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Abstract
After the publication of the type-profiles for the estimation of the joint roughness coefficient (JRC) a discussion evolved 
about how to adequately use these traces. Based on the chart numerous researchers assembled mathematical correlations with 
various parameters seeking objectivity in the determination of JRC. Within these works differences concerning the database 
and the mathematical implementations exist. Consequently, each correlation, although predominantly the same parameters 
are used, leads to different JRC values. In theory, for any arbitrary profile, irrespective of the particular calculation approach, 
the same JRC should result. This is a requisite because of the referencing of all correlations to the 10 type-profiles. However, 
it is shown in this study that in most cases equal or even satisfactorily similar results are not obtained. The discrepancies 
are vast when non-standard profiles are evaluated, in this case, more than 40,000 traces from six different rock surfaces that 
cover a broad range of roughness categories. The simple intuitive parameter Z2 served as an agent for the statistical methods 
because of its broad use and consequently good comparability. On the part of the fractal approaches, three definitions were 
used. However, JRC inferred from fractal correlations are very much dependent on the particular calculation routine. In 
fact, the theory of fractals is overly complex for the sparse and low-resolution type-profiles. In summary, fractal approaches 
do not produce safer or more reliable estimates of roughness compared to simple statistical means and using Z2 perfectly 
suffices to determine the class of JRC.
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Abbreviations
JRC	� Joint roughness coefficient (possible sub-

scripts refer to calculation method)
D	� Fractal dimension (possible subscripts refer 

to calculation method)
H	� Hurst exponent (possible subscripts refer to 

calculation method)
FFT	� Fast Fourier transform
RMS	� Root mean square
RMS-COR	� Root-mean-square correlation function/

method
σδh (dx)	� Asperity measure (magnitude parameter)
σδh (1 mm)	� Asperity measure for 1 mm sampling 

lengths
Z2	� Textural slope parameter (RMS of the aver-

age local slope)

r	� Compass radius
Rp	� Roughness profile index
SF	� Structure function
σi	� Standard deviation of the slope angles of 

each sampling step
λ	� Ultimate slope of the profile

1  Introduction

Since the introduction of Barton’s empirical shear strength 
criterion in 1973 there has been a discussion about how to 
reliably determine the joint roughness coefficient (JRC) as 
a mechanically meaningful measure for rock surface rough-
ness. Barton and Choubey (1977) published a chart con-
taining 10 type-profiles to estimate the JRC by visual com-
parison. In doing so, the JRC, being a parameter rather of 
mechanical nature that shall embrace all effects of roughness 
within shearing processes, is determined from morphologi-
cal surface roughness along a profile, of course preferably 
in the shear direction. The initial intention was to enable 
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engineers and geologists to “make a quick estimate” (Barton 
and Choubey 1977) of JRC without conducting sophisticated 
mechanical direct shear tests.

However, this practice of roughness determination was 
questioned since the human eye-based visual comparison 
is error-prone and highly subjective (e.g. Beer et al. 2002; 
Alameda-Hernandez et al. 2014). Therefore, it seems reason-
able to eliminate the user’s influence by applying mathemati-
cal means. In the case of surface roughness, this is a com-
mon approach in engineering and material sciences (e.g. ISO 
1997). Consequently, based on the standard chart numerous 
researchers assembled mathematical correlations with vari-
ous parameters seeking objectivity in the determination of 
JRC. Tse and Cruden (1979) were the first to calculate sta-
tistical parameters for the type-profiles and to correlate them 
with JRC. Since then, many authors have published a still 
growing number of correlations of other statistical param-
eters. Li and Zhang (2015) give a rather recent overview 
of these endeavours. Apart from statistical approaches, the 
theory of fractals was also applied to the problem. Turk et al. 
(1987) spearheaded the calculation of the fractal dimension 
D for the 10 type-profiles using the divider method. A com-
pilation of other fractal correlations is available in Li and 
Huang (2015). Additionally, Magsipoc et al. (2019) recently 
published an overview of most methods for surface rough-
ness determination in two and three dimensions that have 
been applied also in part to JRC determination. Till now, 
correlating all kinds of mathematical parameters with JRC, 
using different techniques is ongoing. Besides many others, 
for example, Ficker and Martišek (2016) used an image rec-
ognition approach, Wang et al. (2017) used support vector 
regression to calculate JRC, Yong et al. (2018) applied a vec-
tor similarity measure and Gravanis and Pantelidis (2019) 
employed the theory of random fields. However, to date, they 
remain singular cases and statistical and fractal means have 
been explored more often. Nevertheless, the usefulness of 
repetitive correlation of already used or new measures with 
JRC solely based on the type-profiles must be doubted for 
various reasons.

Within previous works, differences concerning the data-
base exist. Even though all correlations refer to the 10 type-
profiles they were digitised by the various researchers in dif-
ferent ways, resulting in varying resolution and subsequently 
different sampling intervals. For example, the pioneers Tse 
and Cruden (1979) enlarged the profiles with a factor of 2.5 
and picked points in an interval of 1.27 mm using a dig-
itising table. Consequently, an effective sampling interval 
of approximately 0.5 mm was achieved. Yu and Vayssade 
(1991) and Tatone (2009) also performed scanning, enlarg-
ing, and manual tracing of the type-profiles at sampling 
intervals between 0.5 and 2.4 mm. Instead, Bae et al. (2011) 
used a digital copy of the type-profiles for image analysis 
in order to extract points on the profiles automatically. They 

reported a resolution of 20 pixels per 1 mm resulting in a 
sampling interval of 0.05 mm. Overall, concerning the digi-
talisations of the type-profiles, Tatone (2009) stands out. He 
was the first to make his digital type-profiles publicly avail-
able. Unfortunately, since then only Li and Zhang (2015) 
and Stigsson and Mas Ivars (2019) followed the lead and 
published their source data.

Besides the differing database, uncertainty concerning the 
calculation procedures exist. Often, the implementations of 
the algorithms and the pre-processing steps of the data are 
not described in their entirety. However, adequate traceabil-
ity is especially important with fractal approaches. If thor-
ough documentation is not supplied, reproduction of prior 
findings is nearly impossible or at least achieving similarity 
is, in either case, cumbersome. Consequently, even when the 
same data is used different values of JRC result. Especially 
for the fractal dimension, the discrepancies are large since 
several calculation routines have been used in the past (c.f. 
Magsipoc et al. 2019). Moreover, in this context, confusion 
exists regarding the applicability of the different fractal cal-
culation approaches with respect to the self-affine nature of 
rock discontinuity profiles.

Most importantly, for any arbitrary profile, irrespective 
of the particular calculation approach, the same JRC should 
result. This is a requisite because of the referencing of all 
correlations to the 10 type-profiles. Consequently, statistical 
and fractal approaches must yield the same JRC. However, 
previous publications used statistical or fractal techniques 
independently and never compared resulting JRC directly. 
Furthermore, they often focused on the type-profiles only. 
Nevertheless, it is extremely important to compare the 
approaches for a larger dataset of profiles to evaluate their 
universal validity. Only Marsch et al. (2020) investigated 
the problem rudimentary. They showed that JRC calculated 
from the statistical parameter Z2 were not equal or even sat-
isfactorily similar to JRC calculated e.g. from the fractal 
compass dimension Dcomp. Certainly, there is a strong need 
for analyses of naturally occurring profiles other than the 
type-profiles.

Due to the problems addressed above, this study aims 
towards testing the hypothesis whether for any profile the 
same JRC results independent of the calculation scheme. 
This is achieved by revisiting the type-profiles and additional 
application of the approaches to six different rock surfaces. 
Having particularly field engineers and practitioners in mind, 
the primary objective is to denominate the most simple, 
intuitive, and reliable approach amongst a selection of tools 
available, may they be statistical or fractal procedures.

Firstly, some general remarks on the quality and avail-
ability of the type-profiles are given. This is followed by a 
presentation of the mathematical methods used. In section 
four the sensitivity of these methods is discussed by evaluat-
ing different digitalisations of the type-profiles. Thereafter, 
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the application of the approaches to six different rock sam-
ples forms the main part of the study. Finally, the outcome 
is discussed, and conclusions are drawn.

2 � General Issues Concerning the Data Base 
for JRC Correlations

Without exceptions, the set of Barton and Choubey’s (1977) 
ten type-profiles forms the basis for all previously published 
correlations between JRC and statistical or fractal values. As 
a marginal note—a few authors, e.g. Li and Zhang (2015) 
and Li et al. (2017), also included other profiles available in 
the literature, e.g. from Bandis (1980). However, this does 
not necessarily improve the correlations. When using these 
functions some fundamental problems with the referential 
type-profiles must be considered.

2.1 � Measurement Quality of the Original 
Type‑Profiles

Due to the only graphical presentation of the type-profiles, 
it is practically impossible to assess the quality of the meas-
urements. Additionally, in the original publication the type-
profiles are downscaled compared to the initial measuring 
length whereby information is lost. Consequently, the pro-
files appear to be continuous which is incomprehensible, 
as the traces were gathered with a tactile profilometer and 
therefore should exhibit a stepwise progression (see Tatone 
and Grasselli 2010). Moreover, the device consists of 
aligned metal pins of usually 1 mm in diameter, which are 
pressed onto the surface to gather the height information. 
During this process, an unavoidable deformation of the pins 
occurs leaving behind small gaps in the trace and result-
ing in variable sampling intervals. Following the classic 
approach, the profilometer measurements are transformed 
to paper by hand, which adds another source of error as 
the pins might slip again. Additionally, with the apparatus 
roughness wavelengths below 1 mm are not resolved, and, 
obviously, wavelengths greater than the profilometer, which 
is usually 100 to 150 mm in length, are also not collected. 
Moreover, solely the largest amplitude over the length of 
the pin diameter is measured. The device, therefore, acts 
as a low-cut filter and band-pass filters the original surface 
trace (Maerz et al. 1990). Indeed, all measuring approaches 
let them be contactless optical devices or tactile procedures 
do have a limited resolution and low-cut filtering is always 
happening. However, with the tactile profilometer, the reso-
lution is relatively low, compared to most recent measuring 
tools, amounting to 1 mm only.

In summary, due to the uncertainties described above it 
is pointless to use finer sampling resolutions when digitis-
ing the type-profiles (as it was done by many authors in the 

past). Consequently, applying more and more sophisticated 
measuring devices for natural surfaces with higher resolu-
tion is unneeded if the objective is to determine the JRC 
based on the 10 type-profiles. At all times, it must be kept 
in mind that all correlations rest upon the sparse, low-reso-
lution, and from today’s perspective inexact type-profiles.

2.2 � Available Input Data

As pointed out in the introduction, only a hand full of 
researchers made their digitalisations accessible. As an 
example for the available three data sets, in Fig. 1 the fifth 
type-profile (JRC = 9.5) is displayed. At first glance the 
traces appear similar. However, with increasing length the 
variations in height grow larger. There seems to exist a tip-
ping point at approximately 32 mm where a steep increase in 
the lines is seen. After that, the lines diverge more. Certainly, 
due to contrasting digitalisation procedures discrepancies are 
visible and consequently statistical and fractal parameters 
will be, most likely, unequal amongst the data sets. Addition-
ally, in Fig. 1 the overall trends of the traces are indicated 
as dotted lines colour-coded according to each originator. It 
will be shown that removing these overall trends is of major 
importance. It is essential to establish a horizontal datum 
line always in the same manner to obtain reproducible and 
reasonable roughness measures.

Apart from the height variations, different degrees of 
detail are also visible in Fig. 1. Especially between the 
blue line and the red and orange lines at the relative peak 
at 55 mm length, the contrast is large. Generally, the vari-
ous authors of the available correlations not only used sepa-
rate methods for digitalisation but also, applied disparate 
sampling intervals. This is also valid for the profiles in 
Fig. 1. Accordingly, the amounts of sampling points and the 

Fig. 1   Variation of the fifth type-profile (JRC = 9.5, exaggeration in 
height 15)
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sampling intervals are shown in Fig. 2. Li and Zhang (2015) 
and Tatone (2009) sampled the profiles with a constant inter-
val of 0.4 mm and 0.5 mm, respectively. Instead, Stigsson 
and Mas Ivars (2019) picked points with an average spacing 
of 1 mm using sampling steps of up to 4.4 mm, however 
referencing their later correlation to a different, not available 
data set from Jang et al. (2014).

Remember, the original data from Barton and Choubey 
(1977) was gathered using a resolution of 1 mm. There-
fore, using a larger sampling rate would inevitably lead to 
noise in the secondary profiles. On the other hand, obviously 
using lower sampling rates would lead to a loss of informa-
tion. Already Yu and Vayssade (1991) addressed the issue 
related to sampling. However, they only pointed out that it is 
important to adjust the correlation functions to the sampling 
interval and vice-versa. Regardless, for their (inaccessible) 
digitalisation they also used sampling intervals smaller than 
the one of the original type-profiles.

For future works (in case adding another correlation to 
the already plenty is desired) it is advisable to use an exist-
ing data set to eliminate an influencing variable. From the 
available data of Figs. 1 and 2, the one from Tatone (2009) 
is most suitable as a reference set: the type-profiles were dig-
itised using the original sampling interval of 1 mm and the 
overall trends in the profiles have been removed. Moreover, 
his routine is well documented and good enough in light of 
the low graphical quality of the original type-profiles.

3 � Methods

In principle, there are two possibilities to calculate JRC: 
using statistical parameters, or using fractal approaches in 
various peculiarities. In isolated cases, other approaches 

have been used (e.g. Tatone 2009; Zhang et al. 2014; Pick-
ering and Aydin 2016). The mathematical implementation 
of most of the statistical parameters is straightforward and 
software for simple spreadsheet analysis suffice for the cal-
culation. Instead, certain algorithms for the calculation of 
the fractal dimension are quite elaborate, mathematically 
complex, and consume computational power. For this paper, 
all calculation approaches were implemented in Matlab© 
and the function scripts and data are available in the online 
repository to this publication (see Marsch 2020).

3.1 � Statistical Parameters

From all statistical parameters that have been used in rock 
mechanics the root mean square of the first derivative of 
the surface profile, named Z2, is the one used most (cf. Li 
and Zhang 2015). Myers (1962) established the parameter 
for use in material sciences and it is written in Eq. 1. When 
using a constant sampling interval Eq. 1 evolves to the dis-
crete form of Eq. 2 where N is the total number of vertices 
and yi the height coordinate of the profile points.

Besides, individual authors used other statistical param-
eters, such as the standard deviation of the slope angles 
of each sampling step σi (Yu and Vayssade 1991) or the 
ultimate slope of the profile λ, as a measure of the peak 
amplitude of the profile versus its projected length (Barton 
and de Quadros 1997). Examples of other parameters used 
more often than σi and λ are the roughness profile index Rp 
(Tatone and Grasselli 2010; Yu and Vayssade 1991; Maerz 
et al. 1990) and the so-called Structure Function of the pro-
file, termed SF (Tse and Cruden 1979; Yu and Vayssade 
1991; Yang et al. 2001). Rp is defined as the ratio between 
the actual versus the projected length of the profile whereas 
SF can be calculated from Z2 by introducing the sampling 
interval.

It will be shown later that the statistical parameters men-
tioned are interchangeable to a certain degree. Therefore, 
in this study, the inference of JRC from statistical values 
is represented by using Z2 and the correlation from Tatone 
and Grasselli (2010). Indeed, other correlations, such as the 
ones from Yu and Vayssade (1991) or from Tse and Cruden 
1979, yield quite similar results. However, Tatone and Gras-
selli (2010) made their input data accessible and they used a 
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Fig. 2   Amounts and spacings of sampling points for type-profile five
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1 mm sampling interval for digitalisation in compliance with 
Barton and Choubey (1977). The correlation of JRC with Z2 
from Tatone and Grasselli (2010) reads as follows:

3.2 � Fractal Measures

By means of the theory of fractals, it is possible to measure 
irregular and complex natural patterns even on small scales 
(Hastings and Sugihara 1994). The essential requirement for 
the use of the fractal concept for roughness determination is 
the distinction between (a) self-similarity and (b) self-affin-
ity. These qualities exist for natural entities that are build 
out of recurring patterns of themselves so that they look 
alike and/or have the same statistical properties on differ-
ent scales. With self-similar profiles, rescaling is isotropic. 
However, for self-affine profiles rescaling has to be differ-
ent for each direction to obtain the same appearance and/or 
statistical properties. Kulatilake et al. (2006) postulated that 
rock discontinuity profiles are of self-affine nature. This is 
fundamental since the difference between self-similarity and 
self-affinity entails the need for diverse calculation proce-
dures for the fractal dimension D or the Hurst-exponent H, 
which convert into each other.

In past studies, the term fractal dimension has been used 
quite unthinkingly in the context of rock roughness evalu-
ation. Of course, different authors applied different calcu-
lation procedures, e.g. compass walking, box counting or 
spectral analysis. Consequently, different numbers for D 
for the type-profiles were calculated (e.g. Lee et al. 1990; 
Odling 1994). However, researchers claimed to have cal-
culated “the fractal dimension”. Instead, it is of paramount 
importance to distinguish between the values according to 
the calculation algorithms, as they are obviously not inter-
changeable. Mandelbrot (1985) himself—who is widely 
regarded as the initiator of the fractal theory—suggested 
that different denominations, such as “compass dimension” 
or “box dimension”, should be used.

Concerning fractal measures, in the beginning of their 
application to JRC calculation, researchers like Turk et al. 
(1987) and Lee et al. (1990) used compass walking and 
the divider method. Later, Den Outer et al. (1995) and/or 
Kulatilake et al. (2006) have identified these approaches 
as being inadequate in capturing the self-affine nature of 
rock profiles. Nonetheless, this did not prevent the use of 
these approaches thereafter (e.g. Bae et al. 2011). Moreover, 
the impracticality of the methods has not been shown thor-
oughly but was rather argued solely on a theoretical basis. 
Consequently, compass walking is the method used most 
frequently in the context of roughness evaluation (cf. Li and 
Huang 2015). Apart, correlating the compass dimension 

(3)JRCZ2
= 55.03 ⋅

(

Z2
)0.74

− 6.1

of the type-profiles with JRC works just fine. Therefore, in 
this study compass walking is also analysed for comparative 
reasons.

In the already mentioned, most recent work by Stigsson 
and Mas Ivars (2019) an important fact is underlined: fractal 
calculation schemes are meaningful only if an additional 
magnitude parameter is incorporated. Magsipoc et al. (2019) 
recognized this simultaneously, identifying power spectral 
density and the root-mean-square correlation method (RMS-
COR) as being eligible for roughness characterisation. Con-
sequently, possible correlations of fractal measures with JRC 
need another parameter apart from H or D to be fully con-
strained. Stigsson and Mas Ivars (2019) used RMS-COR 
and power spectrum analysis to produce H and an asperity 
measure, which they named σδh(dx). The two variables were 
then linked to the JRC. Accordingly, RMS correlation and 
spectral analysis are used in this study.

Of course, besides the three approaches used in this study 
and described hereafter, other fractal methods for roughness 
evaluation exist (for example box counting). However, they 
all lack reasonable correlation with JRC and are therefore 
discarded here. What is meant by “reasonable correlation” 
will become clear in the following and is discussed later.

RMS-COR method. With this method, the roughness of 
a profile is evaluated by using the variation of the distribu-
tion of height differences in dependence of spatial wave-
length (Renard et al. 2006). For varying vertex intervals, 
dv, a population of corresponding height differences, dh, is 
acquired as depicted in Fig. 3. Then, the standard deviation 
of the height differences, σ(dh), for each vertex interval is 
calculated. By plotting σ(dh) versus dv in log–log space the 
Hurst exponent is received as the slope of the linear fit. A 
requirement for this technique is that the profile vertices are 
equally spaced. Additionally, the method rests upon height 

Fig. 3   Concept of RMS-COR method
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differences; therefore, the profiles must be free of possible 
overall trends.

An important aspect of the RMS-COR method is that 
the intercept of the linear fit line with the y-axis serves as a 
magnitude parameter for the profile. This value is necessary 
since the Hurst exponent only does not describe self-affine 
fractal entities distinctively (Magsipoc et al. 2019). In this 
study, the terminology from Stigsson and Mas Ivars (2019) 
for the magnitude parameter σδh(dx) is used. Also, they 
introduced a correlation of H and σδh(dx) with JRC which 
is given hereafter:

Equation 4 is valid for sampling intervals of 1 mm. As 
stated earlier, this should be the default for JRC determina-
tion. However, in case a different constant sampling interval 
dx is used σδh(1 mm) evolves from scaling σδh(dx) accord-
ing to the following conversion:

Furthermore, Stigsson and Mas Ivars (2019) stated that 
a shortcoming of the RMS-COR technique is an underes-
timation of H due to the natural finite length of profiles in 
general. To account for this effect, they constructed artificial 
profiles with pre-set Hurst exponents and asperity measures 
using an inverse Fast-Fourier-Transform algorithm. Subse-
quently, calculating H with the RMS-COR method yielded 
systematically lower Hurst exponents for profiles having 
a generated H of larger than 0.5. They applied a rule for 
compensation, however, not including it in their writing. 
Therefore, adopting their approach and data, the following 
correction equation was produced in this study, being valid 
for the RMS-COR method and being necessary in case the 
calculated Hurst exponent, HRMS,cal, is larger than 0.5:

Power spectrum analysis. Predominantly in tectonophys-
ics power spectral analysis using the Fast-Fourier-Transform 
(FFT) is often applied for the evaluation of roughness of 
rock joints and faults (e.g. Candela et al. 2009; Bistacchi 
et al. 2011; Corradetti et al. 2017). FFT algorithms con-
vert the spatial information of the profile to the frequency 
domain. By plotting the associated power versus each length 
frequency in log–log space, the Hurst exponent is received 
as the slope of the linear fit. Additionally, the asperity meas-
ure σδh(dx) can be calculated using H and the intercept with 
the ordinate of the linear fit together with an evolution of 
sine waves according to the frequency spectrum of the pro-
file (see Stigsson and Mas Ivars 2019). To calculate JRC 
Eq. 4 can be used which is also applicable to H and σδh(dx) 
inferred from power spectral analysis.

(4)JRC = −4.3 + 54.6 ⋅ ��h(1mm) + 4.3 ⋅ H

(5)��h(1mm) =
��h(dx)

(dx∕1mm)H

(6)HRMS = ln(HRMS,cal) + 1.18 for HRMS,cal > 0.5

As for the RMS-COR method, with spectral analysis 
discrepancies exist concerning the calculation of the Hurst 
exponent using FFT for fractal lines of known H. Here, an 
overestimation was seen and Stigsson and Mas Ivars (2019) 
introduced another equation for compensation purposes:

Compass walking. The procedure is essentially an approx-
imation of the length of a profile through a chain of circles 
in which each subsequent circle originates at the intersec-
tion of the previous circle with the profile. By repetition, a 
relationship is obtained between the various radii and the 
corresponding number of circles needed to cover the pro-
file. Depending on the implementation, possible relics of 
the profile (parts not covered by circles) are neglected or 
incorporated in the analysis, the latter being valid for the 
algorithm that was implemented in this study. The slope 
of the linear fit to the data plotted in log–log space yields 
the fractal compass dimension Dcomp. A visualisation of the 
technique is given in Fig. 4.

The crucial setscrew in this approach is the compass 
radius. It is somewhat unclear which specific radii different 
authors used. However, Lee et al.’s (1990) provided some 
values. Coherently, their set of radii and their equation were 
used in this study. Their correlation reads as follows:

A disadvantage of Eq. 8 is its quadratic, non-monotonic 
composition. The approach might be adequate for fitting the 
data of the type-profiles but if compass dimensions larger 
than 1.016738 are calculated erroneously low JRC would 
result (angular point of the equation). Therefore, the linear 

(7)HFFT = 0.616 ⋅ ln(HFFT,cal) + 0.92 for HFFT,cal > 0.7

(8)

JRC = −0.87804 + 37.7844

(

Dcomp − 1

0.015

)

− 16.9304

(

Dcomp − 1

0.015

)2

Fig. 4   Concept of compass walking method
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correlation from Turk et al. (1987) was also used. It is writ-
ten in the following expression:

4 � Re‑Evaluation of the 10 Type‑Profiles

One of the main problems with the existing JRC correla-
tions is the traceability of their creation. Often, neither the 
digitalisations of the type-profiles and pre-processing steps 
are given nor the input variables for the calculation of the 
specific roughness measures are revealed. Therefore, the 
importance of this information is demonstrated in the fol-
lowing by revisiting the type-profiles using the three avail-
able data sets and different input variables.

4.1 � Statistical Approaches

There are at least 10 different statistical parameters that 
have been correlated with JRC (see Li and Zhang 2015). 
To greater or lesser extent, for the 10 type-profiles decent 
coefficients of determination were found for the specific 
parameters with JRC. On the other hand, for example, Wang 
et al. (2019) stated that σi behaves approximately the same 
as Z2. Overall, Z2 is well established and used often, there-
fore, in Fig. 5 its relations to the four statistical parameters 
mentioned above are shown. Apparently, λ is not correlated 
with Z2. The reason for this could lie in its rudimentary for-
mulation in mathematical and physical terms, as it is only 
the ratio of the peak amplitude to the projected length of the 

(9)JRC = −1138.6 + 1141.6 ⋅ Dcomp

profile. However, for σi, SF and Rp there exist precise transfer 
functions with coefficients of determination of R2 ≈ 1 . The 
equations are given in Table 1. Consequently, σi, SF, Rp and 
Z2 are interchangeable and Z2 can serve as an agent for the 
four statistical parameters.

Common sense implies more or less similar numbers for 
Z2 regardless of the digitalisation of the type-profiles as long 
as the initial sampling interval is close to 1 mm. However, 
this is not the case. In Table 2, the values of Z2 exemplified 
again for the fifth type-profile according to each data set of 
Fig. 1 and the used equations (Eqs. 1 and 2) are given in the 
second and third column. Note, that it has been common 
practice to use only the discrete form of Z2 as of Eq. 2. There 
exist no differences concerning the use of Eqs. 1 or 2 for the 
data from Tatone (2009) and Li and Zhang (2015). This is 
not surprising as for both data sets the original sampling 
interval is constant (as shown in Fig. 2). However, for Stigs-
son and Mas Ivars (2019) data a clear contrast is calculated. 
In order to use Eq. 2 the data has to be equally spaced and 
their original data was interpolated according to the average 
sampling interval of 1 mm.

As stated earlier, Barton and Choubey (1977) employed 
a 1 mm sampling interval, which should therefore be the 
default for all JRC calculations. Additionally, Z2 is a param-
eter that relies on the calculation of height differences 
between adjacent points. Hence, a horizontal datum line has 
to be established. Accordingly, in Table 2 the values for Z2 
are given also for the case that the trend is removed and that 
subsequently the rotated profile is interpolated at 1 mm sam-
pling steps. The trend removal was achieved by performing 
a linear least squares regression and rotating the profile by 
the resulting overall slope angle towards the horizontal axis 

Fig. 5   σi, SF, Rp and λ versus Z2 for the 10 type-profiles (profile data 
from Tatone 2009)

Table 1   Transfer functions for σi, SF, Rp and λ to Z2

Parameter Transfer function Coefficient of 
determination

�
i

�
i
= 54.79 ⋅ Z2 + 0.25 R

2 = 0.99

SF SF =
(

Z2

)2
R
2 = 1.00

Rp Rp = 0.414 ⋅
(

Z2

)2
+ 0.0188 ⋅ Z2 + 0.9991 R

2 = 0.99

� � = 0.0306 ⋅ ln(Z2) + 0.0885 R
2 = 0.62

Table 2   Z2 for type-profile JRC = 9.5

Data source Original data Rotated and 
interpolated

JRC

Eq. (1) Eq. (2) (Eq. 3)

Stigsson and Mas Ivars 
(2019)

0.2577 0.1866 0.1840 9.6

Li and Zhang (2015) 0.2073 0.2073 0.1758 9.1
Tatone (2009) 0.1937 0.1937 0.1724 8.9



1904	 K. Marsch, T. M. Fernandez‑Steeger 

1 3

referred to as “simple detrending” hereafter. In detail, this 
pre-processing procedure results in a decrease of Z2 in the 
amount of 0.0315 for the data from Li and Zhang (2015) and 
0.0213 for Tatone’s (2009) data. These numbers are numeri-
cally small; however, it must be considered that this change 
is significant since the whole range of Z2-values for all 10 
type-profiles is only 0.4. Consequently, the tailoring prior 
to calculation culminates in a change of 8% on the Z2 scale. 
For the final JRC (far right column of Table 2) the variation 
decreases down to 4%, however, a maximal difference of 0.5 
on the JRC scale prevails.

Therefore, it is of vital importance to follow certain pre-
processing steps vigorously, namely trend removal and 1 mm 
sampling, to receive comparable results for the same profiles 
from differing data sets. The effect of doing so is depicted 
for all type-profiles in Fig. 6. In part (a) and (b) it becomes 
clear that pre-processing reduces the values of Z2. The trans-
formation of Z2 into JRC applying Eq. (3) is depicted in parts 
(c) and (d) of Fig. 6. For the uncorrected data, JRC in excess 
of 20 are calculated. This contradicts the range of the type-
profiles, which is marked with a rectangle in (c) and (d). 
Most importantly, correcting all data sets yields very good 
accordance with the curves and moves them to a reason-
able range of JRC. This comparison leads to the conclusion 
that, if proceeded as mentioned above, analysing data origi-
nally gathered with sampling intervals close to 1 mm, Z2 is 

insensitive to the input signal. This means that using Z2 is a 
robust approach to calculating JRC.

4.2 � Fractal Approaches

RMS-COR method. In Fig. 7 the relationships for σ(dh) and 
dv are plotted for the 10 type-profiles. In this case, all pos-
sible numbers for dv are shown, ranging from 1 to 100 for 
a 100 mm profile sampled at 1 mm. It becomes visible that 
the progression of the curves is erratic for large vertex inter-
val length dv. To account for this unavoidable effect due to 
the natural finite length of the profiles, Malinverno (1990) 
proposed using only vertex intervals smaller than 20% of 
the total length L of the trace (dotted-dashed line in Fig. 7). 
However, this number is too large to restrict all graphs to a 
more or less linear portion.

The influence of the vertex interval length on HRMS and 
σδh(1 mm) is illustrated furthermore in Fig. 8. The three 
cut-off length for dv from Fig. 7 are evaluated, namely 10, 
15 and 20% of the total length of the profile. For compari-
son, the results from Stigsson and Mas Ivars (2019) were 
re-digitised from one of their graphs. The largest differences, 
both for HRMS and σδh(1 mm), are seen for dv = 0.2 L. Con-
cerning the case of dv = 0.15 L good agreement is achieved 
for HRMS, however, for JRC larger than 15 differences occur 
for the asperity measure, σδh(1 mm). Instead, a cut-off at a 
maximal vertex window of 10% of the total length excludes 
the first dents for most curves of Fig. 7 and results in a good 
agreement with the reference data for σδh(1 mm) in Fig. 8.

Fig. 6   Influence of the input data and pre-processing in the Z2 
approach and deduced JRC for the type-profiles; a and c original data, 
b and d simply detrended and interpolated

Fig. 7   Finite length effect regarding the RMS-COR method for the 
type-profiles (profile data from Tatone 2009)
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Taking into consideration both Figs. 7 and 8, in this study 
the vertex interval length dv was limited to 10% of the total 
profile length. This is reasonable regarding especially the 
relationship between σ(dh) and dv in Fig. 7. Consequently, 
it leads to acceptable Hurst exponents and asperity measures 
regarding the only available comparative values. The dis-
crepancies can be explained by divergent input data and by 
the fact that it is somewhat unclear which cut-off value for 
dv Stigsson and Mas Ivars (2019) used and, subsequently, 
what values they included in their linear fit of σ(dh) and dv 
in log–log space. Unfortunately, so far the procedure has 
not been fully described, considering all aspects necessary 
for reproduction. Therefore, in this study, the methodology 
applied has been fully disclosed.

As for the statistical measure Z2 it is also important for 
the RMS-correlation method to assess its dependence on the 
data fed into the algorithm. From Fig. 9 it becomes clear that 
for all three data sets of the type-profiles H and σδh(1 mm) 
reach very similar values. Therefore, also RMS-correlation 
method is rather forgiving concerning imprecision during 
digitalisation. Note that the conclusions are drawn from de-
trended and interpolated input data, which is also a necessity 
for this technique as it operates with height differences of 
adjacent points on the profile.

Power spectrum analysis. For the calculation of JRC 
from power spectral analysis Eq. 4 can be used. However, 
it is important to realise that this correlation function was 
derived under consideration of only 64 vertices of each type-
profile. Stigsson and Mas Ivars (2019) argued that the input 
signal length for FFT processing should be a power of two. 

In fact, it is only a question of speed of the particular algo-
rithm: FFT is fastest for data lengths being powers of 2 and 
slowest for length values being prime numbers. However, 
most implementations of the FFT algorithm factorise the 
sample length thereby splitting up the transformation into 
manageable subsets (being necessary really only if large data 
is analysed).

In this study, Matlab© was used in which the FFT is 
implemented according to Frigo and Johnson (2005). Their 
library is capable of dealing with whatever signal lengths 
and with non-periodic signals as well. Consequently, all 
points of the type-profiles can be considered. This is advis-
able since omitting 36% of data points in the already scarce 
population of the type-profiles produces large uncertainties.

Another issue in using Eq. 4 in conjunction with the spec-
tral approach concerns the pre-processing of the input signal. 
Stigsson and Mas Ivars (2019) applied a “vertical adjustment 
[of the profile vertices] to avoid artificial high power biases 
of low frequencies”. This vertical adjustment is essentially 
a proportional linear reduction of the y coordinates accord-
ing to the height difference over the full profile length. 
However, constricting the data in that way introduces a bias 
in the high-frequency range. Moreover, it directly effects 
the amplitude of the signal and therefore alters the asper-
ity measure σδh(dx). From a practical point of view keep-
ing pre-processing of the input signal to a minimum seems 
reasonable as it avoids the possible introduction of errors. 
The scope should be to implement simple and safe routines 
to infer JRC. Therefore, the type-profiles are re-evaluated 
using FFT but this time applying it to the same input signals 

Fig. 8   Influence of vertex interval length dv in RMS-COR method for 
the type-profiles (profile data from Tatone 2009)

Fig. 9   Influence of the input data in the RMS-COR method for the 
type-profiles (dv = 0.1 L)
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as for the other methods. Consequently, all available data 
points from the type profiles are considered which were sim-
ply detrended and which were sampled coherently at 1 mm 
intervals.

The effects of simple detrending versus vertical adjust-
ment are plotted in Fig. 10. By definition, Eq. 4 is suitable 
to produce JRC from spectral analysis and from RMS-cor-
relation. This implies that more or less equal numbers for H 
and σδh(1 mm) should result irrespective of the two meth-
ods. For the case of vertical adjustment of the input signal, 
depicted in (c) and (d) of Fig. 10, noteworthy differences 
evolve compared to the values generated with RMS-COR 
(dashed line in Fig. 10). However, attention must be payed 
to the fact that in order to reproduce Stigsson and Mas Ivars 
(2019) data for FFT the first ten segments of a 100 mm pro-
file containing 64 vertices have to be analysed and from that 
population, the one with the maximal asperity measure is 

considered representative. However, in case the same and 
full, simply detrended input signal is used for FFT and RMS-
COR, better agreement between the two methods is seen as 
in (a) and (b) of Fig. 10. Most importantly, since the heights 
of the profile vertices are not tampered with the asperity 
measure accords to an acceptable degree for both methods, 
as visible from (b) compared to (d) of Fig. 10. Consequently, 
when the whole length of the type-profiles (100 mm) is con-
sidered compensation as of Eqs. 6 and 7 is not necessary in 
order to obtain similar results with FFT and RMS-COR.

In fact, the introduction of the compensation Eqs. 6 and 
7 presupposed that using an inverse Fast-Fourier-Transform 
(and consequently a spectral approach) is acceptable to pro-
duce the reference profile. Indeed, RMS-COR is a differ-
ent mathematical algorithm relying on height differences 
between points and, therefore, it leads to divergent results. 
However, the finite length effect can be coped with by 

Fig. 10   Influence of pre-processing on H and σδh(1 mm) calculated using FFT: a and b simple detrending, c and d vertical adjustment (profile 
data from Tatone 2009)
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limiting the vertex interval length dv to 10 percent of the 
profile length, as explained earlier, and a “correction” of H 
as of Eq. 6 seems to be not necessary. In case of Eq. 7 the 
situation is even more inconsistent. From a theoretical point 
of view, compensation should be unnecessary, however, for 
a fractal line, which is produced using an inverse FFT, the 
forward application of that algorithm results in different 
values of H. Once more, these contradictions illustrate the 
complexity of fractal approaches.

To enable comparison of the calculation methods also 
the sensitivity of the power spectrum analysis to the input 
is investigated. The calculated values for H and σδh(dx) are 
depicted in Fig. 11. The differences in the asperity measure 
are small. However, for the Hurst exponent even the datasets 
from Li and Zhang (2015) and Tatone (2009) show con-
siderable differences although they have similar constant 
sampling intervals. Therefore, compared to Z2 and RMS-
COR methods the spectral approach is sensitive to the input 
signal.

Compass walking. With this method, the pivotal choice 
to be taken involves the set of radii. The upper part (a) of 
Fig. 12 shows the recalculated compass dimensions for the 
type-profiles for the case that Lee et al.’s (1990) set of radii 
is used (r = 2, 4, 6, 8, 10 mm) and for the case, Turk et al.’s 
(1987) parameter set (r = 2, 6, 20, 60 mm) is used. Addi-
tionally, another set of radii containing five values spaced 
equally on a logarithmic scale from 1 to 15 mm was intro-
duced. It must be emphasized that although the latter set is 
perfectly reasonable, as its values are larger than the sam-
pling interval of the profile, smaller than the profile length 

and it falls in the range of prior works, large differences 
occur. For type-profile 7 discrepancies in excess of 0.007 
points on the scale of Dcomp result. This transfers into an 
enormous contrast of 9.6 for the JRC when Eq. 8 is used 
(part b) of Fig. 12) and amounts to 8.2 JRC-points when 
Eq. 9 is utilised (part c) of Fig. 12). For the other type-
profiles also divergence appears according to the set of 
radii used. Consequently, the technique is sensitive to the 
choice of compass radii. Furthermore, Fig. 12 illustrates the 
dependence of the compass walking method on the input 
data as, obviously, other profile data than the original from 
the authors of the equations was used (in this case from 
Tatone (2009)). Finally, irrespective of the three different 
sets of radii applied here, in general, with both correla-
tions an underestimation of JRC emerges as most points lie 
beneath the 1-1 line (part b) and (c) of Fig. 12).

Overall, the fractal dimension determined by compass 
walking is in either case disputable for rock profiles. Espe-
cially the question of defining meaningful compass radii 
made Schmittbuhl et al. (1995) to advise against the use of 
this method. Regardless, the method functions well in the 
sense that Dcomp correlates with JRC for the type-profiles. 
Therefore, for comparative reasons and due to its broad use, 
compass walking is also assessed in this study. In order to 
being able to make use of Lee et al.’s (1990) correlation, 
coherently, in this paper, their set of radii, namely r equalling 
2, 4, 6, 8, 10 mm, is used.

5 � Application to a Dataset of Natural 
Surface Traces

Most information mentioned afore refer to the type-profiles. 
In case specific prerequisites are appreciated, exercisable 
techniques exist to closely calculate the given JRC values 
from the geometry of the profiles. Obviously, as all correla-
tions reference to the “same” 10 type-profiles very similar 
JRC are determined irrespective of the calculation method. 
But is this also valid for non-standard profiles? In this sec-
tion, that question shall be elucidated by analysing profiles 
extracted from three-dimensional models of natural rock 
surfaces.

5.1 � Data Acquisition and Handling

To produce the surface models the rock samples were 
scanned using a GOM ATOS structured light scanner. 
The resulting representations feature a volumetric aver-
age RMS of residuals of 40 µm based on having scanned 
spherical markers under the same conditions and within 
the object space of the rock samples. In Table  3, the 
resolution of each sample is listed. The device used is a 
highly capable metrology system that can be considered 

Fig. 11   Influence of the input data in the power spectrum method for 
the type-profiles (simple detrending)
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a standard in the industry. According to Marsch et  al. 
(2020), consequently, the surface models produced with 
this procedure are trustworthy and useful in rock rough-
ness evaluation.

Also, in that prior publication, a routine was estab-
lished in which all possible standard-length profiles on a 
surface mesh can be extracted. In the procedure, which is 
also applied in this study, height information is sampled 

Fig. 12   Influence of the radii on the compass dimension Dcomp and JRC (profile data from Tatone 2009)

Table 3   Samples used in this 
study

Sample Model resolution [pts/
mm2]

Length/width [mm] Category according to 
ISRM (1978)

Basalt, B 47.6 178/113 I—rough stepped
Granite, G 51.3 172/95 II—smooth stepped
Limestone, K 60.5 170/116 IV—rough undulating
Schist, SF 55.0 170/103 V—smooth undulating
Sandstone, SI 55.2 162/112 VII—rough planar
Sandstone, SS 53.2 166/104 IV—rough undulating
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with the sliding window method, simulating an imaginary 
profilometer of 100 mm length that traces the mesh in a 
user-defined raster, in this case, 1 mm × 1 mm whereas the 
actual sampling interval amounts to 0.1 mm. By doing so, a 
large quantity of profiles can be gained. All profiles are pre-
processed individually (trend-removal) and then evaluated 
according to the methods explained earlier. This course of 
action is reasonable since it overcomes the usual randomness 
of measuring only one profile that is then said to be repre-
sentative for a surface. Moreover, scale effects are avoided 
as the length of the extracted profiles conforms to the length 
of the type-profiles.

5.2 � Rock Samples

Depending on the formation regime rocks develop differ-
ent textures and consequently different roughness charac-
teristics. Hence, upon evaluation of the universal validity 
of a theory, it is advisable to consider samples from all 
three main rock classes, namely igneous, metamorphic, and 
sedimentary rocks. As in this study, statistical and fractal 
calculation routines are compared, that are solely based on 
geometry, it is unimportant which specific rock material is 
used if the selection of surfaces covers the whole range of 
possible JRC from 0 to 20. Consequently, the full bandwidth 
of roughness profiles starting with smooth appearances and 
ending at rough progressions must be analysed.

For this study, a collection of quarry stones was gathered 
to then manually introduce fresh tensional fractures into the 
rock blocks. That way the fracturing process is very much 
constrained and controllable. The resulting surfaces were 
presented to a group of five engineering geologists which 
were asked to select denominations according to the ISRM 
(1978). The roughness categories were assigned considering 
the whole laboratory size sample and therefore depict the 
small-scale roughness or unevenness. The average subjective 
assessments are given in Table 3. Note that the classification 
is by no means objective and the list shall only give a general 
impression of the surfaces. For a closer look and further 
personal analysis, the surface meshes are also accessible in 
the repository to this study (see Marsch 2020).

5.3 � Results

The inference of JRC from statistical and fractal param-
eters obviously involves a mathematical transformation. 
As discussed earlier, the correlation functions incorporate 
assumptions and findings of the particular authors, which 
consequently add another level of complexity and uncer-
tainty. Therefore, as a first step, the plain statistical and frac-
tal values are examined.

Analysing the rough limestone sample K, in Fig. 13 the 
standardised histograms of the statistical parameters Z2, SF, 

σi, Rp and the distributions of D according to the three meth-
ods for the determination of the fractal dimension are given. 
Note that the fractal distributions of course have not been 
standardised since they are theoretically of the same unit and 
scale. As expected, the z-scores for the four different statisti-
cal parameters are quite similar. Consequently, as a general 
approximation, these measures are also interchangeable just 
like for the type-profiles. However, concerning the fractal 
approaches, large discrepancies become visible. The com-
pass dimension Dcomp exhibits a colossal peak at around one 
but shows a large range of values due to extreme outliers. 
Hence, compared to the other methods, the compass dimen-
sion is rather indistinctive on the scale of D as it concen-
trates around unity. Yet, for roughness profiles, according to 
the theory, the fractal compass dimension should lie between 
one and two (cf. Hastings and Sugihara 1994). Indeed, pro-
files from more or less homogenous planer smooth surfaces 

Fig. 13   z-Scores of the statistical values and histograms of the fractal 
approaches, exemplified for sample K
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would yield a low compass dimension of close to one, how-
ever, sample K has an undulating rough appearance. Taking 
a closer look at the values of D from the RMS-correlation 
method and the spectral analysis leads to the conclusion that 
they do not accord. In agreement with the theory, the values 
of DRMS are very well situated between 1.1 and 1.5. Instead, 
DFFT shows a wider range and unrealistic values below unity. 
These facts gain importance since the same correlation func-
tion (Eq. 4) is suggested to be used for both methods to infer 
JRC. In general, the distribution of the fractal dimension D is 
evidently very much dependent on the specific determination 
routine. Additionally, when comparing the statistical with 
the fractal histograms no definite similarity of the distribu-
tions can be found. Most importantly, not only for sample K, 
but also for all other samples used in this study the findings 
above are valid.

Remember, as a requisite due to referencing of all corre-
lations (statistical or fractal) to the 10 type-profiles, for any 
other profile as well, irrespective of the particular calcula-
tion approach, the same JRC should result. Consequently, 
JRC from fractal approaches versus JRC from statisti-
cal approaches ought to plot on the bisecting line. For all 

samples used in this study, these graphs are given in Fig. 14. 
Here, the inference of JRC from statistical approaches is 
represented by using Z2, plotted on the abscissa.

There is some information that can be generalised from 
all samples. First, the fractal JRC values calculated accord-
ing to Lee et al.’s (1990) Eq. 8 using Dcomp show a large 
divergence from equality with the statistical JRC. The vari-
ation is enormous and always covers more than the regular 
range of JRC values of 0 to 20. Hereby Eq. 8 delivers JRC 
smaller than zero regardless of the ISRM roughness cat-
egory of the particular surface. Secondly, concerning the 
JRC inferred from spectral analysis, the graphs are diverse. 
For the undulating smooth sample SF and the planar rough 
sample, SI smaller discrepancy with the statistical JRC is 
seen compared to the other samples (still, the JRC values 
do not accord well). Apparently, the spectral analysis works 
better with surfaces that do not show large height differ-
ences or, stated otherwise, that show low variation and low 
amplitudes. Conversely, this underlines the critical issue 
within the spectral analysis of defining the asperity measure. 
By any means, the variation of JRCFFT is large and spans a 
range of at least 12.5 JRC-points (sample SS). Lastly, JRC 

Fig. 14   Statistical versus fractal JRC (inset: sample name and total number of profiles analysed), simply detrended profiles
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determined with the RMS correlation method coincide with 
JRCZ2. For practical application, the divergence from the 1-1 
line is negligibly small. This applies to all samples. Notice 
here that the data were not transformed (Eqs. 6 and 7) fol-
lowing the results of the re-evaluation of the type-profiles.

Regarding only the type-profiles it was shown before that 
simple detrending is sufficient also for the use of the spectral 
analysis method to achieve acceptable results. However, the 
large variation of JRCFFT in Fig. 14 suggests that this is not 
the case for profiles other than the type-profiles. Especially 
in samples B, G and K large steps are present. Consequently, 
extracted profiles that incorporate these steps are discontinu-
ous in the sense that the height difference between the ends 
of the profiles is large. This lack of periodicity will result 
in spectral leakage and therefore biased values for H and 
σδh(dx) will be obtained. In order to eliminate this effect, 
the profiles were additionally vertically adjusted, and the 
outcomes are given in Fig. 15. Tapering the profiles removes 
almost all JRCFFT above the 1-1 line from the population 
(c.f. Fig. 14). However, the variation of JRC from spectral 
analysis remains large and the values bulge under the bisect-
ing line. Consequently, this time the JRC is underestimated 

compared with the use of RMS-COR or Z2. In case Eq. 7 
was used to additionally reduce HFFT-values the differences 
would even increase. In summary, this underestimation is 
contradictive to the analysis of the type-profiles where the 
Hurst exponents based on the power spectrum systematically 
exceed the H-values from the RMS-COR method.

To make use of correlation functions for JRC in general, 
it was argued before that it is important to follow the pro-
cedures of the originators as close as possible. Therefore, a 
third case must be considered for using power spectral analy-
sis with the six surfaces. As Stigsson and Mas Ivars (2019) 
used only the window of 64 vertices of the type-profiles with 
the largest asperity measure considering the first 10 vertices 
for their correlation, a similar procedure was used here. The 
rationale for this is that during direct shearing sample halves 
would most likely adhere to large steps of the surface. There-
fore, these irregularities should be included in the roughness 
calculations. In this study, at first, the starting 65 vertices 
were taken from the 100 mm long profile. This window was 
then simply detrended and vertically adjusted and reduced 
to 64 points. Secondly, the procedure was repeated on the 
subsequent 65 vertices and so forth. Finally, the combination 

Fig. 15   Statistical versus fractal JRC (inset: sample name and total number of profiles analysed), vertically adjusted profiles
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of the Hurst exponent with the largest asperity measure from 
the group of 35 pairs was said to be representative for the 
standard-length profile. The results are shown in Fig. 16. For 
all samples, the values of JRCFFT were elevated compared to 
Fig. 15 and now gather around the bisecting line. However, 
the large variation persists and for sample K, JRCFFT even 
extends to values greater than 20. As for the two other cases, 
also with this processing divergent results are obtained upon 
the usage of spectral analysis.

However, the close agreement between JRCRMS-COR and 
JRCZ2 for all three pre-processing cases is somewhat striking 
since the RMS-Correlation method is rather approximative 
due to the need of linear regression of dv and σ(dh) in log–log 
space. As stated earlier, fractal approaches need two param-
eters to be fully constrained. In Eq. 4 the share of the asperity 
measure σδh(1 mm) in the final JRC is more than a factor of 
10 larger than the share of the Hurst exponent. Consequently, 
the JRC calculated by RMS-correlation or spectral analysis 
predominantly depends on the magnitude parameter. There-
fore, for a closer analysis σδh(1 mm) is plotted versus Z2 in 
Fig. 17. Most obviously, the scatter of σδh(1 mm) deduced 

from the spectral analysis is large but instead, in the case of 
RMS-COR a higher degree of similarity with Z2 is obtained. 
In fact, for the special case of analysing profiles with 1 mm 
sampling steps the two measures σδh(1 mm) and Z2 must be 
equal. The asperity measure is defined as the sample standard 
deviation of the population of height differences of adjacent 
vertices, δh, for a profile of N points:

A prerequisite for the calculation of all roughness measures 
was that a possible overall slope is eliminated. Any procedure 
of detrending should result in �h = 0 . Consequently, Eq. (10) 
reduces to:

(10)��h(dx) =
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√
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Fig. 16   Statistical versus fractal JRC (inset: sample name and total number of profiles analysed), vertically adjusted profiles and window of 64 
vertices with largest σδh(1 mm) per profile considered
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Under consideration of Eq. 2 it becomes clear that Z2 and 
σδh(dx) are linked by the inverse of the distance between the 
vertices, dx, reading:

Now taking in mind that the concept of JRC estimation 
with the standard chart is valid for 1 mm sampling intervals 
only, in this particular case, Z2 and the asperity measure are 
equal:

Consequently, all data points in Fig. 17 should lie on the 
1-1 line. Indeed, σδh(dx) deviates from Z2 for both RMS-
COR and FFT methods. However, RMS-correlation sur-
passes the power spectrum approach in this matter.

6 � Discussion

At first glance, it seems utterly simple to determine the JRC 
from profile traces: there exist the type-profiles as a refer-
ence along with some statistical or fractal parameters and 

(12)Z2 =
1

dx
⋅ ��h(dx)

(13)Z2(1mm) = ��h(1mm)

subsequently, one can calculate the JRC for whatever profile. 
A closer second look however reveals many pitfalls: how 
good is the original database for the correlations anyhow? 
Are the working hypotheses comprehensible? Are the cal-
culation methods useful and forward-looking? Finally, how 
can the results be evaluated, and, do they cover the whole 
data range of possible JRC adequately?

First, when dealing with the idea of determining JRC by 
correlation functions based on the type-profiles, the follow-
ing must be considered: roughness increases from top to 
bottom in the standard chart. Consequently, the predicted 
JRC must increase. This apparently ordinary observation 
is in no way trivial: it makes it imperative that any math-
ematical parameter (or set of parameters) deduced from the 
profiles can be fitted by a monotonic function (or even bet-
ter strictly monotonic). This irrevocable, paramount mat-
ter of fact is visualised in Fig. 18. As it is well-known, the 
statistical parameter Z2 satisfies this requisite to the full 
extent without further input (cf. Fig. 6b)) whereas fractal 
approaches must yield at least two independent variables 
to meet this need (cf. Fig. 8). This study pointed out the 
close relationship of the asperity measure σδh(1 mm) with 
Z2. Indeed, these findings provoke the question of relevance 
concerning fractal approaches for JRC determination: why 

Fig. 17   Asperity measure σδh(1 mm) versus Z2, vertically adjusted profiles
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bother to calculate the Hurst exponent involving complex 
calculation routines to then scale that value with σδh(1 mm)? 
Using H and σδh(1 mm) produces unneeded sources of error 
and adds unnecessary ramifications. Moreover, the influence 
of σδh(1 mm) on JRC in Eq. 4 is one magnitude greater 
than the input of H. Consequently, Eq. 4 is practically rather 
another statistical than a fractal correlation.

Undeniably, the visual nature of the type-profiles is of 
inferior quality. The information that can be gained from 
them is narrow. In fact, by revealing the effect of the sam-
pling interval on JRC, Yu and Vayssade (1991) indirectly 
acknowledged the limitations of the standard chart. There-
fore, re-digitalisation is useless and, at the latest, Tatone 
(2009), by sampling coherently in 1 mm intervals, squeezed 
out the best information. By far, his data suffices. Neverthe-
less, what was learned here from different data sets of the 
type-profiles is how sensitive specific calculation approaches 
are to the input signal. The robustness of the algorithms is 
absolutely essential before the background that it is impos-
sible to exactly reproduce a measurement with simple tools 
like the tactile profilometer. Even using modern 3D scanners 
will not produce an identical image of a surface repeatedly. 
Nevertheless, if the measured object does not change then 
the roughness metric should not change either, at least not 
that much. Having this in mind Z2 and RMS-COR clearly 
outperform the FFT routine as they yielded similar results 
using different digitalisations of the type-profiles.

In their original work, Barton and Choubey’s (1977) 
stated that, preferably, JRC should be determined by direct 
shear testing. As a courtesy, they prepared the 10 type-pro-
files to provide engineers and geologists with a possibility 
to visually estimate JRC. However, over the past decades, 
opposed to the intended use of the type-profiles, researchers 
have driven correlating whatever measures with the type-
profiles to the absurd, claiming to be able to calculate JRC 

to decimal places based on re-digitising the original data 
over and over again. This led to a situation in which a con-
fusing amount of correlations exists that each time refers to 
a very particular data set of the, although identical, type-
profiles. Moreover, divergent calculation schemes were 
applied and unfortunately, in most instances, they are poorly 
documented. Especially with fractal methods, however, it is 
extremely important to provide all variables to guarantee a 
safe application by others. Consequently, there is a need for 
standardised procedures.

A more general issue concerns the small quantity of the 
type-profiles. Establishing a universally applicable theory 
on 10 data points may result in an extreme simplification. 
Dealing with the natural, practically infinitely diverse matter, 
namely rock surfaces, demands a large database, at least to 
explore and prove the data distribution. Moreover, the appli-
cation of extremely powerful algorithms to develop simple 
mathematical relationships based on so little input inevitably 
leads to overfitting. Additionally, there exist only a few data-
sets for cross-validation, of which some are given in Fig. 19. 
Certainly, for the type-profiles an acceptable relationship 
exists between JRC back-calculated from mechanical tests 
and JRC calculated from Z2 or RMS-COR. At least, eight 
pairs lie near the 1-1 line. However, a considerable variation 
of more than five JRC-points is seen for the data from Bandis 
(1980), Bandis et al. (1983) and Grasselli (2001). Appar-
ently, surfaces that have similar geometrical characteristics, 
resulting in similar Z2 or H and σδh(1 mm) and consequently 
similar JRC, yield different shear strength. The same holds 
for the reversed statement. However, the reason for the poor 
distribution in Fig. 19 might lie in the selection of allegedly 
representative profiles from the surfaces, although, how this 
can be done objectively is beyond the scope of this study. 
Indeed, many different profiles could have been used as an 
agent for the surfaces in question (cf. Fig. 13).

In summary, relying on the type-profiles only and repeti-
tive fitting of more and more parameters to them does not 
help the case. The problem of roughness estimation from 
geometrical information must be placed on a larger founda-
tion. Consequently, openly available more significant, pref-
erably three-dimensional geometric data accompanied by 
results from direct shear tests are needed.

7 � Conclusion

In this study, considerable efforts were made to compare dif-
ferent methods for determining the JRC from roughness pro-
files and to make their differences transparent. This allows a 
direct comparison of statistical and fractal methods between 
each other which is a novelty in the field of JRC evaluation. 
The focus of this study was to verify the hypothesis whether 
for any arbitrary profile the same JRC results irrespective of 
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using statistical or fractal approaches and to denominate the 
most reasonable practice.

To do so, first, problems concerning the input data for 
correlations, namely the initial type-profiles, were discussed. 
The sparseness and low-resolution of the original data bring 
about unquantifiable uncertainties. The application of more 
and more complex mathematical routines and extensive 
parametrisation is not appropriate. The type-profiles should 
not be considered the axiomatic definition of JRC, but they 
are still a smart tool for estimation.

On these grounds, secondly, the accepted state-of-the-
art mathematical methods to calculate reasonable statisti-
cal and fractal parameters have been described thoroughly, 
denominating and evaluating all input variables, and, thirdly, 
explaining their sensitivity by means of re-evaluating the 
type-profiles. All calculation routines and inputs used are 
available in the online repository to this publication (see 
Marsch 2020). Of course, disclosing every variable and 
pre-processing step is an absolute necessity for comparabil-
ity and quality assessment. Thereby, the following can be 
concluded:

•	 Z2 can be used as an agent for statistical approaches,
•	 the input signals must be detrended and interpolated at 

1 mm intervals,
•	 a cut-off length with RMS-correlation of dv = 0.1 L 

should be used, and
•	 spectral analysis is sensitive to the input data.

Obviously, for the type-profiles all methods lead to simi-
lar JRC values. Therefore, in the last step of this study, a 
vast number of profiles were extracted from different rock 
surfaces to investigate the interchangeability of the calcula-
tion schemes. Based on the analysis of these profiles the 
following statements stand:

•	 compass walking is inapplicable to rock traces,
•	 spectral analysis is defective concerning the profile-based 

concept of JRC, and
•	 RMS-correlation accords well with Z2.

Concerning spectral analysis and RMS correlation, the 
inferred JRC heavily rely on the asperity measure. This 
applies to the approximation of JRC on 10-cm scale based 
on the type-profiles. However, clearly, the benefits of fractal 
approaches, being the determination of roughness on differ-
ent scales and large areas, shall not be questioned.

Explicitly, thinking beyond the present type-profiles for 
JRC is advocated here. There exist to great uncertainty in 
Barton and Choubey’s (1977) original chart. The type-pro-
files should only be used for what they have been initially 
introduced, namely approximating JRC. Reporting JRC to 
decimal places suggests an accuracy that does not exist. The 
best the user can obtain from the present correlations is the 
class of JRC.

Naturally, field engineers and practitioners want to apply 
routines safely. Therefore, offering suggestions on how to 

Fig. 19   Relationship between back-calculated JRC and JRC inferred by geometrical means
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apply the concepts are required: using the simple measure 
Z2 is good enough to determine the JRC from profiles as it 
is coherent with the well-meant, engineering-like standard 
chart. A suggested workflow for profiles of 10 cm length is 
given in Fig. 20. This is the best practice from a present per-
spective having only the sparse and low-resolution original 
type-profiles at hand for referencing.

A critical point in determining JRC based on two-dimen-
sional data is most certainly the selection or identification 
of representative profiles. Indeed, Barton and Choubey’s 
(1977) type-profiles are not objective as they have been cho-
sen for unreproducible reasons: “an attempt was […] made 
to select the most typical profiles”. However, this issue was 
not discussed in this study deliberately since direct mechani-
cal shear tests would have been necessary to calibrate pos-
sible new sampling routines. For the future, the question 
needs to be addressed of how representative and more inclu-
sive two-dimensional geometric input data can be sampled 
from shear surfaces in case three-dimensional parameters 
are unwanted. This could lead to objective and better cor-
relations with JRC.
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