperatures, biological activities, and thus, methane production rates, emphasizing the need to investigate natu-
ral meromictic lakes as potential source of greenhouse gases.

Data Availability Statement
The data used in this study are available in the Freshwater Research and Environmental Database (FRED) repos-
itory via doi: 10.18728/igb-fred-761.0 under the Open Data Commons Attribution License.
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