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Abstract
The aim of this work is to provide a complete data set of direct shear tests and to propose a corresponding simulation 
approach. Tests have been conducted on crystalline rock samples applying constant normal load (CNL) and constant nor-
mal stiffness (CNS) boundary conditions. A physical consistent algorithm which explicitly calculates the forces acting on 
the fracture surface (FFS) has been developed. This FFS approach can explain the occurrence of surface degradation and 
shows the main shear characteristics. After all, shearing of rough rock joints remains a complex process and the differences 
between laboratory and simulation results are still significant in some cases. All data and input files are provided free for 
download and testing.
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Introduction

Motivation

The shear characteristics of rock joints are important in geo-
technical engineering. Shear forces act on most discontinui-
ties due to gravitation, tectonic forces or stress redistribu-
tions. Shear movements along discontinuities such as joints 
or fracture planes can cause substantial damage or even the 
collapse of engineering structures at the surface as well as 
underground. If shear stresses on structures exceed the local 
shear strength, shear movements will arise which typically 
are coupled to normal displacements. This is commonly 
observed as joint dilation or closure and will cause a change 
in permeability. In case of CNS boundary conditions, a nor-
mal stress feedback is generated. This complex behavior is 
highly influenced by the roughness and local strength of the 
joint surfaces. Research on this topic started several decades 

ago and has not been finished yet. The aim of the presented 
study is to deepen the understanding of shear characteristics 
of rough rock joints and to develop a new constitutive law to 
simulate laboratory tests.

State of the art: (semi‑) analytical solutions

The general form of a shear process, which is based on fric-
tion laws, follows the equation:

where τ is the shear stress, σn the normal stress acting on the 
surface, ϕb the basis friction angle of the smooth material 
and roughness an additional shear strength parameter caused 
by the unevenness of the material.

This relation was adapted my numerous researchers. Bar-
ton and Choubey (1977) developed an easy and intuitive—
but not quantitative—criterion to describe the roughness: the 
joint roughness coefficient (JRC):

where JCS is the joint compressive strength—a measure of 
normal deformation to normal forces. Later, researchers like 
Tse and Cruden (1979) developed quantitative calculations 
of the JRC.
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Later, Barton et al. (1985) introduced a constitutive model 
providing shear stress–shear displacement–dilation as well 
as normal stress–joint closure coupling. In their model, joint 
deformation and strength development is based on the JRC 
mobilization concept. This approach formulates the joint 
roughness mobilized or destroyed pre-peak or post-peak, 
respectively:

The shear strength which is mobilized at any given shear 
displacement δ is denoted as φ(mobilized). It depends on the 
corresponding magnitude of JRC(mobilized), compressive 
strength capacity of the joint surface as well as on the residual 
friction angle φr. Typically, joint roughness parameters avail-
able are valid for peak shear strength conditions and, there-
fore, denoted as JRC(peak). Since the dimensionless numbers 
JRC(mobilized)/JRC(peak) and δ(mobilized)/δ(peak) are 
found to increase almost identically during shear, standard 
tables of values of these dimensionless terms can be utilized 
to predict the shear stress–displacement behavior (Barton et al. 
1985).

Grasselli and Egger (2003) used a set of quantitative rough-
ness parameters �∗

max
 , C which are shear direction dependent 

but quite academic:

Xia et al. (2014) also used Grasselli’s parameters in their 
equation:

Other researchers using Grasselli’s parameters are Tatone 
and Grasselli (2012, 2013) and Casagrande et al. (2017). 
Despite its sophisticated approach these parameters are perfect 
to combine with surface scan data which might be an explana-
tion for their popularity.

Zhang et al. (2016) used the contact ratio and the first order 
deviation of the surface facing the shear direction:

Yang et  al. (2016) combines Grasselli’s and Barton’s 
parameters:
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An overview of 25 criteria including the ones given 
above and all used symbols can be found in Singh and 
Basu (2018).

The variety of describing the roughness of a surface offers 
even more possibilities: Semi-Variograms (e.g., Lianheng 
et al. 2018; Babadagli and Develi 2003), power-spectral 
density (e.g., Babadagli and Develi 2003; Kanafi and Tuon-
onen 2017) or wavelet decomposition (e.g., Mehrishal and 
Sharifzadeh 2013; Li et al. 2019) are among them. Magsipoc 
et al. (2020) and Gadelmawla et al. (2002) provide an over-
view about surface roughness models.

Nevertheless, closed form solutions are necessary to 
calculate bigger models containing numerous rock joints, 
where the explicit geometry is unknown. The model by 
Barton et al. (1985) works with a set of functions [where 
(2) is the basis] which offers a good relation between com-
plexity/calculation time versus accuracy. Li et al. (2018) 
and Gui et al. (2017) are using sets of functions, too. Their 
approach allows considering more physical details of the 
shear process.

State of the art: numerical methods

Another possibility to calculate the shear behavior of rock 
joints is to use the actual surface morphology and to simu-
late the shear process directly using this information. Sur-
face scan data are nowadays widely used as a 3D-represen-
tation of the joint morphology. In a first step profile lines are 
scanned and an artificial average profile is generated (Fan 
and Cao 2020). More advanced approaches use the entire 
surface. Different numerical continuum and discontinuum 
based methods can handle the surface geometry and allow 
to backanalyse shear experiments, see for instance Nguyen 
(2013), Nguyen et al. (2014), Saadat and Taheri (2020a, b), 
Varela Valdez et al. (2018), Nemcik et al. (2014), Dang et al. 
(2019) or Jiang et al. (2020).

It is also possible to just use the geometric information 
of the surface for the calculations. The scan data have to 
be transformed in a grid structure, for example based on 
triangles or squares. The regions of the two surface parts in 
contact are of interest. The advantage of this FFS (Forces 
on Fracture Surfaces) approaches is the compactness. It fills 
the gap between complex numerical codes and simple ana-
lytical solutions. The analysis is done on a numerical grid. 
This allows full control of the simulation and focusing on 
one specific part of the problem. Examples for this kind of 
approach can be found in Fathi et al. (2016a,  b), Park and 
Song (2013) and Casagrande et al. (2017). The basis of the 
new code presented in this paper is based on the algorithm 
by Casagrande et al. (2017). This approach calculates the 
shear forces on a triangulated surface and compares the 
forces which are needed to slide over a surface element:
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with the force needed to shear-off a surface element:

If the sliding force is bigger than local shear strength, 
the surface element will be sheared-off and the calculation 
is repeated with the new geometry. This procedure will be 
iteratively repeated, until no further shear-off is recognized. 
The physical basis of this approach is solid. The code can 
just calculate peak and residual shear stresses but no shear 
stress–shear displacement relations and no dilatation.

FFS simulation approach

Required functionality

The code by Casagrande et al. (2017) was used as a basis. 
The framework of the proposed procedure is based on the 
following functionalities:

•	 Keep it physical motivated, no fitting parameters
•	 Geometry of surface, basic rock parameters and bound-

ary conditions of laboratory test as input
•	 Calculation of whole shear stress–displacements curves
•	 Calculation of dilatation
•	 Calculation of CNS tests (CNL tests are obtained by set-

ting the normal stiffness of the loading system K = 0, 
refer to Fig. 3)

(8)F
slide

= F
loc

⋅ tan
(

Φb + �∗
)

(9)Fshear = A ⋅

(

c + �loc ∗ tan (Φ)
)

.

•	 Graphical user interface
•	 Implementation for standard PC
•	 Moderate simulation time (about 1 h)

Calculation scheme

The scheme of the proposed code is shown in Fig. 1. Basic 
input parameters are the 3D-coordinates of the points form-
ing the shear plane as determined by the surface scanner. 
The surface geometry is stored as a matrix. A quadratic grid 
is used which is created from the raw scan data by a linear 
interpolation to the neighboring points. The surface is then 
duplicated and the shearing is done by shifting the matrices 
against each other by one pixel. Thus, the grid constant is 
the increment of the shear displacement. Evolution of shear 
stress and dilation with shear displacement is calculated in 
an incremental, stepwise manner until the user-set limit for 
maximum shear displacement is reached. At each shear step 
forces and new geometry are calculated. The formulas for 
the shear forces and sliding forces are (8) and (9), respec-
tively. The normal force acting on the surface has a counter 
force due to the surface deformation. An elastic deformation 
is assumed:

where a is the grid constant, E the elastic modulus, Δhi the 
deformation of a surface element and h0 the height of the 
surface element—which is assumed to be the sample height. 
The height of the used samples is about h0 ≈ 15 cm which is 

(10)F
n
=
∑

i

a
2
E
Δh

i

h0

.

Fig. 1   Calculation scheme of 
the proposed code
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bigger than the typical height variation of the surface mor-
phology (mm-scale) and is kept constant.

Direct shear tests: lab testing

The direct shear tests were conducted in the rock mechanical 
laboratory of the TU Bergakademie Freiberg, Germany. To 
conduct the direct shear tests a special designed shear box 
device (Konietzky et al. 2012) was used. Figure 2 shows the 
used apparatus and Table 1 gives the key parameters.

A schematic visualization of a direct shear test is shown 
in Fig. 3. Two series of shear tests have been conducted in 
the framework of the GeomInt project: CNL tests using a 
granite specimen and CNS tests using a basalt specimen. The 
basic rock parameters are given in Table 2. Main results of 
the two experimental series are illustrated in Fig. 4. The CNL 
test at the first normal stress level shows a clear peak in the 
stress–displacement curve. After reaching the final shear dis-
placement, the opposite joint faces were reset to their initial 
(pre-test) position under zero normal stress to avoid surface 
wear. Repeated shearing of the same sample with increasing 
normal stress results in shear curves which immediately reach 
the residual strength plateaus without producing peak values. 
For the CNS test the first step was performed as CNL test. 
Similar to the test mentioned before, a peak value with sub-
sequent shear softening to a residual plateau was observed. 
However, in the CNS-test series repeated shearing was per-
formed with increasing normal stiffness values K ranging 
from 0.25 to 16 MPa/mm (see inset in Fig. 4). Dilation in the 
shear plane triggers an increase in normal stress counteracting 
dilation with K being the proportional constant causing shear 
stresses to increase as well.

FFS approach: calculation results

Constant normal load (CNL) test

To test the newly developed FFS approach under CNL 
boundary conditions the laboratory shear experiment on 

Fig. 2   Big shear box device at the rock mechanical laboratory at TU 
Bergakademie Freiberg (Konietzky et al. 2012)

Table 1   Technical data of the shear testing device (Konietzky et  al. 
2012)

Feature Value Unit

Max. normal force 1000 kN
Max. shear force 50 mm
Min. shear velocity 1e−7 mm/s
Max. shear velocity 70 mm/s
Max. sample size (rectangular) 200 × 400 Mm
Max. fluid pressure 10 MPa

Fig. 3   Constant normal stiffness (CNS) test. In a constant normal 
load (CNL) test the spring does not exist. Instead a constant normal 
stress is applied (Nguyen 2013)

Table 2   Rock parameters of granite and basalt used in the direct 
shear tests

Values were determined using standard lab tests. Basic friction angle 
was determined using Alejano et  al. (2012), inner friction angle of 
granite from Lanaro et  al. (2005) and Ramana et  al. (2019) and of 
basalt from Schultz (1995)

Parameter Symbol Value
granite

Value
basalt

Unit

Uniaxial compressive strength σc 120 273 MPa
Tensile strength σt 7 16 MPa
Elastic modulus Es 50 105 GPa
Friction angle φ 52.5 44 °
Cohesion c 22.5 25 MPa
Basic friction angle φb 30 31.2 °
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a granite sample with identical boundary conditions as 
presented in Fig. 4a was duplicated with the FFS model 
approach. The granite sample was consecutively sheared 
four times with increasing level of normal stress in each step. 
The geometry of the shear plane before loading was deter-
mined by means of a 3D-Scanner using a grid constant of 
0.5 mm. The quadratic grid interpolated from the 3D-coor-
dinates gained by the scanning device serves as initial shear 
surface topography. As the FFS simulation approach solely 
requires fundamental rock parameters which commonly are 
determined by standardized testing procedures, the values 
given in Table 2 can directly be used as model input defining 
material properties. The initial normal stress on the shear 
plane σn and the normal stiffness of the loading system K are 
assigned as loading boundary conditions. For the case of a 
CNL test K = 0 is chosen providing purely static boundary 

conditions. After each shearing step the sample was moved 
back to its original position, normal stress was increased to 
next load level and shear displacement started. Therefore, in 
the simulation as well as during the lab tests, the resulting 
geometry at the end of one loading step was used as initial 
geometry in the following step. The results of the first and 
last of the four loading steps are illustrated in Fig. 5.

In the first shearing step with a normal stress of 
σn  =  1  MPa the peak shear strength of the laboratory 
experiment is not reached by the simulation. Neither the 
new code nor the classical approach by Barton–Bandis 
does predict the pronounced peak strength followed by a 
significant stress drop. This deficiency might be attributed 
to lacking efficiency of the workflow of geometrical char-
acterization of the shear plane showing a natural roughness 
and true 3D-features. The 3D-scanning device has technical 

Fig. 4   Measured shear displacement–shear stress curves for a CNL tests on granite sample and b CNS tests with start as CNL test with 1 MPa 
on basalt sample

Fig. 5   Calculated shear displacement–shear stress curves for a 
σn = 1 MPa (1st load level in lab experiment) and b σn = 7.5 MPa 
(4th load level in lab experiment). For comparison the results of the 

lab experiment (chapter  3) and the classical Barton–Bandis model 
(Barton et al. 1985) are presented alongside with the new simulation 
results
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limitations in terms of resolution and accuracy. By extensive 
calibration of the device and superposition of several scans 
from various directions accuracy of the 3D-data points was 
enhanced up to 50 µm and spatial resolution up to 0.25 mm. 
However, as the resolution in the new code is limited at 
present to a grid constant of a = 0.5 mm, information on 
features on a smaller scale is lost and not available in the 
calculation model. Effects of micro-roughness on strength 
development and on the peak strength can, therefore, not be 
accounted for in the current simulations. Shear stress values 
after increased shear displacement at the end of the shearing 
step is fairly well predicted with newly proposed calculation 
model.

In the fourth shearing step with a normal stress of 
σn = 7.5 MPa both approaches—lab experiment as well as 
model calculation—show a steep increase of shear stress 
at initial shear displacement up to approximately 0.5 mm 
followed by a plateau at residual strength level. It is obvi-
ous that in this case the simulation over-predicts the shear 
stress. Clearly the proposed calculation model can well 
predict residual shear strength values for initial loading, 
but over-estimates the final strength for consecutive load-
ing steps. Underestimation of damage of the shear plane, 
such as abrasion, asperity damage and local breakage, in the 
new calculation approach can explain this nonconforming 
behaviour. Thus, the shear plane at the start of a subsequent 
loading step in the calculation is more intact than in nature 
yielding higher shear resistance for the model compared 
with the experiment.

To sum up for the CNL-case, the quality of the calcula-
tion results using the FFS approach is fair considering the 
fact that no fitting parameter was used. In particular the 
general trend from an initially brittle failure mode show-
ing a clear peak followed by a significant stress drop to an 
almost perfectly plastic behavior with a residual strength 
plateau is reproduced. Concerning development of stress 
with displacement, i.e., shear displacement to activate shear 
strength, the new model is an improvement with respect to 
the classical Barton–Bandis approach.

Constant normal stiffness (CNS) test

CNS boundary conditions have been implemented to back-
calculate a lab shear test on a basalt sample (Fig. 4b). Sam-
ple dimensions, topography of the shear plane as well as 
test boundary conditions of the lab experiment have been 
duplicated in the model calculation. Main part of the test 
sequence is shearing the sample in seven consecutive steps 
with increasing normal stiffness K step by step (Fig. 3). After 
reaching final shear displacement in one step, normal load 
on shear plane was removed completely and the sample was 
reset into its original position before shearing starting again. 
A normal load of σn = 1 MPa was used as a starting point 

for each step. Damage of the shear plane accumulated from 
step to step and was characterized my means of 3D-scan-
ning before and after the experiment. Dimensions of the 
basalt sample exceeded dimensions of the granite sample 
used in CNL calculation. Thus, grid constant was chosen 
as a = 1.0 mm to limit calculation time to 1 h. For the CNS 
model normal displacement during shearing, i.e., dilation, is 
a key feature for mechanical behavior as it is directly linked 
to normal stress via normal stiffness K. For a first model 
assumption the dilatation angle was set equal to the maxi-
mum inclination angle in shear direction after correction 
for local asperity damage [Eq. (9)] and elastic deformation 
[Eq. (10)]. This is a pure geometrical assumption always 
keeping in mind the main objective to keep the model physi-
cal motivated, as simple as possible and definitely without 
fitting parameters. This model approach assumes far field 
constraints forcing the sample halves to move as rigid blocks 
and parallel to each other. This is the realistic case when 
the sample forms a local feature in a larger sized shear zone 
with its halves being fixed in the hanging and lying wall, 
respectively.

In Fig. 6, shear displacement–shear stress curves for 
normal stiffness values of 0.25 MPa/mm and 2.0 MPa/mm 
are presented. For the low stiffness value, the simulation is 
in good agreement with the experimental results, whereas 
for higher stiffness the shear stress is overpredicted by the 
new code. This problem is caused by an overestimation of 
dilation by the new code as shown in Fig. 7. The normal 
displacements calculated on basis of the 3D-surface data 
differ substantially from the data measured in the lab experi-
ment. Dilation data in the new model is governed by the 
maximum surface gradient in shear direction. In the sim-
plified model approach shear stresses are directly linked to 
normal stresses which are directly proportional to normal 
displacement. Thus, local variations, unrealistic or errone-
ous shear plane topography will significantly violate shear 
stress development. Clearly this circumstance will have its 
main impact for shear tests comprising several steps with 
damage accumulation during the test. The curves shown in 
Figs. 6b and 7b are the 4th step in the series. Any abnormal 
or unrealistic damage calculated in any previous steps will, 
therefore, unrealistically alter the shear plane behavior in a 
later stage of the test.

A review of the detailed picture documentation of the 
sample between consecutive steps in the lab shear test 
depicts that the upper left corner of the shear plane is 
heavily fractured, i.e., completely destroyed and eventu-
ally broken out and even missing in the physical experi-
ment. However, the newly developed approach is not able 
to model such extreme behavior. It does consider asper-
ity damage at a local scale (Eq. (9)) but does not predict 
deep-seated failure as experimentally observed for the 
sample examined here. To account for this deficiency, the 
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upper left corner was manually removed from the shear 
plane model. The calculation was started again and the 
corresponding shear displacement–shear stress curves are 
given in Fig. 8. Shear stress development for a low normal 
stiffness value of 0.25 MPa/mm is now slightly underes-
timated with the new model. However, for a high normal 
stiffness value of 2.0 MPa/mm major improvement of the 
calculation results giving a more realistic result is noticed. 
Without doubt, the calculated shear stress curve shows 
high deviations especially after small shear displacements 
of 1 to 5 mm. However, considering the simple model 
approach on a strict physical basis not using any kind of 
fitting parameters the results are fairly realistic.

Damage evolution on the shear plane

A view of the damaged shear plane in basalt at the end of the 
CNS experiment is presented in Fig. 9. Direction of shear 
movement was towards left hand. The red color overlay 
marks zones which are marked as damaged by the new code. 
Original color of the shear plane is dark gray/black, damaged 
areas appear as light gray after the experiment. Care has to 
be taken, because broken and grinded rock particles, i.e., 
gouge material, is displaced due to shear movement and will 
color adjacent regions with grayish fines even if there is no 
physical damage observed. It is clearly visible that damage 
of the shear plane is a very localized phenomenon depending 

Fig. 6   Calculated shear displacement–shear stress curves for 
a K  =  0.25  MPa/mm (2nd load level in lab experiment) and b 
K = 2.0 MPa/mm (4th load level in lab experiment). For comparison 

the results of the lab experiment (chapter 3) and the classical Barton–
Bandis model (Barton et  al. 1985) are presented alongside with the 
new model results

Fig. 7   Calculated shear displacement–normal displacement curves 
corresponding to Fig. 6 for a K = 0.25 MPa/mm (2nd load level in 
lab experiment) and b K = 2.0 MPa/mm (4th load level in lab experi-

ment). For comparison the results of the lab experiment (chapter 3) 
and the classical Barton–Bandis model (Barton et al. 1985) are pre-
sented alongside with the new model results
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on local 3D topography as well as on rock material strength. 
Both features are incorporated in the new model approach 
which is possible to predict very well not only shear stress 
development but also the accompanying damage evolution.

For CNS boundary conditions the damage pattern of the 
shear plane is determined by the systems normal stiffness 
value K. The result of a parameter study with four differ-
ent stiffness levels (2, 4, 8 and 16 MPa/mm) are given in 
Fig. 10. It is obvious, that size and distribution of dam-
aged areas is increasing with increasing normal stiffness. 
Damage starts to evolve at dominant, primary features. 
For the sample presented in Fig. 10 these are the upper 
left corner and a curved structure starting from mid of 
the upper edge proceeding to the lower left corner as iso-
lated domains. With the increase of normal stiffness of the 

surrounding rock mass, these isolated domains increase in 
size and eventually connect to bigger ones. Starting from 
K = 16 MPa/mm a considerable number of new areas is 
damaged, which has not been addressed before. Due to 
higher normal stresses in this case secondary, less dis-
tinct features establish contact and are damaged thereaf-
ter. This behavior has major impact on subsequent hydro-
mechanical coupled phenomena of fractured rock (Dang 
et al. 2019). As the new calculation scheme can realisti-
cally duplicate this behavior based on a physical motivated 
and fast modelling approach it can not only be used for 
mechanical stress–displacement calculations but also as 
pre-processor generating a set of physically sound models 
for subsequent flow and transport simulations.

Fig. 8   Calculated shear displacement–shear stress curves after manu-
ally removing a broken edge for a K = 0.25 MPa/mm (2nd load level 
in lab experiment) and b K  =  2.0  MPa/mm (4th load level in lab 

experiment). For comparison the results of the lab experiment (chap-
ter 3) and the classical Barton–Bandis model (Barton et al. 1985) are 
presented alongside with the new model results

Fig. 9   View of shear plane in basalt sample after the last (of seven) 
shear steps in CNS test. Damaged areas (as calculated with the new 
model) are marked with red color overlay Fig. 10   Damage pattern of shear plane for different normal stiffness 

values. red color  =  2  MPa/mm, yellow color  =  4  MPa/mm, green 
color = 8 MPa/mm, blue color = 16 MPa/mm
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Conclusions

To simulate shear behavior of rock joints in crystalline 
rock a MATLAB-code using an FFS approach was devel-
oped. Its main objective is to simulate shear behavior by 
just using physical-founded input parameters and realizing 
minimal calculation times.

The newly developed code was tested against results of 
lab experiments gained in series of direct shear tests on crys-
talline rock samples using different boundary conditions. 
The quality of agreement between lab test and simulation 
results is fair. The code can realistically predict shear stress 
development and residual strength values for a wide range 
of boundary conditions and load levels. Deviations between 
measured and calculated results appear whenever geometric 
properties of the sample are either not exactly defined due 
to the test-specific procedure (e.g., damage accumulation in 
subsequent test stages) or show a high amount of local bias 
(e.g., non-uniform surface gradients in parts of the shear 
plane). As the new model approach strictly calculates shear 
behavior on single grid points and does not use any spatial 
averaging or smearing of features, one single erroneous node 
will affect the behavior of the entire model. This problem 
is especially apparent for CNS boundary conditions, where 
local plane topography will directly feedback on shear stress 
development. At the current stage of code development man-
ual adaption of shear plane’s geometry data in accordance 
with observations in lab experiments is necessary and sig-
nificantly improves the quality of the results. Identification 
and localization of damaged zones and areas performs very 
well and delivers physically sound results which can be the 
starting point for fluid and transport modelling on the shear 
planes. In comparison to the classical function set of Barton 
et al. (1985) the newly developed code delivers results of 
similar quality with less computer power needed.

One main advantage of the FFS approach is that only a 
few standardized (and, therefore, readily available) param-
eters for the rock matrix and the joint surface are needed 
for evaluating the coupled shear stress–displacement–dila-
tion performance of a rock joint. A second point is that the 
calculation time is very short especially when compared 
to numerical calculation schemes. Therefore, the newly 
proposed simulation approach could be applied in the 
early stages of design of geotechnical constructions when 
(a) typically detailed rock mechanical parameters are not 
available, yet and (b) numerous alternative versions need 
to be considered and calculated to determine one or several 
best-fit solutions.

Further development steps of the code will comprise 
the consideration of two joint planes with different topog-
raphy, i.e., a non-matching joint, and enhancements with 
respect to damage, fracturing and plastic deformation 
of the rock. A more realistic behavior will be achieved 

if deep-seated damage and plastic stress–redistribution 
will be incorporated in addition to local shear damage of 
asperities.

Open data

The full data sets of the CNL and the CNS test, the code 
files and a documentation of the code can be downloaded. 

http://​www.​ufz.​de/​record/​dmp/​archi​ve/​7925 (CNL test: 
rock properties, lab results, surface scan data, photo of 
the sample)
 http://​www.​ufz.​de/​record/​dmp/​archi​ve/​7924 (CNS test: 
rock properties, lab results, surface scan data, photos of 
surface abrasion) 
https://​github.​com/​Poets​chke/​Ecodi​st (Code: manual, 
MATLAB files, executable)
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