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Abstract

We present context-aware benchmarking and performance engineering of a mature TByte-scale air quality database system
which was created by the Tropospheric Ozone Assessment Report (TOAR) and contains one of the world’s largest collections
of near-surface air quality measurements. A special feature of our data service https://join.fz-juelich.de is on-demand
processing of several air quality metrics directly from the TOAR database. As a service that is used by more than 350 users of
the international air quality research community, our web service must be easily accessible and functionally flexible, while
delivering good performance. The current on-demand calculations of air quality metrics outside the database together with
the necessary transfer of large volume raw data are identified as the major performance bottleneck. In this study, we therefore
explore and benchmark in-database approaches for the statistical processing, which results in performance enhancements of

up to 32%.

Keywords Air quality data - Scientific database - Scientific web service - Performance tests

Introduction

Due to enhanced sensor technologies and widened mon-
itoring efforts around the world, scientific databases of
environmental observations have grown to terabyte scale.
This can pose challenges on their performance, especially
when the database is continuously extended with new
data (Directorate-General for Communication EC 2018;
Gray and Szalay 2002).

In this paper we present context-aware benchmarking
and performance engineering of the Tropospheric Ozone
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Assessment Report (TOAR) data infrastructure, a terabyte
(TByte)-scale scientific air quality database and connected
web service. We apply the definition of context-aware given
by Dey (2001): “A system is context-aware if it uses context
to provide relevant information and/or services to the user,
where relevancy depends on the user’s task.”.

The TOAR data infrastructure was created by the research
centre Jiilich in the context of the global TOAR initiative
Schultz et al. (2017). It meets special requirements of the
TOAR user community in terms of data acquisition, open-
ness, functionality, flexibility, performance and FAIRness
(Wilkinson et al. 2016). Due to its extensive and flexi-
ble on-demand processing capabilities, it offers a novel
kind of scientific data service. The design of such ser-
vices must be guided by expertise in earth system science
and computer science to ensure a user-friendly and trusted
application with adequate performance. While our online
data services have been good enough for the analysis of
up to 100 individual time series, we are aware of perfor-
mance bottlenecks when it comes to larger data queries.
Although the general topic of database performance is well
discussed in the technical literature, we found no published
case studies on tuning scientific databases. This motivated
us to study various potential performance improvements and
report them here.
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Performance of scientific database
applications

Making database applications fast has become a hot topic,
since rapid data availability and processing are a limiting
factor of end-user data services and related applications
when databases grow to TByte-scale and beyond.There
exist various tuning approaches for general database man-
agement systems (DBMS) and connected (web-)services.
Logical database tuning methods like scheme enhancements
and denormalization (Westland 1992) may require extensive
reorganization of the database, possibly involving longer
downtimes (Thalheim and Tropmann-Frick 2011). Tuning
by adjusting performance critical parameters of the database
is often difficult due to the complexity of the system and
large number of parameters, which might influence different
database applications in different ways. There are a number
of tuning advisory frameworks (e.g. Lu et al. (2019)) that
can support this process. Physical tuning methods like
indexing and query optimization are well understood in
general (Shasha and Bonnet 2004; Thalheim and Tropmann-
Frick 2011). However, evaluation and improvement of
DBMS performance in real world applications is only pos-
sible when also taking the user perspective into account.
This means in practice, that tuning will be most successful if
the entire data service including the underlying database(s)
and (web-) services are treated as a whole and tuned in a
context-aware approach (Dey 2001; Nimalasena and Getov
2014). A deep understanding of the use cases and bottle-
necks of DBMS and their applications has led to various
innovative solutions in the data science field (Kersten et al.
2011; D’Silva et al. 2019; Sandha et al. 2019).

Fast access to scientific data products increases the
quality, flexibility and outreach of scientific workflows, for
example by enabling researchers to investigate different
scenarios and view more data. As such, the availability
of air quality data products enabled the rapid publication
of numerous studies which assess changes in air quality
during the COVID-19 lockdowns in the year 2020 (see
e.g. Farahat et al. 2021; Gkatzelis et al. 2021). Fast access
to scientific data products becomes especially important
in interdisciplinary research contexts. As an example,
the TOAR data, which were assembled and analyzed by
atmospheric scientists, are increasingly used by medical
researchers to investigate impacts of air pollution on human
health (Stanaway et al. 2018). Good performance of a
scientific DBMS is achieved e.g. by adapting indices,
buffer size, and parallel processing. The most frequent
queries are monitored and can be tuned if necessary.
This is a continuous process since the database might
grow, and frequent query patterns might change over time.
Physical performance monitoring can be supported by
query plans and tuning advisory frameworks. Furthermore,
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common relational databases might not be ideal for
processing time series since they do not take advantage of
the order of rows (Shasha and Bonnet 2004). This pushed
the recent development of (often partly closed source)
time series databases (InfluxData et al. 2018; Nasar and
Kausar 2019).

Additionally, large scientific databases and connected
applications face typical context-related performance bot-
tlenecks. Scientific data is often stored in a relational
database, but is required to be in non-relational format
for analysis and further processing. This so called “object-
relational impedance mismatch” (Ireland et al. 2009) often
degrades the performance of the database applications. It is
common to query relational data from a scientific database
and transfer it to another system, where the data is converted
to non-relational format and analyzed. The performance
of this workflow is diminished by two factors: 1) Trans-
fer of large amounts of data from one system to another
2) Converting relational to non-relational data representa-
tion. The transition from relational to non-relational format
is unavoidable in some cases, but large data transfers can
be averted when (parts of) the data processing is carried
out inside the DBMS. Processing then happens “near the
data” on the database server. This concept was adapted e.g.
by D’Silva et al. (2019), who developed an in-database
interactive data exploration framework based on Python,
which offers more flexibility than user defined in-database
functions and a better performance than external data sci-
ence frameworks. In another approach, Sandha et al. (2019)
train a machine learning algorithm with big data input inside
a DBMS using the Teradata SQL engine.

In practice, the workflow of querying data from a database,
and processing it for further analysis is always a trade-
off between performance and flexibility, the two extremes
being user defined functions with minimum flexibility and
maximum performance on the database side and pure
outside-calculations on the client side. Furthermore, obtain-
ing raw data and developing own applications may be imprac-
ticable for the scientific end user, when programming takes
a long time as the needed analysis is complex, or when cal-
culations might not be easily reproducible by others. This
can be overcome by connecting the scientific DBMS to
a (web)-service that offers on-demand calculation of well
documented data products which meet the needs of the sci-
entific community in that specific field. There exist some
large scientific database providers which link the DBMS to
a web-API that offers basic standardized functionality like
averaging over an axis or cutting out a domain window,
e.g. in astronomy and earth science (Wagemann et al. 2018;
Bereta et al. 2019; Gray and Szalay 2002). The database
described in this paper goes one step further and offers more
sophisticated air quality metric data products as part of an
open web-service.
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TOAR database and data services

TOAR created one of the world’s largest databases for near-
surface air quality measurements (Schultz et al. 2017). Data
in the TOAR-DB have been collected from different public
bodies, air quality networks, and research institutions all
over the world, and the database continues to grow. More
than 350 users from 35 countries have accessed the TOAR-
DB via the graphical web interface JOIN! or the REST
API? and downloaded station information and aggregated
statistics of ozone and associated variables. All statistics
are calculated online from the hourly data that are stored
in the database to allow for maximum user flexibility.
These statistics were used in the first Tropospheric Ozone
Assessment Report, which was published as a series of peer-
reviewed journal articles (Fleming et al. 2018; Gaudel et al.
2018; Lefohn et al. 2018; Chang et al. 2017; Young et al.
2018; Mills et al. 2018; Tarasick et al. 2019; Xu et al. 2020).
The data were also analyzed for the 2017 Global Burden of
Disease assessment (Stanaway et al. 2018).

The TOAR-DB is a PostgreSQL V10 relational database.
PostgreSQL was chosen because it is open source, widely
used in the scientific community and highly scalable. The
database server and JOIN web server are located on virtual
machines (VM) on different hosts inside an OpenStack
cloud environment at Jiilich Supercomputing Centre (JSC).
The physical location of the data (tablespace) is mounted
via NFS over a 10GBit/s connection. The server side
system is an IBM Spectrum Scale with a total storage
of 52PByte (Jiilich Supercomputing Centre 2019b). The
physical systems running the VMSs are Fujitsu Primergy
RX2530 M4 servers each equipped with 384 GByte of RAM
and two Intel Xeon Gold 6126 12-core processors (Jiilich
Supercomputing Centre 2019a). The VM hosting the
database is equipped with four VCPUs and seven GByte
of memory. In the current set-up the web services trigger
SQL queries via the Python psycopg? library on demand
and the resulting raw data are transferred to the JOIN server
and processed locally to derive the statistical quantities
requested by the end-user. It is evident that obtaining data
products with this setup entails more performance-critical
steps than simple command-line access to a database. In
Figure 1 we therefore show performance-critical processes
in various possible configurations of database-driven data
services, including ours.

The TOAR-DB model largely follows the 3rd normal
form. It consists of four tables with metadata information
(variables, networks, stations, timeseries) and separate
data tables for each variable (e.g. ‘03_hourly’ for hourly
Oz/ozone mixing ratio data). All data values are stored

Thttps://join.fz-juelich.de
Zhttps://join.fz-juelich.de/services/rest/surfacedata/

as individual rows in the data tables. The data columns
are timeseries_id, timestamp, value, and two
status columns. The primary key of the data tables is
the combination of timeseries_id and timestamp.
For example, the ozone table consists of approximately
10° entries. Individual time series can be up to 40 years
long, resulting in up to 350,000 values per time series.

The most common query patterns on the large data
tables are (i) extraction of individual timeseries to calculate
aggregate statistics or air quality metrics, and (ii) extraction
of all values at a given timestamp to generate maps.
Furthermore, it occurs relatively frequently that users
want to see the highest (or lowest) N values of a given
variable, possibly restricted to a given time period. To
maximize performance in all of these cases, indices were
defined for timestamp, value, and the combination of
timestamp, value and timeseries_id on the ozone
table, because it is used most frequently.

The web API to the TOAR-DB is written in Python-
Django (with NumPy, SciPy and pandas packages for
numerical calculations (van der Walt et al. 2011; Virta-
nen et al. 2020; McKinney 2010)) and offers more than
30 metrics that are commonly used by the international
ozone research community and air quality agencies. Air
quality metrics are used to consolidate air quality informa-
tion from longer time periods into a single figure, which
is then used for decision-making and air quality assess-
ment. There exist different metrics for different air quality
impacts, e.g. on human health or crops and vegetation. For
instance, the AOT40 vegetation metric cumulates ozone
exceedances above 40 parts per billion (ppb), assuming
that vegetation is only harmed by ozone concentrations
above that threshold. Data capture criteria are applied in
the metric calculations to provide robust figures for deci-
sion making. For example, to calculate the European ozone
standard,’ daily maximum 8-hour average concentrations
have to be calculated and the 26th highest value must be
reported under the condition that all days entering the cal-
culation have at least 18 hours of valid measurements. Thus
many metrics contain combinations of filtering and aggre-
gation. Documentation on all metrics is available in Schultz
et al. (2017).

Benchmarks

The primary objective of this work is to compare the
performance of in-database data processing versus cal-
culations on the web server to find out if it is worth-
while to refactor the existing TOAR-DB and web service

codes. To thoroughly understand performance, we designed

3https://ec.europa.eu/environment/air/quality/standards.htm
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Fig.1 Configurations of database-driven data services: a Direct access
to the database via SQL commands. b The database is accessed via a
web service API; both service components run on the same hardware.
¢ Our configuration as described in TOAR database and data services:

several benchmarks, each highlighting a specific aspect,
such as (parallel) data processing, data transfer and index-
ing. Each benchmark consists of various test cases that solve
the same task in different ways. For example, to understand
the performance of calculating air quality metrics inside vs.
outside the database, we rewrite the Python/Pandas routines
to SQL, and check if we save time by doing the calculation
inside the database instead of Python. During a benchmark,
test cases are repeated several times while the average per-
formance is monitored. Most benchmarks are carried out on
the ozone table as this is a blueprint for other tables in terms
of structure, size and indexing. In the following, we detail
the benchmarks and the different test cases they consist of.
A summary is given in Table 1.

Data aggregation inside versus outside the database

This benchmark aims to compare the performance of
different aggregate functions inside the database in SQL
versus outside the database in Python. Pure aggregation
of data is more basic than use-case calculations for our
web service, but its performance generalizes to more
complex applications. The task for this benchmark is the
aggregation of ozone data from all available stations,
filtered by a randomly selected single day between the
years 2000 and 2010. The date is chosen randomly to
avoid caching and thus influencing the query time. The
temporally filtered sub sets consist of approx. 107 entries
each. The aggregation was performed on these sub sets
of ozone values. Four different aggregates were applied,
covering a variety of numerical complexities and reflecting
the usual data processing in scientific analysis: counting
entries (‘count’), finding the maximum entry (‘max’), the
mean value of all entries (‘avg’) and their standard deviation
(‘std’). For each aggregate, three different test cases were
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as b, but the two service components operate on different hardware.
The gear wheels and stop watches denote performance-critical data
processing and data transfer

compared against each other: 1) “Python”: The temporally
filtered data was queried from the database and further
aggregated in the Python data science framework NumPy
outside the database. 2) “SQL”: The data was filtered
and subsequently aggregated in form of a single SQL
query. 3) “PL/Pythonu”: The aggregate of filtered data was
calculated inside the database by a user defined function
in the imported procedural language PL/Pythonu. For every
test case, ozone data from 100 randomly selected dates
were aggregated, and the calculation times were monitored
to obtain the average performance and its stability. This
benchmark was conducted entirely on the database server,
even when the data was processed outside the database,
to avoid additional instability and bias through transfer
times between different machines. Transfer times were
tested individually (see benchmark Transfer times between
database server and web server below).

Metrics calculation inside versus outside
the database

The main performance-critical use cases of our data service
infrastructure benchmarked in this study are the calculation
of different annual air quality metrics calculations on the
ozone data table inside vs. outside the database. So far,
the web service queries raw hourly ozone data from the
database, transfers them to the web server, and calculates
the metrics in the Python-Pandas data science framework.
Here we test the performance that is gained if the calculation
is instead conducted inside the database in SQL. We
selected four different metrics that reflect different typical
numerical patterns in the calculation: ‘drmdmax1h’, which
involves a daily maximum and rolling mean, ‘AOT40’
which accumulates values above 40 ppb and applies a data
capture criterion, ‘dma8epa’ which additionally applies
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Table 1 Benchmarks summary

Benchmark Tasks

Test cases

Data aggregation inside versus outside the database

Aggregation of ozone values for given

1) ‘Python’ 2) ‘SQL’ 3) PL/Pythonu

dates: - Count - Maximum - Average -
Standard deviation

Metrics calculation inside versus outside the database

Ozone metrics for given series identi-

1) ‘Python’ 2) ‘SQL’

fiers and years: -drmdmaxlh - AOT40
- dma8epa - W90

Processing of full ozone table: - Parallel
scan - Parallel aggregate

Parallel processing

Influence of indices on query times

Aggregation of values for given dates:

1) max. 1 worker 2) max. 2 workers
3) max. 4 workers 4) max. 8 workers

1) ‘o3_hourly’ 2) ‘temp_hourly’

- Maximum value on a given date

Transfer times between database server and web server

Test bandwidth and latency

1) Ping round trip time test
2) Bandwidth test

For elaboration, see text

an hourly rolling mean and ‘W90’ which involves an
exponentially weighted hourly rolling mean. For an exact
description of the metrics calculation, please refer to the
Appendix. Random time series identifiers and random years
between 2005 and 2010 were selected for the metrics
calculation to avoid caching. For every metric, two test cases
were compared against each other: 1) “Python”: Hourly
ozone data from the given time series and period is queried
from the database, and further processed in Python-Pandas.
2) “SQL”: The calculation was rewritten in a user defined
function in SQL, and performed inside the database. For
every test case, metrics for 250 randomly selected time
series and years were aggregated, and the calculation times
were monitored to obtain the average performance and
its stability. As in the previous benchmark, transfer times
between machines were avoided by Python processing on
the database server.

Parallel processing

In contrast to the two previous benchmarks, here we exam-
ine database speedup via parallel scans and aggregation in
the database. The speedup is tested by varying the maxi-
mum number of parallel workers allowed in a query. The
number can be set in the system parameters of the database.
Two tasks were designed, which allow effective parallel
processing. ‘scan’: A parallel index scan across the entire
ozone table that filters all ozone values below zero, indicat-
ing incorrect values. ‘agg’: A parallel scan and aggregate
across the full ozone table to output the mean of all ozone
values. Four test cases were compared against each other:
1) Allowing 1 parallel worker, 2) allowing 2 parallel work-
ers, 3) allowing 4 parallel workers 4) allowing 8 parallel
workers. For each test case, the time taken to complete the
tasks was monitored. For better comparability, all test cases
were executed with cold system cache.

Influence of indices on query times

With this benchmark we examine the importance of indices
for the performance of temporal filtering. Air quality moni-
toring data consists of time series, so many of our database
queries require filtering over time. We test the performance
gained from setting useful indices by querying temporally
filtered data from two tables that are similar structure,
but have different indices. First, the ozone table, which
was already used in the previous benchmarks and has
an index on timestamp, value and timeseries_id
in addition to the primary key on timeseries_id
and timestamp. Second, the slightly smaller temper-
ature table, which contains hourly temperature values
and has only the primary key on timeseries_id and
timestamp. The task to fulfill here corresponds to bench-
mark Data aggregation inside versus outside the database,
test case 2) “SQL”: query all data from a randomly selected
date between 2000 and 2010, and output the maximum
value. Two test cases were compared against each other:
1) “o03_hourly”: The task was performed on the ozone table.
Here we reused the results from benchmark Data aggrega-
tion inside versus outside the database. 2) “temp_hourly”:
The task was performed on the temperature table. Since the
query times showed little deviation from the mean, we only
performed 20 queries for this test case.

Transfer times between database server and web
server

As described in TOAR database and data services, DB
server and web server are VMs on different hosts. This
means that transfer between the machines is not avoidable.
Yet, by moving data processing to the database server,
time is saved not only by processing in SQL instead of
Python, but also by reduced data transfer between machines.

@ Springer
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4.1 Aggregate bench-
mark.

Baseline: Python
Improvement: SQL

Transfer times between the database server and web server
are tested independently of the DBMS. To estimate the
latency, the Ping round trip time was tested. The bandwidth
is theoretically 10 GBit/s (see TOAR database and data
services), but might be lower in every day use. It was tested
with the iperf tool*.

Results

In the following Subsections, we present the results of the
benchmarks described in Benchmarks. A graphical sum-
mary is given in Figure 2.

Data aggregation inside versus outside the database

The results of benchmark Data aggregation inside versus
outside the database are summarized in Table 2. The mean
absolute query times vary between 0.16 and 0.27 seconds.
They are relatively stable with a standard deviation of 0.02
to 0.08 seconds for 100 queries. SQL aggregates are always
the fastest, with relative time savings of 21.7% to 32.0%.
It is noticeable that when comparing Python and SQL directly
(last column in Table 2), less time is saved with less compu-
tationally complex calculations (‘count’) and more time is
saved with more complex the calculation (‘avg’, ‘std’).

Metrics calculation inside versus outside
the database

The results of benchmark Metrics calculation inside ver-
sus outside the database are summarized in Table 3. The

“https://iperf.fr/iperf-download.php
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4.4 Indices. 4.5 Transfer.
Baseline: transfer
Improvement:

transfer avoided

4.3 Parallel pro-
cessing. Baseline: no index
Baseline: 1 worker Improvement: suit-
Improvement: 4 workers able index

metrics calculation times range between 0.15 and 0.19 seconds,
with a low standard deviation of 0.02 seconds maximum. Cal-
culating metrics in SQL is always faster than Python.
The time difference varies between 5.6 % and 21.1 %. In
SQL, metrics that include the calculation of hourly rolling
means/sums (‘dma8epa’, “W90’) are comparatively slower
than metrics that include only aggregates (‘drmdmaxl1h’,
‘AOT40’). For the calculation of metrics within the database,
the SQL query plan showed that approx. 50 % of the query
execution time is spent on the selection of time-filtered
raw data and 50 % on the processing (windows, aggregates,
data capture filtering) of these data. The planning time was
negligible (< 1 % of the query execution time).

Parallel processing

The results of benchmark Parallel processing are summa-
rized in Table 4. When two or four workers are allowed
instead of one, the query time is reduced by approx. 20-
30%. Even though the best results were obtained with

Table 2 Benchmark Data aggregation inside versus outside the database
results

Aggre - ‘Python’ ‘SQL ‘PL/Python’ Difference
gate n=xo[s] n=to[s] nxo[s] ‘Python’-
‘SQL’
‘count’ 0.2340.05 0.18+0.08  0.224+0.03 21.7%
‘max’ 0.2740.05 0.214+0.07  0.26+0.07 222 %
‘avg’ 0.25+0.04  0.17+0.03  0.26+0.03 32.0%
‘std’ 0.23£0.04  0.16+0.02  0.27+0.06 30.4 %

The cells contain execution time and standard deviation (n=100 each).
The fastest aggregation is marked in bold
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Table 3 Benchmark Metrics calculation inside versus outside Table 5 Benchmark Influence of indices on query times results
the database results

‘03_hourly’ ‘temp_hourly’
Metric ‘Python’ ‘SQL Difference Aggregate (n=100) (n=20)

uxols] nxols] wEo[s] uEo[s]

‘drmdmax1h’ 0.18+0.01 0.15+0.01 16.7 % ‘max SQL’ 0.21+0.07 82.6342.41
‘AOT40’ 0.19£0.02 0.15+0.02 21.1%
‘dmagepa’ 0.18+0.02 0.17+0.02 5.6% The fastest aggregation is marked in bold
‘WoO 0.18+0.02 0.17+0.02 5.6 %

The cells contain execution time and standard deviation (n=250 each).
The fastest metrics calculation is marked in bold

four allowed workers, it is noteworthy that the difference
between one and two workers is quite large, while adding
two more workers does not save much more time. If eight
workers are allowed, no more time is saved because of the
parallel overhead.

The query planner considers time needed to spawn work-
ers, process in parallel and gather results. Depending on the
query, it may thus be infeasible to spawn all workers which
are allowed. E.g. for the ‘scan’ test case: when eight workers
are allowed, only five workers are spawned. Here it is notable
that the query takes longer than in the case of one allowed
worker. This points to a need for improvement in the planners’
cost constants, which would require extensive experiment-
ing (The PostgreSQL Global Development Group 2015).

During the parallel processing benchmarks, the CPU load
was below 25 %, indicating that the performance in this case
is I/O bound. This is another explanation why the addition
of more workers does dot necessarily result in a better
performance.

Influence of indices on query times

The results of benchmark Influence of indices on query
times are summarized in Table 5. The scan on the

Table 4 Benchmark Parallel processing results

1 worker 2 workers 4 workers 8 workers
Task allowed allowed allowed allowed
[#1/[s1/1%]  [#1/[s]/[%] [#1/[s1/[%]  [#1/[s]/[%]
1 2 4 5
‘scan’ 0.93 0.68 0.65 0.98
-26.9 % -30.1 +5.4%
1 2 4 8
‘agg’ 99.03 78.71 7143 76.10
-20.5% -27.9 % -322%

The cells contain the actual number of workers spawned, the execution
time, and the difference to execution time with one worker. The best
result for each task is marked in bold

‘03_hourly’ table used the index on timestamp, value
and timeseries_id, which allows fast temporal filter-
ing. the ‘temp_hourly’ table has only the primary key on id
and timestamp, so here a sequential scan was required
for temporal filtering, which took several orders of magni-
tude longer. Since the ‘temp_hourly’ table is slightly smaller
than the ‘o3_hourly’ table, this provides a lower limit for the
drop in performance with sub-optimal indices.

Transfer times between database server and web
server

The results of benchmark Transfer times between database
server and web server are summarized in Table 6. The data
transfer rate between the database server and the web server
is theoretically 10 GBit/s. With a measured bandwidth of
8.3 GBit/s, approx. 80 % of this maximum transfer rate is
reached during tests. For a typical metric query, which
requires hourly timestamp/value pairs of 10 years for
processing, about 1.2 MByte of data is transferred from
the database server to the web server. This means that
the transfer time for calculations outside the database is
less than 1 ms. This makes less than 1% of the required
calculation time and is therefore negligible. The ping round
trip time was measured to be 0.7 ms, and is therefore not
adding substantially to the query times.

These results show that due to the high bandwidths and
the relatively small amount of data transferred, the transfer
time between the different machines is not a limiting factor
for our setup. This may be different for other applications
where larger amounts of data need to be transferred,
such as multi-dimensional geospatial data instead of one-
dimensional time series. This case would require more
detailed benchmarking and monitoring of transfer times.

Table 6 Benchmark Transfer times between database server and web
server results

Transfer Bandwidth Latency
Between VMs 0.7 ms

in OpenStack 8.3 GBit/s ping round
cloud environment trip time
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Conclusion

We benchmarked the following measures to increase
the performance of the TByte-scale TOAR air quality
observations database and connected JOIN web service:
server-side programming in PL/pgSQL and PL/Python,
parallel scans/processing, optimal definition of indices, and
on-line aggregation to avoid transfer of large data. Through
the above mentioned techniques, the performance of JOIN
can be improved in a range of approx. 6 —32%.

Comparing the benchmark results, it becomes clear
that in-DB data processing saves more time by switching
from Python to SQL (up to 32%), than by avoiding
data transfer or planning times (< 1%). Calculations of
air quality metrics that do not require moving averages
perform significantly better in SQL than in Python (approx.
17-21%). Yet, when rolling averages are required, which
forces the use of window functions, the advantage of
SQL to Python is diminished to approx. 6 %. When
thinking about replacing the existing Python code with
SQL queries an important aspect to consider might be that
Python functions are easier and more flexible to program
than SQL user defined functions. Our findings regarding
in-database processing are thus comparable to D’Silva
et al. (2019), who state that in-database processing allows
performance increase, yet common user defined functions
on the database server are more difficult to implement than
client side programming in Python. We can generalize this
statement from scientific databases to typical data structures
used for environmental data. Like other database systems,
a prerequisite for good database performance of TOAR and
its connected services is a suitable physical DB-design and
a good technical infrastructure. Our current setup on the
OpenStack cloud environment with a fast connection, the
physical DB design, and a web service which is tailored to
the needs of the scientific user community has proved its
worth. To exploit advantages of parallel processing, more
extensive tuning of cost parameters would be necessary. We

do not see this as worthwhile because the performance of
our DB is I/0-bound and our most common query patterns
cannot be improved by parallel processing. Our DB scheme
is expected to scale well to expected database growths,
while maintaining a good performance.

We expect our findings to generalize well to compara-
ble database systems and web services on cloud systems.
This study as an example of systematic exploration of per-
formance aspects in a mature environmental database and
web service is thus of interest to the growing commu-
nity of scientists who aim to make scientific data products
openly available. Big data applications are getting more and
more attention in the field of environmental science, yet
we have found few technical literature on database struc-
tures containing atmospheric observation data. This study
also shows the importance of collaboration between domain
scientists and database engineers/computer scientists when
the performance of scientific databases shall be analysed
and improved. Without the detailed specification of real-life
query patterns (e.g. calculations including a rolling mean)
the benchmark tests might easily become meaningless. Due
to rapidly evolving demands from scientists on the database
design and capabilities and usually limited resources for
optimisation, a balance must be found between best possible
performance and a reasonable optimisation effort. Neverthe-
less, this study proves that such analysis can be worthwhile
and we hope that our specific benchmarking tests can pro-
vide useful hints to others where to look first. Finally, we
give our ranking of important aspects for a well-functioning,
high-performance database and web service for the scien-
tific community: 1) Well documented data products tailored
to the needs of scientists, 2) A context-aware DB infrastruc-
ture and physical DB design (e.g. indexing), 3) In-DB data
processing in SQL instead of on the web server in Python.

Appendix: Air quality metrics description

Metric Application

Description

drmdmaxlh: Maximum 3-month
average of the daily 1-h maximum
ozone value (Brauer et al. 2016)
AQOT40: Cumulative exceedance of
40 ppb ozone concentration (Mills
etal. 2017)

Vegetation

@ Springer

Human health

3-months running mean of daily maximum 1-hour
mixing ratios are calculated. For annual statistics,
the maximum value will be computed.

Daily 12-h AOT40 values are accumulated using
hourly values for the 12-h period from 08:00h
until 19:5%h solar time interval. AOT40 is defined
as cumulative ozone above 40 ppb. If less than
75% of hourly values (i.e. less than 9 out of
12 hours) are present, the cumulative AOT40 is
considered missing. When there exist 75 % or
greater data capture in the daily 12-h window,
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Metric Application

Description

dmaSepa: The 4" highest daily
maximum 8-h average (Federal
Register 2015)

WO0: 4th highest W90 5-h cumu-
lative exposure index (Lefohn et al.
2010)

Human health

Human health

the scaling by fractional data capture (nto-
tal/nvalid) is utilized. For monthly, seasonal, sum-
mer, or annual statistics, the daily AOT40 values
are accumulated over the aggregation period and
scaled by (ntotal/nvalid) days. If less than 75 % of
days are valid, the value is considered missing.
Daily maximum 8-hour average statistics accord-
ing to the US EPA definition. 8-hour averages
are calculated for 24 bins starting at 00:00h local
time. The 8-h running mean for a particular hour
is calculated on the concentration for that hour
plus the following 7 hours. If less than 75 %
of data are present (i.e. less than 6 hours), the
average is considered missing. A daily value is
considered valid if at least 18 hourly averages
are valid. For annual or seasonal statistics, the 4
highest daily 8-hour maximum of the aggregation
period will be computed.

EI=SUM(w;C;) with weight w; = 1/[1 + M exp(-
A C;/ 1000)], where M = 1400, A =90, and where
C; is the hourly average Oz mixing ratio in
units of ppb. For each day, 24 W90 indices are
computed as 5-hour sums, requiring that at least
4 of the 5 hours are valid data (80 %). If a sample
consists of only 4 data points, a fifth value shall
be constructed from averaging the 4 valid mixing
ratios. For seasonal or annual statistics, the 4"
highest W90 value is computed, but only if at least
75 % of days in this period have valid W90 values.
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