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Abstract 

Quantification of the temporally varying streamflow intermittence at continental scales provides an 

important basis for evaluating biodiversity, ecosystem functions and ecosystem services in rivers as 

well as water resources for humans. As streamflow intermittence is often more prevalent in small 

upstream river reaches than in large downstream rivers, quantification needs to be done with a high 

spatial resolution. Aggregated to five classes (0, 1-2, 3-15, 16-29, 30-31 no-flow days), the number of 

no-flow days of approximately 1.5 million river reaches in Europe was estimated for each of the 468 

months in the period 1981-2019 using a two-step Random Forest modeling approach. The model was 

developed based on a custom version of the 15 arc-sec HydroSHEDS drainage direction dataset. Data 

for 18 predictor variables (on hydrology, climate, physiography, geology, and land cover) as well as 

daily streamflow observed at 1,915 streamflow gauging stations were prepared as input to the RF 

model. In addition to upstream drainage area and slope, predictors based on time series of streamflow 

in 15 arc-sec grid cells were found to be most important for the RF model. These time series were 

generated by downscaling the 0.5 arc-deg runoff of the global hydrological model WaterGAP 

(downscaled streamflow is also already available for South America). In Europe but not in South 

America, the performance of downscaled monthly WaterGAP v2.2e streamflow as compared to 

streamflow observations is, on average, satisfactory also for small drainage basins of less than 10 km2. 

While 99% and 95% of the observed perennial station-months are predicted correctly for the 

calibration and validation periods, respectively, the RF approach tends to overestimate intermittence. 
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Considering only the intermittent station-months, the frequency of predicting the correct class among 

the four classes is about 56% and 47% for the calibration and the validation period, respectively. 9% of 

all reach-months are simulated to be intermittent. The temporal and spatial patterns of simulated 

intermittence classes are plausible. The simulated intermittence class in each reach-month will be used 

by the other DRYvER Work Packages to upscale models developed at the Drying River Network scale. 

 

Keywords 

Streamflow intermittence, continental scale, high-resolution, monthly time series, streamflow 

downscaling, Random Forest 
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Glossary 

Term Description 

Global hydrological model (GHM) Global hydrological model that simulates runoff and 
streamflow on a resolution of 0.5 arc-deg (e.g. 
WaterGAP) 

Low-resolution (LR) Resolution from which the data are downscaled, 
determined by the resolution of the GHM WaterGAP (i.e. 
0.5 arc-deg) 

High-resolution (HR) Target resolution of the downscaling algorithm, 
determined by the resolution of the high-resolution river 
network HydroSHEDs (i.e. 15 arc-sec) 

Streamflow (Q) Streamflow in rivers which is accumulated along the river 
network 

Disaggregated runoff (dR) Runoff generated in the vertical water balance of the 
GHM without being routed and disaggregated to high 
resolution 

Net cell runoff (ncR) Streamflow of LR cell – streamflow of inflowing upstream 
LR cells, streamflow which is generated or abstracted in 
this cell 

Grid cell Li,Hj High-resolution grid cell with ID j in low-resolution grid 
cell with ID i 

Drying river network (DRN) Local river network that is investigated in the project 
DRYvER with local models and analyses 
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1 Introduction 

Most rivers and streams on Earth cease to flow or dry at least one day per year (Messager et al., 2021).  

A quantification of streamflow intermittence at larger spatial scales (continental to global) serves as 

an important basis for evaluating biodiversity, ecosystem functions and ecosystem services in rivers as 

well as water resources for humans. Due to the restricted number of gauging stations in particular in 

intermittent streams, such analyses must rely on modeling. Up to now, large-scale quantitative studies 

on streamflow intermittence either have a coarse spatial resolution of 0.5 arc-deg (ca. 55 km at the 

equator) and thus cover only the intermittence of large rivers (Döll and Müller Schmied, 2012) or they 

do not estimate time series of streamflow intermittence but classify river reaches as intermittent or 

perennial, at a high spatial resolution of 15 arc-sec (Messager et al., 2021). However, headwater 

stream reaches with small drainage basins are more prone to intermittence than more downstream 

reaches (Datry et al. 2014, Messager et al., 2021) but cannot be considered in the case of coarse spatial 

resolutions. Characterization of the temporal structure of flow intermittence (e.g. number of no-flow 

days, seasonality of intermittence, etc.), beyond the general classification of reaches into perennial 

and intermittent, is required for supporting analyses of biodiversity and ecosystem functions of 

intermittent streams and rivers (Datry et al. 2018). To help advance the science and management of 

freshwater ecosystems globally, new large-scale models of streamflow intermittence are therefore 

needed that provide information on the frequency, duration and timing of flow cessation across the 

entire river network, from the headwaters to river mouths. 

This report describes the methods and results of modeling streamflow intermittence of river reaches 

on the continental (European and South American) scale. This work is part of the DRYVER Work 

Package 1 whose aim is to determine current and future spatiotemporal patterns of streamflow 

intermittence in river networks at both the continental scale and for selected focal catchments 

(“Drying river networks” or DRNs).  

The specific objective of this project is to produce monthly time series of ecologically relevant 

indicators of streamflow intermittence for the period 1981-2019, based on data at the high spatial 

resolution of 15 arc-sec (ca. 500 m). For each reach, streamflow intermittence is quantified as a 

monthly time series with the number of no-flow days within each month, aggregated to five classes. It 

is estimated with a random forest (RF) model that uses, as innovative and important predictors, 

indicators derived from 15 arc-sec monthly streamflow time series that have been generated by 

downscaling the 0.5 arc-deg output of the global hydrological model WaterGAP 2.2e (described in 

Chapter 2). In the following, the 15 arc-sec resolution, which corresponds to grid cells of approx. 500 

m by 500 m at the equator) will be denoted by HR (“high-resolution”) and the 0.5 arc-deg resolution 

(55 km by 55 km at the equator)) by LR (“low resolution”). 1 LR grid cell contains 14,400 HR grid cells. 

HydroSHEDS v1 is used as the basic HR drainage direction map (Lehner et al., 2008; 

www.hydrosheds.org); it was modified for the three focal DRN of the DRYvER project in Finland, 

Croatia and Hungary (see Section 2.3.2 for details on these modifications). Other hydrological 

predictors are based on LR output of WaterGAP and characterize, for example, the ratio of 

groundwater recharge to total runoff. The third group of predictors are static HR environmental 

indicators such as the drainage area or the aridity index. Chapter 2 presents the methods and results 

of downscaling LR WaterGAP output to monthly HR streamflow time series for both Europe and South 

America; it includes validation of the time series against observed monthly streamflow at gauging 

stations. The methods, validation and results of the RF modeling to estimate the monthly time series 

http://www.hydrosheds.org/
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of the number of no-flow days per reach are described in chapter 3, only for Europe. We draw 

conclusions in Chapter 4, followed by technical information on the produced datasets. 

 

2 Deriving time series of monthly streamflow in 

Europe and South America at a spatial resolution of 15 

arc-sec by downscaling of 0.5 arc-deg runoff 

computed by the GHM WaterGAP 

2.1 Principal approach 

The principal approach for downscaling information computed by a low-resolution (LR, 0.5 arc-degree, 

LR) global hydrological model (GHM) to high-resolution (HR, 15 arc-sec) streamflow is based on Lehner 

and Grill (2013). The idea is to first map LR runoff (a component of the vertical water balance of the 

GHM) to a high-resolution (HR) river network as “disaggregated runoff” dR, by assuming that runoff 

(in eq. water height) is the same in all HR grid cells within an LR grid cell. To integrate the additional 

information from the routing routine of the LR GHM, in particular about the impact of surface water 

bodies and human water use on streamflow, the HR runoff is corrected by taking into account the 

difference between the LR streamflow. The correction term is applied in a spatially weighted way to 

the HR grid cells. The weights are based on HR streamflow obtained by accumulating dR along the HR 

flow direction assuming that the bigger a stream gets the more it is impacted. Finally, HR streamflow 

is estimated by accumulating the corrected HR runoff along the flow direction.  

This principal approach is expressed as 

(1) 𝑄𝐿𝑖,𝐻𝑗 = 𝑓𝑙𝑜𝑤𝑎𝑐𝑐(𝑑𝑅𝐿𝑖,𝐻𝑗 + 𝐶𝐿𝑖 ∗ 𝑊𝐿𝑖,𝐻𝑗) 

 

(2) 𝐶𝐿𝑖 = ∑ 𝑑𝑅𝐿𝑖,𝐻𝑗

14400

𝑗=1

− 𝑛𝑐𝑅𝐿𝑖 

 

(3) 𝑊𝐿𝑖,𝐻𝑗 =
𝑓𝑙𝑜𝑤𝑎𝑐𝑐(𝑑𝑅𝐿𝑖,𝐻𝑗)

1
14400 ∗ ∑ 𝑓𝑙𝑜𝑤𝑎𝑐𝑐(𝑑𝑅𝐿𝑖,𝐻𝑗)14400

𝑗=1

 

 

where QLi,Hj is streamflow of HR cell j located within LR cell i, CLi is the correction term applied to all HR 

cells within LR cell i (Eq. 2), and WLi,Hj is the correction weight (Eq. 3). Flowacc() represents the flow-

accumulated variable and ncRli represents net cell runoff of LR grid cell i, which can be calculated as 

streamflow of LR grid cell i minus streamflow of all direct upstream LR grid cells. 

This principal approach, which was originally developed to compute HR mean monthly streamflow (i.e. 

long-term mean streamflow in the 12 calendar months) was adapted and extended to obtain monthly 

time series of HR streamflow and to meet the requirements for the intended modeling of streamflow 

intermittence. This is described in the following section.  
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2.2 Description of downscaling mechanisms 

Calculating HR disaggregated runoff 𝒅𝑹𝑳𝒊,𝑯𝒋 as the HR basis for streamflow estimation 

Monthly time series of 𝑅𝐿𝑖 are first computed as the sum of LR surface runoff (Rs in Müller Schmied et 

al., 2021 , p. 1045) and an LR groundwater discharge to surface water bodies ((Qg in Müller Schmied et 

al., 2021, p. 1046) computed by WaterGAP are used as the basic input to compute 𝑑𝑅𝐿𝑖,𝐻𝑗 (Eq. 1). The 

sum of both variables represents the not routed outflow of the vertical water balance of the land area 

of each LR grid cells to the surface water bodies in the LR grid cells. In the original method of Lehner 

and Grill (2013) solely total from land (the sum of surface runoff and groundwater recharge) was used 

to calculate dR. In the approach presented here, the groundwater storage impact on groundwater 

discharge to the stream and thus monthly HR streamflow Is taken into account.  

The sum of LR surface runoff and groundwater discharge is interpolated to an intermediate resolution 

of 0.1 arc-deg using an inverse distance interpolation with a power of 2, a radius of 1.8 arc-deg, and 

taking into account a maximum of 9 low-resolution data points. This interpolation is also needed 

because there are areas that are covered by the HR but not the by LR river network. This is the case in 

coastal regions and at full lake cells of the LR river network. This interpolated 0.1 arc-deg grid is then 

disaggregated to the high resolution by repeating the values for all high-resolution grid cells.   

Redistribution of water storage modifications in big lakes and reservoirs 

In WaterGAP, reservoirs with a maximum storage capacity of at least 0.5 km³, regulated lakes having 

a maximum storage capacity of at least 0.5 km³ or an area of more than 100 km² and lakes with a 

minimum area of 100 km² are calculated as so-called „global” surface water bodies (Müller Schmied 

et al., 2021) that receive water not only from the runoff generated within the cell but also from 

upstream streamflow. They may spread over more than one LR grid cell and their water balance is 

calculated in the assigned outflow cell. Thus the net cell runoff (ncRli) of this outflow grid cell includes 

the net cell runoff generated by the “global” surface water bodies that need to be redistributed to all 

LR riparian grid cells and their HR cells. This is done by calculating the change of the “global” surface 

water body storage from the month before to the subject month. This amount is reduced from the net 

cell runoff of the outflow cell and redistributed in an area-weighted way to all LR riparian cells. So that 

every LR cell has its net cell runoff from “global surface water bodies” assigned based on the area of 

the global surface water bodies in this cell. Then these LR values are applied to those HR cells which 

are covered by polygons of global surface water bodies. As those HR grid cells have different pixel areas 

the correction values are calculated area-weighted.  

Correction for differing characteristics of the river networks in rivers with large catchments  

The presented algorithm uses GHM output, which was simulated using the DDM30 (Döll & Lehner, 

2002) river network, and downscales it to the high-resolution river network of HydroSHEDS (Lehner et 

al., 2008). Given the different spatial resolutions and the generation process, the river networks differ 

locally in their characteristics. One major difference is that the HydroSHEDS river network contains 

endorheic sinks that are not covered by the DDM30 river network. Those local endorheic sinks cannot 

be covered by the LR DDM30 due to their subgrid nature. The correction term CLi may thus be 

underestimated in magnitude. With such a subgrid endorheic sink covering half of an LR cell the 

original correction term CLi,org is applied to all HR cells in the LR cell but only half of it affects the 

mainstream for which the Cli was calculated.  
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The following presented correction mechanism, developed in the original method of Lehner and Grill 

(2013), aims particularly to correct for those subgrid endorheic sinks but also covers general deviations 

in catchment areas due to the resolution. The correction mechanism is applied for rivers with an 

upstream area of at least 50,000 km² and a reasonable accordance of drainage areas of DDM30 and 

HydroSHEDS. For rivers with catchment areas between 50,000 and 100,000 km2 they are allowed to 

differ up to 20% and for rivers with catchment areas of > 100000 km2, they are allowed to differ up to 

50 %. These criteria are necessary as locally the river networks can diverge strongly, especially in the 

headwater areas, but those deviations are equalized later downstream and additional correction 

would worsen the results. Furthermore, it is necessary to avoid overcorrection due to mismatching 

river networks (e.g. in HydroSHEDS a LR grid cell contains only a tributary to a mainstream, whereas 

the corresponding LR grid cell of DDM30 contains the mainstream).  However, these criteria limit the 

corrected size of subgrid endorheic sinks to 50,000 km² and the correction is effective solely in rivers 

with large catchments.   

For those LR cells within the criteria range, the original correction term CLi,org (Eq. 2) is extended by an 

additional correction term. This modification of the correction term CLI is calculated by comparing the 

original net cell runoff of the LR cell with the net cell runoff which is generated in the largest river with 

the preliminarily corrected streamflow QLi,Hj (Eq. 1). The following equation is only valid for large-river 

cells as defined above. 

(4) 𝐶𝐿𝑖 = 𝐶𝐿𝑖,𝑜𝑟𝑔 + ( 𝑛𝑐𝑅𝐿𝑖
𝐿𝑅 − 𝑛𝑐𝑅𝐿𝑖

𝐻𝑅) 

 

The HR net cell runoff representation of LR grid cell Li (𝑛𝑐𝑅𝐿𝑖
𝐻𝑅) is calculated as the streamflow of the 

HR grid cell with the maximum upstream area in Li minus the corresponding streamflow values of 

direct upstream LR grid cells.  

To avoid overcorrection with this modification approach due to gaps caused by the large river 

definition the modifications are propagated downstream.  

 

Shifting of correction terms to downstream HR grid cells 

GHMs simulate the processes of the vertical water balance (i.e. runoff generation) and route the water 

along the river network for each 0.5 arc-degree grid cell. The simulated LR streamflow represents the 

properties of the largest river in the LR grid cell. The correction term is applied to HR cells by weighting 

it by streamflow (Eq. 3), to apply those corrections more strongly to the larger river systems for which 

they were calculated. To even focus correction more strongly on large rivers, an additional 

modification of correction terms is introduced. It shifts the corrections partially downstream along the 

LR river network if the upstream area of the HR cell in the downstream cell is at least 90% of the source 

cell. This criterion guarantees that the correction values are solely shifted to larger streams and so that 

shifting in LR cell with mismatching river networks is avoided. The fraction of the correction term that 

is shifted downstream is computed as 

(5) 𝑓𝑟𝐿𝑖
𝑠ℎ𝑖𝑓𝑡

= {

(2 ∗  𝑢𝑝𝐴𝐿𝑖,𝑑𝑜𝑤𝑛
𝑀𝑎𝑥 − 𝑢𝑝𝐴𝐿𝑖

𝑀𝑎𝑥)

2 ∗  𝑢𝑝𝐴𝐿𝑖,𝑑𝑜𝑤𝑛
𝑀𝑎𝑥 , 𝑢𝑝𝐴𝐿𝑖,𝑑𝑜𝑤𝑛

𝑀𝑎𝑥 > 0.9 ∗  𝑢𝑝𝐴𝐿𝑖
𝑀𝑎𝑥

0, 𝑢𝑝𝐴𝐿𝑖,𝑑𝑜𝑤𝑛
𝑀𝑎𝑥 ≤ 0.9 ∗  𝑢𝑝𝐴𝐿𝑖

𝑀𝑎𝑥
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with 𝑢𝑝𝐴𝐿𝑖,𝑑𝑜𝑤𝑛
𝑀𝑎𝑥  representing the maximum HR upstream area in the downstream grid cell and 

𝑢𝑝𝐴𝐿𝑖
𝑀𝑎𝑥 representing the maximum HR upstream area in the evaluated LR grid cell Li. Following this 

approach, the modified correction term consists of the part which is not shifted downstream and the 

parts which originate from the shifted correction terms from direct upstream cells (CLi,upj) (eq. 6). 

(6) 𝐶𝐿𝑖 =  𝐶𝐿𝑖,𝑜𝑟𝑔 ∗ (1 − 𝑓𝑟𝐿𝑖
𝑠ℎ𝑖𝑓𝑡

) +  ∑(𝐶𝐿𝑖,𝑢𝑝𝑗 ∗ 𝑓𝑟𝐿𝑖,𝑢𝑝𝑗
𝑠ℎ𝑖𝑓𝑡

)

𝑛

𝑗=1

 

 

Negative and extreme correction values 

Given the principal approach of comparing ncR to generated dR and additional modification of this 

correction term, negative values of streamflow or extreme correction values may be calculated. This 

can especially happen, if the LR and HR river networks are not aligned or their upstream areas are 

differing too much.  To avoid extreme over-correction values a threshold of 0.001 m³ per second per 

km² upstream area for the final correction term is applied. Furthermore, negative streamflow values 

which may originate from side effects of the correction mechanisms are not accumulated along the 

river network.  That means that in the flow accumulation algorithm a negative streamflow value can 

turn positive if streamflow is coming from upstream cells but a negative streamflow value is not 

propagated along the river network. Furthermore, in the final step, all remaining negative streamflow 

values are set to zero.  

Technical implementation 

The technical implementation can be made available upon request. A software compilation was 

developed in Python to run the downscaling algorithm. Furthermore, a set of Python scripts (with 

ArcPy dependency) has been developed to preprocess necessary static data.  

The following static data are necessary to run the downscaling algorithm: 

Data Description 

flow_dir_15s_by_continent.gdb HydroSHEDS flow directions [Esri flow direction 
codes] 

pixel_area_skm_15s.gdb HydroSHEDS area of HR grid cells [km²] 

flowdir_30min.tif DDM30 flow directions [Esri flow direction 
codes] 

landratio_correction.tif Ratio of land area to continental area [-] 

orgDDM30area.tif Area of LR cells of WaterGAP [km²] 

pixareafraction_glolakres_15s.tif Ratio of HR cell on global surface water bodies 
[-] 

 

2.3 Validation 

The downscaling methodology is applied to WaterGAP 2.2e simulations from 1901 – 2019 forced with 

GSWP3-W5E5. The resulting time series of monthly streamflow data is compared to observed 

streamflow at gauging stations for all months with available observations. The number of compared 

monthly streamflow values in the focal DRN is provided in Table 1-A in the Appendix. The performance 
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is measured with the modified Kling Gupta efficiency (KGE) statistics after (Kling et al., 2012, Eq. 8) with 

its components correlation coefficient (r), bias ratio (β) and variability ratio (γ). KGE can range from -

Inf to 1; values below -1 are not shown with higher values indicating higher performance. A value 

comprised between -0.41 and 1 indicates that the model performs better than simply using the mean 

of the observed data to predict the values (Knoben et al., 2019). Furthermore, the Nash Sutcliffe 

efficiency of logarithmic values of observed and simulated streamflow (logNSE) is used as a metric 

focusing on low flow conditions (Oudin et al., 2006), which are assumed to be important for modeling 

intermittency. 

 

2.3.1 Description of the validation dataset 

The downscaling results are validated against a compiled dataset of gauging stations with time series 

data from different sources. The station dataset compiled by (Messager et al., 2021) is the main 

component of this dataset and is extended by i) gauging stations with significant anthropogenic 

influence (e.g. dam upstream) or that underwent a change from being perennial to intermittent or 

vice-versa over the course of the streamflow record, which were originally excluded in the dataset of 

Messager et al. (2021), and ii) data from stations in the DRNs, which were provided within the context 

of the DRYvER research project. Furthermore, the original daily time series data were obtained from 

the original data sources to estimate the days without flow per year.  

The stations are mapped in a semi-automatic process to the river network of HydroSHEDS ensuring 

that the HydroSHEDS river network reproduces the characteristics of the watershed (Messager et al., 

2021)(i.e. the upstream area should not deviate more than 10% of the value which is reported in the 

station metadata).  Furthermore, the stations must hold at least 120 months of data after removing 

months with missing values. 

For Europe, the compiled dataset consists of 1816 stations, from which 861 stem directly from the 

Global Runoff Data Centre (GRDC, 2015), 904 from databases used to produce the Global Streamflow 

Indices and Metadata (GSIM) archive (Do et al., 2018; Gudmundsson et al., 2018), and 51 from local 

data providers within the DRYvER context (Sauquet, 2020). From those stations, 320 have at least 5 

consecutive days of streamflow below 0.001 m³/s (1 L/s) following the definition of the SMIRES meta-

database (Sauquet, 2020). We are using this classification for describing purposes in the following 

description of the characteristics of the gauging stations. The distribution of upstream area and 

average discharge shows that most gauging stations have an upstream area of 10 to 2000 km² and the 

average discharge is between 1 and 1000 m³/s (see Figure 1). This reflects the general tendency to 

measure rather bigger and perennial streams as those are important for flood forecasting or inland 

water transport.  

The spatial distribution of the gauging stations used for validation is shown in Figure 2. An 

accumulation of validation stations is found in Germany, Austria, Switzerland, France, Spain, and the 

UK. As non-perennial classified stations are mainly found in arid regions (e.g. in Spain or Cyprus) but 

also are found in other climates (e.g. in western France). 

For South America, the compiled dataset consists of 808 stations, from which 290 stem directly from 

GRDC, and 518 from GSIM monthly time series. At 31 GRDC stations, streamflow records with at least 

5 consecutive days of streamflow below 0.001 m³/s (1 L/s) are found. For GSIM stations, a different 

criterion was used because only monthly indices are available: 106 stations with at least one monthly 

MIN7 index (minimum 7-day average streamflow) below 0.001 m³/s were thus classified as 
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intermittent. In total 137 of the 808 stations are classified as non-perennial for describing purposes. 

The distribution of upstream area and average discharge shows that most gauging stations have an 

upstream area of 100 to 10000 km² and the average discharge is between 10 and 1000 m³/s (see Figure 

3). Comparing the validation datasets in South America and Europe the stations in South America tend 

to have bigger catchments and higher average streamflow records. The validation dataset in Europe 

holds also more than double the number of stations used for South America. 

 

 

 

Figure 1: Upstream area and average discharge of gauging stations used for validation of downscaling monthly time series 
of streamflow in Europe 
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Figure 2: Spatial distribution of gauging stations in Europe used for validation of developed high-resolution monthly 
streamflow time series 

 

Figure 3: Upstream area and average discharge of gauging stations used for validation of downscaling monthly time series 
of streamflow in South America 
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The validation stations in South America are mainly located in Brazil (see Figure 4), with a regional 

focus in the regions Southeast and Northeast. No validation stations are located in Chile, Peru, 

Uruguay, and Paraguay. The majority of as non-perennial classified stations are found in the Northeast 

region of Brazil. 

 

Figure 4: Spatial distribution of gauging stations in South America used for validation of developed high-resolution monthly 
streamflow time series 

2.3.2 Modifications of the HydroSHEDS river network  

A comparison of the results of the focal DRN models and the continental scale models is necessary for 

the validation of the performance of the flow intermittence modeling. The river network of 

HydroSHEDS used on the continental scale differs significantly in three focal DRNs, so modifications of 

the HydroSHEDS network are necessary. 

The focal DRN Finland has the largest deviations among all focal DRNs (Figure 5). This is explainable by 

the coarser resolution of the DEM (Hydro1k) used for the delineation of HydroSHEDS river network 

north of 60° longitude, where the finish focal DRN is located. A big part in the east of the focal DRN is 

connected to the main river network. Furthermore, in the west and the southwest of the study area, 

the catchment is extended via modifications of the flow directions. However, the agreement between 

the river networks of the focal DRN and modified HydroSHEDS is still the worst in comparison with the 

other focal DRNs. 
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Figure 5: Modifications of HydroSHEDS river network and visualized with upstream area calculated with unmodified (a) and 
modified (b) river network  for the focal DRN Finland. 

The river network in the Hungarian focal DRN also needs modifications to make the results 

comparable (Figure 6). The catchment outlet which drains into the Drava river is moved to the west 

and the river network is modified to cover the missing subcatchment in the original river network in 

HydroSHEDS. 

 

Figure 6: Modifications of HydroSHEDS river network and visualized with upstream area calculated with unmodified (a) and 
modified (b) river network  for the focal DRN Hungary. 

In the focal DRN in Croatia two inland sinks are present in the HydroSHEDS river network, which do 

not correspond to the river network of the local model (Figure 7). Furthermore, a small subcatchment 

in the north-west part of the focal DRN is removed to generate a comparable river network.  
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Figure 7: Modifications of HydroSHEDS river network and visualized with upstream area calculated with unmodified (a) and 
modified (b) river network for the focal DRN Croatia. 

2.3.3 Validation of results for Europe 

In Europe, the simulated time series reach a median KGE value of 0.57 overall gauging stations, 

showing a good agreement between simulated and observed monthly time series of streamflow. The 

KGE values are best for gauging stations with a catchment area of over 10,000 km² as those catchments 

cover several LR grid cells and thus the simulation performance of the LR GHM is maintained with the 

downscaling method. The resulting median KGE values get smaller with catchment sizes as the sub-

grid processes, which cannot be simulated with the downscaling algorithm, gain importance (Figure 

8). Spatial clusters of negative KGE values indicating bad downscaling or simulation performance can 

be identified in the southwestern part of Spain, Iceland, Italy, and Cyprus (Figure 9). The performance 

of simulated downscaled streamflow is dependent on I. the performance of the LR GHM, II. the quality 

of the HR river network in the catchment and III. the downscaling method. For the mentioned regions 

the LR GHM results can be identified as a major cause for the poor performance of downscaled 

streamflow time series. Iceland, Cyprus, and parts of Italy are not calibrated within the GHM, and in 

the affected region in Spain, the model performance is rather bad even with calibration (Müller 

Schmied et al., 2021). 
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Figure 8: KGE values over all validation gauging stations in Europe grouped by upstream area 

 

Figure 9: KGE values for all validation gauging stations in Europe 
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In general, the components of the KGE (r, β, and γ) reveal that with decreasing catchment area the 

downscaled simulated streamflow tends to underestimate the magnitude and variability of the 

streamflow (Figure 11 and Figure 12). However, the correlation coefficient values show only small 

variation throughout the catchment area groups (Figure 10).  

 

Figure 10: Correlation coefficient (r) over all validation gauging stations in Europe grouped by upstream area 
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Figure 11: Bias ratio (β) overall validation gauging stations in Europe grouped by upstream area 

 

Figure 12: Variability ratio (γ) overall validation gauging stations in Europe grouped by upstream area 
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Overall validation gauging stations in Europe we find a logNSE median value of 0.39 in contrast to an 

NSE median value of 0.44. This relatively small difference between logNSE and normal NSE shows that 

the downscaling method performs comparable well under low flow conditions compared to normal 

flow conditions. Gauging stations with more than 10,000 km² catchment area perform best evaluated 

with the logNSE and the values decrease with catchment sizes (Figure 13). However, the number of 

stations in the groups with different catchment areas is not equally distributed.  

 

Figure 13: Logarithmic Nash Sutcliffe efficiency (logNSE) overall validation gauging stations in Europe grouped by upstream 
area 

 

In the European focal DRNs, 44 gauging stations showed a good agreement of catchment areas, which 

is necessary for validation. Besides some outliers, the simulated downscaled time series of monthly 

streamflow show good performance overnall DRNs (Figure 14). However, the streamflow under low 

flow conditions at several stations in Croatia and Hungary cannot be simulated well (Figure 15). In the 

Appendix, the detailed performance values of all DRN stations are shown. 
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Figure 14: KGE values of gauging stations in DRNs 

 

Figure 15: Logarithmic Nash Sutcliffe efficiency (logNSE) of gauging stations in DRNs 

 



23 

 

 

2.3.4 Validation of results for South America 

In South America, the performance of the developed HR streamflow time series is, with a median KGE 

value of 0.29, significantly lower than in Europe. Especially in the upstream area classes below 10,000 

km² low KGE values are reached (Figure 16). Most stations that show bad performance (KGE values 

below -0.41) are located in the western part of the hydrographic macroregion “Paraná” and the 

hydrographic macroregions “Eastern Northeast Atlantic” and “San Francisco” (Figure 17).  Those 

regions show also bad streamflow performance in LR GHM results (Müller Schmied et al., 2021, Fig. 8). 

The components (r, β and γ) reveal that the majority of stations with less than 500 km² catchment area 

the streamflow is underestimated (β<1), whereas the majority of stations with catchment areas of 

more than 2500 km² the streamflow is overestimated (Figure 19). The variability of the observations is 

not well captured by the developed HR streamflow time series, which again may be traced back to the 

relatively poor performance of LR GHM streamflow ( Müller Schmied et al., 2021, Fig.8). When focusing 

on the low flows the majority of the stations reach a negative logNSE (Figure 21). However, the 

majority of stations with a catchment area of more than 10,000 km² show a rather good performance.  

 

Figure 16: KGE values over all validation gauging stations in South America grouped by upstream area 
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Figure 17: KGE values for all validation gauging stations in South America 

 

Figure 18: Correlation coefficient (r) over all validation gauging stations in South America grouped by upstream area 
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Figure 19: Bias ratio (β) overall validation gauging stations in South America grouped by upstream area 

 

Figure 20: Variability ratio (γ) overall validation gauging stations in South America grouped by upstream area 
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Figure 21: Logarithmic Nash Sutcliffe efficiency (logNSE) overall validation gauging stations in South America grouped by 
upstream area 
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3 High-resolution estimation of monthly time series of 

the number of no-flow days at the continental scale 

by Random Forest modeling 

3.1 Overview 

We developed a novel approach based on random Forest (RF) modeling to produce high resolution 
reach-scale estimates of the spatiotemporal patterns of streamflow intermittence across all of Europe. 
In addition, process-based models are notoriously unsuccessful at predicting low flows and streamflow 
intermittence at large scale due to the complexity of the mechanisms involved, such as groundwater-
surface water interactions (Döll et al. 2016; Zaherpour et al. 2018). Machine learning (ML) approaches 
like RF, by contrast, do not require knowledge on the processes underlying the phenomenon of interest 
and are thus a promising tool to produce hydrological predictions at this combination of resolution and 
scale. ML methods identify the pattern underlying a phenomenon based on observations, i.e. they 
learn from the observations and then can make predictions. ML methods are grouped into supervised 
learning, unsupervised learning and reinforcement learning Supervised learning approaches are a 
promising tool for estimating streamflow intermittence at a high spatial resolution without the need 
for high-resolution hydrological modeling, which is infeasible at the continental scale. The supervised 
learning method Random Forest (RF) is well suited for both classification and regression tasks (Breiman 
et al., 2001), and thus for relating observations of streamflow intermittence with diverse high-
resolution data (predictors) to predict HR streamflow intermittence. RF modeling has already been 
used for hydrological classification problems, i.e. for predicting classes of hydrological characteristics, 
including intermittence (e.g., for the world: Messager et al., 2021; Australia: Bond and Kennard, 2017; 
France: Snelder et al., 2013).    
As input data for the RF model, we combined daily streamflow observations (target observations), the 

updated 15 arc-sec HydroSHEDs drainage direction map (Section 2.3.2), the HR downscaled monthly 

streamflow time series of WaterGAP, other LR WaterGAP data and other static HR physiogeographic 

data (Section 3.2) to estimate the target, the monthly time series of the number of no-flow days. We 

used an efficient two-step RF approach that addresses the highly unbalanced target observations, 

which are dominated by months without no-flow days, to determine the relationship between these 

predictors of intermittence and the observed monthly values of no-flow days (Section 3.3). The results 

of the two-step RF modeling approach are described and validated in Section 3.4.  We then used the 

updated HydroSHEDs drainage direction map to generate more than 1.5 million river reaches for which 

the RF modeling approach was then applied, resulting in a monthly time series of the number of no-

flow days (aggregated to five classes) for each river reach, covering the period 1981-2019 (Section 3.5). 

The spatial extent of the RF modeling is Europe without Russia and Turkey. 

 

3.2 Data and pre-processing 

Obtaining and manipulating the observational data for the target variable and the data for the many 

predictor variables is an important and time-consuming step in the RF modeling process.  

3.2.1 Target 

The target, or response variable, of the RF models developed in this study is the number of no-flow 

days per month in 15-arc cells. Observation-based Information on this variable, from which the RF 
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model can be generated, can only be derived from continuous daily observations of streamflow at 

gauging stations. The gauging stations need to be co-registered with the updated HydroSHEDS 

drainage direction map (section 2.3.2) to identify to which grid cell the station data are to be related. 

We collected such observations from the GRDC and GSIM databases (Section 2.3.1). Altogether 1918 

GRDC and GSIM stations with daily streamflow are available for Europe. However, most of the GRDC 

and GSIM stations are on perennial streams, without any no-flow days, which also reflects the result 

of a global-scale analysis of Krabbenhoft et al. (2022) that intermittent river reaches are 

underrepresented by existing streamflow gauging stations. We therefore used the SMIRES meta-data 

on gauging stations in 19 European countries with flow intermittence (Sauquet, 2020) to directly ask 

the national streamflow data providers for the daily streamflow time series of the gauging stations 

listed in the SMIRES table. In this way, we obtained daily streamflow time series of a total of 375 

SMIRES gauging stations. Please note that these stations have not been included in the validation of 

HR downscaled WaterGAP streamflow (Section 2.3.1).  

From all of these stations, stations suitable for deriving target observations were selected. In the first 

step, we checked the correct location of the SMIRES gauging stations by comparing the upstream area 

given in the meta-data with those of HydroSHEDS. The GRDC and GSIM stations had already been 

quality-checked by Messager et al. (2021; Section 2.3.1). If the drainage areas deviated by more than 

10% the stations were manually relocated to a suitable grid cell with a deviation of less than 10%. If 

this was not possible, the station was excluded from RF modeling. For the remaining stations, we 

excluded all station-months that did not have streamflow observations for all days of the month and 

only kept all stations that had at least 18 station-months of daily streamflow data. To identify no-flow 

days, we called all days with a streamflow of not more than 1 l/s a no-flow day. Finally, we computed, 

as the target of the RF modeling, the number of no-flow days per month and station, i.e. per station-

months, for all the remaining stations. The maximum period with observed no-flow days per station-

month is 1981-2019 (i.e., station-months before or after this period of 468 months were omitted from 

subsequent analyses).  

Streamflow data from a total of 1,915 stations were used for setting up the European RF model, i.e. 

for calibrating it, and for validating its results. For each station, the first two-thirds of all months with 

observations within the analysis period were used for model calibration and the last one-third for 

validating the model. In the case of full data, the calibration and validation period is 1981-2006 (312 

months) and 2007-2019 (156 months), respectively. The total number of station-months with the 

observed number of no-flow days that was entered into the RF model, i.e. the number of station-

months of the calibration period, was 371,550, corresponding to an average of more than 16 years per 

station. The respective numbers for model validation are 188,156 station-months or more than 8 years. 

While 3.8% of the station-months were intermittent, i.e. contained at least one no-flow day, during 

the calibration period, this number increased very slightly to 3.9% during the validation period. During 

the calibration period, 24% of the stations had at least one no-flow day, while the value decreased to 

18% for the validation period, the decrease being caused by the shorter validation period as compared 

to the calibration period. 

3.2.2 Predictors 

Monthly time series of hydrological indicators as well as static physiographic characteristics were 

considered as predictors for building the statistical RF model of the number of no-flow days per month 

and river reach at the continental scale. The 18 predictors include monthly time series for the period 

1981-2019 at two spatial resolutions (15 arc-sec HR and 0.5 arc-deg LR), both of which are based on 

WaterGAP output (and input) as well as static variables with a resolution of 15 arc-sec. The HR 
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hydrological predictors are all derived from the HR downscaled monthly time series of streamflow 

(Section 2). Streamflow is converted into area-specific streamflow by dividing it by the upstream area. 

The static HR predictors are selected from the set of important potential predictors from Messager et 

al. (2021) but also include two karst-related predictors derived from a newer dataset on karst 

occurrence (WOKAM dataset) and an updated version of Global Aridity Index (Version 3; Zomer et al., 

2022). The predictors entered into the RF modeling are listed in Table 1. The values of these predictors 

were assembled for each of the 371,550 station-months that were available for setting up the model 

(model calibration), i.e. for the 1,915 HR grid cells that contain a gauging station. In the case of the HR 

streamflow predictors and the static predictors karst_status, the value for the HR grid cell for which 

the number of no-flow days is to be predicted (target cell) was used as a predictor. In the case of all 

other predictors, the values in the upstream areas of the target grid cell as defined by the updated HR 

HydroSHEDS drainage direction map were aggregated to be predictive for flow intermittence at the 

target cell. In the case of the LR predictors, the value of the predictor was assumed to be the same in 

all HR cells within the LR cell.  

After finalizing the RF model, we found that for one out of the 1915 gauging stations (in France), the 

applied drainage direction area was too small, leading to an overestimation of the HR time series of 

area-specific streamflow. By mistake, one of the 18 predictors of Table 1, the glacier area fraction in 

the upstream drainage basin glacier_fraction, was not considered in step 1 (but in step 2 where its 

importance was found to be very low, see Figure 29). In addition, we found that the LR indicator 

runoff_dvar is conceptually flawed as 1) WaterGAP results in many daily runoff values of zero due to 

its runoff generation algorithm and 2) it is not meaningful to divide a runoff value by drainage area. 

Fortunately, the predictor has rather low importance (ranks 8 and 10 in step 1 and step 2, respectively, 

Figures 24 and 29). 
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Table 1. Description of the predictors used in RF modeling, with their abbreviations, units and sources. Specific streamflow is 
streamflow divided by upstream drainage area. Predictors marked with an asterisk (*) were averaged across the total 
drainage area upstream of the reach pour point. 

Category 
Predictor 
type 

Predictor Abbrevation (unit) Source 

Hydrology 

 
Monthly 

time 
series HR 
(15 arc-

sec) 

Monthly specific streamflow Q (m3 sec−1km−2) Downscaled 
WaterGAP 
2.2e 

Hydrology Interannual variability of monthly 
specific streamflow, per calendar month, 
in terms of standard deviation 

Q_iav_sd 
(m3 sec−1km−2) 

Downscaled 
WaterGAP 
2.2e 

Hydrology Interannual variability of monthly 
specific streamflow, per calendar month, 
in terms of coefficient of variation 

Q_iav_cv (-) Downscaled 
WaterGAP 
2.2e 

Minimum monthly specific streamflow of 
the past 12 months 

Q_min_p12 
(m3 sec−1km−2) 

Downscaled 
WaterGAP 
2.2e 

Hydrology Mean monthly specific streamflow of the 
past 12 months 

Q_mean_p12 
(m3 sec−1km−2) 

Downscaled 
WaterGAP 
2.2e 

Hydrology Minimum monthly specific streamflow of 
the past 3 months 

Q_min_p3 
(m3 sec−1km−2) 

Downscaled 
WaterGAP 
2.2e 

Hydrology Mean monthly specific streamflow of the 
past 3 months 

Q_mean_p3 
(m3 sec−1km−2) 

Downscaled 
WaterGAP 
2.2e 

Hydrology 

Monthly 
time 

series LR 
(0.5 arc-

deg) 

Daily variability (max – min) of runoff 
from land per month divided by 
upstream drainage area* 

runoff_dvar  
(mm s−1km−2) 

WaterGAP 
2.2e 

Hydrology Diffuse groundwater recharge to runoff 
from land ratio 

gwr_to_runoff_ratio 
(-) 

WaterGAP 
2.2e 

Climate Number of wet days* wet_days (days/ 
mon) 

WaterGAP 
2.2e 

Climate 

Static  
HR       

(15 arc-
sec 

Global aridity index (P/PET)* (long-term 
average per calendar month 

P_to_PET_ratio 
(1/10000) 

Global 
Aridity Index 
v21 

Land cover Potential natural vegetation classes, 
dominant class in upstream drainage 
basin (range 1-15) 

pot_nat_vegetation 
(-) 

EarthStat2 

Land cover Land cover, dominant class in upstream 
drainage basin(range1-22) 

land_cover (-) GLC20003 

Land cover Glacier area fraction in upstream 
drainage basin 

glacier_fraction(%) GLIMS4 

Physiography Drainage area drainage_area 
(km2) 

HydroSHEDS5 

Physiography Terrain slope* slope (10-2 deg) EarthEnv-
DEM906 

Soil+Geology Fraction of karst area (karst area / 
drainage area) in upstream drainage 
basin 

karst_fraction (%) WOKAM7 

Soil+Geology Occurrence of karst (1 if karst, 0 if not) karst_status (-) WOKAM7 

1: (Zomer et al. 2022); 2: (Ramankutty and Foley 1999); 3: (Bartholomé and Belward 2005); 4: (GLIMS 

& NSIDC); 5:  (Lehner et al. 2008); 6: (Robinson et al. 2014); 7: (Chen et al. 2017) 
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3.3 Random Forest modeling approach 

3.3.1 The RF methodology 

In the late 20th century, a new group of ML methods emerged that are nowadays called decision tree 

algorithms, such as the Classification and Regression Tree (CART). Exploiting tree-based methods alone 

sometimes leads to overfitting (good performance with calibration data while much worse on unseen 

data) due to the complexity and non-linear underlying pattern in the data. To overcome this problem, 

Breiman et al. (2001) combined a random predictor selection at each tree node (Amit et al., 1997) with 

a bootstrap aggregation (bagging) ensemble method (Breiman, 1996), which resulted in the popular 

and effective ML method “Random Forest”. In RF, which focuses on variance reduction, the trees are 

trained randomly on different parts of the training dataset consisting of records containing the 

observed value of the target and all the pertaining predictors. Thus, many uncorrelated decision trees 

(i.e. a forest) are built by relating different sub-sets of predictors and the target observations. In the 

case of classification trees, which were used in our study, each tree is generated by using a threshold 

for a predictor to split, in the first step, each random subset (node) into two further subsets (nodes at 

the tree level below the first node) that are more homogeneous with respect to the target variable 

than the node above. In this way, the so-called impurity of the node/subset is reduced, where the 

impurity is quantified by the GINI importance that decreases with increasing homogeneity of the 

subsets. Each split results in two nodes, each of which has a smaller number of records than the node 

above. Each tree is grown until the number of records in a node reaches a prescribed minimum node 

size, i.e. the number of records that should not be underrun. The output of the RF for a set of predictors 

is the class selected by most trees. Additionally, an estimate of the uncertainty of the prediction can 

be made as the standard deviation of the predictions from all the individual regression trees. For a 

detailed description and interpretation of RF please refer to Tyralis et al., (2019),  Louppe (2014) and 

Hastie et al., (2008).  

The RF also results in information about the importance of the different predictors for the target, in 

the form of the Mean Decrease in Impurity (MDI), GINI Impurity and Actual Impurity Reduction (AIR) 

predictor importance metric. The average impurity reduction over all trees in the forest indicates the 

importance of each predictor. The higher the AIR, the more important the predictor. Partial 

dependence plots show the probability of a predicted class as a function of the values of an individual 

predictor, holding the rest of the predictors at their respective mean values; the flatter (horizontal) the 

line, the less important it is which value the predictor takes.  

Similar to other ML methods, RF has a set of hyperparameters. The hyperparameters of the RF method 

are 1) the fraction of the original training data that is randomly sampled without replacement to 

construct each tree (alpha), 2) the number of predictors that are sampled from the full set of predictors 

and considered by each tree when splitting a node (MTRY) and 3) the minimum number of 

observations that a terminal node can contain, which influences the depth of the trees. We did not 

tune the number of trees in the forest because the performance of RF has been demonstrated to 

monotonically and asymptotically increase with the number of trees, so that it should be set as high as 

computationally possible. However, alpha, MTRY and the minimum node size were adjusted during 

training to optimize performance. Estimation of these two hyperparameters can be done by cross-

validation or metaheuristic optimization algorithms like Particle Swarm Optimization (PSO). In this 

study, we used cross-validation. We applied the ranger package of Wright and Ziegler (2017) for RF 

modeling; it is a fast implementation of RF suited for high-dimensional data.  
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3.3.2 The two-step RF approach 

There are many months without any no-flow day in the target observations;datasetsuch severe 

imbalance in training data could bias the resulting model (Japkowicz and Stephen, 2002). Therefore, a 

sequential approach to statistical modeling was taken. In step 1, an RF model is built to achieve a binary 

classification of each month as either intermittent (with at least one no-flow day) or perennial, with a 

probability threshold of 0.50. In the second step, another RF model was generated for only those 

station-months that were observed to be intermittent. For those, we developed in step 2 another 

classification model for predicting the number of no-flow days per month, distinguishing the four 

classes 1-2, 3-15, 16-29 and 30-31 no-flow days, after having evaluated also a model with six classes  

(1-2, 3-8, 9-15, 16-22, 23-29 and 30-31 no-flow days per month). Figure 22 provides the workflow of 

the two-step approach, including the RF model setup (calibration) and the validation of the RF models. 

The two RF models are then applied sequentially to simulate monthly time series of no-flow days per 

month for river reaches. Each river reach and month (reach-month) is characterized by its number of 

no-flow days, aggregated to five classes: 0, 1-2, 3-15, 16-29 and 30-31 no-flow days (Section 3.5). 

 

 

Figure 22: Workflow of simulating monthly time series of streamflow intermittence on river reaches, i.e. the number of 
no-flow days per month in five classes. 

We addressed the problem of imbalanced data (many more perennial station-months than 

intermittent ones in step 1 and a large number of station-months with 30-31 no-flow days in step 2) 

not only by the sequential approach, but also by applying, in step 1, standard oversampling 

(oversampling the minor class 10 times)  and, in step 2, the Synthetic Minority Oversampling Technique 

(SMOTE) (Chawla et al. 2002), whereby the minority classes are oversampled by creating „synthetic” 

examples rather than by over-sampling with replacement. Minority classes were oversampled such 

that, for each minority class, the number of training observations in that class was 80% of the number 

of observations in the majority class. 

Hyperparameter tuning in steps 1 and 2 was carried out by evaluating random ensembles of the 

combinations of MTRY and minimum node size. 60 and 96 ensemble members were evaluated in steps 
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1 and 2, respectively. We applied a resampling method, where cross-validation (CV) was done three 

times with different sub-subsets of the records. In each CV round, the training dataset is split randomly 

into k parts and then the model is trained k times on k-1 parts and evaluated on other fold for k times, 

each time with a different combination of parts. In step 1, k was 4, in step 2, k was 5. The 

hyperparameter set leading to the highest Bacc value (see next section) was then used to set up the 

RF model, to counter the problem of overfitting and consequently bias and variance errors. For step 1, 

the optimal values for MTRY and minimum node size were 8 and 7, respectively; the corresponding 

values for step 2 are 2 and 6. The run time for step 1 was 10 days and only 7 hours for step 2. 

3.3.3 Classification performance metrics 

Classification metrics are the standard for evaluating the performance of an RF classification model. 

They quantify how well the predicted class fits to the observed class. We evaluated the balanced 

accuracy Bacc, precision, recall, sensitivity, specificity, and F-score. The metrics are explained in Figure 

23 for the case of a binary classification as done in step 1. For the step 2 RF modeling, the metrics were 

first calculated separately for each class (6 or 4), and then averaged over the classes. In a strongly 

unbalanced dataset such as the dataset in our study, Bacc provides the best indication of how well the 

classification performs. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  

2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
 

 

Figure 23: Binary confusion matrix and classification metrics in case of two classes only. 

 

3.4 RF results and performance 

3.4.1 Step 1 modeling results  

The AIR of the 17 predictors of the intermittence state of each station-month (with at least one no-

flow day or perennial) indicate that the upstream drainage area of each streamflow observation station 

and the average slope in the upstream area are the two most important predictors for the 

intermittence state (Figure 24). Importance ranks 3 to 5 were assigned by the RF model to three 

predictors derived from the HR downscaled monthly WaterGAP streamflow, 1) the streamflow of the 

current month, 2) the interannual variability of monthly streamflow expressed in standard deviation 

and 3) the minimum streamflow during the previous 12 months. 
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Figure 24: Ranked importance of the predictors as quantified by AIR for predicting perennial and intermittent station-
months (step 1 RF model) 

 

The partial dependence plot for the drainage area shows that the probability that a station-month is 

classified as intermittent decreases as expected with increasing drainage area, for drainage areas up 

to approximately 30,000 km2 (Figure 25). The plot for slope, however, indicates an unexpected 

negative correlation between the probability of being an intermittent month and the slope; the 

probability is computed to be higher for flat terrain, while hydrological expertise expects more 

intermittency in steeper terrains. The negative correlation can be explained by the spatial distribution 

of the gauging stations; gauging stations in steeper terrain are those in the mountainous regions along 

the Spanish Atlantic coast, the Pyrenees and the Alps, wet regions with large runoff. In the case of all 

three HR hydrological indicators, the probability of at least one no–flow day in the month decreases 

with increasing values up to a certain predictor value and then shows no further dependence for higher 

predictor values, which also is in accordance with expectations. The distribution of the standard 

deviation of monthly streamflow per calendar month is dominated by the heterogeneity of the mean 

streamflow itself. The partial dependence plot for interannual variability as expressed by the 

coefficient of variation (Q_iav_cv) shows the expected behavior, with the intermittence probability 

increasing with increasing Q_iav_cv in the range of approx. 0.1<Q_iav_cv<1.8 (Figure 25). With 0.86, 

the balanced accuracy Bacc is quite high for the calibration and does not deteriorate much for the 

validation data (Table 2). The same is true for the other metrics. 
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Figure 25: Partial dependence plot showing the probability of a station-month of being classified as intermittent as a 
function of the values of the 17 predictors (Step 1 RF model). 

 

Table 2: Classifying station-months as either perennial or intermittent (at least 1 no-flow day): classification performance 
metrics of the step 1 model. 

 Bacc Recall Precision Sensitivity Specificity F-score 

Calibration 0.86 0.75 0.56 0.75 0.98 0.64 

Validation 0.83 0.70 0.50 0.70 0.97 0.58 

 

Figure 26 shows maps of the ratio of predicted to observed intermittent months (with at least one no-

flow day) per gauging station, for both the calibration and validation periods. For reference, the 

percentage of observed intermittent months per gauging station is shown, too, in Figure 26. Stations 

without any observed intermittent months dominate (grey dots in Figure 26). For most other stations, 

less than 30% of the months are observed to be intermittent (Figure 26a, b) in both the calibration and 

validation periods. Most stations with more than 30% intermittent months are located in Spain; here, 

the percentage of intermittent months is lower in the validation period than in the calibration period. 

The step 1 model both over- and underestimates the observed percentage of intermittent months, 

with the largest discrepancies (dark blue: zero predicted months and at least one observed 

intermittent month, red: zero predicted months and at least one observed intermittent month) 

occurring at stations with a zero or small observed or predicted intermittent months (compare Figure 

26c,d to Figure 26a,b). 
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Calibration Validation 

  

  
Figure 26: Percentage of observed intermittent months (with at least one no-flow day) per gauging station for the 
calibration (a) and validation (b) periods, as well as the ratio of predicted to observed intermittent months per gauging 
station for the calibration (c) and validation (d) periods. 

Of the observed completely perennial 1452 stations without any intermittent month during the 

calibration period, 1437 are correctly predicted to be completely perennial, i.e. 98.9% (Table 3). 

However, only 72.3% of the 463 observed intermittent stations (with at least one intermittent month) 

are correctly predicted to be intermittent. 97.6% of all observed perennial station-months are correctly 

predicted, but only 75.2% of the observed intermittent station-months. About 8500 perennial station 

months are wrongly predicted to be intermittent, while about 3500 intermittent station months are 

wrongly predicted to be perennial. For the validation, the fraction of correctly predicted perennial 

months decreases only slightly to 97.1 but the fraction of correctly predicted intermittent months 

decreases more strongly to 69.8%. As described in Section 3.1, the percentage of observed intermittent 

months did not change much between the calibration and the validation period. 

Considering the seasonal variations of streamflow intermittence in Europe, the highest number of 

observed intermittent months occurs in September-October-November (SON), the second highest in 

June-July-August (JJA), and the third highest in March-April-May (MAM). December-January-February 

(DJF) has the lowest number of intermittent months but not much less than MAM (Table 3). The 

percentage of correctly predicted intermittent months is highest in SON and JJA, somewhat higher 

than in DJF and MAM in the calibration period but more than 10% higher than in DJF and MAM in the 

validation period. Comparing the decrease in performance regarding intermittent station-months 
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between the calibration and the validation period, the decrease was very low in SON and JJA (less than 

3%) and rather high (almost 10%) in DJF and MAM. 

Table 3. Number of observed perennial (P) and intermittent (I) stations and station-months (bottom numbers) and of 
correctly simulated perennial and intermittent station and station-months (top numbers). Information on station-months is 
provided for all months (4th column) and the four seasons December to February (DJF), March to May (MAM), June to 
August (JJA) and September to November (SON). 

  
Number 

of stations 

Number of 
station-
months 

DJF MAM JJA SON 

Calibration 

𝑃𝑠𝑖𝑚

𝑃𝑜𝑏𝑠
 

1437

1452
= 98.9 

348884

357377
= 97.6 

88226

89932
= 98.1 

91590

93475
= 98 

85390

87879
= 97.2 

83678

86091
= 97.2 

𝐼𝑠𝑖𝑚

𝐼𝑜𝑏𝑠
 

335

463
= 72.3 

10661

14173
= 75.2 

1829

2588
= 70.7 

1960

2646
= 74.1 

3349

4331
= 77.3 

3523

4608
= 76.4 

Validation 

𝑃𝑠𝑖𝑚

𝑃𝑜𝑏𝑠
 

1480

1555
= 95.1 

175975

181201
= 97.1 

43868

44823
= 97.9 

44832

45860
= 97.8 

43247

44849
= 96.4 

44028

45669
= 96.4 

𝐼𝑠𝑖𝑚

𝐼𝑜𝑏𝑠
 

246

360
= 68.3 

5108

7315
= 69.8 

945

1516
= 62.3 

1030

1590
= 64.8 

1435

1931
= 74.3 

1641

2278
= 74.5 

 

That the step 1 RF model tends to overestimate the occurrence of intermittent station-months is not 

only seen in Table 1 but also in Figure 27. The Nash-Sutcliffe efficiency (NSE), which is both sensitive 

to bias and correlation, shows satisfactory values, with NSE = 0.67 for the calibration period and 

NSE=0.51 in the validation period. NSE can range from – to 1 (perfect fit). An NSE value of zero is 

considered to be a benchmark for the skill of the model, as with NSE = 0, the mean of the data has the 

same skill as the model. The overestimation of intermittent months dominantly occurs at the outlet of 

relatively small drainage basins, with upstream areas of less than 10 km2 in the calibration period and 

with less than 5 km2 in the validation period (Figure 28). However, only 47 out of the 1915 stations 

have drainage areas of less than 10 km2.  In the validation period, streamflow intermittence is also 

overestimated for the largest basins, with areas of more than 10,000 km2. 
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Figure 27: Comparison of the observed and simulated percentage of intermittent months for both the calibration (black) and 
the validation (red) periods. Each point represents a streamflow gauging station. 

 
 

 
 

Figure 28: Performance of the step 1 RF model as a function of upstream drainage area [km2] of the streamflow gauging 
stations. The box plot shows the fractions of all station-months in a drainage area class that are observed (red) or simulated 
(green) as intermittent. The values below the upstream area show the number of station-months/number of stations 
included in the drainage area class. Only stations that are observed or predicted to have at least one intermittent month are 
included in the figure. 

 

The differences in the occurrence of intermittence between different years can be simulated quite 

well, as seen by the rather high correlation between observed and predicted annual numbers of the 

number of intermittent months (Figure 29c,d). This means that the step 1 model can identify dry and 

wet years well. The poor NSE values (Figure 29a,b) are likely due to the overall bias of the RF model 

towards too much intermittency. 
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Figure 29. NSE (a, b) and correlation (c, d) for the annual time series of the number of intermittent months per year for 
the calibration (a, c) and the validation (b, d)  (step 1 RF model). 

 

3.4.2 Step 2 modeling results 

Monthly specific streamflow (HR), average slop upstream, and drainage area are the three most 
important predictors of the number of no-flow days in the station-months aggregated to four classes 
based on AIR (Figure 30). These three predictors are also the most important predictors for the step 1 
model, albeit in a different order (Figure 24). The fourth rank is taken by the static HR predictor aridity 
(PET_to_P_ratio), while five predictors derived from HR specific streamflow take the following ranks.  
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Figure 30: Ranked importance of the predictors as quantified by AIR for predicting the number of no-flow days per 
station-month in the case of observed intermittent station-months (step 2 RF model). 

The classification performance is expected to decrease with an increasing number of classes. When 
comparing the performance metrics for four and six classes of the number of no-flow days in 
observed intermittent station-months, the balanced accuracy in the case of six classes is not much 
worse that in the case of four classes (Table 4) and can still be considered satisfactory. However, 
precision and F-score degrade significantly in the case of six classes. The confusion matrices for the 
two classification options clearly show that six classes would lead to an exceedingly high number of 
wrong predictions (Figure 31b).  While in the case of a predicted class n, the majority of the 
observations are within class n for both classifications the majority of all observations is in the 
correct class only for four classes (Figure 31a, b). Therefore, the step 2 RF modeling for four classes 
was used to generate the model output dataset. For 56% of all intermittent station-months, the 
correct class (1-4) is assigned. Classes 2 and 4 dominate both the prediction and the observations. 
However, the step 2 RF model for four classes tends to predict too many 30-31 no-flow days (class 
4 in Figure 31) and not enough 1-2 no-flow days. Model performance degrades for the validation 
data, where the correct class can only be identified for 47% of the intermittent station-months 
(Figure 31c).  
 
Table 4.  Classification performance metrics of the step 2 RF model with the adopted six classes of monthly flow 
intermittence as compared to the performance metrics for four classes, both for the calibration and validation periods. 

 Bacc Recall precision sensitivity specificity F-score 

Six classes: 

calibration 
0.62 0.36 0.39 0.36 0.88 0.36 

Six classes: 

validation  
0.58 0.29 0.31 0.29 0.87 0.28 

Four classes: 

calibration 
0.67 0.49 0.55 0.49 0.84 0.50 

Four classes: 

validation 
0.60 0.38 0.51 0.38 0.81 0.35 
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Figure 31: The confusion matrix of predicting four classes of no-flow days per station-month (a) or six classes (b) for the 
calibration period and four classes for the validation period (c) (step 2 RF model). 

 

To understand the spatial distribution of observed flow intermittence and step 2 RF model 

performance, Figures 32 and 33 show the percentage of months that belong to one of the four classes 

for the calibration and validation datasets, respectively. Most of the gauging stations that have 30-31 

no-flow days for more than half of the months are located in Spain and Great Britain. The percentage 

of intermittent months at each gauging station that was classified correctly in the four classes varies 

strongly between stations (Figure 34).  During the calibration period, at most stations more than half 

of the intermittent months at each station are classified to belong to the correct class. The 

performance degrades for the validation dataset, when often less than half of the intermittent months 

are classified correctly.  
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Figure 32: Percentage of intermittent months with observations of the four intermittence classes at gauging stations in 
the calibration dataset. 
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Figure 33: Percentage of intermittent months with observations of the four intermittence classes at gauging stations in the 

validation dataset. 

 

 
 

    
Figure 34: The percentage of intermittent months at streamflow gauging stations that is classified correctly into the four 

classes for the calibration (a) and validation (b) periods. 
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The ability of the step 2 RF model to predict monthly time series of the number of no-flow days 

(aggregated to four classes, i.e. a time series of the values 1, 2, 3 and 4) is rather high when considering 

the performance metric polychoric correlation coefficient (suitable for quantifying the correlation of 

ordinal categorical variables), which only considers the phase of the temporal variability and not the 

absolute value for the calibration period (Figure 35c). However, correlation during the validation 

period degrades strongly for many station (Figure 35d). The mean bias of the time series is, for most 

gauging stations, positive, i.e. the RF model tends to overestimate the number of no-flow days both 

for the calibration (Figure 35a) and the validation periods (Figure 35d). Overestimation is increased 

during the validation period in Spain but decreased in the Czech Republic.  

 

  

 

 

 
 

Figure 35. Performance of monthly time series of classes (1, 2, 3 or 4) for the intermittent months at each gauging station 

(step 2 RF model): Bias expressed as simulated mean value minus observed mean value (positive: overestimation of no-flow 

days) (a: calibration period; b; validation period) as well as polychoric correlation coefficient (c: calibration period, d: 

validation period). 
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3.5 Application of the RF modeling approach to compute monthly 

time series of flow intermittence (number of no-flow days in five 

classes) for European HR river reaches during the period 1981-2019  

Application of the RF model presented in Section 3.4 was done by first applying the step 1 model to 

the river reaches identified as described in Section 3.5.1. Then, the step 2 model was applied for all 

river reaches and months (reach-months) that are predicted to be intermittent (at least one no-flow 

day) by the step 1 model. Finally, the intermittence status of each reach-month was quantified by the 

five classes 0-4, corresponding to 0, 1-2, 3-15, 16-29 and 30-31 no-flow days. All predictors used for 

generating the RF models were used for model application as all were found to be significant (p<0.05). 

3.5.1 Derivation of river reaches  

We had planned to apply the RF model for each HR grid cell covering Europe and South America. 

However, we found that this would be computationally too expensive regarding both computation 

time and data storage. Only for Europe (without Russia), there are 73 million HR grid cells and 468 

months (1981-2019) such that more than 34 billion predictions of the intermittence status would have 

to be computed. Therefore, we decided to apply the RF model to predict the intermittency status of 

river reaches. Predictions are then made for the most downstream HR grid cells of each river reach 

and are assumed to represent the mean conditions over the whole river reach. Although the 

HydroRIVERS dataset (Linke et al. 2019) already provides a seamless digital representation of the river 

network at 15 arc-sec, we produced a new river network dataset described herein to (i) account for 

the drainage direction modifications implemented in the three DRNs, and (ii) to extend the coverage 

of the river network to smaller rivers and streams compared to HydroRIVERS to suit the purpose of 

other DRYVER Work Packages. The river network was delineated following the same overall procedure 

as HydroRIVERS, but using a different set of input datasets that were created as part of the downscaling 

of the global hydrological model WaterGAP 2.2e (section 2): the drainage area upstream of every cell 

and the long-term mean annual discharge in each cell. Those two input datasets differ from the original 

ones used in producing HydroRIVERS because (i) they were both produced using the custom drainage 

direction dataset modified in the three DRNs for DRYvER, (ii) the streamflow dataset was produced 

with a different version of the global hydrological model (WaterGAP 2.2d was used for deriving 

HydroRIVERS) and (iii) the downscaling procedure of the hydrological model.  The streams/rivers were 

defined to start at all pixels with an upstream drainage area of more than 2 km2 (instead of 10 km2 for 

HydroRIVERS) or at a grid cell where the mean annual downscaled HR streamflow of WaterGAP 2.2e 

during the period 1981-2019 exceeds 0.03 m3/s (instead of 0.1 m3/s in HydroRIVERS). Decreasing the 

threshold for streamflow to 0.02 m3/s would lead to artefactual "aggregates" of streams in wet areas. 

The total number of reaches in Europe (without Russia) is 1,533,471, such that the European 

streamflow intermittence dataset will contain a total of 717,664,428 reach-months covering the period 

1981-2019. 

In the six focal DRNs of the DRYvER project in Europe, the newly derived river network covers more of 

the first-order streams included in the high-resolution stream networks provided on the DRYvER server 

than HydroRIVERS (using the catchment area and estimated discharge at the middle point of first-order 

streams in the DRNs as reference). The coverage percentages increase as follows: focal DRN Finland: 

from 6% to 12%, Hungary: from 20 % to 25%, Czech Republic: from 29 % to 45%, Croatia: from 32% to 

53%, Spain: from 32% to 55% and France: from 35% to 60%. 
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Note that the river reaches as derived from the drainage direction dataset may not correspond to 

actual river reaches. In particular, river reaches (and therefore the streamflow intermittence status) 

are also identified in actual lakes and man-made reservoirs. Users of the developed streamflow 

intermittence dataset for reaches may need to mask out simulated reaches that are actually within 

lakes and reservoirs. Finally, while the extension of the river network to smaller river reaches 

(compared to HydroRIVERS) implies an increase in precision, it also implies a decrease in reliability and 

accuracy of the newly delineated streams (in terms of their spatial representation) due to the 

uncertainties in the underpinning global geometric and hydrologic data. 

 

3.5.2 Simulated intermittence of European river reaches 

90.87% of the more than 717 million reach-months in Europe during 1981-2019 are simulated as 

perennial, e.g., they have no days without streamflow (Table 5).  This is a larger fraction than the 

fraction in the calibration or validation datasets, where more than 96% of the station-months were 

observed to be perennial, and more than 94.5% were predicted to be perennial. Only a negligible 

number of reach-months is simulated to have 1-2 no-flow days, which is very different from the 

observed station-months in this class, but less different from the predicted station-months. The 

intermittence class 3-15 no-flow days is the second-largest class both for the reaches and the gauging 

stations. More than 3% of the reach-months are simulated to be in this class, while less than 1% are 

simulated to be in the class 16-29 no-flow days. More than 5% of the reach-months are simulated to 

be in the class 30-31 no-flow days, which is much larger than the observed or predicted values for the 

gauging stations. 

Table 5. Occurrence of the five intermittence classes in reach-months in Europe (without Russia and Turkey) during 1981-

2019 (last column) as compared to the occurrence at the gauging stations used to set up the RF model (first four columns), 

where the fraction of all station-months with observed and simulated classes is provided for both the calibration and the 

validation dataset. The percentage values for the predicted station-months relate to the total station-months with 

observations; the step 2 model predicting the four classes with no-flow days was set up only for the station-months that are 

observed to be intermittent. 

Class 
Station-months 
Calibration 

Station-months 
Validation 

Reach-months 
(1981-2019) 

Observed Predicted Observed Predicted Predicted 

Perennial 
357,377 
96.19% 

352,396 
94.84% 

181,201 
96.11% 

178,182 
94.52% 

652,151,841 
90.87% 

1-2 no-flow days 
1,511 
0.41% 

410 
0.11% 

726 
0.39% 

43 
0.02% 

2,176 
0.00% 

3-15 no-flow days 
4,297 
1.16% 

4,895 
1.32% 

2015 
1.07% 

2,511 
1.33% 

22,884,683 
3.19% 

16-29 no-flow days 
3,622 
0.97% 

2,494 
0.67% 

1983 
1.05% 

934 
0.50% 

5,557,991 
0.77% 

30-31 no-flow days 
4,743 
1.28% 

6,374 
1.72% 

2591 
1.37% 

3,827 
2.03% 

37,067,737 
5.17% 

Total 
371,550 

100% 
366,569 
98.66% 

188,516 
100% 

185,497 
98.40% 

717,664,428 
100% 

 

The spatial pattern of simulated intermittence over Europe is provided in Figure 36, showing for each 

reach the fraction of intermittent months with at least one no-flow day in the 468 months of 1981-

2019. The highest fractions occur in Spain, while mountainous areas (with a high average slope) show 
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perennial conditions, maybe because most gauging stations used for model set-up are in wet mountain 

regions (Section 3.4.1).  

As expected, intermittent conditions exist much more widely in the summer than in the winter. The 

monthly time series of the frequency of the intermittence class perennial, aggregated over all reaches 

in Europe, peaks, in most years, in January and reaches its lowest value in July  (Figure 37). The other 

intermittency classes peak in July-September. There is interannual variability even aggregated over all 

of Europe, with e.g. dry winters in 1992 and 2012. There is no predicted temporal trend of decreasing 

or increasing intermittence at the pan-European scale. 

 

 

 

Figure 36. Percentage of months with at least one no-flow day (output of application of step 1 RF model) during the period 

1981-2019 (map). 
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Figure 37. Monthly time series of the percent of all European reaches in the five intermittence classes 1981-2019 (5 colored 

lines) 

The seasonality of intermittence in Europe can also be seen on the intermittence maps (with five 

classes) for January 2019 and July 2019 (Figure 38). Still, the river reaches in large areas in Spain are 

simulated to be totally dry even in January 2019. In July 2019, reaches in a very large part of the Iberian 

peninsula and parts of Southern and Southeastern Europe are simulated to be totally dry, while even 

in Northern Europe (Finland, South Sweden) many reaches with 3-15 no-flow days are simulated. 

As expected from general principles and the RF model, the number of no-flow days per month 

decreases with increasing upstream drainage area (Figure 39 and Table 6; Table 6 shows the same 

values as those that are depicted in Figure 39). However, this tendency is clearer in the observations 

at the gauging stations than in the simulated reaches. The reason for the lower number of no-flow 

days for the reaches with an upstream drainage area below 2 km2 (as compared to the next higher size 

class) is due to the definition of reaches (Section 3.5.1). Reaches with drainage areas below 2 km2 were 

only generated if the mean annual streamflow exceeded a certain threshold, such that the smallest 

class only contains reaches in relatively wet areas. The two drainage area size classes 2-5 km2 and 5-

10 km2, which make up 46% of all reaches in Europe (Figure 39), have approximately the same 

intermittence class frequencies. About 6-7% of the reaches are in class 4 (30-31 no-flow days) and 

roughly the same percentage in class 2 (3-15 no-flow days). About 1.7% are in class 3 (16-29 no-flow 

days, while here, like in all size classes, the percentage of reaches with 1-2 no-flow days is negligible 

(Table 6). The frequency distribution is very different for all larger drainage area size classes, in 

particular regarding the occurrence of class 2, which drops to less 0.8% in the drainage area size class 

10-50 km2 and to less than 0.1% in all larger size classes. In the two size classes 10-50 km2 and 50-500 

km2, which account for 36% of all reaches, the frequency of months with 30-31 no-flow days remains 

at the high level of 6-7%, while most of the other reaches are perennial (Table 6). Reaches with 

upstream areas of more than 500 km2 are significantly less intermittent. Less than 0.3% of the reach-

months are simulated to be intermittent if drainage areas exceed 2500 km2.  
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Figure 39 also shows how different the distribution of upstream drainage areas is between the 

streamflow gauging stations used for deriving the RF model and the reaches for which we simulate 

intermittence. While more than half of the reaches have a drainage area of less than 10 km2, this is 

only the case for 2.5% of the gauging stations. This discrepancy certainly decreases the reliability of 

simulated intermittence for reaches with small drainage areas. 

 

 

 
Figure 38. Number of no-flow days, in five classes, in January 2019 (a) and July 2019 (b) (maps) 
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Figure 39. Percent of observed station-months (left) and reach-months in 1981-2019 (right) in the five classes as a function 

of upstream drainage area [km2] of the streamflow gauging stations or the reach. Ccalibration and validation data are 

combined, and the observed fraction is shown. The percentage of the station-months  or reach-months contained in each 

drainage area size class is provided below each size class. In total, 560,066 station-months and 717,664,428 reach-months 

are considered. Note that the y-axes for the stations and the reaches are scaled differently. 

 

Table 6. Percent of observed station-months (for both calibration and validation) and reach-months (1981-2019)  in the five 

classes as a function of upstream drainage area [km2] of the streamflow gauging stations or the reach. Classes: 0: perennial, 

1: 1-2 no-flow days, 2: 3-15 no-flow days, 3: 16-29 no-flow days, 4: 30-31 no-flow day. Calibration and validation data are 

combined, and the observed fraction is shown. In total, 560,066 station-months and 717,664,428 reach-months are 

considered. This table contains the same values as Figure 39. 

Upstream 

area [km2] 

Percent of station-months in classes 0-4 Percent of reach-months in classes 0-4 

0 1 2 3 4 0 1 2 3 4 

(0-2] 86.8 2.18 6.47 2.91 1.63 99.5 0.001 0.30 0.04 0.16 

(2-5] 79.7 2.30 6.35 7.36 4.28 86.6 0.0002 6.00 1.62 5.81 

(5-10] 91.6 0.95 3.10 2.76 1.70 83.6 0.00 8.00 1.73 6.69 

(10-50] 94.1 0.73 1.73 1.50 2.00 92.1 0.0005 0.81 0.08 7.05 

(50-500] 96.0 0.33 1.00 1.00 1.60 94.4 0.00 0.07 0.04 5.50 

(500-2500] 97.1 0.28 0.92 0.90 0.83 98.5 0.00 0.006 0.002 1.50 

(2500-10000] 98.4 0.30 0.60 0.19 0.53 99.7 0.00 0.02 0.00 0.26 

>10000 98.2 0.35 0.66 0.37 0.48 99.5 0.00 0.08 0.005 0.40 
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4 Conclusions  

The quality of the 0.5 arc-deg (LR) runoff of the global hydrological model WaterGAP appears to be, at 

least for Europe, good enough to be spatially downscaled by a new downscaling algorithm to 15 arc-

sec (HR) grid cells, deriving, for each 0.5 arc-deg grid cell, monthly streamflow time series for 14,400  

grid cells. While HR streamflow can certainly not reflect HR anthropogenic interferences with 

streamflow including small reservoirs, weirs and water abstractions, impacts of reservoirs and water 

abstractions are taken into account at the LR by WaterGAP. Predictors derived from the HR streamflow 

were found to be important for estimating, by a two-step RF modeling approach, streamflow 

intermittence in Europe, compared to intermittence based on daily time series of observed 

streamflow. We found that it is possible to predict, for each gauging station, the number of no-flow 

days per month in five classes (0, 1-2, 3-15, 16-29, 30-31 days). However, the model tends to 

overestimate the number of no-flow days. While wet and dry years can be reasonably distinguished by 

the RF model, the monthly intermittence class can only be simulated reasonably for the calibration 

period. The RF modeling approach resulted in predictions of the monthly time series of five 

intermittence classes at more than 1.5 million reaches in Europe during the period 1981-2019. As the 

performance of the HR streamflow in South America is lower, and there does not exist a dedicated 

dataset of daily streamflow for intermittent streams, which could be collected in this study for Europe 

based on metadata from the SMIRES initiative, we expect a worse simulation of intermittence in South 

America than in Europe. 

The spatial and temporal patterns of simulated streamflow intermittence in Europe are roughly 

plausible. Further comparisons with the intermittence results for the focal DRNs and discontinuous 

observations of no-flow days (e.g., from the datasets dryrivers, crowdwater and onde) could be used 

to validate the predictions and will be performed at a later time, after some model improvements. 

Model improvements may include 1)  using streamflow data during the whole period 1981-2019 to set 

up the RF model, 2) adjusting predictor selection (e.g., slope and aridity index), 3) undersampling of 

months with 30-31 no-flow days in step 2 of the RF modeling and 4) choosing different intermittence 

classes. Model uncertainty is and will remain high, in particular for small reaches, due to the 0.5 arc-

deg resolution of the WaterGAP model (including the impossibility to consider the impact of local river 

modifications such as weirs, small reservoirs and water abstractions) and the very low number of daily 

streamflow observations for small upstream reaches. In addition, the counterintuitive negative 

correlation of slope and the low frequency of intermittent station-months, both of which are due to 

the distribution of gauging stations, are expected to negatively impact the RF model results. 

This study shows the value of simulating intermittence at a high spatial resolution instead of at the 

resolution of global hydrological models, where one grid cell covers approximately 2500 km2. 

According to the simulation results, less than 0.3% of the reach-months are intermittent if the 

upstream drainage area of the reach is larger than 2500 km2, while about 15% of the reaches with 

drainage areas below 10 km2 are intermittent. The intermittence at scales below 2500 km2 would 

remain undetected without the downscaling of 0.5 arc-deg WaterGAP model output. 

  



52 

 

 

5 Shared data  

Three datasets are available on the DRYvER server (folder “continental-scale high-resolution 

modeling of streamflow intermittence2), the first two in the folder “subtask1.4.1_downscaling”, the 

third on in the folder “subtask1.4.2_statistical_modeling”. 

1 Dataset “Monthly time series of streamflow in the period 1981-2019 in 15 arc-sec grid cells, for 

Eurasia”. Unit: m3/s. Folder name: DS_flow_WaterGAP_eurasia 

2 Dataset “Monthly time series of streamflow in the period 1981-2019 in 15 arc-sec grid cells, for 

South America”. Unit: m3/s. Folder name: DS_flow_WaterGAP_SAmerica 

Both datasets contain 468 NetCDF files, one per month for the period 1981-2019 

 

3 Dataset “Monthly time series of five intermittence classes 1981-2019 in reaches, for Europe 

without Russia and Turkey”. Class values: 0, 1, 2, 3, 4.  

0: no no-flow day in month 

1: 1-2 no-flow days in month 

2: 3-15 no-flow days in month 

3: 16-29 no-flow days in month 

4: 30-31 no-flow days in month 

Folder name: intermittence_classes_reaches_Europe 

The dataset is in the format of a geodatabase. In addition, the results for the six European focal DRNs 

are provided as six shapefiles. 

  

https://erdyn.sharepoint.com/:f:/r/sites/DRYvER951/Documents%20partages/WP1%20-%20Hydrological%20trajectories%20of%20DRNs/continental-scale%20high-resolution%20modeling%20of%20streamflow%20intermittence/sub_task1.4.1_downscaling/Europe/DS_flow_WaterGAP_eurasia?csf=1&web=1&e=iYo8F4
https://erdyn.sharepoint.com/:f:/r/sites/DRYvER951/Documents%20partages/WP1%20-%20Hydrological%20trajectories%20of%20DRNs/continental-scale%20high-resolution%20modeling%20of%20streamflow%20intermittence/sub_task1.4.1_downscaling/South_America/DS_flow_WaterGAP_SAmerica?csf=1&web=1&e=1ApDbN
https://erdyn.sharepoint.com/:f:/r/sites/DRYvER951/Documents%20partages/WP1%20-%20Hydrological%20trajectories%20of%20DRNs/continental-scale%20high-resolution%20modeling%20of%20streamflow%20intermittence/sub_task1.4.2_statistical_model/Europe/intermittence_classes_reaches_Europe?csf=1&web=1&e=sRPGhN
https://erdyn.sharepoint.com/:f:/r/sites/DRYvER951/Documents%20partages/WP1%20-%20Hydrological%20trajectories%20of%20DRNs/continental-scale%20high-resolution%20modeling%20of%20streamflow%20intermittence/sub_task1.4.2_statistical_model/Europe/intermittence_classes_reaches_Europe?csf=1&web=1&e=sRPGhN
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Table 1-A: Gauging stations in DRNS and performance of downscaled streamflow in comparison to observations 

DRN Station ID Longitude Lattitude Upstream 
area 
(HydroSHEDS) 

Upstream 
area (Station 
data) 

NSE logNSE KGE R GAMMA BETA number 
of 
months 
compared 

Croatia 7005 16.1869 44.0410 330.3 NA -0.03 -0.18 0.59 0.69 1.23 1.12 228 

Croatia 7242 16.0498 43.8381 438.9 NA 0.28 -0.22 0.07 0.85 0.65 1.85 207 

Czechrepublic 367000 17.2609 49.5773 3099.7 3323.6 0.22 0.59 0.66 0.81 1.09 1.27 468 

Czechrepublic 341000 16.9013 50.0884 104.1 96.5 0.18 -0.60 0.48 0.70 1.08 0.58 420 

Czechrepublic 421800 17.5190 48.8776 68.8 65.8 0.60 0.61 0.61 0.79 0.67 0.94 359 

Czechrepublic 413000 17.5013 49.1332 7920.2 7890.3 0.21 0.56 0.58 0.86 1.00 1.39 470 

Czechrepublic 345000 16.9114 50.0409 351.7 349.8 0.25 -0.52 0.53 0.72 1.04 0.62 450 

Czechrepublic 426000 16.9886 48.6870 9916.7 9721.8 -0.07 0.51 0.48 0.87 1.01 1.51 254 

Czechrepublic 403000 17.3987 49.3023 7013.6 7013.3 0.31 0.60 0.63 0.86 1.01 1.34 469 

Finland 2100300 25.0030 60.6281 67.5 65.0 0.06 -0.91 0.40 0.75 1.21 0.50 215 

Finland 2101700 24.9843 60.2378 1678.5 1667.0 0.64 0.56 0.68 0.85 0.79 0.81 942 

Finland 2101520 25.0839 60.3174 332.0 348.0 0.73 0.51 0.74 0.89 0.90 0.79 612 

Finland 2101220 24.8651 60.2963 1209.6 1311.0 0.68 0.65 0.69 0.88 0.78 0.82 689 

Finland 2104900 24.7589 60.3322 206.3 208.0 0.75 0.64 0.80 0.89 0.95 0.85 123 

France V2114010 5.8689 46.7562 106.5 117.0 0.73 0.57 0.63 0.92 0.79 1.30 527 

France V2945210 5.1968 45.9395 33.0 33.0 -0.27 0.26 0.49 0.76 1.01 1.45 165 

France V2035010 5.9578 46.6237 44.0 46.0 -0.48 0.26 0.32 0.85 0.93 1.66 727 

France V2814030 5.3271 46.0642 343.6 349.0 0.69 0.51 0.57 0.95 0.81 1.38 564 

France V2420560 5.8732 46.3781 148.0 164.0 0.40 0.24 0.58 0.80 1.15 0.67 276 

France V2012010 5.9558 46.7239 193.7 210.0 0.70 0.61 0.74 0.92 1.05 0.76 470 

France V2924010 5.4393 45.9482 243.4 232.0 0.83 0.81 0.88 0.91 0.92 0.97 592 

France V2322010 5.6656 46.3975 1075.2 1120.0 0.85 0.81 0.89 0.93 1.00 0.91 970 



2 

 

 

France V2414030 6.0160 46.5311 86.3 85.0 0.68 0.64 0.81 0.84 1.04 0.91 262 

France V2414010 5.8678 46.4165 212.6 216.0 0.56 0.59 0.68 0.84 0.96 0.73 629 

France V2444020 5.7062 46.3627 573.6 650.0 0.46 0.45 0.62 0.87 1.04 0.64 582 

France V2942010 5.2340 45.9064 3507.3 3630.0 0.80 0.68 0.86 0.90 1.09 0.94 730 

France V2712010 5.3364 46.0471 2644.7 2760.0 0.74 0.60 0.80 0.88 1.10 0.88 729 

France V2505020 5.5405 46.1363 91.4 92.0 0.79 0.81 0.81 0.92 0.96 0.84 372 

France V2814040 5.4464 46.3019 200.2 193.0 0.72 0.63 0.66 0.95 0.87 1.31 467 

France V2814020 5.3904 46.1120 319.2 324.0 -0.38 -0.11 -0.23 0.95 0.65 2.18 618 

France V2206010 5.7753 46.6481 48.4 49.0 0.83 0.79 0.91 0.91 1.01 0.98 747 

France V2030410 5.9402 46.7040 182.2 196.0 0.58 0.56 0.68 0.87 1.01 0.71 217 

France V2202010 5.7667 46.6858 670.8 650.0 0.82 0.80 0.85 0.92 1.01 0.87 661 

Hungary 7 18.1240 46.0380 170.1 162.0 -0.14 -0.89 0.37 0.54 1.37 0.79 166 

Hungary 4 17.7330 45.9820 412.7 417.0 -0.39 0.06 0.42 0.66 0.93 1.47 758 

Hungary 5 17.9280 45.9900 193.8 190.0 0.21 0.11 0.34 0.72 0.68 1.50 295 

Hungary 17 17.9770 46.0430 116.3 112.0 0.37 0.32 0.56 0.65 0.76 1.14 520 

Hungary 1 18.0815 45.8180 1184.7 11.4 0.14 0.15 0.49 0.61 0.79 1.27 642 

Hungary 6 17.8050 46.0820 164.4 162.0 -0.72 -0.33 0.05 0.35 0.67 1.61 384 

Hungary 3 18.0940 45.8260 580.8 593.0 -0.27 -0.05 0.52 0.58 1.20 1.12 733 

Spain HS11 -5.4074 36.4704 599.3 NA 0.48 0.44 0.59 0.72 1.01 0.70 254 

Spain HS9 -5.4520 36.4282 230.3 245.0 0.77 0.42 0.62 0.89 0.76 1.28 241 

Spain HS103 -5.3384 36.5785 461.0 NA -2.20 0.11 -0.55 0.84 0.91 2.54 139 

Spain HS13 -5.2467 36.5674 160.9 NA 0.51 0.22 0.74 0.81 1.02 1.18 243 
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