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Abstract
The prediction skill of sub-seasonal forecast models is evaluated for seven
year-round weather regimes in the Atlantic–European region. Reforecasts based
on models from three prediction centers are considered and verified against
weather regimes obtained from ERA-Interim reanalysis. Results show that pre-
dicting weather regimes as a proxy for the large-scale circulation outperforms
the prediction of raw geopotential height. Greenland blocking tends to have
the longest year-round skill horizon for all three models, especially in win-
ter. On the other hand, the skill is lowest for the European blocking regime
for all three models, followed by the Scandinavian blocking regime. Further-
more, all models struggle to forecast flow situations that cannot be assigned to
a weather regime (so-called no regime), in comparison with weather regimes.
Related to this, variability in the occurrence of no regime, which is most fre-
quent in the transition seasons, partly explains the predictability gap between
transition seasons and winter and summer. We also show that models have
difficulties in discriminating between related regimes. This can lead to mis-
assignments in the predicted regime during flow situations in which related
regimes manifest. Finally, we document the changes in skill between model ver-
sions, showing important improvements for the ECMWF and NCEP models.
This study is the first multi-model assessment of year-round weather regimes
in the Atlantic–European domain. It advances our understanding of the predic-
tive skill for weather regimes, reveals strengths and weaknesses of each model,
and thus increases our confidence in the forecasts and their usefulness for
decision-making.
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1 INTRODUCTION

Sub-seasonal prediction (∼10–30 days) has been a topic
of great interest during the last decade. This is primarily
driven by the need of multiple socio-economic sectors for
skillful forecasts beyond the classic medium-range fore-
cast horizon (White et al., 2022), but also by the successful
implementation of coordinated databases of sub-seasonal
forecasts from leading modelling centers, such as the
Subseasonal to Seasonal Prediction (S2S) project (Vitart
et al., 2017) or the Subseasonal Experiment (SubX)
project (Pegion et al., 2019). Atmospheric predictability on
sub-seasonal time scales is related to both the initial con-
ditions and slowly evolving climate variations in the Earth
System, such as the ocean or sea-ice. Skillful sub-seasonal
forecasts thus arise from the ability of forecast systems to
capture persistent planetary-scale patterns that modulate
weather conditions lasting longer than a week (Ferranti
et al., 2018). At the same time, the forecast question shifts
from predicting the local weather at a specific time to the
prediction of the larger-scale meteorological conditions
aggregated over regions on weekly time scales.

A common topic of research within the S2S commu-
nity is the quantification of forecast skill for recurring,
persistent, and quasistationary large-scale patterns known
as “weather regimes” (Matsueda and Palmer, 2018; Vigaud
et al., 2018; Büeler et al., 2021; Cortesi et al., 2021). In the
Atlantic–European region, several definitions of weather
regimes have been proposed (Michelangeli et al., 1995;
Cassou, 2008; Ferranti et al., 2018; Falkena et al., 2020),
of which one of the most recent definitions captures the
year-round large-scale flow variability (Grams et al., 2017).
The latter regime definition comprises three cyclonic
regimes, in which a negative geopotential height anomaly
associated with enhanced cyclonic activity dominates
(Atlantic trough AT, Zonal regime ZO, Scandinavian
trough ScTr), and four blocked regimes with a dominating
positive geopotential height anomaly (Atlantic ridge AR,
European blocking EuBL, Scandinavian blocking ScBL,
Greenland blocking GL: see Figure 1). Recent works have
shown that weather regimes are also closely related to
surface weather variability (e.g. Beerli and Grams, 2019;
Büeler et al., 2020; Domeisen et al., 2020). In addi-
tion, knowledge of the prevailing weather regime pro-
vides insight into the relative likelihood for anomalous
weather to develop (e.g. Pasquier et al., 2019; Spensberger
et al., 2020). Weather regimes can thus be a useful pre-
dictor in a range of applications (Zubiate et al., 2017;
Charlton-Perez et al., 2019; van der Wiel et al., 2019).
A systematic assessment of model performance in fore-
casting weather regimes can provide better guidance for
forecasters in a wide range of societal and economic sectors
that are sensitive to weather and climate variability, for

example, the energy or health sectors (Charlton-Perez
et al., 2019; Bloomfield et al., 2020).

Work by Büeler et al. (2021) provides the first assess-
ment of the skill of an S2S model in forecasting the afore-
mentioned seven year-round Atlantic–European weather
regimes. Using reforecast data from the European Centre
for Medium-Range Weather Forecasts (ECMWF) model,
they show that the predictability of weather regimes
reaches 14 days on average (when using a stricter level of
no skill than zero), and five days more in winter than in
summer. In addition, they show that the Zonal and Green-
land blocking regimes, which are closely related to the
positive and negative phases of the North Atlantic Oscil-
lation (NAO), respectively, have the longest skill horizon,
while the skill for the European blocking regime is the
poorest. Furthermore, they find that the wintertime skill
horizon increases by 5 days after a strong stratospheric
polar vortex, and that an active Madden–Julian Oscilla-
tion in phase 4 or 7 provides additional skill for some
weather regimes. To our knowledge, the only study that
has done an assessment of multiple S2S models for win-
tertime weather regimes is that by Bloomfield et al. (2021)
for the ECMWF and National Centers for Environmental
Prediction (NCEP) CFSv2 model. However, a systematic
analysis for the year-round regimes including models by
other centers is missing.

For medium-range weather forecasts, a systematic
assessment of forecasts over a historical period is very
useful, since most of their predictability comes from the
initial conditions. However, for longer lead times some
flow configurations can be more skillful than others
(so-called “windows of opportunity”) and therefore dif-
ferent tools that target these situations are needed (Mar-
iotti et al., 2020). In particular, the works of Cortesi
et al. (2021) and Matsueda and Palmer (2018) have shown
strong annual and year-to-year variability in the forecast
skill of weather regimes. The flow-dependent verifica-
tion documented in Büeler et al. (2021) provides a start-
ing point to identify such windows of opportunity for
sub-seasonal forecasts, but further studies are needed to
understand how differences in flow manifest in the daily
and year-to-year variability in skill.

Since the original implementation of the S2S database
(Vitart, 2014), the models participating in the project have
evolved substantially, and new versions are now available
to the community. By analyzing the improvements in skill
between model versions, it is possible to understand the
sources of such improvements. For instance, Vitart (2014)
shows that, for the ECMWF model, the sub-seasonal skill
of reforecasts has improved mainly due to changes in
model physics, whereas changes in model resolution have
had very little effect. However, the impact of the initial
conditions is not assessed in that study. Many other articles
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F I G U R E 1 Mean 500-hPa
geopotential height (contours;
geopotential meters (gpm)) and
corresponding anomalies (shading;
gpm) of the seven year-round
Atlantic–European weather regimes,
defined based on ERA-Interim data
between 1979 and 2015 and the “no
regime” category (times at which
none of the seven regimes is
observed). [Colour figure can be
viewed at wileyonlinelibrary.com]

also document the improvements in forecast skill when a
new model version is developed (see for instance Maclach-
lan et al., 2015; Zhou et al., 2022). However, to our knowl-
edge there is no assessment of the changes in sub-seasonal
skill for weather regimes with model versions. Additional
gaps in the literature include the absence of a multi-model
assessments of year-round weather regimes, and a lack of
studies showing how skill varies on daily and interannual
time scales and across model versions.

The objective of this study is to address gaps in
knowledge regarding the representation and assessment

of sub-seasonal forecast skill for year-round weather
regimes depicted by different operational sub-seasonal
forecasting systems. We put an emphasis on understand-
ing the daily as well as year-to-year variability of fore-
cast skill. In addition, we document the differences in
skill between different versions of the S2S models to
identify progress and challenges in improving skill. The
article is organized as follows: Section 2 describes the
models and methods employed while in Section 3 we
describe the main findings. The conclusions are presented
in Section 4.

http://wileyonlinelibrary.com
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T A B L E 1 Main characteristics of the S2S models used in this study.

Model Version Resolution
Reforecast
type

Reforecast
period

Reforecast
frequency

Reforecast
length (days)

Ensemble
members

NCEP GEFS v12 C384L64 ∼25 km Fixed 2000–2019 Every
Wednesday

35 11

NCEP CFS v2 T126 L64 ∼100 km Fixed 1999–2010 Daily 44 4

ECMWF CY46R1 and
CY47R1

Tco639 L91 ∼16 km up
to day 15 and Tco319
∼32 km after day 15

On the fly 1999–2019 2/week 46 11

ECMWF CY43R1, CY43R3
and CY45R1

Tco639 L91 ∼16 km up
to day 15 and Tco319
∼32 km after day 15

On the fly 1997–2017 2/week 46 11

UKMO GloSea6
(HadGEM3 GC3.2)

N216 L85 ∼60 km On the fly 1993–2015 4/month 60 7

UKMO GloSea5
(HadGEM3 GC2.0)

N216 L85 ∼60 km On the fly 1993–2015 4/month 60 7

Note: For a definition of reforecasts on the fly and fixed reforecasts, the reader can refer to https://confluence.ecmwf.int/display/CKB/Seasonal+forecasts+
and+the+Copernicus+Climate+Change+Service.

2 DATA AND METHODOLOGY

Models and reference dataset

Models from ECMWF, NCEP, and the UK Met Office
(UKMO) are analyzed in this study. These models are
selected because they are often used by societal and
economic sectors in their forecast-related activities, for
instance in the estimation of energy production by renew-
able sources (wind power and solar) and energy demand.
The ECMWF model versions are CY46R1 and CY47R1,
implemented on June 11, 2019 and June 30, 2020, respec-
tively. The NCEP model version is the Global Ensemble
Forecast System (GEFS) v12, implemented in September
2020. The Met Office Global Seasonal Forecasting Sys-
tem version 6 (GloSea6-HadGEM3 GC3.2), implemented
on February 2, 2021, is the UKMO model used in this
study. Further details, such as model resolution, refore-
cast type, and ensemble size, can be found in Table 1. Note
that the table also includes older versions of these models,
which will be used in Section 3.5. The main assessment
is performed with the above-mentioned model versions.
While the ECMWF and UKMO model data were obtained
from the S2S project database, the NCEP model data were
obtained from the NOAA AWS repository.1 Although each
model has a different reforecast period, we select the
period 2000–2015, available to all systems, to avoid differ-
ences associated with interannual variability in skill. The
ECMWF and UKMO data were retrieved with a 1◦ hor-
izontal resolution, while GEFSv12 was retrieved with a

1https://registry.opendata.aws/noaa-gefs-reforecast

0.25◦ resolution for the first 10 days and 0.5◦ resolution
from day 11 onward and then interpolated to a 1◦ hor-
izontal resolution. The interpolation from native model
resolution to final resolutions might have some influence
on skill differences. However, this is not quantified in this
study. We use ERA-Interim (Dee et al., 2011), also retrieved
with a 1◦ horizontal resolution, as a reference dataset to
compare the forecasts against. This reanalysis was selected
to make the results comparable with those from (Büeler
et al., 2021). However, we anticipate that our results would
remain comparable if we had used the newer ECMWF
reanalysis, ERA5. The use of ERA-Interim may penalize
the skill seen in the NCEP and UKMO models in compar-
ison with that obtained with ECMWF, as a similar model
version is used to produce the latter model and the reanal-
ysis. Nonetheless, the results are not expected to differ sig-
nificantly if other reanalysis datasets, such as the Climate
Forecast System Reanalysis (CFSR) or Modern-Era Retro-
spective analysis for Research and Applications (MERRA),
are used instead of ERA-Interim, since these reanalyses
have comparable performance, as demonstrated by Long
et al. (2017) for the climatology and interannual variability
of two dynamical variables.

Computation of weather regime forecasts

The approach adopted in this study builds upon the
work performed by Büeler et al. (2021). Here we briefly
describe the procedure to obtain the weather regime (WR)
forecasts, but the reader can refer to Büeler et al. (2021)
for further details. The climatological mean weather

https://confluence.ecmwf.int/display/CKB/Seasonal+forecasts+and+the+Copernicus+Climate+Change+Service
https://confluence.ecmwf.int/display/CKB/Seasonal+forecasts+and+the+Copernicus+Climate+Change+Service
https://registry.opendata.aws/noaa-gefs-reforecast
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regime patterns are defined based on the ERA-Interim
period (1979–2015) 6-hr 500-hPa geopotential height
anomalies with respect to the corresponding 90-day
running mean calendar date climatologies (i.e., +∕−45
days centered around each 6-hr time step) within the
North Atlantic–European domain from 80◦W–40◦E and
30◦N–90◦N. The anomalies are first filtered with a 10-day
low-pass filter and then normalized seasonally. This
normalization is done by dividing the anomalies by a
calendar-day-dependent latitude-weighted average (over
the domain of study) of the 31-day running mean tempo-
ral standard deviation over all anomalies between 1979
and 2015. In contrast to Büeler et al. (2021), we use the
10-day low-pass filter instead of a 5-day low-pass fil-
ter to remain close to the original regime definition in
Grams et al. (2017).2 An empirical orthogonal function
(EOF) analysis is applied to the filtered and normalized
anomalies and then k-means clustering is applied to the
anomalies in the phase space spanned by the first seven
EOFs (explaining approximately 70% of the variance),
which yields an optimal number of seven cluster means
representing the seven weather regimes. These are the
aforementioned three cyclonic and four blocked regimes
(see Figure 1).

Following Büeler et al. (2021), we also identify the
weather regimes in the reforecast data. In this study,
however, instead of computing the weather regime fore-
casts for both the raw forecasts and the bias-corrected
(i.e., calibrated) forecasts, we only compute the weather
regime forecasts for the latter. This is done by comput-
ing the geopotential height anomalies with respect to the
lead-time dependent 90-day running mean model clima-
tology (based on the entire hindcast period of the model).
Likewise, the normalization of the low-pass-filtered
anomalies is done with respect to model data in the
entire hindcast period. Then, we project the normal-
ized anomalies onto the seven cluster mean geopotential
height anomalies obtained from ERA-Interim data for the
1979–2015 period (cf. above), as in Büeler et al. (2021):

Pwr(t) =
1

∑
cos𝜙

∑

(𝜙,𝜆)
Φ(𝜆, 𝜙, t)Φwr(𝜆, 𝜙) cos𝜙.

Here Pwr(t) is a scalar measure for the spatial cor-
relation of the instantaneous anomaly field Φ(𝜆, 𝜙, t) at
lead time t (at each grid point with latitude 𝜆 and lon-
gitude 𝜙 within the EOF domain) with the cluster mean
anomaly field Φwr(𝜆, 𝜙) for the regime “wr”. The nondi-
mensional regime index Iwr(t) for each regime and forecast
is based on anomalies of the projections Pwr(t)with respect

2Note that, in the original work of Grams et al. (2017), a latitudinal
weighting had not been applied when computing the spatial mean for
the normalization weight.

to the climatological mean projection Pwr and the clima-
tological standard deviation of the projection based on the
calibrated forecasts for the hindcast period as follows:

Iwr(t) =
Pwr(t) − Pwr

√
1
N

∑N
i=1[Pwr(t) − Pwr]2

. (1)

To determine the active weather regime at each lead
time step t, we apply the same life-cycle criteria as in
Grams et al. (2017): a regime is active if its Iwr(t) is maxi-
mum among all seven Iwr(t) and equal to or above 1.0 for
five consecutive days or longer. The time steps in which
none of the seven regimes fulfills these criteria are catego-
rized as “no regime”. Note that “no regime” periods might
include time steps of shallow pressure distribution as well
as episodes of regime transitions, among other cases.

To verify the forecasts, we identify the weather regime
evolution in ERA-Interim for the corresponding fore-
cast lead times. This means that we treat ERA-Interim
as an additional ensemble member and we apply to it
the same steps as above, except that the normalized
geopotential height anomalies and the weather regime
indices are based on geopotential height and projection
data from ERA-Interim over the hindcast period of each
model, respectively. The year-round climatological fre-
quencies of the seven regimes and the no regime category
in ERA-Interim for the period 2000–2015 are shown in
Figure 2. The main difference between this distribution
and the one shown in Büeler et al. (2021) for the 1997–2017
period is the higher frequency of ScBL in summer, which is
nearly 10% larger for 2000–2015 than for 1997–2017. This
higher frequency of ScBL in summer is at the expense of
the no regime category, the frequency of which is highest
in April and May.

In the Supplementary Material, Figure S1 shows an
example of the forecast obtained for the NCEP model ini-
tialized on January 6, 2010. Figure S1a shows the evolution
of Iwr(t) for the seven regimes in the ensemble and the
corresponding ERA-Interim value for the forecast days. It
gives an overview of the evolution of the dominating and
suppressed regimes with lead time, as well as the asso-
ciated ensemble spread. Figure S1b shows the ensemble
forecast probability for a certain regime to be active as a
function of lead time and the ERA-Interim weather regime
during that period. This categorical forecast will serve as
the basis for most of the analysis conducted in this study.
For each model, the verification is done until a lead time
of T − 15 days, with T being the maximum number of lead
times of each forecast. This is due to the loss of data at the
end of each forecast, which results from both the low-pass
filtering (10 days) and a convergence to the “no regime”
category due to the life-cycle persistence criterion (5 days).
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F I G U R E 2 91-day running mean calendar day climatological
cumulative relative frequency of weather regime life cycles in
ERA-Interim defined over the period of study 2000–2015. [Colour
figure can be viewed at wileyonlinelibrary.com]

2.1 Verification

As in Büeler et al. (2021), the fair Brier Score (BS, Ferro
et al., 2008) is used in this study to verify the categor-
ical ensemble probabilistic forecasts of weather regime
life-cycle occurrence at each lead time:

BS = 1
N

N∑

k=1

∑

wr∈WR

(

(ywr
k − owr

k )
2 −

mywr
k (m −mywr

k )
m2(m − 1)

)

,

(2)
where ywr

k is the forecast probability (between 0 and 1) for
regime wr of forecast k, owr

k is the observed dichotomous
counterpart (0 or 1), m is the ensemble member size, and
N is the total number of forecasts. wr in the sum can be
all regimes together (i.e. WR ={AT, ZO, ScTr,AR, EuBL,
ScBL, GL, no}) to compute the multicategory BS or an
individual regime (i.e., WR ∈ (AT, ZO, ScTr, AR, EuBL,
ScBL, GL, or no) to compute the single-category BS. The
fair BS is the classic BS (Brier, 1950; Wilks, 2019), but it
also includes a correction term to account for the relatively
small ensemble member size. When dealing with multiple
categories, the multicategory BS provides a more compre-
hensive assessment of the overall forecast accuracy, since
it evaluates performance across categories.

Finally, we compute the fair Brier skill score (BSS;
Wilks, 2019) to relate the fair BS of the numerical model
forecast to the BS of a climatological reference forecast
(BSref):

BSS = 1 − BS
BSref

. (3)

As a reference forecast, we use the 90-day running
mean climatological calendar day regime frequency in

ERA-Interim at each lead time step. To test the robustness
of the BSS, we apply a bootstrapping procedure by ran-
domly resampling (with replacement) 104 times a set of
forecasts of the same size as the evaluated set of forecasts,
and compute the skill score for each of these random sam-
ples. We then take the 5th and 95th percentiles derived
from these skill score distributions to define the confidence
interval for each skill score. A bootstrapping approach
is also used to determine whether the biases in the cli-
matological regime occurrence frequencies or transition
frequencies (defined as the difference between the regime
or transition occurrence frequency in the forecast and in
ERA-Interim) are significant. If the bias of the regime or
transition occurrence falls outside the 5th or 95th per-
centiles, the bias is defined to be significant at the 10%
level.

In addition to the probabilistic forecasts, we also eval-
uate the categorical deterministic forecast of the weather
regime life cycle using the Heidke Skill Score (HSS; Hei-
dke, 2017):

HSS = PC − E
1 − E

, (4)

where PC is the fraction of correct forecasts, defined as

PC = 1
N

∑

wr∈WR
n (Fwr,Owr) ,

where n (Fwr,Owr) is the number or forecast hits for the
weather regime wr and N is the total number of forecasts.
E is the fraction of correct forecasts due to random chance,
defined as

E = 1
N2

∑

wr∈WR
N (Fwr)N (Owr) ,

where N (Fwr) and N (Owr) are the number of forecasts and
observations for the weather regimes wr, respectively. The
Heidke Score (HS, numerator of Equation 4) measures the
accuracy of the forecast in predicting the correct category,
in relation to the forecast that would be correct due to
random chance. The HSS is the HS normalized by the per-
fect forecast (denominator in Equation 4) in relation to the
forecasts that would be correct due to random chance. To
increase the robustness of the score, we use each member
of the ensemble as an independent forecast and compare it
with the corresponding ERA-Interim value. Both the BSS
and HSS account for the reliability and the resolution of
forecasts, although the BSS is used for probabilistic fore-
casts while the HSS is used for deterministic forecasts.
While both scores are useful, a probabilistic approach is
generally preferred over a deterministic approach. Unlike
the BSS, which penalizes the errors in the probabilis-
tic forecasts, the HSS focuses on the correct forecasts. In

http://wileyonlinelibrary.com
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addition, the BSS uses the climatological probabilistic dis-
tribution as a reference forecast, whereas in the HSS the
reference forecast is the random occurrence of hits. These
differences in the definition of the scores can lead to differ-
ences in the relative performance between models when
using both skill scores.

The root-mean-square error skill score (RMSESS) was
used to verify the reforecast for the geopotential height
field over the domain of study at each lead time:

RMSESS = 1 −

√
1
N

∑N
k=1

(
Fk − Ok − F + O

)2

√
1

N−1

∑N
k=1

(
Ok − O

)2
. (5)

Here, N is the total number of forecasts and F and
O are the forecast and reference data values, respectively,
whereas F and O are the mean of each field.

3 RESULTS

3.1 Assessment of WR frequency biases

We begin with the investigation of the systematic 500-hPa
geopotential height model biases, which are removed
before computing the weather regime forecasts. From this
subsection until Section 3.5 we always refer to the new
version of the models, that is, NCEP GEFSv12, ECMWF
CY46R1 and CY47R1, and UKMO GloSea6, respectively.
Figure 3 shows lead-time dependent 500-hPa geopoten-
tial height biases of each model climatology with respect
to the ERA-Interim climatology on a calendar day cen-
tered in each season. We only show biases for lead times
of 10 and 20 days, because biases saturate at sub-seasonal
lead times (see Büeler et al., 2021). In general, the NCEP
model shows the smallest biases and the smallest sea-
sonal differences in the distribution of those biases. In the
Atlantic–European region, the most striking feature is the
large positive biases in summer for the ECMWF model, a
feature already reported in Büeler et al. (2021) for an older
version of the model. This positive bias could be partially
related to the model’s positive bias in the summertime
mid-troposphere (850–500hPa) temperature (Magnusson
et al., 2022). Both UKMO and NCEP models also present
positive biases in summer in the North Atlantic region,
which suggests that some physical processes that drive the
variability there are not well represented in models yet.
Biases in winter are smallest for the three models and
are mainly restricted to Greenland and the east coast of
North America. In spring, negative biases are observed
over Europe for the three systems, while positive biases
are evident for the NCEP model over the Atlantic. Finally,

in autumn ECMWF and UKMO show positive biases over
the eastern North Atlantic, while biases for NCEP are sim-
ilar to those for spring. Outside the Atlantic–European
region, the ECMWF presents large positive biases in sum-
mer and autumn over the Pacific, whereas the UKMO
model presents large negative biases in autumn over Asia
and the Pacific.

To begin the assessment of the weather regime fore-
casts, we focus on analyzing the main weather regime
characteristics, such as their frequency of occurrence,
duration, and number. We only select one initialization per
week (i.e., Thursdays) from the ECMWF reforecasts for
a fair comparison between models. However, results are
very similar if all initial conditions are taken into account
(not shown). Figure 4 shows the seasonal life-cycle fre-
quency bias with respect to ERA-Interim, as a function of
the lead time for each model and for each regime. Remov-
ing the mean 500-hPa geopotential height biases in the
forecast makes frequency biases very small (the reader
can refer to figure 5 in Büeler et al. (2021) for a compari-
son between biased and bias-corrected regime frequency),
ranging mostly between −5% and 5%. While the NCEP
model only shows a significant bias for EuBL in summer,
the ECMWF and UKMO models show a positive bias for
the no regime category in winter and a negative bias for
ScBL in summer for lead times beyond 10 days (an issue
documented for an older version of ECMWF model in
Büeler et al., 2021).

The biases in the life-cycle frequency can be related
to deficiencies in the forecasts of the number and dura-
tion of the life cycle of each weather regime, as well as
biases in the transition from one regime into another.
To explore these relationships, Figure S2 in the Supple-
mentary Material shows the seasonal duration and total
number of regime life-cycle events for each model and
for ERA-Interim (throughout all lead times). For the
no regime category, we have used a pseudo life-cycle
definition (at least 5 days of no regime) for a fair compar-
ison with the regimes. It is important to note that simi-
lar frequency biases for two regimes in the same season
do not translate directly to a similar bias in the num-
ber and/or length of regimes, since the frequency biases
account for the per-day frequency of a certain regime, and
also because the frequencies are presented in percentages.
Figure S3 presents the seasonal frequencies of transitions
between these regime life cycles in ERA-Interim (within
a time frame of at most 4 days; shading; adding up to
100% along the horizontal axis) and the associated sig-
nificant biases in the forecasts of each model (numbers).
The negative frequency biases for the ScBL in summer
in the ECMWF and UKMO models (Figure 4h,i) can
be partly explained by the smaller number of life cycles
(Figure S2h,i) as well as fewer transitions into this weather
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F I G U R E 3 500-hPa
geopotential height model
climatology biases (gpm) in the
Northern Hemisphere for (a–h)
NCEP, (i–p) ECMWF, and (q–x)
UKMO forecasts initialized on
(a,b,q,r) January 1, (i,j) January 2,
(c,d,k,l,s,t) April 1, (e,f,m,n,u,v) July
1, and (g,h,o,p,w,x) October 1 at
(a,c,e,g,i,k,m,o,q,s,u,w) 10 and
(b,d,f,h,j,l,n,p,r,t,v,x) 20 days. The
purple box indicates the EOF domain
in which the weather regimes are
defined. [Colour figure can be
viewed at wileyonlinelibrary.com]

regime (Figure S3h,i), a finding that was also reported for
ECMWF by Büeler et al. (2021). In particular, biases in
the transition from ScTr to ScBL (a common transition in
summer) are more than 10% rarer in both models, while
the same is observed for the transition from AT to ScBL
in the UKMO model. In addition, both models underesti-
mate the relative number of transitions from no regime to
ScBL, another common transition in summer. On the other
hand, the positive bias in the number of summer EuBL
life cycles in NCEP (Figure S2g) can partially explain the

positive bias in the life-cycle frequency for this model and
season (Figure 4g).

3.2 Assessment of WR forecast skill

We now focus on the evaluation of forecast skill by all mod-
els. From this section onward, we use all the ECMWF ini-
tializations to make our results less sensitive to the sample
size, although the conclusions do not change qualitatively
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F I G U R E 4 Seasonal weather regime life-cycle frequency biases (%; y-axis) in (left) NCEP, (middle) ECMWF, and (right) UKMO
models with respect to ERA-Interim as a function of lead time (days; x-axis). Bold lines indicate significant biases. The seasons and the
corresponding available numbers of forecasts are indicated in the boxes. [Colour figure can be viewed at wileyonlinelibrary.com]

compared with those using only one initial condition per
week. Figure 5 shows the year-round multicategory (all
regimes) life-cycle BSS (Equation 3) for the three mod-
els. Due to the definition of the life-cycle persistence
criterion (5 days), convergence to “no regime” for lead
times beyond 20 days in NCEP model makes BSS values
go upward. Although values above zero mean that mod-
els are better than climatology, in this study we follow
Büeler et al. (2021) and define a more rigorous level of BSS
equal to 0.1 as a reference to compare skill horizons in
the remainder of the study. This 0.1 level is an arbitrary
(but reasonable) value. Therefore, the skill horizon for the
ECMWF model is 14 days, followed by NCEP at near 13

days and the UKMO model at 10 days. The relatively low
BSS for UKMO could be due to deficiencies in the rep-
resentation of processes by this model, but might also be
related to the smaller ensemble size in comparison with
the other models. While the BSS accounts for different
ensemble sizes, it does so only when a category presents
a nonzero forecast probability. Given the number of cate-
gories to predict, the small ensemble size in UKMO may
not be able to map the uncertainty correctly, resulting in
a decrease in skill when the uncertainty is higher (i.e.
beyond the first few days). Confirming this hypothesis
would require us to recompute the regime forecast using
the same ensemble size for the three models, which goes
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F I G U R E 5 Year-round multicategory BSS for all weather
regime life cycles as a function of lead time for ECMWF (blue),
UKMO (yellow), and NCEP (green) models. The BSS for the life
cycle is computed including the “no regime” category. Shading
shows the range between the 5th and 95th percentile obtained
through a bootstrap procedure. The gray dotted line denotes the 0.1
BSS level. Notice that, due to the convergence to the “no regime”
category as a result of the life-cycle persistence criterion (5 days),
the BSS values for the NCEP model beyond lead time 20 days go
upward. [Colour figure can be viewed at wileyonlinelibrary.com]

beyond the scope of this work. Evaluating the skill for
the maximum regime index (i.e. without applying the
life-cycle criteria; Figure S4) does not show major differ-
ences in the skill horizon nor the relative performance
between models, other than for lead times 0–2 days, when
the performance of the NCEP model is best using the max-
imum Iwr(t) (Equation 1) but worst using the full life-cycle
definition (i.e., Iwr(t) above 1.0 during at least 5 days).
Figure S4 also shows the root-mean-squared error skill
score (RMSESS: Equation 5) averaged over the domain in
which the weather regimes are computed. We find that
the BSS values for both the full LC and the maximum
Iwr(t) BSS are higher than the RMSESS for long lead times,
although differences are minor. Therefore, predicting
weather regimes as a proxy for large-scale circulation out-
performs using the full 500-hPa geopotential height field.

Figure 6 shows for each season the multicategory
life-cycle BSS for all regimes of the three models in com-
parison (in order to evaluate the relative performance of
models for different times of the year). The smaller sam-
ple size in the NCEP and UKMO makes the results less
robust than for ECMWF. The skill of the ECMWF model
is slightly higher than that of the NCEP model in all
seasons but summer, when the skill of both models is
virtually identical. The skill of the UKMO model is com-
parable with the skill of the other models only for short
lead times (less than 5 days) in all seasons but summer,
when the skill in the UKMO model already decreases

sharply 2 days after initialization. For longer lead times,
the UKMO skill is significantly lower that for the other two
models in all seasons. Figure S5 shows, for each model,
the multicategory life-cycle BSS for the four seasons. The
skill in winter is highest for all three models, and in the
ECMWF and NCEP models at most lead times it is sig-
nificantly higher than for the remaining seasons. This is
in agreement with other studies (Son et al., 2020; Büeler
et al., 2021; Cortesi et al., 2021). For these models, the
skill horizon for winter of 17 and 15 days in ECMWF
and NCEP, respectively, is 3–4 days longer than for the
other seasons, which have very little difference between
each other.

Figure 7 shows for each weather regime the year-round
BSS for the three models. Within the cyclonic regimes,
the AT is forecast with similar skill among the three mod-
els whereas for the ZO and ScTr the skill of the ECMWF
and NCEP models is very similar and higher than that
of the UKMO model. On the other hand, for the blocked
regimes the skill of the ECMWF and NCEP models is sim-
ilar for ScBL and AR, while the ECMWF model is slightly
better than the NCEP model for EuBL and GL. The skill
for the UKMO model is somewhat lower than those for
ECMWF and NCEP (although differences are not statisti-
cally significant). For the no regime category, the ECMWF
skill is the best. The year-round single-category skill for
each weather regime in each model is shown in Figure S6.
The no regime category has low skill in comparison with
the rest of the regimes, which confirms the difficulty that
models face in forecasting flow situations that do not fit
into one of the distinct patterns. Looking at each weather
regime individually, the ZO and GL have the longest skill
horizon of almost 18 days (considering the 0.1 level). Con-
versely, the EuBL, and in the case of ECMWF also the
ScBL, have the shortest skill horizon of around 13 days
in the ECMWF model, 11 in the NCEP model, and near
8 days in the UKMO model. The better performance for
ZO and GL, which are closely related to the positive and
negative phases of the NAO, compared with blocking in
the European sector has also been documented in pre-
vious studies, with other versions of these models either
using the set of seven regimes (Büeler et al., 2021) or the
more traditional set of four regimes (Ferranti et al., 2018;
Matsueda and Palmer, 2018; Cortesi et al., 2021). Finally,
Appendix A presents a summary of the skill for individual
weather regimes for each season and model. This type of
comparison can help to identify strengths and weaknesses
in each model.

Overall, the analysis done in this section has shown
multiple differences in skill, not only between models
but also in the relative performance in the individual
seasons. This can be useful for both model developers and
forecasters.
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F I G U R E 6 Multicategory BSS for life cycle for all weather regimes for ECMWF (blue), UKMO (orange), and NCEP (green) models
initialized in (a) DJF, (b) MAM, (c) JJA, and (d)SON. The BSS for the life cycle is computed including the “no regime” category. Shading
shows the range between the 5th and 95th percentile obtained through a bootstrap procedure. The gray dotted line denoted the 0.1 BSS level.
[Colour figure can be viewed at wileyonlinelibrary.com]

3.3 Daily to interannual variability
of skill

We now turn our attention to investigating how the dif-
ferences in the forecast skill for each weather regime
and season shape the daily to interannual variability in
skill. In this section the skill is evaluated through the
HSS (Equation 4) and, to increase the robustness of the
score, we take each member of the ensemble as an inde-
pendent forecast and compare it with the corresponding
ERA-Interim value. Figure 8 shows the weather regime
life cycle HSS for a 91-day moving window centered on
each 365-day calendar date, as a function of the lead time.
As was mentioned in Section 2, the differences in the
formulation of the BSS and HSS can lead to differences
in the relative performance between models when com-
paring the current results with those from the previous
section. For short lead times (within the weather time
scale, 1–5 days) the HSS values still show some depen-
dence on the day of the year, being slightly smaller between
May and June for the three models and between October

and November for the NCEP and ECMWF models. For
long lead times, January and February present the highest
HSS values for all models. In those months, the HSS val-
ues above 0.1 remain up to day 20 for NCEP (note that,
beyond lead time 20, the life-cycle definition is not valid for
this model), 28 for ECMWF, and more than 35 for UKMO.
In contrast, the HSS values decrease as calendar dates
approach mid May, when they reach a local minimum.
At this point, values increase before decreasing again in
September and October, where skill has another mini-
mum. This daily variability in skill shows the difficulties
forecast systems have in forecasting the transition seasons
as skillfully as the extreme seasons. If we compare this
figure with the 91-day running mean calendar day clima-
tological relative frequency of weather regime life cycles
in ERA-Interim (defined over the period of 2000–2015;
Figure 2), we can relate the high values of HSS observed in
January and February to the relatively high frequency of
the ZO regime, a regime that is well forecast by all models
at this time of the year. Likewise, the local maxima in
number of days with no regime observed in April–May and
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F I G U R E 7 Year-round
single-category BSS as a function of lead
time of the weather regime life cycle for
ECMWF (blue), UKMO (orange), and
NCEP (green) for (a) AT, (b) ZO, (c) AR,
(d) ScTr, (e) EuBL, (f) ScBL, (g) GL, and
(h) no regime. Shading shows the range
between the 5th and 95th percentiles
obtained through a bootstrap procedure.
The gray dotted line denotes the 0.1 BSS
level. [Colour figure can be viewed at
wileyonlinelibrary.com]

September–October can also partially explain the lower
values of HSS observed. Therefore, the relative frequency
of weather regimes influences the daily variability of skill
not only on sub-seasonal time scales but also on shorter
time scales.

Figure 9 shows the yearly evolution of the weather
regime life-cycle HSS for the three models aggregated

over lead times 8–14 days (week 2, left column) and
15–21 days (week 3, right column), together with
the relative frequency of occurrence of each weather
regime in each year for each of the four seasons.
In December–January–February (DJF) for week 2
(Figure 9a), the year-to-year evolution of the skill is simi-
lar for the three models. The highest values of HSS for lead
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F I G U R E 8 Life cycle HSS (%) for all weather regimes as a function of lead time and calendar date. HSS is computed using a 91-day
window centered on each calendar day from January 1 to December 31 for (a) NCEP model, (b) ECMWF model, and (c) UKMO model.
[Colour figure can be viewed at wileyonlinelibrary.com]

times 8–14 days were observed in 2009/2010, followed
by 2013/2014 and 2004/2005. Given that GL is one of the
regimes with the best forecast performance in winter, it
is not surprising that the 2009/2010 winter has the high-
est values of HSS, since that winter was characterized by
two GL events that lasted for around 30 days (reflected in
the positive frequency anomaly for GL) associated with a
stratospheric polar vortex split in early December and a
sudden stratospheric warming in late January (Dörnbrack
et al., 2012). Both 2013/2014 and 2004/2005 experienced
more frequent than normal ScTr events, another weather
regime forecast well in winter, which could partially
explain the relatively good performance of those winters.
In addition, the three winters mentioned have very few
days with no regime events and experienced an unusually
strong stratospheric polar vortex (cf. Fig S1 in Papritz and
Grams, 2018). In March–April–May (MAM: Figure 9c),
the HSS in week 2 remains around 40% for the three mod-
els in the first half of the period, while a small positive
trend in skill is observed in the second half, when higher
than climatologically expected values of relative frequency
for ZO and GL are observed. This trend is significant at
the 95% confidence level (based on a t-test) for ECMWF
and NCEP models. In June–July–August (JJA: Figure 9e),
the performance of models for week 2 is very regular and
there are no clear summers that stand out. A tendency to
more blocking events is evident at the end of the period.
However, this does not seem to translate into better or
worse skill. Finally, in September–October–November
(SON: Figure 9g), the variability of skill for week 2 is less
consistent between models and complicates the analy-
sis. Nevertheless, there is a maximum of HSS in 2012 for
the UKMO model and a second one in 2015. In 2012 the
number of days with ScTr triples the mean values, while
autumn 2015 has the second fewest days of no regime. As
expected, the values of HSS aggregated over week 3 are
lower than week 2. In DJF (Figure 9b), the relatively good
performance for week 2 in the 2009/2010 and 2004/2005

winters also extends into week 3. In MAM (Figure 9d),
the positive trend in the HSS observed for week 2 is also
evident in week 3 (being significant at the 95% confidence
level for the three models), although values are lower.
In JJA and SON, conclusions similar to those for week 2
can be drawn for week 3. Overall, the largest fluctuations
in skill are observed in DJF, which shows potential for
exploiting the windows of opportunity that capture the
years when the skill is largest, such as the anomalous
positive frequency occurrence of GL, ScTr, and ZO or the
small no regime frequency.

In some years the performance of models can be
attributed to the anomalous frequency of specific weather
regimes. As we mentioned previously, the anomalous
positive frequency of GL, ScTr, and ZO or the anoma-
lous negative frequency of no regime can partly explain
the higher skill observed in DJF and MAM. In line with
this, the work by Matsueda and Palmer (2018) shows that
the model skill depends on the duration of the negative
phase of the NAO, which might be linked to a weak strato-
spheric polar vortex (Domeisen, 2019). Similarly, Cortesi
et al. (2021) shows that enhanced periods of skill occur
in January and February when regimes that resemble the
negative phase of the NAO occur. In this work, we would
like to investigate whether this hypothesis on the link
between regime frequency anomalies and skill is valid.
Figure 10 shows the correlation between the HSS aggre-
gated over lead times 8–14 days (week 2, left column)
and 15–21 days (week 3, right column) and the sea-
sonal anomalous occurrence frequency for each weather
regime. In DJF, there is no significant relation between
the frequency of GL and ScTr and the skill in that season.
However, there is a relationship between the skill in week
2 and week 3 and the negative anomalous frequency of no
regime and EuBL. These results may indicate the influ-
ence of no regime on skill in winter. However, it could
also be a by-product of the increased frequency of regime
transitions and their lower persistence. In addition, the
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F I G U R E 9 Year to year evolution of life cycle HSS (%) for all weather regimes and NCEP (dotted line), ECMWF (dashed line), and
UKMO (dot–dashed line) models aggregated over (left column) lead times 8–14 days and (right column) lead times 15–21 days; and year to
year evolution of cumulative relative frequency of weather regime life cycles (bars) for (a,b) DJF, (c,d) MAM, (e,f) JJA, and (g,h) SON. Pale
bars denote the relative frequency below or equal to the climatological relative frequency (indicated on the end of the plot) of each weather
regime (indicated on the end of the plot), while opaque colors denote values exceeding the relative climatological frequency of each weather
regime. [Colour figure can be viewed at wileyonlinelibrary.com]

lower skill when there are more EuBL events shows the
need for improving the forecast performance for winter-
time continental blocking events (already highlighted in
Matsueda and Palmer, 2018; Büeler et al., 2021; Ferranti
et al., 2018) to enhance the sub-seasonal skill in winter. On
the other hand, in MAM the skill of models in weeks 2 and
3 is positively correlated with the anomalous frequency of
both ZO and ScTr. This might explain the positive trend
in the MAM skill observed in the last years of the period
in conjunction with positive anomalies in ZO regime fre-
quency. Finally, the significant relationship between skill
in the NCEP model and the frequency of ScBL in JJA
may partly explain the relatively good performance of the
NCEP model in that season, since more ScBL events are
observed in the last years of the period.

3.4 Representation of regime
assignments in the models

When forecasting weather regimes, small deviations in the
depicted flow can result in a forecast being assigned to a

different regime. To explore whether there are systematic
misassignments (i.e., forecasts for a specific weather
regime that have a different weather regime as an observed
counterpart), Figure 11 shows the contingency table (as
percentage of forecasts for each weather regime corre-
sponding to each observed weather regime) for each model
at lead times 10–12 days. We selected these lead times
because, even though some misassignments are observed
at earlier lead times, they stabilize around lead time 10
(see Figures S7, S8, and S9, where the evolution of forecast
misassignments as a function of lead time for each model
is plotted). In the contingency table, weather regimes are
ordered so that related regimes are next to each other. For
each weather regime, the contingency tables show large
values of correct forecasts (values in the diagonal), but
an even larger percentage of false alarms (the forecast for
a weather regime verifies as no regime, last row). The
latter can be partially explained by cases in which the fore-
casts marginally fulfill the life-cycle criteria whereas the
observations do not. In addition, there are some preferred
misassignments common to the three models. Overall, the
NCEP model presents the lowest misassignments, while
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F I G U R E 10 Correlation between the HSS aggregated over (left column) lead times 8–14 days (week 2) and (right column) lead times
15–21 days (week 3) and the seasonal anomalous occurrence frequency for each weather regime and the no regime category for (a,b) DJF,
(c,d) MAM, (e,f) JJA, and (g,h) SON. Bold italic (bold) values correspond to significant correlations at the 95% (90%) one-tail t-test. [Colour
figure can be viewed at wileyonlinelibrary.com]

the UKMO shows the largest. With the exception of some
missassingments in the UKMO model, most of the doc-
umented misassignments occur for the regimes that are
related to each other (i.e. the misassignments are close
to the diagonal, cf. Figure 1). This opens up the question
of the nature of the misassignments: are they due to the
existence of two competing signals? Do the models fail in
capturing the correct one?

To address these questions, we now analyze whether
the misassignments discussed are related to flow situations
in which discriminating between two similar regimes is
challenging, or instead reflect deficiencies in the models’
ability to identify regimes. To do this, we plot composites
of Iwr(t) for forecasts and reanalysis for the most common
misassignments. As an example, we will show the cases
in which the forecasts for AT, ScTr, and EuBL verify as

ZO between lead times 10–12 days (Figure 12). The fore-
cast Iwr(t) (dashed lines) shows that the flow situations
that are commonly confounded by models project strongly
not only in the forecast weather regime but also in the ZO
regime (both shown in thicker lines), either at lead time 11
days or some days before. In the models, the ZO weather
regime pattern (characterized by a negative Z500 anomaly
centered over Greenland and positive anomalies in mid-
latitudes) appears with three different flavours: either the
negative anomaly is shifted southeastwards (characteris-
tic of the AT pattern), or it presents a pattern in which the
positive anomaly in the Atlantic is strong and displaced
eastwards (and the pattern projects onto the ScTr), or else
the positive anomaly over Europe maximizes and is shifted
northwards (as when EuBL occurs). This is confirmed
when inspecting composites of forecast for geopotential
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F I G U R E 11 Contingency matrix, presented as percentage of forecasts of a weather regime life cycle (columns) at lead time 10 days
against the observed weather regime life cycle (rows) for (a) NCEP, (b) ECMWF, and (c) UKMO models. Shading shows values above 10%.
[Colour figure can be viewed at wileyonlinelibrary.com]

height anomalies at 500 hPa over the domain of study
for the same dates as the misassignments (not shown). If
we compare the forecast series with the observed counter-
part (solid lines) for the same cases, we can see that, for
the misassignment of AT (Figure 12a–c), the maximum
of observed Iwr(t) is preceded by a relative maximum of
AT that peaks around lead time 7 days and then decays.
In the case of the misassignments of ScTr (Figure 12d–f),
the maximum of Iwr(t) for ZO is accompanied by a high
value of Iwr(t) for ScTr. It seems that the forecast misas-
signments that occur when models forecast ScTr or AT
but ZO is observed occur in flow situations in which two
weather regimes have similar signals growing the previous
days, and then the ZO signal in models grows and domi-
nates. Models then fail in discriminating between which
of these regimes would dominate. Finally, for the misas-
signment of EuBL (Figure 12g–i), the observed Iwr(t) is
maximum for ZO whereas the Iwr(t) for EuBL is half that
for ZO, which implies a weaker projection of the flow onto
the EuBL. Therefore, the detection of the correct signal
in this misassignment is partly related to the existence
of two competing signals, but more likely related to the
deficiencies in the models in capturing the correct one.

3.5 Improvements in skill with model
versions

Finally, we study the changes in weather regime skill of the
models analyzed with respect to previous model versions.
This will help us understand whether changes in model

forecast system characteristics, such as the model for-
mulation (i.e., dynamical formulation, parametrizations,
model components), initialization, or resolution, lead to
improvements in skill. To do this, we compare the earlier
ECMWF model versions CY43R1, CY45R1, and CY45R3
(those used in Büeler et al., 2021), NCEP Climate Forecast
System v2 (CFSv2), and UKMO GloSea5 with the more
recent ECMWF, NCEP, and UKMO model versions used
in the previous sections, that is, the ECMWF model ver-
sions CY46R1 and CY47R1, the NCEP GEFSv12, and
the UKMO GloSea6, respectively. Model details can be
found in Table 1. These data have been obtained from
the S2S project database. In the case of NCEP, instead
of selecting the previous version of GEFSv12, the GEFS
version implemented in the SubX project, we compared
the results with CFSv2, because this model has been used
historically in operational activities by the S2S commu-
nity and also because its reforecasts have been initial-
ized consistently during its entire reforecast period, which
facilitates bias correction (Guan et al., 2019, whereas
GEFS-SubX has inconsistencies in its re-forecast clima-
tologies;), whereas GEFS-SubX has inconsistencies in
its reforecast climatologies. There are several differences
between the two NCEP models, in not only atmospheric
but also other Earth system components of the model,
as well as in the reanalysis used to initialize the refore-
casts. The main difference between the ECMWF model
versions is the reanalysis used to initialize the reforecasts
(ERA-Interim for versions CY43R1-CY45R3 and ERA5
for versions CY46R1 and CY47R1), while the main dif-
ference in the UKMO model versions is the atmospheric

http://wileyonlinelibrary.com


2402 OSMAN et al.

F I G U R E 12 Composites of observed (solid) and forecast (dashed) time series of Iwr(t) forecast by (a,d,g) NCEP, (b,e,h) ECMWF, and
(c,f,i) UKMO for forecasts that at lead time 10–12 days forecast AT (first row), ScTr (second row), and EuBL (third row) and verify in ZO.
Thick lines depict the misassignmments analyzed in detail (see text). The dotted gray line denotes the 1.0 level for Iwr, that is, the threshold
for an active regime life cycle. [Colour figure can be viewed at wileyonlinelibrary.com]

component of the model (HadGEM3 GC3.2 in GloSea
6 and HadGEM3 GC2.0 in GloSea 5) and the initializa-
tion of the land-surface model. For each modelling center,
we compare the models in the largest common refore-
cast period available for the versions compared, that is,
the 1999–2010 period for NCEP, the 1999–2017 period for
ECMWF, and the 1993–2015 period for UKMO.

Figure 13a shows the difference in BSS between the
new (GEFSv12) NCEP version and the old (CFSv2) NCEP
version for the year-round multicategory BSS and the
multicategory BSS for forecasts initialized in each season
(positive values mean that the new NCEP version is bet-
ter than the old NCEP version and negative values mean
the opposite). The performance of the new NCEP version
in terms of BSS is better than that for the old NCEP ver-
sion for almost all lead times, being significant from lead
time 1 onward using all initializations. The skill horizon
thus extends by about 4 days in the new version with
respect to the old version (not shown). Dividing the initial

conditions by seasons also shows improvements in all sea-
sons and at almost all lead times, the most important
being for JJA between lead times 3 and 11 and for MAM
between lead times 10 and 15. If we take a look at the per-
formance for individual weather regimes, as depicted by
differences between the single-category BSS for the new
version of NCEP and the old version of NCEP for blocked
(Figure 13b) and cyclonic (Figure 13c) regimes, it can be
seen that both present improvements for all lead times
and the improvements in the cyclonic regimes peak a cou-
ple of days earlier than those in the blocked regimes. The
largest improvements are seen for AR between lead times
8 and 12. A similar analysis is done for ECMWF model
versions (Figure 14). It is important to note here that,
because models are verified against ERA-Interim, which
is the reanalysis used to initialize the old ECMWF ver-
sion, this may penalize the performance of the new version
of ECMWF, initialized with ERA5. The improvements in
skill in the new versions are evident until at least lead time

http://wileyonlinelibrary.com


OSMAN et al. 2403

(a) (b) (c)

F I G U R E 13 The difference in the BSS between NCEP GEFSv12 version (the new NCEP version) and NCEP CFSv2 version (the old
NCEP version) for (a) seasonal multicategory life cycle for all weather regimes as a function of lead time, (b) year-round single-category life
cycle for blocked regimes, and (c) year-round single-category life cycle for cyclonic regimes. Positive values mean that NCEP GEFSv12 BSS is
higher than NCEP CFSv2 BSS. Negative values mean the opposite. Thick lines mean that the difference in the BSS between both versions is
significant. [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

F I G U R E 14 The difference in the BSS between ECMWF CY46R1 and CY47R1 versions (the new ECMWF version) and ECMWF
CY43R1, CY43R3, and CY45R1 versions (the old ECMWF version) for (a) seasonal multicategory life cycle for all weather regimes as a
function of lead time, (b) year-round single-category life cycle for blocked regimes, and (c) year-round single-category life cycle for cyclonic
regimes. Positive values mean that ECMWF CY46R1 and CY47R1 BSS is higher than ECMWF CY43R1, CY43R3 and CY45R1 BSS. Negative
values mean the opposite. Thick lines mean that the difference in the BSS between both versions is significant. [Colour figure can be viewed
at wileyonlinelibrary.com]

15 days for all seasons, although the improvement is sig-
nificant mainly for forecasts initialized in JJA and SON
up to lead times of 13 and 11 days, respectively. In addi-
tion, higher skill is obtained with the newer versions for
all weather regimes until lead time 15 days. At shorter lead
times (1–6 days), those changes are more important for all
blocked regimes except ScBL. The smaller improvements
in ScBL in the new version of ECMWF can explain the rel-
atively similar performance of this model for EuBL and
ScBL. Finally, the comparison of UKMO GloSea versions
(Figure 15) shows that the skill has increased mainly at
early lead times (1–3 days). Looking at each regime sepa-
rately, the largest improvements are seen for AT between
lead times 5 and 12.

4 SUMMARY AND CONCLUSIONS

We studied the skill of three sub-seasonal forecasts mod-
els, namely NCEP, ECMWF, and UKMO, in forecasting

seven year-round Atlantic–European weather regimes. To
make fair comparisons between the models, we analyzed
the same reforecast period and bias-corrected (i.e., cal-
ibrated) all the reforecasts against their own model cli-
mate. We showed that the NCEP model represents the
main weather regime characteristics, such as the fre-
quency, length, and number, best and has the lowest biases
in weather regime transitions. In addition, our analysis
revealed that the calibrated forecasts still presented signifi-
cant positive biases in the frequency of no regime events in
winter and negative biases in ScBL in summer for ECMWF
and UKMO. The latter can partly be explained by the
underestimation of the number of ScBL events and the
biases in the transition from other weather regimes into
ScBL in that season. We further showed that the perfor-
mance of the models in forecasting the weather regime
life cycle (LC) is better than that for the maximum of
the weather regime indices (maxIwr) and the geopoten-
tial height anomalies at 500 hPa over the regime domain.
This was partly documented by Büeler et al. (2021) for the
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(a) (b) (c)

F I G U R E 15 The difference in the BSS between EUKMO GloSea6 version (the new UKMO version) and UKMO GloSea5 version (the
old UKMO version) for (a) seasonal multicategory life cycle for all weather regimes as a function of lead time, (b) year-round single-category
life cycle for blocked regimes, and (c) year-round single-category life cycle for cyclonic regimes. Positive values mean that UKMO GloSea6
BSS is higher than UKMO GloSea5 BSS. Negative values mean the opposite. Thick lines mean that the difference in the BSS between both
versions is significant. [Colour figure can be viewed at wileyonlinelibrary.com]

LC and maxIwr for the ECMWF model. We expanded this
result to other models and variables. This demonstrates
the benefit of introducing the LC definition to identify pre-
dictable modes, enhancing the practical S2S predictability
of the large-scale flow.

We then analyzed the relative skill of models depend-
ing on the season the forecasts were initialized in and the
weather regime predicted. We found that ECMWF is the
model with the best Brier Skill Score (BSS) for all seasons
and weather regimes (the skill horizon is around 14 days),
although the performance of NCEP is comparable (skill
horizon of around 13 days). Furthermore, we found that
in summer and for the AT and ScBL the performance of
both models is almost identical. In addition, and in agree-
ment with Büeler et al. (2021), there are differences in the
skill between seasons and weather regimes: in winter the
skill is about 3 days longer than in the remaining seasons
for ECMWF and NCEP, whereas the skill has nonsignif-
icant differences between seasons in the UKMO model.
The stratification of the skill into the individual weather
regimes showed that the EuBL skill horizon is 2–6 days
shorter than that for other weather regimes in NCEP and
2–4 days shorter in UKMO. On the other hand, in the
ECMWF the skill horizon for EuBL is 1 day shorter than
for ScBL and both have a 1–6 days shorter skill horizon
than the remaining weather regimes. The skill horizon for
ZO and GL tends to be the longest for all three models,
which partly explains the high skill in winter, when these
two regimes are most persistent. The skill for the no regime
category is lowest for all three models, which shows the
usefulness of including this category to remove less pre-
dictable episodes, such as regime transitions. This result
also confirms the difficulties that models have in forecast-
ing situations where no particular flow dominates.

We also assessed the day-to-day and year-to-year vari-
ability of skill, depicted by the Heidke Skill Score (HSS),
and the role of weather regime occurrence in shaping this

variability. The three models present their highest HSS val-
ues in January and February, which remain above 0.1 up
to 35 days for UKMO, 28 days for ECMWF, and 20 days for
NCEP. The three models present a seasonality in the skill,
with relative minimum values in May and late September,
when the observed no regime frequency peaks. These rel-
ative minima are also observed for short lead times (1–5
days), which implies that some flow situations can impact
on skill even in lead times where skill is tied to initial con-
ditions. It also demonstrates the predictability gap seen
in the transition seasons. On the other hand, the anoma-
lous frequency of no regime days in winter also influences
the interannual variability of skill on sub-seasonal time
scales in that season: the winters with the fewest no regime
days are related to years with enhanced week 2 skill. In
addition, higher week 2 and 3 winter-time skill values are
observed in the years with the fewest EuBL events, which
highlights the challenges in forecasting this regime skill-
fully. Another significant influence of observed weather
regime variability on skill is found in autumn, when skill
is enhanced in years with more ZO regimes. Finally, the
skill for the NCEP model in summer is higher in years
with more ScBL. This model presents the lowest bias in
the mean geopotential height in summer and is the best
at reproducing the main ScBL characteristics, such as fre-
quency, number, and length. There have been very few
studies yet using this NCEP model version (it was imple-
mented in late 2020) and therefore further studies of the
representation of dynamical processes during ScBL by this
model could help us understand its relatively good perfor-
mance. For instance, the work by Quinting & Vitart (2019)
shows that the NCEP CFSv2 model presents the lowest
biases in blocking frequency over the Atlantic–European
domain across S2S models, due to a better representa-
tion of Rossby-wave packets. Similar studies with NCEP
GEFSv12 may shed light on processes that explain this
relatively good performance.

http://wileyonlinelibrary.com
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We then explored the systematic misassignments of
forecasts for long lead times to understand whether they
are related to model deficiencies or flow situations in
which there are competing regime signals. For the three
models, the misassignments grow from lead time 0 and sat-
urate after a lead time of 10 days. We found that most of
the misassignments correspond to regimes that have sim-
ilar configurations. As an example, we showed the flow
situations when ZO is observed but models forecast either
ScTr, AT, or EuBL. In the cases of ScTr and AT, both
observed flow situations are such that the signal is high
for ScTr and ZO and AT and ZO, respectively, whereas the
misassignments for EuBL are partly related to model defi-
ciencies in distinguishing between ZO and EuBL regimes.
The identification of misassignments can help to improve
the accuracy of models by placing different weights on
ensemble members based on these results. In addition,
the study of the misassignments can help to distinguish
windows of opportunity of enhanced predictability when
multiple models agree on a pattern from situations when
models present the same misassignments and all point
to the incorrect regime. Future studies on regime mis-
assignments could help us to understand the dynamical
processes behind them better.

Finally, we investigated the evolution of forecast skill
in each modelling center. We found that the skill has
improved in ECMWF and NCEP models with newer ver-
sions. For the NCEP model, this improvement leads to
an extension of the skill by around 4 days. On the other
hand, the skill for UKMO has not changed considerably
across the versions considered. Changes in the reanalysis
used to initialize the ECMWF model mainly impacted the
first 12 days, although the improvements are greater for
blocking events, with the exception of ScBL. In the case of
NCEP model versions, there may be multiple explanations
of the observed improvements, since the models compared
have very little in common. However, changes in the atmo-
spheric model, from a spectral model to a finite-volume
dynamical core, as well as the perturbation scheme, from
a time-lagged ensemble to an ensemble Kalman filter,
might be responsible for the substantial improvements
seen. Finally, in the UKMO model, changes in the atmo-
spheric model and the initialization of the land-surface
model have almost no impact on the skill.

At the moment, the only work that has evaluated
the performance of the seven year-round regimes is by
Büeler et al. (2021). In this study, we expanded that work
by including a newer version of the model used in that
study and two additional models and by investigating
the sources of daily to interannual skill variability. This
study is thus the first systematic multi-model assessment
of the seven year-round weather regimes with different
state-of-the-art sub-seasonal models and represents a

contribution towards a more objective assessment of the
evolution of weather regimes for days to weeks ahead,
allowing better forecast guidance in the decision-making
process. For instance, forecasters can weigh the models
against each other based on the results of this assessment,
or can compare the models and see to what extent they
agree or disagree to identify situations of high uncertainty.
In addition, it is important to highlight that understanding
the impacts of regimes on surface weather variables is as
important as (or even more important than) understand-
ing large-scale flow situations (Bloomfield et al., 2021),
especially for economic sectors. For example, studies
have shown that in winter there is an overproduction of
wind power under cyclonic regimes (Grams et al., 2017),
whereas EuBL and GL blocking events are associated with
periods of low electricity production by renewable sources
(wind power and solar) and high electricity demand that
lead to stress on the electricity system (Mockert et al., 2022;
Otero et al., 2022). In this context, improving the skill for
wintertime EuBL is thus crucial for better preparedness for
those critical situations. In addition, assessing how mod-
els forecast the relationship between weather regimes and
surface weather is also very relevant for end users, but it is
beyond the scope of this work.

The possibility of analyzing robustly the role of dif-
ferent phases of the Madden–Julian Oscillation or the
intensity of the stratospheric polar vortex was limited
by the short common reforecast period. This short com-
mon reforecast period shows the limitations of current
sub-seasonal databases. Newer projects, in collaboration
with forecast centers, might consider new forecast strate-
gies, such as aligning the reforecast calendar and extend-
ing the common reforecast period, to address the windows
of opportunity across models systematically.
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APPENDIX A. WR FORECAST SKILL OF
EACH MODEL IN EACH SEASON

Here we briefly describe the main weather regimes
forecast skill of each model in each season. Tables S1, S2,
and S3 show a summary of the skill for individual regimes
year round and for each season and for the NCEP,
ECMWF, and UKMO models, respectively. Note that the
statistics are less robust for skill in seasons due to the
smaller sample size. For the NCEP model (Table S1), the
poor skill for short lead times in EuBL is driven by its per-
formance in DJF, whereas the relatively bad performance
for ScBL in DJF, MAM, and SON these seasons is compen-
sated by a good performance in JJA. The good performance
for GL and ZO for long lead times is related to the good
skill observed in all seasons except JJA for GL and also
SON for ZO. The relatively low skill for ScBL and EuBL
for ECMWF is also observed in DJF and SON, and in JJA,
respectively (Table S2). As for the NCEP model, the good
performance for year-round long lead times of ZO and
GL is mainly observed in DJF and MAM. The AT, which
presents together with GL the second largest skill horizon,
has good performance in DJF and MAM. For the UKMO
model (Table S3), the EuBL, ScBL, AR, and no regime have
the lowest skill, while the GL and ZO have the highest
skill. In winter, the ZO regime has the largest skill hori-
zon (27 days), whereas the skill horizon for GL in MAM is
21 days. On the other hand, in JJA the AR has the poorest
performance, with a skill horizon in 5 days.
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