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Abstract
We present an accurate method for the calculation of gravitational potential (GP), vector 
(GV), and gradient tensor (GGT) of a tesseroid, considering a density model in the form of 
a polynomial up to cubic order along the vertical direction. The method solves volume inte-
gral equations for the gravitational effects due to a tesseroid by the Gauss–Legendre quad-
rature rule. A two-dimensional adaptive subdivision technique, which automatically divides 
the tesseroids near the computation point into smaller elements, is applied to improve the 
computational accuracy. For those tesseroids having small vertical dimensions, an exten-
sion technique is additionally utilized to ensure acceptable accuracy, in particular for the 
evaluation of GV and GGT. Numerical experiments based on spherical shell models, for 
which analytical solutions exist, are implemented to test the accuracy of the method. The 
results demonstrate that the new method is capable of computing the gravitational effects 
of the tesseroids with various horizontal and vertical dimensions as well as density mod-
els, while the evaluation point can be on the surface of, near the surface of, outside the 
tesseroid, or even inside it (only suited for GP and GV). Thus, the method is attractive for 
many geodetic and geophysical applications on regional and global scales, including the 
computation of atmospheric effects for terrestrial and satellite usage. Finally, we apply this 
method for computing the topographic effects in the Himalaya region based on a given dig-
ital terrain model and the global atmospheric effects on the Earth’s surface by using three 
polynomial density models which are derived from the US Standard Atmosphere 1976.
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1  Introduction

An accurate forward modeling method for the computation of gravitational potential (GP), 
vector (GV), and gradient tensor (GGT) based on a given mass distribution is highly 
required in many geodetic and geophysical applications. In geodesy, especially in physical 
geodesy (Heiskanen and Moritz 1967), it is widely applied in computing mass reductions 
(e.g., terrain correction, residual terrain correction, isostatic correction, and atmospheric 
correction) for geoid determination, as the gravitational effects due to the topographic or 
atmospheric masses are usually removed before the geoid modeling and then added back 
to the geoid heights after the modeling (e.g., Forsberg 1984; Denker 2013). In terrestrial 
gravimetry, the gravity records are disturbed by temporal signals caused by oceanic and 
atmospheric mass variations. To reveal gravity signals reflecting geophysical processes, the 
disturbing signals must be precisely evaluated and removed (e.g., Neumeyer et al. 2004; 
Gitlein 2009). Forward gravity modeling is also commonly used for geophysical interpreta-
tions by removing the complete Bouguer effect from terrestrial or satellite measurements to 
isolate the gravity signals related to the geological structure inside the Earth (e.g., Álvarez 
et al. 2012; Braitenberg 2015). In the inversion of gravity data, an accurate forward solver 
is crucial for imaging subsurface density anomalies for resource exploration (e.g., Li and 
Oldenburg 1998) and investigating crust–mantle structures inside the Earth or other planets 
(e.g., Liang et al. 2014; Uieda and Barbosa 2017).

Newton’s integral serves as the basis for the forward gravity modeling, which requires 
the geometry and density of the mass distribution. In practice, the mass distribution is usu-
ally discretized into a set of elementary bodies associated with density information. The 
forward modeling aims at evaluating the gravitational effects at the computation point by 
superimposing the contributions from all elementary bodies.

For local applications, in which the Earth can be approximated as flat and thus the com-
putations are carried out in a Cartesian coordinate system, the elementary body is popu-
larly selected as a flat-topped rectangular prism because its analytical solutions for gravi-
tational effects are available (e.g., Nagy et al. 2000; Tsoulis 2000; Nagy et al. 2002; Heck 
and Seitz 2007; D’Urso 2012). To improve the computational efficiency of the analytical 
solutions, an alternative is provided by the approximate solutions of the prism integrals 
which are computed by the formulas based on a Taylor series expansion of the integral 
kernel (e.g., MacMillan 1930; Fukushima 2020). Because the use of flat-topped rectangu-
lar prisms simply approximates the mass distribution, the rectangular prisms with inclined 
top and bottom faces are alternatively employed (e.g., Smith 2000; Tsoulis et  al. 2003; 
D’Urso 2015a). Rather than rectangular prisms, polyhedral bodies have better capabilities 
to describe mass sources with complex geometries. Various analytical solutions have been 
successfully derived for the gravity field of a polyhedral body (e.g., Okabe 1979; Götze 
and Lahmeyer 1988; Pohánka 1988; Holstein and Ketteridge 1996; Petrović 1996; Hol-
stein et al. 1999; Holstein 2003; Hamayun et al. 2009; Tsoulis 2012; D’Urso 2013, 2014a, 
b; Conway 2015; D’Urso 2015b; D’Urso and Trotta 2017; Ren et al. 2017, 2018a, b). In 
addition to classical space-domain analytical approaches, the polyhedral gravity forward 
problem can also be solved in the Fourier domain (e.g., Wu 2018a, b, 2019) or by spherical 
harmonic expansions (e.g., Chen et al. 2019a, b). We note that the literature about gravity 
field calculations based on polyhedral bodies is huge. Therefore, we just provided a selec-
tion of the most relevant papers. More references can be found in the given references. 
For applications on either a regional or a global scale, which are usually based on spheri-
cal coordinates, the curvature of the Earth cannot be directly taken into account for the 
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rectangular prisms. To solve this, additional coordinate transformations are often applied 
(e.g., Heck and Seitz 2007; Wild-Pfeiffer 2008). Although the polyhedral representation is 
valid in the spherical coordinate system (e.g., Benedek and Papp 2009), the approximation 
of the Earth with curvatures definitely requires a large number of polyhedral bodies. Addi-
tionally, since the analytical expressions for the gravity field of the polyhedral body are in 
Cartesian coordinates, the computation of its effect in a local topocentric coordinate sys-
tem attached to the computation point also needs coordinate transformations. Alternatively, 
the elementary bodies are typically chosen as tesseroids rather than rectangular prisms 
or polyhedral bodies. The tesseroid is a natural representation in the spherical coordinate 
system (e.g., Heck and Seitz 2007; Wild-Pfeiffer 2008), which is bounded by two spheri-
cal surfaces, two meridional planes, and two coaxial circular cones (e.g., Anderson 1976; 
Grombein et  al. 2013). However, analytical solutions for the gravitational effects of the 
tesseroids expressed in Newton’s volume integrals are not available, and one has to employ 
numerical approaches.

There are two kinds of numerical approaches, which have been investigated extensively 
for the evaluation of tesseroids, namely the Taylor series expansion (TSE) method and the 
quadrature method. For the TSE method, Newton’s integral is solved by expanding the 
integral kernel in a Taylor series expansion up to a certain degree, followed by an integra-
tion of the subsequent volume integrals (e.g., Heck and Seitz 2007; Wild-Pfeiffer 2008; 
Grombein et  al. 2013; Shen and Deng 2016). The TSE method is fast and can produce 
accurate results at low latitudes. However, its accuracy decreases rapidly toward the polar 
regions due to the significant change of the tesseroid surface from the equator (with an 
almost rectangular horizontal shape) to poles (with nearly a triangular horizontal shape). 
In the quadrature method, the approximate solutions of Newton’s volume integrals are 
directly solved by using numerical quadrature rules, in which the Gauss–Legendre quadra-
ture (GLQ) is popularly applied, leading to the so-called GLQ method (e.g., Asgharzadeh 
et  al. 2007; Wild-Pfeiffer 2008; Li et  al. 2011; Uieda et  al. 2016; Deng and Shen 2018; 
Soler et al. 2019). In some approaches, the volume integral is analytically integrated along 
the radial direction first. The resulting surface integral is then numerically solved by using 
the GLQ rule (e.g., Wild-Pfeiffer 2008), or by the split quadrature method using the double 
exponential quadrature (DEQ) rule, resulting in the so-called DEQ method (e.g., Fuku-
shima 2017, 2018). Most recently, Zhong et al. (2019) proposed a new method for comput-
ing the gravity field of a tesseroid, in which the original volume integral is first transformed 
into two surface and four edge integrals, and then the GLQ rule is adapted to evaluate these 
integrals. In comparison with the TSE method, the quadrature method (e.g., GLQ method) 
is able to provide more accurate approximations on the cost of more computational time 
(e.g., Lin and Denker 2019). When the computation point approaches the tesseroids, the 
integrands become singular. As a consequence, both methods give inaccurate approxima-
tions, especially for computing the GV and GGT.

In recent years, many efforts have been made to improve the computational accuracy for 
computation points near and on the tesseroid. For example, Heck and Seitz (2007), Tsoulis 
et al. (2009), and Tsoulis (1999) suggested to replace the tesseroids near the computation 
point by the prismatic or polyhedral bodies, so that their analytical solutions can be used. 
Marotta and Barzaghi (2017) proposed to first rotate the tesseroids into a new coordinate 
system whose polar axis is the line connecting the computation point and the Earth’s center 
and then analytically calculate the gravity attractions due to the rotated tesseroids. Fukush-
ima (2017, 2018) developed a novel method, which first computes the GP of the tesseroids 
at an arbitrary point with very high precision by the powerful DEQ rule and then approxi-
mates the GV and GGT by numerical partial differentiation of the computed GP. In Li et al. 
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(2011), Grombein et al. (2013), Uieda et al. (2016), Lin and Denker (2019), Soler et al. 
(2019), and Zhong et al. (2019), the improvement of the approximation is achieved by reg-
ularly or adaptively subdividing the tesseroids close to the computation point into smaller 
tesseroid elements along both horizontal and vertical dimensions or only in the horizontal 
dimension first, and then summing all effects of the subdivided tesseroid elements com-
puted by the GLQ rule. Among the above-mentioned approaches, the last one is easy to 
implement and further requires no elementary body conversion, flat Earth approximation, 
coordinate transformation, tesseroid rotation, and numerical differentiation. Therefore, we 
follow this approach for tesseroid modeling in this study. Since the numerical comparisons 
in Lin and Denker (2019) demonstrated the superiority of the GLQ method along with the 
adaptive subdivision of the tesseroids in the horizontal dimension, it is taken as the basis 
for the new method presented here. Compared to the method of Lin and Denker (2019), 
the new method cannot only compute GP and GV for the tesseroid, but also GGT. In addi-
tion, a comprehensive analysis of the impact of the vertical and horizontal dimensions of 
the tesseroid as well as the number of GLQ nodes on the solutions is given. The result-
ing guidelines for tesseroid modeling are incorporated in the new method, with the aim of 
ensuring high accuracy in terrestrial, airborne, and satellite applications on a regional or 
global scale.

So far, in contrast to the significant developments regarding the density modeling for 
prismatic and polyhedral bodies, the tesseroid-based forward gravity modeling meth-
ods mostly deals with homogeneous tesseroids. To fulfill the increasing requirements for 
applications on a regional or global scale with complex density environments, it is of great 
interest to extend the constant density model for the tesseroid to a linear or nonlinear one. 
For this purpose, several efforts have already been made. In the DEQ method proposed 
by Fukushima (2017, 2018), the density model for the tesseroids has the form of a poly-
nomial function of the radius up to an arbitrary order. Lin and Denker (2019) presented 
new formulas for computing the gravity field of the tesseroids with constant density and 
the density varying linearly along the vertical direction by the GLQ method and the TSE 
method. However, these formulas are limited to the computation of the GP and GV. Most 
recently, Soler et al. (2019) proposed a new method, which is able to compute the gravi-
tational effects of the tesseroids whose density varies with depth according to an arbitrary 
continuous function by the GLQ method. In the computation, the continuous density func-
tion for the tesseroid is in fact discretized into a set of smaller tesseroid elements along the 
radial direction by an adaptive density-based discretization algorithm, while each tesseroid 
element has a linear density function of the radius. Thus, the tesseroid modeling actually 
uses the formulas corresponding to the linear density model. Furthermore, the gravitational 
effects to be computed are also restricted to the GP and GV in their method. Although the 
DEQ method allows for a direct evaluation of the tesseroids with a polynomial density 
function of the radius, to the best of our knowledge, there is not such a method using the 
GLQ rule, which can directly and precisely compute the GP, GV, and GGT due to the 
tesseroids with density varying nonlinearly along the vertical direction. In this study, an 
attempt to consider the density model in the form of a polynomial function of the radius up 
to cubic order is given. Compared to the complex formulas appearing in the DEQ method, 
the formulas for the new method should be much simpler.

The remainder of the paper is organized as follows. In Sect. 2, we present the method 
used to evaluate the gravitational effects for the tesseroids with density varying as a 
polynomial function up to cubic order along the vertical direction. Section 3 first conducts 
various numerical tests to investigate the influence of the tesseroid dimension, the number 
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of GLQ nodes, and the computation point’s position on the solutions, and then gives a 
comparison of several tesseroid approaches including the DEQ method. In Sect.  4, two 
applications of the new method are presented to examine its practical applicability. In the 
first application, the topographic effects in the Himalaya region are calculated by the new 
method and then compared with those computed by the program TC (Forsberg, 1984). In 
the second application, global atmospheric effects on the Earth’s surface are calculated and 
compared using three different density models. Finally, some conclusions based on the 
summary of the numerical results are given in Sect. 5.

2 � Method

2.1 � Gravitational Effects for Tesseroids

Assuming that the density within a tesseroid is varying along its vertical direction accord-
ing to an N-th order polynomial function, the density model can be described as

where h′ , h1 and h2 denote the altitude of an arbitrary point inside the tesseroid, the bottom 
and top face of the tesseroid, respectively, and an are the given density coefficients with 
respect to order n. In this study, we deal with the case of N = 0, 1, 2, 3 , corresponding to 
the constant, linear, and polynomial density models up to quadratic and cubic orders. For 
the sake of conciseness, we call them constant, linear, quadratic, and cubic density mod-
els hereafter. For computations in spherical coordinates, the somewhat artificial concept 
of density as a function of radial distance rather than altitude is required. After introducing 
the relations r� = h� + R , r1 = h1 + R , and r2 = h2 + R into Eq. (1), we obtain the density 
model as a function of radial distance r′:

The expressions for the polynomial coefficients �n based on an up to cubic order are given 
in Table 1. Replacing the constant density � in Eq. (21) of Grombein et al. (2013) by �

(
r′
)
 , 

optimized formulas for computing the GP, GV, and GGT due to the tesseroid having a 
dimension of 

[
r1, r2

]
×
[
�1,�2

]
×
[
�1, �2

]
 and an N-th order polynomial density model in 

a local north-oriented Cartesian coordinate system with its x-axis pointing toward north, 
y-axis toward east and z-axis upward can be expressed as 

(1)�
(
h�
)
=

N∑
n=0

an ×
(
h� − h1

)n
, h� ∈

[
h1, h2

]
,

(2)�
(
r�
)
=

N∑
n=0

�n ×
(
r�
)n
, r� ∈

[
r1, r2

]
.

(3a)V(r,�, �) = G

N∑
n=0

�n ∫
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�1
∫

�2

�1
∫

r2

r1

KV
n
dr�d��d�� =
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where i, j ∈ {x, y, z} , (r,�, �) and 
(
r′,�′, �′

)
 denote the spherical coordinate of the compu-

tation point and the running integration point, G is the gravitational constant that is set as 
6.672 × 10−11m3 kg−1 s−2 in this study, KV

n
 , KVi

n  , and KVij

n  are the integral kernels which are 
specified in Table 2, and 

(3c)Vij(r,�, �) = G

N∑
n=0

�n ∫
�2

�1
∫

�2

�1
∫

r2

r1

K
Vij

n dr�d��d�� =

N∑
n=0

(
Vij

)
n
,

(4a)�n =
(
r�
)2+n

cos��,

(4b)� =
√
r2 + r�2 − 2rr� cos� ,

Table 1   Expressions for the 
polynomial coefficients �n in 
Eq. (2) based on the density 
coefficients an in Eq. (1) up to 
cubic order

Order n Expression

0 �0 = a0

1 �0 = a0 − a1r1

�1 = a1

2 �0 = a0 − a1r1 + a2r
2
1

�1 = a1 − 2a2r1

�2 = a2

3 �0 = a0 − a1r1 + a2r
2
1
− a3r

3
1

�1 = a1 − 2a2r1 + 3a3r
2
1

�2 = a2 − 3a3r1

�3 = a3

Table 2   Formulas for the integral 
kernels in Eq. (3)

Integral kernel Formula

KV
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�
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K
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n
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K
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�3
�n

K
Vxx

n

(
3r�2C2

�

�5
−

1

�3

)
�n

K
Vyy

n

[
3(r� cos�� sin ��)

2

�5
−

1

�3

]
�n

K
Vzz

n

[
3(r� cos�−r)

2

�5
−

1

�3

]
�n

K
Vxy

n
3r′2C� cos�′ sin ��
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�n

K
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n
3r�C�(r� cos�−r)
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�n

K
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n
3r� cos�� sin ��(r� cos�−r)
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�n
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Since the volume integrals in Eq.  (3) comprise elliptic integrals, no analytical solutions 
are available. Alternatively, they are commonly solved by the GLQ rule (e.g., Stroud and 
Secrest 1966; Asgharzadeh et al. 2007; Li et al. 2011; Uieda et al. 2016), resulting in the 
least-squares numerical approximations as given by

where

The functions f
(
r̂i, 𝜑̂j, 𝜆̂k

)
 are generalizations of the appropriate integral kernels in 

observation and source point coordinates, wr
i
 , w�

j
 , w�

k
 are the GLQ weights corresponding 

to the GLQ nodes xr
i
 , x�

j
 , x�

k
 in the interval [−1, 1] (Wild-Pfeiffer, 2008), and Nr , N� , N� 

are the number of GLQ nodes along the radial direction, latitude and longitude, respec-
tively. In practical computation, the GLQ nodes must be scaled to the integration domain [
r1, r2

]
×
[
�1,�2

]
×
[
�1, �2

]
 using 

Equation (5) shows that the least-squares gravitational effects of a tesseroid at each com-
putation point are actually computed by a weighted sum of Nr × N� × N� equivalent point 
mass effects, where each point mass is located at the source coordinate (r̂i, 𝜑̂j, 𝜆̂k) inside 
the tesseroid. If Nr = N� = N� = 1 , the GLQ method is equivalent to the point mass 
method.

In practical implementation, for those tesseroids near the computation point, the vol-
ume integrals in Eq.  (3) are only used when the radial distance r of the computation 
point satisfies r ≥ r2 or r ≤ r1 . If r1 < r < r2 , the integration domain 

[
r1, r2

]
 is divided 

into two parts, namely 
[
r1, r

]
 and 

[
r, r2

]
 . As an example, Eq. (3a) is rewritten as

(4c)cos� = sin� sin�� + cos� cos�� cos ��,

(4d)C� = cos� sin�� − sin� cos�� cos ��,

(4e)�� = �� − �.
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Equations (3b) and (3c) can be expressed in a similar way. It is clear that the original tesse-
roid is split into two individual tesseroids by the plane passing through the computation 
point. The gravitational effects for the original tesseroid are now the sum of the effects 
due to the two divided tesseroids. The reason for this division is to ensure the effectiveness 
of applying the two-dimensional adaptive subdivision (2DAD) technique (see Sect.  2.2) 
for improving the computational accuracy. For the tesseroids far away from the computa-
tion point, such a treatment is not necessary. This treatment also works if the computation 
point is inside the tesseroid when computing GP and GV, but not for GGT because it is not 
defined for points on the boundary surface.

2.2 � Two‑Dimensional Adaptive Subdivision Technique

The adaptive subdivision originates from Li et al. (2011) and Uieda et al. (2016), in which a 
tesseroid near the computation point is irregularly subdivided into smaller tesseroids along 
both the horizontal and vertical dimensions, i.e., three-dimensional adaptive subdivision 
(3DAD) technique. Based on their procedure, Lin and Denker (2019) simplified this strategy 
by only performing the subdivision along the horizontal dimension and numerically proved 
its superiority to the 3D case. Here, we follow the 2DAD technique. To determine whether a 
tesseroid has to be subdivided, the relation

is checked for each i ∈ {�, �} . If the inequality holds for both the latitude and longitude 
directions, no subdivision is made. Otherwise, the tesseroid is discretized along the direc-
tion that failed the condition. In the above equation, �0 is defined as the distance between 
the geometrical center 

(
r0,�0, �0

)
 of the top or bottom face of the tesseroid and the compu-

tation point (r,�, �) : 

(8)

V(r,�, �) = G

N∑
n=0

�n ∫
�2

�1
∫

�2

�1
∫

r

r1

KV
n
dr�d��d��

+ G

N∑
n=0

�n ∫
�2

�1
∫

�2

�1
∫

r2

r

KV
n
dr�d��d��.

(9)
�0

Li
≥ D

(10a)�0 =

√
r2 + r2

0
− 2rr0 cos�0,

(10b)cos�0 = sin� sin�0 + cos� cos�0 cos ��0,

(10c)��0 = �0 − �,

(10d)�0 =
�1 + �2

2
, �0 =

�1 + �2

2
,

(10e)r0 =

{
r1 r ≤ r1
r2 r ≥ r2

.
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Li denotes the dimension of the tesseroid along the latitude and longitude: 

D is a positive value referred to as the “distance–size ratio,” which needs to be controlled 
by the user to achieve a specific requirement. A large D means more tesseroids around the 
computation point are to be discretized. Some numerical examples on the selection of D 
can be found in Uieda et al. (2016) and Lin and Denker (2019). Relevant numerical inves-
tigations on the optimal choice of D for the new method will be shown in Sect. 3.2. Notice 
that �0 defined in Eq. (10) is slightly different from that in Lin and Denker (2019). The new 
definition is more suited for the 2DAD technique based on numerous numerical tests.

2.3 � Remarks on Numerical Singularity

When observing the integral kernels given in Table 2, we find that the amplitudes of the ker-
nels are inversely proportional to the distance � between the computation point and the mass 
element for GP. As for GV and GGT, the amplitudes are inversely proportional to �3 and �5 , 
respectively. Since the volume integrals as given in Eq.  (3) are evaluated by the GLQ rule 
which is in fact a weighted sum of the effects of point masses located inside the tesseroids 
(see Eq. 5), the numerical singularity, i.e., � = 0 , does not exist for exterior points. When the 
computation point is near or on the tesseroid surface, a very small � between the computation 
point and the GLQ node may exist. Due to the limitations of the computational arithmetic, a 
rounding off error may occur in the computation of � . According to the role of � playing in 
the integral kernels, the error in the computed � will definitely be amplified, thus affecting the 
computational accuracy. For a better explanation, we let � = �̂ + 𝜀 with � , �̂ , and � being the 
computed distance, true distance, and existing error, respectively. For the sake of simplicity, 
we assume here that the error � is positive. We then define the following three ratios to meas-
ure the degree of error effect on the integration: 

with 𝜎 = 𝜀∕�̂  . The ideal case is that � equals zero (i.e., � = 0 ), and thus, the ratios reach 1. 
In practice, a nonzero � always exists (i.e., � ≠ 0 ). A large deviation between the ratio � and 
1 indicates a large error effect on the integration, and vice versa. If � is a very small value 
and approaches zero, its impact on the solution is negligible. This often happens when �̂  is 
much larger than � . Therefore, it is easy to see that the numerical result is usually accurate 
when the computation point is far away from the source mass. However, if �̂  is small, the 
resulting � might not be sufficiently small. As a consequence, its effect on the solution is sig-
nificant. Figure 1 gives an example of the above three ratios as a function of � . Obviously, 
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)
,
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(
�2 − �1

)
.

(12a)𝛽GP =
1

�
∕
1

�̂

=
1

1 + 𝜎
,

(12b)𝛽GV =
1

�3
∕
1

�̂3
=

1

(1 + 𝜎)3
,

(12c)𝛽GGT =
1

�5
∕
1

�̂5
=

1

(1 + 𝜎)5
,



732	 Surveys in Geophysics (2020) 41:723–765

1 3

the degree of the error effect on the integration for three kinds of gravity field quantities 
follows: GGT > GV > GP. This means that, in the same computational environment, the 
computation of GGT with high accuracy is the hardest, and then GV and GP.

2.4 � An Extension Technique

As discussed in Sect. 2.3, too small distances between the GLQ nodes and the computation 
point may lead to an inaccurate integration due to the significant amplification of the errors 
in � . Accordingly, the evaluation of a tesseroid with a small vertical dimension �r = r2 − r1 
on its surface by the GLQ rule may give an inaccurate solution because there exist one or 
more GLQ nodes being close to the computation point. In contrast, the tesseroid with a 
large �r might be better approximated. To improve the evaluation of a tesseroid having a 
small �r , we here propose a so-called extension technique. The basic idea is that we replace 
the evaluation of the tesseroid with a small �r by the evaluation of two tesseroids which 
are related to the original tesseroid and have much larger �r , and then make a difference 
between the gravitational effects due to the two tesseroids to yield the effect of the original 
tesseroid. Based on the simple illustration in Fig. 2, the extension technique is described as 
follows: 

1.	 We extend the original tesseroid ( � ) along its vertical dimension upward or downward 
to a predefined value De , depending on the vertical location of the computation point 
with respect to the tesseroid ( � ). If r ≥ r2 , then the extension is made downward (see 
left panel of Fig. 2). If r ≤ r1 , the upward extension is made (see right panel of Fig. 2);

Fig. 1   Ratio � as a function of � 
computed by Eq. (12)

Fig. 2   An illustration of the application of the extension technique for the case of r ≥ r2 (left) and r ≤ r1 
(right). Here the star, tesseroids marked by � , � , and �� denote the computation point, original tesseroid, 
extending tesseroid, and extended tesseroid
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2.	 We compute the gravitational effects caused by the extended tesseroid ( �� ) and extend-
ing tesseroid ( � ) by the GLQ rule along with the 2DAD technique;

3.	 We subtract the gravitational effect of the extending tesseroid ( � ) from that of the 
extended tesseroid ( �� ), yielding the effect due to the original tesseroid ( �).

Furthermore, some issues need to be clarified when using the extension technique. They 
are:

•	 The preliminary condition of using the extension technique. It is only used when r ≥ r2 
or r ≤ r1 , but not for r1 < r < r2 . In the case of r1 < r < r2 , we first split the tesseroid 
into two individual tesseroids by Eq. (8), and then consider each of them as a new tesse-
roid. Because Eq. (8) is only applied to the tesseroids near the computation point in prac-
tical computation, the use of the extension technique is also limited to these tesseroids. 
For those tesseroids far from the computation point, the evaluation of the tesseroid with a 
small �r is sufficiently accurate without using the extension technique.

•	 The definition of �et
r
 and De used in the extension technique. Supposing that a tesseroid 

with �r satisfies the preliminary condition of using the extension technique, we often 
define a threshold of the vertical dimension �et

r
 to judge whether it needs the extension 

technique or not. If �r ≤ �et
r
 , we apply the extension technique using a defined De that 

is in fact the vertical dimension of the extending tesseroid ( � ). Otherwise, no extension 
technique is used. Since no rules are available for the proper choice of �et

r
 and De , they are 

empirically determined based on numerical tests.
•	 The density models for tesseroids ( � ), ( � ), and ( �� ). In fact, the density model �

(
r′
)
 is 

only valid for ( � ) as can be seen from Eq. (2). But it is also assigned to ( � ) in the exten-
sion technique, which is actually virtual. As a consequence, the density model for ( �� ) 
consists of two parts, namely the real part in ( � ) and the virtual part in ( � ). Since both 
density models for ( � ) and ( �� ) are continuous functions, it is straightforward to compute 
the gravitational effects due to the two tesseroids and then make a difference between them 
to eliminate the effects caused by the virtual densities in ( �� ) and ( � ) and finally yield the 
effect of ( � ) with the real density model.

As an example of computing the GP of the tesseroid on the point with r ≥ r2 by applying the 
extension technique, the volume integral as given in Eq. (3a) is rewritten as

When the computation point is located on or below the bottom face of the tesseroid (i.e., 
r ≤ r1 ), we then have

(13)
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For the computation of GV and GGT by using the extension technique, the volume inte-
grals are expressed similarly to Eqs. (13) and (14).

3 � Validation Tests

This section aims at examining the computational accuracy of the new method in the dou-
ble-precision environment. We select a spherical shell as a research object as its gravita-
tional effects can be analytically computed. The spherical shell is located on a spherical 
Earth with a default radius R = 6378.137 km and has a thickness Hs and a polynomial den-
sity model �

(
r′
)
 (see Eq. 2). The closed formulas for computing the GP (V), the radial com-

ponent of GV ( Vz ), and the radial–radial component of GGT ( Vzz ) of the spherical shell at an 
arbitrary point are given in Appendix 1. If not differently specified, the computation point is 
on the shell surface, namely its height h above the spherical Earth equals Hs . Notice that Vzz 
becomes indefinite on the shell surface. In this case, we shift the computation point slightly 
above the shell surface such as h = (1 + e)Hs , where e is chosen as 10−15 here.

The computations in the following tests are executed using Fortran codes parallelized 
by OpenMP with total 40 threads on a server hosting 2 Intel(R) Xeon(R) E5-2660V3 @ 
2.60 GHz CPUs with 10 cores per CPU and 2 threads per core. The GP, GV, and GGT 
have the units of m2 s−2 , mGal, and Eötvös ( E , 1 E = 10−9s−2 ), respectively. Four poly-
nomial density models up to different orders ( N = 0, 1, 2, 3 ) are computed based on the 
density coefficients a0 = 103 kg m−3 , a1 = 2 × 10−2 kg m−4 , a2 = 2.5 × 10−5 kg m−5 , and 
a3 = 5 × 10−10 kg m−6 for the following tests. Figure 3 illustrates the density changes with 
respect to the altitude ranging from 0 m to 10 km above the spherical Earth.

3.1 � Influence of the Tesseroid Dimension and Number of GLQ Nodes

A number of numerical experiments are carried out in this section, with the aim of inves-
tigating the impact of the tesseroid vertical dimension �r and horizontal dimension �h , as 
well as the number of GLQ nodes ( Nr∕N�∕N� ) on the solutions. Analytical solutions of a 
homogeneous spherical shell/cap at the computation point on the north polar axis are eas-
ily found in the literature (e.g., Heck and Seitz 2007; Grombein et al. 2013). Therefore, the 
density for the test spherical shell/cap is assumed to be constant if not differently specified 
in this section.

Fig. 3   Four polynomial density 
models up to different orders in 
terms of the altitude above the 
spherical Earth. All of them were 
used in the numerical tests in 
Sect. 3
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Let us first examine the computational accuracy of the new method without using the 
extension technique for the modeling of spherical shells with different thickness Hs , which 
varies from 1 m to 10 km. For each spherical shell, the evaluation point is located at the 
north pole and resides on the shell surface. In the modeling, each spherical shell is regu-
larly divided into 9331200 tesseroids with �h = 5� and �r = Hs . The gravitational effects 
of each tesseroid are evaluated by the GLQ rule along with the 2DAD technique. Different 
combinations of Nr∕N�∕N� (i.e., 3/1/1, 3/2/2, 3/3/3, 3/4/4, 3/5/5, 3/10/10, and 5/1/1, 5/2/2, 
5/3/3, 5/4/4, 5/5/5, 5/10/10) are compared. Because a large variation between the magni-
tudes of the gravitational effects of the spherical shells with different Hs exists, we prefer 
to use the relative errors to measure the computational accuracy rather than the absolute 
errors. Through comparing the solutions obtained by a sum of the gravitational effects of 
all tesseroids to the analytical solutions of the spherical shells, the resulting relative errors 
are shown in Fig. 4. It is clear that the relative errors generally decrease as Hs increases. 
When Nr is fixed, the increase in N� and N� improves the computational accuracy. In gen-
eral, N�∕N� = 3∕3 is sufficient for tesseroid modeling in regard to the computational accu-
racy and efficiency. We also find that �Vzz is larger than 1 when Hs ≤ 100m , which means 
the computed Vzz is totally unacceptable, representing 100% actual errors.

To investigate the cause of different performances of the method for various shell thick-
nesses, the computational accuracy of a single tesseroid is analyzed. The single tesseroid is 
defined as a sector of a spherical zonal band, and thus, its analytical solutions at the com-
putation point, which is located at the north pole, can be computed based on the procedures 
described in Appendix D.3 of Lin and Denker (2019) and the formulas of a spherical cap 
given in Heck and Seitz (2007). Additionally, we derived the analytical formula for com-
puting Vzz of a spherical cap in Appendix 2. In order to see the dependency of the computa-
tional accuracy on the distance between the tesseroid and the computation point, the tesse-
roid moves from the north pole to the south pole. �r is selected as 1 m, 10 m, 100 m, 1 km, 
and 10 km for comparison purposes. Two horizontal dimensions �h = 5� and 3′′ are also 
considered. The latter �h is consistent with a currently high-resolution global digital terrain 
model (DTM) like SRTM3. The number of GLQ nodes used is set as 3 along each dimen-
sion. Let � be the typical linear size of the tesseroid, which is computed as the longest dis-
tance between two vertices on the top and bottom faces of the tesseroid, � be the distance 

Fig. 4   Relative errors �V  (a, d), �Vz (b, e), and �Vzz (c, f) as a function of the shell thickness Hs in log–log 
scale. �h = 5� and different combinations of Nr∕N�∕N� are used
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between the tesseroid geometrical center and the computation point, and �−1 = �∕� , the 
relative errors �V  , �Vz , and �Vzz as a function of �−1 are illustrated in Fig.  5. With the 
increase in �−1 (i.e., the tesseroid moves away from the computation point), the relative 
errors decrease rapidly first, then remain stable, and finally increase again. It is clear that 
the errors mainly stem from the poor evaluation of the tesseroids in the vicinity of the com-
putation point, especially for the nearest one. We observe that a larger �r usually results 
in smaller relative errors. This explains why the relative error decreases as Hs increases in 
Fig. 4. Comparing the results for �h = 3�� to those for �h = 5� , it reveals that a smaller �h 
usually yields larger relative errors. It is now evident that the tesseroid dimension affects 
the solutions. We also notice that �Vzz is larger than 1 when evaluating the nearest tesse-
roid with a small �r . Therefore, the evaluation of the nearest tesseroid must be improved 
for practical usage. To achieve this aim, one possible way is to use an optimal number of 
GLQ nodes along each dimension for the nearest tesseroid instead of using a fixed number 
3 used here. Based on the results shown in Fig. 4, it is sufficient to fix the values of N� and 
N� to be 3 for precise tesseroid modeling. We then emphasize the optimal choice of Nr and 
design the following experiment to illustrate the effect of using different Nr on evaluating 
the nearest tesseroid with different �r and �h.

The single tesseroid is now chosen to be the one that directly connects the computa-
tion point located at the north pole. The vertical dimension of the tesseroid varies from 
1 m to 10 km. In addition to using �h = 5� and 3′′ , another two cases of using 1′ and 30′′ 
are considered. For each �r and �h , six different Nr with the values of 1, 3, 5, 10, 30, 
50 are selected for the investigation. Corresponding results are shown in Fig. 6. It clearly 
shows that the performance of using different Nr varies with �r , �h , and the gravity field 
quantities to be modeled. With the increase in �r , the relative errors decrease at first, then 
increase rapidly for a small Nr, or keep on decreasing for a large Nr . In general, a small 
Nr is suited for a small �r and vice versa. According to Fig. 6, we divide �r into several 
intervals for each �h , and an optimal value of Nr is selected in each interval. Table 3 sum-
marizes the results. Notice that only four �h are analyzed here, and the choice of optimal Nr 
may be different for other �h . Alternatively, one may horizontally split the nearest tesseroid 
having a different �h into several tesseroids with one of the above-analyzed �h , so that the 

Fig. 5   Relative errors �V  (a, d), �Vz (b, e), and �Vzz (c, f) as a function of �−1 in log–log scale. A homoge-
neous tesseroid with �h = 5� (a–c) and 3′′ (d–f) is compared, and for each �h , the cases of using �r = 1m , 
10 m, 100 m, 1 km, and 10 km are shown. The number of GLQ nodes is set as Nr∕N�∕N� = 3∕3∕3
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rule for optimal Nr selection given in Table 3 can be directly applied. The cost is that the 
computational time will be somewhat increased.

We then repeat the experiment shown in Fig. 5. In practical computation, the optimal Nr 
is applied to the tesseroids satisfying �−1 ≤ 10 , and Nr = 3 is used for the rest. The relative 
errors for �−1 ≤ 100 are shown in Fig. 7. Comparing Fig. 7 with 5, we find that using opti-
mal Nr can reduce the relative errors, in particular for �V  . However, �Vzz is still larger than 
1 for �r = 1m . We then apply the extension technique (see Sect. 2.4) to evaluate Vz and Vzz 
of the tesseroid again, which has a �r ≤ �et

r
 and satisfies �−1 ≤ 3 . The values of �et

r
 and De 

are numerically selected as 1 km and 4 km. When computing V, no extension technique is 
needed because �V  is not sensitive to �r (Fig. 7). Figure 8 illustrates the relative errors �Vz 
and �Vzz after applying the extension technique. Obviously, they are significantly reduced 
when comparing them to those in Fig. 7. �Vzz is now smaller than 1 for all selected �r.

Finally, we repeat the experiment shown in Fig.  4. Besides using the optimal Nr , we 
also consider two cases of applying and not applying the extension technique. In addition 
to the constant density model, the other three density models are also used. The results are 
shown in Fig. 9, from which it is observed that the use of the extension technique largely 
improves the computational accuracy. All relative errors are below 1, implying that the 
computed gravity field is acceptable.

Fig. 6   Relative errors �V  (a, d, g, j), �Vz (b, e, h, k), and �Vzz (c, f, i, l) for the nearest tesseroid as a func-
tion of �r in log–log scale. The cases of using Nr = 1, 3, 5, 10, 30, 50 and �h = 5�, 1�, 30��, 3�� are shown
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To this end, we summarize two numerical findings need to be concerned when using 
tesseroids for precise gravity forward modeling: 

1.	 The tesseroid vertical dimension �r has a major impact on the solution. The smaller 
�r is, the lower is the computational accuracy. Therefore, we recommend to apply the 
extension technique to evaluate the GV and GGT of the tesseroid, which has a vertical 
dimension �r ≤ 1 km and satisfies �−1 ≤ 3 . For the computation of GP, no extension 
technique is needed.

Fig. 7   The same as in Fig. 5, but only displaying the case of �−1 ≤ 100 . The optimal Nr is used to evaluate 
the tesseroids satisfying �−1 ≤ 10 , while Nr = 3 is applied for the rest

Fig. 8   The same as in Fig. 7, but only displaying the relative errors �Vz (a, c) and �Vzz (b, d). The extension 
technique is applied to the tesseroids both satisfying �r ≤ 1 km and �−1 ≤ 3
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Table 3   Summary of the determined optimal Nr for the nearest tesseroid with different dimensions

�h GP ( Nr∕�r Interval) GV ( Nr∕�r Interval) GGT ( Nr∕�r Interval)

5′ 3/[1 m, 10 km] 1/[1 m, 300 m] 1/[1 m, 400 m]
3/(300 m, 3 km] 3/(400 m, 5 km]
5/(3 km, 10 km] 5/(5 km, 10 km]

1′ 3/[1 m, 1 km] 1/[1 m, 100 m] 1/[1 m, 200 m]
5/(1 km, 3 km] 3/(100 m, 1 km] 3/(200 m, 1 km]
10/(3 km, 10 km] 5/(1 km, 3 km] 5/(1 km, 4 km]

10/(3 km, 10 km] 10/(4 km, 10 km]
30′′ 3/[1 m, 600 m] 1/[1 m, 60 m] 1/[1 m, 100 m]

5/(600 m, 3 km] 3/(60 m, 1 km] 3/(100 m, 600 m]
10/(3 km, 10 km] 5/(1 km, 2 km] 5/(600 m, 2 km]

10/(2 km, 7 km] 10/(2 km, 10 km]
30/(7 km, 10 km]

3′′ 3/[1 m, 100 m] 1/[1 m, 10 m] 1/[1 m, 20 m]
5/(100 m, 300 m] 3/(10 m, 100 m] 3/(20 m, 100 m]
10/(300 m, 1 km] 5/(100 m, 300 m] 5/(100 m, 500 m]
30/(1 km, 10 km] 10/(300 m, 1 km] 10/(500 m, 2 km]

30/(1 km, 7 km] 30/(2 km, 10 km]
50/(7 km, 10 km]

Fig. 9   Relative errors �V  , �Vz , and �Vzz as a function of the shell thickness Hs (from 1 m to 10 km) in log–
log scale. The cases of using the spherical shells with the constant (a), linear (b), quadratic (c), and cubic 
(d) density model are shown
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2.	 The use of a fixed number of GLQ nodes along the horizontal ( N� and N� ) and vertical 
( Nr ) dimensions is not an optimal choice for evaluating the tesseroids near the compu-
tation point. Here we recommend to fix N� and N� as 3 and use the optimal Nr which 
varies with �r and �h (Table 3). In practical computation, the optimal Nr is applied to 
the tesseroids satisfying �−1 ≤ 10 , while Nr = 3 is used for the rest.

3.2 � Optimal Selection of Parameter D

In the following, we aim to choose the optimal value of the parameter D used in the 2DAD 
technique by investigating six spherical shells with Hs = 1m , 10 m, 100 m, 1 km, 5 km, 
and 10 km. Four density models are used for the selection. The relative errors for the com-
putation point at the north pole in terms of D, which varies from 0 to 20 with a step size 
of 1, are shown in Fig. 10. Here we only show the cases of using the constant and cubic 
density models because the error curves for the other two density models look similar to 
the presented curves. We can see that the relative errors generally decrease as D increases 
and then remain almost unchanged. The optimal value of D is determined as the one after 
which the relative errors become stable. Table  4 summarizes the chosen optimal values 
of D for different Hs and density models, from which we find that the optimal values vary 
with Hs , density models, and gravity field quantities. Here, we choose the largest value 
among all cases as the final optimal value of D for each kind of gravity field quantity, 
resulting in 14, 8, and 7 for GP, GV, and GGT. Finally, the experiment shown in Fig. 9 is 

Fig. 10   Relative errors �V  , �Vz , and �Vzz in log scale as a function of the distance–size ratio D. The cases 
of using Hs = 1m (a), 10 m (b), 100 m (c), 1 km (d), 5 km (e), and 10 km (f) are shown. For each Hs , the 
cases of using the constant (solid lines) and cubic density model (dashed lines) are compared

Table 4   Selected values of D 
with respect to six different shell 
thicknesses Hs

The four values of D correspond to the case of using the constant, lin-
ear, quadratic, and cubic density model, respectively

1 m 10 m 100 m 1 km 5 km 10 km

V 3/3/3/1 1/1/1/1 3/3/2/1 5/6/2/1 11/11/3/1 14/9/5/1
Vz 3/3/3/6 3/3/3/3 2/3/3/3 5/5/5/4 7/7/7/5 8/8/8/5
Vzz 3/3/3/3 3/3/3/3 3/3/4/5 4/4/4/5 7/7/7/7 6/6/6/6
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revisited by using the optimal D, and the relative errors are shown in Fig. 11. In compari-
son with Fig. 9, the error reduction is not obvious for �Vz and �Vzz . However, �V  is evi-
dently reduced for Hs > 1 km.

3.3 � Influence of the Computation Point’s Height

The computation point is assumed to be on the shell in the previous tests. In this sec-
tion, we intend to take a deeper insight into the performance of the new method for cal-
culating the gravitational effects of the spherical shell at the point on the shell, near the 
shell, far away from the shell, and even inside the shell mass. In general, the computa-
tion point can be distributed in any direction (e.g., horizontal or vertical). For the sake 
of conciseness, they are located along a straight radial line passing through an arbitrar-
ily selected point with � = 86.5◦E and � = 27.5◦N in this test. The test spherical shell 
has a thickness Hs = 10 km . For computing V and Vz , the computation points start at the 
height h = 200m above the spherical Earth and end at the height h = 300 km . The com-
putation of Vzz is only performed at the points exterior to the shell as it cannot be directly 
calculated on the surface boundary. Again, four different density models are tested. The 
relative errors as well as the Laplace equation in relative sense computed by the formula 
|Vxx + Vyy + Vzz|∕

(|Vxx| + |Vyy| + |Vzz|
)
 (Ren et al., 2018a) are shown in Fig. 12.

In the case of using the constant density model, the relative errors �Vz and �Vzz decrease 
as h increases, with the values in the range between 10−14 and 10−8 for �Vz , 10−12 and 10−6 
for �Vzz . �V  seems to be less dependent on the height of the computation point with the 
value varying between 10−15 and 10−13 . The relative errors �V  and �Vz at the points inside 
the mass are larger than those at exterior points, but still of high accuracy. The relative 
Laplace equation decreases with the increase in h. Its variation is similar to that of �Vzz . 
Similar information can be obtained from the case when using the linear density model.

Fig. 11   The same as in Fig. 9, but using the optimal D 
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In the case of using the quadratic and cubic density models, the relative errors are larger 
than those computed by using the other two density models. This is because the use of the 
quadratic and cubic density models raises the numerical complexity and hence reduces the 
computational accuracy. The dependency on the computation point’s height is not signifi-
cant, in particular for �V  and �Vz . For the quadratic density model, the relative errors are 
in the range between 10−11 and 10−10 for �V  , 10−11 and 10−7 for �Vz , 10−11 and 10−5 for �Vzz . 
The cubic density model produces larger relative errors, with �V  and �Vz ranging from 10−9 
to 10−7 and �Vzz varying between 10−8 and 10−5 . Similar to the constant and linear density 
cases, the behavior of the relative Laplace equation follows �Vzz.

Although the performance of using different density models is different, the computa-
tional accuracy is sufficient for practical applications, where the computation point can be 
an arbitrary point exterior to the tesseroid. When computing GP and GV, the precise evalu-
ation inside the tesseroid is also ensured.

3.4 � Influence of the Computation Point’s Latitude

In the previous section, we examined the computational accuracy due to the height varia-
tion for the computation point. Here we depict the accuracy due to the latitude variation, 
in order to confirm whether the change of the geometrical shape of the tesseroid caused by 
meridional convergence affects the solution. Due to the symmetry of the spherical shell, the 
gravity field has been computed every 1◦ latitude along the meridian 0.05◦ E from the equa-
tor to the north pole on the shell surface. Two spherical shells with Hs = 1m and 10 km 
are tested. For each shell, four density models are considered. Figure 13 shows the corre-
sponding relative errors. It is clear that the relative errors remain at similar levels in terms 

Fig. 12   Relative errors �V  (a), �Vz (b), and �Vzz (c) as well as the relative Laplace equation (d) in log scale 
as a function of the height of the computation point above the spherical Earth. The cases of using four den-
sity models are shown. Notice that the computation points at the heights between 0 and 10 km are inside the 
shell mass
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of the latitude without strong jumps. Obviously, the latitude variation for the computation 
point has a minor impact on the computational accuracy of the new method. Therefore, the 
new method can be used for the computation at any place on the Earth and it is well suited 
for regional and global applications.

3.5 � A Comparison with the Commonly Used Methods

In this section, we carried out a benchmark test to compare the solutions computed by 
the new method (denoted as GLQ2DADE method) with those obtained from the following 
commonly used tesseroid methods: the method based on Taylor series expansion of the 
integral kernel up to the second order (TSE method; Heck and Seitz 2007) and its exten-
sion using the regular subdivision technique (TSERD method; Grombein et al. 2013), the 
method using the GLQ rule along with the 3DAD technique (GLQ3DAD method; Uieda 
et al. 2016), the method using the GLQ rule along with the 2DAD technique (GLQ2DAD 
method; Lin and Denker 2019) and its combination with the TSE method (GLQ2DAD_
TSE method; Lin and Denker 2019), and the method approximating tesseroids by rectan-
gular prisms (PR method; Wild-Pfeiffer 2008) and point masses (PM method; Lin and 
Denker 2019). Considering the fact that most of the above methods deal with a homogene-
ous tesseroid, only the constant density model is employed.

The test is analogous to the one shown in Fig.  4. The computation point is located at 
� = 0◦E and � = 0◦N , where three computation height levels are used: (1) on the shell sur-
face, (2) 3 km, and (3) 250 km above the shell surface. Figure 14 shows the correspond-
ing relative errors. For each method, the relative errors significantly reduce as the computa-
tion height increases. For computation points on the shell surface, the GLQ2DADE method 

Fig. 13   Relative errors �V  , �Vz , and �Vzz in log scale as a function of the latitude of the computation point. 
The cases of using the constant (a), linear (b), quadratic (c), and cubic (d) density model are shown. For 
each density model, Hs = 1m and 10 km are compared
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outperforms the others, especially for a small shell thickness. Besides the GLQ2DADE 
method, the GLQ2DAD and GLQ2DAD_TSE methods provide the smallest �Vz and �Vzz , 
where �V for the former is smaller than that for the latter. This is because the GLQ2DAD_
TSE method employs the TSE method to evaluate the tesseroids far away from the computa-
tion point, while the far-zone effect has a significant impact on the computation of V. For the 
computation point at the height 3 km above the shell surface, the relative errors are evidently 
reduced in comparison with the surface case. The relative errors �V and �Vz are smaller than 
1 for all methods. For �Vzz , only the TSE and PM methods fail to produce the values less than 
1. All GLQ methods provide similar relative errors which are smaller than those obtained 
from the other methods. When we move the computation point to the height 250 km above 
the shell surface, all methods are able to compute acceptable solutions. In this case, the TSE 
method provides solutions which are comparable to those computed by the GLQ methods. 
Thus, the TSE method may replace the GLQ method in satellite applications. In general, the 
GLQ2DADE method is the best in terms of computational accuracy among all mentioned 
methods, no matter whether the computation point is on the ground or above it.

3.6 � A Further Comparison with the TSE‑Based Method

From the tests in Sect. 3.5, we notice that the TSE method performs well in the case of 
computation points at the height of 250 km above the shell surface. This is mainly due to 
the large distances between the evaluation point and source masses, making the approxi-
mations accurate and stable. Regarding the higher computational efficiency for the TSE 
method, it is straightforward to replace the GLQ2DADE method by the TSE method if the 
distance between the computation point and source mass is larger than a certain value. In 

Fig. 14   Relative errors �V  (a, d, g), �Vz (b, e, h), and �Vzz (c, f, i) for different tesseroid methods as a func-
tion of the spherical shell thickness Hs (from 1 m to 10 km) in log–log scale. Three levels of computation 
heights are shown: on the shell surface (a–c), 3 km (d–f) and 250 km (g–i) above the shell surface
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order to briefly answer the questions about the choice of the distance for replacement and 
the improvement of computational efficiency, we design the following simple numerical 
tests. The test is analogous to the one shown in Fig. 12, where the homogeneous spheri-
cal shell with the thickness Hs = 10 km is selected as test model. The horizontal position 
of the computation point is at � = 0◦ E and � = 45◦ N . We then let the computation point 
move from the shell surface (i.e., h = 10 km ) up to the height of 260 km along the radial 
direction with a step size of 1 km, resulting in 251 samples. Four computational methods, 
namely the GLQ2DADE method, the GLQNSE method, the TSE2DAD method, and the 
TSE method, are used for the approximation. The GLQNSE method is in fact the version 
for the GLQ2DADE method where the 2DAD technique is not applied, while the TSE-
2DAD method is the one where the 2DAD technique is applied to the TSE method. The 
purpose of using these four methods is on the one hand to see the impact of using the 
2DAD technique on the solution and on the other hand to see the performance of the meth-
ods themselves. Figures 15 and 16 present the relative error and computational time at each 
evaluation point.

We start with the relative errors. The use of the 2DAD technique definitely improves 
the approximations at the sites near the shell surface. However, the improvements become 
less significant with the increase in the evaluation height. For instance, the GLQ2DADE 
method is almost equivalent to the GLQNSE method when the evaluation point is 30 km 
above the shell surface and higher. Comparing the TSE2DAD method to the TSE method, 
we notice that the application of the 2DAD technique does not always improve the approxi-
mations. The sudden jumps for the TSE2DAD method are relevant to the optimally selected 
values for D (see Sect. 3.2). The GLQ-based method generally outperforms the TSE-based 
method whether the 2DAD technique is applied or not. We also find that the TSE method 
provides the approximations with nearly the same accuracy as those computed by the 
GLQ2DADE method when the computation point is 40  km above the shell surface and 

Fig. 15   Relative errors �V  (a), �Vz (b), and �Vzz (c) in log scale as a function of the height of the computa-
tion point above the shell surface
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higher. From another perspective, we may roughly say that the TSE method can replace the 
GLQ2DADE method in evaluating the tesseroid whose distance to the computation point is 
larger than 40 km.

Now let us move on to the computational time. Figure 16 clearly shows that the evalua-
tion at sites on or near the shell surface takes slightly more time than those far from the sur-
face. The application of the 2DAD technique has a minor impact on the computational time 
for the GLQ-based method, but not for the TSE-based method. For a single-point evalua-
tion, the TSE method is the fastest among the four methods and it is about 7–8 times faster 
than the GLQ-based method. A summary of the computational times is given in Table 5.

Regarding the fact that the GLQ2DADE method can precisely evaluate the tesseroid 
near the computation point which can be located at any place on the Earth and the TSE 
method can quickly and accurately evaluate the tesseroid far from the computation point, a 
combined use of them is preferred in practical applications. On the one hand, the combina-
tion can keep the approximation as precise as possible and, on the other hand, it can largely 
reduce the computational time. However, the issue of the combined approach is beyond 
the scope of this work. Thus, it will not be discussed in the following, but will be kept for 
future research.

3.7 � A Comparison with the DEQ Method

In Sects. 3.5 and 3.6 , we have compared the GLQ2DADE method with several commonly 
used methods for approximating a homogeneous spherical shell. Here, we examine the 
computational accuracy of the new method more extensively by comparing it to the DEQ 
method which could serve as a reference to complement and elaborate existing tesseroid 
approaches. Two test models will be used here, namely a single tesseroid and a spherical 

Fig. 16   Computational time for V (a), Vz (b), and Vzz (c) in log scale as a function of the height of the com-
putation point above the shell surface
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shell. The first test model is used to investigate the performance of the two methods at the 
evaluation points where the gravity field exhibits nonanalyticity, namely on the surfaces of, 
along the edges of, at the vertices of the tesseroid, and further inside it. The use of the sec-
ond test model is to see how precise the two methods can approximate a spherical shell if 
the computation points are located at different latitudes and altitudes. The implementation 
of the DEQ method is based on two Fortran programs xqtess.f90 and xtess.f90, 
which are provided by Fukushima (2018) and conducted in the quadruple- and double-
precision environments, respectively. Since the two programs deal with the homogeneous 
tesseroids, the densities for the two test models are assumed to be constant for the sake of 
convenience. Again, the gravity field quantities to be compared are V, Vz , and Vzz.

3.7.1 � Tests Based on a Single Tesseroid

The single tesseroid is selected as the same as the one used in Figs 5−9 of Fukushima 
(2018). It is a three-dimensional volume defined as 27◦ N ≤ � ≤ 28◦ N , 86◦ E ≤ � ≤ 87◦ E , 
and 6340 km ≤ r ≤ 6390 km , where R = 6380 km is the radius of the spherical Earth, i.e., 
the heights of bottom and top faces of the tesseroid are − 40 km and 10 km. The evaluation 
points are located on the lines, which are on the surfaces of, along the edges of the tesse-
roid, and passing through it. Furthermore, the evaluation at vertices of the tesseroid is per-
formed. The relative error computed by |adouble∕aquadruple − 1| is used to measure the com-
putational accuracy, where adouble means the value computed by either the GLQ2DADE 
or DEQ method conducted in the double-precision environment, and aquadruple is obtained 
from the DEQ method conducted in the quadruple-precision environment as it proves to be 
sufficiently accurate (Fukushima, 2018).

We begin with �V  , �Vz , and �Vzz , along the tesseroid edges. Figure 17a–c presents the 
relative errors at three test lines which coincide with the edges, namely Line_A, Line_B, 
and Line_C. Their definitions are given in Table 6. We omit the results on the other nine 
edges since there are no significant differences from these three representative cases. When 
analyzing the relative errors along each test line, they are classified into two groups by 
their locations. The first group contains the relative errors at the points exactly located on 
the edge, while the relative errors at remaining points belong to the second group. It is 
obvious that the relative errors �V  computed by the DEQ method are smaller than those 
obtained from the GLQ2DADE method in both groups. In the first group, the DEQ method 
provides smaller �Vzz , while the relative errors �Vz for the GLQ2DADE method are smaller 
in Line_A and Line_B but larger in Line_C. In the second group, both methods provide 
similar �Vz , while the relative errors �Vzz for the GLQ2DADE method are smaller.

Next come the errors on tesseroid surfaces. Figure 17d–f shows the relative errors at 
three test lines on the surfaces, namely Line_D, Line_E, and Line_F (Table 6). Again, we 
omit the results on the other three surfaces since no meaningful differences from these 

Table 5   Total computational 
time for approximating V, Vz , 
and Vzz of a spherical shell which 
is decomposed into 9331200 
tesseroids at 251 evaluation 
points

The value in parentheses is the averaged time for single-point evalua-
tion. The units are seconds

GLQ2DADE GLQNSE TSE2DAD TSE

V 115.39 (0.460) 114.47 (0.456) 24.57 (0.098) 16.41 (0.065)
Vz 115.67 (0.461) 115.30 (0.459) 26.06 (0.104) 17.53 (0.070)
Vzz 144.32 (0.575) 142.48 (0.568) 26.99 (0.108) 18.40 (0.073)
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three representative cases are observed. The analysis procedure follows that used in the 
case where the evaluation points are along the edges, and the findings are rather similar to 
that case.

We then move on to the errors inside the tesseroid. Because there is an infinite number 
of lines passing through the tesseroid, we only select three as representatives for compari-
son, namely Line_G, Line_H, and Line_I (Table 6). Since Vzz cannot be computed by the 
GLQ2DADE method if the computation points are inside the tesseroid, the relative errors 

Table 6   Definition of the test 
lines used in Fig. 17

When computing Vzz , h is shifted to be 10.001  km for Line_A, 
Line_B, and Line_E; � is shifted to be 87.01◦ E for Line_C and 
Line_D; � is shifted to be 26.99◦ N for Line_F. Because no evaluation 
point in Line_G to Line_I is located on the tesseroid surface, the three 
test lines are not shifted for the computation of Vzz

Line Parameters

Line_A � ∶ 87◦ E h ∶ 10 km � ∶ 26◦ N − 29◦ N

Line_B � ∶ 27◦ N h ∶ 10 km � ∶ 85◦ E − 88◦ E

Line_C � ∶ 27◦ N � ∶ 87◦ E h ∶ −90 km − 60 km

Line_D � ∶ 87◦ E h ∶ 0 km � ∶ 26◦ N − 29◦ N

Line_E � ∶ 27.5◦ N h ∶ 10 km � ∶ 85◦ E − 88◦ E

Line_F � ∶ 27◦ N � ∶ 86.5◦ E h ∶ −90 km − 60 km

Line_G � ∶ 86.5◦ E h ∶ 0 km � ∶ 26◦ N − 29◦ N

Line_H � ∶ 27.5◦ N h ∶ 0 km � ∶ 85◦ E − 88◦ E

Line_I � ∶ 27.5◦ N � ∶ 86.5◦ E h ∶ −90 km − 60 km

Fig. 17   Relative errors �V  , �Vz , and �Vzz in log scale for the computation points located along the tesseroid 
edges (a–c), on the tesseroid surfaces (d–f), and passing through the tesseroid (g–i)
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�Vzz are only given at exterior points. The results are illustrated in Fig. 17g–i, from which it 
can be seen that the DEQ method can provide a better approximation of V. When comput-
ing Vz and Vzz , the DEQ method provides better results at interior points, while both meth-
ods give similar results at exterior points.

Finally, Table 7 shows the relative errors at four vertices of the tesseroid. We omit the 
other four vertices because they are symmetric to the selected four and no differences are 
observed. Obviously, the DEQ method performs better than the GLQ2DADE method 
except for computing Vz.

On the basis of the above tests, we find that the DEQ method can compute V more pre-
cisely than the GLQ2DADE method at an arbitrary point. When the computation points are 
on the surfaces of, along the edges of, on the vertices of the tesseroid, and even inside it, 
the DEQ method usually outperforms the new method. However, the computational accu-
racy of the new method is still high in these cases. If the computation points are outside the 
tesseroid, the performance of the two methods is similar. In conclusion, the new method is 
capable of precisely approximating the gravitational effects of the tesseroid at an arbitrary 
point, except for the computation of GGT inside the tesseroid.

3.7.2 � Tests Based on a Spherical Shell

The parameters for defining the spherical shell are almost the same as those used in Fig. 13. 
Only one difference is that the shell thickness Hs is chosen to be 8 km here. Concerning the 
high computational burden for the DEQ method, the spherical shell is decomposed into 
180 × 360 = 64800 tesseroids with �h = 1◦ and �r = 8 km . The relative error is computed 
by |bmodel∕banalytical − 1| where bmodel means the modeled gravity field of the spherical shell 
computed by either the DEQ or GLQ2DADE method and banalytical denotes the analytical 
value. All computations are conducted in the double-precision environment. Three sets of 
computation points are distributed along the meridian 0.05◦ E from the north pole to the 
equator with an interval of 1◦ , at the height h = 8 km , 10 km, and 100 km.

Figure 18 presents the relative errors as a function of the computation point’s latitude. 
In the cases of h = 10 km and 100  km, the relative errors �V  and �Vz computed by the 
DEQ method are smaller than those obtained from the GLQ2DADE method; however, the 
precision of the computed Vzz is slightly better for the GLQ2DADE method. In the case of 

Table 7   Relative errors �V  , �Vz , 
and �Vzz at four vertices of the 
tesseroid

It should be noted that, when computing �Vzz , the site is slightly 
moved up or down by 10  m along the radial direction, namely 
h = +10.01 km or h = −40.01 km . For each vertex, the first row shows 
the relative errors computed by the DEQ method, and the second row 
corresponds to the GLQ2DADE method

� � h �V �Vz �Vzz

27◦ N 86◦ E +10 km 7.091E−15 4.577E−06 2.962E−07
2.737E−12 8.682E−10 2.626E−06

27◦ N 86◦ E −40 km 7.013E−15 4.605E−06 1.924E−07
4.163E−13 1.940E−09 1.592E−06

28◦ N 86◦ E +10 km 6.956E−15 4.563E−06 1.590E−07
5.624E−12 4.066E−09 7.879E−06

28◦ N 86◦ E −40 km 6.744E−15 4.600E−06 9.789E−08
2.442E−12 1.298E−09 3.794E−06
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h = 8 km , the GLQ2DADE method outperforms the DEQ method in the computation of 
Vz , while the latter method provides more accurate approximations of V and Vzz . An inter-
esting fact we noticed is that the accuracy of Vzz computed by the DEQ method is evidently 
affected by high latitudes of the computation points (Fig. 18a). Therefore, the DEQ method 
should be used with caution when applying it to compute GGT at (near) ground points in 
the polar region.

4 � Application

To further validate the GLQ2DADE method, we carried out two numerical applications 
for the computation of topographic effects on a regional scale and atmospheric effects on a 
global scale in this section.

4.1 � Topographic Effects

The numerical tests are based on the ETOPO1 DTM dataset (Amante and Eakins, 2009) 
with 1′ resolution. The test region covers the Himalaya region with the most extreme topo-
graphic relief existing on the Earth (Fig. 19). The computations have been performed at the 
Earth’s surface, 3 km above the Earth’s surface, and at a constant height of 250 km. The 
three computation height levels roughly simulate terrestrial, airborne, and satellite appli-
cations although the aeroplane never flies parallel to the topographic surface in practice 
(the second height level). At each computation height level, V, �g , and Vzz due to the given 

Fig. 18   Relative errors �V  , �Vz , and �Vzz in log scale as a function of the latitude of the computation point. 
The density for the spherical shell is constant. The results computed by the GLQ2DADE method and the 
DEQ method are compared. The cases for the computation points at the height h = 8 km (a), 10 km (b), and 
100 km (c) are shown
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topographic masses are computed. In the case of computing Vzz on the Earth’s surface, we 
shift the computation point 1 m above the surface. To reduce the edge effects, the com-
putation area is chosen to be smaller than the DTM area along the latitude and longitude 
(Fig. 19), where the computation points are regularly distributed with a spacing of 5′ . The 
density is assumed to be constant with a value of 2670 kg/m3 . Besides using the GLQ-
2DADE method, we also implemented the program TC, which uses rectangular prisms, to 
compute the same results for comparison. It should be noted that all DTM data are used 
for the computation at each point. Since the results computed by the two methods look 
very similar, we only show those computed by the GLQ2DADE method as well as the dif-
ferences between the two methods in Figs. 20, 21, and 22. The statistics for all results are 
summarized in Table 8.

From Fig. 20, the computed V over the test region only represents long-wavelength sig-
nals, and no detailed information can be seen. This is because V is mainly in the long-
wavelength domain. The magnitudes of V are quite close for the first two computation 
height levels, but are clearly reduced for the third height level. The differences between 
the two methods are significant but look quite similar for different height levels (Table 8), 
representing a slope descending from the north to south. According to previous numeri-
cal tests in Sect. 3, we consider these differences as improvements when using the GLQ-
2DADE method instead of using the program TC.

In comparison with Fig. 20, the computed �g shown in Fig. 21 contains more detailed 
gravity field features and more clearly reveals the topographic relief. This is because �g 
has more power at high frequencies than V. The magnitudes of �g evidently decrease as 
long as the computation point moves away from the Earth’s surface. As a consequence, the 
detailed information in �g is lost. For instance, �g at the height of 250 km represents long-
wavelength signals. The differences between the two methods also decrease if the compu-
tation point moves away from the surface. For the first two height levels, the differences are 
mainly in the mountainous area. When the computation point is sufficiently high, the dif-
ferences look like a slope descending from the north to south again, but with rather small 
magnitudes.

Finally, let us analyze Fig. 22 that presents the computed Vzz . In comparison with V and 
�g , Vzz has the most power at high frequencies. As a result, their magnitudes dramatically 

Fig. 19   Topography of the 
Himalaya test area, where the 
computation area is marked by 
the red line. The axes are longi-
tude (degrees East) and latitude 
(degrees North)
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Fig. 20   Top: topographic effects in terms of V evaluated on the Earth’s surface (left), at the height 3 km 
above the Earth’s surface (middle), and at a constant height of 250  km above the sea surface (right) by 
using the GLQ2DADE method in the Himalaya test area. Bottom: the differences between the results com-
puted by the GLQ2DADE method and the program TC

Fig. 21   The same as in Fig. 20, but for �g
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decrease with the height increasing for the computation point. Comparing Vzz on the 
Earth’s surface to the topography in Fig. 19, the ground Vzz shows extreme local gravity 
field signals over the test region, mainly representing topography variations in the moun-
tainous area. In contrast, Vzz at airborne level reveals less local signals from which we can 
clearly infer the valleys and mountains. Furthermore, Vzz at satellite level more precisely 
depicts the shape of the Tibet plateau than V and �g at the same height level. Large differ-
ences between the two methods are observed on ground, where most exist in the area with 
strong topography variations. These differences are greatly reduced in the airborne case. In 
the satellite case, the differences act as a slope ascending from the north to south. However, 
their magnitudes are so small that they can be ignored.

4.2 � Atmospheric Effects

4.2.1 � Model Setup

The GLQ2DADE method is finally applied to compute global gravitational effects on the 
Earth’s surface caused by atmospheric masses. Evaluation points are on a 45� × 45� global 
grid derived from the ETOPO1 DTM dataset. Both the density and physical bounds of the 
atmosphere model are needed for the computation. The lower bound of the atmosphere 
coincides with the Earth’s surface that is represented by a global 5� × 5� DTM sampled 
from the ETOPO1. The upper bound is chosen to be 60 km above the sea level, containing 
more than 99% of the atmospheric mass.

For the sake of simplicity, a static atmosphere model, only considering the vertical 
density variation, is employed in this application. Thus, we choose the US Standard 
Atmosphere 1976 (USSA1976). The atmospheric densities derived from the USSA1976 

Fig. 22   The same as in Fig. 20, but for Vzz
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model from the sea surface up to 60 km are illustrated in Fig. 23a. In our implemen-
tation, we first evenly divide the USSA1976 model into six layers. We then apply a 
least-squares adjustment to fit the density model �

(
h′
)
 to the densities derived from the 

USSA1976 model in each layer. Finally, we transform the density model �
(
h′
)
 into the 

one �
(
r′
)
 that is required for tesseroid modeling. Three density models, namely the lin-

ear, quadratic, and cubic density models, are employed here, to examine the impact of 
using different density models on the computation of atmospheric effects. Table 9 pre-
sents the estimated coefficients an for each density model �

(
h′
)
 in each layer. The rela-

tive differences ( |�m − �us|∕|�us| ) between the densities derived from the density model 

Table 8   Statistics of the topographic effects in terms of V ( m2∕s2 ), �g (mGal), and Vzz (E) computed by 
the GLQ2DADE method (index GLQ) and the program TC (index TC), as well as their differences (index 
GLQ–TC)

The evaluation is performed on the Earth’s surface (index S), 3 km above the Earth’s surface (index 3 km), 
and at a constant height of 250 km (index 250 km). Relative difference represents the ratio between the 
range in the differences and the range in the signals

Functional Mean STD RMS Min Max Relative

VGLQ, S 3229.941 785.322 3324.039 1443.029 4425.327 –

VTC, S 3230.277 781.048 3323.359 1464.379 4424.739 –
VGLQ-TC, S − 0.337 16.604 16.608 − 23.067 34.260 1.94%
VGLQ, 3 km 3219.019 779.021 3311.939 1441.279 4407.165 –
VTC, 3 km 3219.359 774.752 3311.268 1462.629 4406.667 –
VGLQ-TC, 3 km − 0.340 16.600 16.604 − 23.066 34.250 1.95%
VGLQ, 250 km 2494.797 438.822 2533.095 1333.994 3229.288 –
VTC, 250 km 2495.796 435.286 2533.469 1354.712 3230.230 –
VGLQ-TC, 250 km − 0.999 14.544 14.578 − 21.894 31.040 2.83%
�gGLQ, S 363.928 232.709 431.968 14.337 752.252 –
�gTC, S 363.663 232.641 431.708 14.290 753.100 –
�gGLQ-TC, S 0.265 0.462 0.532 − 1.214 13.399 1.98%
�gGLQ, 3 km 363.866 228.041 429.419 18.373 703.633 –
�gTC, 3 km 363.762 228.012 429.315 18.443 703.330 –
�gGLQ-TC, 3 km 0.105 0.161 0.192 − 0.289 1.242 0.22%
�gGLQ, 250 km 241.193 97.451 260.135 39.527 389.198 –
�gTC, 250 km 240.849 97.244 259.739 39.971 388.916 –
�gGLQ-TC, 250 km 0.344 1.236 1.283 − 1.348 2.338 1.06%
VGLQ, S
zz

6.047 111.188 111.351 − 682.391 1036.705 –
VTC, S
zz

5.514 124.037 124.158 − 793.463 1144.805 –
VGLQ-TC, S
zz

0.534 17.215 17.223 − 148.560 146.935 15.2%
VGLQ, 3 km
zz

3.569 36.315 36.489 − 243.458 242.908 –
VTC, 3 km
zz

3.442 36.507 36.669 − 248.053 243.849 –
VGLQ-TC, 3 km
zz

0.127 0.461 0.478 − 2.120 6.717 1.80%
VGLQ, 250 km
zz

3.912 2.925 4.884 − 0.991 7.617 –
VTC, 250 km
zz

3.912 2.925 4.885 − 1.006 7.626 –
VGLQ-TC, 250 km
zz

0.000 0.011 0.011 − 0.032 0.016 0.56%
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( �m ) and those from the USSA1976 model ( �us ) in each layer are shown in Fig.  23b. 
The corresponding root mean square (RMS) of the relative differences is also given 
in Table  9. It can be seen that the relative differences are generally below 10%, 1% 
and 0.1% for using the linear, quadratic and cubic density models. It indicates that the 
polynomial density model up to a higher order can better fit the USSA1976 model. It 
should also be noted that the relative differences for the first layer are smaller than those 
for the other layers. Regarding the fact that the first layer has the largest densities and 
directly connects the computation point, the good fit can ensure high accuracy for the 
computed atmospheric effects. The influence of larger relative differences for the other 

Table 9   Estimated atmospheric density coefficients an (see Eq. 1) up to cubic order

RMSrel represents the root mean square of the relative differences

Layer no. Altitude ( km) a0(kg/m
3) a1(kg/m

4) a2(kg/m
5) a3(kg/m

6) RMSrel(%)

1 0 ≤ h < 10 1.16720E+00 − 8.05300E−05 – – 3.95E+00
1.22183E+00 − 1.13644E−04 3.31139E−09 – 1.96E−01
1.22493E+00 − 1.17453E−04 4.26847E−09 − 6.38056E−14 4.18E−03

2 10 ≤ h < 20 3.75869E−01 − 3.21480E−05 – – 1.16E+01
4.14571E−01 − 5.56040E−05 2.34560E−09 – 1.17E+00
4.17904E−01 − 5.97051E−05 3.37600E−09 − 6.86930E−14 3.91E−01

3 20 ≤ h < 30 7.83994E−02 − 6.76032E−06 – – 1.25E+01
8.72997E−02 − 1.21545E−05 5.39415E−10 – 1.79E+00
8.87420E−02 − 1.39295E−05 9.85394E−10 − 2.97319E−14 1.95E−01

4 30 ≤ h < 40 1.63583E−02 − 1.39270E−06 – – 1.20E+01
1.81608E−02 − 2.48510E−06 1.09240E−10 – 1.50E+00
1.84022E−02 − 2.78223E−06 1.83895E−10 − 4.97695E−15 6.84E−02

5 40 ≤ h < 50 3.57916E−03 − 2.86366E−07 – – 9.68E+00
3.93779E−03 − 5.03713E−07 2.17347E−11 – 1.17E+00
3.98734E−03 − 5.64693E−07 3.70560E−11 − 1.02142E−15 1.40E−01

6 50 ≤ h ≤ 60 9.48124E−04 − 6.95661E−08 – – 5.93E+00
1.01284E−03 − 1.08791E−07 3.92245E−12 – 7.26E−01
1.02253E−03 − 1.20710E−07 6.91721E−12 − 1.99651E−16 2.22E−01

Fig. 23   Densities derived from the USSA1976 model as a function of the altitude (a) and the relative differ-
ences between the densities derived from the polynomial density model and the USSA1976 model at differ-
ent altitudes (b). The RMS of the relative differences for each layer is given in Table 9
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layers should be much less significant because they are far from the computation point 
and have rather small densities.

Each atmospheric layer is decomposed into a set of tesseroids with the same horizon-
tal dimension �h . In the first layer, �h is set as 5′ to meet the resolution of the used DTM, 
resulting in 9331200 tesseroids. �h is selected as 15′ for the remaining layers (i.e., 1036800 
tesseroids in each layer) because on the one hand the tesseroids are far from the computa-
tion point on ground and on the other hand the computational burden can be considerably 
reduced. Besides the variable vertical dimensions for the tesseroids in the first layer due to 
the topographic relief, the other tesseroids have the same vertical dimension as the layer 
thickness, i.e., �r = 10 km.

4.2.2 � Results and Discussion

According to the model settings described in Sect. 4.2.1, we compute the global atmos-
pheric effects on the Earth’s surface in terms of V, �g , and Vzz . Notice that the lower sur-
face of the tesseroid that directly contacts the computation point is slightly shifted 1 cm 
upward when computing Vzz . This is because Vzz cannot be calculated at the point on the 
tesseroid surface. As the results computed by using different density models look quite 
similar, only the results based on the cubic density model are shown in Fig. 24. It clearly 
shows high correlation between the computed atmospheric effects and the topography. In 
addition, we give the statistics of the atmospheric effects corresponding to the three density 
models as well as their differences in Tables 10 and 11 . Table 10 gives that the variation 
of the atmospheric effects over the Earth is about 2.4m2∕s2 for V, 0.23 mGal for �g , and 
320 mE for Vzz . The variations are mainly due to the consideration of the topographic relief 
in the computation. Table 11 summarizes the influence of using different density models. 
In general, the results computed by the three density models are quite close. This may be 
attributed to the fact that the atmospheric densities are very small, thus making the solu-
tions not sensitive to the used density models. More specifically, the quadratic and cubic 
density models provide almost the same solutions, while both of them are slightly different 
from the linear model. The RMS of the differences between the quadratic/cubic and linear 
density models is about 0.1m2∕s2 for V, 0.001 mGal for �g , and 0.2 mE for Vzz . Obviously, 
the differences are very small for both �g and Vzz and can be neglected. However, the differ-
ences for V cannot be ignored in precise geoid modeling as the corresponding geoid height 
differences are at the level of about 1 cm. Therefore, the polynomial density model with 
order higher than 1 is recommended in the computation of atmospheric effects.

5 � Conclusions

In the present work, on the basis of the previous work concerning precise computation 
of GP and GV due to the tesseroids having constant or linear density in spherical coordi-
nates (Lin and Denker, 2019), we derived a numerical method to evaluate accurately the 
GP, GV, and GGT of the tesseroids with density varying nonlinearly along the vertical 
direction. The density model can be a polynomial function up to cubic order which is suf-
ficient for many geodetic and geophysical applications. However, it can further be extended 
to a higher order if necessary, with the cost of more computational time and lower accu-
racy. The volume integral in the case of tesseroids is numerically solved by the GLQ rule. 
The key point of the new method is the use of a 2DAD technique as well as an extension 
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technique. The latter technique is only applied for the tesseroid whose vertical dimension is 
smaller than 1 km and for the computation of GV and GGT.

From the numerical tests based on a spherical shell model having a polynomial density 
model, the new method enables us to compute the gravitational effects of a tesseroid where 
the evaluation point can be on the surface of, near the surface of, and outside the tesseroid. 
When computing GP and GV, the evaluation point can also be inside the tesseroid. In this 
sense, the new method will serve as a reliable tool to evaluate surface, external and/or even 
internal gravity field. Also, the method is accurate: For approximating a spherical shell with 
its thickness varying from 1 m to 10 km and the order of the polynomial density model from 

Fig. 24   The global topography and bathymetry (top left), as well as the global atmospheric effects in terms 
of gravitational potential V (top right), gravity disturbance �g (bottom left), and radial–radial component Vzz 
of GGT (bottom right) evaluated on a 45� × 45� grid on the Earth’s surface. Notice that the tesseroids with a 
cubic density model are used for the computation

Table 10   Statistics of the 
atmospheric effects in terms of V 
( m2∕s2 ), �g (mGal), and Vzz ( mE ) 
computed by the linear (index 
l), quadratic (index q), and cubic 
(index c) density model

Mean STD RMS Min Max

Vl 54.036 0.438 54.038 52.218 54.585
Vq 53.942 0.445 53.944 52.112 54.504
Vc 53.941 0.445 53.942 52.112 54.503
�gl 0.006 0.035 0.035 − 0.017 0.227
�gq 0.006 0.035 0.036 − 0.017 0.225
�gc 0.006 0.035 0.036 − 0.017 0.225
Vl
zz

− 0.060 7.293 7.293 − 169.030 146.406
V
q
zz − 0.060 7.429 7.429 − 168.084 151.232

Vc
zz

− 0.060 7.431 7.431 − 168.318 151.388
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0 to 3, the achieved relative errors of the gravity field computed on the shell surface are about 
10−14−10−8 for GP, 10−10−10−5 for GV, and 10−5−10−1 for GGT in the double-precision envi-
ronment. The comparison between the new method and the other already published tesseroid 
methods also demonstrates its superiority in terms of accuracy, in particular for evaluating 
a tesseroid with a vertical dimension less than 1  km. Only one method, namely the DEQ 
method, gives a better performance than the new method when the evaluation is performed on 
the surfaces of, along the edges of, on the vertices of the tesseroid, and even inside it. For the 
evaluation at the point exterior to the tesseroid, both methods give similar results. Regarding 
the lower computational efficiency for the DEQ method, a combined use of the two methods 
seems to be attractive for practical applications. This topic will be addressed in a future study.

The application of the new method for the calculation of topographic effects in the Hima-
laya region and of atmospheric effects on a global scale verifies its feasibility in real applica-
tions. In the first test case (i.e., for topographic effects), the method is also compared to the 
program TC at three computation height levels. Significant differences between the two meth-
ods are obtained, which can be regarded as improvements of using the new method instead of 
the program TC. In the second test case, the linear, quadratic, and cubic density models are 
used to describe the atmospheric densities derived from the USSA1976 model. The ground 
atmospheric effects computed by using different density models do not differ from each other 
too much, especially for the case of using the quadratic and cubic density models. The RMS of 
the differences between the quadratic/cubic and linear density models are about 0.1m2∕s2 for 
V. These differences  cannot be ignored in precise geoid modeling as the corresponding geoid 
height differences are at the level of about 1 cm. The relevant differences in terms of �g and 
Vzz are very small and negligible. Here, we recommend a polynomial density model with order 
higher than 1 for precise computation of atmospheric effects.
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Table 11   Statistics of the 
differences between the 
atmospheric effects computed by 
the three density models. Other 
notations are the same as those 
in Table 10

Mean STD RMS Min Max

Vc − Vl − 0.096 0.009 0.096 − 0.120 − 0.081

Vq − Vl − 0.095 0.009 0.095 − 0.118 − 0.080
Vc − Vq − 0.001 0.001 0.001 − 0.003 0.000
�gc − �gl 0.000 0.001 0.001 − 0.002 0.002
�gq − �gl 0.000 0.001 0.001 − 0.002 0.002
�gc − �gq 0.000 0.000 0.000 − 0.001 0.001
Vc
zz
− Vl

zz
− 0.001 0.203 0.203 − 6.147 5.148

V
q
zz − Vl

zz
− 0.001 0.196 0.196 − 5.913 4.923

Vc
zz
− V

q
zz 0.000 0.009 0.009 − 0.234 0.230
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Appendix 1: Analytical Solutions for a Spherical Shell Having 
a Polynomial Density Model up to Cubic Order

The analytical gravitational effects Vs , Vs
z
 , and Vs

zz
 of a spherical shell having the inner radius 

R1 , the outer radius R2 , and a polynomial density model �
(
r′
)
 up to cubic order (see Eq. 2) are 

computed by summing the contributions due to the constant density part �0 (i.e., (Vs)0 , 
(
Vs
z

)
0
 , 

and 
(
Vs
zz

)
0
 , see Eq. 3), the linear density part �1 × r� (i.e., (Vs)1 , 

(
Vs
z
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1
 , and 

(
Vs
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1
 ), the quad-

ratic density part �2 × r�2 (i.e., (Vs)2 , 
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2
 , and 
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2
 ), and the cubic density part �3 × r�3 

(i.e.,(Vs)3 , 
(
Vs
z

)
3
 , and 

(
Vs
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)
3
 ). For each contribution, the analytical solutions are calculated 

by the formulas given below. The derivation of these analytical solutions is based on Tsoulis 
(1999) which deals with a constant density model. Here we extend it to a polynomial density 
model up to cubic order. The details of the derivations are included as an Electronic Supple-
mentary Material; only the results are given here.
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where M1 is the mass of the shell expressed as M1 = ��1
(
R4
2
− R4

1

)
.
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Appendix 2: Analytical Solution Vc

zz
 for a Homogeneous Spherical Cap

According to the derivations in Appendices A3 and A4 of Heck and Seitz (2007), the 
radial–radial component Vc

zz
 of GGT due to a spherical cap of constant thickness d = R2 − R1 , 

constant density � , and constant radius �c , centered at the computation point which is located 
on the axis passing through the north pole can be derived from Eq. (52) of Heck and Seitz 
(2007) by twice differentiation with respect to r, yielding

where 
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It should be noted that Eq. (19) simplifies to the first and third formulas in Eq. (15c) when 
setting �c = �.

Appendix 3: List of Symbols and Abbreviations

List of symbols
�r Vertical dimension of the tesseroid
�h Horizontal dimension of the tesseroid
Hs Thickness of the spherical shell
h Height of the computation point above the spherical Earth
R Radius of the spherical Earth
� Linear size of the tesseroid
� Distance between the tesseroid geometrical center and the computation point
�−1 Ratio between � and � , i.e., �∕�
�et
r

Threshold for �r , smaller than which the extension technique is applied
De Vertical dimension of the extending tesseroid
D Distance–size ratio used in the 2DAD technique
V Gravitational potential
Vi Gravitational vector, i ∈ {x, y, z}

Vij Gravitational gradient tensor, i, j ∈ {x, y, z}

�g Gravity disturbance
�V Relative error for computed V
�Vi Relative error for computed Vi

�Vij Relative error for computed Vij

� Original tesseroid
� Extending tesseroid
�� Extended tesseroid
Line_A,B,...I See Table 6
adouble Gravity field of a tesseroid computed in the double-precision environment
aquadruple Gravity field of a tesseroid computed in the quadruple-precision environment
bmodel Modeled gravity field of a spherical shell computed in the double-precision environment
banalytical Analytical gravity field of a spherical shell computed in the double-precision environment
�m Atmospheric densities derived from the density model fitted to the USSA1976 model
�us Atmospheric densities derived from the USSA1976 model

Notice that all the above-listed symbols are those appearing only in the text. The symbols or variables in the 
equations are not shown here as they are explained when used for the first time 
 
 
List of abbreviations

2DAD Adaptive subdivision along the horizontal dimension of the tesseroid
3DAD Adaptive subdivision along both the horizontal and vertical dimensions of the tesseroid
DEQ Double exponential quadrature
DTM Digital terrain model
GLQ Gauss–Legendre quadrature
GLQ2DAD GLQ method along with the 2DAD technique
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GLQ2DADE GLQ method along with the 2DAD technique and extension technique, i.e., the new method
GLQ2DAD_TSE A combination of the GLQ2DAD and TSE methods
GLQ3DAD GLQ method along with the 3DAD technique
GLQNSE GLQ2DADE method without applying the 2DAD technique
GP Gravitational potential
GV Gravitational vector
GGT​ Gravitational gradient tensor
TSE Taylor series expansion up to the second order
TSE2DAD TSE method along with the 2DAD technique
TSERD TSE method along with the regular subdivision technique
PR Approximation of tesseroids by rectangular prisms
PM Approximation of tesseroids by point masses
USSA1976 US Standard Atmosphere 1976
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