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Flow-dependent errors in tropical analyses and short-range forecasts are
analysed using global observing-system simulation experiments assimilating
only temperature, only winds, and both data types using the ensemble Kalman
filter (EnKF) Data Assimilation Research Testbed (DART) and a perfect model
framework. The idealised, homogeneous observation network provides profiles
of wind and temperature data from the nature run for January 2018 using the
National Center for Atmospheric Research (NCAR) Community Earth System
Model (CESM) forced by the observed sea-surface temperature. The results show
that the assimilation of abundant wind observations in a perfect model makes
the temperature data in the Tropics largely uninformative. Furthermore, the
assimilation of wind data reduces the background errors in specific humidity
twice as much as the assimilation of temperature observations. In all exper-
iments, the largest analysis uncertainties and the largest short-term forecast
errors are found in regions of strong vertical and longitudinal gradients in
the background wind, especially in the upper troposphere and lower strato-
sphere over the Indian Ocean and Maritime Continent. The horizontal error
correlation scales are on average short throughout the troposphere, just sev-
eral hundred km. The correlation scales of the wind variables in precipitating
regions are half of those in nonprecipitating regions. In precipitating regions,
the correlations are elongated vertically, especially for the wind variables. Strong
positive cross-correlations between temperature and specific humidity in the
precipitating regions are explained using the Clausius–Clapeyron equation.
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ensemble Kalman filter data assimilation, forecast-error correlations, mass and wind observations,
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1 INTRODUCTION

Outputs from numerical weather prediction (NWP)
models have been improving continuously, thereby

supporting societal adaptation to extreme events
(Emerton et al., 2022). Part of the forecast improvement
comes from more accurate initial states for the NWP
model forecasts, as a result of an increasing number of
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observations, their better use in data assimilation, and a
more accurate background field (also called the first guess
or prior). For example, the data assimilation system of the
European Centre for Medium-Range Weather Forecasts
(ECMWF) currently assimilates observations from about
100 satellite instruments, which is about three times as
many as 20 years ago. Additional satellite observations pro-
vide better coverage of the global atmosphere and include
new types of observations such as radio occultation mea-
surements (Healy et al., 2020) and vertical wind profiles
from Aeolus, the Doppler wind lidar measuring horizontal
line-of-sight (HLOS) winds (Stoffelen et al., 2005).

Launched in 2018, Aeolus provided, for the first time,
global coverage of wind profiles. Despite their lower
accuracy compared with conventional wind observations,
HLOS wind profiles improved analyses and forecasts in
all operational NWP models that assimilated the HLOS
winds (Rennie et al., 2021; Garrett et al., 2022; Laroche and
St-James, 2022; Pourret et al., 2022). The largest improve-
ments by Aeolus are seen in the tropical upper troposphere
and lower stratosphere (UTLS), with Aeolus correcting
both systematic and random errors (Rennie et al., 2021).
The present study aims to explain different effects of assim-
ilating temperature and wind observations in the Tropics
in relation to the background state in a perfect model.

The demonstrated impact of Aeolus corroborates the
well-known fact that the wind-field information can-
not be reconstructed easily from temperature observa-
tions in the Tropics (Gordon et al., 1972), not even with
four-dimensional variational (4DVar) data assimilation
with a perfect model (Žagar et al., 2004). This is com-
monly illustrated using geostrophic theory for the rotating
shallow-water equations (e.g. Kalnay, 2003, Chapter 5.7).
The associated linearised potential vorticity equation is

d
dt

(
∇2Ψ + f −

f0

gD
𝜙

)
= 0, (1)

where Ψ is the geostrophic stream function and 𝜙 is the
geopotential perturbation from the mean value Φ = gD,
where D is the mean depth of the fluid layer and g is
the gravity. The Coriolis parameter f is defined as f =
2Ω sin(𝜑); its local value at latitude 𝜑 = 𝜑0 is denoted
f0, and Ω is the Earth rotation rate. The assumption of
geostrophically balanced analysis increments in response
to geopotential or wind observations leads to the condi-
tions K2L2

R ≫ 1 and K2L2
R ≪ 1 for short or long scales,

associated with greater usefulness of the wind and mass
observations, respectively. Here, K denotes the horizontal
wavenumber in (in m−1), defined as K2 = k2 + l2, where k
and l are the zonal and meridional wavenumbers, respec-
tively. The parameter LR =

√
gD∕f0 is the external Rossby

deformation radius (in m), the horizontal scale of the

geostrophic balancing process on the f -plane for a given D
and f0. The wavelength L = 2𝜋∕K, which separates “long”
and “short” horizontal wavelengths, is thus

L = 2𝜋LR = 2𝜋
√

gD∕f0. (2)

The shallow-water framework is a simple analogue of the
complex baroclinic primitive equation model, in which
case D would represent an equivalent depth and the
third term of Equation 1 would include stratification. The
wavelength L is shown in Figure 1 every 10◦ of latitude.
For any 𝜑, horizontal motions with length-scales to the
right of and below the curve are represented better by
mass-field than by wind-field observations. In other words,
for these scales the solution of the initialization problem
for our simple system retains information provided by the
mass data.

How long are the scales at which mass-field infor-
mation has a greater value than wind data? Answering
this question in high latitudes (large 𝜑) requires careful
consideration, due to spherical geometry. This is illus-
trated in Figure 1 by comparing the wavelength L with the
maximal resolvable wavelength at the local circumference
R = 2𝜋a cos(𝜑), a being the Earth radius, at every latitude
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F I G U R E 1 Horizontal wavelength L defined by Equation 2
as a function of the mean fluid depth D for several latitudes 𝜑 (in
degrees, as shown in the legend). The bottom curve is for 𝜑 = 10◦

and the leftmost curve is for 𝜑 = 80◦. For every L(𝜑), wind-field
information is more useful than geopotential data on the left and
above the curve. The thick curve is the Earth circumference R as a
function of latitude shown on the right-hand y-axis. For every 𝜑,
only wavelengths shorter than R should be discussed. The two
shaded areas are (L,D) regions where mass-field information is
more useful than wind data at 80◦ and at 10◦. [Colour figure can be
viewed at wileyonlinelibrary.com]
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(black curve). Latitudes are shown on the right y-axis in
Figure 1. Only solutions for L < R can be interpreted in
Figure 1. For example, at 𝜑 = 80◦, R = 6.95 × 103 km and
quasigeostrophic theory suggests that mass-field informa-
tion is more useful only for vertical depths D < 2.5 km
(shaded region). In other words, flows with significant
vertical depth in the polar regions are constrained better
by wind-field information. Moving equatorward, values
of L grow larger. At 20◦ and D = 10 km, the wavelength
L ≈ 39.4 × 103 km exceeds the circumference R ≈ 37.6 ×
103 km. Figure 1 suggests that, for most depths and scales
in the Tropics, direct wind information is more informa-
tive than mass data. In other words, the linear balance
equation is of little value in the Tropics (Daley, 1991, Chap-
ter 7).

Within the Tropics, the horizontal flows become
largely anisotropic. The quasigeostrophic framework used
to derive Equation 2 no longer applies and the Rossby
deformation radius is replaced by the equatorial radius of
deformation (

√
gD∕2𝛽)1∕2, where 𝛽 = 𝜕f∕𝜕y = a−1𝜕f∕𝜕𝜑.

The initialisation must consider large-scale divergent
flows such as equatorial Kelvin and mixed Rossby–gravity
waves, which are associated with a significant part of
day-to-day circulation variability (e.g. Kiladis et al., 2009)
and are a significant contributor to the growth of fore-
cast errors in the Tropics (e.g. Žagar et al., 2015). This
has presented a problem for three-dimensional variational
(3DVar) data assimilation schemes, which traditionally
have focused on the errors in the quasigeostrophic flow
in the extratropics (Derber, 1987). In that approach, the
wind field is a sum of balanced and unbalanced com-
ponents. The balanced part is obtained from the geopo-
tential field by solving the linear balance equation, while
the unbalanced part is analysed univariately (Derber and
Bouttier, 1999). As the linear balance equation explains lit-
tle variance of the wind field in the Tropics, the 3DVar
analyses were effectively univariate in the Tropics. How-
ever, it is very different in 4DVar schemes; not only does
the mass–wind adjustment within 4DVar extract informa-
tion about the wind field from temperature data (Ruston
and Healy, 2021), but the moisture observations also
impact tropical winds significantly through 4DVar dynam-
ics (Hólm et al., 2002; Köpken et al., 2004). There is, how-
ever, a limit to the wind information that can be extracted
by 4DVar, even in the perfect-model case, which has been
explained with the help of models of reduced complexity
(Žagar et al., 2004; Zaplotnik et al., 2018).

In contrast, ensemble data assimilation makes no
assumption about coupling between the mass-field vari-
ables and winds; the covariances are flow-dependent as
derived from the ensemble of short-range forecasts. In this
way, the impact of observations such as HLOS winds is dis-
tributed according to the flow properties (Šavli et al., 2018).

Modern 4DVar schemes estimate background variances
from the ensemble of forecasts (Bonavita et al., 2016),
though correlations at the start of the 4DVar window
are climatological. Derived from global forecast statistics,
static correlations are characterised by longer scales in
the Tropics (Ingleby, 2001; Pereira and Berre, 2006) than
those found in ensemble Kalman filter (EnKF) data assim-
ilation (Lei et al., 2015). In practise, the EnKF is com-
monly combined with variational methods in so-called
hybrid data assimilation (Houtekamer and Zhang, 2016;
Bannister, 2017). These two methods have been considered
comparable in global NWP, and continued progress (e.g.
Buehner and Shlyaeva, 2015) suggests that relying more on
fully flow-dependent covariance in hybrid data assimila-
tion can lead to larger forecast improvements (Caron and
Buehner, 2022).

The present study applies the EnKF to address the
question of the relative value of mass-field and wind-field
observations in the Tropics using a perfect-model frame-
work. Multivariate data assimilation is performed by
the ensemble adjustment Kalman filter system (EAKF:
(Anderson et al., 2009) with a homogeneous observation
network and a relatively large ensemble to study the corre-
lation lengths for different variables in relation to the flow.
The comparison of wind information and mass informa-
tion for the initialization of prediction models has been
carried out many times in the past. Routinely performed
observing-system experiments (OSEs) with NWP models
compare the values of existing measurements and sim-
ulate the effects of planned components of the Global
Observing System (GOS). For example, OSEs by Horányi
et al. (2015a); Horányi et al. (2015b) with the European
Centre for Medium-Range Weather Forecasts (ECMWF)
4DVar system showed that wind observations are on aver-
age more valuable in the upper troposphere, lower strato-
sphere, and Tropics, whereas mass data are more valuable
in the lower troposphere of the midlatitudes in particular.
This indicates that the information content of observations
evolves with the GOS, forecast model, and data assimila-
tion system.

Our perfect-model framework explores the upper lim-
its on the information content of assimilated observations
using observing-system simulation experiments (OSSEs).
Such OSSEs were performed by Anderson et al. (2005)
using the EnKF with an adiabatic model. They showed
that the frequent assimilation of wind observations at
the lowest model level produced analyses with errors
only half as large as those from the assimilation of tem-
perature data at the same level. In the present study,
we employ a state-of-the-science moist model with the
nature run forced by the observed sea-surface temperature.
Effects of assimilated profiles of wind and temperature
observations are compared with respect to flow-dependent
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covariances. Given the properties of observations and the
assimilation setup, this study provides an upper bound on
the information content of winds and temperature fields
that can be extracted from temperature and wind obser-
vations, respectively. We further compare the effects of
temperature and wind observations on specific humidity,
which is not an observed variable in our OSSEs.

The article is organised as follows. Section 2 describes
the setup of the OSSEs, including the model, nature run,
observation network, and data assimilation methodol-
ogy. Section 3 presents the results, focusing on the aver-
age properties of the background and analysis ensem-
bles for experiments assimilating only temperature, only
winds, and both temperature and wind data. The mul-
tivariate aspects of assimilating different data types are
discussed for the specific humidity variable. Differences
among experiments are discussed using typical auto- and
cross-correlations. A discussion, conclusions, and outlook
are given in Section 4.

2 PERFECT-MODEL
ASSIMILATION EXPERIMENTS

The data assimilation framework is the ensemble adjust-
ment Kalman filter system in the Data Assimilation
Research Testbed (DART) (Anderson et al., 2009), which
is applied with the global Community Atmosphere Model
(CAM, version 6.0.34) of the Community Earth System
Model (CESM, version 2.1: Danabasoglu et al. (2020)). The
perfect-model framework means that a single integration
of the atmospheric component of CESM is taken to be the
true state of the system. This is referred to as the “nature
run” and used to create synthetic observations as described
below. The preparation of OSSEs as described below and
their evaluation is similar to that of Žagar et al. (2016), who
used an earlier version of the CESM and did not consider
temperature and wind observations separately. This task is
carried out here using a more dense observation network
and studying the effects of different observation types on
the moisture field.

2.1 Atmospheric model and nature run

We use the CAM6 model, an atmospheric component
of CESM which uses the finite-volume (FV) dynami-
cal core at a roughly 1 degree horizontal resolution.
The model vertical discretisation is based on the hybrid
sigma-pressure vertical coordinate, with 32 model levels
including five levels below 900 hPa, nine levels above
100 hPa, and the top model level located at about 3.6 hPa.
The FV dynamical core applies fourth-order divergence

damping to the top three levels, increasing with height.
The time step for coupling the physics to the dynamics
is 30 min. There is no “time-splitting” in the dynamical
core. Specific choices of the so-called CAM6 physics pack-
age are described in Raeder et al. (2021). The model is
coupled to the land surface model known as the Com-
munity Land Model (CLM: Danabasoglu et al. (2020)).
The sea-surface temperatures (SSTs) are prescribed and
are derived from daily, 0.25 degree horizontal resolution,
Advanced Very High Resolution Radiometer (AVHRR)
data available from the National Centers for Environmen-
tal Information (the dataset was accessed on 2020-04-05 at
http://dx.doi.org/10.5067/GHAAO-4BC02).

The initial atmospheric state for the nature run is taken
from one member of the CAM6+DART Reanalysis project
(Raeder et al., 2021). This state is produced by the same
model and the actual observations available at that time.
We selected a winter period early in 2018 when one of
the strongest Madden–Julian Oscillation (MJO) events on
record took place (Barrett, 2019; Li et al., 2020). While we
do not expect our simulation to simulate the life cycle of
the MJO realistically, the use of realistic SSTs leads to a
more realistic representation of convection. The simula-
tion starts on December 25, 2017 and runs until January
31, 2018.

2.2 Synthetic observations

Synthetic observations are created as wind and tempera-
ture profiles from the nature run at 6-hr intervals. Obser-
vation errors typical of radiosondes are added to the pro-
files extracted from the nature-run simulation. The errors
are randomly drawn from a Gaussian distribution having
zero mean and standard deviation equal to the observa-
tion error taken from the Global Forecast System (GFS)
observation-error tables from NCEP (valid in 2005) for
the appropriate variable. The wind observation-error stan-
dard deviations increase from 1.4 m ⋅ s−1 at 1000 hPa up to
3.2 m ⋅ s−1 at 250 hPa and then decrease towards 2.1 m ⋅ s−1

at 40 hPa. The temperature-error standard deviations have
values of 1.2 K at 1000, 250, and 200 hPa levels, and smaller
values (0.8, 0.9, and 1.0 K) at other levels.

The idealized observation network is horizontally
nearly homogeneous on the sphere (Figure 2). The net-
work consists of 3456 grid points with an average hor-
izontal separation of about 400 km. This is considered
sufficient for the representation of large-scale features
of the global atmosphere. A static, homogeneous obser-
vation network ensures that the flow-dependent covari-
ances are not influenced by the distribution of observa-
tions (although they are influenced by the observation
density). Profiles of the zonal and meridional winds and

http://dx.doi.org/10.5067/GHAAO-4BC02
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F I G U R E 2 Homogeneous observation network for the
observing-system simulation experiments. The network consists of
3456 locations of observations. At every location, vertical profiles of
the temperature, zonal wind, and meridional wind are prepared
from the nature run every 6 hr.

temperature are taken at the 21 mandatory pressure levels,
with the exception of the 30-hPa level being replaced by
40 hPa to accommodate damping at the model top levels.
In our perfect-model assimilation experiments, virtually
all of the observations are assimilated, and the biases are
very close to zero.

2.3 Setup of the ensemble data
assimilation

The data assimilation system DART applies the serial
EAKF (Anderson, 2003; Anderson, 2009). The EAKF does
not perturb observations. Analysis increments are calcu-
lated by shifting the prior mean and reducing its stan-
dard deviation using the normally distributed observation
likelihood. Corresponding increments are computed for
each ensemble member. The implementation of the EAKF
includes vertical and horizontal covariance localisation
using the function derived by Gaspari and Cohn (1999)
to filter noisy background-error covariances by limiting
the length of spatial correlations. The half-width radius
for the horizontal localisation is 0.15 rad (around 955 km)
and that for vertical localisation is 0.225 scale heights,
which is 125 hPa near 500 hPa, but only 12.5 hPa near
50 hPa. The model state vector consists of temperature,
meridional and zonal winds, specific humidity, cloud

liquid and ice, and surface pressure. The observation
operators interpolate the model values to the locations of
observations linearly in the horizontal and linearly in log
(pressure) in the vertical. All model state variables can be
changed by the assimilation, but there are no observations
above 40 hPa, so vertical localization of the observations
means that the influence of the observations weakens with
height in the top five model levels. The enhanced adap-
tive inflation of El Gharamti (2018) is used to maintain
the ensemble spread at the levels needed for effective
assimilation cycling. The inflation is spatially and tem-
porally varying and applied to the prior ensemble. The
inflation standard deviation, which controls how fast the
inflation adapts, is fixed at 0.6. An inflation damping value
of 0.9 is used, so that the inflation strength is reduced
to 90% of its present value before being updated at each
assimilation time. Both of these are the default values
and are discussed in more detail in El Gharamti (2018).
The assimilation also employs sampling-error correction
(Anderson, 2012), which applies a heuristic correction to
the ensemble spread to help overcome deficiencies due to
limited ensemble size.

The initial, 80-member ensemble valid at 0000 UTC
on December 25, 2017 is taken from the CAM6+DART
Reanalysis (Raeder et al., 2021). Observations are assimi-
lated every six hours. During the first week of the exper-
iment, the ensemble adjusts to the assimilated synthetic
observations. Three assimilation experiments are carried
out:

1. only temperature observations (experiment denoted T),
2. observations of both wind components (experiment

denoted UV), and
3. both temperature and wind observations (experiment

denoted TUV).

With respect to Aeolus, the experiment UV contains
twice as many observations, since Aeolus measures a sin-
gle wind component, the projection of the wind vector
on the horizontal line of sight, the so-called HLOS winds.
This is a special feature of the Aeolus Doppler wind lidar
(Reitebuch, 2012), as wind measurements are usually
observations of both wind components. The fact that the
UV experiment assimilates twice as many observations as
the T experiment is thus natural.

2.4 Metrics

We used several metrics to measure the data assimilation
performance and the impact of assimilating various obser-
vations, including the root-mean-square error (RMSE) of
the ensemble mean compared with the nature run and the
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square root of the ensemble variance, referred to as the
ensemble spread. The RMSE can be written as

RMSE =
√
< (xt − x)2 >, (3)

where <> denotes the spatial or temporal averaging (or
both) of the squared errors, x, is the ensemble mean and
xt stands for the true state of the variable x. The “averaged
spread” for variable x is denoted 𝜎x and is the square root of
the averaged ensemble variance V : 𝜎x =

√
< Vx >, where

the unbiased ensemble variance at a single time step is

Vx =
1

N − 1

N∑
n=1

(
xn − x

)2 (4)

and N = 80 is the ensemble size.
The information content of observations is measured

by the fractional reduction of the prior (6-hr forecast)
ensemble spread by the assimilation of observations. The
reduction can be calculated as the difference between
the prior (or forecast) and posterior (or analysis) ensem-
ble spread divided by the prior ensemble spread, that is,
1 − 𝜎po

x ∕𝜎
pr
x , where “pr” and “po” denote the prior and pos-

terior ensemble, respectively. In the rest of this article, we
shall be using the expressions forecast (or background)
ensemble and analysis ensemble, which are commonly
used in the NWP community (rather than prior and poste-
rior, typically used in the EnKF literature).

The correlations are calculated from the ensemble,
selecting points in regions with strong precipitation and
in areas without precipitation with a relatively low rela-
tive (and specific) humidity. For a variable x at the point
(𝜆, 𝜑, 𝜂), the correlation with variable y at the surrounding
points (𝜆′, 𝜑′, 𝜂′), rxy is computed from the ensemble using
the following formula:

rxy =
(N − 1)−1∑N

n=1Δxn(𝜆, 𝜑, 𝜂) Δyn(𝜆′, 𝜑′, 𝜂′)√
Vx(𝜆, 𝜑, 𝜂) Vy(𝜆′, 𝜑′, 𝜂′)

, (5)

whereΔxn = xn − x is a deviation from the ensemble mean
for the nth ensemble member. Indices 𝜆, 𝜑, 𝜂 represent
the longitude, latitude, and hybrid vertical model level,
respectively. For autocorrelations, x = y, otherwise x ≠ y
represents cross-correlations.

3 COMPARISON OF THE
EFFECTS OF TEMPERATURE AND
WIND OBSERVATIONS

We start the discussion of the results by showing that
our experiments are reliable. Then we present time-

and space-averaged ensemble spread for the three
experiments, demonstrating their similarities and
differences. Focusing on the Tropics, we present case
studies that illuminate coupling between the temperature,
wind, and moisture observations in the EnKF.

3.1 Evolution of the ensemble spread
and ensemble reliability

The evolution of the vertically and horizontally averaged
ensemble spread in analyses and 6-hr forecasts is shown
in Figure 3. In each panel, the ensemble spread is aver-
aged vertically up to 100 hPa and horizontally for differ-
ent regions: the Tropics defined between 20◦S and 20◦N,
and the extratropical Northern Hemisphere and Southern
Hemisphere (NH and SH, respectively) up to 70◦. On aver-
age, the experiments take about 2 weeks to reach a stable
state, except for the extratropical temperature variable in
the UV experiment, which is still equilibrating in the last
two weeks of the experiment. The slow equilibration is lim-
ited to the lower stratosphere in high latitudes, particularly
the SH, but the reasons are not fully understood.

The spread for the wind variables is smaller for the UV
than for the T experiment, as expected. Adding temper-
ature data on top of the wind observations (TUV experi-
ment) leads to a further small reduction of the spread in
every region (Figure 3, panels a1–b4). The spread abso-
lute difference T − TUV is greater than UV − TUV every-
where, and much more so in the Tropics. There is no
significant difference in the results for the two wind com-
ponents. Somewhat different results can be seen in the
evolution of temperature spread in the three experiments
(Figure 3, c1–c4). In this case, wind observations (UV
experiment) lead to a smaller spread in the temperature
field not only in the Tropics but also in the extratrop-
ics after the first 2 weeks of the experiments. The spread
absolute difference T − TUV is over three times greater
than UV − TUV . Adding temperature data on top of wind
observations reduces extratropical temperature spread fur-
ther. Overall, Figure 3 suggests that wind observations
constrain the temperature field better than temperature
data, in agreement with the classical argument presented
in Figure 1.

The effect of wind and temperature observations on
the specific humidity, a variable affected by the assimilated
observations only indirectly, also differs in the Tropics and
extratropics (Figure 3, d1–d4). The spread is greater in the
Tropics than in the extratropics in all three experiments,
since the specific humidity is largest in the Tropics. The
difference between the spread in the T and UV experi-
ments is also greater in the Tropics than outside them,
suggesting a relatively stronger effect of winds on moisture
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F I G U R E 3 Time evolution of the ensemble spread in six-hour forecasts and analyses. (a1–d1) All points, (a2–d2) Tropics, (a3–d3)
Southern Hemisphere (SH), and (a4–d4) Northern Hemisphere (NH) for (a1–a4) zonal wind, (b1–b4) meridional wind, (c1–c4) temperature,
and (d1–d4) specific humidity in the three experiments. Different curves and experiments are explained in the legends: only temperature
observations (T), only wind observations (UV), and both temperature and wind data (TUV). Analysis and forecast ensembles are denoted as
po and pr and shown by dashed and full lines, respectively. Hemispheric results are averaged between 20◦ and 70◦, Tropics are defined as the
belt 20◦S–20◦N, and global results are between 70◦S and 70◦N. Vertically, results are averaged for all levels up to 100 hPa. [Colour figure can
be viewed at wileyonlinelibrary.com]

closer to the Equator. As specific humidity is more directly
related to temperature than to winds, the better analysis
and forecast of the temperature field in the UV experi-
ments lead to a more accurate moisture field. In addition,
more accurate winds advecting the moisture, wherever

advection takes place, improve the moisture field more in
the experiments assimilating the winds.

Based on Figure 3, we compute statistics for the last
three weeks of the experiments, January 11–31, 2018,
at model levels. The time-average ensemble spread is
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averaged over the last three weeks of January 2018. [Colour figure can be viewed at wileyonlinelibrary.com]

compared with the RMSE in Figure 4 to display the reli-
ability of the experiments. Reliability refers to the statisti-
cal consistency of the predicted probabilities as measured
by the ensemble spread and the RMSE (Leutbecher and
Palmer, 2008). The agreement between the two measures
shows that the assimilation maintains a close agreement
with the noisy observations. The comparison is shown
separately for the Tropics and global atmosphere, to high-
light the reliability of the tropical results in all experiments
and variables. Reliability of the analysis ensemble is bet-
ter than that of the forecast ensemble; the mean absolute
differences between the spread and RMSE for the wind
components are 24%–27% smaller for the analysis than
for the forecast ensemble (not shown). An exception is
the UV experiment, which is unreliable for the mass field
above 200 hPa, due to issues at high latitudes (Figure 4c).
Except for this, the RMSE is on average close to the spread
up to about 30 hPa, as no observations were assimilated
above this level. As we focus on the troposphere, subse-
quent discussion of the results will ignore the levels above

30 hPa and latitudes north and south of 70◦. All subsequent
figures will apply averaging over the last three weeks of the
experiments, January 11–31, 2018.

3.2 Latitude- and altitude-dependent
properties of the ensemble

Having established the reliability of our experiments, we
now compare results of the three experiments as a function
of latitude. It is evident in Figure 5 that the largest uncer-
tainties in global short-range forecasts are in the UTLS
region in all three experiments. The maximal spread is
near the 200-hPa level just slightly south of the Equator,
related to the location of the Intertropical Convergence
Zone (ITCZ) in January. This figure corroborates the ear-
lier results by Žagar et al. (2016) from a TUV experiment
without inflation and with a less dense observation net-
work, as well as the properties of operational NWP ensem-
bles such as the ECMWF. New results allow a comparison
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and (d1–d3) specific humidity in T, UV , and TUV experiments. Results are averaged over the last three weeks of January 2018. [Colour figure
can be viewed at wileyonlinelibrary.com]

between experiments assimilating wind and temperature
observations and their impact on specific humidity, as
discussed next.

The ensemble spread for the wind components within
the UTLS in the UV experiment is less than half that
in the T experiment, and reduces further by a small fac-
tor in the TUV experiment. For instance, the zonal wind
spread in the UTLS has a maximum of 1.51 m ⋅ s−1 in TUV,

1.68 m ⋅ s−1 in the UV experiment, and 3.4 m ⋅ s−1 in the T
experiment (Figure 5, panels a1–a3). The effects of differ-
ent observations on the temperature field are displayed in
panels c1–c3. They show a smaller spread in the tempera-
ture field in the UV experiment than in the T experiment.
This not only confirms the dynamical arguments displayed
in Figure 1 in the global NWP context, it also suggests that
a system with an abundance of wind observations makes
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the temperature data in the Tropics and subtropics largely
uninformative.

The latitude–altitude structure of the specific humid-
ity spread, not studied by Žagar et al. (2016), shows a large
spread in the tropical lower troposphere, where the largest
moisture content also exists (Figure 5, panels d1–d3). The
spread in the three experiments has similar structure,
but amplitudes are twice as great in the T experiment
as in experiments that assimilated winds. Large vertical
gradients are present in the middle troposphere above the
spread maxima near 600 hPa and across subtropical lati-
tudes. In the next section, we look into the longitudinal
structure of the moisture spread in relation to the flow.

3.3 Flow-dependent effects of the
assimilation of temperature and wind
observations in the Tropics

Our perfect-model ensemble filter provides
flow-dependent background errors without effects of the
inhomogeneous observation network of the real world.
While it seems evident that dynamical arguments derived
from quasigeostrophic theory for adiabatic, barotropic
motions apply in the moist, stratified atmosphere,
we have limited understanding of factors shaping the
altitude–longitude variations in the spread. This section
aims to explain differences between the assimilation of
temperature and wind observations.

The longitudinal behavior in the Tropics is presented
in Figure 6 in the form of Hovmöller diagrams. First
we notice similar spatial patterns in the spread for zonal
wind and temperature at the level of the maximal zonal
wind spread near 122 hPa (panels a1–d3). Analysis uncer-
tainties are shown, but the patterns in the 6-hr forecast
ensemble differ only in amplitude. We also always show
ensemble spread, but the RMSE patterns have a very
similar structure. The largest uncertainties for both zonal
wind and temperature are over the Indian Ocean near
the edge of the strong easterlies between 60◦E and 90◦E
(Figure 6a–c). The secondary spread maxima in the T
experiment are over the eastern Pacific, in the region with
significant longitudinal gradient in the westerlies. This
was an active period of MJO with phases 2 and 3 over
the Indian Ocean during January 1–16, and an intensi-
fication during January 25–31, as the MJO was moving
from the Maritime Continent to the Western Pacific in
phases 5 and 6 (Barrett, 2019; Li et al., 2020). Although
we have not specifically investigated whether our nature
run reproduced the MJO signal as measured by standard
MJO indices, the increasing eastward-propagating coher-
ent structure of the zonal wind spread during the last week
of January (Figure 6 panels a1–3) could be associated with

the MJO, similar to the case reported by Žagar et al. (2013)
for the operational ECMWF ensemble.

The three experiments show very similar patterns of
temporal spread evolution, although the amplitudes vary.
The differences between experiments TUV and UV are
hardly noticeable, in both the spread (Figure 6a,b) and the
ensemble mean (Figure 6c). The latter is confirmed by the
difference between the ensemble means among various
experiments in Figure 6d. They show coherent structures
moving eastward and westward in the regions of easterlies
and westerlies, respectively. The difference between exper-
iments with and without assimilation of wind observations
can be as large as ±10 m ⋅ s−1 (Figure 6, panels d2, d3),
while adding temperature observations on top of wind data
produced an order-of-magnitude smaller change in the
analyses (Figure 6, panel d1). We speculate that the differ-
ences correspond to those convective systems that require
wind observations for their initialisation. This is supported
by the specific humidity spread presented for the level near
524 hPa in Figure 6e. Increased specific humidity spread
appears in the T experiment every few days near 150◦E,
which corresponds roughly to the originating points of the
coherent structures in the wind spread. The same region
is characterised by large longitudinal moisture gradients
in the ensemble mean specific humidity (Figure 6f). Over-
all, moisture spread can be as large as 50% of the ensemble
mean value of specific humidity in the T experiment near
the edges of significant longitudinal gradients in the zonal
winds.

The selected vertical level in Figure 6 is within the
tropical tropopause layer (TTL), where the vertical shear
of the zonal wind is largest. The vertical shear depends
on the phase of the Quasi-Biennial Oscillation (QBO),
which in turn was shown to affect the short-range forecast
errors (Žagar et al., 2007). In January 2018, the westerly
QBO phase was transitioning to the easterly phase and
the shear in the lower stratosphere was relatively weak.
However, near the 100-hPa level the shear was significant,
as illustrated in Figure 7 for January 11 and 31, show-
ing the zonal wind spread superimposed on the ensem-
ble mean zonal wind. Here we show only T and UV
experiments, since the TUV experiment is almost indis-
tinguishable from the UV experiment by visual inspec-
tion. Figure 7 shows the analysis ensemble, and the
difference for the background ensemble is only in the
magnitudes of the spread. Thus, Figure 7, together with
Figure 6, illuminates the fact that the largest analysis
and short-term forecast uncertainties in the Tropics are
in the regions with the strongest vertical and longitudi-
nal shear of the zonal wind. An accurate representation of
this layer in the models is crucial for the vertically prop-
agating equatorial waves driving the middle atmosphere
circulation.
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F I G U R E 6 Evolution of the analysis ensemble mean zonal wind and specific humidity and evolution of the analysis ensemble spread
of the zonal wind, temperature, and specific humidity along the latitude 0.5◦N at the 122-hPa level (level 524 hPa for the specific humidity)
during January 11–31, 2018. (a1–a3) Zonal wind spread, (b1–b3) temperature spread, (c1–c3) ensemble mean zonal wind, and (d1–d3)
differences between the ensemble means of (d1) TUV and UV , (d2) TUV and T, and (d3) UV and T experiments. Specific humidity (e1–e3)
spread and (f1–f3) ensemble mean. Magenta contours in (c1–c3) denote zonal wind spread greater than 4 m ⋅ s−1. [Colour figure can be
viewed at wileyonlinelibrary.com]

Within the TTL, maximal temperature spread does not
appear collocated with the maximal spread in the zonal
wind, suggesting a nontrivial coupling between the two
variables. The meridional wind spread has amplitudes as

large as the zonal wind spread; it ranges between 1 and
5 m ⋅ s−1 in the layer between 500 and 100 hPa in the
T experiment, whereas it nowhere exceeds 1.5 m ⋅ s−1 in
the UV and TUV experiments (not shown). It must be

http://wileyonlinelibrary.com


2378 LI et al.

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Longitude (°) Longitude (°)

  
 P

re
ss

u
re

 (
h

P
a)

 

 50 

  100 

 200 

 500 

900 

  
 P

re
ss

u
re

 (
h

P
a)

 

 50 

  100 

 200 

 500 

900 

  
 P

re
ss

u
re

 (
h

P
a)

 

 50 

  100 

 200 

 500 

900 

  
 P

re
ss

u
re

 (
h

P
a)

 

 50 

  100 

 200 

 500 

900 

   (a) T, Zonal wind spread                                            11 Jan.    (b) T, Zonal wind spread                                            31 Jan.

   (c) UV, Zonal wind spread                                         11 Jan.    (d) UV, Zonal wind spread                                         31 Jan.

   (e) T, Temperature spread                                          11 Jan.    (f) T, Temperature spread                                           31 Jan.

   (g) UV, Temperature spread                                      11 Jan.    (h) UV, Temperature spread                                       31 Jan.

0° 60°E 120°E 180° 120°W 60°W 0° 60°E 120°E 180° 120°W 60°W

 m/s 

K 

F I G U R E 7 Vertical cross-section along the Equator of the analysis ensemble mean zonal wind (contours) and the zonal wind and
temperature uncertainty (analysis ensemble spread, shading) for (a,b,e,f) T and (c,d,g,h) UV experiments on (left) January 11 and (right)
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the zero isoline omitted. Results are averaged for 10 latitudes between 5◦S and 5◦N. [Colour figure can be viewed at wileyonlinelibrary.com]

mentioned that, in contrast to the zonal wind, the merid-
ional wind is less than 10 m ⋅ s−1 everywhere except in
the Amazon region. For the two dates shown in Figure 7,
the spread is 2–3 times greater in the T than in the
UV experiment, in agreement with Figures 4 and 5. The
average reduction of the zonal wind background spread
within the tropical UTLS in the two cases presented is

at best 2%–5% in the T experiment, whereas it is up to
20% in the experiments with wind data (not shown). Here
the background spread reduction means the difference
between prior (or background) and posterior (or analysis)
ensemble spread normalised by the spread of the forecast
ensemble and multiplied by 100%, that is,

(
1 − 𝜎po

x ∕𝜎
pr
x
)
∗

100% (Section 2). Similarly, the spread of 6-hr forecasts of
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specific humidity is reduced by 1%–3% within the TTL in
the T experiment compared with 5%–7% in the UV and
TUV experiments (not shown). In contrast, the humid-
ity spread reduction below 200 hPa is nearly the same
in the three experiments, despite their differences in the
spread (Figure 5j–l). This nonintuitive result is discussed
next by investigating details of the coupling between winds
and moisture and between the temperature and moisture
variables.

3.4 Tropical mass–wind covariances
in the EAKF

Figure 8 presents the cross-correlations between the back-
ground errors in temperature and specific humidity for
January 11 at two points, one in the precipitating region
near 125◦E and another in the nonprecipitating area of
westerlies in the eastern Pacific near 120◦W. It shows
that the horizontal and vertical correlations have oppo-
site signs in the saturated and unsaturated regions. The
horizontal correlation length-scales are small, especially
in the nonprecipitating region; correlations greater than
±0.2 are limited to 2, 3 and 5, 6 grid points for non-
precipitating and precipitating regions, respectively. With
the grid spacing of 1◦, the correlation length-scales are
thus just a few 100 km. In the vertical, correlations in the
precipitating region extend throughout the prescribed ver-
tical localisation radius. In contrast, temperature-specific
humidity correlations in the nonprecipitating region are
limited to a single layer leaning towards the level above.
The two chosen points are representative of similar loca-
tions we analysed at other dates and at other levels in
the upper troposphere. Correlations of specific humid-
ity with winds are weak and have small horizontal and
vertical scales (not shown), though the horizontal corre-
lations are stronger in the unsaturated regions, whereas
the vertical correlations are deeper in precipitating
regions, similar to temperature. Both temperature–wind
and wind–temperature correlations are weak, in agree-
ment with the weak mass–wind coupling in the Tropics
(not shown).

How can we understand opposite signs of
temperature-specific humidity error correlations in rela-
tion to the flow? In precipitating regions, the atmosphere
is saturated and a positive increment in temperature is
associated with an increase in saturation humidity via the
Clausius–Clapeyron equation. There is sufficient mois-
ture in the air to satisfy the saturation moisture required
by the Clausius–Clapeyron relationship, meaning that
the specific humidity is increased. The correlations are
therefore positive both horizontally and vertically, as
seen in Figure 8. In the areas without precipitation

and with low specific humidity, such as near 120◦W
(see Figure 6f), negative correlations between temper-
ature and specific humidity in the nearby points can
be understood as being due to radiative cooling. A neg-
ative temperature perturbation in unsaturated flow is
associated with a positive pressure perturbation at the
same model level, meaning that the level will be found
somewhat lower down in the troposphere, where the
specific humidity is higher. Computations of ensemble
perturbations in temperature and pressure confirm their
opposite signs and weak temperature-specific humidity
correlations nearly everywhere in the upper troposphere
away from saturated regions (not shown). Depending
on the depth of convection, negative correlations are
also found in the layer above the tops of the convective
clouds.

The autocorrelations between background errors in
dynamical variables are shown in Figure 9 at the same
points as in Figure 8. On average, both temperature and
wind autocorrelations are approximately isotropic and
have horizontal scales well within the applied covariance
localisation radius, with half-width of 0.15 rad (955 km).
The horizontal scales of the correlations for the wind vari-
ables in the precipitating region are about half those in
the nonprecipitating region. The correlations are elon-
gated vertically in precipitating regions, especially for the
wind variables. Among the three variables, the shortest
horizontal and vertical autocorrelations are found for the
temperature field, especially in nonprecipitating regions.
While temperature autocorrelations in various areas of
the Tropics call for more detailed correlation statistics,
our conclusion regarding shorter horizontal and longer
vertical autocorrelation lengths in precipitating regions
than in regions without precipitation is similar to the
results for the extratropics by Montmerle (2012) and
Lei et al. (2015).

Moving away from the Equator, horizontal scales
increase and stretch in the direction of the mean wind,
so that their longer scale can be approximately 955 km
in the subtropics (not shown). Longer correlation lengths
in the stratosphere compared with the troposphere are
seen in both middle latitudes and the Tropics, as expected.
We stress that the tropical length-scales in Figure 8 do
not increase with height within the troposphere, espe-
cially not in the precipitating regions. This is different from
the extratropical troposphere outside regions of mesoscale
convection, and also different from some earlier studies
that argued that forecast-error correlation length-scales
are longer in the Tropics compared with the extratrop-
ics (Ingleby, 2001; Pereira and Berre, 2006), although
length-scales estimated using ensemble methods were
shorter than those estimated using the NMC method
(Pereira and Berre, 2006). The increase of the horizontal
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F I G U R E 9 As in Figure 8, but (a–c) horizontal and (d–f) vertical autocorrelations. The ensemble mean (d) zonal wind and (e)
meridional wind are shown every ±5 m ⋅ s−1, with solid lines for positive, dashed lines for negative, and the zero isoline omitted. The
ensemble mean temperature in (f) is drawn every 10 K, starting from 190 K. [Colour figure can be viewed at wileyonlinelibrary.com]

correlation length-scale, when approaching the Equator,
was argued to reflect the latitudinal dependence of the
Rossby radius of deformation. In addition to different anal-
ysis methods, early studies often used 24-hr forecasts,
a time-scale longer than the scale of the forecast-error
growth due to convection.

Žagar et al. (2005) demonstrated that the short hori-
zontal length-scales in the tropical troposphere are due to
a combined effect of mass–wind couplings of equatorial
waves. More recently, Lee and Huang (2020) have shown
that shorter length-scales of the background errors are
beneficial for convective-scale forecasting in the Tropics.
Although we do not examine the global statistics of error
correlation lengths, Figures 8 and 9 are examples relevant
for all points we looked at. Figure 9 also shows that the

smallest difference between the length-scales in precipitat-
ing and nonprecipitating regions is in temperature errors.
This not only implies that moist convective processes affect
the correlation scales for wind variables, but also suggests
that temperature correlation scales in the Tropics may be
influenced more by dynamics than by convection.

4 SUMMARY AND OUTLOOK

In 1969, Smagorinsky discussed the problems and
promises of deterministic extended range forecasting
(Smagorinsky, 1969). It is worth citing his Orwellian tones
about the relative importance of the wind and mass-field
observations for deterministic forecasting: “Not all data

http://wileyonlinelibrary.com
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are equal in their information-yielding capacity. Some are
more equal than others.” He continued with, “This tells
us that if there is a choice as to what can be measured,
then one variable may be preferable over another. I’m sure
this will turn out to be the case in the Tropics.” Soon after,
Gordon et al. (1972) demonstrated that the preferable vari-
able is the wind. Moreover, Gordon et al. (1972) showed
that the possible reduction of analysis uncertainties in the
Tropics achieved by adding wind observations is expected
to have a positive impact even on the forecast errors in the
extratropics. Nevertheless, the GOS composed primarily
of mass-field observations, that is, satellite observations
of radiances, has been one of the key components of the
great progress in NWP in the last two decades. Tens of
millions of radiance observations are currently thinned
and effectively filtered out in assimilation preprocess-
ing (e.g. Liu and Rabier, 2002). With the successful
launch of the Aeolus satellite and the assimilation
of its HLOS wind profiles, the lengthy road towards
closing the long-standing observation gap in the GOS
has begun.

The percentage of wind observations in the GOS is less
than 10% of the total number of observations that enter
the operational data assimilation cycle at NWP centers
(Horányi et al., 2015a). However, the information con-
tent of wind observations is relatively greater than their
number percentage, with the exact difference depend-
ing on the data assimilation system and NWP model
(Baker et al., 2014). The fact that Aeolus winds, in spite
of their large random errors (in the Rayleigh channel),
improve tropical analyses and forecasts in all operational
NWP models is evidence of the limitations of mass-field
observations, as discussed in the Introduction within
a simple f -plane shallow-water framework. In fact, the
Aeolus winds were also shown to correct systematic errors
in the ECMWF model within the tropical tropopause layer
(Rennie et al., 2021; Bley et al., 2022), improvements that
may be crucial for the extratropical effects of better trop-
ical analyses as argued by Gordon et al. (1972) half a
century ago.

In operational NWP systems, inhomogeneous observa-
tion networks and statistically derived mass–wind corre-
lations built into the background-error covariance model
in variational data assimilation make it difficult to iden-
tify flow-dependent properties of analysis and forecast
uncertainties. Our OSSEs with an EnKF and a perfect
model provide a suitable framework for the computa-
tion of flow-dependent analysis and background errors for
assimilated dynamical variables (temperature and wind
components) and their multivariate coupling with the
specific humidity, the balance properties of which are
known to be complex (Bannister et al., 2020). The auto-
and cross-correlations are computed in precipitating and

nonprecipitating regions in January 2018 and are used
to discuss the spatial scales and strength of tropical
mass–wind covariances. In reality, NWP models are not
perfect and the observation network is inhomogeneous.
Nevertheless, our results provide an understanding rele-
vant for the current GOS and NWP and for planning future
observing systems.

One of the key results of our study is that, in an
ensemble Kalman filter data assimilation system with
a perfect model and a wealth of wind observations,
temperature observations provide little added value for
tropical analyses. According to our results, wind data
are more effective than temperature observations in con-
straining the tropical temperature field. The assimilation
of only temperature data leads to systematic deficiencies
in the background wind by missing propagating signals
in the flow, especially in the easterlies east of the date-
line. Furthermore, we have shown that the assimilation of
wind observations is twice as effective as the assimilation
of temperature observations in reducing the background
specific moisture spread. Flow dependence of moisture
background errors suggests that circulation (i.e., mois-
ture convergence) is more important for the prediction of
convection than local thermodynamics, as suggested by
Hohenegger and Stevens (2013).

According to our results, all tropical error correlations
are horizontally short. In particular, correlations of wind
background errors have shorter horizontal and deeper ver-
tical scales in precipitating regions compared with non-
precipitating areas. Tropospheric temperature correlations
are much shorter than the applied localisation radius, sug-
gesting that the horizontal localisation radii are not an
issue in the ensemble data assimilation. Error correlations
between temperature and specific humidity have small
scales and opposite signs in precipitating (positive correla-
tion) and nonprecipitating (negative correlation) regions,
which can be explained by physical coupling between the
two variables through the Clausius–Clapeyron equation
and radiative cooling, respectively. The smallest difference
between correlation length-scales in precipitating and
nonprecipitating regions is found in temperature errors,
suggesting that the temperature correlation scales in the
Tropics may be influenced more by dynamics than by
convection.

We do not make quantitative conclusions about the
ratios between the background and analysis ensemble
variances (or spread) in various experiments, as they
depend on several choices in the OSSEs. The choice of
observation-error variances is not considered problematic,
as the short-range forecast skill in the Tropics seems insen-
sitive to observation errors, in particular for the tempera-
ture field (Anderson et al., 2005; Privé et al., 2013; Privé
et al., 2021).
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Flow-dependent structures of the analysis and forecast
uncertainties (in terms of the ensemble spread) show that
the uncertainties are largest in regions of strong vertical
and longitudinal gradients in the background wind, irre-
spective of the dynamical variable and observation type.
The largest spread is thus found in the UTLS region,
especially over the Indian Ocean and Maritime Conti-
nent. The vertical wind shear has been shown to be
underestimated in NWP models (Houchi et al., 2010).
Improving its representation is more feasible by using
direct wind observations. That is consistent with our
findings of large improvements in background winds at
the edge of the easterlies in experiments that assimilated
winds. In agreement with this finding, the Aeolus observa-
tions were shown to bring improvements in the vertically
propagating equatorial Kelvin waves within the UTLS,
leading to better forecasts in the tropical stratosphere
(Žagar et al., 2021).

With respect to the HLOS winds from Aeolus, our
experiments make use of twice as many wind data, since
both wind components are assimilated as typical for wind
observing systems. Future Doppler wind lidars in space
will hopefully employ technologies for measuring both
wind components. While we have not compared the rel-
ative value of the two wind components, the OSEs with
the ECMWF model by Horányi et al. (2015a) suggest that
the zonal wind is more valuable, justifying the Aeolus
HLOS winds being almost zonal. Additional experiments
of the type applied here could quantify better the com-
bined effects of moisture and temperature observations on
the wind field in a perfect model, or the combined effect
of temperature and HLOS winds for Aeolus follow-on
missions.

Another remaining topic is the evaluation of mass
and wind observations at high latitudes. It is worth-
while to note the limitation of mass-field information in
polar regions, as discussed in the Introduction. Rennie
et al. (2021) and other studies of the impact of Aeolus
winds in NWP show significant positive impacts in the
polar regions. Although the impact is likely influenced by
the increasing number of Aeolus wind profiles in latitudes
with otherwise little wind information (Sandu et al., 2021),
the relative value of mass- and wind-field data and exam-
ination of the cross-correlations between mass and wind
variables in NWP models in polar regions remain to be
investigated.
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