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Abstract
Hydrogeological information about an aquifer is difficult and costly to obtain, yet essential for the efficient

management of groundwater resources. Transferring information from sampled sites to a specific site of interest
can provide information when site-specific data is lacking. Central to this approach is the notion of site similarity,
which is necessary for determining relevant sites to include in the data transfer process. In this paper, we present
a data-driven method for defining site similarity. We apply this method to selecting groups of similar sites from
which to derive prior distributions for the Bayesian estimation of hydraulic conductivity measurements at sites of
interest. We conclude that there is now a unique opportunity to combine hydrogeological expertise with data-driven
methods to improve the predictive ability of stochastic hydrogeological models.

Introduction
A good understanding and accurate description of

subsurface conditions of a hydrogeological site is impor-
tant for a variety of applications. Examples include water
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management for freshwater supply, oil production, CO2

sequestration, and modeling the transport of contaminants
in the subsurface. Unfortunately, knowledge of such con-
ditions can be highly uncertain due to the heterogeneity of
subsurface properties such as hydraulic conductivity and
porosity. Further complicating matters, standard subsur-
face exploration techniques are challenging and costly. As
a result, limited data are typically available to characterize
a given site, making prediction uncertainty very high.

Under such circumstance of data scarcity, prac-
titioners should incorporate all available data sources
on a given site to reduce the uncertainty as much as
possible (Rubin et al. 2018). Bayesian methods have been
proven to provide a framework wherein heterogeneous
data sources can be joined to represent the available
knowledge of a given situation (Heße et al. 2019a).
This is achieved by distinguishing between two different
sources of data: case-specific data and background data,
which are then combined into a full representation using
Bayes’ theorem (Kruschke 2010; Gelman et al. 2013).
Case-specific data, which in the case of hydrogeology
would be in situ data, are represented through the
likelihood, whereas available background knowledge
is represented through the prior distribution (Ulrych
et al. 2001; Gelman 2006). The use of Bayesian methods
has drawn criticism, specifically regarding the choice of
prior distribution (Easwaran 2011a, 2011b). The choice
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of prior distribution impacts the final result of Bayesian
inference; a poorly chosen prior can reduce the accuracy
of the resulting posterior. There exists no single consensus
on how to define and select a prior distribution, or how to
properly represent a lack of knowledge via diffuse priors.

We propose to use informed prior distributions , that
is, priors that are derived from relevant background
knowledge, which reflect a state of partial certainty. In
addition to avoiding the negative impact of a poorly
chosen prior on the final result, the use of informed priors
has other benefits. In a data-scarce context, where the
parameters of the likelihood are estimated using very few
measurements, an informed prior can yield more accurate
predictions of site characteristics than can the use of flat
priors. Depending on its form, an informed prior can also
help researchers choose the most appropriate exploration
technique and guide its deployment. Overall, this can
reduce exploration costs and help determine appropriate
experimental design.

Cucchi et al. (2019) introduced the exPrior algorithm
to derive informed priors. The algorithm fits a Bayesian
hierarchical model with measurements obtained from rel-
evant sites, yielding a posterior predictive distribution that
can be used as a prior distribution for an unexplored site.
This algorithm requires a user to provide hydrogological
measurements in order to derive an informed prior. In
data-scarce scenarios, a user can obtain data from an
open-source database: the World-Wide HYdrogeological
Parameters DAtabase (WWHYPDA) (Comunian and
Renard 2009). Both the exPrior algorithm and functions
to load and query the WWHYPDA can be accessed in the
R programming language: The algorithm is implemented
in package exPrior (Heße et al. 2021), and the database
can be accessed using geostatDB (Heße et al. 2019c),
an R interface for accessing hydrogeological information
from the WWHYPDA.

Cucchi et al. (2019) recommends to derive informed
priors with exPrior algorithm using data from sites that
are similar to the site of interest, which we call the
target site. Similarity is defined on the basis of physical
characteristics, which refer to the state of the physical
system under consideration, as opposed to epistemic
characteristics which refer to how the observer interacts
with the physical system to generate information. (Cucchi
et al. 2019). Ultimately, the selection of similar sites is
left to domain experts.

In theory, using as much data as possible to derive
a prior, or assimilating all measurements from roughly
similar sites, could result in an informed prior with large
uncertainty, perhaps not much better than a flat prior.
Using instead measurements obtained from sites that are
very similar to the target site would yield a more peaked,
relevant informed prior. However, there may exist sites
where little to no data from similar sites is available to
inform a prior distribution. Clearly, a good compromise
is needed when pooling data from a given database
(Halpern 2003; Jaeger 2006). In statistics, this is known
as the reference class problem; in other words, that there
is no unique reference class from which a given object

could be considered to belong (Hajek 2007; Hajek and
Hitchcock 2016; Wallmann 2017). Within the context of
hydrogeology, this means it is not clear how to decide
from which sites to transfer data. Is a target site most like
sites with similar rock types? Or is it more similar to sites
from the same type of environment or region?

Such a procedure of using only data from a limited
number of similar sites is quite common in the related
field of hydrology. In this domain, criteria used to select
sites include physical proximity (Merz and Blöschl 2005)
and climatic and physiographic properties (Blöschl and
Sivapalan 1995; McIntyre et al. 2005). Additionally,
one can use empirical transfer functions (Zacharias and
Wessolek 2007; Kumar et al. 2013) or rely on expert
knowledge Li et al. (2017).

We propose an alternative approach: to use machine
learning to determine which sites to use to derive informed
priors. Algorithmic selection could ensure reproducibility,
as well as encourage the evolution of the notion of site
similarity with the increased availability of data. In partic-
ular, we suggest Hierarchical Agglomerative Clustering,
which partitions a dataset into similarity-based groups.
This algorithm has been successfully applied in other
fields to determine groups of similar objects in a dataset.

The paper is organized as follows: first, we introduce
our method for determining a set of similar sites for a
given target site, using the WWHYPDA as a reference
database. We then outline a use case for our method: to use
it as a preprocessing step for deriving informative prior
distributions. We describe an experiment to determine
whether our method improves the quality of informative
priors derived with the exPrior algorithm, again using
data from the WWHYPDA. In the discussion, we include
explanations of scenarios where our method for deriving
informed prior distributions with similar sites did not
produce better results than using a prior derived from all
available information. Finally, we outline directions for
further research and improvement of our method.

Research Method
In the following, we present a data-driven method

for defining site similarity. Using the WWHYPDA as a
reference database, we represent hydrogeological sites
as feature vectors, then use clustering to group them
by similarity. We then apply the method as a data
selection step for deriving informative prior distributions
of hydraulic conductivity for 52 sites in the WWHYPDA.

Data: The WWHYPDA
To demonstrate our method, we use the WorldWide

HYdrogeological Parameters DAtabase (WWHYPDA)
introduced by Comunian and Renard (2009), the largest
open source database of hydrogeological measurements.
This database is designed to store values of the most
important properties of earth materials, supplementing
hydrogeological studies with additional data. The tabular
database has an entity-relationship schema, where a
basic entity is a sample of measurements taken at
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a site. Additional information about the site exists
in separate tables, with which a user can link to a
measurement. In particular, the database relates each
sample of measurements to a hydrogeological site to
an earth material (rock type) and to a hydrogeological
environment (environment type). Rocks and environment
types are presented as tree structures, where instances are
organized into parent and child relationships. The base
elements (parents) correspond to most common families,
the sub elements are refinements in the classification.
We leave a more detailed description of the content and
structure of the database to Comunian and Renard (2009).

The WWHYPDA is, within knowledge of the authors,
the largest database of hydrogeological parameters. Cur-
rently, it contains a total of 20,523 measurements of 6
hydrogeological parameters spanning 128 sites. Addition-
ally, the WWHYPDA is an open source and open-access
database, which a user can query with SQL without barri-
ers. In this paper we focus on hydraulic conductivity; the
most common measurement type in the WWHYPDA.

For the purpose of demonstrating our method, we
extracted from all 12,505 measurements of hydraulic
conductivity, and for each datum we obtained the
following features:

• site name: the name of the site where the measurement
was taken,

• rock type: the corresponding rock type of the measure-
ment,

• parent rock type: the family to which the rock type
belongs,

• environment type: the corresponding hydrogeological
environment of the measurement (e.g. “Sedimentary
environment,” “Volcanic environment”),

• parent environment type: the family to which the
environment belongs,

• fracturation degree: the fracturation degree at the
location of the measurement.

We use these six categorical features, or attributes,
to characterize hydrogological sites in the database. The
data in our method is therefore organized by site; a basic
entity is a site name, and for each site we have a set of
measurements of hydraulic conductivity, as well as six
categorical features.

Hierarchical Agglomerative Clustering Using Categorical
Feature Data

Hierarchical agglomerative clustering (HAC) is
among the most established approaches to clustering data
(Bandyopadhyay and Saha 2013). The algorithm parti-
tions data into groups based on the similarity between
observations (in our study between sites), computed
mathematically as a distance. This approach is best suited
for clustering observations with an already existing hier-
archical structure (Hastie et al. 2009), such as the parent
child categorization of earth materials in the WWHYPDA
(see previous Section Data: The WWHYPDA) and other
geological and hydrogeological classification schema. To

familiarize the reader with HAC, let us briefly describe
the algorithm in three steps.

Step One: HAC Input Data and Proximity Matrix
We begin with a set S of observations, S = {v1,

v2, . . . , vN } that we wish to partition into clusters.
Here, each v i is a vector describing the attributes of
one hydrogeological site. To create a dataset suitable for
clustering, we first arrange S into a row wise observation
attribute matrix, where each v i becomes a matrix row,
and attributes of the v i are the matrix columns. Next, we
compute a proximity matrix comprised of the pairwise
distances between rows of the observation attribute
matrix. This becomes the input data for HAC.

The distance metric used should match the type(s)
of data present in the v i . A standard distance used is
the Euclidean distance, which measures distance between
metric data. For categorical or mixed-type data, one can
use Gower’s distance. In our experiment, we convert the
categorical features obtained from the WWHYPDA into a
set of binary v i . Therefore, we use the Jaccard distance
dJ as the distance metric between two observations. The
Jaccard distance between observations v i and v j is defined
as follows (Lung and Zhou 2010):

dJ

(
vi, vj

) = 1 − J
(
vi, vj

)
,

J
(
vi, vj

) = M1,1

M1,1 + M0,1 + M1,0
, (1)

where M 1,1, M 1,0, M 0,1 are counts of 1-1, 1-0, and
0-1 matches of attribute pair between v i and v j . J is
called the Jaccard similarity coefficient and measures
the proportion of overlapping positive attributes among
non-null attributes. Similar observations have a Jaccard
similarity coefficient close to 1 and a Jaccard distance
close to 0. Other usable distance metrics for binary
observations include the simple matching coefficient
and cosine distance. However, the Jaccard distance is
recommended when working with binary variables with
unequal frequencies of 0 and 1 (Bandyopadhyay and
Saha 2013). This is because the Jaccard coefficient counts
only present attributes, which, in our data, are more
indicative of site similarity than are absent attributes.

We compute a set of N distances for each of the N
vectors v i and arrange them in a proximity matrix, D . D is
a square matrix with dimension N × N , where each entry
represents a distance between observations. Specifically,
each entry of D is the distance between observations i
and j , where D[i , j ] = dJ (v i , v j ), and D[i , j ] = 0 for
i = j . Note that dJ (.) can be replaced by any appropriate
distance or dissimilarity metric.

Step Two: HAC Algorithm
HAC is a bottom-up clustering algorithm, treating

each observation as its own singleton cluster (singleton
refers to a group with only one element). At each iteration,
HAC merges the two clusters with the smallest group dis-
tance, computed from proximity matrix D . The algorithm
stops when all groups have been merged into one large
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cluster. The definition of group distance, called a link-
age method, depends on the variation of the algorithm.
Single linkage, or the nearest neighbor method, defines
group distance as the smallest distance between observa-
tions belonging to each cluster. Complete linkage, or far-
thest neighbor method, defines cluster distance as that of
the largest distance between observations in each cluster.
Average linkage is a compromise between the former two.
Single linkage often creates HAC results with “chaining,”
or a series of many singleton clusters merged at higher
levels. In contrast, complete linkage creates more “round”
clusters that are well defined (Hastie et al. 2009). Thus, in
this paper, we use complete linkage. An HAC clustering
is visualized as a dendrogram, a tree of observations con-
nected by horizontal lines, which represent merges that
the algorithm performs. The height of a dendrogram mea-
sures the proximity between clusters, which, for Jaccard
distance, ranges from 0 to 1. The stats package in the
R Programming language has an implementation of HAC
with complete linkage (R Core Team 2017).

Step Three: Cutting the HAC Tree to Decide k
Finally, we cut the HAC dendrogram horizontally

at a height that produces the k number of clusters such
that the resulting partition best satisfies our criterion for
clustering: that clusters have a small average within-
cluster distance. To determine k we use a selection method
described in Manning et al. (2008), which is to cut a
dendrogram at multiple k and for each cut compute W (k ),
the average within-cluster distance between observations.
For a cut into k groups, we define the average within-
cluster proximity as:

W(k) = 1

k

k∑

i=1

dJCi
, (2)

where dJCi
is the average of the pairwise Jaccard

distances of observations in a cluster C i . Clusters with
one observation are assigned a value of 0. Naturally, a
good partition has a small W (k ). However, on average
W (k ) decreases with k , especially because the number of
singleton clusters increases with k . Therefore, we could
select k*, the “optimal” k , to be that for which the gap
between two successive W (k ) is largest. This method is
commonly referred to as the elbow rule: one visually plots
a set of W (k ) against their successive k and selects the
k* at the elbow of the graph.

However, for the application of predicting site
qualities, we want to avoid singleton clusters, as they
provide no similar sites to a target site. Therefore, we
add to W (k ) a penalty for singletons:

Wp(k) = 1

k

k∑

i=1

(
dJCi

+ 1 (|Ci | = 1)
)

, (3)

where 1 (|Ci | = 1) is an indicator that takes value 1 if
the cardinality of cluster C i is equal to 1 (i.e., C i is a
singleton cluster) and 0 otherwise. We select k* to be the
smallest k for which W p(k ) is minimized.

Validation of Clustering: The Silhouette
Well separated clusters have, on average, small within

cluster dissimilarity and a large between cluster dissim-
ilarity. The silhouette (Rousseeuw 1987) of an object
measures the ratio between its within cluster similarity and
its similarity to its nearest neighboring cluster. Using the
Jaccard distance to measure dissimilarity between objects,
the silhouette s of an object i is defined as:

s(i) = b(i) − a(i)

max {a(i), b(i)} , (4)

where a(i ) is the average within cluster dissimilarity and
b(i ) is the smallest average dissimilarity between i and
members of a different cluster. Silhouettes range from
−1 to 1, where well partitioned objects have silhouettes
close to 1, misplaced objects have a negative value, and
objects that lie between clusters have a value close to 0. To
evaluate the quality of a cluster, we measure its average
silhouette width, which is the average of the silhouettes
of its individual members.

Application: Predicting Hydrogeological Properties
at Unsampled Sites

Clustering results in a grouping of sites by their
observable features (rock type, environment type, and
fracturation degree). We evaluate the relevance of using
the obtained groups as a reference for transferring earth
material properties across hydrogeological sites. The
underlying assumption is that the prediction of earth
material properties at a new site is improved when
limiting assimilated data to sites with similar observable
features only. In this section, we describe the method used
to predict hydraulic conductivity at one site based on mea-
surements at similar sites, and the steps used to evaluate
the extent to which clustering improves prediction.

Predicting Hydraulic Conductivity from Measurements
at Similar Sites: Cucchi et al. (2019) introduced a
Bayesian data assimilation framework for predicting earth
material properties at an unsampled site, or target site,
based on data from similar sites, or reference sites . Data
assimilation is performed in a two-step algorithm that
produces an informative pdf for a hydrological property
of interest at the target site, called ex situ prior pdf . This
ex situ prior summarizes information available about the
property of interest at the target site and can be used as a
starting point for further investigation. In this paper, the
ex situ prior of interest is p(Y |D), where Y is the random
variable for log-transformed hydraulic conductivity and
D are the ex situ data used in the assimilation. Here,
D = yi,j , where yi ,j is the log-transform of hydraulic
conductivity measurement j at similar site i . The data
assimilation framework fits the hierarchical model of the
form

yi,j ∼ N
(
μi, σ

2)

μi ∼ N
(
α, τ 2) (5)
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Figure 1. The procedure for computing a ex situ prior of the distribution of a parameter Y for a target site st .

where μi is the site-specific mean at site i , σ 2 repre-
sents within-site variability and τ 2 represents inter site
variability.

Following the Bayesian framework, hyperparame-
ters α, τ , and σ are given noninformative priors and
their distributions are updated using Markov chain Monte
Carlo sampling (Cucchi et al. 2019). The ex situ prior
is the posterior predictive distribution for Y derived by
marginalization over updated distributions of hyperparam-
eters (Gelman et al. 2014). Methods for fitting the model
to provided data and for deriving p(Y |D) are provided
within the exPrior R package, available on CRAN as
well as GitHub (Heße et al. 2019b). In this paper, we intro-
duce the use of clustering to determine for a target site a
set of similar sites whose measurements are used as ex situ
data D. A general procedure for computing an ex situ prior
of parameter Y at the target site is visualized in Figure 1.

For details, we refer to Cucchi et al. (2019) as well
as the documentation on the project’s GitHub page (Heße
et al. 2019c).

Validation of Prediction Accuracy: Clustering provides
a natural framework for the selection of reference sites to
an unsampled target site st . Sites belonging to the same
cluster as st become reference sites whose measurements
of Y are used to compute an ex situ prior for st . Such
priors can be more predictive of the actual statistical
distribution of Y at st than are priors, computed from
measurements sampled at all available sites, regardless of
proximity to st . In the following, we will call the former
regionalized priors . This nomenclature is borrowed from
a similar procedure in hydrological modeling where
it is used to describe the transfer of parameters from
calibrated, donor catchments to an ungauged, target
catchment. To test the accuracy, we compute regionalized
and nonregionalized priors for sites where we have sam-
ples. Here, nonregionalized priors are prior distributions
computed from all available measurements, regardless of
relevance to st . We determine the prediction accuracy of a
prior by comparing its shape and location to a parametric
estimation of the distribution of measurements in site st ,

which we assume to be Normally distributed with mean
and variance computed from measurements Y taken at st .
We call this the target distribution . Alternatively, one can
use a kernel density estimate of measurements of Y taken
at st . A good prior distribution is as close as possible
to a distribution estimated using actual measurements of
st . To measure prediction accuracy, we look at (1) the
difference between the distributions’ medians (which, for
Normal distributions, is the same as the mean and mode)
and (2) the Kullback Leibler Divergence (KLD), used by
Tang et al. (2016) to measure information from a prior,
between the prior and the target distribution.

To measure the difference in location of a prior and a
parametric estimate, we compute the absolute difference
between their medians. Similar distributions are located
in close proximity. To mathematically determine the dif-
ference between two PDFs, we use the Kullback-Leibler
divergence (KLD). For a parameter Y that is a continuous
random variable, the KLD is defined as:

dKL(p(Y ), q(Y )) =
∫ ∞

−∞
p(Y ) ln

(
p(Y )

q(Y )

)
dY, (6)

where p(Y ) and q(Y ) are density functions of Y . In this
context, p(Y ) denotes the target density, and q(Y ) is an
estimated density of Y . The KLD measures how much
information is lost if we use the estimated density instead
of the actual density of Y . Densities with closer proximity
have a smaller KLD, with 0 being exact similarity.

To assess the value gained from using a regionalized
prior instead of a nonregionalized prior, we compare
(1) the KLD from the target distribution and (2) the
difference in median location from the target distribution.
If a regionalized prior outperforms a nonregionalized
prior, then it will have a smaller divergence from the
target distribution, and its median will be located closer
to that of the target distribution. Therefore, the difference
between nonregionalized and regionalized priors is
positive. If not, then the opposite will be true, that is, the
regionalized prior will be closer in shape and location to
the target distribution; the difference in value is negative.
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Figure 2. Frequency of observable attributes of hydrogeological sites used in clustering. Most common are rock type parent
0 (88%), environment parent 0—generic hydrogeological environment (88%), environment type 50—sedimentary environment
(82%), fracturation degree 1—low fracturation (57%) and rock type 281—Sandstone (41%). The median attribute frequency
is 4%.

Results
We extracted a subset of the hydrogeological dataset,

where we only considered sites where at least two mea-
surements of hydraulic conductivity were taken. This left
us with a set of 53 sites with 12,495 total measurements
of hydraulic conductivity, where the number of measure-
ments per site ranged from 2 to 3072. For each site we
created a categorical vector of its features: rock type,
rock type parent , environment type, environment type
parent , and fracturation degree. Sites can be matched
with multiple instances of rock type and environment
type, for example, one site can be characterized with soil
types “sand” and “gravel” and environment type “fluvial
environment.” Therefore, we transformed the categorical
vectors into a set of 53 binary vectors, where each binary
vector indicated the presence (denoted as 1) or absence
(denoted as 0) of one single instance of a hydrogeological
feature. We then arranged these binary vectors into
the row wise observation attribute matrix, where rows
represented sites and columns represented site attributes.

Let us start by giving an overview of the dataset used
for this study, namely the attributes or features contained
in the dataset. The frequency of attributes is depicted
in Figure 2. As can be seen, the five most frequent

attributes are “rock type parent 0”, “environmental
parent 0 (generic environment)”, “environment type 50
(sedimentary environment)”, “fracturation degree 1 (low)”
and “rock type 281 (Sandstone)”; they are present in over
40% of hydrogeological sites in the database. The median
frequency of an attribute is 4%, meaning that half of the
attributes appear in less than 4% of sites. Additionally, 44
of 50 attributes have a frequency of less than 20%. While
this distribution of attribute frequency is not problematic
for the application of the HAC algorithm, it indicates
that modifying the distance metric used for clustering
by weighting attributes by their frequency could better
distinguish sites.

Clustering: Having presented the data themselves, let
us now turn our attention to the process of clustering
the sites. As described above, we used the observation
attribute matrix with HAC using complete linkage.

To visualizes the process for selecting the number of
clusters, we show a dendrogram in Figure 3. A dendro-
gram is a tree diagram suitable for showing hierarchical
associations. Each observation begins at the bottom of
the dendrogram with height 0. As the algorithm proceeds,
observations are linked, represented by horizontal lines.
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Figure 3. Hierarchical clustering dendrogram (black) of 53 hydrogeological sites. Each site begins at height 0 and is grouped
with similar sites (a grouping is a horizontal bar). Cutting the dendrogram with a horizontal line at a given height yields a
clustering. In this study, we cut the dendrogram into seven clusters. Each cluster is depicted by a red box.

Since several sites have a Jaccard distance of 0, they
were linked successively to form one large cluster in the
first few iterations of the algorithm. They form one large
horizontal line at the very bottom of the dendrogram (see
Figure 3). The complete linkage leads to the formation of
round clusters, where groups were more likely to merge
than singleton clusters. To select the k* number of clus-
ters, we computed W p(k ) (see Equation 3) for k between
2 and 22. The k that minimized W p(k ) were k = 7
and k = 11. We chose k* to be the smaller of the two.
Selecting a different number of clusters, as well as the
possible impact of this choice, will be discussed below.

Table 1 shows the results of clustering, describing
for each cluster its size, average within-cluster Jaccard
distance, and silhouette coefficient. The silhouette
coefficients of clusters 3, 5, and 6 are relatively large,
meaning that these clusters are both highly similar within
themselves and very different from the rest of the clusters.
Clusters 1, 2, and 7 are less distinct from the rest of the
sites, meaning that there are some sites in these clusters
that could have been part of their neighbors. Cluster 4
has a silhouette width of 0 due to the fact that it has only
one element.

Poor silhouette performance would indicate that a
different number of clusters, or even a modification of the
clustering method, would have produced better results. It

Table 1
The Final Clustering of 53 Sites in the WWHYPDA

C 1 2 3 4 5 6 7

|C | 18 4 18 1 2 7 3
s(C ) 0.27 0.33 0.73 0.00 0.64 0.46 0.36

Note: C denotes cluster (1 to 7), —C — is the number of sites in each cluster,
and s(C ) is the average silhouette width of cluster C .

is likely that a portion of the between-cluster similarity
comes from the high frequency of a few attributes. The
silhouettes reveal that the majority of observations belong
to well-separated clusters, while a few observations could
be placed into different clusters. However, as the final
clustering was chosen with a specific application in mind,
with emphasis on avoiding singleton clusters, we opt to
leave the clustering as is.

Predictive Performance of Regionalized and Nonregional-
ized Priors: Using the clustering, we have now deter-
mined groups of similar sites. Next, we construct, for the
52 sites belonging to nonsingleton clusters, regionalized
and nonregionalized priors. The nonregionalized priors are
computed from all available measurements that do not
belong to the target site.
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Figure 4. Evaluation of predictive performance of exPrior algorithm using regionalized priors, based on difference in location
of median. Coloring represents the cluster the site belongs to.

Figure 5. Evaluation of predictive performance of exPrior algorithm using regionalized priors, based on the difference in
KLD from the target distribution (>0 is better, <0 is worse). Coloring represents the cluster the site belongs to.
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Figure 6. Comparison of the predictive performance of regionalized and nonregionalized priors for 4 of the 52 sites in our
experiment. Starting on the top-left, we see an example from Cluster 3 where a regionalized prior is closer to the target
distribution. Moving clockwise, we see the same trend, where a regionalized prior is more peaked and closer to the target.
Continuing clockwise, we see examples where the regionalized prior is only a slight improvement on the nonregionalized
prior.

The results are displayed in Figures 4 and 5, which
display the predictive performance of the regionalized
versus the nonregionalized priors for each site, using
the difference in median location from the target site
in Figure 4 and the difference in KLD from the target
site in 5. The difference is computed by subtracting the
quantity of interest median location (or KLD) computed
with the regionalized prior from the one computed using
the nonregionalized prior. In both figures, a positive
value indicates an improvement (we are closer to the
target distribution when using a regionalized prior), while
a negative value indicates a loss in performance (we
are farther from the target distribution when using a
regionalized prior).

Example Cases: To visualize our results, we can plot for
each target site its density (this could be a kernel density

estimate, or a normal density with parameters obtain from
the site’s measurements) next to its derived regionalized
and nonregionalized priors. As a basis of comparison, we
also plot a flat prior. This allows us to see the impact
of choosing a regionalized prior over a flat prior, as well
as the difference between informative and noninformative
priors. Figure 6 shows this for four selected sites.

As can be seen from our results, the regionalized
priors typically outperformed their nonregionalized coun-
terparts. However, not all sites showed a large improve-
ment, if any at all (see examples in Figure 6). Here, the
noninformative prior was arbitrary to some degree, but
the distribution at the target site represents a measure of
statistical uncertainty that cannot be overcome. Getting
close to this distribution is therefore the best that could
be achieved. In the examples, we can see a range of behav-
ior. For some sites, the regionalized prior is very close to
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the distribution of the target site, and a marked improve-
ment on using a nonregionalized prior. In other sites,
there is hardly any difference between regionalized and
nonregionalized priors. In the former case, having more
measurements is not necessary, as those from similar sites
are sufficient in deriving an informative prior. In the latter
case, having more descriptive information to characterize
a site would improve the ability to select similar sites.

Discussion
The experimental results should be considered as

a proof-of-concept for future large-scale hydrosystems
analysis. In fact, with more data and domain knowledge
incorporated into the clustering, there can be more
information uncovered on the relationships between
hydrogeological sites and the feasibility of data transfer.
It is therefore important to asses areas for further
consideration and experimentation.

We saw generally only modest improvements in the
predictive accuracy of prior distributions derived with
our method. We believe that this data-driven method
could be more effective with an increase in the number
of available hydrogeological measurements, as well as
qualitative descriptions. This has ramification for the
data collection efforts necessary for prior derivation in
particular and data assimilation in general.

It is clear that the raw numbers of measurements that
are available in a given dataset are an important criterion
for the impact of any data-driven method. The features
currently present in the WWHYPDA only represent a
subset of attributes that characterize a site. For example,
the used measurement technique or the fracture apertures
are known to be important to characterizing a site, yet are
still missing in the database. We expect that including
such additional features will be as important as the
inclusion of additional measurements for the improvement
of data assimilation efforts. In general, the process of
data generation, data collection and data assimilation
should be a feedback loop. Our results therefore provide
an important link in this loop by identifying gaps that
currently exist and the lack of a broad range of features
is currently such a gap. Since the method present here
is easily reproducible by virtue of all scripts and tools
to derive the results being openly available, it is feasible
to assess the impact of adding features on the resulting
clustering and derived prior distributions.

Additionally, the method can be adjusted to better
reflect domain knowledge of site similarity. As aforemen-
tioned, both the distributions of the data and the distance
metric used impact the resulting hierarchy of similar sites.
In situations with a discrepancy in feature variance, one
can apply transformations in order to reduce the possible
impact of feature variance, especially when using nonbi-
nary data and Euclidean distance to measure site distance.
One can also incorporate expert information by weighting
features based on their relevance to site similarity found
in other experiments. Furthermore, a user can modify the
method by taking into consideration different criteria for

cutting an HAC dendrogram, such as setting a threshold
for cluster size to avoid singleton clusters or considering
a weighted measure of cluster distance. Such changes
would potentially yield more accurate results and lead to
a clustering that more closely reflects domain knowledge.

Our results help to delineate the most promising
next steps in order to improve the predictive ability of
Bayesian inference in hydrogeology. Given that lack of
data was the single biggest challenge, it stands to reason
that more effort needs to be put into changing that. After
all, data are the building material of any kind of data-
driven inference and the sophistication of the algorithm
cannot overcome the limitations present in the used dataset
(Halevy et al. 2009).

Conclusion
We introduce a method for using hierarchical cluster-

ing to define a notion of site similarity, demonstrating
it sites with measurements and features present in the
WWHYPDA. We apply our method to the derivation of
ex situ priors introduced by Cucchi et al. (2019), using
it as a data selection step. We conducted an experiment
to test the efficacy of our method: that is, to see whether
deriving ex situ priors from a small set of similar sites pro-
duces prior distributions that match those of target sites.
We found mixed results; while ex situ priors are more
informative than flat priors, deriving them using a set of
similar sites was not always any better than deriving them
with all available measurements. Possible reasons include
a lack of available data to characterize sites, as well as
room for improving the measurement of distance between
sites. We conclude that there is now a unique opportunity
to combine hydrogeological experience with data-driven
methods applied to hydrogeological databases to develop
data-driven measures of similarity and increase the data
worth of readily-available hydrogeological information for
future hydrogeological studies.
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