
1. Introduction
According to IPCC  (2021), the global average surface temperature for 2011–2020 has increased by 1.09°C 
compared to 1850–1900 and is expected to reach values of ∼3–5°C by the end of the century in the worst 
case scenario, as described by the Representative Concentration Pathway (RCP) 8.5, from the Coupled Model 
Intercomparison Project Phase 5 (CMIP5, Taylor et al., 2012). As a consequence, a large number of different 
socio-economic sectors and political institutions require climate information to elaborate adaptation and mitiga-
tion plans for climate change at global, regional and local scales.

At global scales, General Circulation Models (GCMs) are the main tools used to project the effect of vari-
ous forcing scenarios on the climate system, for example, different greenhouse gas concentration trajecto-
ries. GCMs are numerical models that represent the physical processes in the atmosphere, land, and ocean. 

Abstract High spatio-temporal resolution near-surface projected data is vital for climate change impact 
studies and adaptation. We derived the highest statistically downscaled resolution multivariate ensemble 
currently available: daily 1 km until the end of the century. Deep learning models were employed to develop 
transfer functions for precipitation, water vapor pressure, radiation, wind speed, and, maximum, mean and 
minimum temperature. Perfect prognosis is the particular statistical downscaling methodology applied, using 
a subset of the ReKIS data set for Saxony as predictands, the ERA5 reanalysis as during-training predictors 
and the CORDEX-EUR11 ensemble as projected predictors. The performance of the transfer functions was 
validated with the VALUE framework, yielding highly satisfactory results. Particular attention was given to the 
three major perfect prognosis assumptions, for which several tests were carried out and thoroughly discussed. 
From the latter, we corroborated their fulfillment to a high degree, thus, the derived projections are considered 
adequate and relevant for impact modelers. In total, 18 runs for RCP85, 1 for RCP45, and 4 for RCP26 were 
downscaled under both stochastic and deterministic approaches. This multivariate ensemble could drive more 
accurate and diverse impact studies in the region. Generally, the projected climatologies are in agreement with 
coarser resolution projections. Nevertheless, statistical particularities were observed for some projections, 
thus, a list of caveats for potential users is given. Due to the scalability of the presented methodology, further 
possible applications with additional datasets are proposed. Lastly, several potential improvement prospects are 
discussed toward the ideal subsequent iteration of the perfect prognosis statistical downscaling methodology.

Plain Language Summary There is a great worldwide demand for high spatio-temporal resolution 
projections to develop climate change adaptation and mitigation schemes. Despite recent improvements, the 
resolution of both global and regional climate models is still too coarse to properly represent local variability, 
particularly in complex terrains. Depending on the application, impact modelers and decision makers require 
kilometer-scale projections, with a minimum daily temporal resolution, of near-surface variables. To fill 
this information gap, we employed artificial intelligence algorithms to downscale, to a novel daily 1 km 
resolution, a projection ensemble until the end of the century consisting of precipitation, water vapor pressure, 
radiation, wind speed, and, maximum, mean and minimum temperature. The ensemble comprises 18 runs of 
the business-as-usual worst-case scenario (RCP85), 1 run of the stabilization scenario (RCP45), and 4 of the 
optimistic low-emissions scenario (RCP26). The main assumptions of the methodology were thoroughly tested 
and discussed. The validation carried out yielded highly satisfactory results. Thus, we consider the projections 
to be adequate and relevant for impact studies. The region studied is located in Saxony (Germany), still, the 
methodology shown is potentially applicable anywhere in the world.
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Regardless of the recent developments on GCMs, their coarse spatial resolution (∼100–200 km) and large 
regional biases render their output unsuitable for regional or local climate change impact studies (Maraun & 
Widmann, 2018). Downscaling techniques, dynamical and statistical, are used to improve the resolution of 
the GCM output. Regional Climate Models (RCMs) are employed to dynamically downscale GCM output by 
using the latter as boundary conditions to drive higher-resolution nested models. The Coordinated Regional 
Climate Downscaling Experiment (CORDEX,  2021) provides RCM output with multiple spatio-temporal 
resolutions. Still, the highest resolution available (0.11° only for Europe) is unable to adequately represent 
near-surface variables, especially for topographically complex areas. Thus, the application and location 
define the spatio-temporal resolution required, which is often limited by the coarser data available. More-
over, Katragkou et al.  (2015) demonstrated that such variables exhibit significant systematic biases within 
EURO-CORDEX models (conducted with a spatial resolution of 0.44°) as a result of the employed parametri-
zation schemes. There are many efforts underway to generate kilometer-scale (∼1–2 km grid) global climate 
models (Schär et  al.,  2020), due to the performance improvements in the impact models that such higher 
resolutions convey in comparison to coarser ones (Quintero et  al., 2022). The latter would require explic-
itly resolving small-scale convective cloud processes, enormous computing power, and, important efforts 
to adapt the existing GCMs and RCMs code to the newest, GPU-based, supercomputer architectures (Schär 
et al., 2020).

Statistical downscaling methods represent a cost-effective approach to build high-resolution datasets by estab-
lishing transfer functions between large-scale variables (predictors) and regional- or local-scale variables 
(predictands), as described in Maraun and Widmann (2018). There are two major statistical downscaling schemes, 
that is, perfect prognosis (PP) and model output statistics. PP models are calibrated with predictands (observa-
tions) and predictors (taken from reanalysis data, generally atmospheric variables) that hold a strict temporal 
correspondence. There are three major assumptions related to the PP approach, which can be summarized in: (a) 
the predictors need to be realistically and bias-free simulated, (b) the predictors should explain a large portion of 
the variability, and (c) the influence of the predictors on the predictands needs to be sensibly modeled, allowing at 
least moderate extrapolations for non-observed climate (Maraun & Widmann, 2018). The combination of (b) and 
(c) is also known as the time-invariance assumption. On the other hand, model output statistics does not require 
temporal correspondence and defines the transfer function between model and observed data (generally the same 
variable) to post-process model data, which bias-corrects it.

Recently, statistical downscaling has seen major improvements with a growing number of applications. Still, most 
of the studies statistically downscale precipitation and/or temperature from GCM output to station data (Gutiérrez 
et al., 2019; Olmo et al., 2022) or to another grid, which is generally rather coarse to be employed in local-scale 
impact models (Vandal et  al.,  2018; Baño-Medina et  al.,  2022, ∼12.5  km and 0.5°, respectively). Moreover, 
several global high-resolution datasets have been created with the CHELSA mechanistic statistical downscaling 
algorithm (Karger et al., 2017), such as Karger et al. (2020), with ∼5 km monthly projections of precipitation 
and temperature. Additionally, very few studies emphasize on other near-surface variables needed to characterize 
important impacts of climate change at the regional scale, for example: (a) humidity (e.g., Huth, 2005; Pierce & 
Cayan, 2016), needed for crop impact models, (b) radiation (Rivington et al., 2008), meaningful for a variety of 
impact models and decarbonization through projections of solar energy production, (c) wind speed (e.g., Höhlein 
et al., 2020; Ramon et al., 2021), which is relevant, among others, for wind power energy production, and (d) 
air pollutants such as particulate matter (Wise, 2009) and ground-level ozone (Hertig et al., 2023; Wise, 2009), 
which are key for ecosystems and human health.

Moreover, projections of variables not limited to precipitation and/or temperature are offered by only a very 
limited amount of studies, for example, Lange  (2019, 0.5° daily, 10 variables) and Brun et al. (2022, ∼1 km 
projected 30 years averages of bioclimatic and agriculture-relevant variables), both statistically downscaled with 
a model output statistics approach. Projections of further variables are needed for more diverse and special-
ized impact models. Lately, novel methods for multivariate bias correction have been developed and tested, 
for example, probability density functions transformations and bivariate copulas (Cannon,  2018; François 
et al., 2020, 2021; Vrac, 2018). Nevertheless, these studies are focused on precipitation and temperature only. 
Spatio-temporal coherent multivariate projections are necessary to assess the risk of future compound events, 
where the combined effect of different drivers across several spatial and temporal scales can cause major impacts 
(Zscheischler et al., 2018).
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Due to the enormous computational requirements of RCMs to simulate climate at a convection-permitting scale 
and the limited informative power of very coarse variables to establish empirical relationships directly with 
the local scale, some studies have proposed a hybrid dynamical-statistical approach which takes advantage of 
both downscaling families (e.g., Li et al., 2020; Quesada-Chacón et al., 2020). This hybrid approach employs 
higher resolution RCM output, which shows generally lower biases than GCMs when compared to observa-
tions (Sørland et al., 2018), to further statistically downscale it to the local scale. In the case of the two hybrid 
dynamical-statistical studies, station data was downscaled. However, statistical downscaling of projected daily 
RCM output to higher-resolution gridded data remains, to our knowledge, unpublished, and could prove to be 
highly beneficial for impact models.

The aim of this paper is to downscale RCM output to a daily 1 km multivariate (precipitation, water vapor 
pressure, radiation, wind speed, and, maximum, mean and minimum temperature) projection ensemble 
until the end of the century employing the PP methodology through deep learning (DL). Quesada-Chacón 
et al. (2022) proved that DL is capable to learn complex atmospheric patterns for downscaling tasks in the 
region of interest. There, the theoretical, methodological, and computational bases were established and tested 
only for precipitation during past conditions, bearing scalability in mind, that is, also suitable for different: 
temporal and spatial resolutions, and regions. This paper builds upon the methods and containerized software 
environment previously developed in Quesada-Chacón et al. (2022), while introducing several novel aspects. 
Specifically, our work encompasses (a) extending the workflow to include additional near-surface variables, 
(b) expanding the methods into the projection domain, and (c) assessing the quality of the produced data set by 
scrutinizing the fulfillment of the three major PP assumptions and conducting a comparative analysis to eval-
uate the climate change signal in relation to coarser resolutions. The Regional Climate Information System 
for Saxony, Saxony-Anhalt, and Thuringia data set (ReKIS, 2021) is used as predictands, the ERA5 reanalysis 
(Hersbach et al., 2020) as training predictor, and, the CORDEX EUR11 (Jacob et al., 2014) as the projected 
predictors. We hope to provide the information needed to drive more accurate and diverse impact studies for 
the study region through this multivariate ensemble.

The rest of this article is organized as follows: Section 2 displays the study region, the datasets employed as 
predictands and predictors, and, the methodological approach. Section  3 presents the results, as well as the 
discussion. Lastly, the summary of the present work and outlook for future research are shown in Section 4.

2. Data and Methods
2.1. Study Area

The present study region (see Figure 1a) includes the Ore Mountains/Vogtland Nature Park (the longest nature 
park in Germany), the Saxon Switzerland National Park and a large portion of the flatlands toward the north 

Figure 1. Location of the study area and the predictor domain. (a) The bias of maximum temperature (BTX) between training and validation periods for the whole 
ReKIS domain for Saxony. The study area is inside the darker gray line. The subregions of Dresden, Fichtelberg and Vogtland will be used for further analysis. (b) 
Topography of Germany, the center of the ERA5 sub-domain pixels (marked by dots, 32 by 32) used for the predictors and the study area.
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of Saxony, including its capital, Dresden. This region is an extension of the one employed in Quesada-Chacón 
et al. (2022) since we sought to test the scalability of the methodology and to cover a larger and more relevant 
region for impact modelers. The subregions shown in Figure 1a were selected as representative, that is, Dresden 
exemplifies the climate of the northern flatlands, Fichtelberg (elevation 1,215 m) depicts the climate of the high-
est elevations with complex topography, while Vogtland exhibits intermediate climatic conditions.

2.2. Predictands

A subset of the ReKIS (2021) gridded data set for the Free State of Saxony is used as predictand, with a 
spatio-temporal resolution of daily 1 km. This data set uses station data from the Czech Hydrometeorolog-
ical Institute (CHMI) and the German Meteorological Service (Deutscher Wetterdienst [DWD]) as sources 
to produce gridded data through geostatistic interpolation such as thin plate splines (Körner et al., 2022). 
Seven variables were taken into account for downscaling in the present paper, which are: minimum (TN 
[°C]), mean (TM [°C]) and maximum temperature (TX [°C]), precipitation (Pr [mm  ·  day −1]), radiation 
(Rn [kW · h  · m −2]), wind speed (WS [m · s −1]) and relative humidity. The latter was converted to water 
vapor pressure (Pw [hPa]) according to Huang (2018) to avoid artifacts in situations where the downscaled 
values could be above 100%. The aforementioned abbreviations and units for the variables will be employed 
hereafter. The predictands were cropped to the focus region satisfying the information needs of multiple 
impact models. Additionally, since the variables in the original ReKIS data set were rounded to one decimal 
place, random noise of a lesser order of magnitude was added as a measure to de-discretize the observations 
of continuous nature to derive the final predictands. The latter will in turn ease the training process of the 
DL models. The last two steps are illustrated by the “Pre-process and smoothing” box of Figure 2. Note the 
two arrows coming out of this box, portraying the training subset (1979–2005) and the validation subset 
(2006–2015).

Figure 2. Methodological approach employed. PPA, PP assumption; TF, transfer function; CC, climate change.
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2.3. Predictors

Two datasets were employed as predictors in the present paper. First, a subset of the ERA5 reanalysis (Hersbach 
et al., 2020), from 1979 to 2005, cropped to a 32 by 32 pixels domain (see Figure 1b), was used to train the models 
under perfect-prognosis conditions (Maraun & Widmann, 2018). The subset of ERA5, from 2006 to 2015 was 
used to validate the models. Analogously, note the two arrows coming out of the “Standardize” box in Figure 2. 
Then, the EURO-CORDEX data set (Jacob et al., 2014) is coupled with the trained models to obtain the multivar-
iate projected ensemble. For this procedure to properly work, the predictor sets for both datasets need to contain 
the same variables and the same resolution.

Therefore, a metadata screening of the whole EURO-CORDEX data set was initially conducted to determine 
which variables to employ, trying to maximize the ensemble size without compromising key predictors, since 
not all GCM-RCM combinations (GRCMCs) offer the same variables. Originally, it was intended to use the 
CORDEX EUR22 data set, which has a spatial resolution of 0.22°, closer to the one of ERA5 (0.25°). Neverthe-
less, the aforementioned screening yielded that there was limited model output available for EUR22. Alternatively, 
it was found that the EUR11 data set, with a native spatial resolution of 0.11°, contained a substantial number 
of complying ensemble members. Based on similar studies (Baño-Medina et al., 2020, 2022; Quesada-Chacón 
et al., 2022), the selected variables are: zonal and meridional wind (u and v, respectively), temperature (t), geopo-
tential (z), and specific humidity (q) at the 925, 850, 700, 500 and 200 hPa levels, and total cloud fraction (tcc), 
for a total of 26 predictors.

The selected EUR11 models, along with the details of their runs, are presented in Table 1. Thus, the number 
of ensemble members experiment-wise is: 18 for the historical period, four for RCP26, one for RCP45 and 18 
for RCP85, with a combined size of more than 17 TB. The raw EUR11 data was downloaded, upscaled (using 
bilinear interpolation) and processed to match the grid and the units of the ERA5 subdomain. The missing values 
found in the data set were filled with the nearest neighbor, employing the setmisstonn operator of Climate 
Data Operators (CDO, Schulzweida, 2021). The upscaled and filled predictor ensemble is hereafter referred to 

Experiment GCM

RCM

TotalVersion

Member

CLMcom-ETH-COSMO-crCLIM-v1-1 ICTPRegCM4-6 CNRM-ALADIN63

CNRM-CERFACS-CNRM-CM5 1 1

2 1 1

ICHEC-EC-EARTH 1 1, 3, 12 12

Historical MOHC-HadGEM2-ES 1 1 1 1 18

MPI-M-MPI-ESM-LR 1 1, 2, 3 1 1

NCC-NorESM1-M 1 1 1 1

CNRM-CERFACS-CNRM-CM5 2 1

MOHC-HadGEM2-ES 1 1

RCP26 MPI-M-MPI-ESM-LR 1 1 4

NCC-NorESM1-M 1 1

RCP45 CNRM-CERFACS-CNRM-CM5 2 1 1

CNRM-CERFACS-CNRM-CM5 1 1

2 1 1

ICHEC-EC-EARTH 1 1, 3, 12 12

RCP85 MOHC-HadGEM2-ES 1 1 1 1 18

MPI-M-MPI-ESM-LR 1 1, 2, 3 1 1

NCC-NorESM1-M 1 1 1 1

Table 1 
Details of the Selected EUR11 Model Output
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as EUR25, as pictured in Figure 2. Consequently, all the 41 different GRCMCs will be coupled with the trained 
models to obtain projections for all the seven predictands.

Moreover, to comply with the PP assumption that the predictors are realistically and bias-free simulated in present 
climate (Maraun & Widmann, 2018), we employ a bias-adjustment technique on the predictors to enhance the 
distributional similarity between the GCM and reanalysis fields. Specifically, we adopt the Scaling Delta Mapping 
(SDM) technique following the approach outlined in Baño Medina et al. (2022). This technique preserves the 
monthly delta change of the predictors (i.e., the climatological difference between the future and historical periods 
for a given month), while replacing the simulated seasonal cycle with the reanalysis data for a reference period. 
For instance, for January 1992, we subtract the RCM's January monthly mean from the reference period of the 
RCM simulation and then add the equivalent mean from the reanalysis data set for the same reference period. The 
aforementioned PP assumption is then tested (“first PPA?” in Figure 2) for both bias-corrected and raw EUR25.

2.4. Transfer Functions

Based on the characteristics of the best performing statistical downscaling models or transfer functions of 
Quesada-Chacón et  al.  (2022), various DL architectures were tested for each predictand (“Train U-like DL 
models” in Figure 2). Both U-Net (Ronneberger et al., 2015) and U-Net++ (Zhou et al., 2018) were tested with 
three and four layers and 64 and 128 filters on the first layer. Thus, eight different architectures were trained 
per predictand. Other hyperparameters previously tested were fixed to: one filter on the last ConvUnit, drop-
out of 0.25, Leaky ReLu with α  =  0.3 as activation function inside the U structures and the last ConvUnit, 
batch normalization both inside the U-like models and the last ConvUnit, batch size of 512, Adam as optim-
izer with a learning rate of 5  · 10 −4, patience of 125 epochs, a validation split of 0.1, and, 7777 as random 
seed number. As in Quesada-Chacón et al. (2022), the models were trained within a containerized environment 
(Quesada-Chacón, 2023d, v2.0.0) on a single NVIDIA A-100 GPU from the Alpha Centauri sub-cluster of the 
Center for Information Services and High Performance Computing (ZIH) of the Technische Universität Dresden.

Since new predictands are to be downscaled, whose cumulative distribution functions vary significantly, different 
loss functions were tested per predictand. Particularly, the negative log-likelihood of several probability distri-
bution functions (PDFs) were the functions to optimize, besides the root-mean-squared-error (RMSE), which 
was added for comparison. A clear advantage of fitting PDFs to the predictands is the possibility of obtaining 
both deterministic (expected value or mean) and stochastic values. The latter type is desirable to analyze extreme 
values, which is necessary under climate change conditions (Maraun & Widmann, 2018). The PDFs tested are: 
Bernoulli Gamma (BG) and Gaussian for Pr; Gamma and Gaussian for Pw, Rn and WS; and Gaussian for TM, 
TN, and TX. Thus, several combinations of PDFs and architectures were trained individually per predictand. 
As a remark, additional loss functions were tested during the iteration process toward the present paper, that is, 
Bernoulli Log-normal for Pr, Log-normal for Pw, Rn and WS, and Weibull for WS; still, these loss functions did 
not perform as well as the above-mentioned ones.

Furthermore, considering the risk of future compound events (Zscheischler et al., 2018), another set of models 
was trained for all the predictands simultaneously, that is, seven branches, instead of one, derive at the end of the 
U-like structure, each with one filter on the last ConvUnit. The rationale behind this experiment is an attempt to 
maintain more strictly the daily relationship between the spatio-temporal features deducted from the atmospheric 
predictors by the U-like architectures, and the coherence among the predictands. Thus, each of the eight different 
architectures was trained for the different aforementioned loss functions, and also, trained independently with 
each predictand as well as with the full set of them.

2.5. Validation and Evaluation

The different combinations of transfer functions are then evaluated employing a subset of the VALUE framework 
metrics (Gutiérrez et al., 2019; Maraun et al., 2014, see Figure 2). For this, a validation data set from ERA5 is 
employed, which spans from 2006 to 2015. This subset was not used during training, therefore is completely inde-
pendent. Then, the metrics of the individual models per metric per predictand were calculated and ranked, from 
which an overall ranking is derived per predictand from which the best-performing transfer functions are selected 
(as illustrated in Figure 2). The metrics are shown in Table 2 and were selected bearing in mind relevant aspects 
of the predictands, such as extremes, temporal characteristics and spatio-temporal coherence.
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Subsequently, the bias-corrected EUR25 ensemble of predictors is coupled with the best-performing transfer 
functions per predictand to obtain the daily downscaled ensemble (see Figure 2) until the end of the century. All 
the downscaled values were calculated under both deterministic and stochastic conditions. The historical period 
serves as pseudo-observations, as in similar downscaling approaches (Baño-Medina et al., 2022; Quesada-Chacón 
et  al.,  2020; San-Martín et  al.,  2017), from which the performance of the different GRCMCs can be further 
analyzed. We employed a subset of the metrics shown in Table 2 to generate a ranking for the GRCMCs, to 
highlight the best-performing ones for potential users. Moreover, to assess the extrapolation skill of the models 
(time-invariance assumption) and the quality of the projections, two future subperiods were established to exam-
ine the climatologies of the highest ranked GRCMs, that is, near future (NF, 2021–2050) and far future (FF, 
2071–2100). The corresponding near-surface variables from EUR11 were downloaded and processed to a 0.1° 
regular grid (since each RCM has a different non-regular grid), hereafter referred to as EUR10, to compare the 
climate change signals of the downscaled projections. The above-mentioned steps are illustrated by Figure 2 as 
well.

3. Results and Discussion
3.1. Transfer Functions Performance

DL models were trained for the different combinations of architecture, loss function and predictand. The VALUE 
framework was used to validate and quantify the performance of the models, which allows us to rank them and 
objectively select the best-performing ones. Figure 3 shows the common subset among the predictands of the 
validation metrics presented in Table 2 for the top-ranked models per predictand. For coherence, the nomencla-
ture used for the architectures follows the one used in Quesada-Chacón et al. (2022), that is, type of U-like struc-
ture (U for U-Net and Upp for U-Net++), number of layers inside the U structures (3 and 4), number of starting 
filters (64 and 128) for the U structures, number of filters of the last ConvUnit, and a boolean for batch normal-
ization in the last ConvUnit, in that order. Due to the experiments conducted in the previous study, the latter two 
hyperparameters were set constant to 1 and TRUE, respectively. Note that all the metrics shown in Table 2 were 
calculated and used for ranking the models.

Metric Pr Pw Rn TM` TN TX WS Description

BAC1 D D D D D D Lag-1 autocorrelation

BColdAMS D Median of the annual cold (<10th percentile) spell maxima

BDryAMS D Median of the annual dry (<1 mm) spell maxima

BFA20 D Relative frequency of days >20°C (Tropical nights)

BFA25 D Relative frequency of days >25°C (Summer days)

BFB0 D D Relative frequency of days <0°C (Ice days for TX; Frost days for TN)

BM D D D D D D D Mean

BP02 D D, S D, S D, S D, S D, S D 2nd percentile

BP98 D, S D, S D, S D, S D, S D, S D, S 98th percentile

BSDII D Mean wet-day (≥1 mm) precipitation (Simple Day Intensity Index)

BWarmAMS D Median of the annual warm (>90th percentile) spell maxima

BWetAMS D Median of the annual wet (≥1 mm) spell maxima

KSS D D D D D D D Kolmogorov–Smirnov statistic

Pearson D D D D D Pearson correlation

RSD D D D D D D D Ratio of the standard deviations

RMSE D D D D D D D Root Mean Square Error

Spearman D D Spearman correlation

Note. (a) In Metric, the first letter B stands for bias. (b) The type of run used for the calculation is given below the predictands, that is, D stands for deterministic and 
S for stochastic.

Table 2 
Subset of the VALUE Metrics Employed to Validate the Performance of the Transfer Functions for the Different Predictands
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In general, the best-ranking individual performing loss functions are: BG for Pr, Gamma for Pw, Rn and WS, 
and Gauss for TM, TN and TX. As expected, the most challenging predictand to accurately model is Pr, still, the 
performance of the best-ranked model, Upp-3-128-1-T with BG (ranked #1), is highly satisfying. It is noticeable 
that for RMSE, the models trained with either Gauss or with RMSE performed better than BG. This outcome is 
expected, particularly for RMSE since that is precisely the metric optimized during training. This case has the 
disadvantage that no stochastic values can be obtained from it, for which its deficiencies can more clearly be 
noticed when compared with the stochastic values for the extreme values (Bp98S) from BG, and also has flaws 
in characteristics such as the dry and wet spells (not shown). Note that BM for Pr with the validation data set is 
fairly close to zero.

The other predictands had in most of the shown metrics in Figure 3 performances close to the ideal ones, that 
is, one for ρ and RSD, and zero for the rest. Yet, it is noticeable that no dramatic performance changes, as in 
Pr, occurred among the different loss functions for the shown metrics. The latter can also be understood by the 
smaller differences among the rankings of the best-performing combination of architectures and loss functions 
per individual predictand, for example, BG (ranked #1) and Gauss (#17) for Pr, Gamma (#1 and #1) and Gauss 
(#3 and #5) for Pw and WS, respectively.

In the case of the multivariately trained transfer function, the one shown in Figure 3 corresponds to the one that 
had the best joint performance, which has an architecture of Upp-3-128-1-T. The individual loss functions in this 
case are the previously mentioned best-ranking ones individually. Despite having a reasonable performance in 
most of the predictands, the ranks of TN (#21) and WS (#27) indicate their lesser performance in some of the 
metrics, for example, BM and Bp02 for TN, and, KSS and Bp98S for WS. It was noted that some multivariately 
trained models became rather specialized in some of the predictands (Pr, Pw, Rn, TM and TX ranking ≤#5), while 
performing poorly in the others, which is undesirable.

Figure 3. Box plot array of validation metrics for the best-performing methods per training loss scenario. The scenario where the same transfer function was trained 
multivariately is labeled as All. The predictands are ordered column-wise and the metrics row-wise. The abbreviations of the metrics are taken from Table 2, except for 
ρ, which depending on the predictand is either Pearson or Spearman correlation. Except for Bp98S, all the metrics shown were calculated from the deterministic results. 
The boxes comprise the 25th and 75th percentile and the median, and the whiskers the 10th and 90th percentile. The numbers inside the brackets show the overall 
ranking per predictand.
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The rationale behind the multivariately trained transfer functions scenario is to preserve the relationship 
among the predictands and corresponding atmospheric conditions with a particular awareness of extreme 
compound events, which is certainly worth inspecting. Nevertheless, this scenario will not be sought here-
after since: (a) the individual models achieved considerably higher performances, (b) despite being trained 
simultaneously, the loss functions are individually calculated, and (c) the pursued coherence could be lost for 
univariately calculated stochastic results, as hereby implemented. The latter could even increase the biases 
of multivariate hazard estimates (Zscheischler et al., 2019). Posterior efforts for a similar scenario suggest a 
multivariate copula approach (François et al., 2020) which would allow, ideally, interdependent stochastical 
results, thus addressing (b) and (c). A comprehensive validation framework, comparable to VALUE, would 
also be needed for multivariate characteristics. Several efforts are underway toward the latter (e.g., Bevacqua 
et al., 2021; Zscheischler et al., 2020), still, these procedures are quite new and do not offer yet a thorough set 
of multivariate indexes as for example, VALUE. For the time being, such further investigations are beyond the 
scope of the present paper but could improve the analysis of future extreme compound events under climate 
change.

Despite the aforementioned limitations of the methodology, we find the performance of the best-ranked 
individual transfer functions suitable to generate the downscaled data set from the EUR25 bias-corrected 
ensemble.

3.2. Bias-Correction of Predictors

To evaluate and show the performance of the bias-correction method, we produced portrait plots (Gleckler 
et al., 2008) of the relative mean bias, the ratio of the variances, and, Kolmogorov–Smirnov statistic and p-values, for 
both bias-corrected and raw EUR25 data (see Figure 4). The perfect score for the metrics shown is zero (included in 
the white triangles), and, no symbol in Figure 4c is the ideal scenario. This figure aims to provide measures to the first 
assumption: “perfect prognosis means that the predictors have to be realistically and bias-free simulated in present 
climate” (Maraun & Widmann, 2018). Furthermore, an abbreviated nomenclature is used for the models (based on 
Table 1) in the following figures, where the space is limited, that is, GCM_RCM_RCM-version_member. Abbre-
viations: CNRM-CERFACS-CNRM-CM5 → CM5, ICHEC-EC-EARTH → EC, MOHC-HadGEM2-ES → ES, 
MPI-M-MPI-ESM-LR → MPI, NCC-NorESM1-M → Nor, CNRM-ALADIN63 → ALA, CLMcom-ETH-COSMO- 
crCLIM-v1-1 → COS, and ICTP-RegCM4-6 → Reg.

Generally, raw (lower right triangles) meridional wind is the atmospheric variable with the highest biases when 
compared to ERA5. Other noteworthy cases are the characteristics of geopotential and temperature for the raw 
data, where almost no bias is found but rather high differences in their variances are observed. Remarkably, most 
of the bias-corrected permutations of variables and GRCMCs (upper left triangles) show metric values very close 
to the ideal ones (white colored triangles) for both (a) and (b), with exceptions in several q200 combinations but 
still quite low differences, that is, from 1% to 10% for (a), and from 1.01 to 1.10 for (b). Hence, we can sustain to 
a great degree the bias-free portion of the first assumption for the predictor sets.

Figure 4c shows a lower amount of white triangles, even for bias-corrected variables. Since the bias-correction 
method is based on mean and variance, it is expected to have better performance in those aspects. Moreover, 
the deficiencies in the Kolmogorov–Smirnov statistic are linked to the limitations of the bias-correction method 
employed. The observed differences for some predictors, for example, several cases of tcc have between 5% and 
11% for KSS, could cause systematic biases in the downscaled values, particularly in the predictands for which 
tcc is highly relevant, like Pr and Rn. This bias in tcc has also been detected in other studies (e.g., Katragkou 
et al., 2015).

Furthermore, the symbols in Figure 4c provide a measure of the number of pixels in which the null hypothesis 
of the Kolmogorov–Smirnov test can be rejected with a p-value < 0.05. Thus, no symbol over a white upper 
left triangle would be the ideal case per variable–GRCMC, which could be a criterion for the “realistic” bit of 
the aforementioned PP assumption. The latter coupled with values very close to the ideal one (white triangles) 
in the other two metrics could be interpreted as fulfilling it. Nevertheless, not a single GRCMC (column-wise) 
show white upper triangles for all the variables in all three metrics, which should be pondered for the results. 
Furthermore, many triangles with medium values of KSS show no symbol above them, like tcc, which could 
be interpreted as false positives. Quantile mapping approaches could be used to improve this particular aspect 
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of the bias-correction method for the predictor sets, which is out of the scope of the present project. Still, these 
techniques could introduce unexpected artifacts for the projected climate conditions, for example, under unseen 
climate (extrapolating conditions), and should be carefully evaluated with a similar approach to the one presented.

3.3. Historical Period Evaluation

Another crucial aspect for trustworthy PP statistically downscaled projected climate relies on the credibility of 
the downscaled predictands during the historical period (Maraun & Widmann, 2018). Since GCMs are usually 
“free-running” models, they are not synchronized with for example, the ERA5 reanalysis, thus, no strict temporal 
comparison should be done. Thus, the tests are carried out on a climatological basis, for which we selected the 
training period 1979–2005. The subfigures in Figure 5 were developed to elucidate relevant statistical aspects of 
the observed and downscaled predictands.

Figure 5 shows the daily PDFs of the observed values, EUR10 and the downscaled daily values for a selection 
of GRCMCs (for all the combinations of downscaled values see Figure A2 for Dresden). Since the deterministic 
approach uses the expected value of the correspondent fitted PDFs, which would generate more values closer to 
the mean and less toward the tails, the shown values correspond to the stochastical projections. The analogous 
EUR10 variables show notable differences against ReKIS (on dark gray) in their distribution for almost all vari-

Figure 4. Portrait plots of both bias-corrected and raw EUR25 models against ERA5 arranged row-wise by predictor and column-wise by model. The metrics were 
calculated pixel-wise from daily values between 1979 and 2005 and the values shown correspond to the median of all the pixels. The predictors are named by variable 
and pressure level in hPa. The upper left (lower right) triangles are related to the bias-corrected (raw) predictors. Note that the color scale is shared, yet with different 
numerical breaks. To highlight variables whose performance is remarkably close to the perfect value (zero), a modification to the original portrait plots is introduced, 
that is, a class in white with values between −1% and 1% in (a), 0.99 and 1.01 in (b) and, 0% and 1% in (c). Additionally, the symbols in (c) are related to the number 
of pixels (from 1,024) in which the null hypothesis of the Kolmogorov–Smirnov test (both sets are drawn from the same continuous distribution), can be rejected 
(p-values < 0.05), that is, no symbol → 0, 0 < ◦ < 10, 10 ≤ △ < 20, 20 ≤ ▽ < 50, 50 ≤ ⋄ < 200, 200 ≤ □ < 500, 500 ≤ +< 1,024, and × → 1,024 (pixels).
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ables, but especially for Rn, which agrees with the findings of Katragkou et al. (2015). On the other hand, it can 
be appreciated how most of the downscaled datasets behave remarkably similarly to the observed ones. The last 
two mentioned features of both datasets elucidate the added value of our approach by obtaining a more accurate 
distribution of daily values in comparison with RCM output. Naturally, there are some features of the observed 
predictands which are not entirely captured by the downscaling method, for example, (a) the values close to the 
wet-day threshold in Pr, and (b) the peak before 2.5 kW · h · m −2 in Rn, among others. In particular, (a) can be 
partly explained by the large range and weight on the tail for Pr, that is, between 0 and ∼320 mm · day −1 (corre-
sponding to the central European floods of August 2002), which forces a shift in the BG PDF and its mean values 
(vertical lines). The mean values of Pr show a systematic bias of approximately 1 mm · day −1 (absent for the 
validation data set), which needs to be taken into account for further uses of the data set.

Figure A1 (complement of Figure 5) displays the daily averages for the mean, and the 5th and 95th percentiles, 
to show the behavior of the extreme values. It can be observed again that Pr is the hardest predictand to prop-
erly model, with some downscaled models showing higher p95 precipitation values for boreal autumn, instead 
of summer (expected), for example, NorESM1-M_RegCM4-6_v2_r1 and NorESM1-M_ALADIN63_v1_r1 (in 
Figure A2) and Figure A3. Most of the presented stochastic results seem to have quite a good fit for the three 
metrics shown. Interesting biases, which are minor but consistent, can be seen for the stochastic values of Rn, 
for example, (a) the underestimation of the mean (during summer) and the fifth percentile (for most of the year) 
values, yet considerably less than EUR10, (b) the overestimation of the 95th percentile from July until the end of 
the year. These findings could be explained by the fact that tcc is the variable which obtained higher KSSs (see 
Figure 4c) conjugated with the previously mentioned sensitivity of Rn to it. The latter, besides lower radiation 
being the evident physical outcome of higher cloud coverage, was proven by mistake during the first iteration 
toward these results. The range of tcc in ERA5 is [0,1] and [0,100] (%) in EUR25, which was initially neglected 
and caused to have extremely noisy downscaled values for Rn (not shown) but also, though less severely, for Pr 
and TX. This anecdote converges with the second assumption (“informativeness”) of the PP methodology, which 
states that the selected predictors should explain a large fraction of the variability. Additionally, the coupling of 

Figure 5. PDFs of daily values for selected GRCMCs for EUR10, the downscaled predictands (stochastic runs only), and the observed ones, between 1979 and 2005 
(training period—historical runs for the GRCMCs), divided column-wise by data set and row-wise by predictand. Pr shows values ≥1 mm · day −1 only. The vertical 
lines show the mean value per data set.
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the dependency of Pr on tcc and the described differences among the PDFs for tcc in ERA5 and bias-corrected 
EUR25 (Figure 4c) could partly explain the systematic biases seen in Pr, particularly about the wet-day threshold.

Since Figures 5 and A1 show the aggregated daily data for all the study region, smaller scale particularities might 
be easily overlooked. Therefore, Figures A3, A4, and A5 were added to display the performance of the three 
representative subregions. Note that generally the downscaled data resembles the observed one better than the 
EUR10 output but it is even clearer under topographically complex terrain (Fichtelberg), as seen particularly for 
WS in Figure A4, which is severely underestimated in EUR10.

Figure 6 displays the maps of a selection of metrics and GRCMCs, aggregated for the training period for all the 
study region. It is noteworthy that most of the combinations which are represented by S1 indicate a robust perfor-
mance, in this case, also on the spatial distribution aspect. The latter can be inferred by the distributed values 
close to zero, as well as their absolute means. Once more, it is shown that Pr remains the most challenging varia-
ble to accurately model, as seen in BP98 and KSS (represented by S2). The differences in BP98 are rather small 
for extreme precipitation events (−2.5 to 5 mm · day −1). The shortcomings in KSS are important and could be 
explained by the aforementioned discrepancies close to the wet-day threshold. Still, after this threshold, the shape 
of the related downscaled PDFs resemble the observed ones satisfactorily. The differences observed in BP02 for 
TM and TN are relatively minor, except for EC_COS_v1_r1. Still, the biases for the aforementioned GRCMC 
(0.51 and 1.23°C, respectively) are also rather small for extreme events.

Moreover, it should be clarified that no hard limits or boundaries were set for the downscaled values in contrast 
to for example, Lange (2019), with which the stochastic extrapolated values could be substantially higher (lower) 
than the observed ones. Also, a side effect of the stochastic approach is the detriment of the spatial correlation 
(Quesada-Chacón et al., 2022), which should be addressed in future research. Despite the hereby argued short-
comings among the statistical properties of the pseudo-observations, the results are highly satisfactory. Thus, we 
consider the downscaled projections to be of considerable value for impact modelers.

3.4. Downscaled Projected Climate

Due to its higher amount of members from the EUR25 subset and current anthropogenic CO2 usage, RCP85 
will be employed hereafter for analysis. To provide impact modelers with a curated selection of best-performing 

Figure 6. Maps of selected metrics and GRCMCs between the observed values and the downscaled ones for the training period (stochastic runs), arranged column-
wise per metric, clustered by GRCMC, and row-wise per predictand. Pr shows values ≥1 mm · day −1 only. Note that, for enhanced visual clarity, scale 1 (S1) represents 
all the maps except for BP98 and KS for Pr, and BP02 for TM and TN, for which scale 2 (S2) applies. The value at the bottom right corner denotes the average value per 
GRCMC-predictand combination.
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downscaled models, a subset of VALUE metrics (KSS, BM and Bp98) were calculated for the GRCMCs to 
rank them according to the performance in the training period. The top nine models (out of 18) according 
to their performance between 1979 and 2005, mentioned by increasing rank with the abbreviated GRCMC 
nomenclature, are: EC_COS_v1_r1, MPI_COS_v1_r1, EC_COS_v1_r12, EC_COS_v1_r3, Nor_Reg_v1_r1, 
MPI_COS_v1_r3, Nor_COS_v1_r1, ES_COS_v1_r1, MPI_COS_v1_r2. Note that three runs each of both 
ICHEC-EC-EARTH and MPI-M-MPI-ESM-LR, all with CLMcom-ETH-COSMO-crCLIM-v1-1 (ranked #1, 
#3 and #4 and #2, #6 and #9, respectively), are between these top nine and possibly have a high degree of simi-
larity and dependency.

As discussed, the biases during the historical period are rather close to zero, except for Pr. Due to these minor but 
present discrepancies during the historical period, it was decided to calculate the differences for each GRCMC 
per future subperiod individually against its historical period (delta change approach), instead of from ReKIS. 
Consequently, Figure  7 shows the spatial distribution of the aforementioned differences among predictands, 
GRCMCs (ranked #1, #2, and #5, respectively, to show more interdependent GRCMCs) and future periods.

The results in Figure 7 are generally in agreement for FF with studies on coarser resolution, for example, average 
temperature increases ∼3–4°C and increments of less than 1 mm · day −1 for SDII, for example, Baño Medina 
et al. (2022). As observed more clearly in variables like Pw, TM, TN, and TX, the downscaled values toward the 
end of the century are considerably higher than the ones during the observed period, as expected for the worst-
case scenario. This fact relates to the last PP assumption: suitability of the transfer function structure, that is, “…
the influence of the predictors on the predictand (possibly including interactions between the predictors) needs to 
be reasonably well incorporated. In a different climate, predictors and predictand will likely enter values that are 
outside the observed range. Therefore, for the downscaling model to be sensible, its structure needs to sensibly 
allow for at least moderate extrapolations…” (Maraun & Widmann, 2018). Thus, due to the shown results, we 
corroborate the suitability of the DL models employed. The conjunction of this third assumption with the second 
one (informativeness) is known as the “time-invariance or stationarity assumption: if all predictors relevant for 
climate change are included, and their influence on the predictand is sensibly modeled, also beyond observed 
states, the model is valid in a future climate” (Maraun & Widmann,  2018). Therefore, we consider to have 
complied, to a high degree, with all three major assumptions of the PP methodology, and thus, the models are 
valid under future conditions. Consequently, the related projections should be valid as well.

Moreover, note that the differences between EUR10 and the downscaled values are largely similar for all the 
predictands, both spatially distributed and averaged. The latter can be interpreted as properly conserving the climate 
change signal within the GRCMs. The largest discrepancies among the differences are seen for Rn, which are 
consistently lower than the downscaled values. This observation agrees with previously detected shortcomings of 
Rn in RCMs (Katragkou et al., 2015). As illustrated in for example, Figure 5, the downscaling methodology corrects 
the PDFs for historical conditions, while EUR10 exhibits significant deficiencies for that period, which are likely to 
persist in the future. Also, note how the downscaled values seem to improve substantially the spatial distribution of 
highly consistent differences, for example, (a) Pw in Figure 7a, (b) WS in Figure 7a, and, (c) Pr_SDII in Figure 7b, 
more clearly observed with MPI_COS_v1_r1. The achieved spatial refinement is what we aspired to and is a highly 
satisfying outcome which we believe further validates the aggregated value of the downscaling approach.

The projected possible unobserved future climatic conditions increase the possibilities of univariate extreme 
events, as well as compound extreme events, which need to be analyzed with daily data, as here presented. Yet, 
the analysis of compound extreme events is out of the scope of the present paper. Furthermore, the presented 
data set can be further analyzed to for example, calculate extreme climate indices (Zhang et al., 2011) to provide 
summarized numerical estimates of future changes. Still, the aforementioned indices were designed for precip-
itation and temperature only, calculated univariately. Due to the growing need for multivariate ensembles of 
projections, analogous multivariate indices are sorely needed.

Additionally, the trend of the climate change signals are shown in Figure A6, which displays a matrix of time 
series plots for the yearly averages of the entire downscaling region for all the combinations of predictands and 
GRCMCs. As expected from free-running GRCMCs, the observed and downscaled values for the same year can 
have appreciable differences, nonetheless, the yearly variability of the downscaled values resembles the one of 
ReKIS for the past and agrees with the signals observed in studies with a coarser resolution (e.g., Baño-Medina 
et al., 2022; Lange, 2019).
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3.5. Caveats

Bearing transparency in mind and with the hope that future users will be able to make the most out of the hereby 
presented data set, we list the following caveats:

•  Both stochastic and deterministic runs are provided for all the predictands. Its selection will depend on the 
application, for example, stochastic runs should be preferred if extreme values are relevant.

Figure 7. Maps of the differences between averaged climatologies of the future and the historical runs (delta change 
approach) for all predictands (column-wise) of a selection of GRCMCs. The different GRCMCs are ordered row-wise 
in ascending ranking order, note that both EUR10 and the deterministically downscaled values (Det) are shown for each 
GRCMC. Precipitation was separated into the fraction of wet days (R01) and SDII. The value at the bottom right corner 
denotes the absolute average per combination. For better appreciation of the spatial variability, the predictands were grouped 
by similar range in their differences for future scenarios. Note the shared numerical breaks in the color scales.
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•  Some of the yearly averaged values for CM5_COS_v1_r1 in 2065 showed relatively high values in 2065 
(Pr_R01, Pw and TN), which might be explained by rather extraordinary atmospheric conditions for this year, 
causing systematic extrapolation difficulties.

•  The consistent biases in Pr should be carefully taken into account in impact models, which we believe is highly 
influenced by the persistent biases within the corrected EUR25 predictors, particularly tcc. It might not be 
an issue for higher values (>10 mm · day −1) but would for values close to the wet-day threshold. Additional 
bias-correction methods, aware of the extrapolation needs of the approach, could be employed to solve this 
issue.

•  EC_COS_v1_r1 was collectively the highest ranked GRCMC. Nevertheless, it was the last ranked model 
(#18) for Pr, that is, most of the other predictands had outstanding performances with this GRCMC.

•  Some particularities may arise in the case of stochastic runs:
 –  Loss of the spatial correlation within each predictand.
 –  The relationship among closely related characteristics of different predictands may be lost. This could 

also be the case for deterministic runs. This issue should be addressed with for example, the aforemen-
tioned approach of training the transfer functions with a multivariate copula loss function and/or intro-
ducing physical constraints within the DL models (Hess et al., 2022).

 –  Unexpected artifacts, such as TM being lower than TN. This could be addressed with an approach similar 
to Lange (2019), where instead of modeling TN, and TX individually, the daily range and the skewness 
of the daily temperature cycle were modeled.

4. Summary and Outlook
In the present paper, we extended the pre-established methodology (Baño-Medina et al., 2022; Quesada-Chacón 
et al., 2022) to provide the highest statistically downscaled spatio-temporal resolution multivariate projection 
ensemble currently available. It is the first daily 1 km ensemble data set until the end of the century. For this, 
we  employed deep learning models to develop transfer functions under the perfect prognosis statistical downscal-
ing approach for: precipitation, water vapor pressure, radiation, wind speed, and, maximum, mean and minimum 
temperature. Such high spatio-temporal resolution multivariate ensembles are urgently needed for impact studies 
(Lange, 2019). The transfer functions are based on the U-Net and the U-Net++ architectures, which have proven 
to substantially improve their performance. A subset of the ReKIS data set for Saxony was selected as predictand. 
The predictor set under perfect conditions is ERA5 with a total of 26 atmospheric variables. The projected 
ensemble is based on CORDEX EUR11, which includes 18 runs with RCP85, 4 with RCP26, and 1 with RCP45.

Several metrics from the VALUE framework were employed to quantify the performance of the transfer func-
tions, which is, in general, highly satisfactory, also for the newly introduced predictands, that is, water vapor 
pressure, radiation, and wind speed, all for which the Gamma loss function yielded the best fit. The models for 
the three daily temperatures showed adequate results with the Gaussian loss function, and, as expected, precipi-
tation remains the most challenging variable to accurately model, even with the Bernoulli-Gamma loss function.

Special consideration was given to the assumptions that support the perfect prognosis approach (Maraun & 
Widmann, 2018). Additional experiments and tests were executed to ensure, to a high degree, compliance with those 
major three assumptions, which were mostly fulfilled. The first measure consisted in processing the EUR11 ensem-
ble to ensure its “realistic” and “bias-free” features, for which the Scaling Delta bias-correction method from Baño 
Medina et al. (2022) was employed. The EUR11 data set was upscaled (EUR25) to match the grid of ERA5, 0.25°, 
and then bias-corrected. Despite the considerable efforts, minor discrepancies between the statistical characteristics 
of some predictors were observed, for example, PDF differences between ERA5 and EUR25 for total cloud fraction, 
which could be responsible for the slight performance drops and systematic biases observed in the projected ensem-
ble, particularly for precipitation and radiation. Nevertheless, thorough conformity with the other two assumptions 
(time-invariance) appears to be less debatable, thus, we consider the transfer functions to be highly suitable for down-
scaling the ensemble. We suggest analyzing further bias-correction methods for the predictors to address the aforemen-
tioned issues, for example, a quantile mapping approach aware of the expected unobserved atmospheric states.

In general, the averaged downscaled projected climate agrees with coarser estimates in predictands like precipita-
tion and temperature, that is, increases of ∼3–4°C in temperature and less than 1 mm · day −1 in wet-days toward the 
end of the century. Additionally, the downscaled climate change signal generally agrees with the corresponding 
CORDEX one, except for Rn, which shows biases confirmed in the literature (Katragkou et al., 2015). The spatial 
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features from CORDEX were satisfactorily refined with the downscaling approach. The provided daily data can 
provide better insights into extreme events than other temporarily aggregated data available. We hope that this 
data set proves useful to impact modelers interested in the region since it could drive more precise and diverse 
models in fields like agriculture, ecology, and flood risk. We also provide a list of caveats for the potential users 
and enumerate the best-performing combinations of GCM-RCMs.

Although the study area is very localized, the shown methodology is scalable to other regions, datasets, and 
spatio-temporal resolutions. Generally, the methodology would profit from higher spatio-temporal resolution 
predictors and predictands. One straightforward possible extension of the shown workflow would be to use recent 
daily 1 km datasets for the past (Karger et al., 2021, 2022) as predictands (with ERA5 and CORDEX as predic-
tors) in similar applications for anywhere in the world. Additionally, the latest generation available of GCMs, 
CMIP6 (Eyring et al., 2016), could be also downscaled with similar approaches.

Major improvements in the present methodology could be achieved by employing multivariate copulas (e.g., François 
et al., 2020) as the loss function of the deep learning models. This would ideally allow better preservation of the 
spatio-temporal features, and the interdependencies (coherence) between near-surface variables under both stochastic 
and deterministic conditions. Such a data set would allow better analysis and prognosis of future compound events 
(Zscheischler et al., 2018), which is currently limited due to the univariate nature of the employed methodology. To 
properly analyze such features, comprehensive multivariate metrics frameworks analogous to VALUE (Gutiérrez 
et al., 2019; Maraun et al., 2014) are needed. Finally, the integration of: (a) enhanced predictor bias-correction methods, 
(b) physical constraints within the deep learning models (e.g., Hess et al., 2022), (c) mechanistic statistical downscaling 
features (e.g., CHELSA, Karger et al., 2017), as well as (d) the aforementioned multivariate coherence, could prove to 
be the optimal next iteration of the perfect prognosis statistical downscaling methodology.

Appendix A: Supplementary Material
This section comprises a collection of high-resolution figures that serve as valuable complements to the visual 
representations included in the main body of the paper. By offering additional views and detailed illustrations, 

Figure A1. Day of the year plots of a selection of GRCMCs for EUR10, the downscaled predictands (stochastic runs only), and the observed ones, between 1979 and 
2005, divided column-wise by data set and row-wise by predictand. Pr shows values ≥1 mm · day −1 only. Each panels shows the 5th and 95th percentiles, and the mean. 
Each vertical grid line corresponds to the month's first day. To improve the visualization of Pr, the y-axis has a square-root transformation. Complement of Figure 5.
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Figure A2. Statistical summaries for the subregion of Dresden (see Figure 1a) of all the downscaled predictands, and the observed, between 1979 and 2005 (training 
period—historical runs for the GRCMCs), divided column-wise by GCM and row-wise by predictand, the colors indicate either the observed data or the RCMs; 
stochastic runs only. (a) PDFs of daily values, the vertical lines show the mean value per data set. (b) Day of the year plots for the 5th and 95th percentiles, and the 
mean. Each vertical grid line in (b) corresponds to the month's first day. To improve the visualization of Pr, the y-axis in (b) has a square-root transformation.

Figure A3. Statistical summaries for the subregion of Dresden. (a) Is analog to Figure 5 and (b) to Figure A1.
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Figure A4. Same as Figure A3 but for Fichtelberg.

Figure A5. Same as Figure A3 but for Vogtland.
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these supplementary figures enhance the overall understanding of the research, enriching the methodology and 
supporting the results presented in the study. Each figure is sequentially numbered to correspond with its refer-
ence in the main text, facilitating seamless cross-referencing for readers.

Data Availability Statement
The raw datasets and their respective sources are: ERA5 (Hersbach et  al.,  2020), CORDEX-EUR11 
(Jacob et  al.,  2014), and ReKIS  (2021). The pre-processed predictors and predictands are available 
at Quesada-Chacón  (2023c). Due to its size, only a subset of the complete ensemble could be hosted at 
Quesada-Chacón  (2023b). The subset contains the downscaled values of all predictands for different 
high-performing combinations of GCM-RCMs of both stochastic and deterministic runs for eight histori-
cal runs, eight RCP85 runs and one RCP26 run. The other ensemble members can be obtained through the 
corresponding author. The code used to train the DL models, bias-correct the predictors and to generate the 
projections can be found at Quesada-Chacón (2023a). The employed updated version (2.0.0) of the contain-
erized software environment is hosted at Quesada-Chacón (2023d). The figures presented in this paper can 
be found in their original resolution at Quesada-Chacón (2023e), ensuring clear and high-quality visual 
representations for readers.
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