
1.  Introduction
Droughts are slowly developing natural disasters that have caused $29 billion of damages in agricultural sectors 
between 2005 and 2015 and have affected more than 390 million people globally in 2016 (FAO, 2018; Guha-Sapir 
et al., 2017). The intensity and frequency of droughts are expected to exacerbate with climate warming in obser-
vations and model simulations (Trenberth et  al., 2014), affecting changes in water availability at large-scales 
(Greve et al., 2018; Schewe et al., 2014). While a prolonged precipitation deficit often triggers drought onset, very 
few studies (Apurv et al., 2017; Gevaert et al., 2018; Van Loon et al., 2014) have focused on propagation (Van 
Loon, 2015) of droughts (i.e., translation from one type to another) on a global or hemispherical scale, however, a 
few local to national scale assessments are available (Brunner & Tallaksen, 2019; Haslinger et al., 2014; Van Loon 
& Laaha, 2015). Accumulating evidences (Hao & Singh, 2015) suggests that it is hard to distinguish responses to 
different categories of droughts, which may co-occur simultaneously or in close succession (e.g., meteorological 
drought is typically preceded by hydrological drought) and are interconnected in nature. In particular, a growing 
body of the literature (AghaKouchak et al., 2014; Ganguli & Ganguly, 2016; Hao & Singh, 2015) reveals for 
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synthesis of the multivariate drought risk considering interdependencies between drought attributes across 
disparate climate regimes is still lacking. Leveraging precipitation and streamflow observations of 270 large 
catchments over the globe, we show that multivariate drought hazard amplifies significantly (at ∼65–76% 
of catchments) considering dependence between drought duration and severity. A signifying nature of this 
amplification (A) is the power-law scaling with dependence metric (𝐴𝐴 𝐴𝐴 ∝ 𝜏𝜏

𝜆𝜆; 𝜆𝜆 = 5 − 12; where τ and λ are 
Kendall's correlation and the scaling exponent), revealing current approaches considering drought attributes as 
independent or linearly dependent will severely underestimate likelihood of extreme droughts. Furthermore, 
we find disparate responses in the multivariate imprints of meteorological to hydrological droughts across 
climate types, with strengths varying from large to modest in Tropics and Mid-latitudes, which indicates weaker 
overlap between rain-deficit and streamflow droughts. In contrast, a strong overlap in multivariate hazards 
of rain-deficit and streamflow droughts is apparent across transitional Subtropics. Our study highlights the 
relevance of accounting for multivariate aspects of drought hazards to inform adaptation to water scarcity in a 
changing climate.

Plain Language Summary  The world's large river basins support a huge population and diverse 
ecosystems. A growing body of the literature suggests holistic risk management requires a “multivariate 
event perspective” to analyze interacting drought attributes rather than each of these drivers in isolation. 
Using the gauge-based observational framework, we show a robust amplification in multivariate drought 
hazard and this response co-vary among distinct climate regimes. Our multivariate hazard framework shows 
a contrasting response in multivariate imprints (or degree of overlap) of rain-deficit (drivers) to streamflow 
(response)-droughts across disparate climate regimes for milder and extreme categories of droughts; from 
substantial regional variations in multivariate drought hazard in tropics and mid-latitudes, revealing a 
weak imprint between drought types. In contrast, the transitional subtropics show a modest variation in the 
multivariate imprint of drought types, indicating stronger imprint. We emphasize that failure to account for 
nonlinear interactions among interacting drought attributes will severely underestimate the extreme drought 
hazard, jeopardizing the adequacy of resilient water infrastructure design. The insights will aid in adaptation to 
extreme droughts under global warming.
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precise risk management; a “multivariate event perspective” (Raymond et al., 2020) is required to characterize the 
interdependent drought attributes, such as severity and duration, and their interlinkage, especially for extremes.

While in recent years, the growing number of literature has focused on multivariate drought hazard assessments 
(Chang et al., 2016; Cheng et al., 2015; Gu, Chen, Yin, Xu, & Chen, 2020; Gu, Chen, Yin, Xu, & Zhou, 2020) 
at a local or national scale (Ganguli & Ganguly,  2016; Sahana et  al.,  2020), a quantitative understanding of 
their multivariate imprints considering interdependence between attributes from the preconditioned driver 
(meteorological droughts) into responder hazard (hydrological droughts) at a global scale remains unexplored 
(See Figure 1 for details). Here the multivariate perturbation of stimuli, for example, meteorological drought, 
could potentially affect the responder drought type in close succession of a time window through the mechanism 
of pooling (i.e., merging meteorological drought into a persistent hydrological drought) and lengthening (i.e., 
increase in drought persistency moving from meteorological-soil moisture depletion-to hydrological) (Van Loon 
et al., 2014). Further, most of the literature on multivariate drought hazard assessments has primarily analyzed 
a single type of drought, such as either meteorological (Das et al., 2020; Dixit & Jayakumar, 2021; Mirabbasi 
et al., 2012; Poonia et al., 2021; Shiau, 2006) or streamflow-based (Kao & Govindaraju, 2010; Wang et al., 2020) 
droughts. The imprints of precipitation deficit onto streamflow droughts across different climate regimes of the 
globe considering mutually dependent drought attributes and its response to milder versus extreme droughts 
remains unclear.

Observational analyses of local-scale drought assessments (Brunner & Tallaksen, 2019; Gu, Chen, Yin, Xu, & 
Chen, 2020; Gu, Chen, Yin, Xu, & Zhou, 2020; Haslinger et al., 2014; Oertel et al., 2018) are often limited to 
small to medium-sized catchments (e.g., 100–1000 km 2) or covering limited periods (e.g., 30–40 years). A few of 
these studies have investigated the characteristics of low flow indicators from observations or stochastically simu-
lated discharge time series (Brunner & Tallaksen, 2019; Van Loon & Laaha, 2015). In contrast, others focused 
on standardized indices of monthly hydrometeorological variables, such as either streamflow or precipitation, 
evapotranspiration, and/or their combinations (Gevaert et al., 2018; Haslinger et al., 2014; Oertel et al., 2018). To 
summarize, the spatial and temporal heterogeneity of regional-scale assessments complicate the generalizability 
of observed imprints of one drought type onto another, globally. To better assess changes in different aspects of 
drought hazards under global warming across disparate climatic regimes, it is essential to investigate and under-
stand robust inferences of observed changes in extreme drought dynamics over a relatively long period.

Second, at a large scale, very few studies (Apurv et al., 2017; Gevaert et al., 2018; Van Loon et al., 2014) have 
assessed drought propagation and found translation mechanisms of meteorological (characterized by below-normal 
rainfall) to hydrological (characterized by below-normal streamflow) droughts are primarily controlled by climate 
and catchment properties. Using 1271 virtual catchments differing only on climate types, Van Loon et al. (2014) 
studied the relationship between modeled drought duration and severity over 27  Köppen-Geiger sub-climate 
zones based on a lumped conceptual, Hydrologiska Byråns Vattenbalansavdelning (HBV) model. Extending 
this work, using numerical experiments with a simple water balance model, Apurv et al. (2017), reported the 
effect of climate types on drought propagation in both natural and anthropogenically altered catchments. Gevaert 
et  al.  (2018) have investigated the timescales of drought propagation in seasonal drought types, that is, both 
summer and winter, using an ensemble of global hydrological models. However, all these large-scale assessments 
(Apurv et al., 2017; Gevaert et al., 2018; Van Loon et al., 2014) have relied on simple water balance models. 
Although large-scale hydrologic models can reasonably simulate the average annual low and high flows, they 
tend to over/underestimate the frequency of dry anomalies and associated extremes (Clark et al., 2008, 2011; 
Dankers & Feyen, 2009; Lehner et al., 2006; Stahl et al., 2011). Recently, Gu, Chen, Yin, Xu, & Chen (2020) 
investigated the bivariate hazard transferability from meteorological to hydrological droughts using an index 
“Drought hazard propagation ratio (DHPR)” from three Chinese catchments across two significant rivers, Yang-
tze and Yellow River basins. However, the analysis used only one particular climate type with a limited number 
of station records, leading to the generalizability of multivariate drought propagation patterns across different 
climate types mainly deemed unexplored.

Third, although droughts are multidimensional, encompassing several interacting attributes, most of the earlier 
assessments have considered the propagation of drought responses considering changes in individual drought 
characteristics (e.g., severity, duration; Gevaert et al., 2018). A few studies (Van Loon et al., 2014) have consid-
ered a linear relationship to understand the propagation of streamflow droughts across different climate regimes 
by fitting a linear regression line over log-transformed bivariate streamflow drought attributes, deficit volume and 
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duration. Although a scaling relationship between hydroclimatic variables is typically established in the literature 
(Markonis & Koutsoyiannis, 2016; O’Gorman & Schneider, 2009; Wyżga et al., 2020), little is known about any 
scaling relationship between bivariate drought hazard and the dependence between underlying drought attributes 
across river basins in different climate regimes.

Multivariate drought risk may emerge from two distinct mechanisms (see Figure  1). First, meteorological 
droughts, which result from prolonged rain deficit together with extreme temperature and/or high evapotran-
spiration (drought-forcing phenomena), act as a precursor/preconditioning (Van Loon & Laaha,  2015) driver 
for catchment-scale hydrological droughts (a responder). Severe meteorological droughts combined with 
synoptic-scale circulations and catchment-scale geomorphological conditions, such as atmospheric blocking 
and base flow (or catchment-scale soil moisture/snow memory), may amplify the translation of hydrological 
droughts. Second, the imprints of multidimensional droughts considering correlated multiple hazards have 
received little attention in drought propagation analysis (Gevaert et al., 2018; Van Loon et al., 2014). For exam-
ple, the severe and longer (or average duration) meteorological droughts may affect the propagation timing of 
persistent catchment-scale streamflow droughts across different climate regimes (Leonard et al., 2014).

Using 270 observed streamflow records, here we present a systematic and probabilistic assessment of global scale 
multivariate drought imprints (Figure 2a; Table S1 in Supporting Information S1). To maximize spatiotempo-
ral coverage, we consider only large river basins of basin area 20,000 km 2 or more and mean annual discharge 
is equal to or excess of 100  m 3/s (see definition: Methods and Text S1 in Supporting Information  S1) with 
periods of record availability of 60 years or more. We consider three dominant climate regions over the globe 
(Najibi & Devineni, 2018): Tropics (23.5°N to 23.5°S), Subtropics (23.5° N to 35°N and 23.5° S to 35°S), and 
Mid-Latitudes (35° N to 60° N and 35° S to 60° S) in our analysis. Specifically, we seek to address the following 
questions: (a) what would be the multivariate response of droughts for milder versus extreme events considering 
dependence between attributes? (b) Among the three dominant climate regions, which one is the drought hotspot 
showing the slower or faster translation of one drought type into another and prone to a persistent drought? Using 
global scale historical streamflow and precipitation observations, we investigate multivariate imprints of meteor-
ological to hydrological droughts across the world's large river basins in a copula-based dependence framework, 
considering interdependence between different drought attributes (See Methods and also Figure S1 in Supporting 
Information S1 for the workflow). Using this framework, we also quantify the change (“signal”) – to –variability 
(“noise”) of multivariate drought hazard for milder (or low; i.e., joint exceedance of tenth percentiles of drought 
attributes, severity and duration) and extreme (high; joint exceedance of 90th percentiles of severity and dura-
tion) droughts to detect hotspot climate regimes that might be prone to persistent deficits. We analyse meteor-
ological and hydrological droughts using the standardized indices of precipitation and streamflow time series 

Figure 1.  Multivariate imprints of meteorological to hydrological droughts. The coupling strength between drought types 
are determined using effect size statistics of bivariate hazards accounting for dependence between severity and duration (see 
Methods: Section 2.7 for details). An arrow indicates possible causal links between interacting variables.
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obtained from nonparametric versions of Standardized Runoff Index (N-SRI) and Standardized Precipitation 
Index (N-SPI) at an accumulation time length (N) of 3- and 6-month, respectively (See Methods and Figure 
S1 in Supporting Information S1). We then model the nonlinear dependence between drought attributes using 
copula-based approach (Nelsen, 2013) and subsequently compare multivariate drought hazards associated with 
milder and extreme droughts based on partial duration series (Brunner et al., 2016) for each study basin. Finally, 
we analyse the degree of overlap (or imprints) of meteorological versus streamflow droughts across the climate 
regions using the effect size statistics (Cohen, 1992; see Figure 1).

Figure 2.  (a) Spatial distributions of streamflow gauges across three climatic regions, tropics, subtropics, and mid-latitudes. Shading of circles indicates the available 
record lengths. The representative sites from three climate regimes are marked with bigger circles. (b) Normalized mean monthly flow patterns (in red color) and 
precipitation (in blue vertical bars) of three representative stations from three climate regimes. We perform normalization (within the range 0–1) of the time series to 
detect seasonal variability while accounting for scale issues, using the relation, 𝐴𝐴 (X(i) − minimum (X))∕Range(X) , where 𝐴𝐴 X indicates monthly average streamflow and 
precipitation values and i denotes the average monthly variable for a particular month. Contour plots of joint probability distributions of severity and duration for c 
meteorological and (d) hydrological droughts for the selected sites. The scatter plots of observed severity and duration (in green circles) are superimposed over the joint 
CDF contours conforming fit of the copula-based joint distributions. The spacing of contour lines at lower and upper tails show a clear distinction between the selected 
stations, each belongs to three different climatic regimes. The positive skewness values of drought variables, denoted by γ1 and γ2 suggest asymmetry of bivariate 
drought attributes, severity and duration.
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2.  Methods
2.1.  Hydrometeorological Forcing Description

To analyze hydrological droughts, we obtain monthly streamflow records archived at the Global Runoff Data 
Center (GRDC; Grabs, 1997). To choose large river basins (Best, 2018) over the globe, we fix the catchment area 
as 20,000 km 2 or more as per the criterion of large river basin described in Eisner et al. (2012). To maximize the 
spatial coverage of large river basins across the globe, we select catchments based on the following criteria (see 
Figure 2 in Supporting Information S1): (a) Stations with more than 20,000 km 2 catchment area and the mean 
annual runoff more than 100 m 3/s; and (b) stations with at least 10-month of continuous (free of snowmelts) 
streamflow records per year and 60 years or more data available. We estimate the missing streamflow records 
using a time series interpolation technique as adopted earlier in the literature (Ganguli & Ganguly, 2016). (c) 
To ensure adequate sample lengths to implement a multivariate statistical approach, we consider sites with 40 
or more drought events. Overall, these selection criteria yield 278 stream gauges globally covering the period 
1806–2017 with varying record lengths depending upon the years of record availability.

To analyze meteorological drought, we use gauge-based monthly gridded precipitation records from the Global 
Precipitation Climatology Centre (GPCC; Becker et al., 2013) available at a 0.5° spatial resolution. We determine 
the area-weighted spatial average precipitation over the selected basins considering the influence area of grids 
by calculating the area of the grid cell located within the catchment weighted by the cosine of the grid latitude 
(Sheffield & Wood, 2007). For this, we use the delineated watershed boundary available in the GRDC archive for 
the selected catchments. We maintain the same record lengths retaining area-averaged precipitation and stream-
flow time-series for each catchment to ensure data compatibility.

2.2.  Temporal Evolution of Drought

Typically, the parametric form of distributions, Gamma and Lognormal density functions are often used to fit the 
SPI (McKee et al., 1993) and SRI (Shukla & Wood, 2008) time series at an aggregated time window of monthly 
precipitation and streamflow records, respectively. However, the use of a non-parametric form of distribution 
functions, that is, Gringorten's potting position (rank-based or empirical form) has certain advantages over its 
parametric form (Hao & AghaKouchak, 2014). The functional form of Gringorten's potting position formula is 
given below:

𝑝𝑝 (𝑥𝑥𝑖𝑖) =
𝑖𝑖 − 0.44

𝑛𝑛 + 0.12
� (1)

where, n is the sample size, i denotes the rank order statistics of non-zero precipitation aggregated at an n-month 
(where n = 3 for streamflow droughts and 6 for rainfall-based drought indices) time scales. The advantage of 
using empirical distributions over parametric distributions is that the former assumes no a priori functional forms 
and is robust to outliers. Finally, using an equiprobability transformation (McKee et al., 1993), we convert the 
distribution function of hydro-meteorological time series accumulated at n-month (3- and 6-) time scales into a 
standardized Gaussian distribution with zero mean and unit standard deviation. We use a non-parametric version 
of standardized indices to characterize wet/dry/normal states of hydrometeorological time series: SRI consider-
ing accumulated runoff of preceding 3 months (SRI3) and SPI considering accumulated rainfall of six preceding 
months (SPI6) to quantify hydrological and meteorological droughts (Hao & AghaKouchak, 2014) respectively.

While the use of SPI6 is effective in capturing seasonal rainfall deficit and thereby low/high soil moisture status 
affecting groundwater recharge, which modulates streamflow variability, SRI3 helps in detecting seasonal to 
short-term streamflow deficits and hence low flow conditions (Shukla & Wood, 2008; Svoboda et al., 2012). 
In general, streamflow shows higher persistence than precipitation and there is a time lag between peaks of 
precipitation and streamflow (Dettinger & Diaz, 2000; Özger et al., 2013). Second, the onset of meteorologi-
cal droughts typically precedes the hydrological droughts. To preserve seasonal variability, we choose different 
temporal scales in detecting streamflow and precipitation-based droughts. Our approach is based on earlier liter-
ature (Huang et al., 2017; Stagge et al., 2018; Wu et al., 2018), in which the authors have shown propagation 
time from meteorological and streamflow droughts, typically reveals a seasonal characteristics. The spatial map 
of cross-correlation coefficients using Kendall's τ dependence metric between SRI-3 versus SPI at accumula-
tion lengths, 1, 3, 6, 9, 12, further confirms this finding (See Supplementary figure, Figure S2 in Supporting 
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Information S1). A significant positive correlation between SPI-n and SRI-3 tends to develop for six months of 
accumulation times across most of the study catchments with a median Kendall's τ value of 0.45 (0.34–0.59 as 
lower and upper bounds represented by 25th and 75th percentile value of Kendall's τ). Considering 6-month accu-
mulation period, around 20% of gauges show a dependence strength of more than 0.60. Although median spatial 
Kendall's τ values at higher accumulation periods shows slightly larger values, interestingly, the dependence 
strength between SPI-n and SRI-3 tends to decrease with an increase in accumulation period beyond 6-month, 
for example, considering 9-month accumulation period, only 5% of gauges show a dependence strength of more 
than 0.60, whereas, for 12-month accumulation period, only one gauge reports Kendall's τ > 0.60. However, our 
method is flexible enough to consider either a coherent or different temporal scales for the analysis. We detect 
drought when monthly values of SRI3 or SPI6 remain below a pre-defined threshold of twentieth percentile (i.e., 
equaled or exceeded 80% of the time (Svoboda et al., 2012). Drought duration is estimated as the number of 
consecutive months when SPI6/SRI3 remains below the fixed threshold value and drought severity as the cumu-
lative values of the standardized indices during a drought event.

2.3.  Identification of Change Points in Time Series

Often storage, diversions, or other regulation practices affect streamflow time series, impacting hydrological 
drought trends. To detect possible human influence on multivariate drought attributes, we use non-parametric 
rank-based Pettitt test (Pettitt, 1979), which is widely used in the literature (Tan & Gan, 2015) for identifying 
abrupt shifts (i.e., sudden change) in hydro-meteorological time series trends. Figure S3 in Supporting Informa-
tion S1 presents around 30 stations spatially distributed across all climatic regions show significant (at 5% signif-
icant level) change points in the severity and duration time series, which is the consequence of various factors, 
such as the presence of diversion, dam, reservoir operation and/or land-use changes (Bayazit, 2015). Due to the 
sparsity of observations in tropics and subtropics, we critically examine the N-SRI time series, and their drought 
attributes series for each station.

We discard the time series before/after for which change points are detected and retain the continuous and unin-
terrupted part of the SRI time series that exhibit similar variability in the streamflow record with no abrupt shift. 
Therefore we assume that the effects of changes in the time series are negligible. Further, to maximize the number 
of gauges, we consider at least 20 or more drought events per site. The use of 20–30 years of record is reasonable 
for multivariate dependence modeling and is typically in use for hydrologic impact assessment (Mesbahzadeh 
et al., 2020). The results of the change point test detected a few sites with strong anthropogenic influences in their 
streamflow drought characteristics even before or after the change point; we did not consider such gauges for 
further analysis (Table S2 in Supporting Information S1). Finally, we retain 270 stations for the analysis.

2.4.  Marginal Distribution Fit of Drought Attributes

Once we estimate drought attributes, severity and duration using the Theory of Runs approach (Sen, 1980) from 
the standardized indices of precipitation and streamflow time series, we evaluate the marginal distributions of 
drought attributes using a range of statistical distributions available in the literature (Ganguli & Ganguly, 2016; 
Rajsekhar et  al.,  2015). We check the performance of a list of parametric distributions, such as Gamma, 
Log-normal, Generalized Extreme Value (GEV), and Log-logistic and non-parametric form of distribution, 
Kernel density estimator to fit drought severity time series. On the other hand, in addition to a list of distribu-
tions stated earlier, we also examine the credibility of exponential distribution to fit drought duration time series. 
We select the best fitted marginal distributions following the minimum AIC criterion (Akaike, 1974). Next, we 
evaluate the goodness-of-fit tests for the marginal distribution of drought variables using classic bootstrap-based 
(N = 500) Crámer-von-Mises (CvM; integrated squared difference) statistics at a 5% significance level. Follow-
ing this criterion, ∼93% of gauges pass marginal distribution fit of severity at 5% significance level. On the 
other hand, ∼ 47–53% gauges qualify marginal distribution fit of duration at a 5% significance level. The gauges 
which do not satisfies the goodness-of-fit test at desired (i.e., 5% significance level) significance level, we select 
the most suitable distributions based on the minimum AIC criteria following the literature (Janga Reddy & 
Ganguli, 2012; Laio et al., 2009).

Tables S3–S6 in Supporting Information S1 summarize the results of marginal distribution fit of bivariate drought 
properties for meteorological and streamflow droughts, respectively. While for meteorological drought severity, 
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kernel density estimator fits well for all sites, for hydrological droughts, 93% (252 out of 270) gauges kernel 
density estimator models the best, followed by the 3% (10 out of 270) share from Lognormal distribution, respec-
tively. The remaining sites are described well by Log logistic, Gamma, and GEV distributions, respectively. For 
meteorological drought duration, for 60% of sites (162 out of 270), kernel density estimator fits the best, whereas 
exponential distribution fits the best for the remaining gauges. Likewise, the kernel density estimator models fit 
the best for 88% sites, followed by the exponential distribution for hydrological drought duration. Figures S4–S5 
in Supporting Information S1 show a comparsion of empirical versus theoretical distributions at three represent-
ative sites for streamflow droughts. Figure S5 in Supporting Information S1 shows the density and CDF plots of 
the best-fitted distribution against the histogram of observations and empirical distributions, respectively, which 
suggest a satisfactory fit between theoretical and empirical distributions.

2.5.  Joint Distribution Modeling of Drought Variables

We make use of copulas to model the joint distribution of drought attributes (severity and duration). We evaluate 
the performance of six different copula families, that is, Clayton (belongs to Archimedean class of copula), Frank 
(Archimedean class), Gumbel-Hougaard (Both Archimedean and Extreme value class), Negative Logistic Model 
or Galambos Copula (Extreme value class), Student's t (Elliptical class) and the Rotatory Clayton copulas to link 
the marginal distributions of mutually dependent drought variables together to form the joint distribution without 
assuming any specific distributional forms of the marginal (Nelsen, 2013). Out of six different families, the four 
families, Gumbel-Hougaard, Galambos, Student's t and rotatory Clayton copulas show upper tail behavior. We 
estimate copula parameters using the maximum pseudo-likelihood (Genest et al., 2009) approach. We assess the 
goodness-of-fit of the copula-based joint distribution using parametric bootstrap-based (N = 500) Cramer von 
Mises distance statistics at a 5% significance level.

Our analyses show, for all stations, student's t copula fits the best with the highest p-value and the minimum 
Cramer von Mises distance estimates between empirical and copula-based distribution. Figure S6 in Supporting 
Information S1 shows the scatter plots of observed drought attributes versus N = 1000 random samples from 
fitted copula families for a representative station, Vicksburg, located at River Mississippi in the subtropical 
climate regime. Further, the graphical plots of Figure S6 in Supporting Information S1 show the satisfactory 
performance of the Student's t copula in simulating the complete (as shown by the observed and the simulated 
Kendall's τ value) versus the upper tail dependence, that is, at the upper right corner of the scatter plot.

2.6.  Bivariate Drought Hazard Estimation

We model the joint distribution of drought attributes using the copula function. Since there is no unique definition 
of the joint return period (JRP) exists, and each definition provides subjective information based on the goal of 
the study (Serinaldi, 2015), we analyze the bivariate hazard associated with concurrence of drought severity and 
duration using bivariate return period using “AND” operator, hereafter denoted as JRPAND following Zscheischler 
and Seneviratne  (2017) Here, we consider the JRPAND to compute the joint return period, which is the most 
extreme scenario in joint probability computation, when both random variables, severity (S) and duration (D), 
concurrently exceed their reference values (Brunner et al., 2016; Zscheischler & Seneviratne, 2017). It should 
be noted that the joint return period estimated through “OR” scenario would be a more relaxing in terms of 
representing the joint return period of the most extreme event; therefore, we do not consider it here. The selected 
tenth (90th percent exceedance) and 90th (tenth percent exceedance) percentile thresholds for drought attributes 
constitute milder and extreme drought categories. This provides estimates of the probability of individual hazards 
exceeding specified (i.e., 10th and 90th percentile) threshold values using the following expression (Brunner 
et al., 2016)

JRPAND =
�

� (� ≥ � ��� � ≥ �)
=

�
1 − �� (�) − ��(�) + ��� (�, �)

�

=
𝜁𝜁

1 − 𝑢𝑢𝑝𝑝 − 𝑣𝑣𝑝𝑝 + 𝐶𝐶𝐷𝐷𝐷𝐷 (𝑢𝑢𝑝𝑝, 𝑣𝑣𝑝𝑝)
� (2)
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where 𝐴𝐴 𝐴𝐴 is the average time elapsing between successive drought episodes, up and vp represents sampled extremes 
exceeding pre-defined thresholds, p  = 10th and 90th percentiles for individual drought attributes, that is, up 
= FS(sp) and vp = FD(dp).

Assuming drought severity and duration as independent, the term 𝐴𝐴 𝐴𝐴𝐷𝐷𝐷𝐷 (𝑢𝑢𝑝𝑝, 𝑣𝑣𝑝𝑝) in Equation 2 is replaced by the 
multiplication of the respective marginal distribution (Singh et al., 2020):

JRPIND =
�

� (� ≥ � ��� � ≥ �)
=

�
1 − �� (�) − ��(�) + ��� (�, �)

� (3)

=
𝜁𝜁

1 − 𝑢𝑢𝑝𝑝 − 𝑣𝑣𝑝𝑝 + 𝑢𝑢𝑝𝑝 ∗ 𝑣𝑣𝑝𝑝
�

The amplification in bivariate drought hazard is computed as the difference between joint return periods under 
the assumptions of independence versus complete dependence for each catchment, that is, A = JRPIND − JRPAND .

Figure S7 in Supporting Information S1 compares the percentage change in multivariate drought hazards under 
the assumption of independence versus the total dependence considering different copula models for milder and 
the extreme meteorological (precursor) and hydrological (responder) droughts. While a large variability is appar-
ent for milder hydrological droughts, the meteorological drought exhibit lesser variability. Overall, for milder 
droughts, the percentage increase in bivariate drought hazard (i.e., underestimation of joint hazard under the 
assumption of independence) varies between 5%–25% (the left panel in Figure S7 in Supporting Information S1). 
On the other hand, the percentage amplification in relative risk ranges to the extent of 60%–90% for rare events. 
Further, it is interesting to note that for rare events, the copulas with upper tail dependence, for example, extreme 
value class of copulas (Gumbel-Hougaard and Galambos) and the elliptical class of Student's t copula show more 
substantial amplification in hazard because of its ability to capture the upper tail behavior of extreme events. In 
all cases, the best performing Student's t copula family shows the most extensive amplification in relative risk 
implying its ability to capture the low-frequency high impact events due to its fat-tailed behavior.

2.7.  Quantification of Effect Size for Multivariate Drought Hazards

We quantify the differences in joint density fields (as indicated by their JRPs) of milder versus extreme categories 
of droughts through effect size, ε between climate regions. The estimate ε provides extent of overlap between 
meteorological and hydrological drought hazards considering interdependence between underlying attributes (see 
Figure 1). For this, we evaluate the signal (change)-to-noise (uncertainty) ratio using the Cohen's D estimate, 
which measures the differences in mean JRPs between each climate type divided by the pooled standard devia-
tion. Interpretation of Cohen's D is intuitive and enables one to compare two groups even if each group's sample 
sizes are different. If the variability (expressed by the standard deviation) arises by a chance or noise within the 
groups, the effect size estimate is nothing but a standardized measure of a signal-to-noise ratio. The general 
formula of Cohen's D (Cohen, 1992) is as below:

𝐷𝐷 =
𝑀𝑀1 −𝑀𝑀2

𝑆𝑆
� (4)

where, � =
√

(�1 − 1)�12 + (�2 − 1)�22
�1 + �2 − 2

Here, M1, S1 and n1 are the mean, standard deviation and sample size, of sample Group 1, M2, S2 and n2 are the 
same for sample Group 2, respectively. S is a measure of standard deviation obtained from the pooled standard 
deviations of both groups.

However, for the small samples (n1 + n2 ≤ 40), ε is calculated using Hedges' G (Equation 5; Hedges, 1981), a 
variation of Cohen's D that corrects biases due to sample sizes.

𝐽𝐽 (𝜈𝜈) =

Γ

(

𝜈𝜈

2

)

√

𝜈𝜈

2
Γ

(

1

2
(𝜈𝜈 − 1)

)� (5)
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Equation  5 is analytically intractable, hence, the following approximation is proposed in the literature 
(Hedges, 1981)

𝐽𝐽 (𝜈𝜈) ≈

(

1 −
3

4𝜈𝜈 − 1

)

� (6)

Finally, Hedges' G is calculated using the following expression (Hedges, 1981)

𝐺𝐺 = 𝐽𝐽 (𝜈𝜈) ×𝐷𝐷� (7)

Since both of these measures provide a single estimate of overall uncertainty (signal-to-noise ratio), we estimate 
statistical uncertainty around ε using 1000 random runs of effect size statistics through a bootstrap-based resam-
pling technique. Finally, we report the most likely (50th percentile value), statistical significance of the estimates 
at a 5% significance level and corresponding confidence bounds.

Following earlier studies (Cohen,  1992) and more recently in Gevaert et  al.  (2018), we use the values of 
0.2 < ε < 0.5, 0.5 < ε < 0.8, 0.8 < ε < 1.7, and ≥1.7 to interpret small, medium, large, and very large effect 
sizes, respectively. An effect size value of 0 indicates distributions of drought categories across a climate regime 
completely overlaps each other. A small effect size between drought types shows strong multivariate drought over-
lap between meteorological and hydrological droughts. In contrast, an effect size of 1.7 indicates a non-overlap of 
∼75.4% in the two distributions with a substantial variation in multivariate drought hazard between two drought 
groups (Becker, 2000), indicating weaker imprints. Accordingly, an effect size of 0.5 infers a magnitude equiva-
lent to a one-half standard deviation change between two drought categories. While a previous study (Van Loon 
et al., 2014) is limited to quantifying differences in bivariate density fields among disparate climate regions by 
the slope of linear regression lines, our approach offers quantifying the strength of the relationship between two 
nonlinear distributions through the effect size statistics, which accounts for the dissimilar length of samples 
within groups. Further, we report the uncertainty associated with the effect size statistics and corresponding 95% 
confidence interval through a bootstrap-based resampling.

3.  Results
3.1.  Stronger Dependence of Hydrological Drought Attributes Relative to Meteorological Drought

Since univariate modeling of drought attributes may lead to over/underestimation of drought hazards 
(AghaKouchak et  al.,  2014; Zscheischler & Seneviratne,  2017), we model bivariate drought hazards across 
different river basins within three climate types. First, we analyze the dependence between drought attributes, 
severity and duration using a non-parametric Kendall's correlation coefficient (or Kendall's τ; see Methods). 
We start our analysis by showing the exemplary plots of precipitation and streamflow regimes for three selected 
catchments in different climate regions, along with their respective (copulas-based) dependency structures for 
hydrological and meteorological droughts (Figures 2b–2d). The time series of monthly flow patterns and precip-
itation at selected gauging stations across climate regions suggest a distinct hydroclimatic pattern; for instance, 
River Rio (Figure 2b; top panel) displays a moderate peak discharge around mid-autumn, which is a typical flow 
regime observed in a tropical river basins (Haines et  al.,  1988). Likewise, River Danube (Figure 2b; bottom 
panel) displays no distinct low flow episode with autumn peaks likely to be absent, which is a characteristic 
of moderate-spring discharge regime (Haines et al., 1988). Furthermore, the scatterplots of bivariate drought 
attributes, superimposed over the joint probability distribution of meteorological (Figure 2c) and hydrological 
droughts (Figure 2d), reflect the impact of climate types on multivariate drought imprints. The positive skewness 
of drought attributes (Figures 2c and 2d) indicates the asymmetric behavior of drought variables with a long right 
tail. Further, except for meteorological drought severity in the Danube catchment (Figure 2c), kurtosis of drought 
attributes is greater than 3, indicating heavy-tailed behavior. The asymmetric and heavier tail behavior of drought 
attributes necessitates copulas to model bivariate drought hazards. The contour lines in a tropical river basin are 
closely spaced at lower probability levels, indicating sharp gradient changes as compared to river basins in other 
two climate types, while the opposite trend is apparent at higher probability levels. We find a distinct pattern in 
the contour lines near the tail ends, reflecting a difference in probability values at upper and lower quantiles of 
joint distributions across the climate types, which a simple linear relationship fails to simulate.
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Across all analyzed catchments, we find a significant (at p-value < 0.05) strong correlation (>0.70) between 
severity and duration for both meteorological (SPI6) and hydrological (SRI3) droughts (Figure 3a). However, 
while only ∼5% (14 out of 270) catchments show Kendall's τ value more than 0.90 for meteorological drought 
(Figure 3a, left panel), over 30% (89 out of 270) catchments show a strong Kendall's τ value of ≥0.9 for hydro-
logical droughts (Figure 3a, right panel). Among three climate types, subtropics show the strongest depend-
ence as demonstrated by a strong dependence pattern with a median value of Kendall's τ greater than 0.88 
for rain-deficit and streamflow-based droughts. Despite the Millennium drought (∼2001–2009) in southeast 
Australia (Van Dijk et al., 2013), the strength of correlations over Australian catchments are in the order of 0.89 
for Southern Australia. The La Plata River basin in South America is one of the largest river basins in the world, 
includes many sub-basins like Paraná and Uruguay, show a stronger dependence in both meteorological (ranges 
from 0.87 to 0.90) and hydrological droughts (Kendall's τ value ranges from 0.86 to 0.93). The Yangtze River 
basin in China shows a higher dependence in case of hydrological drought (Kendall's τ value ranges between 0.88 
and 0.90 for GRDC gauge ID 2181600 and 2181800) compared to meteorological drought (Kendall's τ value of in 
the range of 0.84–0.85). On the other hand, river basins across the tropics show lower dependence strength than 

Figure 3.  Spatial variations in dependence strengths and difference in bivariate drought hazards for milder and extreme categories of meteorological (left panel) versus 
hydrological (right panel) droughts for climate regions. (a) Dependence between drought attributes, severity and duration is estimated using nonparametric dependence 
metric Kendall's τ. The difference in bivariate drought hazards, joint return periods (ΔJRP) considering with and without dependence for (b) milder (tenth percentile 
exceedance probability of drought attributes) and (c) extreme (90th percentile exceedance probability of drought attributes) droughts. The boxplots in the inset show 
distribution of dependence and differences in drought hazards considering with and without dependence of univariate statistics. Box center marks (black lines) are 
medians; box bottom and top edges show 25th and 75th percentiles respectively, whereas the spread of the boxes indicates interquartile range; whiskers indicate 
q75 + 1.5(q75 – q25) and q25 – 1.5(q75 – q25), where q is the quantiles of variables.
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the other two climate types. For example, the gauges across tropical monsoon climate regions, India's Godavari 
and Krishna river basins show relatively low dependence with Kendall's τ value of 0.83–0.84 for both meteoro-
logical and hydrological droughts. In South Asia, seasonality dominates drought propagation, where the timing 
of precipitation has a significant impact (Apurv et al., 2017; Van Loon, 2015). In Africa, the River Congo shows 
a relatively higher dependence value with Kendall's τ value ranges between 0.92 and 0.94 respectively for mete-
orological and hydrological droughts. Overall, in tropics, the dependence value for streamflow-based drought 
ranges from 0.86 to 0.89 (the 25th and 75th percentile bounds) with a median value 0.87 (Figure 3a, right panel). 
In contrast, the dependence value for the meteorological drought is comparatively low and ranges between 0.83 
and 0.86 with a median value of 0.84 (Figure 3a, left panel). Likewise, basins located in mid-latitudes show a 
similar trend, that is, an apparent higher dependence in hydrological droughts with a median Kendall's τ value 
of 0.89 (0.88–0.90 as an interquartile range) as compared to the meteorological drought with a median Kendall's 
τ value of 0.87 (0.86–0.88). Over (mid-latitudes) in Central Europe, extreme droughts have been linked with an 
increase in temperature and record-breaking heatwaves since the 2000s, compounded by a lack of precipitation 
during summer months (Hanel et al., 2018; Hari et al., 2020).

Overall, the spatial map of Kendall's τ suggests a stronger dependence of drought attributes in hydrological 
droughts than that of the meteorological droughts in all climatic regions over the globe. The observed high corre-
lation between drought attributes further confirms the need for multivariate modeling (severity vs. duration) for a 
systematic evolution of catchment-scale drought propagation. On the other hand, dependence between underlying 
attributes was not considered in earlier assessments (Gevaert et al., 2018; Van Loon et al., 2014) to explain the 
catchment-scale propagation of drought dynamics over different climate types.

3.2.  Contrasting Response of Milder Versus Extreme Drought Hazards

To further examine how the nature of dependence evolves under different drought categories (i.e., milder and 
extreme droughts) and climate types, we compare the difference in joint return periods (JRP) considering perfect 
dependence (JRPAND) versus independence (JRPIND) across individual stream gauges (See Methods for the JRP 
details). We contrast these differences for the milder and extreme droughts for the 90th percent and tenth percent 
exceedance probability of drought attributes, that is, severity and duration (see Methods). It is worth noting that 
since the available record lengths are different across sites (Figure 2) and we compute bivariate drought hazards 
of extreme drought attributes, the calculated joint return periods are not uniform across the sites, indicating 
the joint exceedance probability varies across catchments and climate types over the globe. The difference in 
JRPs tends to get larger for extremes (≥100-year) for 65%–76% spatial locations, whereas for milder droughts, 
differences are minor, often less than six months (Figures 3b and 3c) for more than 90% of sites. In addition, for 
meteorological drought, the difference in joint return period is relatively higher in subtropics as compared to the 
other two climate types, which could be because of stronger dependence between drought attributes in this region 
(Zscheischler & Seneviratne, 2017).

For extreme droughts, the difference between JRPAND and JRPIND tends to get larger–the site with stronger depend-
ence shows a more significant difference in JRPs (Figures 3a and 3c). For example, in extreme hydrological 
droughts, the difference in joint return periods ranges from 52 to >100 years for the sites with Kendall's τ greater 
than 0.90. The role of dependence in JRPAND is the strongest that shows considerably smaller return periods or 
frequent occurrence of drought events than that of the joint return period computed under the assumption of inde-
pendence. The question arises as to how sensitive is the difference in estimated joint return periods (i.e., complete 
dependence vs. the assumption of independence) at high values of complete dependence (obtained from Kendall's 
τ) for milder and extreme categories of droughts. The difference in joint return periods (JRPs) versus Kendall's 
τ shows a distinct power-law relationship (Figure 4). For instance, the amplification (A) in joint return periods 
increase with Kendall's τ that has implications for probabilistic hazard estimates of rare events (Zscheischler & 
Seneviratne, 2017). We derive the following relationship for the power-law growth (Figure 4) of the bivariate 
drought hazard relating the difference in joint return periods (i.e., JRPIND–JRPAND) versus the robust dependence 
metric (Kendall's τ; Yang et al., 2020) given as

𝐴𝐴 = 𝛼𝛼𝛼𝛼
𝜆𝜆
, 𝜆𝜆 𝜆 0, 𝜏𝜏𝜏𝜏𝜏  𝑚𝑚𝑚𝑚𝑚𝑚� (8)

A is amplifications in bivariate drought hazard considering without versus with inter-dependence between 
drought attributes. Where α and λ are constants; here λ indicates growth exponent. A value of λ > 1 indicates 
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that the difference in joint return periods amplifies with an increase in dependence between underlying drought 
drivers. The presence of power-law tails leads to a much larger number of extremes than it would have been 
possible by assuming independence between drought attributes. The slope of the least-square fitting corresponds 
to λ and the starting point of the linear fitting is τmin. The amplification in drought hazard versus Kendall's τ 
satisfies power-law behavior with λ = 5 (within lower and upper bounds 5.16–5.6)–9 (within 8.7–9.1) for milder 
and extreme categories of meteorological droughts, whereas λ = 12 (within 11.9–12.2 for milder and within 
12.16–12.7 for extreme categories) for hydrological droughts, respectively. Interestingly, the growth exponent λ 
for hydrological droughts are larger as compared to the meteorological drought. A stronger dependency between 
drought attributes in hydrological drought (Figure 3a) than that of the meteorological drought resulted in large 
value of the power-law exponent (λ). The detection of a power-law growth of the bivariate drought hazards 
indicates extremes tend to be more severe and frequent than would otherwise be expected if independent or a 
combination of univariate distributions are assumed (Zscheischler et al., 2020).

3.3.  Multivariate Drought Imprints Among Different Climate Regions

Next, we analyze the multivariate imprints of meteorological to hydrological droughts across climate types and 
drought categories (milder vs. extreme) in pursuit of underpinning the role of preconditioning drivers (meteoro-
logical droughts) on the responder (streamflow droughts). To compare inter-regional variations in hydrological 
versus meteorological drought hazard footprints, we use the effect size statistic (Cohen, 1992) that compares the 
difference between group means and its variability by standardizing the effect magnitude. The standardization is 
performed in the effect size statistics so that the calculated statistics are compatible across all climate types. We 
compute ε using Cohen's D for large samples (n1 + n2 > 40, where n1 and n2 are the sample sizes of individual 
groups, See Methods). However, in regions with fewer sites, we use Hedges' G (e.g., Tropics) to estimate ε, a 
variation of Cohen's D that corrects biases due to the small sample sizes (see Methods for details).

Figure 5 compares the distribution of bivariate drought hazard of meteorological versus hydrological droughts 
for milder (Figure 5 top panel) versus extreme (Figure 5 bottom panel) droughts. The tabulated values in Figure 5 
show the inter-regional imprints of extreme droughts using effect size statistics. We determine the uncertainty 

Figure 4.  Amplifications in drought hazard with growth exponent λ > 1. Scatter plots showing amplifications in return 
periods A = JRPIND – JRPAND versus the nonparametric dependence metrics Kendall's τ for (a) Meteorological droughts (b) 
Hydrological droughts. The solid line in blue is the least-square fitting in a semi-logarithmic plot with R 2 values ranging from 
0.90–0.99. Vertical (Y)-axes are on logarithmic scale, where log (.) is the natural logarithm. The uncertainty envelops (dotted 
lines in magenta) shows the 95% confidence interval associated with the power-law fit.
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in effect size statistics from N = 1000 random bootstrap runs (see the most likely scenario and the upper and 
lower bounds, i.e., the 50th percentile value with 95% confidence intervals, and p-values in Figure 5 as tabulated 
values). Except for subtropics, the other two regions show a clear significant shift in density functions of mete-
orological versus hydrological droughts for both milder and extreme droughts as confirmed by the two-sample 
Kolmogorov-Smirnov test (p-value < 0.05; see the tabulated list in Figure 5). In contrast, Subtropics show consid-
erable overlaps between two PDFs with a p-value > 0.05, indicating it fails to reject the null hypothesis that the 
two distributions (i.e., meteorological vs. hydrological) are significantly different at a 5% significance level. A 
quantitative comparison of bivariate hazard imprints (or degree of overlap) of hydrological versus meteorolog-
ical drought shows a medium positive effect (in the order of 0.5 or slightly higher than that) for subtropics and 
mid-latitudes regions. However, bivariate hazard imprints in the tropics exceed 1-standard deviation, indicating 
weaker imprints or little overlap of meteorological versus streamflow droughts. The detected effect size statistics 
are robust (i.e., p-value < 0.05) across all regions.

The positive effect sizes of multivariate drought hazard between hydrological and meteorological droughts in 
all climate types suggest higher JRPs of hydrological droughts than those of meteorological. This also implies 
meteorological droughts, owing to their less persistency than streamflow droughts, show shorter mean recurrence 
time between two consecutive episodes, resulting in more frequent events with lower JRPs than hydrological ones 

Figure 5.  Multivariate overlaps of meteorological to hydrological droughts for milder and rare events across climate 
types. The density functions (upper and middle panel) of bivariate drought hazards compares the meteorological (blue) 
and hydrological droughts (in red). Inset shows the PDFs (in gray) of effect size statistics indicating the extent of overlap 
obtained from 1000 bootstrap samples. The table below compares JRPAND estimates of the effect size statistics and their 
95% confidence intervals. Values in the parentheses show the “most likely” effect size statistics obtained from the median 
(50th percentile) estimates of bootstrap resamples. The last but one column shows the p-value associated with the effect size 
statistics, whereas the last column indicates the p-value obtained from testing the difference in two distributions. The single 
(“*”) and double (“**”) asterisks indicate statistical significance at 5% and 1% significance levels.
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in all climates. The propagation of droughts through the hydrological cycle owing to the pooling and lengthening 
of prolonged meteorological droughts results in persistent long-duration streamflow droughts (Van Loon, 2015).

In particular, in the tropics, the density functions of JRPAND (Figure 5; top and the middle panels) show some-
what different behavior than that of the other two climate types together with a “large” effect size (Hedges'G) 
for both categories droughts (milder and extreme). There is a distinct translation pattern from meteorological 
JRPAND to hydrological JRPAND in their density diagrams. A notable shift in PDFs of hydrological drought is 
apparent, accompanied by a substantial variability as reflected from a relatively flatter shape of PDFs in hydro-
logical droughts compared to the meteorological droughts with a large return period. The shift in the variability 
of density function indicates precipitation deficits in the short term have fewer linkages with streamflow, but 
the long-term deficits have a more robust response to streamflow. This informs the complex propagation of 
droughts in the tropics due to local catchment characteristics and underlying terrestrial hydrological processes 
(Grayson & Blöschl, 2001; Tallaksen & Van Lanen, 2004). On the other hand, the mid-latitude climate regime 
shows a little higher value than the medium effect size (Figure 5, bottom panel), suggesting the presence of less 
frequent but longer duration, persistent hydrological droughts in this region. Our findings corroborate previous 
studies (Gibson et al., 2019; Naranjo et al., 2018; Roundy et al., 2012; Van Loon, 2015), which show precipita-
tion deficit does not necessarily translate into hydrological droughts; land-atmospheric feedbacks, climate, and 
catchment control play a vital role in propagating droughts. Further, in mid-latitudes, a combination of succes-
sive dry winter/spring seasons and prolonged soil moisture deficit followed by a lack of groundwater recharge 
can cause persistent hydrological droughts in slow responding catchments during summer (Hanel et al., 2018; 
Marsh et al., 2007; Van Loon, 2015). Over north-western Europe, multi-year hydrological droughts with extended 
spatial coverage have often been linked to recurrent dry winter episode (Kendon et al., 2013; Parry et al., 2012).

In contrast, the subtropics, which lies in a transitional climate regime, the multivariate JRPAND of meteorological 
versus hydrological drought, overlaps with each other in the extreme case (Figure 5). In contrast, a little shift is 
observed in milder cases, accompanied by a change in the variability of the density function for hydrological 
drought. A visual inspection of PDFs corresponding to the meteorological versus hydrological drought hazard 
for subtropics shows a relatively symmetric shape of the distributions compared to the PDFs of the other two 
regions. A near symmetric distribution indicates lesser variability in the distribution of extremes in this region. 
The subtropical climate regime shows small to medium effect sizes between hydrological and meteorological 
droughts, with values ranging from 0.04 to 1.23 (considering 95% confidence bounds). The effect size statistics in 
subtropics are smaller than in the other two regions, which indicates strong multivariate imprints between mete-
orological and streamflow droughts. The presence of strong coupling between soil moisture and precipitation has 
been reported previously (Koster et al., 2004; Wei et al., 2016) for this region, which possibly dictate a relatively 
stronger imprints of meteorological (preconditioning driver) to hydrological (response) droughts.

4.  Discussion
Drought and water stress pose a significant challenge in global water security in a warming climate (Raymond 
et al., 2020; Zscheischler et al., 2018). Using gauge-based observational records of 270 catchments, we pres-
ent a global synthesis of multivariate aspects of different drought types and show the role of climate and the 
dependence structure impacting joint exceedance of drought attributes. While meteorological droughts act as 
a (preconditioning) causal driver for hydrological droughts (a responder), the presence of nonlinear depend-
ence between the underlying attributes may affect the translation pattern of meteorological to hydrologic 
droughts. Our findings corroborate with a growing body of the literature (AghaKouchak et al., 2014a; Hao & 
AghaKouchak, 2014; Zscheischler & Seneviratne, 2017) that highlighted the importance of considering nonlin-
ear dependence between underlying drought attributes in assessing multivariate drought hazards, failure of which 
may lead to over/under-estimation of hazard/risk. We demonstrate the contrasting differences in the bivariate 
hazards of milder versus extreme categories of droughts in space and time at a global scale using observational 
precipitation and streamflow records.

Considering extreme droughts, we identify more than 100 years of differences in bivariate drought hazards across 
sites, accounting for dependence between drought attributes compared to joint return periods with assumptions of 
independence. Further, we establish a power-law relation of the amplifications in bivariate drought hazard-to-de-
pendence, which implies extremes tend to be more severe and frequent than would otherwise be expected if 
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drought attributes were independent or linearly dependent. Based on the bivariate drought hazard and effect 
size metric, we further show distinct responses in multivariate hazard imprints across climate types with little 
changes in precipitation-deficit versus streamflow droughts across subtropics, indicating substantial overlaps 
between drought types for this region. In contrast, a large effect size in the tropics indicates substantial variations 
in meteorological versus hydrological droughts suggesting weaker imprints (small overlaps) between drought 
types. Our findings are in agreement with the literature that showed that the propagation of droughts in the tropics 
follows a complex pattern (Van Loon et al., 2014), whereas, in subtropics, a quicker response is apparent from 
meteorological to hydrological droughts (Gevaert et al., 2018). Subtropical catchments have a relatively stable 
climate type, such as temperature and precipitation show relatively fewer fluctuations across the year with no 
sub-zero temperature and without pronounced seasonal influence (e.g., monsoon) or slowly varying rainfall cycle 
(Naranjo et al., 2018; Van Loon et al., 2014). This further suggests that catchment characteristics have a rela-
tively lesser role in drought propagation in subtropical catchments than those in the other two climate regimes. 
While several large-scale assessments are often confined to either virtual catchments (Apurv et al., 2017; Van 
Loon et al., 2014) or utilizing stochastically simulated streamflow records (Brunner & Tallaksen, 2019), using 
gauge-based observational records in a multivariate framework, here we, however, identified several hotspots 
that are not well documented in the literature. Frequent and severe droughts are observed for catchments across 
northern Australia, Eastern Europe (sites across Ukraine and neighboring countries), and a few regions of the 
south-eastern United States and eastern Canada (Figure 3c), indicating these regions require greater attention to 
inform extreme droughts.

A few caveats of the current analysis are worth noting. While our hydrological and meteorological drought anal-
yses are solely based on gauge-based records, spatiotemporal coverage of observations remains a limiting factor. 
For instance, the specific insights depend on the quality of streamflow records in regions with sparse data cover-
age (such as south Asia and Africa). Use of alternate sources of data records, either gauged-based (Gudmundsson 
et  al.,  2018), re-analysis (Harrigan et  al.,  2020), and/or high-resolution gridded hydrometric reconstructions 
(Ghiggi et al., 2019) may improve confidence; however, at the cost of inherent limitations; for example, model 
structural/parameterization uncertainties in reconstructed datasets. In a bivariate framework, the uncertainty 
may stem from limited sample lengths, and distribution fitting, such as uncertainty related to marginal distribu-
tion together with the uncertainty associated with dependence structure of two variables (Brunner et al., 2016). 
Despite we use the long time series of quality-controlled observational records, considering different sources 
of uncertainty in bivariate framework, we assume that the effects of changes in the time series are not large. 
Although in tropics and sub-tropics, the effect of snow melts in drought propagation would be negligible over 
the selected sites, over mid-latitudes shift in snowmelt timing and below-average snowpack (snow drought) 
could result in below-normal summer streamflow and streamflow droughts (Huning & AghaKouchak, 2020; 
Winchell et al., 2016). In our analyses, we have not considered the effect of snow melts and its variations on 
catchment-scale hydrologic drought responses as our analysis focused more on an integrated aspect of streamflow 
drought, resulting from precipitation variability. We encourage future studies to further disentangle and specify 
the varying role of different hydrological processes (e.g., snow, soil-moisture, evapotranspiration) in a multivar-
iate settings of drought propagation. While a detailed process-based investigation of catchment-scale drought 
propagation is beyond the scope of the current study, we emphasize that our copula-based approach provides 
a statistical exploration and establish linkages between multivariate drought hazards, considering overlaps or 
imprints of one drought type (meteorological) to another (hydrological) across different climate regions. Further, 
we present associated uncertainty through a standardized measure of a signal-to-noise ratio. While a higher 
accumulation length in the precipitation index, compared to the runoff one, adopted in this study to some degree 
reflects internal catchment functioning of dampening process, we encourage future studies to jointly investigate 
the dependence structure through (process-based) modeling and statistical techniques while carefully accounting 
for inherent uncertainties (e.g., in model parametrizations or statistical quantifications).

Nevertheless, the obtained results of robust amplifications in bivariate drought hazards provide a systematic 
view on observation-based drought imprints across different climatic regions over the globe. This can serve as 
a potential benchmark for stakeholders in formulating drought adaptive strategies across the world's large River 
basins, and developing risk-informed decisions for the resilience of critical infrastructure. Further, the derived 
insights will aid in forecasting efforts and evaluating the performance of hydrological and land-surface models to 
address impact-relevant case-studies (Krysanova et al., 2020; Wanders et al., 2019). Our analyses reveal a strong 
amplification in multivariate drought hazards accounting dependence, especially for extreme droughts, which has 
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implications for “safe” design of water resources systems, such as regulation and planning of water reservoirs 
and adaptation to extreme droughts (Wan et al., 2017). Overall, our results highlight the importance of consider-
ing drought propagations in a multivariate lens, which helps to identify hotspots of climate-mediated change in 
drought dynamics across river basins around the globe (Falkenmark et al., 2019).
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