
1. Introduction
Sea ice plays a crucial role in the climate system acting as a buffer between the ocean and the atmosphere, influ-
encing the exchange of heat, moisture and momentum (Stroeve & Notz, 2018). Linear kinematic features (LKFs), 
such as leads and ridges, are build in response to wind and ocean forcing. These LKFs are important indicators 
of sea-ice deformation, which are closely linked to the mechanical properties of sea ice (Kwok, 2001). However, 
simulating these features in sea-ice models has proven to be a significant challenge (Hutter et al., 2022).

In most climate models, sea ice is characterized as a viscous-plastic (VP) two dimensional continuum, which is 
represented either in the classical VP formulation (Hibler, 1979) or by the elastic-viscous-plastic (EVP) modifi-
cation (Hunke & Dukowicz, 1997). The VP sea-ice model has been criticized in the last years for using assump-
tions that have no observational evidence (Coon et al., 2007; Feltham, 2008; Rampal et al., 2008), and alternative 
rheologies have been proposed (Dansereau et al., 2016; Rampal et al., 2016; Tsamados et al., 2013). Even so, 
most practical applications are still using the (E)VP formulation and will continue to apply it in the foreseeable 
future (Blockley et al., 2020).

It has been demonstrated in different studies that (E)VP models are able to simulate aspects of observed LKFs 
(Hutter & Losch, 2020). Once the resolution is high enough, these models are able to reproduce observed defor-
mations and spatial-temporal scaling laws (Bouchat & Tremblay, 2017; Bouchat et al., 2022). The simulated LKFs 
however depend on numerical details used in the model realization such as the numerical solver convergence 
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(Koldunov et al., 2019; Lemieux et al., 2012), the pressure parameterization (Hutchings et al., 2005), the mesh 
resolution (Wang et al., 2016) or the placement of the sea-ice variables on the grid (Mehlmann et al., 2021b).

In the context of the VP sea-ice model, an increase of the mesh resolution leads to a larger amount of simulated 
deformation. However, increasing the spatial resolution may not always be possible in practical applications, 
and more elaborated spatial discretizations can be an efficient alternative. Mehlmann et al. (2021b) found that a 
CD-grid type discretization on quadrilateral meshes resolves more deformation than approaches which represent 
the velocity by its normal component at the edge midpoint (C-grids) or setups with velocities located on vertices 
(A-grids, B-grids). See Figure 1 for a summary of these different grid placements. The study also analyzed the 
simulated deformation on triangular meshes and found that the triangular CD-grid setup resolves more LKFs 
than the triangular A-grid. The higher amount of LKFs produced with the CD-grid can mainly be attributed to 
the higher number of degrees of freedom (dof). Additionally, the authors found that the quadrilateral CD-grid 
approach simulates a similar amount of deformation structure than quadrilateral B-grid and C-grid discretization, 
but on a grid twice as coarse (less velocity degrees of freedom). The same is true for the triangular CD-grid 
compared to the triangular A-grid.

A new CD-grid formulation has been proposed by Capodaglio et  al.  (2023). The approach applies a subgrid 
discretization based on Wachpress functions (Dasgupta, 2003) or piecewise linear basis functions (PWL) (Bailey 
et al., 2008). We will refer to this CD-grid discretization as CD2. The CD2 formulation differs from the CD-grid 
approximation used by Mehlmann et al. (2021b) in the spatial discretization of strain rates and stresses. The latter 
is based on a nonconforming finite element discretization (Crouzeix-Raviart element), and will be referred to 
as CD1 in the remainder of the paper. The question arises on how the resolution properties of CD2 approaches 
compare to those of CD1 and traditional A-grids, B-grids and C-grids. Answering this question is the aim of this 
work.

To do so, we performed a numerical analysis on a benchmark problem introduced in Mehlmann et al. (2021b), 
to find that in addition to the edge placement used in the CD-grid approaches, the spatial discretization also 
plays a crucial role for the amount of simulated deformation. This holds true for different types of grids, includ-
ing quadrilateral, triangular, and hexagonal meshes. The CD2 simulations on quadrilateral and hexagonal grids 
are obtained with the sea-ice module of the Model for Prediction Across Scales (MPAS-Seaice, Capodaglio 
et al., 2023; Turner et al., 2021). In case of triangular meshes, we compute the CD2 approximation with the 
Finite-Volume Sea Ice–Ocean model (FESOM, Danilov et al., 2015). Please note that the CD2 discretization in 
FESOM (Danilov et al., 2023a) is inspired by the development of Capodaglio et al. (2023) and differs in numer-
ical details in the subgrid discretization.

Figure 1. Variable placements (A-grid, B-grid, and CD-grid) considered in this work for several mesh cell geometries. We 
indicate the placement of the latitude/zonal velocity v = (u, v) and the staggering of the tracers by •, and ⋆, respectively. 
Please note that a C-grid has the same staggering as the CD-grid with the difference that in case of a C-grid the velocity is 
represented by the normal component only.
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The CD2 simulations are compared to runs conducted with the Los Alamos Sea Ice Model (CICE, Hunke 
et  al.,  2015), the sea-ice module of the Icosahedral Nonhydrostatic Weather and Climate Model (ICON, 
Mehlmann & Korn, 2021), the sea-ice module of the Massachusetts Institute of Technology general circulation 
model (MITgcm, Losch et al., 2010), and the setup realized in the academic software library Gascoigne (Becker 
et al., 2019). The different model setups are reported in Table 1 for ease of reference, whereas a detailed descrip-
tion of the model configuration is provided in Section 3.3. The paper is structured as follows. Section 2 introduces 
the sea-ice model equations, while Section 3 outlines the model configuration and methods applied for the analy-
sis. Section 4 presents a numerical evaluation of the data, and a discussion is given in Section 5. The paper ends 
with a conclusion in Section 6.

2. Model Equations
We consider a simplified sea-ice model, where sea-ice is characterized by three variables: sea-ice velocity v, 
sea-ice thickness H and sea-ice concentration A. The sea-ice dynamics is described by the following system of 
equations

𝑚𝑚𝑚𝑚𝑡𝑡𝐯𝐯 + 𝑓𝑓𝑐𝑐𝒆𝒆𝑧𝑧 × 𝐯𝐯 = div𝝈𝝈 + 𝐹𝐹 𝐹 (1)

𝜕𝜕𝑡𝑡𝐴𝐴 + div (𝐯𝐯𝐴𝐴) = 0, 𝐴𝐴 ≤ 1, (2)

𝜕𝜕𝑡𝑡𝐻𝐻 + div (𝐯𝐯𝐻𝐻) = 0, (3)

where m = ρiceH is the ice mass per unit area, ρice = 900 kg/m 3 is the density, fc = 1.46 ⋅ 10 −4s −1 is the Coriolis 
parameter, ez is the vertical (z-direction) unit vector, and σ is the internal stress. The external forces are collected  in

𝐹𝐹 = 𝐴𝐴 𝝉𝝉(𝐯𝐯) − 𝜌𝜌ice𝐻𝐻𝐻𝐻∇�̃�𝐻𝐻𝐻, 

where g is the gravitational acceleration, 𝐴𝐴 �̃�𝐻𝑔𝑔 is the sea surface height and τ(v) describes the oceanic and atmos-
pheric stresses. The internal stresses σ are related to the strain rates

�̇�𝝐 =
1

2

(

∇𝐯𝐯 + ∇𝐯𝐯
𝑇𝑇
)

 (4)

by the VP material law (Hibler, 1979)

𝝈𝝈 = 2𝜂𝜂�̇�𝝐 + (𝜁𝜁 − 𝜂𝜂)tr(�̇�𝝐)𝐼𝐼 −
𝑃𝑃

2
𝐼𝐼𝐼 𝑃𝑃 =

𝑃𝑃0Δ

2(Δ + Δmin)
𝐼 (5)

Model Grid Staggering Strain rates discretization Solver Transport No. cells (2 km) Dof

FESOM △ A Conforming linear FE mEVP FEM-FCT 151,630 N

△ CD Nonconforming linear FE mEVP Upwind 151,630 3N

△ CD Subgrid conforming linear FE mEVP FEM-FCT 151,630 3N

ICON △ CD Conforming linear FE mEVP Upwind 149,938 3N

MPAS ⎔ B Subgrid piecewise linear basis EVP Remapping 74,676 4N

⎔ CD Subgrid piecewise linear basis EVP Remapping 74,676 6N

□ B Subgrid piecewise linear basis EVP Remapping 65,536 2N

□ CD Subgrid piecewise linear basis EVP Remapping 65,536 4N

CICE □ B Subgrid bi-linear basis Picard Remapping 65,536 2N

Gascoigne □ B Conforming linear FE Newton Upwind 65,536 2N

□ CD Nonconforming linear FE Newton Upwind 65,536 4N

MITgcm □ C Central differences Newton FV with flux limiter 65,536 2N

Note. The number of degrees of freedom (dof) is given per N cells.

Table 1 
Overview of the Model Configuration
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where the superscript T in Equation 4 indicates the transpose, I is the identity matrix and P is the replacement 
pressure, which has been introduced by Hibler and Ip (1995) to avoid divergence of ice in the absence of forces. 
The viscosities ζ, η are given by

𝜁𝜁 =
𝑃𝑃0

2
(

Δ2 + Δ2

min

)

1

2

, 𝜂𝜂 = 𝑒𝑒−2𝜁𝜁, 𝑃𝑃0(𝐻𝐻,𝐻𝐻) = 𝑃𝑃⋆𝐻𝐻 exp(−𝐶𝐶(1 − 𝐻𝐻)), (6)

where e = 2 is the ratio of the elliptic yield curve, P ⋆ = 27,500 N/m 2 is the ice strength parameter and C = 20. 
The parameter Δmin = 2 × 10 −9 is the viscous limit of the plastic regime, and

Δ
2
=
(

�̇�𝝐
2

11
+ �̇�𝝐

2

22

)(

1 + 𝑒𝑒−2
)

+ 4�̇�𝝐
2

12
𝑒𝑒−2 + 2�̇�𝝐11�̇�𝝐22

(

1 − 𝑒𝑒−2
)

. (7)

The elastic-viscous-plastic (EVP) formulation (Hunke & Dukowicz, 1997) has been introduced to regularize the 
VP rheology.

𝜕𝜕𝑡𝑡𝝈𝝈 +
𝑒𝑒2

2𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒

𝝈𝝈 +
1 − 𝑒𝑒2

4𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒

tr(𝝈𝝈)𝐼𝐼 +
𝑃𝑃

4𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒

𝐼𝐼 =
𝜁𝜁

𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒

�̇�𝝐, (8)

where tr(⋅) denotes the trace and Tevp is the relaxation time that determines the transition time from the elastic 
regime to the VP rheology. The VP material law is recovered for ∂tσ = 0.

The most common approach to solve the coupled sea-ice system (Equations 1–3) is to split the equations in time. 
First, the approximation of the sea-ice momentum Equation 1 is computed, followed by solving the transport 
Equations 2 and 3. Due to stability concerns, fully explicit time stepping methods for the momentum equation are 
avoided as an extremely small time step is necessary in this case (Hibler & Schulson, 2000). There are currently 
two ways to address this issue. One of them relies on using an implicit time discretization and iterative methods 
such as Picard solvers (Ip et al., 1991; Lemieux & Tremblay, 2009) and Newton methods (Lemieux et al., 2010; 
Losch et al., 2014; Mehlmann & Richter, 2017; Shih et al., 2023). The other one still uses an explicit discre-
tization, but relies on the EVP model, in which the artificial elastic term ∂tσ in Equation 8 is added to the VP 
rheology, allowing for an explicit discretization of the momentum equation with relatively large time steps. In the 
EVP formulation of Hunke and Dukowicz (1997) numerical stability needs to be ensured by taking a sufficiently 
high number of subcycles. By slightly modifying the parameter choice of the EVP setup, stable solutions can be 
produced with reduced iteration count (Danilov et al., 2021). The original EVP model does not simulate the same 
deformation as VP models (Bouillon et al., 2013; Lemieux et al., 2012).

Recently, a modified version of the EVP method was developed, referred to as the mEVP solver, to ensure 
convergence to the solution of the VP model (Bouillon et al., 2013; Kimmritz et al., 2015; Lemieux et al., 2012). 
The mEVP method is designed in such a way that numerical stability and convergence are addressed separately. 
Considering the benchmark problem in Mehlmann et  al.  (2021b) where multiple LKFs are formed, Danilov 
et al. (2021) showed that EVP and mEVP methods lead to qualitative similar approximations if a sufficiently high 
number of subcycles is used. Using coarse meshes (27 km resolution) Kimmritz et al. (2017) showed that VP and 
mEVP approximations lead to quantitatively similar results in a realistic Arctic setup. Here, we demonstrate that 
this is also true for VP and EVP setups at high spatial resolution, see Section 4.3.

3. Methods
We consider the benchmark problem introduced by Mehlmann et  al.  (2021b), where a domain of size 
512 km × 512 km is covered with a thin layer of sea ice, with an initial concentration of 100% and an initial 
thickness of approximately 0.3 m. A cyclone moves diagonally through the domain. During the two simulated 
days, multiple LKFs are formed.

3.1. Choice of Grids

Using the aforementioned benchmark problem, we evaluate the two CD-grid discretizations on both structured 
quadrilateral grids and unstructured meshes. On quadrilateral meshes, the CD-grid approaches are compared to 
approximations with a B-grid placement (CICE, Gascoigne) or a C-grid staggering (MITgcm). In the case of 
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triangular and hexagonal meshes, we compare the CD-grids to simulations with an A-grid placement (FESOM) 
or B-grid staggering (MPAS). A visualization of the setups considered in this manuscript is given in Figure 1. 
The different placements are summarized in Table 1.

In the quadrilateral case, we analyze the benchmark problem on grids with 8, 4, and 2 km cell side, which corre-
spond to 4,096, 16,384, and 65,536 cells, respectively. Letting N be the number of cells, the CD-grid has 𝐴𝐴

8𝑁𝑁

2
 dof 

(degrees of freedom) whereas the B-grid has 𝐴𝐴
8𝑁𝑁

4
 dof. These number of dof have been obtained as follows. We have 

eight velocity components per cell; this amount is divided by two in the CD-grid setup, as two neighboring cells 
share a dof. In the B-grid case, a dof connects four adjacent cells. On triangular grids we use meshes with cells 
having a side length of 8, 4 and 2 km with 9,490, 37,926, 151,630 cells, respectively. The triangular CD-grid has 

𝐴𝐴
6𝑁𝑁

2
 dof, and the B-grid has 2N dof. The runs on regular hexagonal grids are performed on meshes with a distance 

between hexagon centers of 8, 4 and 2 km. These meshes are made out of 4,464, 18,396, 74,676 cells, respec-
tively. The hexagonal B-grids and CD-grids have 12N/3 dof and 12N/2 dof. A summary of the number of cells 
and the dof related to the placement of the variables is reported in Table 1.

3.2. Metrics

To compare the performance of different models, we consider the shear deformation

�̇�𝝐shear =

√

(�̇�𝝐11 − �̇�𝝐22)
2
+ 4�̇�𝝐

2

12
, (9)

simulated by the different model setups after 2 days. The shear deformation is analyzed either visually or by using 
an LKFs detection algorithm outlined by Hutter et al. (2019). The configuration of the algorithm used here inter-
polates the model data on a 2 km regular grid and detects LKFs by using image recognition tools in Python. After 
detection, the number and total length of LKFs are provided. The detection algorithm only identifies LKFs that 
are wider than one pixel to avoid the detection of noise. More details on configuration of the detection algorithm 
can be found in Mehlmann et al. (2021b).

We will compare the simulations in terms of two aspects. The amount of deformation with respect to the mesh 
size and the resolved structure in terms of dof. The simulated deformation with respect to the mesh is given by 
the total number or total length of LKFs for a given grid resolution. This metric highlights which discretization 
resolves more deformation structure on a fixed mesh. The second metric, the resolved structure per dof, is given 
by the number or length of LKFs for a given number of dof. This measure qualitatively characterizes the numer-
ical effort used for the simulation of LKFs.

3.3. Model Configuration

We use the MPAS-Seaice model in the B-grid (Turner et al., 2021) and CD-grid (Capodaglio et al., 2023) config-
urations on quadrilateral and hexagonal meshes. In both setups, PWL basis functions (Bailey et al., 2008) are 
adopted for the computation of the divergence of the stress in the momentum Equation 1. The sea-ice drift is calcu-
lated based on the EVP method using 500 subcycles. As suggested by Danilov et al. (2022) we select Tevp = 25 min 
in the EVP algorithm. Please note that by increasing Tevp it will be possible to further decrease the number of 
subcycles. For the advection, an incremental remapping scheme is used (Turner et al., 2021). Due to the current 
lack of an incremental remapping scheme for a CD-grid, in such a case the velocities are first interpolated from 
the edges to the vertices and then the incremental remapping scheme as in the B-grid discretization is applied.

We compare the MPAS EVP approximations to simulations conducted with implicit solvers (CICE, Gascoigne, 
MITgcm) or the mEVP method (FESOM, ICON). In the case of the mEVP approximation, we apply 100 subcy-
cles per time step. As in the setup of Mehlmann et al. (2021b) we solve the benchmark problem with a 2 min time 
step. Further details on the different model configurations can be found in Mehlmann et al. (2021b), whereas a 
description of the CD2 setup in FESOM is provided by Danilov et al. (2023a). Again, we refer to Table 1 for a 
summary of the discretization details.

4. Numerical Evaluation
In this section, we evaluate the ability of the CD1 and CD2 discretizations to reproduce LKFs. The analysis is 
conducted on structured and unstructured meshes and will proceed as follows. We start by analyzing the perfor-
mance of the CD2 setup on triangular meshes in FESOM (Section 4.1). There, we consider an A-grid type as well as 
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a CD1 and CD2 discretization. Subsequently, the CD2 approach is analyzed on hexagonal meshes in the framework 
of MPAS (Section 4.2). The evaluation includes a comparison of the MPAS B-grid and CD-grid type discretization 
on meshes with the same dof. The B-grid configuration is obtained by increasing the number of cells by a factor 
of 1.5. Section 4.2 ends with a comparison of the CD2 discretization on triangular and hexagonal meshes. For this 
purpose, grids with approximately the same amount of dof are used. In Section 4.3, we evaluate the CD2 approach 
on quadrilateral mesh. As in the hexagonal case, the evaluation includes a comparison of the MPAS CD-grid and 
B-grid on meshes with the same dof. For this purpose, the number of cells are doubled in the B-grid case.

4.1. Triangular Meshes

The CD1 and CD2 discretizations are first compared using FESOM. Both setups place the velocity at the edge 
midpoint, use an upwind scheme to discretize (Equations 2 and 3), and the iterative mEVP method to solve the 
momentum Equation 1, see Table 1 for schematics.

Figure 2 presents the simulated shear deformation of the two CD-grid approaches. The corresponding number of 
detected LKFs and their total length are given in Figure 3. We attribute the significant changes in the simulated 
deformation to the spatial discretization, since this is the only place where the CD1 and CD2 approaches differ. 
The largest number of LKFs is generally simulated with the CD1 setup, followed by the CD2 approximation, and 
finally the A-grid discretization. This observation is confirmed by the LKF detection algorithm. Overall, the CD1 
approach simulates finer structure than the CD2 and A-grid setup.

4.2. Hexagonal Meshes

We begin with analyzing the CD2 approach in MPAS. The CD-grid discretization and B-grid approach in MPAS 
only differ by the placement of the velocities and corresponding spatial discretization, see Table 1. Figure 4 
shows that the MPAS CD2 discretization produces more structure than the B-grid setup. This is also reflected in 
the detected number and total length of LKFs presented in Figure 3. By comparing the B-grid and the CD-grid 
approach on meshes with the same number of dof, we see that the CD-grid setup still produces more structure than 
the B-grid approximation. This finding is supported by the result of detection algorithm presented in Figure 5.

In a second step, we compare the CD-grid approaches on hexagonal and triangular meshes. The MPAS CD2 
implementation of the benchmark problem differs from the FESOM CD2 approximation by the choice of grid 
decomposition, the numerical realization of the subgrid discretization, the used pseudo time-stepping (mEVP vs. 
EVP) and the advection scheme, see Table 1 for a visual summary. To compare result of CD-grids on hexagonal 

Figure 2. Shear deformation on a triangular mesh in FESOM. The shear deformation is given in s −1 and plotted in 
logarithmic scale.
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Figure 3. Total length and number of local kinematic features detected on triangular and hexagonal grids. Note that the 
CD-grid approaches have the same dof on hexagonal and triangular grids. The labels CD1 and CD2 refer to the CD-grid 
placements, whereas A, and B indicate an A-grid and B-grid staggering, respectively.

Figure 4. Shear deformation calculated on a hexagonal mesh using the MPAS framework. The third column presents 
the results preformed with a B-grid discretization on meshes that have the same velocity dof as the CD-grid. The shear 
deformation is given in s −1 and plotted in logarithmic scale.
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and triangular meshes, we use grids with the same dof (we refer to Section 3.1 for details on the mesh choice). 
The CD2 version in MPAS simulates less structure than the CD1 setup on triangular meshes. However it repro-
duces more deformation structure than the CD2 case on triangles (see Figure 4). This observation is also reflected 
in the output of the detection algorithm presented in Figure 3. This difference is likely due to the different imple-
mentations of the CD2 discretization in MPAS and FESOM.

4.3. Quadrilateral Meshes

In this section we consider simulations performed with MPAS and Gascoigne on quadrilateral meshes. While 
Gascoigne solves the VP equations implicitly, MPAS uses the EVP method. We start with pointing out that differ-
ences in the solver choice are minor compared to the effect of velocity placement. For this purpose, we present 
simulations based on a B-grid approximation that only differs in the chosen iterative method (see Figure 7). All 
three approach give qualitatively similar results. This can be further seen by comparing the shear deformation 
simulated with CD1 (Figure 6) to shear deformation presented in Figure 7 or by analyzing the amount of detected 
features in Figure 8.

The MPAS CD2 setup differs from the MPAS B-grid discretization only by the placement of the velocity degrees 
of freedom and the associated spatial discretization. In contrast, the MPAS CD2 discretization and the CD1 
approach in Gascoigne have the same placement of the velocity and the tracer points. Therefore CD1 and CD2 
have the same number of dof. Apart from that, the two setups differ by the used numerical methods to discretize 
the equations, see Table 1.

Figure 5. Detected number and total length of linear kinematic features with respect to the degrees of freedom (dof). N is 
the number of cells of the 8 km mesh. In the quadrilateral case (upper row) the numbers refer to the velocity dof. Note that all 
considered quadrilateral setups have the same tracer dof. In the triangular/hexagonal setup (bottom row) the numbers indicate 
the dof in the velocity/tracer components. The labels CD1 and CD2 refer to a CD-grid placement, whereas A, B, and C 
indicates an A-grid, B-grid, and C-grid staggering.
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The CD1 and CD2 approximation resolve more structure with respect to the cell size than the corresponding 
B-grid approach in MPAS and Gascoigne, see Figure 6 (column 1–3). Figure 6 shows that the CD2 setup simu-
lates less structure than the CD1 approach. This observations are confirmed by the results of the detection algo-
rithm presented in Figure 8.

5. Discussion
Due to uncertainties in the detection algorithm (Mehlmann et al., 2021b) we discuss only results that exhibit a 
consistent trend across all three measures - the number of LKFs, the length of LKFs, and visual evaluation of the 
approximation.

The numerical analysis in Section 4 shows that, among the discretizations considered, here the CD-grids resolve 
more LKFs for given grid resolution than the A-grid on triangular meshes, the hexagonal B-grid and the quadri-
lateral B-grid/C-grid. This can mainly be attributed to the fact that the CD-grids double the dof on quadrilateral 
grids, triples the dof on triangular meshes compared to A-grids and increase the dof by factor 1.5 compared to 
hexagonal B-grids. Overall the nonconforming CD1 approximation produces more deformation structure for 

Figure 6. Shear deformation on quadrilateral meshes. The CD1 simulation is performed in Gascoigne whereas the CD2 and 
B-grid runs are carried out in the framework of MPAS. The fourth column “same dof” refers to a B-grid discretization with 
the same velocity dof as the CD-grids on 4 km or 2 km. The shear deformation is given in s −1 and plotted in logarithmic 
scale.

Figure 7. B-grid that only differs by the (m) (E)VP formulation. The shear deformation is given in s −1 and plotted in 
logarithmic scale.
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given grid resolution than the CD2 setup on both quadrilateral and hexagonal/triangular meshes, even though the 
CD1 and CD2 approximation have the same number of dof. The nonconforming CD1 approach resolves more 
LKFs than quadrilateral B-grids/C-grids and triangular A-grids but on meshes with doubled grid spacing (less 
dof), see Figure 5. This conclusion can not be drawn for the CD2 setup (see Figure 5). The CD2 approximation 
does not provide the same accuracy per dof neither on quadrilateral nor on triangular/hexagonal meshes.

The lower production of LKFs in the CD2 setup can be explained as follows. In the quadrilateral case the CD2 
approach can be interpreted as a rotated B-grid with a doubled number of cells. For simplicity we consider a unit 
square with 𝐴𝐴 N =

1

ℎ2
 cells. The rotated B-grid can be viewed as a diamond shaped element that is placed in each 

quadrilateral cell. The side length of the diamond is given by 𝐴𝐴
ℎ
√

2

 . This means that in case of the rotated grid the 
number of elements rise to 𝐴𝐴 2N =

2

ℎ2
 . Therefore the rotated B-grid has the same accuracy as the B-grid on meshes 

with a side length of 𝐴𝐴 𝐴
√

2 that is, 𝐴𝐴
𝑁𝑁

2
 cells. The CD1 approach simulates the same deformation structure as the 

B-grid but on meshes twice as coarse (Mehlmann et al., 2021b). Thus the CD1 grid has the same accuracy as the 
B-grid on meshes with a grid spacing of 2h that is, 𝐴𝐴

𝑁𝑁

4
 . This shows that CD1 approach simulates more structure 

w.r.t. the mesh size than the CD2 discretization and the B-grid simulates less LKFs than the CD2 framework.

When comparing the performance of the new CD2 approximation to traditional discretizations, we observed 
that on hexagonal grids with the same dof in the velocity the CD2 simulates more LKFs than the B-grid (see 
Figure 5). This result could not be confirmed on quadrilateral meshes (see Figure upper plot 5). We attribute such 
a different behavior on quadrilateral and hexagonal meshes to the different ratio of velocity and tracer dof. Note 
that the comparison on grids with the same number of dof is slightly in favor of the B-grid because doubling 
the number of cells also doubles the dof of the tracers. It has been shown by Mehlmann and Danilov (2022) that 
more dof in the tracer point promotes the production of LKFs as the thickness and concentration influences the 
representation of the pressure P in the rheology (2).

In case of the benchmark problem, implicit solving VP and explicit subcyling (m)EVP leads to qualitatively 
similar results (see Figure 7). We conclude that the differences in the simulation of LKFs introduced by varying 

Figure 8. Detected length and number of linear kinematic features on quadrilateral grids with a side length of 8, 4 and 2 km. 
The label CD1 and CD2 refer to a CD-grid placement, whereas B and C indicates a B-grid and C-grid staggering.
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the solvers are much smaller than differences between CD1 and CD2 grids. We observe that the CD1 discreti-
zation needs the configuration of a stabilization parameter, which in case of implicit solvers has been identified 
(Mehlmann & Korn, 2021; Mehlmann et al., 2021b), while the optimal choice in the context of (m)EVP methods 
requires additional tuning. The CD2 setup on the other hand does not need additional stabilization, which is an 
advantage of such approach. The need of a stabilization in CD1 or the subgrid discretization of the strain rates 
in the CD2 approach increases the computational time. A comparison on triangular grids in the framework of 
FESOM shows that the CD-grid discretizations increase the computational time roughly by factor 2 (CD1) or 
factor 4 (CD2) compared to the A-grid, see (Danilov et al., 2023a). The A-grid discretization resolves a similar 
structure as the CD1 setup on meshes with half of the grid spacing which increases the computational cost of the 
A-grid approximation by factor 4.

(E)VP models show an improved agreement to observational data with increasing mesh resolution, by simu-
lating multiple LKFs (Bouchat et al., 2022; Hutter et al., 2022). In this sense the benchmark problem is used 
to address the question of whether more elaborate discretizations can simulate more deformation structure. 
An increased number of LKFs is just one indicator for an increased accuracy. The Fourier analysis in Danilov 
et al. (2022, 2023a) has demonstrated that the CD1 approximation provides the greatest accuracy, followed by 
the CD2 approximation, and the A-grid. It remains to be shown for the CD-grids that the simulated deforma-
tions reproduces observed scaling characteristics in Pan Arctic sea-ice simulations. In this perspective it would 
be interesting to compare the nonconforming CD1 setup to the results presented in the SIRex project (Bouchat 
et al., 2022; Hutter et al., 2022). As main deformation characteristics are present in all the considered discretiza-
tions (see Figures 2, 4, and 6), it is likely that the discussed setups will simulate observed scaling characteristics 
to a certain extent.

The number of dof for a given grid spacing is a key parameter for the simulation of LKFs. Our analysis considers 
low order approximations. For the benchmark problem considered here, a second order conforming finite element 
discretization has been tested by Shih et al. (2023). The discretization showed higher resolving capacity than the 
first order conforming finite element approximation. It would be of interested to compare the performance of high 
order spatial discretizations to the presented CD-grids.

6. Conclusion
We find that the nonconforming CD1 approximation (Mehlmann & Korn,  2021; Mehlmann et  al.,  2021b) 
produces more deformation structure than the CD2 approach (Capodaglio et al., 2023) on both quadrilateral and 
triangular meshes, even though both CD-grids have the same number of dof. This shows that besides the place-
ment of the velocity, the chosen spatial discretization plays an important role for the simulation of LKFs.

The nonconforming CD1 approach provides a promising resolution property. Even though CD-grids doubles the 
number of dof compared to quadrilateral A, B, and C-grids and triples the dof of the triangular A-grid, the CD1 
setup simulates qualitatively similar LKFs on meshes with half of the grid spacing (4 times less dof). We found 
that the CD2 setup does not have this resolution capacity. However on hexagonal meshes with the same number 
of dof the MPAS CD2 approach simulates more LKFs than the MPAS B-grid setup.

The CD-grid discretizations resolve more LKFs than standard A, B, or C-grids on a fixed mesh. This can mainly 
be attributed to the higher number of velocity dof, which is an appealing property as for the simulation of defor-
mation structure in VP sea-ice models a high spatial mesh resolution is needed.

Data Availability Statement
The version of MPAS-Seaice used for the results in this paper is provided at https://doi.org/10.5281/
zenodo.7662610 (Edwards et al., 2023). The sea-ice component of FESOM used for simulations reported here 
is available at https://doi.org/10.5281/zenodo.7646908 (Danilov et al., 2023b). The Gascoigne, ICON, MITgcm, 
CICE, FESOM (A-grid and CD1) data is available at (Mehlmann et al., 2021a). The MPAS and FESOM CD2 data 
and the routines to process it can be accessed via https://data.mendeley.com/datasets/7h9hkjvx48/1 (Mehlmann 
et al., 2023).
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