
1. Introduction
Permeability enhancement in unconventional oil and gas production in tight-shale formations through hydraulic 
fracturing (HF) has been clearly associated with induced earthquakes in many areas, such as the Sichuan Basin, 
China (e.g., Lei et al., 2019), central and eastern United States (e.g., Skoumal et al., 2020), and the Western 
Canadian Sedimentary Basin (WCSB) (e.g., Schultz et al., 2015). The WCSB in particular experienced a drastic 
increase in HF-associated induced seismicity, including earthquakes with magnitudes as large as Mw 4.6 (e.g., 
Babaie Mahani et al., 2017), and nine M3+ events in the Kiskatinaw area since 2010 (Figure 1a).

Most wells in Kiskatinaw target the Montney Formation (Figure 1a1), a fine-grained, westward thickening silt-
stone wedge that reaches ∼300  m (Davies,  1997; Edwards et  al.,  1994). Seismicity in Kiskatinaw occurs in 
swarm-like sequences that are spatio-temporally correlated with HF-well treatments (e.g., Schultz et al., 2020). 
HF wells commonly consist of multiple trajectories, each with multiple HF stages spaced at intervals of ∼50 m 
(BCOGC, 2022). The heightened seismic response to industrial activity in the area prompted seismic station 
densification efforts that enabled the development of detailed earthquake catalogs (e.g., Roth et al., 2020). It 
also led to the BC Oil and Gas Commission (BCOGC) designation of the Kiskatinaw Seismic Monitoring and 
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Mitigation Area (referred to as Kiskatinaw, BCOGC, 2018), which requires mandatory publication of detailed 
injection parameters for individual HF stages. A comparison of earthquake density to active well locations using 
the dense and nearly full-azimuthal seismic station coverage in this area (Figure 1a) shows that only a small 
fraction of wells or stages (∼15%) induce earthquakes above the detection threshold. Therefore, identifying the 
combination of relevant geological and HF parameters and quantifying their correlation with earthquake occur-
rence is key to mitigating hazard associated with induced earthquakes (Ghofrani & Atkinson, 2020).

Here, we use a supervised machine learning algorithm to correlate injection parameters from 12,903 HF stages 
with detectable seismicity in the Kiskatinaw area. We first enhance the existing earthquake catalog using an 
AI-based phase-arrival picker combined with template matching to lower the magnitude of completeness (MC) and 
increase the number of detected earthquakes. We then add a binary target variable to the HF-stage data set based 
on whether a particular stage may be spatio-temporally associated with an earthquake from the enhanced cata-
log. Next, we use tree-based models (random forests and gradient boosted trees) combined with a tree-explainer 
to interpret the models. Our interpretation focuses on the importance of single injection parameters, parameter 
interdependence, and their distribution in different geological subformations. We show that the target forma-
tion thickness and distance to the Precambrian basement exert primary influence on seismicity occurrence. The 
majority of individual stage injection parameters exert a comparatively weaker influence, with the exception of 
fluid volume and treatment date. Our results highlight the benefits of machine learning approaches in determining 
the relative importance of the available set of HF-stage parameters for generating induced earthquakes. They also 
highlight the potential to decipher mechanisms driving induced fault activation where more detailed HF-stage 
parameters are available. This study also underlines the significance of open-data access to enable induced seis-
micity research aimed at mitigating seismic hazard and associated risks.

In the following, we first describe the catalog enhancement, followed by the machine-learning workflow. We 
then discuss the results for each stage parameter on a collective basis and the results for individual stages, while 
comparing our results to findings from previous studies.

2. Method
The machine learning approach determines the relative importance of both geological and operational parameters 
on a per-stage basis and their potential association with earthquakes in an enhanced catalog. Catalog enhance-
ment uses a multi-station matched filter (MMF, Figure S1 in Supporting Information S1) on an initial  earth-
quake catalog (Roth et  al.,  2020) combined with the AI-based phase arrival picker EQTransformer (EQT, 
Figure S2 in Supporting Information S1, Mousavi et al., 2020) from 12 July 2017 to 31 December 2020. We 
locate the detections and calculate magnitudes as done for the initial catalog and relocate earthquakes using 
hypoDD (Waldhauser, 2000). We then obtain detailed HF-stage injection information from the BCOGC database 
(BCOGC, 2022) for 865 HF wells within the spatial area shown in Figure 1 that were actively stimulated during 
the catalog period. We extract the start-/end-times and injected fluid volumes for individual stages, and associate 
geological parameters to each stage, such as the target formation and thickness. We follow BCOGC (2012) by 
separating the Montney Formation into Lower and Upper units. Davies et al.  (2018) further distinguishes the 
Montney Formation into Lower, Lower Middle, Upper Middle, and Upper units, where the Lower and Lower 
Middle Montney correspond to the Lower Montney and the Upper Middle and Upper to the Upper Montney of 
BCOGC (2012). We then spatio-temporally associate earthquakes ≥MC in the enhanced catalog to individual 
stages (horizontal event-stage distance ≤5 km, 5-day window from the HF treatment, Figure 1b, Figure S4 in 
Supporting Information S1). The 5-day time-window limit is intended to account for cases of delayed triggering 
and could potentially lead to misassociation. However, as later discussed in the Results, 82% of events occur 
within 3 hr of a specific stage. The Supporting Information also provides further details of catalog enhancement, 
stage information retrieval, and earthquake-stage association.

Following earthquake-stage association, we apply the machine learning approach with workflow shown in 
Figure 1c. The approach sets the 13-parameter stage parameter data set as independent variables and the condi-
tion of whether or not the stage has an associated earthquake as the dependent variable. We use a stratified split 
to generate a training (80%) and test (20%) set, where the stratified split ensures training and test sets contain 
equal numbers of stages with and without earthquakes. We leverage a repeated k-Fold cross validator with five 
splits and 10 repetitions on the training set to obtain a validation set and estimate confidence intervals. We 
then follow Howard and Gugger (2020) using a random forest classifier to remove insignificant columns in the 
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independent variable to reduce the likelihood of overfitting the data with excessive numbers of independent 
variables (Breiman, 2001, Figure 1c, Figure S5 in Supporting Information S1). We use the gradient boosted 
tree classifier XGBoost (Chen & Guestrin, 2016) to increase accuracy and support missing values present in the 

Figure 1. (a) Kiskatinaw study area, northeastern British Columbia (BC). Red box in the overview map (a1) shows the study 
area within the Montney Formation (BC and Alberta) in blue, as reported by BC Oil and Gas Commission. Black points 
denote earthquakes in the enhanced catalog, with colorbar indicating the number of earthquakes in each 2 × 2 km grid. 
Hydraulic fracturing (HF) wells with/without associated earthquakes (hexagons/squares) with respective well trajectories 
(gray lines) demonstrate a variable seismic response that is resolved by the dense seismic station coverage (blue triangles). 
Mapped faults (barbed lines) follow Norgard (1997); Berger et al. (2009); Cui et al. (2017) and Davies et al. (2018). (b) 
Schematic HF well (gray square - well head, gray lines - well trajectories, diamonds - HF stages) with associated seismicity as 
points color-coded according to their respective associated stages. (c) Supervised machine learning approach. Dark rectangles 
at the top denote the model's independent (input) and the dependent (output) variables. Left column shows stage parameters 
used as independent variables, with parameters of negligible importance shown in lighter gray (see main text and Supporting 
Information for details). Underlined parameters denote operational (in contrast to geological) parameters. The XGBoost 
(Chen & Guestrin, 2016) model is trained as described in the main text and the tree-explainer (Lundberg et al., 2020) 
calculates the SHapley Additive exPlanations values.
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well reports (Figure S6 in Supporting Information S1). A test of other gradient boosted tree classifiers or neural 
networks demonstrated no significant increase in accuracy. We use the optimization framework Optuna (Akiba 
et al., 2019) to optimize the hyperparameters of XGBoost. We measure the performance of the model using the 
Area under the Receiver Operating Characteristic Curve (ROC-AUC) score, which is a good measure of sepa-
rability (Fawcett, 2006). Text S4 in Supporting Information S1 provides extensive details regarding the machine 
learning workflow and ROC-AUC score.

We use SHapley Additive exPlanations (SHAP), Lundberg et al., 2020) to explain the model and its predictions. 
For each stage, we calculate a SHAP value as a measure of the contribution of each single parameter (input) 
to the output of the model, where the sum of the total resulting SHAP values from all parameters indicates the 
model prediction. A positive or negative SHAP sum corresponds to a stage being likely or unlikely to induce an 
earthquake, respectively. We also compare SHAP values of various HF parameters over all stages to interpret 
their relative importance as well as whether they are positive or negative (i.e., increase or decrease the likelihood 
of inducing an earthquake).

3. Results
Earthquake catalog enhancement adds an additional 21,404 events using MMF and 10,260 events using EQTrans-
former to the initial catalog of 8,382 events (Roth et al., 2020). The following discussion considers additional 
detected and relocated events with a maximum horizontal error of 10 km (median horizontal error: 0.4 km). 
Catalog enhancement reduces the magnitude completeness MC from ∼1.6 to ∼0.2 (Figure S3 in Supporting Infor-
mation S1). We infer the observed magnitude-frequency distribution likely results from a summation of multiple 
earthquake clusters related to individual HF wells with variable MC and b-values. However, a more detailed inves-
tigation of clusters would be required to draw any conclusions. We make no further interpretations of MC and the 
b-value here, as it is not the focus of this work.

A total of 39,156/40,046 (∼98%) enhanced catalog events associate with an individual stage, and 4,502/12,903 
stages (∼35%) have at least one associated earthquake. Seismicity occurs predominantly in swarm-like clusters, 
as noted in Section 1 (Figure S3b in Supporting Information S1), where 82% of associated events occur within 
3 hr of the start a specific HF stage. Delayed earthquakes are comparatively few (16%), and 83% of all delayed 
events occur within 3 hr of the end of a stage (Figure S4 in Supporting Information S1). Considering events exclu-
sively within a specific treatment period reduces the number of stages with associated seismicity by ∼8% to 4,163 
but does not change the results of the machine learning models. The reduction of the initial 13 parameters to five 
in the independent variable (Figure 1c) using a random forest classifier (Section 2, Figure S5, Text S4 in Support-
ing Information S1) does not decrease the accuracy of the model. The fitted XGBoost model ROC-AUC score 
of 0.89 for both the validation and test sets suggests the model robustly generalizes the relation between stage 
parameters and earthquake occurrence with negligible overfitting (Figure S6 in Supporting Information S1).

The SHAP-value distribution in Figure 2a for individual stage parameters shows all predictions calculated using 
all stages and the trained XGBoost model. Figure 2a1 shows the mean absolute SHAP values for all stages sepa-
rated by their target formation. Both the individual and mean values demonstrate the importance of formation 
thickness, hydraulic-fracturing date, fluid volume, distance to the basement, and target formation. The following 
discussion describes the dependence of SHAP values with respect to the four most important stage parameters 
(formation thickness, date, fluid volume, and distance to basement).

Figure 2b shows the dependence of both individual stage and mean SHAP values on the formation thickness, 
where undifferentiated sediments lie stratigraphically above the Upper Montney Formation with no available 
thickness information. The correlation ranges from negative to small positive values for thicknesses up to 150 m 
located primarily in the Upper Montney. Formation thickness correlates positively in stages in the Lower Mont-
ney and Upper Montney, and reaches a maximum in the Lower Montney at a thickness of ∼200 m. The correla-
tion decreases rapidly at thicknesses ≥225 m for the Lower Montney. Figure 2a1 emphasizes the importance of 
formation thickness in the Lower Montney.

The HF-treatment date also correlates positively with the SHAP values for all formations up to the COVID-19 
lockdown (Figure 2c). The last completed stage in the database before the lockdown was on 2020-03-29 and 
the first stage completed after the lockdown occurred on 2020-08-06. All formations correlated negatively with 
SHAP values following the suspended operational period, particularly the Lower Montney. The SHAP values 



Geophysical Research Letters

KEMNA ET AL.

10.1029/2022GL099995

5 of 13

exhibit a more variable range following the lockdown, where fewer HF stages were completed comparatively to 
the period before. We further discuss the influence of the injection in Section 4.

The total injected fluid volume per stage shows a distinct positive correlation with the SHAP values, with posi-
tive SHAP values for volumes ≥500 m 3 (Figure 2d). SHAP values of the Upper Montney and undifferentiated 

Figure 2. Overview of SHapley Additive exPlanations (SHAP) values from all hydraulic fracturing (HF) wells and the 
XGBoost model. (a) SHAP summary plot for parameters where each point is related to the prediction from the XGBoost 
model for an individual stage. Point color reflects respective feature value in the colorbar for all parameters except formation 
(formation color shown by the colors in the lower left). (a1) Mean absolute SHAP value for each parameter using all stages 
(dark gray), and stages in each formation. Table S1 in Supporting Information S1 provides all SHAP values. (b) Formation 
thickness dependence with points colored by the same formation colors as in (a). Note: stages in the undifferentiated 
sediments have no calculated thickness. Colored bars above the points from a locally weighted scatterplot smoothing 
(LOWESS) for stages in the same formation (color as in (a)). LOWESS lines correspond to the y-axis on the right. The 2σ 
confidence intervals are calculated from 100 random samples. (c) Dependence plot for completion date with colors and 
symbols as in (b). The gray rectangle outlines the COVID-19 lockdown period. (d) Dependence plot for the total injected 
fluid volume with colors and symbols as in (b), but with distance to the Precambrian basement shown by the respective 
colorbar. (e) Dependence plot for stage distance to the Precambrian basement with colors and symbols as in (b).
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sediments show stronger dependence on the injected fluid volume compared to the Lower Montney. They are 
also negative for volumes ∼≤500 m 3 and positive for larger volumes, showing a slightly positive correlation with 
fluid volume. SHAP values for the Lower Montney are roughly zero with a slight positive correlation at higher 
volumes, and are positive for volumes ∼≥1,000 m 3. Considering both the distance to the basement together with 
injection volume also highlights variable behavior (colorbar, Figure 2d). For example, the increase of SHAP 
values at 500 m 3 is more pronounced for stages located ≥2,000 m from the basement.

The stage distance to the basement negatively correlates with the SHAP values for distances ≥1,700 m, and 
SHAP values are primarily negative for distances ∼≥2,000  m (Figure  2e). The SHAP values are highest at 
distances of ∼1,700 m in the Lower Montney, and decrease sharply with decreasing distance.

Figure 3a summarizes the correlation of the SHAP-value sums with the maximum observed magnitude (MOM) 
for all stages, as well as the mean formation SHAP value as a function of magnitude. Panel (b) shows the compo-
sition of the SHAP sum for seven representative stages in (a), including four stages (1–4) with an associated 
earthquake, and three (5–7) without. Two (1–2) of the four stages with an associated earthquake (also the largest 
magnitude earthquakes in our study area) are deemed likely to occur according to the model (”true positives”), 
while two (3–4) are deemed unlikely to occur (”false negatives”). The three stages without an associated earth-
quake include one stage (5) where the model predicts no earthquake (”true negative”) and two stages (6,7) where 
the model predicts an earthquake (”false positives”). SHAP sums show no clear correlation with magnitude, but 
the sum is positive for stages with a magnitude ≥0.5 for all formations. In addition, the locally-weighted scatter-
plot smoothing curves show the highest predictability for the Lower Montney (Figure 3a). In contrast, the number 
of false positives is also higher in the Lower Montney (see boxplots in Figure 3a).

4. Discussion
This study employs a machine-learning model to quantify the dependence of seismic propensity on detailed 
HF-stage parameters in the Kiskatinaw area using a significantly enhanced earthquake catalog from multi-year 
continuous monitoring. We find that geological parameters (formation thickness and vertical distance to base-
ment) and operational parameters (HF treatment date and total injection volume) are key parameters for generat-
ing seismogenic HF stages. The remaining operational parameters tested appear to be of negligible importance. 
Furthermore, we find that stages targeting the Lower Montney formation are more likely to induce earthquakes 
than stages targeting shallower formations (Upper Montney, undifferentiated sediments). We emphasize that 
feature importance does not entail a causal relationship with predictive value. Instead, the model and subsequent 
interpretations are intended to provide a starting point for further analyses that put operational parameters in 
geological context.

Our findings largely agree with similar studies focused on HF wells targeting the Montney Play. Wozniakowska 
and Eaton (2020) estimated the Seismogenic Activation Potential based on 6,466 HF wells (rather than specific 
stages) using logistical regression on published earthquake catalogs between 2006 and 2020 in Kiskatinaw and 
the North Peace Ground Motion Monitoring Area (NPGMMA), north-west from Kiskatinaw. They established 
injection depth and distance to the Cordilleran thrust belt as key parameters in their model. The importance of 
injection depth is also observed in Oklahoma (e.g., Hincks et al., 2018). The local focus on Kiskatinaw in this 
study implies that distances to the thrust belt are all similar for all HF stages considered, and are therefore not 
evaluated here. While injection depth is also essential here, we mapped the injection depth to specific digital 
geological models, as the geological units exhibit a significant NE-SW oriented dipping trend across Kiskat-
inaw (Figure S7 in Supporting Information S1). Amini and Eberhardt (2021) employed a similar approach using 
tree-based machine learning models (as XGBoost, among others) with detailed information for 95,807 HF stages 
in the NPGMMA and Kiskatinaw with a combination of published catalogs containing 9,949 events, similar to 
Wozniakowska and Eaton (2020). They found that geological parameters are more important than operational 
parameters, similar to our results. In particular, both studies found a negative correlation with the distance to the 
basement, as demonstrated in Figure 2e, indicating that injection depths closer to the crystalline basement are 
more likely to induce earthquakes. Wang et al. (2022) follow a similar approach to this one (XGBoost model with 
SHAP values) while focusing on the Northern Montney Play (NMP), which includes the NPGMMA. They found 
that the distance to the Cordilleran thrust belt (similar to Wozniakowska and Eaton (2020)), and the total injected 
fluid volume (similar to this study and to Amini et al. (2021)) are most important. They also found that treating 
pressures and the vertical distance to the Debolt formation are key parameters. However, our results suggest that 
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Figure 3. SHapley Additive exPlanations (SHAP) value sum for all HF stages and the XGBoost model. (a) SHAP value 
sum versus maximum observed magnitude (MOM) from the associated earthquakes or if no earthquake is detected (i.e., 
stages with no associated earthquakes are contained in the rectangle and forming a line over “no earthquakes observed”). 
The colorbar shows the point density for each subset of points. The lines colored by their respective formation result from a 
locally weighted scatterplot smoothing (LOWESS) over the MOM based on stages in each formation. The LOWESS lines 
correspond to the y-axis on the right with 2σ confidence intervals from 100 random samples. The colored boxplots on the left 
are calculated from stages with no observed earthquakes in each formation with the same colors used for the LOWESS lines. 
The notch of each boxplot represents the 2σ confidence interval from 10,000 random bootstrap samples. (b) The composition 
of the SHAP sum value for seven representative stages (marked by numbers 1–7 in (a)). Red and blue colors correspond to a 
positive and negative value for the specific parameter. Table S2 in Supporting Information S1 provides all parameter values.
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treating pressure bears no significant importance relative to other parameters, including the vertical distance to 
the Precambrian basement. The differences found here might highlight a variable seismic response to operations 
in the NMP relative to Kiskatinaw in the south. In contrast to the studies by Wozniakowska and Eaton (2020) 
and Amini and Eberhardt (2021), we do not use the maximum horizontal compression orientation, SHmax, due 
to a lack of resolution in the small study region. (Published values in Kiskatinaw are based limited observations 
of ∼2 wells (Bell & Grasby, 2012; Heidbach et al., 2018; Shen et al., 2019)). A recent induced earthquake focal 
mechanism study in Kiskatinaw (Roth et al., 2022) found predominantly left-lateral strike-slip focal mechanisms 
with nodal planes at shallow angles to the regional SHmax, suggesting low spatial variability in SHmax in our 
study area. We note that SHmax is a parameter worth investigating in cases where observations exist at sufficient 
spatial resolution (e.g., from borehole measurements) near injection wells and/or seismicity. The abundance 
of  strike-slip faulting mechanisms within the local study area also makes it difficult to use structural elements 
with potentially vertical throw (e.g., Wozniakowska et al., 2021) to identify correlations.

In contrast to previous models noted above, our model includes additional parameters. It suggests thickness of the 
target formation (for both Lower and Upper Montney) bears significant importance for the likelihood of inducing 
earthquakes (Figure 2b), particularly in the Lower Montney (Figure 2a1)). The overall correlation is positive, 
meaning a thicker target formation is more likely to host an induced earthquake; the correlation becomes negative 
when formation thickness increases to values ≥200 m. The positive correlation is also consistent with the theoret-
ical model of Galis et al. (2017), which assumes that most induced earthquakes are self-arrested ruptures caused 
by local pore-pressure perturbations propagating on pre-stressed faults. One notable aspect is that the model 
takes the area of intersection between the reservoir and a pre-existing fault into account. The positive observed 
correlation with the formation thickness is consistent with an increase in the probability of having a potential 
pre-existing fault intersect a thicker reservoir or target formation while also increasing the size of an intersection. 
The more likely intersection with a fault should subsequently increase the likelihood of inducing an earthquake. 
We discuss below why the reverse trend in thicknesses ≥200 m does not fit the above interpretation, including 
what other factors could influence the observed negative correlation.

The HF treatment date also exhibits an important role. For example, stages completed in late 2019 to early 2020 
are more likely to induce an earthquake compared with stages in 2018 (Figure  2c). The likelihood reverses 
after the seismically quiescent COVID-19 lockdown period (e.g., Salvage & Eaton, 2021). The positive corre-
lation of increasing likelihood with time could point to a potential cumulative effect of injection, leading to 
increasing pore pressure, poroelastic, and/or Coulomb static stress changes (Brown & Ge,  2018). The lock-
down likely relaxed stress perturbations to some degree, decreasing the probability of inducing earthquakes 
afterward. Oklahoma and Kansas also exhibit similar time-dependent effects where forecasted seismicity rates 
decrease with injection rates (Langenbruch et al., 2018). However, the time-dependent effects in the central US 
are related to wastewater-disposal-induced earthquakes attributed to pore-pressure perturbations over km length 
scales (e.g., Peterie et al., 2018). In contrast, perturbations for HF-induced earthquakes are likely more localized 
due to lower permeability, and may drive stress changes by both poroelastic and pore-pressure diffusion (e.g., 
Deng et al., 2016). For example, temporal poroelastic stress changes generate cumulative static Coulomb stress 
changes, which increase the likelihood of an induced earthquake by subsequent HF stages. We note that the 
interpretation related to any cumulative effect is speculative, albeit consistent with the seismicity rates follow-
ing the lockdown. Confirming the interpretation would require testing other factors, such as the dependence on 
changes in stimulation strategies or other geological parameters. The lack of additional information in this data 
set prohibits further testing here. However, it does show the merit of testing the validity of cumulative effects 
on data sets using a longer time window where HF operations are sustained over longer periods (Figure S3a in 
Supporting Information  S1). The time-dependent observation highlights the potential benefit of the machine 
learning approach to identify essential injection parameters that should be studied in greater detail to identify 
fault activation processes.

The positive correlation with total injected volume and negative correlation with the basement distance has 
also been observed using similar approaches (Amini & Eberhardt, 2021; Wang et al., 2022; Wozniakowska & 
Eaton, 2020). Studies also correlate the volume to maximum magnitude (e.g., Galis et al., 2017; McGarr, 2014) 
and seismicity rate (e.g., Schultz et al., 2020). Figure 2d further highlights the detailed and variable response of 
the target formation, where correlation is positive for all formations. Where fluid volumes ∼≤500 m 3 appear 
to be less important for the shallower formations (Lower Montney, undifferentiated sediments), they increase 
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drastically for volumes ∼≥500 m 3. The relationship could imply a minimum fluid volume is needed to reach 
deeper layers, presumably with more pre-existing faults. Once a minimum fluid volume is exceeded, it becomes 
important for estimating the likelihood of inducing an earthquake. Another explanation could be related to MC. 
For example, Schultz et al.  (2018) show that a minimum fluid volume is necessary to increase probability of 
causing an event above MC. The observed increased likelihood associated with larger fluid volumes in shallower 
layers combined with larger basement distances (colorbar in Figures 2d and 2e) suggests the necessary combina-
tion of conditions to generate earthquake inducing stress perturbations in or near the basement. Similar depend-
ences on the distance to the basement have also been observed for HF-induced earthquakes in the United States 
(Skoumal et al., 2018). Again, the combined importance of fluid volume and distance to the basement needs to 
be studied in more detail in future work, and goes beyond the scope of this paper.

One potential shortcoming of machine learning models is that the selection and availability of parameters may 
fail to represent the truth correctly or may introduce non-negligible bias. For example, the inverse correlation 
of the SHAP values with formation thicknesses ≥200 m 3 (Figure 2b) contradicts the theoretical model of Galis 
et al. (2017), which could suggest that the spatio-temporal distribution of stages biases the data. A possible expla-
nation is that the observed trend of decreasing SHAP value with increasing formation thickness coincidentally 
reflects a higher number of HF stages targeting thicker formations completed after the COVID-19 lockdown. The 
temporal coincidence could result in a decreased likelihood of an induced earthquake after the lockdown period 
that overshadows the likelihood associated with thicker formations (Figure 2c). However, we do not observe a 
clear spatio-temporal distribution supporting the above hypothesis, as stage completions occur at arbitrary times 
in any spatial region (Figures S7, S8 in Supporting Information S1). In contrast, stages in the eastern part of the 
study area show significantly lower SHAP sum values compared to the center (Figure S9 in Supporting Informa-
tion S1). The lower eastern SHAP values also correspond to higher formation thickness of the Lower Montney 
and lower distances to the basement (Figure S7 in Supporting Information S1). The spatial distribution of stages 
could explain the observed inverse correlation with formation thickness, and it is possible that other stage param-
eters that were not included in the model change in the same area. We infer from the distribution of mapped faults 
that the parameter changes might be related to changing geological factors, such as proximity to pre-existing 
faults (Figure S9 in Supporting Information S1). Another potential bias could arise from the possibility that HF 
operations target thicker formations less frequently, resulting in less pronounced cumulative effects that can not 
be ruled out with the limited time window of our data set. Furthermore, our data set consists exclusively of stages 
that are a priori associated with seismicity. The prohibitive number of PDF files that would need to be processed 
manually to include non-seismogenic stages make the latter potential bias inevitable (see Section 2).

The unavailability of other potentially important parameters is another potential source of bias. As discussed 
above, the local SHmax orientation is likely influential, but lacks sufficient spatial accuracy in the study area. 
Another influential (unavailable) indicator could be lithium concentration in formation waters, which could be 
used as a proxy for vertical, fault-related fluid flow (Pawley et al., 2018). Formation overpressure has also been 
found to correlate with induced seismicity, but is also unavailable here (e.g., Eaton & Schultz, 2018). Many poten-
tially influential parameters could explore similar false positive and false negative cases shown as in Figure 3 to 
identify important stage parameters to be included in future models. In addition, false predictions offer the poten-
tial to identify methodological limitations in cases where more detailed information about the interaction between 
injection and seismicity is available. An additional potential bias might be unbalanced variable distributions, for 
example, the abundance of events, or lack thereof, within a formation unit. Since hypocentral resolution of our 
enhanced catalog does not permit association to formation units, we are unable to quantify the effect with this 
data set, but it demonstrates an avenue of future use.

We note that we do not calculate seismic risk based on our machine learning models or attempt to predict the 
MOM, as done by previous studies. The fitting error using a regression model corresponds to ∼≥0.5 and includes 
significant outliers, as the larger magnitude range is not quantitively well constrained (where 8 stages events 
have MLmax ≥3 and 544 stages with MLmax ≥2). Therefore, the time frame considered will not provide a regression 
model for a robust risk assessment. The MOM in Kiskatinaw may be more strongly influenced by the local distri-
bution of pre-existing faults or fluid conduits (Peña Castro et al., 2020), which such models are unable to take 
into account. Such limitations would also apply to using the total number of earthquakes or total moment release 
as the prediction target. In addition, the observed varying MC of different seismicity clusters would further bias 
the input data.
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5. Conclusion
We investigate the relationship between an enhanced catalog of 40,046 earthquakes and detailed injection param-
eters for 12,903 HF stages using a supervised machine learning approach in the Kiskatinaw area, British Colum-
bia, Canada. We use the gradient boosted decision tree classifier XGBoost (ROCAUC score 0.89) combined with 
the tree-explainer SHAP to assess the importance of specific injection parameters on the likelihood of an HF 
stage to induce a detectable earthquake. We find that:

1.  Geological parameters show higher importance than operational parameters.
2.  The thickness of the target formation, the completion date, the total injected fluid volume, the vertical distance 

to the Precambrian basement, and the target formation are the most influential parameters in order of relative 
importance.

3.  Stages in the Lower Montney Formation have a higher likelihood of inducing an earthquake compared to the 
Upper Montney or shallower undifferentiated sediments.

4.  Thicker target formations are generally more likely to host a seismogenic stage.
5.  The increasing probability of HF stages over time may suggest the significance of cumulative effects of pore 

pressure, poroelastic, and/or Coulomb static stress changes in areas with HF. Cumulative effects seem to 
partially abate in Kiskatinaw during the COVID-19 lockdown in 2020.

6.  Larger injected fluid volumes are more likely to induce an earthquake. Stages in shallower layers (Lower 
Montney, undifferentiated sediments) show a significant increase in importance for volumes ∼≥500  m 3. 
The latter observation could point to a minimum fluid volume needed to reach deeper layers with more 
pre-existing faults.

7.  Stages closer to the Precambrian basement are generally more likely to host a seismogenic stage.
8.  The accuracy of our model is highest in the Lower Montney compared to the Upper Montney and undifferen-

tiated sediments, whereas the false positive rate is also higher in the Lower Montney.

This study highlights a fundamental application of machine learning models toward induced seismicity: identify-
ing essential parameters to be studied in greater detail in efforts to reduce the overall risk of industrial operations. 
Machine learning models also have a general potential to provide new information about the mechanisms driving 
induced seismicity. Although these models do not consider the geological context, they exhibit a potential to 
guide detailed studies focusing on the most relevant parameters. Furthermore, false-positive and false-negative 
predictions could be used in detailed studies of specific stages to provide further insights on parameters that might 
drive earthquake generation.

We emphasize that the open-access availability of HF stage information through BCOGC enabled this study. 
Open data availability is crucial to enabling scientific study to decipher the correlation between induced seis-
micity and HF (or other alternative energy production) operations, as the risk associated with induced seismicity 
is of great public concern. Publicly available data, as well as dense regional seismic networks to study potential 
relationships using small earthquakes will help, in ideal cases, to identify the processes leading to (and avoiding) 
damaging earthquakes. All the above steps will only help increase public acceptance and tolerance of the manage-
able hazard and risks associated with alternative energy production.

Data Availability Statement
Waveform data used in this study are archived at IRIS under network codes XL, 1E, PQ, and EO (e.g., https://
ds.iris.edu/gmap/XL). Well data are provided by British Columbia Oil and Gas Commission (BCOGC; https://
files.bcogc.ca/thinclient/, last accessed May 2022). Topographic information in Figure  1 comes from the 
Canadian Digital Elevation Model (CDEM) https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-
45d1d2051333 (last accessed May 2022). The open-source Python package Obspy 1.2.2 was used for data 
processing (Krischer et al., 2015) available at: https://github.com/obspy/obspy (last accessed May 2022). The 
multi-station-matched filter detection uses the Python package EQCorrscan 0.4.1 (Chamberlain et  al.,  2017), 
available at: https://github.com/eqcorrscan/EQcorrscan (last accessed March 2022). We used EQTransformer 
0.1.59 (Mousavi et al., 2020, https://github.com/smousavi05/EQTransformer, last accessed May 2022) to gener-
ate phase arrivals and REAL 1.0 for phase association (Zhang et  al.,  2019, https://github.com/Dal-mzhang/
REAL, last accessed May 2022). During the machine learning workflow we used several functions from 
scikit-learn 1.0.2 (Pedregosa et al., 2011, https://scikit-learn.org/stable/, last accessed May 2022) and fastai 2.5.3 
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(Howard & Gugger, 2020, https://docs.fast.ai, last accessed May 2022). We further used XGBoost 1.5.1 (Chen & 
Guestrin, 2016, https://xgboost.readthedocs.io/en/stable/, last accessed May 2022) and SHAP 0.40.0 (Lundberg 
et  al.,  2020, https://github.com/slundberg/shap, last accessed May 2022). Several figures were created using 
GMT 6.3.0 (Wessel et al., 2019), available at: https://docs.generic-mapping-tools.org/latest/ (last accessed May 
2022). The other figures were created using Matplotlib 3.5.1 (Hunter, 2007) available at: https://matplotlib.org/ 
(last accessed May 2022). Many colormaps from Scientific Color Maps 7 were used during plotting, available at: 
https://doi.org/10.5281/zenodo.5501399 (last accessed May 2022).
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