
1.  Introduction
Clouds are one of the most fascinating, important, and complex components of Earth's climate system (Siebesma 
et al., 2020). Despite their importance, theoretical understanding of what controls planetary-wide cloudiness is 
largely absent. For example, while we have a good understanding of how clouds form and interact with radiation 
(Cotton et al., 2014; Houze, 2014; Siebesma et al., 2020), it is difficult to use these theories to make claims about 
global cloudiness. Earth System Models (ESMs) and other bottom-up approaches do couple simple models of 
cloud formation to the global circulation. However, so far they have not been proven effective in constraining 
global cloudiness variability (Sherwood et al., 2020; Zelinka et al., 2020). This makes it difficult to transparently 
establish links between variability in global cloudiness and Earth's energy balance, or how such a link would 
change in a changing climate.

Conceptual models could be useful in elucidating how clouds, circulation, and energy balance, are tied together. 
Existing theoretical work has linked cloudiness to circulation, and most examples of such work focus on particu-
lar circulation systems, like the tropical overturning circulation (Betts & Ridgway,  1989; Pierrehumbert & 
Swanson, 1995), or the Walker cell (Peters & Bretherton, 2005), or individual cyclones (Carlson, 1980). What is 
missing is a conceptual framework that both closes the top-of-atmosphere energy budget (and hence by necessity 
considers the planet as a whole), but also includes clouds. A suitable candidate for such a framework would be an 
energy balance model (Budyko, 1969; Ghil, 1981; North & Kim, 2017; Sellers, 1969) that explicitly represents 
dynamic cloudiness, likely as an implicit function of circulation measures or other state variables.
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In this work we derive simple representations, or “recipes,” for global cloudiness, which are simple enough 
to include in energy balance models, to then help link variations in the energy budget and state variables of 
such models to variations in cloudiness and vice-versa. These representations therefore need to capture all main 
features of cloudiness, which are the global mean value, mean seasonal cycle, coarse spatial variability, and the 
difference between the shortwave and longwave impact of cloudiness. To derive them, we will use a quantitative 
top-down approach, where global cloudiness is directly decomposed into contributions from several simpler 
spatiotemporal fields. These fields are the “ingredients” of the recipe, which we refer to simply as predictors 
(in the sense of statistical predictors). A model useful in theoretical work is one that can explain the most with 
the least amount of information. In this spirit, the main objective of the present study is to derive informative 
representations of cloudiness based on a minimum number of predictors.

Similar top-down approaches have been utilized in the context of the empirical cloud controlling factors frame-
work (CCFF) (Stevens & Brenguier, 2009). For tropical low clouds there are several studies summarized in the 
review by Klein et al. (2017), and see also Myers et al. (2021) for ESMs versus observations. Attention has also 
been given to the midlatitude cloudiness (a summary of existing work on extratropical cloud controlling factors 
can be found in Kelleher and Grise (2019) and see also Grise and Kelleher (2021) for ESMs vs. observations). 
Our approach differs from past empirical approaches in that we fit absolute cloudiness, not anomalies, and our 
fits are not conditioned on space and time.

Section  2 describes how we define cloudiness, which predictors to consider, how to fit predictor models on 
observed cloudiness, and how to judge the quality of the fits. Then, Section 3 presents the main analysis and 
results on how well the models capture cloud albedo and cloud longwave radiative effect. A summary and discus-
sion of potential impact for sensitivity studies concludes the paper in Section 4.

2.  Fitting Global Cloudiness
2.1.  Quantifying Cloudiness

To fit any model, a definition of cloudiness that is both quantitatively precise but also energetically meaningful 
is required. For the shortwave part, we use the energetically consistent effective cloud albedo (in the following, 
just “cloud albedo”), C, estimated using the approach of Datseris and Stevens (2021). In summary, C is defined as

𝐶𝐶 = 𝑓𝑓

√

3(1 − 𝑔𝑔)𝜏𝜏

2 +
√

3(1 − 𝑔𝑔)𝜏𝜏
� (1)

with f, τ, g the cloud fraction, cloud optical depth, and the asymmetry factor of the cloud particle phase function. 
C as defined above is further normalized to be energetically consistent. C provides a better way to quantify short-
wave impact of cloudiness than the shortwave cloud radiative effect (CRE) or just the cloud fraction, because 
it disentangles co-variabilities with surface properties, it does not directly share the variability of insolation 
(Ceppi and Nowack (2021) use a cloud albedo for similar reason), while being energetically consistent (Datseris 
& Stevens, 2021). For the longwave part the CRE (here denoted by L) is a good representation of the radiative 
impact of clouds. From L, a cloud effective emissivity can be constructed which could be added to an energy 
balance model directly similarly to the albedo. Both C, L are derived from monthly mean CERES EBAF data 
(Loeb et al., 2018) using 20 years of measurements (2001/01–2020/12).

2.2.  Predictors Considered

The predictors considered in this study, listed below, are obtained from the reanalysis of meteorological data 
(ERA5, Hersbach et al.  (2020)) using the same 20 year period as CERES. We initially considered 10 predic-
tors due to their frequent appearance in related studies and their physical connections to clouds. Four, pressure 
velocity ω500, surface wind speed Vsfc, standard deviation of ω500 in hourly timescales ωstd, and the fraction of 
updrafts in a month ωup are dynamic. Four more are thermodynamic, and measures of temperature, like surface 
specific humidity and temperature qsfc, SST, and to some extent q700 and qtot (total column water vapor). Two 
more measures targeted the lower tropospheric stratification, namely estimated inversion strength EIS and the 
estimated cloud top entrainment index ECTEI. Of these qsfc was discarded as it did not differ substantially from 
other predictors, and to our knowledge ωup is used for the first time in this context.
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Regarding the use of many of these predictors in past studies ω500 is known to be important for both shortwave 
and longwave CREs (Bony et al., 1997, 2004; Norris & Iacobellis, 2005; Norris & Weaver, 2001), and EIS, Vsfc, 
SST, q700 have been used to fit cloud cover anomalies in a variety of regimes, see for example, Klein et al. (2017); 
Kelleher and Grise  (2019) and references therein for a more detailed discussion. ECTEI, which is much less 
common than the rest of the predictors, was introduced by Kawai et al. (2017) as an improvement over EIS that 
includes a contribution from q700 (and hence further motivates including q700 as a predictor). Both q700, qtot are 
a proxy for the moisture of an atmospheric column, and expected to be relevant when fitting L. In our analysis 
however, q700 gives consistently better fits when used in place of qtot, keeping all other aspects fixed (not shown) 
and hence qtot was also discarded.

Unlike the other predictors, ωup is useful because it is bounded in [0%, 100%], like C, and given that we fit abso-
lute values instead of anomalies, it does not penalize the fits with negative values (that exist in ω500). It can also 
be used as a statistical weight to distinguish between regions of large scale subsidence, see for example, Bony 
et al. (1997). ω500, which can be thought of as a simple quantifier of storminess, has been shown to be a useful 
predictor of cloudiness by Norris and Iacobellis (2005) due to the nonlinear connection between vertical motion 
and cloud generation. Another argument favoring ωstd is that it relates cloudiness with the moisture of the air 
column better than ω500, see Section 3.3.

2.3.  Fitting Process

Let Y be a measure of cloudiness (C or L from Section 2.1) and Xi be some predictor fields, for i = 1, …, n,. Y, Xi 
are global spatiotemporal fields. We assume that with sufficient accuracy we can write

� ≈ � = �(�1,… , ��; �1,… , ��)
e.g.
= �1�1 + �2�2 + �3�1�2� (2)

with pj, for j = 1, …, m some parameters to be estimated (all 𝐴𝐴 𝐴𝐴𝑗𝑗 ∈ ℝ ). In the following we call f the “cloud fitting 
function” and M the “model.” Naturally, different forms for f and/or sets of predictors will yield a better fit for 
C or L respectively, as each captures different aspects of cloudiness. Given a specific form for f, and a set of 
predictors Xi, the parameters pj of the model are estimated via a standardized nonlinear least square optimization 
(Levenberg, 1944; Marquardt, 1963). The minimization objective is the squared distance between Y derived from 
CERES observations, and M produced by Equation 2. Details on the data pre-processing before doing the fits are 
provided in the Supporting Information.

This approach of fitting models with free parameters to observed data is similar to the CCFF, but there three 
important differences with previously published CCFF studies. First, we fit absolute cloudiness, not anomalies, 
and hence the mean value of Y, and its seasonal cycle, must be captured by the fit. The importance of capturing 
the mean value and mean seasonal cycle is further enforced by the fact that the inter-annual variability of cloud-
iness is small in decadal timescales (Stevens & Schwartz, 2012; Stephens et al., 2015), and hence the mean and 
mean seasonal cycle captures the majority of the signal. Second, to capture the mean f is allowed to be nonlinear. 
Were it restricted to a linear function it would not be naturally bounded, which strikes us as unphysical given 
that important aspects of cloudiness, such as albedo, are bounded. Another argument behind allowing nonlinear 
functions is that, generally speaking, a theory of cloudiness should be able to predict cloudiness over a broad 
range of different climatic states, not just small deviations from a reference climate (which justifies using a linear 
framework). Third, we fit across all available space and time without conditioning on space or time. One fit is 
applied to the cloudiness field globally. The motivation for this is to more closely reflect physical laws governing 
climate, which should not depend on location. Hence, if indeed cloudiness is a functional of other climate state 
variables, this functional must be unique and not depend on space or time.

2.4.  Quantitatively Measuring Fit Quality

To quantify fit quality with an objective measure that is independent of what predictors are used, we chose the 
normalized root mean square error, defined as
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with Y, M as in Equation 2, 𝐴𝐴 𝑌𝑌  the mean of Y and n enumerates the data points. This error measure is used routinely 
in for example, spatiotemporal timeseries prediction (Isensee et al., 2019), and is agnostic of the values of Y, M 
that can compare fit quality across different ways of fitting. If ϵ > 1 the mean value of Y is a better model than 
M (equivalently, the variance of the observations is smaller than the mean square error between fit and observa-
tions). There are several ways to compute ϵ: on full spatiotemporal data, on zonally and temporally averaged data, 
or on the seasonal cycles of tropics (0°–30°) and midlatitudes (30°–70°). Each measure highlights a different 
aspect of fit quality and all measures were taken into account when deciding the best fits.

3.  Results and Discussion
In this section we present the “best” fits for cloud albedo C and longwave CRE L. The “best” fits are the most 
minimal fits, that are in accord with physical reasoning, while also providing low values for ϵ. Only requirement 
that the error ϵ is small is objective. The other requirements have at least a partly subjective nature. Additionally, 
fits that use simpler predictors, that can be more straightforwardly represented in a conceptual framework, are 
preferred: if two fits have approximately equal error ϵ, but one uses a simpler predictor (e.g., surface temperature 
SST vs. atmospheric specific humidity q700), the first fit is “better”.

3.1.  Two Predictor Linear Model

A simple, yet non-trivial model for the cloud fitting function f is one that combines two predictors and two free 
parameters in a linear manner: f = p1X1 + p2X2. Even if this model does not yield a good fit for cloudiness, it is 
advantageous to start with it nevertheless. There are 36 combinations of all possible predictors of Section 2.2. 
Examining each of these possibilities already highlights which predictors are worth a closer look and for which 
measure of cloudiness. Figure 1 showcases two different error measures (error in temporally and zonally mean 
cloudiness, and median of errors in seasonal cycle of cloudiness), and how these errors depend on which predic-
tors are used for the linear fit.

The majority of combinations result in low fit quality (ϵ ≥ 0.9). Nevertheless, Figure 1 reveals some useful infor-
mation. For C, a measure of the inversion strength is necessary for a decent fit and the combination of ωup and 
ECTEI result in the best case scenario. For L, the most important predictor seems to be ωstd, which gives decent 

Figure 1.  Error in temporally and zonally mean cloudiness (lower-right triangle of heatmap), and error in mean seasonal 
cycle (upper-left triangle of heatmap), as a function of which predictors of the x and y axis combine into a linear model 
f = p1X1 + p2X2 for fitting cloud albedo (left plot) or longwave cloud radiative effect (right plot). Red outline highlights the 
three combinations with the lowest error in each category, while black dashed outline highlights the combination with lowest 
error overall (by multiplying the two errors). It is possible that e > 1 because we are fitting without intercept. ECT stands for 
ECTEI (estimated clout top entrainment index).
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fits in both space and time for a wide selection of second predictors (while ω500 gives decent fits only in time). A 
second important predictor for L seems to be q700 or SST.

3.2.  Best Fit for Cloud Albedo C

While it is already clear in the literature that ω500 is an important predictor for shortwave impact of clouds 
(Section 2.2), the fact that ωup performs so much better in a linear model hints that the bounded nature of albedo, 
C ∈ [0%, 100%], is important. Negative predictor values yield low fit quality and also penalize fitting well posi-
tive values. One way to counter this would be to use ωup as a probability weight multiplying other predictors. An 
alternative would be to use appropriate nonlinear functions of the more basic ω500. Regardless of this choice, a 
measure of the inversion strength must also be included in the model, as it is necessary to capture the important 
contribution of low clouds (here ECTEI).

A model that satisfies all these requirements, and achieves the best fit, is

𝐶𝐶 = 50𝑝𝑝1 (tanh (𝑝𝑝2𝜔𝜔500 + 𝑝𝑝3ECTEI) + 1)� (4)

where we used the nonlinear function x → 50 (tanh(x) + 1) to map predictors to [0%, 100%]. The results of the fit 
(i.e., estimating the parameters p1, p2, p3 that give least square error between Equation 4 and the observed CERES 
C) are in Figure 2. The model fit captures most main features of cloud albedo and achieves ϵ = 0.54 over the full 
space and time, ϵ = 0.19 in the zonal and temporal average, and ϵ = 0.65 in seasonal cycle. The shortwave CRE 
(which in our study is simply the multiplication of C with the insolation I, and then averaging), is 57.1 W/m 2 in 
CERES and 57.45 W/m 2 when using the model fit. The main deficiencies of the model fit are about capturing 
temporal variability in the extratropics. Time correlation there is notably small, and extratropical seasonal cycles 
of C have much larger mean error than tropical cycles (ϵ = 0.8 vs. 0.37). These deficiencies however could also 
stem from the strong temporal variability of the high reflectivity of underlying ice affecting CERES measure-
ments. The fit also performs poorly near the coasts overall (and particularly over the western coasts of Africa and 
the Americas) where there are more clouds in the model than observed. This may be because the model does not 
capture the coastal clearing associated with strong subsidence, that often suppresses the depth of the boundary 
layer and formation of cloudiness in situations that would otherwise be favorable for cloud formation (Dadashazar 
et al., 2020; Zhang et al., 2009).

The inclusion of the parameter p1 is necessary, because in observations cloud albedo does not saturate to 100%, 
but to much lower values (see Figure 2). We also note that using EIS instead of ECTEI in the model decreases fit 
quality significantly, because, while EIS and ECTEI both capture subtropical low cloud albedo well, only ECTEI 
captures well the low clouds in the midlatitudes. Thus, as suggested by Kawai et al. (2017), ECTEI is indeed 
an improvement over EIS. Another reason for favoring ECTEI is that it encodes the effects of humidity changes 
which are known to be important for the transition from stratiform to broken low cloud regimes (e.g., Bretherton 
and Wyant (1997)).

Adding more predictors increases fit quality only slightly. for example, adding a factor p4Vsfc inside the tanh 
function decreases time and zonal mean error to ϵ = 0.18 from ϵ = 0.19 and seasonal cycle error to ϵ = 0.6 from 
ϵ = 0.65, as well as captures hemispheric asymmetries in C slightly better. That the decrease in error is so small 
gives confidence that the basic physics governing cloud albedo are already captured by Equation  4. Further 
fine-tuning of the model risks over-fitting, and even then the additional level of detail aims for a level of precision 
that seems over precise given the intended purpose of the model.

The middle row of Figure 2 provides some insights on the contribution of each predictor. Both ECTEI and ω500 
contribute to midlatitude cloud albedo, but ECTEI slightly more so. In the tropics ω500 contributes the albedo 
of the convective regimes (ITCZ, Maritime Continent), and ECTEI the albedo of the low stratocumulus decks 
(subsidence regions). ECTEI is in some sense a more important predictor than ω500, because if we set explicitly 
p2 = 0 in Equation 4, we get lower error of ϵ = 0.7 in full space and time, versus the error of ϵ = 0.9 we would 
get if we set explicitly p3 = 0 instead. Alternative models to Equation 4 can give similar results using ωup instead 
of ω500. For example, using f = p1ωup + p2ECTEI (1 − ωup) provides similar, but slightly worse, fit quality with 
ϵ = 0.57 over full space and time and ϵ = 0.23 over time and zonal mean. However, ω500 is a simpler predictor than 
ωup, and hence a model with ω500 is more minimal (and thus, “better”). The same could be said for EIS instead of 
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ECTEI, so that in some sense our study provides a form of global validation for studies of cloud amount based on 
these simpler predictors (see e.g., Bony et al. (2020)).

3.3.  Best Fit for Longwave Cloud Radiative Effect L

Fitting L is more complex for at least two reasons. First, the longwave effect of a cloud depends strongly on the 
infrared opacity, and hence moisture content, of the atmospheric column overshadowed by the cloud. Moisture 
content though is, at least partly, controlled by temperature. Warm and humid atmospheres are already almost 
opaque to longwave radiation, and hence the presence of a cloud would make little difference. In contrast, in a 
cold and dry atmosphere a cloud would bring a lot of extra absorption of outgoing longwave radiation and hence 
large L. Second, cloud height largely determines its effective emissivity (as cloud height sets its temperature), but 
does not have a significant effect on cloud albedo (keeping all other factors fixed).

These considerations likely explain why we were not able to find a model that had as good of a fit for L as it had 
for C when restricting the model to using at most two predictors (although it should be noted that ECTEI is a 
predictor including information from more than one state variables). After an analysis of several different linear 
and nonlinear combinations, the “best” model we could construct was of the form

Figure 2.  Results of fitting cloud albedo C (units of %) with the simple model of Equation 4. First row are time-averaged maps. See also Figure 4 for a zonally 
averaged version. Second row are the contributions of different terms in the model. Third row shows how well the model captures temporal variability. First two panels 
are the mean seasonal cycles (with semi-transparent bands noting the standard deviation around each month) in the tropics (0–30°) and extratropics (30–70°). The mean 
value of all cycles has been subtracted, and some cycles are offset for visual clarity. The subtracted mean values of the cycles are presented in a table in the Supporting 
Information. The bottom right panel is a map of the Pearson linear correlation coefficient between the timeseries of the model and CERES data at each grid point. Units 
of ω500 in Pa/s and ECTEI in K, and p1 = 0.4, p2 = 6.87, p3 = 0.08. We multiply ω500 with −1 before any analysis so that ω500 > 0 means updrafts.
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𝐿𝐿 = 𝑝𝑝1𝜔𝜔std + 𝑝𝑝2𝜔𝜔500 + 𝑝𝑝3SST� (5)

(notice how Equation 5 has 0 intercept by force). The results of the fit are in Figure 3. The fit captures all main 
features of L. The fit errors are ϵ = 0.63 over full space and time, ϵ = 0.46 in time and zonal mean and ϵ = 0.41 
in mean seasonal cycle. The mean LCRE is 27.27 W/m 2 in CERES and 27.30 W/m 2 in our model fit. A notable 
deficiency of the fit is that L of the Maritime Continent is significantly underestimated (this can be attributed 
almost entirely to the difference in magnitude of ωstd between the ITCZ and the Maritime Continent, see middle 
row of Figure 3). Spatial variability is captured worse for L versus C, but temporal variability is captured better. 
A factor that contributes to this is that the temporal variability of L is much simpler than it is for C (e.g., relative 
power of 12-month periodic component is much larger in L timeseries, leading to simpler seasonal cycle temporal 
structure).

We now give some physical justification for the choice of predictors. Monthly mean ω500 is a proxy for cloud 
height (persistent updrafts and with larger magnitude should result in higher clouds). The surface temperature 
SST is a proxy for the emissivity of the air column without a cloud, because the potential total moisture content of 
atmospheric columns is, as a first approximation, a monotonically increasing function of temperature. Using q700 
instead of SST captures spatial variability worse but improves the representation of temporal variability. Given 
that SST is a more basic predictor than q700, and is directly represented in conceptual energy balance models, SST 
is preferred. Furthermore, and as was the case with C, adding more predictors, or additional nonlinear terms of 
existing predictors such as a factor p4ωstdSST, increases fit quality but only slightly.

Figure 3.  As in Figure 2 but now for longwave cloud radiative effect L. Units of L in W/m 2, ω500, ωstd in Pa/s, SST in K, and p1 = 42.68, p2 = 208.9, p3 = 0.06558.
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Interestingly, ωstd is the most important predictor for L. Even though ω500 captures a broader range of values (∼40 
vs. the ∼30 of ωstd), absence of ωstd significantly lowers fit quality in all combinations of cloud fitting functions f 
and predictors we tested, even when including ω500 in all of them. The spatial structure of ωstd is the most similar 
to the spatial structure of L, with the main difference being that for ωstd the peak values in the tropics and extrat-
ropics have equal magnitude, while for L the tropics peak values have 33% more magnitude. Hence, some other 
predictor must lower the extratropical magnitude of ωstd, and here this role is fulfilled by SST in Equation 5 (or 
q700, if one uses it instead of SST).

A physical connection between ωstd and L can be thought of as follows: persistent updrafts, that are captured by 
ω500, lead to a moist atmosphere and hence weak L, mostly irrespectively of cloud height. On the other hand, 
consistent pumping of air up and down (high ωstd, but almost zero ω500) would leave the atmosphere dry (for at 
least half the time), but the formed clouds would linger longer above the dry atmosphere and have a dispropor-
tionately strong effect, yielding high L. In the midlatitudes both L and ωstd have their latitudinal maximum in the 
middle of the Ferrel cell (40–45°), where ω500 ≈ 0. Of course, monthly mean ω500 ≈ 0, but in the hourly timescale 
there is a lot of vertical motion, as captured by the high values of ωstd. This reflects the fact that the center of 
the Ferrell cell coincides with the center of the midlatitude storm tracks. In the tropics, ω500 and ωstd have little 
differences in their latitudinal structure.

3.4.  Comparison With ERA5 and Reduced Data

For obtaining reference values of the errors we report here, we also compare the outcome of our analysis with 
using direct ERA5 radiation output to measure C or L. Calculating L is straightforward, however, we cannot 
compute the energetically consistent effective cloud albedo from ERA5, because it requires cloud optical depth, a 
field not exported by ERA5. Instead, we can compute the cloud contribution to atmospheric albedo α CLD (specif-
ically, Equation 3 from Datseris and Stevens (2021)), which has only small differences with C. α CLD also has the 
downside of not having a time dimension due to absence of sunlight for large portions of the data (Datseris & 
Stevens, 2021).

We also present fits and their errors for fitting reduced data directly, specifically temporally and zonally averaged 
data. Fitting reduced data increases fit quality, because this case neglects higher-order effects that contribute to 
for example, zonal or temporal structure. If, however, the fit quality increases only slightly, that gives confidence 
that the basic connections captured by our models are indeed the most important ones and hence also dominate 
full spatiotemporal variability. The results are in Figure 4.

Two conclusions can readily be drawn: (a) our fits have smaller error ϵ than does the cloudiness inferred from 
ERA5 radiation output, (b) fitting the simplified version of temporally and zonally averaged data increases fit 
quality only slightly, further validating the fit quality. Additionally, the best parameters of the fits change little 
when doing the zonal-only fit (e.g., for C, parameters become p1 = 0.4, p2 = 8.25, p3 = 0.077 vs. those reported 
in Figure 2). This means that the contribution of each predictor does not change fundamentally in the reduced 

Figure 4.  Temporally and zonally averaged data (and their errors e, Equation 3, vs. the CERES curve) of CERES, our model 
fits, and direct ERA5 output for (a) the cloud contribution to atmospheric albedo α CLD and (b) the longwave cloud radiative 
effect L. In (a), “FIT” is a fit over temporally averaged data (no time information can be used), and “FTZ” is a fit over 
temporally and zonally averaged data. In (b), “FIT” is over all space and time, and “FTZ” is as before.
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version, giving us even more confidence that the simple models of Equations 4 and 5 capture the basic physics 
well.

3.5.  Fit Stability

The exact parameter values pj in Equations 4 and 5 have been derived from fitting on current climate and their 
values may change for different climates. How much pj depends on climate state quantifies the “stability” of a 
fit; the less they change, the more accurately the fit captures the basic physics. Thankfully, the variability of pj 
is rather small. For example, we performed the fit for each hemisphere individually (recall that for C the fit over 
the whole globe yielded p = {0.4, 6.87, 0.08}). As far as circulation patterns and cloudiness distributions are 
concerned, the two hemispheres have significant differences. Nevertheless, fitting them individually yields {0.38, 
7, 0.07} for north and {0.41, 6.89, 0.086} for south. In the Supporting Information we perform a much more 
detailed stability analysis for pj that leads to similar conclusions: that Equations 4 and 5 capture the basic physical 
connections that govern global cloudiness.

4.  Conclusions
The main goal of this work was to identify ways one can accurately represent observed global cloudiness using 
as few and as simple components as possible. We have shown that the combination of pressure velocity ω500 and 
a measure of temperature inversion ECTEI are enough to capture almost all main features of cloud albedo, with 
the exception of the extratropical seasonal cycles, while surface temperature SST, standard deviation of hourly 
pressure velocity ωstd, and ω500, capture all main features of longwave CRE. Even though we only fitted over the 
ocean here, in fact the fits do not perform much worse when considering the whole planet without adding more 
information to the cloud fitting functions f (not shown). We also note that the predictors used in the presented 
models were favored because of their simplicity, but also because they can be potentially connected with param-
eters that might be inferred from simple energy balance models, for example, quantities such as the equator-to-
pole temperature gradient, as outlined in the Supporting Information. This may allow incorporating cloudiness in 
energy balance models, and idea we are pursuing in ongoing research.

Besides providing a starting point for a theory of global cloudiness, our models are also useful in complementing 
other approaches to better quantify the response of cloudiness to a change in the climate system. Studies such as 
Ceppi and Nowack (2021); Myers et al. (2021), and in fact most CCFF studies, perform multilinear regressions 
to optimize tens of thousands of free of parameters (at least as many as each spatial grid point of the used data 
set). Hence, they may obtain predictive power that is higher than our models. However, our models are useful for 
providing a baseline to compare against that is based on concrete physical requirements. Furthermore, exactly 
because our models do not depend on location, we believe they are better suited to answer in which areas of the 
globe would circulation (or temperature) changes impact global cloudiness more, or less.

Data Availability Statement
The data sets used were monthly mean CERES EBAF (Doelling et al., 2013; Kato et al., 2018; Loeb et al., 2018; 
Rutan et al., 2015) for surface & top of the atmosphere radiation fields, and cloud properties, monthly mean 
ERA5 (Hersbach et al., 2020) for temperature, pressure, humidity, and hourly mean ERA5 for pressure velocity. 
The code we used is available online (Datseris, 2022). It uses the Julia language (Bezanson et al., 2017), and the 
packages: GLM.jl, LsqFit.jl, ClimateBase.jl, and DrWatson (Datseris et al., 2020). Figures were produced with 
the matplotlib library (Hunter, 2007). The code can also be used to fit any arbitrary spatiotemporal field with any 
combination of functional forms and predictor fields.

References
Betts, A. K., & Ridgway, W. (1989). Climatic equilibrium of the atmospheric convective boundary layer over a tropical ocean. Journal of the 

Atmospheric Sciences, 46(17), 2621–2641. https://doi.org/10.1175/1520-0469(1989)046<2621:ceotac>2.0.co;2
Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical computing. SIAM Review, 59(1), 65–98. 

https://doi.org/10.1137/141000671
Bony, S., Dufresne, J.-L., Treut, H. L., Morcrette, J.-J., & Senior, C. (2004). On dynamic and thermodynamic components of cloud changes. 

Climate Dynamics, 22(2–3), 71–86. https://doi.org/10.1007/s00382-003-0369-6

Acknowledgments
We thank Hauke Schmidt and Aiko Voigt 
for helpful discussions. G.D. acknowl-
edges support from the CONSTRAIN 
project (EU Horizon 2020, 820829). 
Open access funding enabled and organ-
ized by Projekt DEAL.

https://doi.org/10.1175/1520-0469(1989)046%3C2621:ceotac%3E2.0.co;2
https://doi.org/10.1137/141000671
https://doi.org/10.1007/s00382-003-0369-6


Geophysical Research Letters

DATSERIS ET AL.

10.1029/2022GL099678

10 of 11

Bony, S., Lau, K.-M., & Sud, Y. C. (1997). Sea surface temperature and large-scale circulation influences on tropical greenhouse effect and cloud 
radiative forcing. Journal of Climate, 10(8), 2055–2077. https://doi.org/10.1175/1520-0442(1997)010<2055:SSTALS>2.0.CO;2

Bony, S., Semie, A., Kramer, R. J., Soden, B., Tompkins, A. M., & Emanuel, K. A. (2020). Observed modulation of the tropical radiation budget 
by deep convective organization and lower-tropospheric stability. AGU Advances, 1(3). https://doi.org/10.1029/2019av000155

Bretherton, C. S., & Wyant, M. C. (1997). Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. 
Journal of the Atmospheric Sciences, 54(1), 148–167. https://doi.org/10.1175/1520-0469(1997)054<0148:mtltsa>2.0.co;2

Budyko, M. I. (1969). The effect of solar radiation variations on the climate of the Earth. Tellus, 21(5), 611–619. https://doi.org/10.3402/tellusa.
v21i5.10109

Carlson, T. N. (1980). Airflow through midlatitude cyclones and the comma cloud pattern. Monthly Weather Review, 108(10), 1498–1509. https://
doi.org/10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2

Ceppi, P., & Nowack, P. (2021). Observational evidence that cloud feedback amplifies global warming. Proceedings of the National Academy of 
Sciences of the United States of America, 118(30), e2026290118. https://doi.org/10.1073/pnas.2026290118

Cotton, W. R., Bryan, G., & Van Den Heever, S. C. (2014). Storm and cloud dynamics (2nd ed.). Academic Press.
Dadashazar, H., Crosbie, E., Majdi, M. S., Panahi, M., Moghaddam, M. A., Behrangi, A., et al. (2020). Stratocumulus cloud clearings: Statis-

tics from satellites, reanalysis models, and airborne measurements. Atmospheric Chemistry and Physics, 20(8), 4637–4665. https://doi.
org/10.5194/acp-20-4637-2020

Datseris, G. (2022). Code for our paper “minimal recipes for global cloudiness”. Zenodo. https://doi.org/10.5281/zenodo.7063184
Datseris, G., Isensee, J., Pech, S., & Gál, T. (2020). Drwatson: The perfect sidekick for your scientific inquiries. Journal of Open Source Software, 

5(54), 2673. https://doi.org/10.21105/joss.02673
Datseris, G., & Stevens, B. (2021). Earth’s albedo and its symmetry. AGU Advances, 2(3). https://doi.org/10.1029/2021av000440
Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L., Morstad, D., Nguyen, C., et al. (2013). Geostationary enhanced temporal interpolation 

for CERES flux products. Journal of Atmospheric and Oceanic Technology, 30(6), 1072–1090. https://doi.org/10.1175/jtech-d-12-00136.1
Ghil, M. (1981). Energy-balance models: An introduction. In Climatic variations and variability: Facts and theories (pp. 461–480). Springer 

Netherlands. https://doi.org/10.1007/978-94-009-8514-8_27
Grise, K. M., & Kelleher, M. K. (2021). Midlatitude cloud radiative effect sensitivity to cloud controlling factors in observations and models: 

Relationship with southern hemisphere jet shifts and climate sensitivity. Journal of Climate, 34(14), 5869–5886. https://doi.org/10.1175/
JCLI-D-20-0986.1

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal 
of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

Houze, R. A., Jr. (2014). Cloud dynamics (2nd ed.). Academic Press.
Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/

MCSE.2007.55
Isensee, J., Datseris, G., & Parlitz, U. (2019). Predicting spatio-temporal time series using dimension reduced local states. Journal of Nonlinear 

Science, 30(3), 713–735. https://doi.org/10.1007/s00332-019-09588-7
Kato, S., Rose, F. G., Rutan, D. A., Thorsen, T. J., Loeb, N. G., Doelling, D. R., et al. (2018). Surface irradiances of edition 4.0 clouds and the 

Earth’s radiant energy system (CERES) energy balanced and filled (EBAF) data product. Journal of Climate, 31(11), 4501–4527. https://doi.
org/10.1175/jcli-d-17-0523.1

Kawai, H., Koshiro, T., & Webb, M. J. (2017). Interpretation of factors controlling low cloud cover and low cloud feedback using a unified predic-
tive index. Journal of Climate, 30(22), 9119–9131. https://doi.org/10.1175/jcli-d-16-0825.1

Kelleher, M. K., & Grise, K. M. (2019). Examining Southern Ocean cloud controlling factors on daily time scales and their connections to midlat-
itude weather systems. Journal of Climate, 32(16), 5145–5160. https://doi.org/10.1175/JCLI-D-18-0840.1

Klein, S. A., Hall, A., Norris, J. R., & Pincus, R. (2017). Low-cloud feedbacks from cloud-controlling factors: A review. Surveys in Geophysics, 
38(6), 1307–1329. https://doi.org/10.1007/s10712-017-9433-3

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2(2), 
164–168. https://doi.org/10.1090/qam/10666

Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G., et al. (2018). Clouds and the Earth’s radiant energy system (CERES) 
energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. Journal of Climate, 31(2), 895–918. https://doi.
org/10.1175/jcli-d-17-0208.1

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied 
Mathematics, 11(2), 431–441. https://doi.org/10.1137/0111030

Myers, T. A., Scott, R. C., Zelinka, M. D., Klein, S. A., Norris, J. R., & Caldwell, P. M. (2021). Observational constraints on low cloud feedback 
reduce uncertainty of climate sensitivity. Nature Climate Change, 11(6), 501–507. https://doi.org/10.1038/s41558-021-01039-0

Norris, J. R., & Iacobellis, S. F. (2005). North Pacific cloud feedbacks inferred from synoptic-scale dynamic and thermodynamic relationships. 
Journal of Climate, 18(22), 4862–4878. https://doi.org/10.1175/jcli3558.1

Norris, J. R., & Weaver, C. P. (2001). Improved techniques for evaluating GCM cloudiness applied to the NCAR CCM3. Journal of Climate, 
14(12), 2540–2550. https://doi.org/10.1175/1520-0442(2001)014<2540:ITFEGC>2.0.CO;2

North, G., & Kim, K.-Y. (2017). Energy balance climate models. Wiley-VCH.
Peters, M. E., & Bretherton, C. S. (2005). A simplified model of the Walker circulation with an interactive ocean mixed layer and cloud-radiative 

feedbacks. Journal of Climate, 18(20), 4216–4234. https://doi.org/10.1175/JCLI3534.1
Pierrehumbert, R. T., & Swanson, K. L. (1995). Baroclinic instability. Annual Review of Fluid Mechanics, 27(1), 419–467. https://doi.org/10.1146/

annurev.fluid.27.1.419
Rutan, D. A., Kato, S., Doelling, D. R., Rose, F. G., Nguyen, L. T., Caldwell, T. E., & Loeb, N. G. (2015). CERES synoptic product: Method-

ology and validation of surface radiant flux. Journal of Atmospheric and Oceanic Technology, 32(6), 1121–1143. https://doi.org/10.1175/
jtech-d-14-00165.1

Sellers, W. D. (1969). A global climatic model based on the energy balance of the Earth-atmosphere system. Journal of Applied Meteorology, 
8(3), 392–400. https://doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2

Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., et al. (2020). An assessment of Earth’s climate 
sensitivity using multiple lines of evidence. Reviews of Geophysics, 58(4). https://doi.org/10.1029/2019rg000678

Siebesma, A. P., Bony, S., Jakob, C., & Stevens, B. (Eds.) (2020)., Clouds and climate. Cambridge University Press. https://doi.
org/10.1017/9781107447738

Stephens, G. L., O’Brien, D., Webster, P. J., Pilewski, P., Kato, S., & Li, J.-l. (2015). The albedo of Earth. Reviews of Geophysics, 53(1), 141–163. 
https://doi.org/10.1002/2014RG000449

https://doi.org/10.1175/1520-0442(1997)010%3C2055:SSTALS%3E2.0.CO;2
https://doi.org/10.1029/2019av000155
https://doi.org/10.1175/1520-0469(1997)054%3C0148:mtltsa%3E2.0.co;2
https://doi.org/10.3402/tellusa.v21i5.10109
https://doi.org/10.3402/tellusa.v21i5.10109
https://doi.org/10.1175/1520-0493(1980)108%3C1498:ATMCAT%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1980)108%3C1498:ATMCAT%3E2.0.CO;2
https://doi.org/10.1073/pnas.2026290118
https://doi.org/10.5194/acp-20-4637-2020
https://doi.org/10.5194/acp-20-4637-2020
https://doi.org/10.5281/zenodo.7063184
https://doi.org/10.21105/joss.02673
https://doi.org/10.1029/2021av000440
https://doi.org/10.1175/jtech-d-12-00136.1
https://doi.org/10.1007/978-94-009-8514-8_27
https://doi.org/10.1175/JCLI-D-20-0986.1
https://doi.org/10.1175/JCLI-D-20-0986.1
https://doi.org/10.1002/qj.3803
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/s00332-019-09588-7
https://doi.org/10.1175/jcli-d-17-0523.1
https://doi.org/10.1175/jcli-d-17-0523.1
https://doi.org/10.1175/jcli-d-16-0825.1
https://doi.org/10.1175/JCLI-D-18-0840.1
https://doi.org/10.1007/s10712-017-9433-3
https://doi.org/10.1090/qam/10666
https://doi.org/10.1175/jcli-d-17-0208.1
https://doi.org/10.1175/jcli-d-17-0208.1
https://doi.org/10.1137/0111030
https://doi.org/10.1038/s41558-021-01039-0
https://doi.org/10.1175/jcli3558.1
https://doi.org/10.1175/1520-0442(2001)014%3C2540:ITFEGC%3E2.0.CO;2
https://doi.org/10.1175/JCLI3534.1
https://doi.org/10.1146/annurev.fluid.27.1.419
https://doi.org/10.1146/annurev.fluid.27.1.419
https://doi.org/10.1175/jtech-d-14-00165.1
https://doi.org/10.1175/jtech-d-14-00165.1
https://doi.org/10.1175/1520-0450(1969)008%3C0392:AGCMBO%3E2.0.CO;2
https://doi.org/10.1029/2019rg000678
https://doi.org/10.1017/9781107447738
https://doi.org/10.1017/9781107447738
https://doi.org/10.1002/2014RG000449


Geophysical Research Letters

DATSERIS ET AL.

10.1029/2022GL099678

11 of 11

Stevens, B., & Brenguier, J.-L. (2009). Cloud-controlling factors: Low clouds. In J. Heintzenberg & R. J. Charlson (Eds.), Clouds in the perturbed 
climate system. The MIT Press. chap. 8. https://doi.org/10.7551/mitpress/9780262012874.001.0001

Stevens, B., & Schwartz, S. E. (2012). Observing and modeling Earth’s energy flows. Surveys in Geophysics, 33(3–4), 779–816. https://doi.
org/10.1007/s10712-012-9184-0

Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., et al. (2020). Causes of higher climate sensitivity in 
CMIP6 models. Geophysical Research Letters, 47(1). https://doi.org/10.1029/2019gl085782

Zhang, Y., Stevens, B., Medeiros, B., & Ghil, M. (2009). Low-cloud fraction, lower-tropospheric stability, and large-scale divergence. Journal of 
Climate, 22(18), 4827–4844. https://doi.org/10.1175/2009jcli2891.1

References From the Supporting Information
Brueck, M., Nuijens, L., & Stevens, B. (2015). On the seasonal and synoptic time-scale variability of the North Atlantic trade wind region and its 

low-level clouds. Journal of the Atmospheric Sciences, 72(4), 1428–1446. https://doi.org/10.1175/jas-d-14-0054.1
Charney, J. G. (1947). The dynamics of long waves in a baroclinic westerly current. Journal of the Atmospheric Sciences, 4(5), 136–162. https://

doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2
Eady, E. T. (1949). Long waves and cyclone waves. Tellus, 1(3), 33–52. https://doi.org/10.1111/j.2153-3490.1949.tb01265.x
Held, I. M., & Hou, A. Y. (1980). Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. Journal of the Atmospheric Sciences, 

37(3), 515–533. https://doi.org/10.1175/1520-0469(1980)037<0515:nascia>2.0.co;2
Myers, T. A., & Norris, J. R. (2016). Reducing the uncertainty in subtropical cloud feedback. Geophysical Research Letters, 43(5), 2144–2148. 

https://doi.org/10.1002/2015gl067416
Qu, X., Hall, A., Klein, S. A., & DeAngelis, A. M. (2015). Positive tropical marine low-cloud cover feedback inferred from cloud-controlling 

factors. Geophysical Research Letters, 42(18), 7767–7775. https://doi.org/10.1002/2015gl065627
Sobel, A. H., Nilsson, J., & Polvani, L. M. (2001). The weak temperature gradient approximation and balanced tropical moisture waves. Journal 

of the Atmospheric Sciences, 58(23), 3650–3665. https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2
Wood, R., & Bretherton, C. S. (2006). On the relationship between stratiform low cloud cover and lower-tropospheric stability. Journal of 

Climate, 19(24), 6425–6432. https://doi.org/10.1175/JCLI3988.1

https://doi.org/10.7551/mitpress/9780262012874.001.0001
https://doi.org/10.1007/s10712-012-9184-0
https://doi.org/10.1007/s10712-012-9184-0
https://doi.org/10.1029/2019gl085782
https://doi.org/10.1175/2009jcli2891.1
https://doi.org/10.1175/jas-d-14-0054.1
https://doi.org/10.1175/1520-0469(1947)004%3C0136:TDOLWI%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1947)004%3C0136:TDOLWI%3E2.0.CO;2
https://doi.org/10.1111/j.2153-3490.1949.tb01265.x
https://doi.org/10.1175/1520-0469(1980)037%3C0515:nascia%3E2.0.co;2
https://doi.org/10.1002/2015gl067416
https://doi.org/10.1002/2015gl065627
https://doi.org/10.1175/1520-0469(2001)058%3C3650:TWTGAA%3E2.0.CO;2
https://doi.org/10.1175/JCLI3988.1

	Minimal Recipes for Global Cloudiness
	Abstract
	Plain Language Summary
	1. Introduction
	2. Fitting Global Cloudiness
	2.1. Quantifying Cloudiness
	2.2. Predictors Considered
	2.3. Fitting Process
	2.4. Quantitatively Measuring Fit Quality

	3. Results and Discussion
	3.1. Two Predictor Linear Model
	3.2. Best Fit for Cloud Albedo C
	3.3. Best Fit for Longwave Cloud Radiative Effect L
	3.4. Comparison With ERA5 and Reduced Data
	3.5. Fit Stability

	4. Conclusions
	Data Availability Statement
	References
	References From the Supporting Information


