
1.  Introduction
The statistical concept of correlation functions is essential for characterizing many aspects of geophysical fluid 
dynamics. In the context of turbulence theory, they are considered the “workhorse” (Davidson, 2004, p. 88) from 
which other quantities are defined (Batchelor, 1953; Stull, 1988). They can be used, for instance, to test the valid-
ity of stratified turbulence (ST) theory in the middle atmosphere. Lindborg (2006) advanced the concept postu-
lated in previous works (Gage, 1979; Lilly, 1983), that horizontal mesoscales can exhibit an inertial subrange 
in the context of ST, similar to the inertial subrange of three-dimensional Kolmogorov turbulence, theorized 
by Richardson  (1922) and Kolmogorov  (1941). This may account for the −5/3 slope in the horizontal wave-
number spectra of winds, as observed by Nastrom et al. (1984). Many authors have found indications of such a 
subrange using second-order structure functions (e.g. Cho & Lindborg, 2001; Lindborg, 2007; Rodriguez Imazio 
et al., 2022) that are algebraically equivalent to correlation functions in a homogeneous medium. They found that 
structure functions follow a consistent 2/3-power law of separation distance, which is equivalent to a −5/3-power 
law behavior in the wavenumber domain. Velocity correlation functions can also be employed to perform a 
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Helmholtz decomposition (Lindborg, 2014). The separation into rotational and divergent modes of motion across 
a wide range of spatial scales enables establishing dominant physical mechanisms when moving from synop-
tic scales phenomena to mesoscale and kilometer scale variations (Callies et al., 2016; Hamilton et al., 2008; 
Skamarock et al., 2014).

Spatial correlations tell us about the manner and degree to which certain parameters (e.g., temperature, velocity, 
density) are correlated, when measured at different locations. For the neutral atmosphere, comprehensive stud-
ies have been performed using second-order structure functions, implemented over different databases made 
by commercial aircraft measurements. For example, Cho and Lindborg  (2001) calculated velocity structure 
functions using the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft database (Marenco 
et al., 1998), for separation ranges with varying resolutions, dividing in four latitude ranges and discriminat-
ing between tropospheric and stratospheric measurements. They found that structure functions at a separation 
distance of ∼100 km increase with latitude in the troposphere and decrease with latitude in the stratosphere. 
Similarly, Frehlich and Sharman (2010) carried out a comprehensive study of temperature and velocity structure 
functions using the Aircraft Communications, Addressing, and Reporting System/Aircraft Meteorological Data 
Relay database, and were able to estimate, among others, the climatology of horizontal structure functions, and 
to determine eddy dissipation rates from them.

Until recently, studies of spatial correlation functions or structure functions in the atmosphere were mostly limited 
to the upper troposphere—lower stratosphere (UTLS) region, since measurements of the wind velocity vector for 
a large enough geographic region are rare and sparse for higher altitudes. A recently introduced technique that 
uses second-order statistics of line-of-sight drift velocities, measured using meteor radars, has made it possible to 
estimate spatial and temporal correlation functions of winds in the mesosphere and lower thermosphere (MLT) 
region. We refer to this technique as Wind Field Correlation Function Inversion (WCFI). One of the results of 
Vierinen et  al.  (2019) was that the horizontal structure functions of the horizontal fluctuating wind follow a 
2/3-power law for horizontal separations up to about 400 km, consistent with a turbulent cascade of energy into 
smaller scales.

Poblet et al. (2022) applied the WCFI technique and found the two dimensional horizontal correlation functions of 
zonal and meridional fluctuating winds to be approximately axisymmetric. This result allowed them to transform 
the two-dimensional correlations to longitudinal and transverse components. This decomposition can be used to 
study the balance between the correlations of vertical vorticity and horizontal divergence. Based on a week-long 
special data set, the study found an imbalance between vertical vorticity and horizontal divergence correlations.

Motivated by the need of estimating correlation functions with smaller uncertainties and on longer data sets, this 
study introduces a numerically and statistically more efficient technique to estimate horizontal correlation func-
tions of the longitudinal and transverse winds. The new technique is applied to a year-long data set in Germany, to 
study the annual variability of kinetic energy across various horizontal scales. The resulting correlation functions 
are also used to study the annual variability of rotational and divergent correlations that can be estimated with the 
compact expressions given by Lindborg (2014, Eqs. 2.5 and 2.6).

2.  Method
When measuring the Doppler shift of a specular meteor trail echo (ω), specular meteor radars (SMRs) observe 
a one-dimensional projection of the mesospheric wind 𝐴𝐴

(

𝑢𝑢
)

 on the Bragg wave vector 
(

�⃗
)

 , plus a Doppler shift 
measurement error (ξ) (e.g., Hocking et al., 2001; Holdsworth et al., 2004):

𝜔𝜔 = 𝑘⃗𝑘 ⋅ 𝑢𝑢 + 𝜉𝜉𝜉� (1)

Vectors 𝐴𝐴 𝑘⃗𝑘 and 𝐴𝐴 𝐴𝐴𝐴 in Equation 1 can be written in different coordinate systems that result in different representa-
tions of the vector components. A typical coordinate system used to study the wind dynamics is the east-north-up 
(ENU) system, in which 𝐴𝐴 𝐴𝐴𝐴 is decomposed in zonal (u), meridional (v) and vertical (w) components. This decom-
position is very useful to study phenomena with recurrent strong directionalities in the atmosphere like planetary 
waves or tides. The Earth's rotation provides a reference, to which large-scale processes are more sensitive.

On the contrary, to study turbulence using correlation functions or second order structure functions, the 
longitudinal-transverse-up (LTz) coordinate system is commonly used (e.g., Batchelor, 1953; Buell, 1960; Cho 
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& Lindborg, 2001; Frehlich & Sharman, 2010; King et al., 2015a, 2015b; Lindborg, 1999). With this convention, 
every pair of measurements in space, for example, m, n (m ≠ n), defines the particular direction from which the 
components are established. The longitudinal direction is along the line that connects a pair of meteor positions, 
and the transverse direction is perpendicular to this line.

The velocity in the position and time of the point n, denoted as 𝐴𝐴 𝐴𝐴𝐴𝑛𝑛 = ⃗𝑢𝑢
(

𝑡𝑡𝑛𝑛, 𝑟𝑟𝑛𝑛
)

 , is decomposed in three orthogonal 
vectors as 𝐴𝐴 𝐴𝐴𝐴𝑛𝑛 = ⃗𝑢𝑢𝐿𝐿𝑛𝑛 + ⃗𝑢𝑢𝑇𝑇𝑛𝑛 + 𝑤⃗𝑤𝑛𝑛 , in which 𝐴𝐴 𝑤⃗𝑤𝑛𝑛 is in the local vertical direction, 𝐴𝐴 𝐴𝐴𝐴𝐿𝐿𝑛𝑛  is perpendicular to 𝐴𝐴 𝑤⃗𝑤𝑛𝑛 along the 
line that connects the position of m and n, and 𝐴𝐴 𝐴𝐴𝐴𝑇𝑇𝑛𝑛  is perpendicular to 𝐴𝐴 𝐴𝐴𝐴𝐿𝐿𝑛𝑛  and 𝐴𝐴 𝑤⃗𝑤𝑛𝑛 . For 𝐴𝐴 𝐴𝐴𝐴𝑚𝑚 = ⃗𝑢𝑢

(

𝑡𝑡𝑚𝑚, 𝑟𝑟𝑚𝑚
)

 , the equivalent 
decomposition is given by 𝐴𝐴 𝐴𝐴𝐴𝑚𝑚 = ⃗𝑢𝑢𝐿𝐿𝑚𝑚 + ⃗𝑢𝑢𝑇𝑇𝑚𝑚 + 𝑤⃗𝑤𝑚𝑚 . Panels (a) and (b) of Figure 1, adapted from Batchelor (1953, 
Figure 3.1), illustrate the vector components in the LTz decomposition. The plot in Panel (a) shows the longitu-
dinal components at the points separated by 𝐴𝐴 𝐴𝐴𝐴  , seen from the vertical direction. Similarly, the plot of Panel (b) 
shows the transverse components. The angle ϕ is the angle from the east-west direction and depends exclusively 
on the positions of the points n and m.

The LTz decomposition of the Bragg vector at the points n and m is defined as 𝐴𝐴 𝑘⃗𝑘𝑛𝑛 = 𝑘⃗𝑘𝐿𝐿
𝑛𝑛 + 𝑘⃗𝑘𝑇𝑇

𝑛𝑛 + 𝑘⃗𝑘𝑧𝑧
𝑛𝑛 and 

𝐴𝐴 𝑘⃗𝑘𝑚𝑚 = 𝑘⃗𝑘𝐿𝐿
𝑚𝑚 + 𝑘⃗𝑘𝑇𝑇

𝑚𝑚 + 𝑘⃗𝑘𝑧𝑧
𝑚𝑚 , respectively. The vectors 𝐴𝐴 𝑘⃗𝑘𝑚𝑚 and 𝐴𝐴 𝑘⃗𝑘𝑛𝑛 are schematically presented in Figure 1c. In addition to 

the LTz decomposition, this panel shows the ENU components decomposition, that is, 𝐴𝐴 𝑘⃗𝑘𝑚𝑚 = 𝑘⃗𝑘𝑥𝑥
𝑚𝑚 + 𝑘⃗𝑘

𝑦𝑦

𝑚𝑚 + 𝑘⃗𝑘𝑧𝑧
𝑚𝑚 and 

𝐴𝐴 𝑘⃗𝑘𝑛𝑛 = 𝑘⃗𝑘𝑥𝑥
𝑛𝑛 + 𝑘⃗𝑘

𝑦𝑦

𝑛𝑛 + 𝑘⃗𝑘𝑧𝑧
𝑛𝑛 , in which the superscript x denotes the east-west direction, y denotes the north-south direction, 

and z represents the up-down direction. The relations between the horizontal components in the two systems, for 
the point n (similarly for point m) are given by

��
� = ��

�cos� + ��
�sin�, (2)

��
� = −��

�sin� + ��
�cos�. (3)

�

These relations are deduced by considering the well-known conversion of a vector from Cartesian to cylindrical 
components, or by using geometrical arguments in Figure 1b, and are valid when the points n and m are not sepa-
rated too much. For large separations, the local vertical directions differ significantly and ϕ loses meaning. Yet, 
relations 2 and 3 work properly for the horizontal scales investigated in this work (see Section 3). We shall see in 
Section 2.1 that if the Bragg vectors 𝐴𝐴 𝑘⃗𝑘 are represented in LTz components, then the solutions for the correlations 
of 𝐴𝐴 𝐴𝐴𝐴 using WCFI are in LTz as well.

Figure 1.  (a) Longitudinal components of the wind velocity 𝐴𝐴
(

𝑢𝑢𝐿𝐿
)

 at the positions of meteors n and m. Each pair of meteor 
detections defines a different longitudinal-transverse-up (LTz) system to decompose the vectors. The angle ϕ is defined between 
the east-west direction and the longitudinal direction, and 𝐴𝐴 |𝑠𝑠| is the separation distance between the positions of meteors n and 
m. (b) Same as Panel (a) but for the transverse component of the wind velocity 𝐴𝐴

(

𝑢𝑢𝑇𝑇
)

 . (c) The vectors 𝐴𝐴 𝑘⃗𝑘𝑛𝑛 and 𝐴𝐴 𝑘⃗𝑘𝑚𝑚 are the Bragg 
wave vectors of the meteors n and m. Their decomposition in the LTz system and in east-north-up coordinate system is shown. 
In terms of the vector components these are 𝐴𝐴 𝑘⃗𝑘𝑚𝑚 = 𝑘⃗𝑘𝐿𝐿

𝑚𝑚 + 𝑘⃗𝑘𝑇𝑇
𝑚𝑚 + 𝑘⃗𝑘𝑧𝑧

𝑚𝑚 = 𝑘⃗𝑘𝑥𝑥
𝑚𝑚 + 𝑘⃗𝑘

𝑦𝑦

𝑚𝑚 + 𝑘⃗𝑘𝑧𝑧
𝑚𝑚 and 𝐴𝐴 𝑘⃗𝑘𝑛𝑛 = 𝑘⃗𝑘𝐿𝐿

𝑛𝑛 + 𝑘⃗𝑘𝑇𝑇
𝑛𝑛 + 𝑘⃗𝑘𝑧𝑧

𝑛𝑛 = 𝑘⃗𝑘𝑥𝑥
𝑛𝑛 + 𝑘⃗𝑘

𝑦𝑦

𝑛𝑛 + 𝑘⃗𝑘𝑧𝑧
𝑛𝑛 .
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2.1.  Correlation Function Disambiguation

Consider two different meteors n and m, located at positions 𝐴𝐴 𝐴𝐴𝐴𝑛𝑛 and 𝐴𝐴 𝐴𝐴𝐴𝑚𝑚 ; and occurring at times tn and tm. We 
denote their Doppler shifts as 𝐴𝐴 𝐴𝐴𝑛𝑛 = 𝜔𝜔

(

𝑡𝑡𝑛𝑛, 𝑟𝑟𝑛𝑛
)

 and 𝐴𝐴 𝐴𝐴𝑚𝑚 = 𝜔𝜔
(

𝑡𝑡𝑚𝑚, 𝑟𝑟𝑚𝑚
)

 , measurement errors given by 𝐴𝐴 𝐴𝐴𝑛𝑛 = 𝜉𝜉
(

𝑡𝑡𝑛𝑛, 𝑟𝑟𝑛𝑛
)

 and 
𝐴𝐴 𝐴𝐴𝑚𝑚 = 𝜉𝜉

(

𝑡𝑡𝑚𝑚, 𝑟𝑟𝑚𝑚
)

 and Bragg vectors 𝐴𝐴 𝑘⃗𝑘𝑛𝑛 = 𝑘⃗𝑘
(

𝑡𝑡𝑛𝑛, 𝑟𝑟𝑛𝑛
)

 and 𝐴𝐴 𝑘⃗𝑘𝑚𝑚 = 𝑘⃗𝑘
(

𝑡𝑡𝑚𝑚, 𝑟𝑟𝑚𝑚
)

 . Using these definitions, we can inspect the 
covariance structure of the MLT wind fluctuations, by multiplying Equation 1 of the two meteors, and taking the 
expected value over multiple realizations of n and m:

⟨����⟩ = ⟨

(

�⃗� ⋅ �⃗� + ��
)(

�⃗� ⋅ �⃗� + ��
)

⟩

= ⟨

(

�⃗� ⋅ �⃗�
)(

�⃗� ⋅ �⃗�
)

⟩ + ⟨

(

�⃗� ⋅ �⃗�
)

��⟩ + ⟨

(

�⃗� ⋅ �⃗�
)

��⟩ + ⟨����⟩.
� (4)

If the errors ξn and ξm are zero mean independent random variables (m ≠ n), only the first term on the right-hand 
side is different than zero. We exclude cases where n = m to avoid including correlated measurement errors 
〈ξnξn〉 ≠ 0. Expanding the resulting expression in terms of the vectors in LTz components, we have

⟨����⟩ = ⟨(�⃗� ⋅ �⃗�)(�⃗� ⋅ �⃗�)⟩

= ⟨(��
� ��� + ��

� ��� + ��
���)(��

���� + ��
���� + ��

���)⟩

= ��
� ��

�⟨��� ���⟩ + ��
� ��

�⟨��� ���⟩ + ��
���

�⟨����⟩

+
(

��
� ��

� + ��
� ��

�
)

⟨��� ���⟩ +
(

��
� ��

� + ��
���

�
)

⟨��� ��⟩

+
(

��
� ��

� + ��
���

�
)

⟨��� ��⟩,

� (5)

where we have used the symmetry property 𝐴𝐴 ⟨𝑢𝑢𝑖𝑖𝑛𝑛𝑢𝑢
𝑗𝑗

𝑚𝑚⟩ = ⟨𝑢𝑢
𝑗𝑗

𝑛𝑛𝑢𝑢
𝑖𝑖
𝑚𝑚⟩ (superscripts i, j  =  L, T, z denote the different 

components). The velocity correlations 𝐴𝐴 ⟨𝑢𝑢𝑖𝑖𝑛𝑛𝑢𝑢
𝑗𝑗

𝑚𝑚⟩ can capture the structural properties of the mesoscale dynamics 
investigated in the present study. For simplicity of further analysis, let us define the velocity correlation tensor 
(Rij) in the following form

𝑅𝑅𝑖𝑖𝑖𝑖

(

𝑡𝑡𝑛𝑛, 𝑡𝑡𝑚𝑚, 𝑟𝑟𝑛𝑛, 𝑟𝑟𝑚𝑚
)

= ⟨𝑢𝑢
𝑖𝑖
𝑛𝑛𝑢𝑢

𝑗𝑗

𝑚𝑚⟩.� (6)

We can write ωnωm = 〈ωnωm〉 + ηnm, with ηnm being a zero mean random variable with symmetric distribution. 
Then, Equation 5 has six unknowns, given by the correlation components defined in Equation 6, and can be 
rewritten as

���� = ��
� ��

���� + ��
� ��

���� + ��
���

����

+
(

��
� ��

� + ��
� ��

�
)

��� +
(

��
� ��

� + ��
���

�
)

��� +
(

��
� ��

� + ��
���

�
)

��� + ���.
� (7)

If we want to explore the solutions of Equation 7 in horizontal directions, the definition in Equation 6 simplifies  to

𝑅𝑅𝑖𝑖𝑖𝑖

(

𝜏𝜏𝜏 𝜏𝜏𝜏
)

= ⟨𝑢𝑢
𝑖𝑖
𝑛𝑛𝑢𝑢

𝑗𝑗

𝑚𝑚⟩.� (8)

Here, we consider homogeneity in horizontal L, T-directions and stationarity in time, so the correlation 
components do not depend on the positions and times, but on the differences of such quantities (Monin & 
Yaglom, 1971, p. 246). The vector 𝐴𝐴 𝐴𝐴𝐴 = 𝑟𝑟𝑛𝑛 − 𝑟𝑟𝑚𝑚 is the horizontal separation or spatial lag (illustrated in Figure 1a) 
and τ = tn − tm is the temporal lag. RLL and RTT are referred to as longitudinal and transverse components, respec-
tively; and are expected to be much larger than Rzz, RLz, and RTz due to the buoyancy force effects that suppresses 
motions in the vertical direction. We do not test this theoretical assumption, although recent numerical simula-
tions confirm that both horizontal components of mesoscale velocity are two orders of magnitude larger than the 
vertical component (u, v ∼ 20 m s −1, w ∼ 20 cm s −1; Avsarkisov et al., 2022). Also, our measurements suggest 
that RLL and RTT are larger than the horizontal cross-component RLT when the winds are isotropic in the horizontal 
direction.

Under these considerations, a solution of Equation 7 is found by forming the following linear system
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⎛

⎜

⎜

⎜

⎜

⎝

⋮

����

⋮

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

⋮

��
� ��

� ��
� ��

� ��
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which is then treated as a minimization problem in the sense of linear least squares to solve for Rij. The way that 
the pairs of meteor echo Doppler shifts are combined to solve the system determines whether the method retrieves 
temporal or spatial correlations and what temporal and spatial lags are measured. This is a key step to obtain 
reliable values of correlations, as it is explained in Section 2.2.

To quantify the uncertainties in estimating the correlations, two procedures are followed in this work. The first 
one consists of estimating the typical least-squares uncertainties using the design matrix (assuming independ-
ent measurements), weighted by a factor that reduces the uneven hourly meteor counts effects during the day 
(Vierinen et al., 2019, Section 2.2). This is applied to the data from the Spread-spectrum Interferometric Meteor 
Observing Network (SIMONe) 2018 campaign (described in Section 3). The second procedure is applied to the 
longer data set, and consists of using sample statistics concepts to calculate reliable dispersion values, assuming 
that the correlations for every day and lag value are independent in a probabilistic sense.

2.2.  Meteor-Pair Selection Procedure

In practice, to calculate horizontal spatial correlations 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖

(

𝑠𝑠
)

 , the system in Equation 9 is solved for discrete 
values of 𝐴𝐴 𝐴𝐴𝐴  , in a range whose upper limit is given by the geometry of the meteor radar network. The meteors are 
grouped in pairs to form the lagged products ωnωm that build the linear system and are the input to calculate the 
correlations for 𝐴𝐴 𝐴𝐴𝐴  values. Vierinen et al. (2019) proposed two solutions for WCFI's meteor pairing. In the first 
approach, the correlations are two dimensional, that is, distributed in east-west (sx) and north-south (sy) separa-
tions, with 𝐴𝐴 𝐴𝐴𝐴 = (s𝑥𝑥, s𝑦𝑦) . This approach was implemented by Poblet et al. (2022), who described its properties in 
detail. The second approach is the one-dimensional approach, implemented in the original WCFI report (Vierinen 

et al., 2019), that retrieves correlations as functions of horizontal radial separations 𝐴𝐴 |𝑠𝑠| = 𝑠𝑠ℎ =

√

s2𝑥𝑥 + s2𝑦𝑦 . The 
latter is followed in this work.

Since SMRs detect meteors in ∼70–110  km altitude almost continuously in time, the first step to pairing 
meteor detections is to confine them to smaller altitude ranges, working with intervals of 2  km (Vierinen 
et al., 2019) or 6 km wide (Charuvil Asokan et al., 2022; Poblet et al., 2022), and daily or weekly spans, for 
example.

Then, from the selected detections, we proceed with one detection at the time as follows. We select a meteor n 
and tune the vertical and temporal conditions, finding every detection that is separated from it by not more than 
a temporal and vertical resolution (δτ and δz, respectively). Typical values of δτ can be 15 or 30 min, and 1 km 
for δz. After that, for each detection fulfilling the temporal and vertical requirements, only the ones that lie in the 
interval sh ± δsh/2, for particular values of sh, and fixed horizontal lag resolution δsh, are chosen. The meteor pairs 
are formed by combining n with all other selected detections. The procedure is repeated, by selecting other detec-
tions to play the role of n. In the end, every pair has in common that their elements preserve the distance between 
each other under certain limits, given by sh ± δsh/2. Finally, using non-repeated pairs, the system in Equation 9 is 
solved for the components of Rij(sh).

The number of meteor pairs is a combination of the geographic distribution of the meteor detections and the size 
of the search area given by:

𝐴𝐴 = 2𝜋𝜋𝜋𝜋ℎ𝛿𝛿𝛿𝛿ℎ,� (10)

that depends only on sh when the resolution δsh is kept constant.
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2.3.  Fluctuating Wind Correlations

To study phenomena in different spatiotemporal scales, it is often convenient to separate the wind into a back-

ground or mean wind part 
(

�⃗
)

 part and a fluctuating part 𝐴𝐴
(

𝑢𝑢′
)

 using the Reynolds decomposition:

𝑢𝑢 = 𝑈⃗𝑈 + 𝑢𝑢
′

,� (11)

where 𝐴𝐴 ⟨𝑢𝑢′⟩ = 0 . The separation is highly dependent on the averaging procedure, and it is essential to identify and 
characterize high-frequency components of the wind, for instance, gravity waves (GWs) activity (Strelnikova 
et al., 2020). In terms of correlation functions, we perform the separation in the following manner. First, we 
solve Equation 1 for the background 𝐴𝐴 𝑈⃗𝑈 , using low temporal and spatial resolutions. Then, the values of 𝐴𝐴 𝑈⃗𝑈 and 
ω are used to estimate high-pass-filtered Doppler-shift estimates ω′, by calculating 𝐴𝐴 𝐴𝐴′

= 𝜔𝜔 − 𝑈⃗𝑈 ⋅ 𝑘⃗𝑘 . After that, 
ω′ and 𝐴𝐴 𝑘⃗𝑘 are used to estimate the correlation functions of the fluctuating wind 𝐴𝐴 𝐴𝐴′

𝑖𝑖𝑖𝑖
 , with the method described in 

Section 2.1. For this work, the zonal and meridional components of 𝐴𝐴 𝑈⃗𝑈 were calculated every 30 min and 1 km 
gates in altitude, using resolutions of 4 hr and 4 km. No horizontal gradients were included. These are rather 
restrictive values to resolve correlations of MLT mesoscale fluctuations, especially when we compare with the 
values used in previous works (e.g., Strelnikova et al., 2020). Yet, they work well in practice to diminish strong 
directionalities from the full-wind correlations (see Poblet et al., 2022, Figure 4). Following the notation in Equa-
tion 11, we use primes to denote the correlations of the fluctuating wind as well.

It is important to note that 𝐴𝐴 𝑈⃗𝑈 still has an important effect in estimating the correlation functions. The temporal 
lag-resolution parameter δτ, which indicates the maximum temporal separation between two meteors, will affect 
the correlation function. The smaller the horizontal scales being investigated, the smaller δτ has to be, or other-
wise the mean wind will cause a significant decorrelation. This is because 𝐴𝐴 𝑈⃗𝑈 transports smaller scale fluctuations. 
For example, if the mean horizontal wind velocity is 𝐴𝐴 |

⃖⃖⃗𝑈𝑈 | = 50 m s −1, and δτ = 1,000 s, then an up to a 50 km 
difference in the location of a small scale turbulent eddy measured by two different meteors is possible.

3.  Data Sets
The two data sets used in this study are the measurements from the 1-week SIMONe 2018 campaign (Charuvil 
Asokan et al., 2022; Vargas et al., 2021; Vierinen et al., 2019; Volz et al., 2021), and the 1-year measurements 
(March 2021–February 2022) collected from the Multistatic and Multifrequency Agile Radar for Investigations 
of the Atmosphere (MMARIA) network (Stober & Chau, 2015), hereinafter referred to as MMARIA-Germany 
2021–2022. The measurements were taken over nearly the same geographical region in northern Germany so 
they provide both, short- and long-term insights into an atmospheric volume within a common region. The meas-
urements consist of Bragg wave vectors, Doppler shifts, observation times, and the positions of specular meteor 
trails.

The SIMONe 2018 campaign was conducted for seven consecutive days between 2 November and 9 November. 
The radar network comprised two pulsed and one-coded-continuous-wave transmitters, and 14 receiving sites 
that detected about 1 million specular meteors with peaks in meteor counts at ∼87 − 96 km altitude. SIMONe 
2018 has been employed by several studies so far (i.e., Charuvil Asokan et al., 2022; Poblet et al., 2022; Vargas 
et al., 2021; Vierinen et al., 2019; Volz et al., 2021). These works present additional details about the systems, 
for example, the horizontal counts distribution (Poblet et al., 2022, Figure 1), the vertical counts distribution 
(Charuvil Asokan et al., 2022, Figure 1c), and location of the receiving sites (Charuvil Asokan et al., 2022, Table 
1). This data set helps us to compare the method described in this work with the approach presented by Poblet 
et al. (2022), which uses exactly the same measurements.

The MMARIA-Germany 2021–2022 observations were obtained over Germany with the network of multistatic 
SMRs operated by the Leibniz Institute of Atmospheric Physics at the University of Rostock in Kühlungsborn, 
Germany; in collaboration with Leipzig University and the German Space Agency in Neustrelitz, both institutions 
located in Germany as well. During this period, the system consisted of three transmitters located in Kühlungs-
born (54.15°N, 11.76°E), Collm (51.31°N, 13.00°E) and Juliusruh (54.63°N, 13.37°E). Kühlungsborn and Collm 
operated coded-CW and pulsed sequences, respectively. On the other hand, the Juliusurh system operated with 
pulsed sequences until July 2021, and since then with coded-CW sequences. The codes used in Juliusruh were 
different than the codes in Kühlungsborn, to facilitate the signal separation at the receiving stations.
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On reception, Neustrelitz (53.33°N, 13.07°E) and Bornim (52.44°N, 13.02°E) sites consist of 10 receivers each, 
that are able to receive all three transmitter signals, while the other single-receiver sites receive only Kühlungs-
born before July 2021, and Juliusruh-Kühlungsborn afterward. In summary, there have been two receiver stations 
with Multiple-Input Multiple Output (MIMO), five(four) receivers with Single-Input Multiple-Output (SIMO), 
and one(two) receiver(receivers) with Multiple-Input Multiple-Output (MISO) before(after) July 2021. These 
configurations make a total of 9(11) multistatic links before(after) July 2021. More single receivers are being 
continuously added to the network. Currently, the network has 17 multistatic links, that can be monitored on the 
website (MMARIA/SIMONe Germany Real-time Monitor Webpage, 2023). For details about MIMO, SIMO, 
and MISO techniques we refer the reader to Chau et al. (2019).

The standard deviation of the position error of specular meteor trails has been estimated by Chau et al. (2019) 
to be approximately 5 km in the horizontal direction and 1 km in the vertical direction. This estimate is derived 
by comparing the positions of meteors using two independent methods, angle of departure and angle of arrival 
interferometry solutions. Meteor trails with low elevation angles can be particularly affected by position errors so 
every meteor detected below 35° from the horizon was excluded from the MMARIA-Germany 2021–2022 data-
base. The effect of position errors is important, as it limits the achievable lag resolution. The result is a database 
with more than 47,800 meteors per day on average, which allows us to cover horizontal separation distances for 
the correlation functions up to 400 km with good coverage (see Section 2.2).

Figure 2a presents a 2D histogram of the total number of specular meteor observations of MMARIA-Germany 
2021–2022. It shows the number of detections within bins of 0.01° wide in latitude and longitude. The largest 
number of counts is concentrated between the ∼53–55.2° latitudinal range and the ∼10.5–15° longitudinal range. 
Similarly, Figure 2b presents an altitude histogram that shows a clean symmetric distribution of the meteor counts 
peaking at 90 km. Regarding the temporal evolution, Figures 2c and 2d show the daily number of detections for 
the year and its UT distribution, respectively. The counts show peaks in early May and mid-December, and a 
yearly evolution with more values during summer than during late winter, on average. This was also reported, 
for example, by Singer et al. (2004) and Haldoupis et al. (2007). The meteors are clearly more frequent in the 
morning and less frequent in the afternoon.

Figure 3 shows the number of meteor pairs in the two-dimensional (2D) and one-dimensional (1D) pairing proce-
dures, introduced in Section 2.2, for the SIMONe 2018 campaign data. To be consistent, the same parameters 
were used for each plot, that is, we selected a 6 km wide altitude range between 87 and 93 km (i.e., centered at 
the peak of meteor counts), with δτ = 30 min and δz = 1 km. Panel (a) shows the number of meteor pairs when 
the 2D procedure is followed. For this case, the pairs are distributed in sx and sy directions, with resolutions of 
δsx = 25 km and δsy = 25 km, respectively (Poblet et al., 2022, Section 3.3). Panel (b) presents the number of 
pairs as a function of horizontal separation sh, when the one-dimensional approach with δsh = 25 km is followed 
(blue line), using SIMONe 2018. In addition, we added the number of pairs in the 2D approach in the direction 
given by sx = 0 and sy > 0. The comparison between both curves demonstrates that, except for the shortest lags, 
the 2D method uses more than an order of magnitude fewer meteor pairs to resolve correlations in any direction 
than in the 1D approach. When sh takes larger values, the searching area A starts to grow, and the number of mete-
ors for pairing in the 1D approach increases rapidly, departing from the number of meteors that the 2D constant 
searching-area, given by δsxδsy, can detect. Note also that the peak in the pairs count for the 1D method is not 
located in the shortest separations region but around sh = 160 km.

Figure 3c shows contours of the number of meteor pairs for each day of MMARIA-Germany 2021–2022 within 
the altitude range considered, as a function of sh, using the 1D approach. They reach maximum values of about 
10 7 pairs in April 2021. The yearly evolution of pairs number is a combination of two factors. These are, the 
instrumental factor, since the permanent meteor radar network was modified and expanded several times during 
the time period considered here, and the geophysical factor, since the largest number of specular meteor trails for 
this region is known to occur during summer and the lowest during late winter, as mentioned before.

4.  Results
4.1.  Validation

Figures 4a and 4b present a comparison between the new method (direct method), presented in this paper and the 
method described by Poblet et al. (2022) using the SIMONe 2018 data set (indirect method). Panel (a) shows 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
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and panel (b) shows 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 , both as a function of horizontal spatial lag sh. The mean-wind removal was carried out 

directly over the measured Doppler shift values, using the method outlined in Section 2.3. The estimates shown 
in black color were taken directly from Poblet et al. (2022), and represent the correlations calculated with the 
indirect method. This method first estimates 2D horizontal correlation functions of u and v distributed in sx and 
sy, and then analytically converts them to one dimensional 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 and 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 components. The olive-color curves in 

Figures 4a and 4b are the correlations estimated with the direct method described in this work. Since the number 
of meteor pairs in the 1D pairing procedure approach is much larger, we can use a higher lag resolution of 
δsh = 12.5 km. The remaining parameters stay equal to the ones used for the plots shown in Figure 3.

The correlations estimated with both techniques show good agreement. They capture the general trend, that is, a 
progressive decorrelation as the separations increase. However, the direct method has two important benefits: the 
errors are significantly smaller and the correlations of shorter horizontal lags can be resolved.

The reason why shorter lags are not measured with the indirect approach is the following. When converting the 
2D u and v correlation components to 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 and 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 components, we must assume that every meteor to be paired, 

detected within a 2D resolution of 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 = (𝛿𝛿s𝑥𝑥, 𝛿𝛿s𝑦𝑦) , has the same ϕ value. This condition does not hold when 

Figure 2.  MMARIA-Germany 2021–2022 meteor detections. (a) 2D histogram for the total number of specular meteor observations detected between March 2021 
and February 2022 in the MMARIA Germany network. The color bar values show the number of detections within bins of 0.01° wide in latitude and longitude. (b) 
Histogram showing the total number of meteor detections as a function of altitude (detections within the 87–93 km range were used in this work). (c) Daily number 
of meteors. (d) Number of meteor detections as a function of UT hour. The black curve shows the average number of meteors for the particular UT hour, using the 
complete year of measurements. The shaded gray area marks the 99% confidence interval. Only filtered measurements were used for every plot.
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Figure 3.  Results of the two-dimensional and one-dimensional meteor pair selection procedures. (a) Number of meteor pairs as a function of two-dimensional spatial 
separations 𝐴𝐴 𝐴𝐴𝐴 =

(

s𝑥𝑥, s𝑦𝑦
)

 for the SIMONe 2018 campaign data. (b) Number of meteor pairs as a function of one-dimensional separations sh for SIMONe 2018 (blue line). 
The black line marks the number of meteor pairs using the 2D approach of panel (a) for sx = 0 and sy > 0. (c) Daily number of meteor pairs using the one-dimensional 
approach for MMARIA-Germany 2021–2022. The parameters for all plots are δτ = 30 min, δz = 1 km, δsh = δsx = δsy = 25 km.

Figure 4.  (a) Comparison between the two methods to estimate the longitudinal correlation functions of the fluctuating wind 𝐴𝐴
(

𝑅𝑅′

𝐿𝐿𝐿𝐿

)

 . The black dots are the correlations 
of the longitudinal component estimated with the indirect method reported in Poblet et al. (2022). The olive-color curve represents the longitudinal correlations 
estimated with the direct method reported in this work. (b) Similar to (a), for the transverse correlation component 𝐴𝐴

(

𝑅𝑅′

𝑇𝑇𝑇𝑇

)

 . (c) Helmholtz decomposition of the wind 
velocity correlations. The cyan and orange solid lines represent the spatial correlation of the divergent 𝐴𝐴

(

𝑅𝑅′

𝑑𝑑𝑑𝑑

)

 and rotational 𝐴𝐴 (𝑅𝑅′

𝑟𝑟𝑟𝑟) parts, respectively. The decomposition 
can also be determined analytically using longitudinal and transverse component fits and is shown as dashed curves. The reader is referred to Section 4.3 for details.
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𝐴𝐴 |𝛿𝛿𝛿𝛿𝛿| ∼ |⃗𝑠𝑠| , so the shortest lags region must be excluded from the analysis (Poblet et al., 2022, Section 3). This 
requirement does not exist in the new method.

4.2.  Annual Variability of 𝑨𝑨 𝑨𝑨
′

𝑳𝑳𝑳𝑳
 and 𝑨𝑨 𝑨𝑨

′

𝑻𝑻 𝑻𝑻

The method was applied to the longer MMARIA-Germany 2021–2022 data set to study the annual variability of 
horizontal correlation functions. As for several time periods the daily meteor count was significantly smaller in 
this data set than in the SIMONe 2018 data set, the correlation functions will only be estimated with reasonably 
low errors using the new technique.

Figures 5a and 5c present longitudinal 𝐴𝐴
(

𝑅𝑅′

𝐿𝐿𝐿𝐿

)

 and transverse 𝐴𝐴
(

𝑅𝑅′

𝑇𝑇𝑇𝑇

)

 correlation functions, calculated for each day 
as a function of sh. The parameters employed to calculate the correlations are the same as those used for meteor 
pairing in Figure 3c. The predominant feature is the decreasing of both components as sh increases, as expected for 
turbulent fluctuations. This demonstrates that even using daily estimations, the method performs well. However, 
some days present clearly unphysical results where 𝐴𝐴 𝐴𝐴′

𝑖𝑖𝑖𝑖
(𝑠𝑠ℎ) > 𝑅𝑅′

𝑖𝑖𝑖𝑖
(0) , violating the so-called Schwarz inequality 

for fluctuating fields (Batchelor, 1953, p. 24), for example, in mid June and July. Based on visual inspection of 
mean wind estimates, these outliers occur at time periods where there are false detections of specular meteor trail 
echoes due to radio interference. These outliers were removed for the calculation of the annual means curves 
(introduced below) and for every other averaged curve in this work.

Interestingly, both components show increased levels of correlation around winter times, between mid November 
and mid March, which means that there is a seasonal behavior in the fluctuating wind correlations, on horizontal 
scales up to about 400 km. Figures 5b and 5d show the annual means of 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
(𝑠𝑠ℎ) and 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
(𝑠𝑠ℎ) , respectively; in 

which the shadowed areas mark 90% confidence intervals on averaging over multiple days. From these plots, it is 
clear that both components reach similar zero-lag values of about 240 m 2 s −2 and they decrease smoothly toward 
larger separations, where 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 is slightly larger than 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 . This means that longitudinal and transverse fluctuations 

are balanced on small horizontal scales, but for larger scales, the kinetic energy is larger for transverse fluctua-
tions than for longitudinal fluctuations. A similar result is observed for SIMONe 2018 in Figures 4a and 4b. This 
could be due to vorticity effects from larger scales eddies.

To explore the interplay between 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 and 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 in more detail, we generated monthly averages for both compo-

nents. They are shown in Figure  6 along with the 90% confidence intervals (shadowed areas) calculated 

Figure 5.  Correlation functions for 1 year of observations using MMARIA-Germany 2021–2022. (a) Contour plot showing daily, one dimensional 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 values as 

function of the horizontal lag sh for the complete year of observations. (b) Annual means of 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 for each sh value. The shadowed areas mark the 90% confidence 

interval. (c) Same as (a) but for the 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 component. (d) Annual mean values of 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 .
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with the t-student distribution. The blue(red) solid line corresponds to the monthly means of 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 (𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 ). The 

cross-correlation component 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 is also shown as black solid lines.

The consistent characteristic of each panel is that the monthly means of 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 and 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 decrease almost identically 

for growing separations. Following the trends of these components to small sh values, they appear to converge 
to the same zero-lag value, which is different for each month. As expected, the larger values of correlations 
near the winter months identified in Figure 5 are also evident, especially in December and January. There are, 

Figure 6.  Monthly means of the longitudinal (blue line) and transverse (red line) correlation components of the fluctuating wind (𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 and 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 , respectively) 

combining the daily curves of Figure 5. The shadowed areas mark the 90% confidence intervals. The best fits, shown with dashed lines, are shifted in the vertical 
direction to avoid cluttering the figure. The vertical gray lines mark the characteristic horizontal length scale of stratified turbulence Lh. Hatched boxes on top of the 
plots mark the sh regions where 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 is statistically different than 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 .
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however, clear differences between both components for large enough lags, that occur in May, July, and October. 
On these months, 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 is larger than 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 for sh ≳ 200 km, decorrelating at longer separations. The sh ranges for 

which 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
≠ 𝑅𝑅′

𝑇𝑇𝑇𝑇
 with a statistical significance level of 90% is shown by hatched boxes for each plot of the 

figure. Note that, even though the monthly means of 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 remain close to zero for every month and sh value, 

it is slightly larger for months and lags with non-negligible 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
− 𝑅𝑅′

𝐿𝐿𝐿𝐿
 values, for example, in May, July, and 

October.

A physical notion of how the fluctuations decorrelate in space can be gained by fitting the monthly means using 
the functions

𝑅̂𝑅𝐿𝐿𝐿𝐿 = 𝑐𝑐0𝐿𝐿 − 𝑐𝑐𝐿𝐿𝑠𝑠
2∕3

ℎ
,� (12)

𝑅̂𝑅𝑇𝑇𝑇𝑇 = 𝑐𝑐0𝑇𝑇 − 𝑐𝑐𝑇𝑇 𝑠𝑠
2∕3

ℎ
.� (13)

The form of these functions is obtained by considering the following two arguments. First, we have to use the 
relation between second-order structure functions (Dii, with i = L, T) and spatial autocorrelation functions. The 
former are defined by 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖

(

𝑠𝑠
)

= ⟨

[

𝑢𝑢𝑖𝑖
(

𝑟𝑟𝑛𝑛
)

− 𝑢𝑢𝑖𝑖
(

𝑟𝑟𝑚𝑚
)]

2

⟩ , that can be expanded to obtain

𝐷𝐷𝑖𝑖𝑖𝑖

(

𝑠𝑠
)

= ⟨𝑢𝑢
𝑖𝑖
(

𝑟𝑟𝑛𝑛
)

𝑢𝑢
𝑖𝑖
(

𝑟𝑟𝑛𝑛
)

⟩ + ⟨𝑢𝑢
𝑖𝑖
(

𝑟𝑟𝑚𝑚
)

𝑢𝑢
𝑖𝑖
(

𝑟𝑟𝑚𝑚
)

⟩ − 2⟨𝑢𝑢
𝑖𝑖
(

𝑟𝑟𝑛𝑛
)

𝑢𝑢
𝑖𝑖
(

𝑟𝑟𝑚𝑚
)

⟩.� (14)

The first two terms on the right-hand side are correlations at zero lag 𝐴𝐴
(

𝑠𝑠 = 0

)

 for velocity products at different 
points (see Equation 8). Under homogeneity, they are 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖(0) = ⟨𝑢𝑢𝑖𝑖

(

𝑟𝑟𝑛𝑛
)

𝑢𝑢𝑖𝑖
(

𝑟𝑟𝑛𝑛
)

⟩ = ⟨𝑢𝑢𝑖𝑖
(

𝑟𝑟𝑚𝑚
)

𝑢𝑢𝑖𝑖
(

𝑟𝑟𝑚𝑚
)

⟩ . Regarding the 
third term on the right-hand side, this is 𝐴𝐴 −2𝑅𝑅𝑖𝑖𝑖𝑖

(

𝑠𝑠
)

 . With these considerations, Equation 14 can be rearranged as

𝑅𝑅𝑖𝑖𝑖𝑖

(

𝑠𝑠
)

= 𝑅𝑅𝑖𝑖𝑖𝑖(0) −
1

2

𝐷𝐷𝑖𝑖𝑖𝑖

(

𝑠𝑠
)

.� (15)

The second argument for the choice of the functions in Equations 12 and 13 comes from Kolmogorov's isotropic 
turbulence. The first and second similarity hypotheses in this theory predict that in the inertial subrange the 
components of Dii as a function of sh will follow (Kolmogorov, 1941).

���(�ℎ) = ��(�0�ℎ)2∕3, (16)

��� (�ℎ) =
4
3
��(�0�ℎ)2∕3. (17)

�

The constant Ck is a universal constant, which has a value of Ck ≃ 2.0 (Davidson, 2013; Ellsaesser, 1969) and ϵ0 
is the turbulent energy transfer rate. Substituting Equation 16 in Equation 15, it is straightforward to obtain the 
functional dependence given by Equation 12, in which the parameters contain the information of the zero-lag 
correlation and the constants involved in Equation 16. Exactly the same procedure can be followed for the trans-
verse component using Equations 13, 15, and 17. Note that, from Equations 16 and 17, DTT = (4/3)DLL.

The local horizontal homogeneity and isotropy of the wind field assumed above are well-known features also for 
ST theory (e.g., Riley & Lindborg, 2008, and references therein). In this study, we follow Avsarkisov et al. (2022) 
and postulate that this theory can also explain the mesoscale dynamics in the MLT region.

The monthly fits 𝐴𝐴 𝑅̂𝑅𝐿𝐿𝐿𝐿 and 𝐴𝐴 𝑅̂𝑅𝑇𝑇𝑇𝑇  are shown in Figure 6 as dashed blue and red lines, but shifted by a constant along 
the ordinate axis in such a way that the highest zero-lag value between both components is at 410 m 2 s −2. This 
shift is performed for clarity purposes, so one can clearly distinguish between the characteristics of the measured 
and fitted curves. The estimated parameter values are presented in Table 1. It can be observed that the fits follow 
the monthly means behavior of the measured correlation functions (𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 and 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 ) fairly well. In several months, 

the agreement with a 2/3-power law of separation distance is remarkable; for instance, in March, December, and 
January. Yet, other months show slight departures from the theory, especially for short separations, for example, 
April, May, and June.

We can directly use the parameters c0L and cL from Equation 12, to approximate the largest horizontal scale up to 
which the wind fluctuation dynamics is explained by ST, that is, the integral length scale:

𝐿𝐿ℎ =
𝜎𝜎3

𝑢𝑢

𝜖𝜖0
.� (18)
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Here, σu is the root mean square (RMS) velocity of the fluctuations in the horizontal direction, that can be approx-
imated by 𝐴𝐴 𝐴𝐴𝑢𝑢 =

√

𝑐𝑐0𝐿𝐿 . In the above formula, the transfer rate ϵ0 is estimated using Equations 15 and 16, which 
results in 𝐴𝐴 𝐴𝐴0 = 𝑐𝑐

3∕2

𝐿𝐿
 , assuming that the Kolmogorov constant is Ck = 2. This length scale is expected to be in the 

order of 100 km in the lower thermosphere (Avsarkisov, 2020; Avsarkisov et al., 2022), but as both σu and ϵ0 vary, 
Lh also varies. Gray vertical dashed lines have been added to the panels of Figure 6 centered in the abscissa value 
given by Lh. Interestingly, Lh is large enough to cover the majority of the sh range, and in some cases Lh is larger 
than its maximum value (e.g., September, December, and January). The mean value is Lh = 380 km.

4.3.  Helmholtz Decomposition

Lindborg (2014) discusses a Helmholtz decomposition that can be used to represent the horizontal wind velocity 
as a sum of purely rotational 𝐴𝐴

(

𝑢𝑢𝑟𝑟
)

 and purely divergent 𝐴𝐴
(

𝑢𝑢𝑑𝑑
)

 components:

𝑢𝑢 = 𝑢𝑢
𝑟𝑟
+ 𝑢𝑢

𝑑𝑑
= −∇ ×

(

𝑒𝑒𝑧𝑧Ψ
)

+ ∇ℎΦ.� (19)

In this equation, Ψ is the stream function, 𝐴𝐴 𝐴𝐴𝐴𝑧𝑧 is the vertical unit vector, Φ is the velocity potential, and ∇h is the 
horizontal gradient operator. As discussed by Lindborg (2014), it is possible to convert longitudinal and trans-
verse correlation functions to divergent and rotational correlation functions using the following expressions:

𝑅𝑅𝑟𝑟𝑟𝑟(𝑠𝑠ℎ) = 𝑅𝑅𝑇𝑇𝑇𝑇 (𝑠𝑠ℎ) −
∫

∞

𝑠𝑠ℎ

𝑅𝑅𝑇𝑇𝑇𝑇 (𝜂𝜂) −𝑅𝑅𝐿𝐿𝐿𝐿(𝜂𝜂)

𝜂𝜂
d𝜂𝜂𝜂� (20)

𝑅𝑅𝑑𝑑𝑑𝑑(𝑠𝑠ℎ) = 𝑅𝑅𝐿𝐿𝐿𝐿(𝑠𝑠ℎ) +
∫

∞

𝑠𝑠ℎ

𝑅𝑅𝑇𝑇𝑇𝑇 (𝜂𝜂) −𝑅𝑅𝐿𝐿𝐿𝐿(𝜂𝜂)

𝜂𝜂
d𝜂𝜂𝜂� (21)

The rotational and divergent correlation functions are defined as 𝐴𝐴 𝐴𝐴𝑟𝑟𝑟𝑟(𝑠𝑠ℎ) = ⟨𝑢𝑢𝑟𝑟
(

𝑟𝑟𝑛𝑛
)

⋅ 𝑢𝑢𝑟𝑟
(

𝑟𝑟𝑚𝑚
)

⟩ and 
𝐴𝐴 𝐴𝐴𝑑𝑑𝑑𝑑(𝑠𝑠ℎ) = ⟨𝑢𝑢𝑑𝑑

(

𝑟𝑟𝑛𝑛
)

⋅ 𝑢𝑢𝑑𝑑
(

𝑟𝑟𝑚𝑚
)

⟩ , with 𝐴𝐴 𝐴𝐴ℎ = |𝑟𝑟𝑛𝑛 − 𝑟𝑟𝑚𝑚| being the distance between two position vectors 𝐴𝐴 𝐴𝐴𝐴𝑛𝑛 and 𝐴𝐴 𝐴𝐴𝐴𝑚𝑚 that 
are displaced from one another purely in the horizontal direction.

Equations 20 and 21 are useful from a numerical point of view because integrating over a function has a tendency 
to average out noise, which means that this transformation should be relatively robust to uncorrelated measure-
ment errors.

The divergent and rotational correlations of the fluctuating wind 𝐴𝐴 𝐴𝐴′

𝑑𝑑𝑑𝑑
 and 𝐴𝐴 𝐴𝐴′

𝑟𝑟𝑟𝑟 were calculated numerically using 
Simpson's rule over the monthly means of 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 and 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 . These are shown in Figure 7, in which the cyan line 

Table 1 
Coefficient Values of 𝐴𝐴 𝑅̂𝑅𝐿𝐿𝐿𝐿 = 𝑐𝑐0𝐿𝐿 − 𝑐𝑐𝐿𝐿𝑠𝑠

2∕3

ℎ
 , 𝐴𝐴 𝑅̂𝑅𝑇𝑇𝑇𝑇 = 𝑐𝑐0𝑇𝑇 − 𝑐𝑐𝑇𝑇 𝑠𝑠

2∕3

ℎ
 , 𝐴𝐴 𝑅̂𝑅𝑑𝑑𝑑𝑑 = 𝑐𝑐0𝑑𝑑 − 𝑐𝑐𝑑𝑑𝑠𝑠

2∕3

ℎ
 and 𝐴𝐴 𝑅̂𝑅𝑟𝑟𝑟𝑟 = 𝑐𝑐0𝑟𝑟 − 𝑐𝑐𝑟𝑟𝑠𝑠

2∕3

ℎ

mm.yyyy c0L cL c0T cT cL/cT c0d cd c0r cr

03.2021 221.59 ± 3.78 4.45 ± 0.11 215.30 ± 6.48 3.93 ± 0.18 1.13 ± 0.06 238.35 ± 5.95 4.70 ± 0.17 198.36 ± 5.89 3.67 ± 0.17

04.2021 192.87 ± 6.37 3.88 ± 0.18 171.14 ± 9.08 3.03 ± 0.26 1.28 ± 0.12 196.30 ± 6.91 3.84 ± 0.20 169.94 ± 9.86 3.16 ± 0.28

05.2021 216.20 ± 6.34 4.61 ± 0.18 213.82 ± 9.10 3.96 ± 0.26 1.16 ± 0.09 262.64 ± 7.64 5.51 ± 0.22 168.57 ± 8.50 3.11 ± 0.25

06.2021 203.52 ± 5.57 4.37 ± 0.16 184.37 ± 5.19 3.40 ± 0.15 1.29 ± 0.07 225.00 ± 5.31 4.67 ± 0.15 161.94 ± 6.82 3.05 ± 0.20

07.2021 225.80 ± 3.87 4.27 ± 0.11 205.25 ± 5.88 3.18 ± 0.16 1.34 ± 0.08 250.37 ± 3.66 4.60 ± 0.11 180.14 ± 7.32 2.82 ± 0.21

08.2021 214.36 ± 5.80 4.35 ± 0.16 223.34 ± 5.28 4.42 ± 0.15 0.98 ± 0.05 236.10 ± 7.10 4.85 ± 0.20 203.73 ± 4.22 4.01 ± 0.12

09.2021 209.76 ± 4.22 3.61 ± 0.12 221.38 ± 6.88 3.79 ± 0.20 0.95 ± 0.06 228.96 ± 6.05 4.04 ± 0.17 203.05 ± 5.92 3.39 ± 0.17

10.2021 237.69 ± 3.20 4.49 ± 0.09 228.94 ± 3.82 3.83 ± 0.10 1.17 ± 0.04 263.90 ± 2.88 4.93 ± 0.08 201.10 ± 4.49 3.33 ± 0.13

11.2021 257.20 ± 4.40 4.96 ± 0.12 272.05 ± 2.90 5.37 ± 0.08 0.92 ± 0.03 269.73 ± 5.79 5.31 ± 0.17 260.04 ± 2.23 5.05 ± 0.06

12.2021 326.53 ± 3.38 6.05 ± 0.10 340.35 ± 7.84 6.45 ± 0.22 0.94 ± 0.04 331.03 ± 6.08 6.23 ± 0.18 338.60 ± 6.54 6.39 ± 0.19

01.2022 345.70 ± 4.12 5.85 ± 0.12 324.38 ± 4.95 5.56 ± 0.14 1.05 ± 0.03 309.22 ± 3.88 5.08 ± 0.12 364.34 ± 5.55 6.47 ± 0.16

02.2022 279.16 ± 3.80 5.54 ± 0.11 286.34 ± 5.15 5.60 ± 0.15 0.99 ± 0.03 296.44 ± 4.65 5.91 ± 0.13 267.29 ± 4.86 5.16 ± 0.14

Note. The values of cL/cT illustrate the relative contributions of divergent and vortical motions (see text for details). Zero-lag coefficients are in units of m 2 s −2, and 
first-order coefficients in units of 10 −2 m 4/3 s −2.



Journal of Geophysical Research: Atmospheres

POBLET ET AL.

10.1029/2022JD038092

14 of 19

corresponds to 𝐴𝐴 𝐴𝐴′

𝑑𝑑𝑑𝑑
 and the orange line to 𝐴𝐴 𝐴𝐴′

𝑟𝑟𝑟𝑟 . From a general inspection of every panel, it is evident that the 
two components are nearly equal in magnitude most of the time. Similarly to 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 and 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 , the rotational and 

divergent correlations present elevated correlation values during the winter months and the best fits capture the 
main features of the measured correlations fairly well. The overall physical interpretation is that kinetic energy 
is, to first order, balanced between divergent and vortical modes and that during the winter months, there is more 
kinetic energy in the fluctuations than in the summer months.

Figure 7.  Monthly, divergent (cyan line) and rotational (orange line) correlation components. The shadowed areas mark the 90% confidence intervals. The best fits, 
shown with dashed lines, are shifted in the vertical direction to avoid cluttering the figure.
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Subtle differences between 𝐴𝐴 𝐴𝐴′

𝑑𝑑𝑑𝑑
 and 𝐴𝐴 𝐴𝐴′

𝑟𝑟𝑟𝑟 occur in the months with the largest differences between transverse and 
longitudinal correlations 𝐴𝐴

(

𝑅𝑅′

𝑇𝑇𝑇𝑇
−𝑅𝑅′

𝐿𝐿𝐿𝐿

)

 . This is because the integrands in Equations 20 and 21 are significant for 
these cases. This effect is more prominent in summer, in May, June, and July, but it is also evident in October. 
Note that in these months, while the differences between the longitudinal and transverse components occur for the 
largest horizontal lags, they are observed in the short lags region for 𝐴𝐴 𝐴𝐴′

𝑑𝑑𝑑𝑑
 and 𝐴𝐴 𝐴𝐴′

𝑟𝑟𝑟𝑟 . During these months, 𝐴𝐴 𝐴𝐴′

𝑑𝑑𝑑𝑑
 domi-

nates over 𝐴𝐴 𝐴𝐴′

𝑟𝑟𝑟𝑟 up to around 250 km, where there is a crossing point from which 𝐴𝐴 𝐴𝐴′

𝑟𝑟𝑟𝑟 > 𝑅𝑅′

𝑑𝑑𝑑𝑑
 for larger separations. 

This separation value is consistent with the transition scale size found by Roberts and Larsen (2014), using hori-
zontal structure functions of expanding chemical tracers in the mesosphere. Slight deviations between rotational 
and divergent correlations can also be seen in the months of March, December, and January, which show repeated 
crossing points at different sh values. However, these deviations for the most part are not statistically significant.

Figure 4c shows the Helmholtz decomposition for the SIMONe 2018 data set. Since 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
− 𝑅𝑅′

𝐿𝐿𝐿𝐿
 was clear for this 

1-week campaign, there is a crossing point between both components that appears around sh = 275 km, similar 
to what several months in Figure 7 show.

The differences between 𝐴𝐴 𝐴𝐴′

𝑑𝑑𝑑𝑑
 and 𝐴𝐴 𝐴𝐴′

𝑟𝑟𝑟𝑟 for the SIMONe 2018 data set are much larger than they are for the monthly 
averages shown in Figure 7, presumably due to the shorter time window over which the correlations are esti-
mated, indicating that while on a monthly time scale, the energy appears to be equipartitioned between vortical 
and divergent modes, on shorter times scales this is not necessarily the case. Validating this hypothesis is a topic 
for future work.

By fitting 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 and 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 using Equations 12 and 13, we can analytically estimate the Helmholtz decomposition, 

solving Equations 20 and 21. These analytical solutions for rotational 𝐴𝐴
(

𝑅̃𝑅𝑟𝑟𝑟𝑟

)

 and divergent 𝐴𝐴
(

𝑅̃𝑅𝑑𝑑𝑑𝑑

)

 components are 
shown as dashed lines in Figure 4c. Although there is a very good agreement between the numerical and analyt-
ical determinations, the numerical estimates capture irregularities and small changes in the trends that are lost 
when a simplified theoretical model is used to represent 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 and 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 .

It is interesting to compare 𝐴𝐴 𝐴𝐴′

𝑑𝑑𝑑𝑑
 and 𝐴𝐴 𝐴𝐴′

𝑟𝑟𝑟𝑟 with the correlation functions of vertical vorticity 
𝐴𝐴 𝐴𝐴𝑧𝑧

(

𝑟𝑟
)

=

[

∇ × 𝑢𝑢′
(

𝑟𝑟
)]

⋅ 𝑒𝑒𝑧𝑧 and horizontal divergence for fluctuating winds, defined as 𝐴𝐴 𝐴𝐴𝑧𝑧𝑧𝑧 = ⟨𝜁𝜁𝑧𝑧
(

𝑟𝑟
)

𝜁𝜁𝑧𝑧
(

𝑟𝑟 + 𝑠𝑠
)

⟩ and 
𝐴𝐴 𝐴𝐴 = ⟨

(

∇ℎ ⋅ 𝑢𝑢
′

ℎ

(

𝑟𝑟
))(

∇ℎ ⋅ 𝑢𝑢
′

ℎ

(

𝑟𝑟 + 𝑠𝑠
))

⟩ , respectively (Lindborg, 2007). In P, the divergence operator is applied over 
the horizontal wind components, indicated with subindex h. Both analyses pursue the same goal, which is to 
disentangle the vortical and divergent modes, but they differ in practice since Qzz and P incorporate an extra 
second-order derivative. They are related as follows: 𝐴𝐴 𝐴𝐴𝑧𝑧𝑧𝑧 = −∇

2𝑅𝑅′

𝑟𝑟𝑟𝑟 and 𝐴𝐴 𝐴𝐴 = −∇
2𝑅𝑅′

𝑑𝑑𝑑𝑑
 (Li & Lindborg, 2018; 

Lindborg, 2014). The numerical calculation of Qzz and P from 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 and 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 is then more unstable, as meas-

urement errors tend to be amplified by the ∇ 2 operator. Poblet et al. (2022) have calculated Qzz and P using the 
parameters resulting from fitting 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 and 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 and using the following equations (see Lindborg (2007) or Poblet 

et al. (2022) for details):

���(�ℎ) =
1
�ℎ

d�′
��(�ℎ)
d�ℎ

− 1
�2ℎ

d
d�ℎ

(

�2ℎ
d�′

�� (�ℎ)
d�ℎ

)

, (22)

� (�ℎ) = 1
�ℎ

d�′
�� (�ℎ)
d�ℎ

− 1
�2ℎ

d
d�ℎ

(

�2ℎ
d�′

��(�ℎ)
d�ℎ

)

. (23)
�

They found that P was more than five times larger than Qzz. If we repeat this calculation with 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 and 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 using 

the new direct method presented in this paper, we obtain that P is around three times larger than Qzz. Both esti-
mations are in the same order of magnitude, but as expected, they do not fully agree. The differences must be 
attributed to the inherent errors of the fitting procedure.

Equations 22 and 23 can also be used to quantify the relative importance of divergent and rotational parts, by 
deriving relations for the cases of the fluctuating field behaving purely like a GW field (Qzz = 0) or a 2D vorticity 
field (P = 0). Setting Qzz = 0 in Equation 22 and integrating, we obtain

𝑅𝑅𝐿𝐿𝐿𝐿 =
d

d𝑠𝑠ℎ
(𝑠𝑠ℎ 𝑅𝑅𝑇𝑇𝑇𝑇 ).� (24)

Considering the representation of RLL and RTT given by Equations 12 and 13 and replacing them in Equation 24, it 
is obtained that the ratio cL/cT = 5/3 ≃ 1.6. Similarly, using Equation 23 for a 2D vorticity field, the ratio between 
the coefficients is cL/cT = 3/5 ≃ 0.6. This means that for the limits of a full GW field or a full 2D vorticity field, 
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the quotients cL/cT should be close to 5/3 or 3/5, respectively. The observed ratios cL/cT for the monthly fits shown 
in Figure 6 are given in Table 1. The values are between the limits for each month, and in most cases near the 
value 𝐴𝐴

1

2

(5∕3 + 3∕5) ≃ 1.1 , that is, the mean of values 5/3 and 3/5. This indicates again, that both the divergent 
and vortical parts contribute to explaining the mesoscale dynamics of fluctuating wind correlations on a monthly 
timescale.

5.  Discussion
It has been demonstrated that using the LTz decomposition of the 𝐴𝐴 𝑘⃗𝑘 vectors as an input to the WCFI method 
leads to a more efficient estimation of the horizontal correlation functions 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
(𝑠𝑠ℎ) and 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
(𝑠𝑠ℎ) compared to the 

indirect method. An important factor in this improvement is the significant increase in the number of meteor pairs 
obtained when detections are grouped over every horizontal direction. The disadvantage of this procedure is that 
we lose the correlation information for particular horizontal directions in the 2D horizontal plane.

The new approach to estimate 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
(𝑠𝑠ℎ) and 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
(𝑠𝑠ℎ) was applied to the longer MMARIA-Germany 2021–2022 

data set to infer nominal characteristics when they are estimated over a common geographical region over 1 year. 
The method was implemented in the region with the maximum number of meteor detections, that is, at 87–93 km 
of altitude. The correlations in this region exhibited increased values during the winter months, particularly in 
December and January, indicating the prevalence of wind fluctuations during this time of the year. This maxi-
mum has also been found by the composite analysis of mean wind residuals performed by Conte et al. (2018) in 
the same region as studied in this work. The authors calculated a proxy of the residual-wind's kinetic energy for 
each day of the year and considered increased GWs activity as the source of the enhanced winter values.

It is also possible that part of the winter fluctuations correspond to secondary GWs (Vadas et al., 2018). This 
reasoning is justified by results of general circulation model simulations by Avsarkisov et al. (2022), who found 
for winter conditions at ∼60°N (i.e., close to the latitudes explored in this work), turbulent RMS velocities with 
two peaks centered at around 60 and 105 km altitude (see Avsarkisov et al., 2022, Figure 10). Since this parameter 
is proportional to the turbulent energy dissipation rate, the authors speculated that the lower peak could be asso-
ciated with the breaking of primary waves, that then excite upward propagating secondary GWs, which dissipate 
near the height of the second peak. Vertical wavelengths and periods of secondary GWs have been observed to 
be larger than 6 km and 6 hr (Vadas et al., 2018; Zhao et al., 2017); so the major part of them should be removed 
when we subtract the influence of large-scale phenomena in our analysis. Yet, a small portion can remain and 
contribute to the increased correlation values that we observed during the winter months.

The analysis of the monthly divergent and rotational parts, as well as of the longitudinal and transverse parts, 
reveals a clear equipartition between both correlation components for a wide range of separations. This implies 
that neither the 3D isotropic relation 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
= (4∕3)𝐷𝐷′

𝐿𝐿𝐿𝐿
 of Kolmogorov  (1941) nor the scaling law for a 2D 

isotropic flow 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
= (5∕3)𝐷𝐷′

𝐿𝐿𝐿𝐿
 (Lindborg, 1999) are valid. Such relations have rarely been reported for structure 

functions measured in the UTLS, in which the transverse component is increasingly larger than the longitudinal 
component as the separation increases. According to Frehlich and Sharman (2010), the transverse component for 
sh > 50 km is more affected by planetary waves. For sh ≃ 300–800 km, Lindborg (1999) found that the differences 
between structure-function components can be explained by considering the relation between longitudinal and 
transverse structure functions components for a 2D turbulent flow (Lindborg, 1999, Equation 53). In our case, 
these differences between 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 and 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 are probably lost when removing background wind effects.

However, for spring and summer months, 𝐴𝐴 𝐴𝐴′

𝑇𝑇𝑇𝑇
 and 𝐴𝐴 𝐴𝐴′

𝐿𝐿𝐿𝐿
 present small but statistically significant discrepancies. 

During these months, the transverse component decorrelates at longer lags, which is reflected as a clear prev-
alence of 𝐴𝐴 𝐴𝐴′

𝑑𝑑𝑑𝑑
 over 𝐴𝐴 𝐴𝐴′

𝑟𝑟𝑟𝑟 for the shortest horizontal lags. The larger magnitude of the divergent part during these 
months highlights the dominant role of the GW dynamics since all the energy of GWs is contained in the diver-
gent part (Davidson, 2013). In these months, 𝐴𝐴 𝐴𝐴′

𝑑𝑑𝑑𝑑
 exhibits a plateau for sh ≃ 75–150 km. Such unusual behavior 

can be a sign of the existence of a local source of secondary GWs, which are usually present in the mesopause 
region during the summer months, but its presence in the spring months requires additional considerations.

The good agreement of the observations with a 𝐴𝐴 𝐴𝐴
2∕3

ℎ
 power law indicates the turbulent nature of the fluctuations, 

with a downscale cascade of energy. This behavior, encountered almost every month, allowed us to estimate a 
coarse limit up to which ST theory may explain our observations, given by the length scale Lh. The results showed 
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that Lh is rather large and contains the majority of the sh range, indicating that ST might provide a physical frame-
work to explain the horizontal correlation functions of the fluctuating wind.

6.  Concluding Remarks and Implications
We have presented a robust technique to estimate horizontal, longitudinal and transverse correlation functions 
of MLT wind fluctuations. Second-order estimates have played an important role in the last few decades, to 
acquire more insight into the turbulent nature of the atmospheric flow (Lilly, 1983; Lindborg, 2007). Based 
on lower atmospheric research applications, our technique can be applied to study several topics in the MLT. 
For instance, it can be used to estimate energy transfer rates, which has been treated as a complementary 
step to estimate Lh in the paper, but this would warrant a more extensive future study on its own. This would 
signify an additional method to the already existing in situ (Lübken, 1997) or MF radar based (Hocking & 
Mu, 1997) techniques. Another interesting avenue of research is the analysis of the wavenumber spectrum of 
wind fluctuations based on the horizontal correlation functions, which can delve into more information on how 
the energy is distributed across different scales. This topic has been intensively discussed in the UTLS (e.g., 
Callies et al., 2016), but so far only been accessible for the MLT region using polar mesospheric summer and 
winter echoes traced by powerful VHF radars (e.g., Ecklund & Balsley, 1981; Rapp & Lübken, 2004; Sato 
et al., 2017).

The application of the method to a single meteor-radar network is particularly suitable for the study of the mesos-
cales because the correlations for ≲500 km separations can be investigated. However, some of the already existing 
networks could be combined to study larger-scale correlations. These are the cases, for instance, of SIMONe 
Germany (Chau et  al.,  2019) and SIMONe Norway (Huyghebaert et  al.,  2022), or the SIMONe Peru (Chau 
et al., 2021) and SIMONe Argentina (Conte et al., 2021).

Data Availability Statement
The specular meteor radar data products used to produce the figures presented in this article can be found in 
HDF5 format in Poblet (2023).
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