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1 | SIX CHALLENGES FOR CONSISTENCY
IN WATER QUALITY MODELLING

Several hydrological studies have expressed the need for consistency

in hydrological modelling (Euser et al., 2013; Martinez & Gupta, 2011).

Consistency means to match the simulated processes with knowledge

and expectations from study catchments. In analysing consistency,

hydrological processes are checked for accuracy in their spatio-

temporal representation under consideration of available catchment

observations. This includes innovative diagnostic methodologies to

analyse the model assumptions and results in more detail (Gupta

et al., 2008; Reusser et al., 2009; Yilmaz et al., 2008), and plausibility

checks of input, internal and output variables based on catchment

knowledge (Guse et al., 2016; Pfannerstill et al., 2017). In this com-

mentary, we transfer the idea of consistency to water quality model-

ling at the catchment scale.

We focus on water quality modelling in rural mesoscale catch-

ments and the interaction with agricultural production systems and

their management. While it is acknowledged that urban areas contrib-

ute significantly to pollution and other harmful substances also affect

water quality, the major focus here is on modelling the impact of agro-

chemicals. At the mesoscale, model studies are based on existing data,

for example measurements of water quality variables at the catch-

ment outlet. Representative data coverage (i.e. measurements)

throughout the catchment is generally not possible. Model complexity

is related to these conditions and includes a detailed representation of

land use and land management. To handle models in terms of simula-

tion time as well as due to data availability, simplifications of process

representations are necessary. To capture the spatial heterogeneity

and variability within the catchment, we focus our study on spatially

distributed, integrated catchment models that are simulating both

water quantity and water quality. The long-standing EGU-Session

‘Water quality at the catchment scale: measuring and modelling of

nutrients, sediment and eutrophication impacts’ provides insights into
recent advances in water quality modelling at the catchment scale.

Based on this session, the literature and our own studies in the last

years, we have developed a guideline for consistency in water quality

modelling as visualized in Figure 1.

1.1 | Representation of rural landscapes

The main challenge in mesoscale, ecohydrological models is an accu-

rate parametrization of rural landscapes. In comparison to water

quantity studies, input data for water quality modelling are usually

limited in time and space. Their measurement is often restricted to

monthly grab samples at a few gauges. Only in the case of well-

observed catchments are daily mixed samples or continuous sensor

data available for model calibration and validation (Rode &

Suhr, 2007; Wagner et al., 2018). Usually, nutrients are the focus of

the chemical analysis. Data on sediments are usually restricted to

suspended load, and pesticide data are only available in short mea-

surement campaigns (Ulrich et al., 2022; Wagner et al., 2018). Thus,

there is a mismatch between spatial and temporal scales in data avail-

ability and requirements for accurate process representations (Fu

et al., 2020).
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Challenges arise from the need to interpolate, extrapolate or

derive necessary input information from proxy data. Water bodies as

well as storages in the landscape (e.g. concentrations in soil layers)

must be initialized and transformation rates within the nutrient cycles

need to be parameterized. These data are usually derived from litera-

ture and rarely represent the necessary spatial and temporal variability

in the catchment correctly.

Agrochemical inputs to water bodies originate from point and dif-

fuse sources. Most studies in rural areas focus on diffuse sources and

consider entry pathways via surface runoff, drainage pipes and seep-

age through the soil, but they neglect contributions of point sources.

In rural areas, wastewater entry can pose a considerable threat to

water resources and human health, especially if untreated. While the

load of harmful microorganisms is clearly minimized, this is not true

for nutrient loads and other harmful substances throughout the year.

Especially in cold periods or during low flows, the contribution of

wastewater treatment efflux to water degradation can be consider-

able. Ignoring the point sources during calibration can lead to a dis-

torted representation of landscape processes.

In addition, information on land use patterns and management is

of major importance. While such details are often ignored in water

quantity studies, in water quality modelling more detailed land use

patterns (i.e. management practices, crop rotations, cropping systems

and tillage practices) are necessary to represent the complexity of land

use systems (Guse et al., 2015; Lei et al., 2022).

Even though dynamic representations of land use change are pos-

sible in many modelling frameworks (e.g. SWAT, mHM) and it has

been shown that model outputs are affected by the temporal repre-

sentation of land use (Guse et al., 2015; Wagner et al., 2019), static

representations of land use are still common. In the context of water

quality modelling, changes in agricultural areas are particularly impor-

tant. Long-term changes in space and time can be assessed with the

help of remote sensing data and land use classifications (Lei

et al., 2021; Steinhausen et al., 2018) or field surveys in the case of

smaller study areas (Lei et al., 2019).

Land management in space and time is important to initialize

levels of nutrient pools in the soil, as well as to adequately depict leg-

acy effects. Derivation of typical crop rotations includes data mining

of agricultural yearbooks within administrative boundaries, surveys of

agricultural areas for several years (Wilken et al., 2017), as well as

expert interviews with local farmers. Information on the time of sow-

ing, fertilization, tillage system, pesticide application and harvesting

dates, for example, is usually unknown for mesoscale catchments but

needed to adequately represent crop rotations (Guse et al., 2015; Lei

et al., 2022). This information needs to be distributed in space and

time to avoid a synchronization of measures over large areas resulting

in artefacts in the simulation of pollutant loads. High variability in crop

variety characteristics is well-known in agricultural sciences and even

the position within the crop rotation has considerable effects on nutri-

ent uptake and finally on crop yield. However, this level of detail in

ecohydrological catchment modelling is not possible so far. Crop man-

agement can also include two crops on the same field (bi-cropping

systems) with significant implications for soil protection, nutrient

enrichment or competition in plant growth. Undersown crops or bi-

cropping systems are implemented, for example, to protect the soil

from erosion or to improve the nitrogen input through the combina-

tion of legume and cash crops (Conrad & Fohrer, 2016).

1.2 | Accuracy in model structure and model
parameters

Hydrological models are characterized by specific structures, imple-

mented processes and their degree of complexity. The model parame-

ters selected to optimize the model for the catchment under study

vary among different models. Water quality models include water

quantity and water quality components and their interactions. While

principles of quantitative hydrology are well-understood, how to

implement nutrient cycles in models is often not sufficiently clear and

rarely investigated in detail. The role of parameters in controlling the

nutrient cycle in models is particularly challenging (Clark et al., 2015).

Diagnostic model analysis to improve the understanding how well

processes are represented in the model is well-established in quantita-

tive hydrology, mainly in analysing discharge (Gupta et al., 2009;

Reusser et al., 2009; Yilmaz et al., 2008). Using temporally resolved

diagnostic methods, temporal variability of process behaviour in

models is investigated knowing that process relevance varies under

specific conditions, such as between wet and dry periods. Transferring

diagnostic model analysis to water quality modelling is required to

improve the understanding of water quality processes and the nutri-

ent cycle. Until now, combined temporal diagnostic analyses to obtain

a joint understanding of both water and pollutant cycle at the same

time are rarely used (Schüerz et al., 2019).

Haas et al. (2015) used a temporal dynamics of parameter sensi-

tivity approach (Reusser et al., 2011) to analyse temporal variability in

the dominance of nitrate parameters. For each day, the dominant

nitrate parameters were derived to detect their dominant phases. In

comparing daily sensitivites of nitrate parameters with different runoff

components and nitrate flow pathways, they determined which

parameter controls which process at which time. The nitrate uptake

parameter of the SWAT model was shown to be sensitive in phases of
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crop growth with a high nitrate demand at phases of low concentra-

tions of nitrate in the soil. A joint interpretation of seasonal crop

dynamics and agricultural management with water quality processes

is needed to understand typical patterns of dominant processes and

parameters in models. A comparison with the expected process

behaviour shows whether all relevant processes and catchment fea-

tures are well-represented.

1.3 | Check of multiple model outputs for
consistency

Due to overarching interactions between agrochemicals with the

environment, a consistent simulation of nutrients and agrochemicals

requires correct representation of almost all ecohydrological model

states and outputs. The spatio-temporal plant development has a

decisive impact on the nutrient processes. Together with agricultural

practices and soil characteristics, this governs the storage of nutri-

ents in the soil matrix, concentrations in transport pathways and

leaching from the soil. The consistency check for plant-related char-

acteristics largely depends on the modelling scale and requires to

consider the influence of each combination of plant–soil-climatic

conditions on the simulated time series of leaf area index (Strauch

et al., 2013), evaporation (Wagner et al., 2011) and biomass, as well

as the timing of harvest and yield (Lautenbach et al., 2013). In addi-

tion, model outputs can be validated against spatial patterns (Bieger

et al., 2015; Wagner et al., 2022). This requires the spatial represen-

tation of the remotely sensed or mapped variables in the model, for

example evaporation or soil moisture (Odusanya et al., 2019; Rajib

et al., 2016). Modelled nutrients at the subbasin scale can be com-

pared with data available from spatially distributed field campaigns

(Lei et al., 2021).

One strength of models lies in the separate representation of

water flow pathways and their share in total streamflow. Nutrient

concentrations in streamflow are an integrated signal of the individual

transport pathways. Therefore, an evaluation of fluxes originating

from surface runoff, tile drains, lateral flow and groundwater flow

against observations are valuable to increase model consistency. In

that regard, Fu et al. (2020) list isotopes, tracers and biomarkers

(Pfister et al., 2017) as novel and useful approaches. If available, such

data are valuable in validating a model's state variables and process

representation (McMillan et al., 2012). If not available, the modelled

share of transport pathways can be validated against the geophysical

catchment characteristics and hydrogeological setting (Ala-aho

et al., 2017).

Additional potential lies in novel data sources that can inform

water quality studies, such as soft data information (Seibert &

McDonnell, 2002), crowd-sourced data (Minkman et al., 2015) and

social media data (Keeler et al., 2015; Venohr et al., 2018). While a

direct comparison to model outputs or state variables for these data

sources may not always be possible, such spatially distributed, qualita-

tive information can constrain simulated water quality parameters in

addition to, or in absence of, quantitative observations.

1.4 | Joint multi-metric calibration of discharge
and water quality for all magnitudes

Model calibration and identification of suitable parameter values using

a set of contrasting performance criteria is crucial for realistic model

representations. It is still challenging to develop a suitable multi-metric

method for water quality studies if the goal is to improve process rep-

resentation and allow extrapolation for scenario analysis (Fu

et al., 2020; Pohlert et al., 2007). The use of multiple performance cri-

teria is an essential step in water quality modelling to cover different

characteristics and dynamics of simulations (Ahmadi et al., 2014;

Bekele & Nicklow, 2007). Pfannerstill et al. (2014) provided an over-

view of performance measures, including statistical performance mea-

sures such as Kling–Gupta-efficiency (Gupta et al., 2009), Ratio of

root mean square error and standard deviation (Moriasi et al., 2007).

Signature measures that are directly related to catchment func-

tions are recommended for hydrological modelling (Pokhrel

et al., 2012; Yilmaz et al., 2008). Hydrographs and nitrographs are rep-

resentations of different phases of the entire hydrological and nutri-

ent behaviour over time in the catchment. The approach of

constructing signature measures separately for different phases of the

flow duration curve (FDC) (Pfannerstill et al., 2014) was further

extended to the use of nitrate duration curves (NDC) for model opti-

mization (Haas et al., 2016). FDC and NDC represent catchment func-

tions of discharge and nitrate, respectively, and can be separated into

different phases to analyse dynamics and magnitudes of stream flow

and loads in detail. To obtain a plausible model simulation for water

quality modelling, the performance measure is first applied separately

for each defined segment, which composes both FDC and NDC (Haas

et al., 2016; Pfannerstill et al., 2014). A combined metric for both vari-

ables and all considered performance and signature measures is

calculated.

The use of different metrics made clear that a model run which is

optimal for runoff is not necessarily optimal for nitrate simulation. A

deeper look at nitrogen dynamics and relationships with hydrology is

needed. The methodological approach was described exemplarily for

nitrate in Haas et al. (2016), but it is suggested to transfer this

approach to other agrochemicals.

1.5 | Scenarios and storylines for reliable land
management

Decisions that affect water quality of river basins are made by multi-

ple stakeholders and interest groups. One of the main challenges in

sustainable river basin management is the integrated development of

best management practice (BMP) options to improve water quality

(Arabi et al., 2006; Chaubey et al., 2010). The simulation of BMPs

requires that realistic agricultural practices are spatially and temporally

arranged and implemented with different management and crop rota-

tions (Lam et al., 2011; Strauch & Volk, 2013; Ullrich & Volk, 2009).

The strong linkage between reliable simulation experiments in water

quality modelling and interactions with stakeholders was emphasized

COMMENTARY 3 of 6



in a review by Fu et al. (2020) to transfer the model outcomes to prac-

tical applications, good organization and capacity building.

Socio-environmental systems are highly complex, and all compart-

ments are interconnected. Thus, making sustainable and integrated

management decisions is challenging. Ecohydrological models have

been used to make the impacts of management options more trans-

parent (Haas et al., 2017; Lam et al., 2011); nevertheless, the useful-

ness of the results depends on the selection of realistic scenarios,

storylines and the acceptance of these measures by stakeholders.

Using models to analyse the impact of driving forces like climate, land

use or other anthropogenic interventions has been a research focus

for many years. Yet, the results of those studies rarely find their way

to implementation due to the oversimplification of scenario compila-

tion. One of the main obstacles in assessing potential future develop-

ments is the dialogue with stakeholders in an integrative manner of

joint scenario development. This becomes even more obvious as soon

as different environmental compartments or disciplines are involved.

In recent years, scientists have tried to overcome this chasm by inte-

grating not only the decision makers, but also all relevant stakeholders

within a river basin (Nygaard et al., 2021).

The sub discipline of socio-hydrology has become more promi-

nent and has helped to understand the underlying mechanisms for

water distribution and water resources management (Kumar

et al., 2020). The development of meaningful storylines helps insure

that all parties are represented properly and inclusively and that com-

plex socio-environmental processes are communicated with modern

modelling and visualization techniques. The decision space should be

adequately represented in space and time. Moreover, it is recom-

mended that storylines and scenarios are developed in co-design with

stakeholders. For example, land use change scenarios, land manage-

ment (tillage practice, grazing) and crop rotations need to be imple-

mented and spatially and temporally allocated within a river basin, and

farmer dialogue should be employed to define the decision space and

the framework for the scenario runs. Land use models are useful tools

to run projections for different future scenarios and achieve a spatially

distributed output (Palmate et al., 2022; Wagner & Fohrer, 2019). An

adequate spatial and temporal distribution of BMPs, a suitable mix of

measures as well as economic considerations are key to defining real-

istic scenarios (Haas et al., 2017).

1.6 | Consistent interpretation of impacts on water
quality

Assessment and interpretation of the results of BMP scenario runs in

terms of pollutant load reduction and cost effectiveness is crucial for

their implementation. This means a search for a BMP that combines

greater pollutant reduction and the lowest cost of implementation

and/or loss of revenue due to reduced productivity. Most studies

focus on the spatial patterns of individual BMPs, but their usefulness

during different phases of the hydrograph and in relation to the mag-

nitude of pollution is rarely considered.

For this purpose, diagnostic tools like duration curves are helpful

to evaluate the impact of BMPs depending on the seasonality and the

magnitude of, for example, nitrate loads in the catchment, to detect

phases of better effectiveness (Haas et al., 2017). For the reduction of

nitrate, for example, the model studies indicated the highest reduction

by combining BMPs such as fertilizer reduction and buffer strips.

However, both represent a loss of income due to a smaller crop area

available as a result of buffer strip implementation and lower produc-

tivity when using less fertilizer (Haas et al., 2017).

The evaluation of BMPs should not only look at the agricultural

sector (Chaubey et al., 2010; Lam et al., 2011). It is equally important

to consider the valuation of ecosystem services and different agricul-

tural productions and find a balance between environmental and eco-

nomic sustainability. Water quality modelling in rural areas should be

carried out considering the spatial and temporal distribution of nutri-

ents in more detail seeking the most effective spatial location of mea-

sures to reduce pollution and, at the same time, improve biodiversity

and system resilience.

2 | GUIDELINE FOR WATER QUALITY
MODELLING

To summarize, we suggest a guideline for water quality modelling:

1. Spatial and temporal patterns of land use and land management

are critical to adequately represent water quality in models. Remote

sensing and land use models are very useful resources to be exploited.

2. The transfer of a model diagnostic analysis to water quality

leads to a better understanding of how water quality variables are

controlled by model structures and corresponding model parameters.

3. Assessing multiple model outputs regarding their temporal, spa-

tial and process performance using observed time series, remotely

sensed spatial patterns, knowledge about transport pathways and

even soft data can significantly enhance model consistency.

4. Multi-metric calibration using performance metrics and signa-

ture measures both for discharge and water quality, such as FDC and

NDC, leads to more balanced model simulations that represent all

magnitudes of discharge and water quality accurately.

5. Scenarios and storylines should be co-developed with stake-

holders in the river basin to make them more realistic and increase the

acceptance of model results. They should be realistic in space and

time, and provide a mix of available management options.

6. The interpretation of BMPs can be supported by diagnostic

tools to show the effectiveness of measures and their combinations

while considering their costs and impacts on ecosystem services.
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