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Abstract

Surface windstress transfers energy to the surface mixed layer of the ocean, and this energy partly radiates as internal
gravity waves with near-inertial frequencies into the stratified ocean below the mixed layer where it is available for mixing.
Numerical and analytical models provide estimates of the energy transfer into the mixed layer and the fraction radiated
into the interior, but with large uncertainties, which we aim to reduce in the present study. An analytical slab model of the
mixed layer used before in several studies is extended by consistent physics of wave radiation into the interior. Rayleigh
damping, controlling the physics of the original slab model, is absent in the extended model and the wave-induced pressure
gradient is resolved. The extended model predicts the energy transfer rates, both in physical and wavenumber-frequency
space, associated with the wind forcing, dissipation in the mixed layer, and wave radiation at the base as function of a few
parameters: mixed layer depth, Coriolis frequency and Brunt-Viisild frequency below the mixed layer, and parameters of
the applied windstress spectrum. The results of the model are satisfactorily validated with a realistic numerical model of the
North Atlantic Ocean.

Keywords Wind-driven internal gravity waves - Wave radiation physics

1 Introduction

The generation of near-inertial waves by windstress in the
upper ocean has extensively been studied using observations
and analytical and numerical models. Notable observational
results were obtained in the 1970s and 1980s (e.g., Leaman
and Sanford 1975; Leaman 1976; Kundu 1976; Fu 1981;
Price 1983; D’Asaro 1985) and later by the pioneering
work of D’Asaro et al. (1995). These studies demonstrate
that velocity fluctuations in the upper ocean below the
mixed layer base are dominated by near-inertial frequency
oscillations and are qualitatively consistent with internal
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wave kinematics. Models that have been used to understand
the energy budget in the mixed layer and the wave radiation
in the stratified ocean below show a broad variety: They
range from extensions of the classical Ekman spiral (e.g.,
Kroll 1975; Kim et al. 2014; Wenegrat and McPhaden 2016)
in the attempt to pin down the transfer function between
the observed windstress and near-surface currents, via the
applications of slab models of varying complexity (Pollard
and Millard 1970; Whitt and Thomas 2015; Jing et al.
2017), to diagnostics of high-resolution ocean models (e.g.,
Simmons and Alford 2012; Rimac et al. 2016). The physics
of near-inertial waves in the ocean and the observations,
theory, and models have recently been reviewed by Alford
et al. (2016).

In the center of the renewed interest in near-inertial waves
in the recent decade is the power that near-inertial internal
waves (NIW) supply to the ocean interior. Most of this
energy supply is expected to be dissipated in the ocean
surface layer and used there for mixing and entrainment.
The fraction of the radiated flux to the surface flux of energy
is thus of particular interest to ocean modelers. The radiative
energy flux at the mixed layer base determines how much
energy can be converted to turbulence in the interior of
the ocean and made available for mixing the stratification.
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Jochum et al. (2013) and others used a constant value for this
fraction to parameterize wave-induced mixing in circulation
models. In the wave energy balance and mixing model
IDEMIX (Olbers and Eden 2013; Eden and Olbers 2014),
a constant fraction is implemented as well. Rimac et al.
(2013) and Rimac et al. (2016) give a first estimate of the
parametric dependencies (on the local mixed layer depth
and windstress amplitude) of the fraction using results from
a global numerical ocean model. The present study has the
aim to reveal and understand such dependencies with the
help of an analytical model.

In extension of the slab model of Pollard and Millard
(1970), we develop a simple model of the energetics of
wind-driven near-inertial oscillations (NIO) in the mixed
layer and the subsequent radiation of near-inertial internal
waves (NIW) from the mixed layer base into the ocean.
Unlike models of NIO and NIW which are formulated in the
time domain as initial value problems, the model presented
here evaluates the energy balance of the mixed layer in
wavenumber and frequency space, aiming at the spectral
flux induced by the windstress at the surface and the flux
associated with wave radiation at the mixed layer base.
The physics of the model, however, mostly follows other
analytical linear models investigating the energetics of NIO
in the mixed layer and radiation of NIW from the mixed
layer base.

Various types of analytical models have been proposed
and most simulate the mixed layer response of particular
storm events or a historical windstress climatology. The
models by Pollard and Millard (1970) and Gill (1984) have
become standards in research on NIO and NIW. Pollard and
Millard’s model is limited to the inertial response of the
mixed layer currents, and because horizontal homogeneity
in the dynamics (no pressure gradients) is assumed, wave
radiation into the interior is absent. Gill’s model resolves the
pressure forces and, as it is formulated in terms of vertical
modes, the slow de-phasing of the modal superposition
of an inertial current left in the mixed layer behind a
passing storm simulates a vertically propagating signal in
the initially quiet and stratified layer below. The radiation is
associated with a vertical displacement of the mixed layer
base with a near-inertial frequency, a mechanism called by
Gill “inertial pumping.” A simple extension of the model
by Pollard and Millard (1970) to include radiation physics
has been proposed by Olbers et al. (2012) where the inertial
pumping is calculated from the divergence and curl of the
applied windstress.

Kise and Olbers (1980) base their study on the time-
dependent Ekman model to simulate observed wind-driven
inertial currents in the subtropical Atlantic. Friction is
parameterized by a viscous stress and the model resolves the
current profile. The model is then coupled to the wave guide
below the mixed layer, anticipating Gill’s inertial pumping.

@ Springer

Physically plausible time-dependent Ekman models have
in fact been proposed very rarely (notable exceptions are
Kroll 1975; Lewis and Belcher 2004; Kim et al. 2014;
Wenegrat and McPhaden 2016). The model by Pollard and
Millard (1970) with Rayleigh friction as a non-physical
parameterization of the flux divergence of momentum has
gained more attention (see e.g. Alford 2001, 2003); the
likely reason is the lack of knowledge about the profile of
viscosity (or stress) which drops in a vertically integrated
slab model.

Spectral transfer models have been presented by Kise
(1979) and Rubenstein (1994), among others. The wind-
stress is modelled as a body force residing in the mixed
layer and the waves are represented by the vertical modes
corresponding to the prescribed profile of the Brunt-Viisald
frequency, similar to Gill’s work. In contrast to the initial
value problem, however, the wind forcing is assumed to be
a random process with a given spectrum in wavenumber-
frequency space and the resulting rate of change of the
energy spectrum of the forced wave field is calculated (if
friction is included as in Rubenstein’s work, the spectrum
of energy can be computed as well). Phase averaging is
an essential ingredient of the solution technique. Individual
wind events can thus not be followed and the evolving stage
of vertical propagation from the mixed layer cannot be stud-
ied. The time-mean energy transfer from the wind to the
wave field is the main outcome of these models.

As these models, our analytical model is linear and works
on the f-plane. The wavelengths of waves radiating from
the mixed layer base are thus entirely prescribed by the
spatial variations of the wind forcing. If these scales are
large, the implied vertical propagation speeds may be too
small for the waves to leave the upper ocean as observed
within a few tens of days (Gill 1984). Thus, if these long
scales are imprinted on the mixed layer, there must be
a scale transformation. A responsible process is the B-
effect (Gill 1984; D’Asaro 1989), which leads to a quick
shrinking of the horizontal coherence scale to less than
100 km (Garrett 2001). It is worth mentioning that Kroll
(1975) has anticipated much of this work. The B-induced
transformation is also the main agent in the NIO equation of
Young and Ben Jelloul (1997). The B-effect in combination
with balanced shear flow in the mixed layer is shown to
be responsible for scale reduction in models like Balmforth
et al. (1998) and Balmforth and Young (1999). Lateral
propagation and scale reduction are, however, not part of our
analytical model.

The new model is developed in steps. We start in
Section 2 with the Pollard-Millard model in Fourier space
and concentrate on the role of the Rayleigh friction. Wave
radiation is then added in Section 3, arising from non-
homogeneous forcing, still in a rudimentary approach with
inconsistent energetics. The physical ingredients of the new
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analytical model are developed in Section 4. We solve
the linearized equations of motion in the mixed layer
in spectral space, including pressure forces and without
artificial friction. The energy balance is derived and a
complete solution for a given stress profile in the mixed
layer is presented. Further analysis is then developed in a
long-wave approximation. This enables us to compute the
spectrum of the radiation flux in terms of the windstress
cross-spectrum (Section 5). The surface energy flux, on
the contrary, is shown to depend on interior properties of
the mixed layer stress and a less accurate treatment must
be applied (Section 4). A comparison with corresponding
quantities extracted from a realistic numerical model of the
North Atlantic, described in Section 6, is made at various
stages of the study (Sections 2, 7, and 8). A summary and
discussion follows in Section 9.

2 The role of Rayleigh damping
in the Pollard-Millard slab model

We consider a mixed layer (ML) of depth d on top of
a stratified ocean. The fluid is driven by a windstress g
applied at z = 0, the ocean surface. The model of Pollard
and Millard (1970) (henceforth PM) is given byl:

U+ fU=19—-rU (D

In this equation, U = (U,V) = f?d udz is the
ML transport, i.e., depth integrated velocity, and ¢ is
the windstress (divided by a reference density). Some
assumptions must be made to derive the PM model from
Boussinesq equations: (1) a small Rossby number to
abandon momentum advection, (2) horizontal homogeneity
in the dynamics to ignore the pressure gradient, (3) constant
(in time) mixed layer depth (MLD) d to shift the vertical
integral under the time derivative, and (4) vanishing stress
at the mixed layer base (MLB), t(z = —d) = 0, so
that the ML absorbs the entire turbulent stress in the water
column. In the following, we discuss the particular role of
the Rayleigh friction term » U in the PM model.

The PM model is readily solved in Fourier space where
U@ = ffooo da)ﬁ(a)) exp (—iwt), hence:

(io —r)To(w) + fTo(w)

U(w) = )

®? — 2 —r? 4 2irw

Note that U* (w) = ﬁ(—w) because of reality of U,
correspondingly for the stress. The energetics of the PM
model is the balance between the energy flux due to transfer

TAll vectors are horizontal. The vector u denotes anticlockwise
rotation of the vector u by n/2,i.e., u = (—v,u) for u = (u, v).

This notation transfers to complex vectors from the Fourier transform.

of momentum through the surface by the windstress and the
frictional dissipation from the damping term. The surface
flux F(w) is evaluated as:

1/ - .
F@) = 3 ((/d 20" +cc)
r (@ + f2+ ) (R0 - ) +4f (G (7))
d (wz _ fz + r2)2 + 4r2f2
where J denotes the imaginary part. The same expression is
found for the dissipation:

3

2 E(w) = 2( U. 0% = Fw) )
closing the balance of energy for PM. The equation can be
read with (T - f(’;) as being the periodogram of a particular
time series of To(#) or the spectral estimate obtained by
ensemble averaging (the other angled expressions likewise).
In the latter case, the model becomes stochastic.

In the original work by PM, the Rayleigh coefficient r is
used to fit the simulated U(¢) for a history of observed t¢(#)
to observations of ML currents at a particular mooring,
and values of the decay time 1/r of some days (2 to 20)
were obtained. Trivially, the stochastic PM model becomes
meaningless if friction is absent: both terms in the PM
energy balance vanish identically for » = 0. As can be
inferred from Eq. 2, friction in the PM model is important
to detune the phase of the horizontal velocity from being
in quadrature with the applied stress, i.e., only for non-
zero r a non-zero surface energy flux becomes possible. It
is often mentioned (e.g., D’ Asaro 1985; Alford 2001) that
the flux is largely insensitive to the value of r. In view of the
above analytical form, this statement is surprising and not
supported by the following analysis.

The behavior of Eq. 3 for small r is of particular interest.
The expression of the transfer coefficient develops a §-
function at @?> = f?2 in the limits of r approaching zero.
Using

. e/m
e
the integrated flux and dissipation of the PM model get a
finite value. With € = 2rf, we arrive at:

&)

o0 o0 T
lim doF(w) = lim dw2rE(w)= — (T(f) +T(=f))
r—0J_so r—0J_~o 2
with T(w) = (o - T4)(w). The approach of Eq. 3 toward
this §-function limit with decreasing r is demonstrated in
Fig. 1. Here, we integrate the transfer term for an artificial
spectrum (7 - T)(w) = /a(f/m)/(w?+af?) (normalized
to unity) which can be done analytically. The parameter a
controls the level of the spectrum at low frequencies (see
Fig. 1 left panel). As demonstrated, the integrated flux (right
panel) for ¢ = 1 attains a value close to the é-function
limit quite fast (already r/f = 0.1 is sufficient). But for
smaller values of a, shifting the wind variance to smaller
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Fig. 1 a Normalized spectrum (T - fg)(a)) = ﬁ(f/n)/(a)z + af?) for four values of a = 1, 0.1, 0.01, 0.001 (black to magenta). b The flux for
the normalized spectrum, integrated over w, as function of r/f. The respective limiting §-function value is shown as black dashed line

frequencies, the approach can be significantly delayed and
much smaller »/f are required. Hence, the figure shows
that the dependence of the PM model on the Rayleigh
friction coefficient might be substantial if the wind has
strong variance at frequencies below the inertial frequency.
The sore point of the Rayleigh friction in the PM
model becomes obvious: the limit of vanishing Rayleigh
coefficient r — 0 leads to a finite net flux; the energy in
the ML, however, explodes because it is 1 /2r times the flux
(see Eq. 3). The model in fact becomes meaningless: with
decreasing r, the flux and the dissipation always balance
with finite values in a system with ever-increasing energy.
What is a reasonable value for the Rayleigh coefficient?
We estimate r using spectral data obtained from a high-
resolution ocean circulation model, details of which are
given in Section 6 where also the spectral estimation method
is described. For the analysis presented here, it is important
to note that the model resolves the upper ocean layer
with up-to-date turbulence parameterization and adequate
vertical resolution. There is, however, no Rayleigh damping

a
101 E
&
102E
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= o . H . E
e X0 P d
103 e T
(e . 9
b v
= T ; Y T
107" 10° 10"

wlf

Fig.2 ar/f estimated as F(w)/(2f E(w)) from the PM energy bal-
ance (3). The data of flux and energy are from the numerical model
described in Section 6; the spectra are from 4 latitudes 50°N (blue) to
20°N (purple). b Numerical data of flux F(w) (black) and dissipation
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in the model but rather harmonic diffusion of momentum.
The driving windstress product has a temporal resolution of
1 h. The MLD d was identified as described in Section 6
and spectra of the ML transport U and windstress have
been calculated from the model output of 6 winter months
of 2 consecutive years in 6° x 2° boxes along 30°W in the
North Atlantic (see Section 6). Summer data yield similar
results. Figure 2a shows r/f = F(w)/(2 f E(w)), estimated
from the PM flux F(w) and energy E(w), both computed
from the numerical model data. There is quite a big scatter
of two orders of magnitude for the resulting »/f both in
latitude and frequency, however, if a single value has to be
picked out r/f ~ 0.01 seems reasonable. Figure 2b shows
the numerical data of the flux F(w) and dissipation 2r E (w)
together with the expression of Eq. 3, the theoretical PM
flux, the latter two for »/f = 0.02. For this value of r,
there is good agreement between the numerical F(w) and
the dissipation 2r E(w): the curves more or less coincide
over most of the resolved frequency range, notably better
for super-inertial frequencies. Note that the theoretical PM

- a
o o
% L
o o

flux & dissipation spectra o

10" 10° 10’
wif
2r E(w) (color as in left panel), and the PM model expression in Eq. 3

for r/f = 0.02 (magenta). In b, the spectra from the lower 3 latitudes
are displaced by respective factors 10°
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flux expression follows the general decay in frequency but
the level is off up to a order of magnitude; a higher r/f =
0.05 could resolve the mismatch to the numerical F (w) but
increases the dissipation in an unacceptable way. There is a
quite a narrow range for r to fit the numerical model results.

3 Inertial pumping in the Pollard-Millard
slab model

The role of the Rayleigh term has become increasingly
overloaded in recent studies using PM. The PM authors
attribute dispersion effects to the r-term. In some studies,
it is interpreted as parameterizing downward propagating
waves, e.g., in Alford (2003), or even called “radiation
stress”2, e.g., in Plueddemann and Farrar (2006). The
physics of radiation, in fact, is absent from PM. Moreover,
as shown below, the radiation of internal waves from the
ML does not show up as stress divergence in the momentum
balance but rather as a flux in the energy balance, arising
from pressure work which is not resolved in PM.

Our aim is to install correct physics of wave radiation
into the PM model. The next step is to realize that the
fluctuating ocean windstress is non-homogeneous in space,
79 = 7To(X,1). Global applications as Alford’s studies
(Alford 2001, 2003) use such windstress. The consequence
is that the windstress scale is imprinted on the ML currents
which become divergent such that pumping by a vertical
velocity W at z = —d (MLB) is induced and internal
gravity waves (IWs) are excited below the ML. The process
has been called inertial pumping by Gill (1984). Using for
simplicity rigid lid conditions at the surface, we obtain W=
V. U and the pumping velocity is then determined by the
divergence and curl of the windstress,

(w+ir)k+ifk
w? — 2 —r2 4 2irw
derived from Eq. 2. Note that we have switched with the hat
notation to Fourier transforms of time and space.

The amplitude and energy of a perturbation with wave
vector k and frequency w, induced by w;,, = W(Kk, w)
at 7 = —d, are readily evaluated. The vertical velocity
Wiw = Wiy (K, w, 7) of the wave field is governed by:

W(k, ) = — -To(k, w) (6)

Oz i + m*(2) Wi =0 (7)
with the squared vertical wavenumber
N2(z) — o?
2 2
=k
m*(2) w? — f2

®)

2The terminus “radiation stress” is used for a stress induced by surface
gravity waves exerted on a time-mean flow (see Longuet-higgins and
Stewart 1962; Phillips 1977).

where N (z) is the Brunt-Viisild frequency. We may solve
(7) with boundary conditions w;,, = W atthe MLB z = —d
and zero at the bottom by which a modal solution is gained.
Alternatively, without the bottom condition but a radiation
condition at the MLB (see below), we obtain a radiating
wave solution in the internal wave range f2 < w?> < N%(2).
In each case, the remaining field variables, horizontal
velocity, buoyancy, and pressure, follow from the polariza-
tion equations (Olbers et al. 2012). For pressure, we find:

=50 Wiy ®
w

For the radiative type of solution (which we prefer in
the following), the wave has the vertical dependence
~ exp(i [*m(z')dz’), propagating in the Brunt-Viisild
frequency profile N(z). We require a positive vertical
wavenumber m to have downward group velocity (see e.g.
Olbers et al. 2012). This is the radiation condition. The
wave field supports a vertical flux of energy given by>
(wiw p},+c.c.)/2 which results in the radiative energy flux:

d(k o) = %(Wﬁ*)+c.c.
2 N/20,2 2312 .
= WD @ T T ko), )

wk
(10)

at the MLB where P = piw(—d) is the pressure at that
depth. The spectrum (W( k, a))W*( k, w)), appearing in
this equation, is that of vertical kinetic energy of the wave
field at the MLB. It may be expressed in terms of the stress
covariance spectrum (To( k, ®)7( K, w)) using Eq. 6. We
continue with the mathematics of this replacement later in
Section 5.

The essential deficit of the PM model becomes obvious:
the energy flux ®(k, w) must be continuous across the
MLB as continuity of W;y, and pjy,, ~ 0;Wjy is required.
The PM model, however, does not resolve the pressure, and
the energy balance of the ML is still the one between wind-
driving and Rayleigh dissipation as in Eq. 3. The energy flux
into the wave field is not accounted for and the model thus
becomes energetically inconsistent. On the other hand, one
can show from Egs. 6 and 10 that roughly:

2rE/|®| ~ r/(Nkd) (11)

for w?> <« N? and thus one could argue that the radiation
flux is contained in the Rayleigh dissipation of energy.
Hence, it could be meaningful to consider 2(r — Nkd)E
as dissipation in the ML and 2Nkd E as a parameterization
of wave radiation. For this to hold » > Nkd, leading to
r/f > Nkd/f = 0.3 (take d = 100m, N = 5 x 1073571,
and a wavelength of 100 km) which is a heavy constraint for
the Rayleigh coefficient, rendering this redefinition of PM

3¢.c. denotes the complex conjugate of the previous expression.
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as physically unsatisfying. In the following, we equip the
PM model with resolution of the pressure gradient.

4 A model with wave radiation

This section is devoted to the development of a new model
with radiation physics. Unlike PM, the new model will
resolve the ML momentum balance in the vertical direction
and thus becomes mathematically much more involved. In
the interior of the ML, a turbulent stress 7(z) is present
and—as in PM—assumed to be fully embedded, i.e., 7(z <
—d) = 0, such that the stress sets an inertial current into
motion which is restricted to the ML. As outlined in the
preceding section, the ocean part below the ML would
remain motionless unless we invoke horizontal variations
of the windstress or of the ML depth (the latter, however,
are ignored in the present study). As explained in the
previous section, a divergence of the inertial current then
results and generates a vertical velocity at the MLB which
is induced by the divergence of the inertial current much
like Ekman pumping is induced by a divergent wind-driven
Ekman transport (Gill 1984). If the pumping at the MLB
has frequencies above f, it generates internal waves which
radiate downward into the stratified ocean part. These waves
are called near-inertial waves (NIW) because due to the
resonance of the system at w = f the waves have a
frequency very close to f. It is our aim to formulate a model
for this process in the most simple form and give a solution
for the radiation of the NIWs in spectral space.

0 0
3,1/ dz(u-u+w2)=—V-/ dz(u p) + (wp)
2 —d —d

z=—d

4.1 Equations of motion and energetics

The linearized equations of motion for the surface ML
—d < z < 0O are:
oyu+ fu+Vp =0t
orw+d,p=0
V-u+4+dw=0 (12)
where u is the horizontal velocity, p is the pressure, and
w is the vertical velocity. The turbulent interior stress T is
not parameterized as e.g. in the Ekman model but regarded
as given with the dynamic surface condition T = 7( at
z = 0. As in the PM model (1), there is a singularity in
Eq. 12 at the resonance frequency f. This singularity can of
course be avoided by adding e.g. horizontal viscous friction
or a simple Rayleigh damping term as in PM. However, to
keep the analysis and presentation of our model simple, we
proceed without friction terms in Eq. 12 and only introduce
them later when needed (in Section 8).
As before for PM, we are looking for a solution of the
system (12) in Fourier space where the vertical velocity is
represented as:

w(x,t,z)=/d2k/ dow ﬁ)(k,a),z)ei(k' X —ot) (13)

and the other fields accordingly. Note that w*(Kk, w, z) =
w(—Kk, —w, 7).

The aim is to investigate the terms of the energy balance
derived from Eq. 12, in particular their relation to the
windstress spectrum. The balance of kinetic energy results
in the vertical integral over the ML in the form:

+{(u-1) (14)

0
—/ dz(do; u- 1)
z=0 —d

derived from Eq. 12 with rigid lid condition at the surface
and vanishing stress at the MLB.* A statistical steady state is
assumed (left-hand side equal to zero) as well as horizontal
homogeneity of the statistical quantities. Then, there is no
contribution from the divergence of the horizontal energy

P = —(p* .
WP, 2

flux. Taking the Fourier transform, we arrive at the balance
of integrated kinetic energy in the ML:

Z(kw)+ .7 (k,ow)—2(k,w) =0 (15)
where
1 0

= —/ dz(d, - ") +c.c (16)
2 )

The above energy balance can as well be derived directly
from the Fourier transform of Eq. 12. The pressure flux
& includes the wave radiation flux defined in Eq. 10 but,
as shown below, it also has contributions from non-wave

“Note that Eq. 14 results if d is temporally and spatially constant.
Otherwise, additional terms arise and (wp) is replaced by the flux
normal to an inclined MLB. We regard this effect as minor.

@ Springer

pressure components. It pumps energy at all frequencies and
wavenumbers from the ML into the stratified part below.
Note, however, that only perturbations in the internal wave
frequency range can propagate freely. The second term
% in Eq. 15 denotes the energy flux due to transfer of
horizontal momentum through the surface, induced by the
windstress, and the last term & is dissipation in the ML due
to the vertical stress. The dissipation is a source of turbulent
energy in the mixed layer.
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4.2 Solution

From the system of Eq. 12 a single equation for the vertical
velocity is derived in the standard way by cross-ward
differentiation and elimination of the horizontal divergence
and vorticity (see e.g. Olbers and Herterich 1979; Olbers
1986). The governing equation for the Fourier transform
w(k, w, z) of the vertical velocity becomes:

Q0,7
w? — f2
with g2 = k*w?/(®* — %) and € = w k + ifk. From 0,
the complete solution of the equations of motion zl 2) can be
computed:

0.0 — g’ = a17)

= 9*3.%+0 and ﬁ:L( 2—f2> 9.w+11 (18)
wk?

wk?
with
A i . A~ i N
Uzm(fazf)l( and Hz—mﬂaz'[ (19)
W=1wip=W and 3,0 = 0, Wiy at z=—-d — 3.0

This form of solution may be constructed by inserting the
ansatz & = ad. + U, p = Bo. + I into the Fourier
transform of the equations of motion (12) and determining
the coefficients o and B. The respective first term in this
ansatz is the divergent part; the second is the non-divergent
part. Hence, the directly stress-driven velocity U, associated
with the pressure field 1, is non-divergent and has zero
vertical velocity.

In addition to the surface rigid lid condition w = O at z =
0, the system (12), and correspondingly also Eq. 17, requires
a further vertical boundary condition, and we demand:

Ww=W at z =—d (20)

with the yet unknown pumping velocity W = W(K, w). To
match the ML field to the stratified interior below the MLB,
we assume continuity of w and dw/dz at the MLB z = —d
(see previous section). The unknown W is then determined
by these matching conditions which become:

= imW 1)

where m is the vertical wavenumber just below the MLB.
We can now evaluate the energy fluxes & and .7, appearing
in the energy balance (15) of the ML, in terms of w. From
Eq. 18, we find:

_1 i 2 2\ kg A ~ kT
,@—§<m(w f)(w d, W) z:_d—i—(w H)Z:_d>+cc
(22)
1/ i N
=—( —=Q*(z%9.0 -TF c. (2
F 2<wk2 (70, w) z:0+(U r)z_)—i—cc (23)

The dissipation 2 can be expressed accordingly. Using
Egs. 20 and 21, the first term in Eq. 22 then gives for
IW frequencies the wave radiation flux ®(k,w) as in
Eq. 10. The second term in Eq. 22, involving I1, vanishes
if 9, = 0 at the base z = —d. We assume that this
condition holds so that the turbulent stress deposits the
momentum primarily in the water column above the MLB.
This assumption is confirmed by the already mentioned
high-resolution numerical model of the North Atlantic
circulation, introduced later in Section 6. Figure 3 shows the
variance of the stress profiles from the closure by Gaspar
et al. (1990) which we use in the numerical model, decaying
rapidly within the ML. Note that only the variance of the
stress is important for our analytical model.

It remains to compute the vertical velocity field w from
Eq. 17 and the aforementioned boundary conditions. An
exact solution by a Green’s function approach similar to
Olbers and Eden (2016) is described in Appendix A. In
the following, however, we restrict the analysis to the

long-wave approximation. For (gd)?> <« 1, Eq. 17 can
be solved by simple integration. On the other hand, the
long-wave approximation is the limit (kd)?> < 1, i.e., the
wavelength is large compared to the MLD, which is satisfied
for any reasonable windstress forcing. Writing the long-
wave condition in terms of g, we find (kd)? = (qd)2(1 —
f2/w?). For w?* > f?, the condition (kd)?> <« 1 is
obviously equivalent to (gd)> < 1. For the near-inertial
frequencies with @ = (1 + €/2)f and € < 1 the factor
becomes 1 — f2/w? ~ €. Therefore, we have to assume
the stronger condition (kd)? « € « 1 in order to gain
(qd)2 « 1. Taking a lower limit of wavelengths of 10 km,
which is satisfied even for realistic atmospheric meso-scale
systems, and d ~ 100 m we obtain (kd)* = 0.004, which
demonstrates that even for the near-inertial frequencies with
€ ~ 0.01 the condition (¢d)* < 1 indeed holds.

We now assume (¢d)?> < 1 and integrate (17) twice.
Using the rigid lid boundary condition, the condition (20) at
the mixed layer base, and the matching condition (21), we
find:

Q- 7(2)

w(z) = W(l+im(z+d))+m 24)

such that the pumping velocity becomes

Q.3 1
0 with K= ——— (25)

W=-K—x
w? — f2 1 +imd

For K = 1, it is identical to the one from the divergent PM
model, described in Section 2 by Eq. 6, taking there » = 0.
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the ratio o = 0.1 was used
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The factor K in Eq. 25 is thus a manifestation of the pressure
resolution in our new model. It enters the radiation flux
(NZ _w2)1/2(w2 _fZ)l/Z
wk
(N2 _ wZ) 1/2

= ok = KR oP) (26)

Ok, w)=— (WK, o) W* (K, )

derived from Eq. 22 as factor | K |2 which is:

2 2
_ _ v —J @7)

14 (md)?  ?— f2+ (kd)>(N? — o?)

We note that deviations from K = 1 occur predominantly
for NIWs (see Fig. 4). Most important, however, is that
the radiation flux is completely determined by the surface
forcing of the model, the windstress. Other properties of
the stress profile do not occur. This is a consequence of the
long-wave approximation: without it, the pumping velocity
is an integral of the complete profile of stress in the ML (see
Eq. 53 in Appendix A).

The other components of the energy balance (15), namely
the energy flux .% through the surface and the dissipation 2,
do not share such simplification. The surface flux depends
on the derivative of w at the surface. It follows from Eq. 24,

A Q- azf |z=0

Bzw =0 =imW + sz (28)

2
IK|

As a surprise, the first term imW leads in Eq. 23 (first
term) to the same expression as the radiation flux (26) with
reversed sign so that:

F=—-d+ ydiss (29)
where 7455 derives from the second term on the right-hand
side of Eq. 28 and the U-term in Eq. 23,

1 ((f*.sz*sz.azf)

Faiss (k@) = 5 — +(f*,kk‘az%)) )ZZOH.C. (30)

w2 _ f2 .

Because of Eq. 29, the energy balance reduces to ¥ =
Faiss- The part Fyiss of the surface flux % must thus
be dissipated in the ML. We may refer to this flux
component as “dissipated surface flux” and to the part —®
as “transmitted surface flux.”

Both terms in Eq. 30 involve the divergence 9,7 of the
stress at the surface which remains unknown in the present
study. Further investigation of the dissipated surface flux
requires an additional parameterization of the stress profile.
Note that a simple unidirectional stress t(z, t) = To()g(2)
in the water column leads to a vanishing %5 which
therefore is an unrealistic setting: the stress vector must turn
with depth. Hence, to give an order of magnitude estimate,

2

we insert 9,79 >~ —iTo/(ad) into the first (larger) term
in Eq. 30. The parameter o controls the divergence of the
stress profile. It must be positive such that .%;;5; becomes
positive. We find:

N? — &? 172 amd
D/ Fyiss| = akd | ——— K’=———_ (31
| / dlSS| o <a)2—f2> | | 1+(md)2 ( )
which becomes «/2 at maximum. Of interest is the ratio of
the radiative to the total surface flux:
amd

1 + (md)? + amd

resulting from the previous estimate. The maximum is
/(2 4+ «) which is small since o should be less than 1
(see Fig. 3). We conclude that most of the surface flux is
dissipated in the ML, as shown in the example in Fig. 4.
In that example, the ratio |® / | is found to be 0.03
maximum, i.e., only 3% of the wind-driven energy input at
the surface leaves the ML by radiation. A larger « increases
the ratio, e.g., for « = 0.3 we find 10%. In this example,
the vertical wavenumber m is computed for given k and w
from the dispersion relation (8).

In summary, the long-wave approximation (gd)> < 1 of
the ML equations of motion allows expressing the radiation
flux ®(k, w) at the MLB in terms of the windstress cross-
spectrum which we regard in this study as given. The other
terms in the energy balance of the ML, namely the surface
flux and the dissipation, depend on properties of the interior
ML stress; in this approximation, it is the divergence of
stress at the surface which remains unknown in the present
model. A coarse parameterization of the stress divergence
at the surface, however, allows investigation of the ratio of
radiative to surface fluxes which is then found to be small
of order 10%.

In the following, we evaluate the radiation flux for
a specific form of the windstress cross-spectrum, derive
frequency spectra of the respective quantities, and compare
them to data from a numerical ocean circulation model.

|®/.F| =~ (32)

5 Windstress model and derivation
of frequency transfer functions

To further evaluate the wave radiation flux ® ( k, w), derived
in the preceding section, we express (| - To|?) in terms of
the windstress covariance spectrum:

Fap(k, ) = (Toa (k, 0)T5p(k, ) , (o, B) =(1,2) (33)

which leads to

2

(1R - T0]?) = 0?k? <(cos2¢ + f—2 sin® ¢) Ff, (k, @) + (sin® ¢ + f—2 cos ¢) 1, (k, w)
w w

+2 sing cos ¢ R (FH(k, w)) +2

w2

w? — f? S

w

3 (Fo(k, a)))> (34)
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where k = k(cos ¢, sin¢) and i and ¥ denote the real and
imaginary parts. We need a model for the windstress covari-
ance spectrum. Concerning the wavenumber dependence,
we assume that the windstress is a random isotropic vector
process (see e.g. Batchelor 1990; Olbers et al. 2012), hence
T ko‘kﬁ
FaB( k, w) = A(k, a))k—2 + Bk, @)d4p (35)
with yet unspecified functions A and B of wavenumber
modulus k and frequency w. Note that A 4+ B carries the
spectral properties of the non-divergent part of the stress
vector while B carries the rotational part. Transforming
the spectral densities from (k, w) to (k, ¢, w), we obtain

) 0)(N2 _ w2)1/2

&k, w) = —|K (k, w)| @

2k? [A(k, ) + (

FJB k,¢,w) = FJB( k, w)k. Integration over horizontal
angle ¢, the isotropic model leads to:

FJB(k, ) = Sopmk(A(k, w) +2B(k, ®)) (36)

Further integration over k£ and w yields the covariance of
the windstress components 7o, and tog. Figure 7 below
demonstrates that the assumption F|| >~ Fj, > |F[,| of the
isotropic windstress model is well satisfied for the observed
frequency spectra from the windstress that we utilize later
in Section 6.

Implementing the isotropic model into Eq. 26 and
integrating over the angle ¢, we find the radiation flux in the
form:

2
1+ f—z) B(k, a))] (37
()

If the pressure force is not resolved, as in the divergent PM
model (see Section 2), and |K|*> = 1 results, friction is
required to achieve a finite total radiation flux. In fact, with
|K|? = 1 the flux behaves as ®(k, ®) ~ (w2 — fz)_3/2
and the integral over wavenumber and frequency diverges.
The behavior of | K |* at low frequencies, as given by Eq. 27,
yields ® (k, w) ~ (w? — 2712 with a convergent integral.

We consider a factorized windstress spectrum for both
the non-divergent and the rotational parts, for simplicity in
identical form, requiring thus:

wk(A(k, 0)+ Bk, 0)) ~Prk Bk, 0) = F* (@)G (k) (38)

where GT(k), normalized to unity by integration over k,
specifies the wavenumber dependence. We will assume 3 =~
1 in the following. Note that:

1 1 1
F'(w) ~ EFf] (w) =~ EF;z(w) ~ (Ff (@) + F3,())
(39)

P(w) = —Top(w) F*(w)

For the wavenumber part, we adapt the model of

Overland and Wilson (1984) to an isotropic form:
2k/ k2

((k/ka)? + 1)
The wavenumber &, is a roll-off wavenumber where the k-
dependence of the stress spectrum changes from a ~ k to a
~ k=3 power law. Other power laws with a well-defined peak
wavenumber yield results similar to those presented below.

Figure 5 shows the radiation flux as function of (k, w)
for a particular set of parameters. As expected, the flux
spectrum is heavily peaked at the local inertial frequency
at wavenumbers around k,. Our intention is to integrate the
flux spectrum over wavenumbers and discuss the frequency
spectrum and compare the results with the numerical
model later introduced in Section 6. The integration of the
quantities over k can be performed by analytical means and
yields the frequency spectrum of the flux:

G*(k) = (40)

w

w? — f2 w?

2 o\ 1/2 2
Tq;(a))=27'rka(N “’) <1+f—>

((NZ _ a)z)l/zkad + (a)2 _ f2)1/2)2

(41)

Note that the frequency transfer function T¢(w) of the
flux depends on the parameters N, f,d and the peak
wavenumber k,. Further integration of the flux over
frequency yields the total flux. It is given in Appendix B in
analytical form and discussed in Section 7.

In the same manner, we evaluate the dissipated surface
flux Z4;ss, derived in Eq. 30. With the parameterization of
the stress divergence at the ocean surface, discussed there,
we find:

Taiss (@) F* (0)G* (k)

4 w
ad w* — f2

27
fo 46 Fiiss k. &, )

Taiss(w) = (42)
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Integration over wavenumbers is readily done and the
transfer function Tyjes(w) for Fyiss(w) is obtained. It is
independent of the parameters of the windstress spectrum.
Note that the total energy flux through the surface, # =
—® + F4i45 is characterized by the transfer function T¢ =
Ty + Tyziss. However, while To FT is generally integrable
and thus yields a finite total radiation flux, the dissipated
flux Tyiss FT is non-integrable. Dissipation needs addition
of friction to the momentum balance.

The transfer function Te(w) is displayed in Fig. 6.
Note that fTe/k, is a dimensionless function of the
dimensionless parameters w/f, N/f and k,d. We display
fTo/k, as function of w/f for various values of k,d and
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km, F*(w) = FOr (f /w)2 and the Overland spectrum (40). For the right panel, |K |2 was set to 1

N/f. This function rapidly decays with frequency from a
peak at the inertial frequency. For the small k,d, considered
here, and large N/f the decay is ~ (w/f)~> away from
the peak. Close to the peak and for small N/f, the decay is
much stronger. The transfer function Ty;,s of the dissipated
flux is simple and not displayed. It decays as w ™! away from
the singular behavior at the inertial frequency.

6 Spectral data from a numerical ocean
circulation model

In this section, we report on wave radiation in a wind-
driven numerical model with the aim to compare with the
analytical radiation model. The numerical model is designed
to resolve low-frequency IWs, roughly up to one decade
of frequencies above the respective local f. It is fully
non-linear, develops a ML from an up-to-date turbulence

10°

10*
©
53
e 102
l—
o
10°
102
10° 10’ 102
wlf

Fig. 6 Dimensionless response function f7¢/k, as function of w/f
and various values for k,d and N/f. Left: N/f = 100,k,d =
[0.0006, 0.0019, 0.0063, 0.0188, 0.0628], realized for instance for
a peak wavelength 2mw/k, = 100km and different depths

parameterization, and is forced by a realistic windstress
field the statistics of which are non-homogeneous. The
physics of the numerical model goes far beyond the linear,
homogeneous setting of the analytical model developed in
Section 4 and systematic discrepancies between the two
models are therefore to be expected.

6.1 The model

We use an eddy-permitting realistic model of the North
Atlantic Ocean using the MITgecm code (Marshall et al.
1997). The configuration of the model is similar to the
model used in e.g. Eden and Boning (2002) and identical to
the one in Thomsen et al. (2014). It is described in detail
in Jurgenowski-Wiegandt (2018). The model domain covers
a large part of the north and central Atlantic; it reaches
approximately from 18°S to 70°N. The zonal resolution is
1/12° everywhere while the meridional resolution changes

10% -
10* 1
©
=
|_€‘ 102 1
bl H
10° e
102
10° 10° 102
wlf
d = [10,30, 100, 300, 1000] m (blue to green). Right: N/f =

[10, 30, 100], k,d = 0.0063 (blue, red, yellow). The black dashed line
indicates the power law (w/f )2
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in order to have quadratic grid cells with respect to physical
length. The model has 45 vertical levels with thickness
ranging from 10m at the surface to 250 m at the bottom.
To parameterize small-scale turbulence in the ocean surface
mixed layer, the scheme of Gaspar et al. (1990) is used,
which centers around of a prognostic equation for small-
scale turbulent energy (TKE). The closure predicts vertical
diffusivity and viscosity in the mixed layer from a mixing
length assumption, where the characteristic velocity results
from the TKE and the mixing length from a diagnostic
relation. In the stratified interior, the mixing is essentially
given by small prescribed values. It was shown in Eden
and Boning (2002) and later studies that this model
configuration allows for a realistic simulation of the large-
scale circulation of the North Atlantic with a realistic level
of meso-scale eddy energy.

In agreement with our analytical considerations, the model
has a rigid-lid surface. In a spin-up phase of 16 years,
the model is forced by windstress fields with monthly
resolution. The model then settles in a quasi-stationary equi-
librium. In a 2-year integration following the spin-up phase,
the windstress components are changed to a windstress
product with time resolution of 1 h while the time step of
the model is 5 min in all experiments. These forcing data are
taken from the Climate Forecast System Reanalysis (CFSR,
Saha et al. (2010)) product for the years 2003 to 2005
which are used for the following analysis. We have delib-
erately taken the hourly averaged windstress and not the
wind data to avoid a bias in the resulting power supply
for the ocean, described in Zhai et al. (2012). In the hor-
izontal, the CFSR windstress is linearly interpolated to
our model grid. Model output is saved every 30 min in
order to resolve the relevant frequency range between Cori-
olis frequency f and the adjacent one or two decades
of frequency.

In the following, we use quantities near the surface
as well as at and below the MLD. Surface quantities,
e.g., horizontal surface velocities, are simply taken at the
model’s first vertical level. MLD d is determined as the
depth at which potential density, when compared with its
surface value, has increased by an amount equivalent to a
temperature drop of 0.8 °C, following Kara et al. (2000).
Since MLD is a Lagrangian quantity, we use the monthly
maximum of d, and the annual mean of these values is
computed. As detailed below, we evaluate the quantities
which we need at MLD d, i.e., vertical velocity w and
pressure p, at one grid cell below the diagnosed d.

6.2 The spectra
We discuss results of the numerical model for the years

2003 to 2005 in a spectral view. We preferentially present
spectra computed from the 6 winter months of 2003/2004

@ Springer

and 2004/2005 but also of the 6 corresponding summer
months of 2004 and 2005. Figure 7 shows frequency spectra
of the zonal (z;) and meridional (tg ) components of the
windstress forcing calculated in boxes around 30°W and at
two latitudes as indicated in the figure. Every box has a
size of 2° in longitude and 2° in latitude and thus includes
a varying number of horizontal grid points because of the
varying model’s resolution. The time series at each grid
point are transformed to spectral space before averaging
over the grid points in each box. Every month of the time
series data is divided into a sequence of half-overlapping
windows with durations of approximately 12 days. This
duration has been found best in terms of the minimum
resolved frequency and statistical significance. In each of
these windows, the discrete Fourier transform is performed
separately where a Hanning-type weighting function is
applied, and the results are averaged for each month. For
the present study, 6-month averages for either winter or
summer of the monthly spectra are used. The frequency
axis is normalized by the respective local inertial frequency
f of the box center. The same analysis has been made
for other latitudes along 30° W and the data from two
boxes exploited here and in the following were found to be
typical. Also included in the windstress spectra plots are
curves with power laws =2 and w3 for comparison. The
windstress spectra mostly lie between these power laws,
around w = f and roughly for half a decade above f the
spectral slope is close to —2, dropping then to —3 and less
at higher frequencies. Summer spectra look similar to the
winter spectra but the spectral level is significantly lower by
almost an order of magnitude. The overall level of power
also decreases from north to south (by a factor 10 from
50° to 20°). The vertical lines in Fig. 7 (and the following
figures) indicate the expected internal wave frequency range
allowed by the model grid. We have approximated the upper
bound of this range using the long-wave dispersion relation
o® = f2(1 + k*R}), with Ry = NH/(fm) of the first
baroclinic mode where N is local stability frequency at
the MLB; furthermore, H = 2000m, and k = 27 /4Ax,
where Ax is the grid spacing. Note that this upper bound
is a qualitative measure since the parameters are set rather
arbitrarily. While at low latitudes, the model grid allows
waves also at frequencies much larger than f; at higher
latitudes, the frequency range gets much smaller.

Figure 8 shows frequency spectra of the different
contributions to kinetic energy: horizontal kinetic energy
Eé’k(a)) = {(au* + v0*)/2 slightly below MLD and its
vertical analogue E}, (w) = (ww*)/2, as well as total
kinetic energy at the ocean surface. Here, &, 0, and w
denote the complex amplitudes of the Fourier transforms
of horizontal velocity u, v, and vertical velocity w, as
before, and the angular brackets denote the statistical
expectation. £}, is many orders of magnitude lower than
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E i’k, appropriate to the long gravity waves resolved by the
model grid. Both E", and EY at the mixed layer base
feature peaks at f and around 2 f and there is also some
indication of a peak around 3 f. This is not seen in the
total surface kinetic energy where a peak appears only at f.
The spectral peaks near the inertial frequency increase and
widen toward the south. The reason is that the inertial peak
at a certain latitude comes about by direct local forcing and
due to waves propagating to the specific point from farther
north, having a larger frequency imprinted there as near-
inertial. Remember that NIW cannot move much northward
because they encounter turning points slightly north of their
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generation region. Summer spectral levels are significantly
lower than the winter levels shown here. This is particularly
valid for the harmonic peaks.

A closer inspection of the peaks near 2 f and 3 f reveals
that they occur precisely at these frequencies at high
latitudes (see S0°N in Fig. 8), whereas they are shifted to
higher frequencies than 2 f and 3 f at lower latitudes (see
30°N in Fig. 8). The shift is generally in good agreement
with propagation from higher latitudes as well, e.g., at
30° the “2f” peak is at a frequency roughly equal to
2f at 50°. We conclude that the NIW spectral part of
the numerical model data is quite severely modified by

10° N

1073

50°N \%

10—10 L

10-15
winter

kinetic energy spectrum / (mz/s2 / cph)

107! 10° 10t
w/f
black dotted one 2 f. The yellow vertical line indicates the expected

internal wave frequency range allowed by the model grid as detailed in
the text
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propagation effects, a process that is completely absent in
the analytical model.

Due to the presence of peaks in the energy spectra it
appears difficult to point down a dominating power law
behavior. However, a rough agreement with (w/f)° is
reasonable for the spectra below MLD, in particular for the
vertical kinetic energy. The surface kinetic energy rather
follows (w/f)~*. Such behavior is very different from what
is found in the deep ocean where frequency spectra show
slopes close to —2 (see e.g. Fu 1981). Such spectral slopes
close to —2 also apply to upper ocean data (Roth et al.
1981; Levine et al. 1983). Note, however, that these reported
slopes refer to the behavior at frequencies much higher than
f, which are not resolved by the numerical model, while
slopes in the near-inertial range in the reported observations
are considerably steeper.

Figure 9 shows energy flux terms important for the
energy balance which has been derived in Section 4, namely
the cross-spectra Fy (w) = ({Ug - T3) + c.c.)/2 (evaluated
at z = 0) as well as Fy,(w) = ((Wp*) + c.c.)/2 (evaluated

10710 L

30N
winter
10-15

energy flux spectrum / (m3/s3 / cph)

107!

107101 s e
30°N N B

summer N HCY)
N ¢
lovIS \\ .%

energy flux spectrum / (mg‘/s3 / cph)
.Y

107! 10° 10!
w/f
Fig. 9 Same as Fig. 7 but for the fluxes N(F,;) (yellow) and
—N(Fyp), the latter taken just below MLD (red dots for downward

flux and blue dots for upward flux). Upper row for winter, lower row
for summer. Black dashed lines indicate the power laws (w/f)~* and
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slightly below z = —d) where u,w, p, and T( are
the Fourier transforms of horizontal and vertical velocity,
pressure, and windstress vector. Fy,; and F, are the
fluxes of total kinetic energy through the ocean surface
and through the mixed layer base, respectively. The power
law behavior of the fluxes is similar to the energies: we
find roughly (w/f)~° for the radiation flux and (w/f)™*
for the surface flux of energy. The input of energy from
the wind into the mixed layer (F,;) is directed into the
ocean at all frequencies and exceeds the pumping flux (Fy,)
out of the mixed layer through its base at all frequencies.
Evidently, in frequency space, there are regions where the
energy flux Fy, is directed not down- but upwards (down
in Fig. 9 is red, up is blue). Note that in the distinct peak
around inertial frequency f, energy is generally transported
downwards as expected from the wind-driving scenario,
whereas in some peaks, e.g., the one around 2 f in winter
at 50° N, the direction of the energy flux is upward toward
the MLB. Over large parts of the frequency axis away
from the peaks, energy fluxes are varying between up-

energy flux spectrum / (m3/s3 cph)

10710 L
50" N
winter
10—15
10!
::Q\_ ~
o \\
~ 107 s
(as] N ~
wn ™ S
~ ~
m ~
E g N
= 4,
-10 [
S 10 .
- 5
g o \\
S 50" N .
X summer
=)
= 10715
>
o
f
v
=
= ‘
107! 10° 10t

wl/f

(w/f) ~6_ The MLB flux is an order of magnitude smaller than the sur-
face flux. Peaks at f of the surface flux and the MLB flux are visible,
the latter one has downward direction as expected
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and downward propagation. The source of this upward-
propagating energy cannot be directly forced by the wind
and we conclude that this is a sign for non-linear interactions
of the directly wind-forced waves by which energy is
redistributed from the near-inertial frequency to its higher
harmonics. The conversion is likely occurring deeper in
the water column among the incident and reflected wave
components to explain the upward direction of the energy
flux at the harmonic frequencies in the upper ocean. As
explained above, the energy around the higher harmonics
may partly originate from higher latitudes. There are many
reports of the occurrence of 2 f and higher harmonics in
numerical simulations of near-inertial forcing by hurricanes
(e.g., Price 1983; Niwa and Hibiya 1997; Meroni et al.
2016) with clear indications of wave—wave interactions.
Other generation mechanisms (Danioux and Klein 2008;
Danioux et al. 2008; Zedler 2009) involve the interaction of
a near-inertial oscillation with the vorticity of a background
eddying flow.

30°N
winter

2 - %% 1 a/my]

wp

log[ T,

w/f

30°N
summer |

@ -0 1 @a/m)]

wp
o

log[ T,

w/f

Fig. 10 Frequency response functions Tpy/w? — f2 and
Te/w?* — f2 for the radiation flux (see text for details) diagnosed
from the numerical model (red dots: downward flux, blue dots:
upward flux), and evaluated for the analytical model (black lines) as
function of w/f, evaluated at two latitudes: left: at 30°N, right: at
50°N. Upper row for winter, lower row for summer. The square root
factor eliminates the peak at f from the analytical transfer function.

7 Evaluating the wave radiation flux

In this section, we evaluate the wave radiation flux @ of the
analytical model, comparing with the diagnosed frequency
spectra of the numerical model discussed in the preceding
section. It was shown in Section 5 that the frequency
spectrum of @ can be expressed as:
P(w) = —Top(w) F*(w) (43)
where Tp denotes the transfer function given by Eq. 41
while FT describes the spectrum of the specific windstress
forcing for the radiation flux, given by Eq. 39. Remember
that the transfer function in the relation (43) relies on the
specific wavenumber spectrum of the windstress model and
introduction of an unknown wavenumber scale k, for the
spectral peak.

We use the spectra diagnosed from the numerical model
described in Section 6 to validate the frequency response

5 10 15 20
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~ G
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The analytical model uses the winter, respectively summer, mean
MLD d and N from the numerical model and peak wavelengths
2r/k, = 50,100, and 300km (the overall level of the analytical
transfer functions decreases with increasing wavelength). The vertical
purple line denotes the upper bound until which internal gravity wave
motions are expected to be permitted by the numerical model (see text)

@ Springer



1082

Ocean Dynamics (2020) 70:1067-1088

functions T¢(w) for the flux ®(w). The cross-spectrum
Fyp(w) is determined for each position and level in the
numerical model as described in Section 6, and a model-
related response function is computed by forming Ty, (@) =
—Fyp(w)/F*(w), using the wind product that drives the
numerical model to estimate F*(w) (see Fig. 7). Figure 10
compares Ty, (w) with Te (), evaluated for the respective
MLD d and the local N diagnosed from the numerical
model as described in Section 6. For T (w) from Eq. 41,
we also need to specify the peak wavenumber k, of the
windstress spectrum.

There are reports on length scales for windstress fields
from several studies. Levine and Zervakis (1995) report
wavelengths of size 550 to 900km in observed traveling
fronts. Simmons and Alford (2012) and Rimac et al. (2016)
find wavelengths around 200 to 500km in their forcing
fields. A completely different range of wavelengths is
considered in the work of Rubenstein (1994). He uses
meso-scale wind fields and has the aim to reproduce the
Garrett-Munk spectrum (Garrett and Munk 1975; Munk
1981) of the internal wave field. The windstress spectra are
synthesized from data and parameterized using the model
spectrum by Overland and Wilson (1984) which we use here
as well. They have a peak at wavelength ranging from 10
to 100km. As pointed out by D’Asaro (1989), the larger
wavelengths around 500 km are associated with large-scale
atmospheric weather systems, while the smaller ones occur
for small-scale hurricanes and moving fronts.

The response function T (w) is shown in Fig. 10 for
three values of k, corresponding to wave lengths of 50, 100,
and 300 km. Note that T, is shown for the depth level
immediately below the diagnosed mean MLD d. For the
Brunt-Viisild frequency N, we also use the diagnosed value
at the respective depth. Concerning the overall spectral
level and slope the analytical model fits reasonably well
to the numerical solution. Note that the analytical response
function and its numerical counterpart decays by some
decades in the internal wave range which is captured by
the theoretical model. The correspondence is best at higher
latitudes and less so at low latitudes, and generally better for
the summer conditions with the lower forcing and energy
levels compared to the winter conditions. The likely reason
is that the analytical model takes into account only the
locally forced waves while in the numerical model also
remotely forced waves show up and this increasingly at
lower latitudes due to predominant southward propagation
(see also Section 6). Moreover, the values of the numerical
model in the range of upward fluxes (blue dots) cannot agree
with the analytical model because the nonlinear processes
responsible for the peaks at 2 f and higher harmonics are not
captured by the linear model. Note that the values predicted
by the analytical model mostly stay below these additional
peaks, marking there the level of the wind-driven linear
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response in the background of the upward propagating
super-harmonics. The results appear relatively insensitive to
the peak wavenumber k.

In Appendix B, we derive the integrated (over frequency
and wavenumber) radiation flux predicted by the analytical
model. Here, we discuss the parameter dependencies
and compare again with the numerical model. We have
to specify the windstress frequency spectrum which we
prescribe simply as a power law, assuming F'(w) =
Fy(f/ w)?, as detailed in Appendix B. The value Fy of the
spectral level of the windstress frequency spectrum at near-
inertial frequencies will enter the wave flux as multiplicative
factor. A typical value for mid-latitude oceans is Fj =
107®m*s~*/s~! (used in the following figures) but higher
values are still acceptable for higher latitudes (see Fig. 7
of this study and e.g. Figure 5 of Willebrand (1978)). For
the forcing used by the numerical model of Section 6 we
find F§ = 1 x 107" m*~*/s~! at 20° N in summer and
F§ =3 x107%m*s~*/s7! at 50° N in winter.

The total pumping flux R = | f;v Pdw| is a complicated
function of k,dN/f, given by Eq. 55 in Appendix B.
Figure 11 shows the dependency of the total pumping flux
R on the MLD d, the Brunt-Viisild frequency N, and
wavelength 27/ k,. The net flux R decays with increasing d.
A rough approximation is R >~ 47 F /d (see Appendix B)
and a typical value for the flux is a few times 1078 m3s =3 =
0.01 mW m~2 at moderate mixed layer depths.

8 Evaluating the surface flux

In Section 5, we have derived the theoretical prediction for
the frequency spectrum of the surface energy flux in the form:

F () =Tz () F* (o) (44)

where Tz = To + Tyiss. The transfer function T and Ty
are given by Egs. 41 and 42, respectively. In Fig. 12, we
compare this theoretical model with data from the numerical
model. The cross-spectrum Fy; (@) = ({up - 7(5) +c.c.)/2
is computed as described in Section 6.2. The figure shows
F,: (w)/F*(w) together with T (w). The only parameter
in this expression is «. The comparison is convincing with
o independent of frequency. The overall dependence of the
transfer function on frequency is well captured though the
proper value of « differs substantially with respect to season
and latitude. For the winter profiles, the o parameter is
0.02 to 0.05, and for summer 0.5 to > 2.5, larger values
corresponding to lower latitudes. Note that the depth scale
ad does not have such a large range: the MLD at the
analyzed positions is 212 m at 30° and 334 m at 50°, hence
ad ~ 20---35m. The summer values are 13 m at 30° and
51 m at 50°, hence ad ~ 25---30m.
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Fig. 11 Radiation flux R (logarithm) in m3s—3 as function of the MLD d and Brunt-Viisili frequency N for two values of the windstress peak

wavelength 27 /k, = [10, 100] km (left and right panel, respectively) at 30° latitude. For further parameters, see text

Integration of .% (w) over frequencies meets the problem It depends logarithmically on the friction coefficient r and is
that the part from dissipated flux is singular without addition  typically less than 107°m3s=3 = 1 mW m~2 at moderate
of friction. The problem is mediated when Rayleigh friction =~ mixed layer depths and with » = 0.01. Dissipation of energy

is added to the horizontal momentum balance in Eq. 12.  in the ML thus exceeds radiation at the MLB by an order of
We find (57) in Appendix C to replace Ty;ss from Eq. 42  magnitude (see further discussion in the summary Section 9).
and the dissipated flux integrates approximately to Fyjss =~ Figure 13 finally displays the ratio of radiative to surface

2F; (ad) In (f/2r) (the exact expression is in Appendix C). flux, R/(R+ Fyjss) for the theoretical model. Because of the
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linear nature of theoretical model, the ratio is independent of
the overall level of the windstress spectrum; however, there
is a dependence on the dominant wavenumber k, as we use
here the full expression for R as given in Appendix B. Note
that the ratio is typically 0.1, decreasing with d and, to a less
degree, also with N.

9 Summary and discussion

Internal gravity waves are subject to plentiful forcing
processes (see e.g. Munk 1981; Olbers 1983; Polzin and
Lvov 2011). A prominent mechanism in the upper ocean is
the generation by inertial pumping, induced by windstress
acting in the mixed layer (Gill 1984). It is the focus of the
present study. We have developed a new analytical model of
wind-induced wave radiation from the surface mixed layer.
Central in the study is the energy balance of the mixed layer,
including the wind-induced surface energy flux and the
resulting radiation flux carried by internal waves below the
mixed layer base. We discuss the parametrical dependence
of the energetics on the mixed layer depth and the local
Brunt-Viisild frequency, as well as the spatial and temporal
scales of the windstress and derive analytical expressions for
the fluxes of energy induced by the windstress at the surface
and by wave radiation at the mixed layer base.

A short critical assessment of friction in the Pollard-
Millard slab model (Pollard and Millard 1970) starts our
analysis of the wind-driven surface layer. We regard our
model as extension of the slab model, abandoning, however,
the Achilles heel of the nonphysical Rayleigh friction. The
new model resolves the pressure gradient in the momentum
balance of the mixed layer. The main assumptions of the
new model are:

® The model is linear, local on a f-plane, and the mixed
layer depth is considered temporally constant.

e Statistical homogeneity in the horizontal is assumed
for the energy balance of the mixed layer; wave
propagation in a B-effect environment is absent.
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® The stress profile in the mixed layer is regarded as given
(not parameterized).

® Vertical pumping is induced by spatial variations of the
applied windstress and the forcing in the frequency range of
the local f to the local N goes into the internal wave field.

® A long-wave approximation is made, essentially kd <
1, where k is the wavenumber and d the mixed layer
depth.

e The windstress covariance spectrum is
by an isotropic vector process and the associated
wavenumber-frequency spectrum is taken factorized.

modeled

By this construction, the model captures only the locally
forced wave field. On this base, the radiation flux spectrum
is derived as function of wavenumber and frequency and the
system parameters (mixed layer depth, Brunt-Viisild fre-
quency below the mixed layer, scales of the windstress spec-
trum) and integrated over the Fourier space resulting in the
flux in physical space. While the radiation flux is expressed
by the spectrum of the windstress fluctuations as a conse-
quence of the long-wave approximation, the surface flux of
energy, directly induced by the wind, is found to depend
on interior stress properties, namely the stress divergence
at the surface. It could therefore only be studied with fur-
ther approximation to come up with a closed view of the
energetics of the mixed layer. A comparison of the radiation
flux and the surface flux in the spectral frequency domain,
predicted from the analytical model, with a numerical cir-
culation model of the North Atlantic with state-of-the-art
mixed-layer physics is found by and large successful, given
the simplicity and restriction of the analytical model—linear
physics and horizontal homogeneity, both of which are not
realized in the numerical model.

A central property of the wind-forced motions in the
upper ocean is the amount of energy that escapes dissipation
in the mixed layer and is able to radiate from the mixed
layer base as internal gravity waves into the stratified ocean.
Figure 14 displays maps of the ratio of the wind-induced
radiative flux and the surface flux of energy for winter
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Fig. 13 Ratio R/(R + Fyiss) as function of the MLD d and Brunt-Viisild frequency N for two values of the windstress peak wavelength
21/ k, = [10, 100] km (left and right panel, respectively) at 30° latitude. Further parameters: « = 0.1, r/f = 0.01
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Fig. 14 Maps of the ratio of radiation flux to surface flux from the
numerical model described in Section 6. Only power at super-inertial
frequencies has been included to compute the net fluxes. Left: mean

and summer, diagnosed from the numerical model of the
North Atlantic, described in Section 6. Note that the color
scale is linear and includes positive and negative values,
the latter coming about from a negative net radiation flux
at the respective position. Such features could not occur in
the theoretical model with the energy balance in Section 4
appropriate for horizontal homogeneity. In the numerical
model, however, we have horizontal variations and in
particular, the horizontal wave-induced energy flux must be
present in the energy balance of the mixed layer with a non-
vanishing divergence. Hence, we face in some regions an
access in the up- or downward radiation of energy compared
to the local supply by the surface flux. Figure 14 shows that
this mainly occurs in the tropics and in the Gulf Stream and
its extension but also in smaller spots in the open ocean.
The maps shows positive ratios around 0.1 for summer and
winter in the open ocean regions where the spectral analysis
is made, in good agreement with the theoretical model, but
large values exceeding 1 occur in summer in more southerly
regions. For winter, we are facing a mixed behavior with
large positive and negative ratios south of 40° N where near-
inertial waves, generated more northward, may accumulate
and induce divergences of horizontal energy flux.

The flux of energy from the wind to the surface mixed
layer has been computed by many models of varying
complexity (e.g., Pollard and Millard 1970; Alford 2001,
Plueddemann and Farrar 2006; Scott and Xu 2009). The flux
of energy at the mixed layer base and the ratio of radiation
flux to surface flux, though eminently more important
for the ocean circulation, is much less known. Previous
estimates come from numerical experiments and mostly
refer to global-scale means (Furuichi et al. 2008; Zhai et al.
2009). Rimac et al. (2016), using a global model with
1/10° resolution, reports 11.4% for the ratio on average
with a decreasing tendency with respect to increasing mixed
layer depth: for shallow values the ratio is about 0.2 and
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over the 6 winter months of 2003 to 2005. Right: mean over 6 summer
months of 2004 and 2005. The scale is linear

for deep layers the ratio decreases to about 0.04. In our
North Atlantic model, we find that in total 83% of the
wind-generated flux (in super-inertial frequencies and
winter) is dissipated in the mixed layer and 17% is radiated
as waves into the interior ocean.
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Appendix A: Green’s function
of the w-problem

The solution of Eq. 17 with the rigid lid and the
inhomogeneous boundary condition (20) is written in term
of the Green’s function for the problem with homogeneous
boundary conditions, defining the modified vertical velocity
Ww=w+ Wz/d with w=0

at z=0,—d (45)

@ Springer


http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/

1086

Ocean Dynamics (2020) 70:1067-1088

The solution is w = w; + wy where:

y 0 oW , Q0,7
214, 0 :

. q W ~ (z sinhgz

w2 d /,ddgG(z’é)s (d sinhqd) (46)

with the Green’s function:

_ 1 sinhg(z + d) sinh g& for —d<z<£<0
G5 = Gnhgd { sinhgzsinhq(€ +d)  for —d<&<z<0 @7
Hence
R ~ sinhgz - 0
=W g T @ [ aor—Hieoshgs  and
The condition (21) then results in 5 0
A 1 0 C = / ds (W — W) coshq(& +d) (53)
W o= / dE(W — Wy)coshge  (49) —d

" coshqd + im/q sinhqd J_4

Here #; = # (z = —d). The derivative of & = w — Wz/d
at the surface z = 0, needed to evaluate the horizontal
surface velocity from Eq. 18, becomes

0
aw| =--—1 / ds(W — W) coshq (€ + d)
7=0 sinhgd J_4

qW
sinh gd

with #y = # (z = 0). In both integrals in Egs. 49 and 50
we have performed a partial integration. We arrive at

0 —Va -

(50)

A

W = —K% 51)
~ i q 5 _
| = i (K% %) + o — Wa (52)

with

R = ‘/Ndwcb(a))‘
f

1
coshgd + i(m/q) sinh gd
The solutions presented in Section 4 follow as lowest
order expansion in terms of gd.

Appendix B: Total radiation flux

The total flux is obtained by integration over frequency
in the internal wave range f < o < N. We specify
the windstress frequency spectrum simply as a power law,
assuming

F¥(0) = F{ (f/w)* (54)

oriented at the findings of the forcing of the numerical
model (see Fig. 7). With a minor approximation the total
radiation flux can be expressed in analytical form. Since the
power of the windstress fluctuations is at low frequencies
we may replace N> — w? in Eq. 41 by N2. Then

2wk, FTN 2 3
_ ”—o/f( ﬂ<1—n2>—2nlnn

I+ \n 4

. 2
(@20 3n)+4nlnn> (55)

1+n?

with n = k,dN/f. We have assumed here for simplicity

that N/f > 1, k,d < 1. It is found that Eq. 55 is valid for

a large range of parameter values. It is well approximated
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by the first term in the brackets, hence:

ko Fy N/ f _ dr Fy dr Fy

n(l+n»)2  dd+n)?2 " d (56)
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Appendix C: Total dissipated flux

The transfer function for the dissipated flux must be
expanded to include friction. Then:
4 @ -

ad (w? — f2)2 + 4722

(57

Tyiss =

N
Faiss = / Tdiss(w)Fr(a))da)
f

K
= — n
ad 4r2 + f2

(N> = D2+ 42 (% r
N4

+ 4— arctan

where r is a Rayleigh friction coefficient. One finds for the
total dissipated flux

+In-—

N2 _ f2 f2
2rf 4r2> (58)

The last term in the brackets is by far the largest contribution
if N2> £2 > r?, hence

2FT
Fiss = M‘; In % (59)
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